457 research outputs found

    Predicting Incremental and Future Visual Change in Neovascular Age-Related Macular Degeneration Using Deep Learning

    Get PDF
    PURPOSE: To evaluate the predictive utility of quantitative imaging biomarkers, acquired automatically from optical coherence tomography (OCT) scans, of cross-sectional and future visual outcomes of patients with neovascular age-related macular degeneration (AMD) starting anti-vascular endothelial growth factor (VEGF) therapy. DESIGN: Retrospective cohort study. PARTICIPANTS: Treatment-naïve, first-treated eyes of patients with neovascular AMD between 2007 and 2017 at Moorfields Eye Hospital (a large, UK single-centre) undergoing anti-VEGF therapy METHODS: Automatic segmentation was carried out by applying a deep learning segmentation algorithm to 137,379 OCT scans from 6467 eyes of 3261 patients with neovascular AMD. After applying selection criteria 926 eyes of 926 patients were taken forward for analysis. MAIN OUTCOME MEASURES: Correlation coefficients (R2) and mean absolute error (MAE) between quantitative OCT (qOCT) parameters and cross-sectional visual-function. The predictive value of these parameters for short-term visual change i.e. incremental visual acuity [VA] resulting from an individual injection, as well as, VA at distant timepoints (up to 12 months post-baseline). RESULTS: VA at distant timepoints could be predicted: R2 0.80 (MAE 5.0 ETDRS letters) and R2 0.7 (MAE 7.2) post-injection 3 and at 12 months post-baseline (both p < 0.001), respectively. Best performing models included both baseline qOCT parameters and treatment-response. Furthermore, we present proof-of-principle evidence that the incremental change in VA from an injection can be predicted: R2 0.14 (MAE 5.6) for injection 2 and R2 0.11 (MAE 5.0) for injection 3 (both p < 0.001). CONCLUSIONS: Automatic segmentation enables rapid acquisition of quantitative and reproducible OCT biomarkers with potential to inform treatment decisions in the care of neovascular AMD. This furthers development of point-of-care decision-aid systems for personalized medicine

    Detection of macular atrophy in age-related macular degeneration aided by artificial intelligence

    Get PDF
    INTRODUCTION: Age-related macular degeneration (AMD) is a leading cause of irreversible visual impairment worldwide. The endpoint of AMD, both in its dry or wet form, is macular atrophy (MA) which is characterized by the permanent loss of the RPE and overlying photoreceptors either in dry AMD or in wet AMD. A recognized unmet need in AMD is the early detection of MA development. AREAS COVERED: Artificial Intelligence (AI) has demonstrated great impact in detection of retinal diseases, especially with its robust ability to analyze big data afforded by ophthalmic imaging modalities, such as color fundus photography (CFP), fundus autofluorescence (FAF), near-infrared reflectance (NIR), and optical coherence tomography (OCT). Among these, OCT has been shown to have great promise in identifying early MA using the new criteria in 2018. EXPERT OPINION: There are few studies in which AI-OCT methods have been used to identify MA; however, results are very promising when compared to other imaging modalities. In this paper, we review the development and advances of ophthalmic imaging modalities and their combination with AI technology to detect MA in AMD. In addition, we emphasize the application of AI-OCT as an objective, cost-effective tool for the early detection and monitoring of the progression of MA in AMD

    Detection of macular atrophy in age-related macular degeneration aided by artificial intelligence

