
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=iero20

Expert Review of Molecular Diagnostics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/iero20

Detection of macular atrophy in age-related
macular degeneration aided by artificial
intelligence

Wei Wei, Rajeevan Anantharanjit, Radhika Pooja Patel & Maria Francesca
Cordeiro

To cite this article: Wei Wei, Rajeevan Anantharanjit, Radhika Pooja Patel & Maria
Francesca Cordeiro (2023): Detection of macular atrophy in age-related macular
degeneration aided by artificial intelligence, Expert Review of Molecular Diagnostics, DOI:
10.1080/14737159.2023.2208751

To link to this article:  https://doi.org/10.1080/14737159.2023.2208751

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 05 May 2023.

Submit your article to this journal 

Article views: 853

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=iero20
https://www.tandfonline.com/loi/iero20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14737159.2023.2208751
https://doi.org/10.1080/14737159.2023.2208751
https://www.tandfonline.com/action/authorSubmission?journalCode=iero20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=iero20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/14737159.2023.2208751
https://www.tandfonline.com/doi/mlt/10.1080/14737159.2023.2208751
http://crossmark.crossref.org/dialog/?doi=10.1080/14737159.2023.2208751&domain=pdf&date_stamp=2023-05-05
http://crossmark.crossref.org/dialog/?doi=10.1080/14737159.2023.2208751&domain=pdf&date_stamp=2023-05-05


REVIEW

Detection of macular atrophy in age-related macular degeneration aided by 
artificial intelligence
Wei Wei a,b,c, Rajeevan Anantharanjitc,d, Radhika Pooja Patel c,d and Maria Francesca Cordeiro b,c,d

aDepartment of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo, China; bDepartment of Surgery & Cancer, Imperial College 
London, London, UK; cImperial College Ophthalmology Research Group (ICORG), Imperial College Ophthalmology Research Group, London, UK; 
dWestern Eye Hospital, Imperial College Healthcare NHS trust, London, UK

ABSTRACT
Introduction: Age-related macular degeneration (AMD) is a leading cause of irreversible visual impair-
ment worldwide. The endpoint of AMD, both in its dry or wet form, is macular atrophy (MA) which is 
characterized by the permanent loss of the RPE and overlying photoreceptors either in dry AMD or in 
wet AMD. A recognized unmet need in AMD is the early detection of MA development.
Areas covered: Artificial Intelligence (AI) has demonstrated great impact in detection of retinal 
diseases, especially with its robust ability to analyze big data afforded by ophthalmic imaging mod-
alities, such as color fundus photography (CFP), fundus autofluorescence (FAF), near-infrared reflectance 
(NIR), and optical coherence tomography (OCT). Among these, OCT has been shown to have great 
promise in identifying early MA using the new criteria in 2018.
Expert opinion: There are few studies in which AI-OCT methods have been used to identify MA; 
however, results are very promising when compared to other imaging modalities. In this paper, we 
review the development and advances of ophthalmic imaging modalities and their combination with AI 
technology to detect MA in AMD. In addition, we emphasize the application of AI-OCT as an objective, 
cost-effective tool for the early detection and monitoring of the progression of MA in AMD.
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1. Introduction of AMD

ge-related macular degeneration (AMD) is a leading cause of 
visual impairment and irreversible blindness in the elderly 
population in developed countries. Its prevalence is estimated 
to increase to 288 million in 2040 [1], approximately 8.7% of all 
global blindness [2], as the aging population grows due to 
increased life expectancy.

AMD is a progressive macular degenerative disorder invol-
ving drusen deposition, retinal pigment epithelium (RPE) 
abnormalities, atrophy of the RPE and the choriocapillaris, 
and neovascularization. The disease is divided into three 
stages, namely, early, intermediate, and advanced [3]. The 
early stage is characterized by the presence of drusen deposits 
in the retina, while the advanced stage can be divided into the 
dry type with geographic macular atrophy (MA) at the center 
of the fundus, and the wet type with neovascularization.

2. Macular atrophy (MA)

2.1. Definition of MA in AMD

Atrophy is a term used to describe shrinking or withering of 
a body, which may occur as a result of inadequate diet or of 
inactivity. Macular atrophy in AMD is characterized by the 
permanent degradation of the RPE and overlying photorecep-
tors either in dry AMD or in wet AMD.

2.2. MA in dry AMD

Atrophy in dry AMD presents various forms of atrophy around 
the macula, including parafoveal/foveal band formation, uni-
focal, or multifocal. The growth rate of atrophy is 2 mm2/year 
on average but varies considerably [4]. MA is the end point of 
dry AMD resulting in functional loss and the presence of 
scotoma in patient’s visual field. The progression of dry AMD 
occurs more slowly than wet AMD [5], but it produces irrever-
sible visual loss, predominantly central, for which there is 
currently no established treatment.

Geographic MA is a form of progressive atrophy and it 
presents in an atrophic form in late disease. This concept 
was introduced by Gass [6] in 1973 who described demarcated 
areas of atrophy in the macula which gradually enlarged and 
coalesced [7]. The area of atrophy was described as ‘geogra-
phy’ and this term described confluent loss of the retinal 
pigment epithelium (RPE) with a strongly delineated boundary 
between depigmented and normal regions on the surface [8]. 
MA in dry AMD often begins as a single parafoveal lesion [9] 
and may present in areas previously occupied by drusenoid 
pigment epithelial detachments [9]. The atrophy is also asso-
ciated with a form of morphological change-reticular pseudo-
drusen (RPD), appearing as yellowish-white net-like patterns 
located subretinally [10,11]. Studies have demonstrated that 
RPD is an increased risk factor for progression to the late 
stages of AMD, in both dry and wet AMD patients [12].
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2.3. MA in wet AMD

Nowadays, it is well-established that atrophy is a common 
occurrence in patients with treated neovascular AMD (wet 
AMD) [13,14], and that both neovascularization and MA can 
coexist in the same eye [13]. Several studies have confirmed 
the discovery of atrophy in eyes with treated neovascular 
AMD [9,15]. Atrophy is cited as the foremost reason for visual 
loss in patients with wet AMD who have received anti- 
vascular endothelial growth factor (VEGF) treatments [16,17]. 
It is still not entirely clear as to why MA occurs in patients 
with wet AMD – whether it is caused by the underlying 
degenerative process of AMD or by the anti-VEGF treatment 
itself. There are three potential hypotheses at present, includ-
ing the natural evolution of underlying dry AMD (true geo-
graphic atrophy), collateral effect of the extension/retraction 
of macular neovascularization (MNV), and interference with 
basal VEGF levels [13]. The reason for the latter is partly 
attributed to anti-VEGF treatment inhibiting the neuroprotec-
tive effects of VEGF [18]. Increased VEGF level after injury 
reduces the number of apoptotic retinal cells and plays 
a direct role in neuroprotection, but this protective effect is 
reversed if using VEGF inhibitors. Therefore, long-term anti- 
VEGF treatments may lead to a significant loss of retinal 
ganglion cells [18,19]. Recent studies also have revealed 
that VEGF in addition to their angiogenesis and vascular 
permeability roles also play important roles in neurotrophic 
and neuroprotective functions [20]，as evidenced in models 
of retinal neuroprotection in experimental glaucoma [21]. The 
RIVAL study [22] showed that up to a third of wet AMD 
patients receiving anti-VEGF treatment develop MA after 24  
months of treatment, with no difference in the rate of pro-
gression of MA whether ranibizumab or aflibercept was used. 
As MA is progressive and results in significant and irreversible 
visual loss once the fovea is involved, it is important to be 
able to predict or identify the onset of MA development at 
the earliest opportunity.

2.4. Treatment for MA

Up until now, there have not been any effective treatments for 
MA. However, promising treatments are now beginning to 
emerge. Recent studies have evaluated the safety and efficacy 
of intravitreal pegcetacoplan (a pegylated complement C3 

inhibitor peptide) and avacincaptad pegol (a C5 inhibitor). 
Both new treatments show potential in significantly slowing 
the progression of MA in AMD [23–25].

3. Imaging technologies to detect MA

As imaging technologies have rapidly evolved, their applica-
tions in AMD and MA diagnosis and monitoring have 
increased. A summary of these techniques is described below.

3.1. Conventional imaging technologies

3.1.1. Fundus photography
Atrophy in dry AMD has historically been defined by the 
presence of any distinctly demarcated circular or oval patch 
of retinal hypopigmentation or depigmentation using 30° or 
35° in color fundus photography (CFP) images, as well as 
visibility of the underlying choroidal vessels [3]. However, the 
boundaries of atrophy were sometimes difficult to differenti-
ate, with a need for better differentiation between healthy and 
diseased retina.

3.1.2. Fundus autofluorescence and near-infrared fundus 
autofluorescence
Fundus autofluorescence (FAF) imaging is a novel and useful 
technology with signal derived from lipofuscin in RPE cells 
appearing as hyperfluorescent patches, and hypofluorescent 
patches defining atrophy. This became the primary method to 
identify and quantify atrophy [26,27]. Lipofuscin is a by- 
product of phagocytosis of the photoreceptor outer segments, 
which accumulates in the RPE with age. It is strongly asso-
ciated with the pathogenesis of AMD [28]. The accumulation 
of lipofuscin presents a sharply demarcated area of decreased 
signal intensity in blue-light or green-light FAF [29]. FAF has 
been developed into a repeatable method for accurately ana-
lyzing and quantifying lesion region and this technique is used 
in many clinical trials [30,31]. FAF could be used to provide 
a quantitative parameter for the enlargement area of MA. 
However, the primary limitation of using blue-light FAF to 
detect GA lesions is that the central macular luteal pigment 
absorbs the blue excitation light, making it impossible to 
determine foveal activity by using FAF images alone [32].