    Get PDF
    INTRODUCTION: Age-related macular degeneration (AMD) is a leading cause of irreversible visual impairment worldwide. The endpoint of AMD, both in its dry or wet form, is macular atrophy (MA) which is characterized by the permanent loss of the RPE and overlying photoreceptors either in dry AMD or in wet AMD. A recognized unmet need in AMD is the early detection of MA development. AREAS COVERED: Artificial Intelligence (AI) has demonstrated great impact in detection of retinal diseases, especially with its robust ability to analyze big data afforded by ophthalmic imaging modalities, such as color fundus photography (CFP), fundus autofluorescence (FAF), near-infrared reflectance (NIR), and optical coherence tomography (OCT). Among these, OCT has been shown to have great promise in identifying early MA using the new criteria in 2018. EXPERT OPINION: There are few studies in which AI-OCT methods have been used to identify MA; however, results are very promising when compared to other imaging modalities. In this paper, we review the development and advances of ophthalmic imaging modalities and their combination with AI technology to detect MA in AMD. In addition, we emphasize the application of AI-OCT as an objective, cost-effective tool for the early detection and monitoring of the progression of MA in AMD

    Identification of Surrogate Anatomic Identifiers of Disease Progression in Age-Related Macular Degeneration

    Get PDF
    Age-related macular degeneration (AMD) is the leading cause of vision loss in patients over 50 in the developed world. The visual impairment is due to either choroidal neovascularisation (wet AMD) or geographic atrophy (GA). Drusen is the hallmark of AMD but the presence of drusen does not inform progression to wet AMD. Although the disease is mostly bilateral, the rate of progression of disease in both eyes may not be simultaneous. If one eye is affected by wet AMD, the risk of progression of the fellow eye to wet AMD increases by 10% every year. However, there are no markers that inform the time of conversion to wet AMD. For this reason, there is an unmet need to identify biomarkers that can fully predict the progression to wet AMD in order to allow early intervention before permanent damage. My thesis aimed to assess whether changes in imaging characteristics can more precisely explain conversion. I studied various cohorts including (a) normal aging eyes (b) eyes with early/ intermediate AMD and (c) fellow eyes of unilateral wet AMD to study the conversion to wet AMD. Firstly, I evaluated longitudinally volume changes in inner and outer retinal layers of 71 eyes with early/intermediate AMD using optical coherence tomography (OCT). Our results showed that inner and outer retina layer volumes may differentiate AMD eyes from healthy eyes. When comparing those who progressed to wet AMD at year 2 to those who did not, we found that baseline volume of GCIPL may differentiate between the 2 groups. As it is an inner retinal change, I hypothesized that heritability of the retinal layers may influence the rate of retinal layer changes and that may in turn help understand the changes seen in aging and AMD. I worked with the TWIN Study database, in which OCT was done in eyes of twins of different age groups and OCT data were available on 364 eyes of 184 (92 pair) twins. I evaluated whether heritability was responsible for ageing changes of the retinal layers. I found that total retinal volume and inner retinal layer volumes may be affected by genetic factors

    Evaluation of an Artificial Intelligence-based Detector of Sub- and Intra-Retinal Fluid on a large set of OCT volumes in AMD and DME

    Get PDF
    Introduction: In this retrospective cohort study, we wanted to evaluate the performance and analyze the insights of an artificial intelligence (AI) algorithm in detecting retinal fluid in spectral-domain OCT volume scans from a large cohort of patients with neovascular age-related macular degeneration (AMD) and diabetic macular edema (DME). Methods: A total of 3’981 OCT volumes from 374 patients with AMD and 11’501 OCT volumes from 811 patients with DME, acquired with Heidelberg Spectralis OCT device (Heidelberg Engineering Inc., Heidelberg, Germany) between 2013 and 2021. Each OCT volume was annotated for the presence or absence of intraretinal fluid (IRF) and subretinal fluid (SRF) by masked reading center graders (ground truth). The performance of an already published AI-algorithm to detect IRF, SRF separately and a combined fluid detector (IRF and/or SRF) of the same OCT volumes was evaluated. An analysis of the sources of disagreement between annotation and prediction and their relationship to central retinal thickness was performed. We computed the mean areas under the curves (AUC) and under the precision-recall curves (AP), accuracy, sensitivity, specificity and precision. Results: The AUC for IRF was 0.92 and 0.98, for SRF 0.98 and 0.99, in the AMD and DME cohort, respectively. The AP for IRF was 0.89 and 1.00, for SRF 0.97 and 0.93, in the AMD and DME cohort, respectively. The accuracy, specificity and sensitivity for IRF was 0.87, 0.88, 0.84, and 0.93, 0.95, 0.93, and for SRF 0.93, 0.93, 0.93, and 0.95, 0.95, 0.95 in the AMD and DME cohort respectively. For detecting any fluid, the AUC was 0.95 and 0.98, the accuracy, specificity and sensitivity was 0.89, 0.93, 0.90 and 0.95, 0.88 and 0.93, in the AMD and DME cohort, respectively. False positives were present when retinal shadow artifacts and strong retinal deformation were present. False negatives were due to small hyporeflective areas in combination with poor image quality. The combined detector correctly predicted more OCT volumes than the single detectors for IRF and SRF, 89.0% versus 81.6% in the AMD and 93.1% versus 88.6% in the DME cohort. Discussion/Conclusion: The AI-based fluid detector achieves high performance for retinal fluid detection in a very large dataset dedicated to AMD and DME. Combining single detectors provides better fluid detection accuracy than considering the single detectors separately. The observed independence of the single detectors ensures that the detectors learned features particular to IRF and SRF