Near-infrared fundus autofluorescence (NIA) is another 
noninvasive imaging tool with long wave used to visualize 
the pathologic process in the retina, especially abnormalities 
in the RPE. NIA can visualize the distribution of melanin in the 
retina, which originates from the RPE and is a major protective 
factor for the RPE [33]. Melanin protects the RPE cells from 
a variety of threats, including radiation, oxidative stress, and 
light damage [34]. NIA can complement FAF when evaluating 
the progression of AMD [34].

3.2. 3 near-infrared reflectance (NIR)

Unlike FAF, near-infrared reflectance (NIR) is unaffected by 
luteal pigment and is often used in combination with blue- 
light FAF allowing the assessment of the foveal involvement. 
This makes it comfortable and safe for patients [35]. Although 
it fails to distinguish junctional features in some cases (e.g. 

Article highlights

● MA is the endpoint of AMD, which leads to irreversible blindness, 
therefore, early detection of MA is urgent and an unmet need.

● Ophthalmological imaging technology provides a reliable way to 
detect lesions and the progression of MA.

● OCT enables detailed morphologic and structural changes in cross- 
sectional level for MA early detection.

● The rapid development of AI has attracted global attention over the 
last decade, and its wide application will undoubtedly revolutionize 
the ophthalmic field.

● Many biomarkers that are captured on OCT can be objectively 
detected by AI-based algorithms and can be used as reliable indica-
tors for MA prediction and progression.
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regions of elevated autofluorescence at the boundary of atro-
phy), which could suggest a faster rate of enlargement of the 
MA lesion and needs to be used in combination with blue 
light FAF [35], it is still reliable to identify MA lesions in dry 
AMD in many cases. NIR imaging is commonly obtained along 
with optical coherence tomography (OCT), and therefore NIR- 
based MA assessment may be a useful surrogate in clinical 
settings [35].

3.3. Optical coherence tomography

Optical coherence tomography (OCT) has become a standard 
technology to evaluate the macula, because it is widely avail-
able, easily performed and provides detailed structural assess-
ment non-invasively. With the development of OCT 
technology, clinicians can rapidly capture volumetric and en- 
face images. The near-infrared reflectance image can help 
evaluate macular lesions in different layers. Furthermore, this 
technique can determine the extent of cellular loss in macular 
atrophy and detect changes in different retinal layers.

The development of imaging technology with spectral 
domain optical coherence tomography (SD-OCT) is 
a milestone in ophthalmological imaging. SD-OCT scanners 
have real-time tracking, fast scan rates, high resolution, and 
high contrast images. The higher scanning speeds help pro-
duce high-resolution images and minimize artifacts from eye 
movements [36]. Another study has also shown that ultra-fast 
OCT using Graphics Processing Unit (GPU) computing is com-
parable with the data acquisition thread time, and this real- 
time display is a promising tool for clinics [37].

Computer-based analysis of features provides quantitative 
assessment of a considerable volume of imaging data, which 
offers meaningful evaluation that is simply not feasible in 
clinical practice. The wide application of OCT has revolutio-
nized the diagnosis and management of wet AMD in everyday 
clinical practice because it can provide assessment of risk and 
individual prognosis, including the need for repeated anti- 
VEGF injections and other therapeutic intervention. The effi-
cacy of anti-VEGF treatment is highly correlated with the 
morphological features based on OCT imaging [38]. 
Therefore, OCT is an efficient tool for evaluation of AMD. 
Despite the ability of OCT to provide a reliable assessment of 
various pathognomonic features of the disease, comprehen-
sive evaluation of a patient may involve multi-model imaging 
and ideally include CFP, fluorescein angiography (FA) and FAF 
to be performed routinely.

3.4. Application of OCT as an imaging tool to detect MA

OCT is reliable in detecting drusen in patients with AMD. The 
internal heterogeneous reflectivity of drusen and the change 
from homogeneous to heterogeneous reflectivity over time 
are associated with local RPE atrophy onset, defined as the 
loss of RPE and ellipsoid zone (EZ) bands [39]. Atrophy will 
result in increased signal transmission below Bruch’s mem-
brane (BM) accompanied by loss of the external limiting mem-
brane (ELM) and outer nuclear layer (ONL) [39]. This in turn 
translates into hyperreflective signals from the choroid. 
Furthermore, the drusenoid lesions and drusenoid pigment 

epithelium detachment (PED), positively correlate with the 
risk of local atrophy onset [40] and a decreased photoreceptor 
thickness [41].

The cross-sectional feature of OCT imaging enables detect-
ing subtle changes in the outer retinal and RPE layers of 
macular atrophy. Macular atrophy on SD-OCT is characterized 
by the hyper-transmission of light into the choroid below the 
Bruch’s Membrane (BM), and this is due to the absence of 
light-scattering on RPE and choriocapillaris [39]. Confluent 
areas of RPE atrophy are further accompanied by the loss of 
the overlying photoreceptors and the absence of the ELM, the 
loss of the ONL and the subsidence of the outer plexiform 
layer (OPL) [39]. En-face projections of the summed trans-
mitted and reflected light from all layers offer further insights 
and visualization. These images include the detailed delinea-
tion of MA with hyper-reflection signals because of the 
increased total signals from the choroid. Using both OCT and 
NIR images, manual and automated quantification of the 
atrophic area has been shown to be a valid, reproducible, 
convenient, and reliable method in assessing the growth rate 
[42]. Furthermore, as a single imaging technique, OCT fundus 
images allow simultaneous visualization of the atrophy 
together with the loss of photoreceptors and the RPE that 
should correlate with the loss of the visual function [42]. 
Margins of atrophy are characterized by the change from 
a hyporeflective to hyperreflective choroidal signal on OCT 
imaging. Also, various morphological alterations of the outer 
retinal bands can be detected on OCT imaging (Figure 1) 
Studies have shown abrupt and irregular breaks/disruptions 
in the EZ, the interdigitation zone (IZ), and the RPE band [43]. 
In the atrophic areas, these bands are often obscured or 
absent [43]. In addition, among the various morphological 
changes in the atrophic area, the remaining structure RPE- 
BM complex becomes homogenous over time [39]. MA con-
stantly enlarges in all patients due to the expansion of the loss 
of RPE, photoreceptors, and varying degrees of choriocapillaris 
[39]. Areas of choroidal hyper-reflectivity, OPL thinning, and 
the ELM loss can be clearly visualized on OCT. These structural 
changes underpin a staging category of MA based on the 
classification consensus [44]. Photoreceptor abnormalities 
may be an early indicator of AMD progression, because it 
often precedes the enlargement of the atrophy and extends 
beyond the borders of atrophy [45,46], which may be helpful 
in understanding the pathogenesis of AMD better. 
Interestingly, progressive loss of photoreceptors related to 
outer retinal thinning has been shown to occur without RPE 
atrophy [44] or with a preserved RPE layer [47].

In summary, the loss of photoreceptors includes the loss of 
the IZ, EZ, and ELM and the thinning of the ONL [44]. These 
features can all be seen on OCT enabling a new classification 
system to define MA, and also provide a surrogate clinical 
endpoint to evaluate the effectiveness of potential treatments.

3.5. A new classification of MA based on OCT imaging

In 2018, a new classification system to define MA based on 
OCT technology was published by the Classification of 
Atrophy Meetings (CAM) group. The criteria showed that atro-
phy can undergo an evolution of different stages, with four 
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histological/OCT features proposed: complete RPE and outer 
retinal atrophy (cRORA), incomplete RPE and outer retinal 
atrophy (iRORA), complete outer retinal atrophy, and incom-
plete outer retinal atrophy [44].

Specific OCT criteria have been suggested to define cRORA 
: (1) a region of hypertransmission of at least 250 um in 
diameter, (2) a zone of attenuation or disruption of the RPE 
of at least 250 um in diameter, (3) evidence of overlying 
photoreceptor degeneration, and (4) absence of scrolled RPE 
or other signs of an RPE tear [44]. The consensus defined MA 
as simply a subset of cRORA.

Early atrophy is so-called incomplete RPE and outer retinal 
atrophy (iRORA), and the diagnostic criteria based on OCT are (1) 
a region of signal hypertransmission into the choroid (<250um), 
(2) a corresponding zone of attenuation or disruption of the RPE 
(<250um), with or without persistence of basal laminar deposits, 
(3) evidence of overlying photoreceptor degeneration, and (4) 
absence of scrolled RPE or other signs of an RPE tear [48].

However, sometimes it is hard to define the evidence of 
overlying photoreceptor degeneration or loss compared with 
other features, with disagreement among different graders 
and readers [49]. Hence, a detailed description is used includ-
ing the presence of subsidence of the inner nuclear layer (INL) 
and OPL, or a hyporeflective wedge-shaped band in the Henle 

fiber layer (HFL) or thinning of the ONL [48,49]. In addition, the 
findings of photoreceptor degeneration are often accompa-
nied with disruption of the ELM, the EZ, and the IZ [48].