    Age-Related Macular Degeneration and Diabetic Retinopathy

    Get PDF
    This reprint includes contributions from leaders in the field of personalized medicine in ophthalmology. The contributions are diverse and cover pre-clinical and clinical topics. We hope you enjoy reading the articles

    AI-based structure-function correlation in age-related macular degeneration

    Get PDF
    Sensitive and robust outcome measures of retinal function are pivotal for clinical trials in age-related macular degeneration (AMD). A recent development is the implementation of artificial intelligence (AI) to infer results of psychophysical examinations based on findings derived from multimodal imaging. We conducted a review of the current literature referenced in PubMed and Web of Science among others with the keywords 'artificial intelligence' and 'machine learning' in combination with 'perimetry', 'best-corrected visual acuity (BCVA)', 'retinal function' and 'age-related macular degeneration'. So far AI-based structure-function correlations have been applied to infer conventional visual field, fundus-controlled perimetry, and electroretinography data, as well as BCVA, and patient-reported outcome measures (PROM). In neovascular AMD, inference of BCVA (hereafter termed inferred BCVA) can estimate BCVA results with a root mean squared error of ~7-11 letters, which is comparable to the accuracy of actual visual acuity assessment. Further, AI-based structure-function correlation can successfully infer fundus-controlled perimetry (FCP) results both for mesopic as well as dark-adapted (DA) cyan and red testing (hereafter termed inferred sensitivity). Accuracy of inferred sensitivity can be augmented by adding short FCP examinations and reach mean absolute errors (MAE) of ~3-5 dB for mesopic, DA cyan and DA red testing. Inferred BCVA, and inferred retinal sensitivity, based on multimodal imaging, may be considered as a quasi-functional surrogate endpoint for future interventional clinical trials in the future

    Retinal Imaging in Alzheimer’s Disease

    Get PDF
    Identifying biomarkers of Alzheimer's disease (AD) will accelerate the understanding of its pathophysiology, facilitate screening and risk stratification, and aid in developing new therapies. Developments in non-invasive retinal imaging technologies, including optical coherence tomography (OCT), OCT angiography and digital retinal photography, have provided a means to study neuronal and vascular structures in the retina in people with AD. Both qualitative and quantitative measurements from these retinal imaging technologies (eg, thinning of peripapillary retinal nerve fibre layer, inner retinal layer, and choroidal layer, reduced capillary density, abnormal vasodilatory response) have been shown to be associated with cognitive function impairment and risk of AD. The development of computer algorithms for respective retinal imaging methods has further enhanced the potential of retinal imaging as a viable tool for rapid, early detection and screening of AD. In this review, we present an update of current retinal imaging techniques and their potential applications in AD research. We also discuss the newer retinal imaging techniques and future directions in this expanding field
    • …
    corecore