4. Artificial intelligence (AI) applications to MA in 
AMD

Although FAF is the gold standard in the detection of MA, it 
demands more resources and clinical time to perform. That 
means more time being spent on assessing FAF as this is not 
a procedure that is routinely performed, and in addition to the 
imaging time needed, there is also a need for expert interpretation, 
especially when evaluating MA in wet AMD. Moreover, the diffi-
culty in evaluating foveal activity makes it difficult to make clinical 
decisions alone. Therefore, in conventional healthcare clinical set-
tings, a follow-up treatment decision is made mainly using OCT 
imaging (for example, absence or presence of MA, rate of progres-
sion on MA, etc.) and the interpretation is dependent on the 
clinician’s experience, knowledge, and judgment. This subjectivity 
may lead to lack of agreement between observers and the varia-
bility in interpretation sensitivity and specificity. For this reason, AI, 
an emerging field of computer science is increasingly being 
applied to ophthalmology, particularly to OCT imaging which 
provides big data in the form of multiple volumetric scans 

Figure 1. An example of OCT images to detect MA. 1a. NIR image of OCT; 1b. Cross-sectional Image of OCT (also called OCT slice); 2a. Outline of MA characterized by 
hyperreflective signals; 2b. Annotated morphological alterations of the outer retina and RPE.
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captured at one time. The potential for early identification of 
disease and predicting progression using AI has been increasingly 
recognized. Moreover, machine learning (ML), including Deep 
learning (DL), is becoming a leading analytical approach for 
ophthalmological images, with the ability to objectively detect 
structural changes, staging pathological disease and locating 
detailed lesions in the retina [50]. This technique can be used in 
multi-model image segmentation, automatic classification, data 
analysis, and quantification [51]. DL is widely applied to retinal 
layer segmentation and fluid segmentation [50]. Further work is 
steadily advancing, focusing on abnormal structures associated 
with progression.

ML-based methodologies for AMD can be simply divided 
into several steps: pre-processing, transformation, extrac-
tion, feature selection, feature classification, learning, and 
initial validation. Raw images and data are extracted before 
undergoing pre-processing and transformation. Feature 
selection of the data is then performed following which 
images and data are further categorized in a process called 
feature classification to capture specific characteristics. After 
that, ML goes into the learning stage at which computer 
learns from all these chosen features to make a decision or 
prediction. Finally, testing is performed to evaluate this 
learning performance. The aim of this step is to distinguish 
between normal and disease through specific characteristics 
that are learnt before by computer itself; all these results 
are then compared to the ground truth using statistical 

criteria including the measurement of accuracy, precision, 
and recall or kappa scores [50].

ML-based algorithms are currently used in the classification 
and prediction of progression in MA. However, most studies 
have a small sample size of raw images as input (Table 1 and 
Table 2) and are lacking external validation [72]. It is true that 
OCT offers the opportunity of big data primarily because of 
the volumetric or 3D data that is available compared to 2D. 
Analysis of these big data can provide much more detailed 
information. However, the use of AI analysis of OCT volumetric 
scans has historically suffered from using a small number of 
OCT scans in their generation of algorithms. Small sample 
sizes in machine learning greatly influence the final result, 
with the possibility of over-training and over-fitting. Another 
limitation is the lack of diversity in the study populations 
during the development of models [72].

4.1. Application of OCT-AI based methodology to detect 
lesions associated with MA in AMD

Apostolopoulos et al. trained a model using OCT to distinguish 
intermediate AMD from normal retina [73]. However, the 
model cannot be successfully applied to more severe struc-
tural abnormalities, especially those that feature in advanced 
AMD. More recently, DS Kermany et al. were the first to apply 
ImageNet (a large visual database designed for the use of 
visual object recognition) to detect abnormalities of AMD, 

Table 1. Studies using FAF/CFP-AI-based methods to detect MA.

Purpose of the study Studies Imaging modality Sample size

Automatic detection and segmentation Deckert, A. et al. [52] (2005) FAF 40 images from 40 eyes
Lee, N. et al. [53] (2008) FAF 100 images
Ramsey, D. J. et al. [54] (2014) FAF and CFP 10 patients
Feeny et al. [55] (2015) CFP 143 images from 55 patients
Hu, Z. et al. [56] (2015) FAF 16 eyes
Hu, Z. et al. [57](2018) FAF 50 images
Treder, M. et al. [58] (2018) FAF 460 images from 460 eyes (detection) 

220 images from 220 eyes (classification)
Keenan, T. D. et al. [59](2019) CFP 59812 images from 4582 patients

Prediction progression Pfau, M. et al. [60](2019) FAF and NIR 296 images from 201 patients
Liefers, B. et al. [61](2020) CFP Model development: 409 images from  

238 patients (the Rotterdam Study (RS)  
and Blue Mountain Eye Study (BMES)). 
Application: 3589 images from 376 eyes  
(the Age-Related Eye Disease Study (AREDS)).

Schmidt-Erfurth, U. et al. [62] (2020) OCT and FAF 491 OCT volumes from 87 eyes in 54 patients

Table 2. Studies using OCT-AI-based methods to detect MA.

Purpose of the study Studies Sample size

Automatic OCT detection  
and segmentation

L Fang et.al [63]. (2017) 117 scans from 39 patients (38 eyes)
Z Ji et. al [64]. (2018) A: 51 scans from 8 patients (12 eyes) 

B: 54 volume scans from 54 patients (54 eyes)
R Xu et.al [65,66]. (2018/2019) A: 51 scans from 8 patients (12 eyes) 

B: 54 volume scans from 54 patients (54 eyes)
Zhang, G. et al. [67] (2021) Model training :984 volume scans from 200 patients (399 eyes) 

External validation: 192 scans from 110 patients (192 eyes)
Liefers, B. et al. [68] (2021) 307 volume scans from 307 eyes
Derradji, Y. et al. [69] (2021) 62 volume OCT scans from 57patients (62 eyes)
Chiang, J.N. et al. [70] (2022) Model training: OCT volumes from 71 patientsTesting: 

A: 1117 volumes from the general population 
B: 60 OCT B-scans with lesions

Prediction progression S Niu et.al [71]. (2016) 118 scans from 29 patients (38 eyes)
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such as macular neovascularization and drusen [74], which is 
now commonly used for AMD classification.

Turning to the segmentation step related to lesions in 
retinal layers, researchers applied U-Net (a cutting-edge 
convolutional neural network for semantic segmentation) 
to segment drusen based on an existing dataset with seg-
mentation images for BM and RPE [75] as well as MA in dry 
AMD [64]. DeepMind’s algorithm detects 10 different 
lesions, some of which are AMD-related lesions [76]. 
However, improvements in retinal layer segmentation are 
still needed. The current advancement helps to delineate 
various lesions, such as subretinal fluid, cysts, and drusen, 
however, this is mainly useful in diagnosis and not for 
quantification and monitoring of progression. Several novel 
OCT-based features have been identified by a number of 
studies monitoring the risk of AMD progression [77]. Drusen 
volume, PED, subretinal hyperreflective material, subretinal 
drusenoid deposits, subretinal/intraretinal fluid are all pro-
mising signals that can predict progression. OCT-based bio-
markers have been proposed to automatically detect and 
classify AMD using DL methods. With the help of OCT 
advancement, DL provides a strong correlation between OCT- 
based features and AMD and presents detailed structural 
changes during the progression. However, it also generates 
very large image data volumes with often up to hundreds of 
B-scans every examination, which makes manual analysis of 
OCT laborious and impractical in many circumstances [78]. In 
order to tackle these issues, a number of approaches have 
been established using OCT images for automated or semi- 
automated analysis of AMD [78].

OCT provides a considerable amount of information about 
the retina and choroid, but manual quantitative analysis of 
pathognomonic features is difficult and time-consuming. 
However, computer-based image analysis provides precise 
quantitative measurement of features in an automated, objec-
tive, reliable, and repeatable way. Recently, ML-based algo-
rithms have been validated for OCT image analysis, including 
segmentation and identifying specific biomarkers in OCT. The 
accuracy of these automated algorithms is expected to 
improve in the near future. Another significant clinical applica-
tion is to individualize prognosis and treatment regimens.

4.2. Development of AI studies to detect MA

Various fully or semi-automated algorithms on measuring 
areas of atrophy have been developed to assist the assess-
ment of advanced AMD – namely MA. The earliest paper 
published on AI-MA was in 2005 by Deckert’s team. His team 
developed a novel automated algorithm that removed inter-
fering vascular structures in FAF imaging to segment and 
quantify MA in dry AMD [52,79]. Subsequently, Lee at al 
showed another automated algorithm to delineate MA in dry 
AMD using FAF images in 2008. They combined the watershed 
transformation and generalized non-linear gradient operators 
for interactive segmentation and presented an intuitive and 
simple approach for MA segmentation [53]. Similarly, Ramsey 
et al applied another automated image segmentation based 
on the fuzzy c-means clustering algorithm to assess MA 

segmentation both in FAF and CFP images [54]. Unlike the 
previous two studies, Feeny et al employed a random forest 
classifier for fully automated MA segmentation in patients 
with dry AMD in 2015. This was the first time ML was used 
for MA segmentation on CFP images [55]. Following these 
pioneering studies, many other novel ML algorithms were 
developed and applied to segmentate MA using FAF and/or 
CFP images [56–59]. Some studies also combined OCT images 
aid in further evaluation [80].

Many more studies have focused their efforts on detec-
tion of MA progression since 2019. Pfau et al. used linear 
mixed-effects models to demonstrate the relationship 
between multiple shape-descriptive variables and MA pro-
gression rates on FAF images [60]. Liefers and his team 
employed and optimized a type of encoder – decoder DL 
architecture to detect MA on CFP images and then applied 
this model to predict MA growth rate [61]. Interestingly, 
U Schmidt-Erfurth predicted the progression of MA based 
on automatic quantitation of hyperreflective foci (HRF) 
using OCT and relocated it to FAF images [62]. HRF can 
be seen as the debris of drusen that turns into collapse 
because of apoptosis or migrating to the retina [62,81] and 
they are discrete and well-circumscribed lesions with equal 
or greater reflectivity than the RPE band in OCT [82]. They 
revealed a positive correlation between HRF and MA expan-
sion [62]. However, the majority of these studies were 
focused on MA in dry AMD only and did not include wet 
AMD. The main reason for this is due to the fact that MA in 
wet AMD has only been better recognized in the last 5 
years [13,14]. Additionally, it is relatively difficult to detect 
MA in wet AMD using conventional imaging modalities, like 
CFP and FAF.

4.3. Development and application of AI-OCT based 
methodology to detect MA

In the past 15 years most algorithms have been based on FAF 
and CFP (Table 1), however, in the recent 5 years there are 
more AI-OCT studies (Table 2) because of the increasing devel-
opment and usage of OCT imaging. As a result, most AI-OCT 
studies have been carried out using convolution neural net-
works (CNN), the most recent and advanced AI framework, 
within the last 5 years. Ultimately, AI-OCT studies may be more 
in keeping with the recent advancements in retinal medicine 
than the other conventional imaging modalities. Advances in 
computational analysis and machine learning in OCT have 
predicted future potential regions of atrophy growth, enlarge-
ment rate, and foveal involvement [39]. Niu et al. made a fully 
automated algorithm which was able to predict MA growth 
using OCT segmentation and feature extraction [71]. Zhang, 
G. et al. applied a DL-OCT-based algorithm to classify the 
stages of MA in dry AMD with a larger sample size, and 
performed further external validation, again with a good per-
formance [67]. During the same period, Liefers, B. et al. 
extracted 13 most common features in the retina and devel-
oped a convolutional neural networks (CNN) model for feature 
segmentation from 307 volume scans including retinal dis-
eases other than AMD [68], including several atrophic features 
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in wet AMD. This model obtained a similar or higher sensitivity 
and accuracy compared with human graders [68]. Derradji, 
Y. et al. [69] developed a fully automated method (CNN) to 
detect and measure MA in dry AMD and also achieved a good 
performance. Recently, Chiang, J.N. trained a Resnet18 model 
to classify iRORA and cRORA in OCT B-scans, and achieved 
promising AUROC (area under the receiver operating charac-
teristic curve) performance and AUPRC (area under the preci-
sion-recall curve) scores in external testing data sets [70].

Overall, high quality published works showed good agree-
ment between human graders and automated algorithms and 
they achieved a promising DSC (dice similarity coefficient) 
score using CFP, FAF, or OCT, ranging from 0.68 to 0.89 [83]. 
All these results are greatly encouraging and reveal a strong 
potential for clinical application.

5. Current limitations

The main AMD studies that have analyzed risk factors about 
MA development [84]; however, the outcome is not strictly 
comparable between the studies as different imaging meth-
ods were used. Therefore, the relationship between develop-
ment of atrophy and neovascularization remains unclear as 
well as the relationship between development of atrophy and 
anti-VEGF treatment.

A further considerable limitation is that most studies have 
a small sample size due to the availability of data. This is 
largely due to the difficulties in collecting sensitive data in 
line with the GDPR constraints, but also in ensuring uniformity 
and continuation in data collection. This also results in differ-
ences in data collection and regulation for studies in different 
countries; thus, it largely restricts the co-operation between 
different regions with different ethnicities. Current studies 
tend to focus on one population and have a potential risk to 
generate bias outcomes. Additionally, most studies currently 
are based on clinical trials or public database which cannot 
reflect the real-world situations.

Other limitations include the lack of diversity in small 
study populations. We appreciate this is of course not 
a limitation of AI itself but of the development and applica-
tion of algorithms to disparate populations and real-world 
environments. However, this still seems to be a significant 
limiting factor.

From the clinical point of view, it is fundamental to con-
struct an extensive, well-labeled database with information 
collected from multiple centers worldwide. This will enhance 
the diversity of the database and reduce bias accordingly, for 
factors including ethnicity, diseases severity, and variances in 
imaging protocols. However, it is profoundly challenging to 
acquire large-scale medical images. Furthermore, from the 
technical point of view, one of the significant disadvantages 
of the AI strategy itself is the requirement of a large amount of 
high-quality and well-labeled data for training and validation. 
Large data also demand a considerable storage space, both 
physical and digital.

Furthermore, the uninterpretable ‘black box’ feature is still 
a concern for medical application, with a need for researchers 
to hypothesize why certain features have been identified in 
the process as being important predictors of disease. Hence, 

further research should be conducted to better visualize the 
learning process in the ‘black box’ and accelerate the DL 
model’s interpretability.

6. Conclusion

MA, the endpoint of AMD, is irreversible, therefore there is an 
urgent and unmet need for early detection and intuitive pre-
diction of the MA progression. OCT-AI-based methods which 
detect MA objectively are promising especially if they provide 
better monitoring tools for MA development and progression 
than manual analysis which is labor intensive and time- 
consuming. Automated OCT-AI analysis may also enable 
detection of MA at an earlier stage and thus may increase 
the therapeutic window of opportunity in the future. In addi-
tion, OCT-AI-based analysis could help in the evaluation of 
new drug efficacy in clinical trials. OCT-AI has strong potential 
to replace the traditional imaging technologies in clinical set-
tings, but more studies are needed to further validate its 
superiority, effectiveness, repeatability, and accuracy.

7. Expert opinion

Imaging technology in ophthalmology, especially OCT, provides 
a reliable way to detect lesions and the progression of diseases. 
However, conventional manual analysis of images is time- 
consuming, and depends on professional knowledge and experi-
ence, which may generate human errors and bias. Therefore, deep 
integration of AI into ophthalmology may revolutionize the exist-
ing diagnostic pathways, which could be objective and time- 
saving. The strength of AI is its high efficiency, especially when 
handling an abundance of imaging data. Studies have demon-
strated that the accuracy of automated detection is similar to 
manual assessment [83,85,86]. Thus, automated detection models 
are promising and present high accuracy, sensitivity, and specificity 
for disease detection [87]. Furthermore, predicting disease pro-
gression is another potential benefit from AI technology, which 
could provide individualized diagnosis and make personalized 
treatment plans, particularly suitable for those complex diseases 
and enhancing the success for both patients and clinicians. 
Therefore, OCT-AI is useful, not only to detect small MA, but also 
has the potential for early detection with some morphological 
changes and biomarkers on cross-sectional level, which is not 
available to see in conventional imaging modalities.

DL as a branch of ML is based on multi-layered neural 
network algorithms and applies the algorithm to learn to 
extract specific morphologic features on images [62]. 
Although DL may need more data than traditional ML, it 
has a strong capability of extracting specific lesions that are 
often invisible or not obvious to human readers [88]. 
Moreover, with the rapid improvement of AI technology, 
more unknown biomarkers will be identified and can reveal 
the potential correlations to pathologic mechanisms and their 
association with disease progression and pathogenesis. All 
these advantages provide a possibility for a better and dee-
per understanding of diseases.

The improvement of AI provides a potential to enhance the 
effectiveness of disease management. First and foremost, AI- 
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based prediction can reduce the economic burden of patients 
and improve follow-up requirements with individualized man-
agement plans. Second, this automated detection could 
reduce the workload of clinicians with the identification of 
high-risk patients most needing frequent attention improving 
service efficiency. Thirdly, these objective detection settings 
could eliminate a large number of misdiagnoses, especially in 
remote areas due to the lack of professional experts.

Currently, most AI-associated applications are primarily 
defined by one specific ML or DL architecture to segment 
and detect lesions. Therefore, potentially combining different 
AL frameworks and algorithms together can increase the accu-
racy and specificity of automated detection. In addition, utiliz-
ing different databases is most likely to improve the diversity 
of sample size and help acquire a more reliable and repeatable 
result. Most current studies have been focused on the auto-
mated detection and segmentation of MA, and only a few 
have explored the application of AI on the detection of MA 
progression. Better algorithms and a wider range of sample 
diversity should enable us to develop more accurate models 
for the prediction of MA advancement, which then can be 
applied in clinical settings.

Furthermore, most relevant studies have focused their 
efforts on exploring MA in dry AMD and very little work has 
been carried out to detect MA in wet AMD [13]. It is esti-
mated that although dry AMD constitutes 80% of total AMD 
incidence with 10% resulting in severe vision loss, a much 
higher proportion of wet AMD patient face severe vision 
impairment []. Despite anti-VEGF treatments being widely 
administered to patients with wet AMD, visual loss is usually 
inevitable, and it can ultimately lead to irreversible blindness 
[9,15] as the endpoint of wet AMD is still MA. Therefore, 
automated detection of MA in wet AMD still poses 
a significant unmet need and has a great potential to sig-
nificantly improve the current clinical practice. Another pro-
mising biomarker of atrophy emerging is DARC (Detection of 
Apoptosing Retinal Cells), which is able to predict progres-
sion of MA early in dry AMD and development of sub-retinal 
fluid in wet AMD by detecting early apoptosing cells [89]. 
This technology appears to be a promising predictor of ret-
inal cell activity and has encouraging results in early-stage 
studies [14,15,90–92], however further validation of these 
early studies are still needed [89].
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