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ABSTRACT  

Identifying biomarkers of Alzheimer’s Disease (AD) will accelerate the understanding of its 

pathophysiology, facilitate screening and risk stratification, and aid in developing new therapies. 

Developments in non-invasive retinal imaging technologies, including optical coherence 

tomography (OCT), OCT-angiography and digital retinal photography, have provided a means to 

study neuronal and vascular structures in the retina in people with AD. Both qualitative and 

quantitative measurements from these retinal imaging technologies (e.g. thinning of peripapillary 

RNFL, inner retinal layer, and choroidal layer, reduced capillary density, abnormal vasodilatory 

response) have been shown to be associated with cognitive function impairment and risk of AD. 

The development of computer algorithms for respective retinal imaging methods has further 

enhanced the potential of retinal imaging as a viable tool for rapid, early detection and screening 

of AD. In this review, we present an update of current retinal imaging techniques and their potential 

applications in AD research. We also discuss the newer retinal imaging techniques and future 

directions in this expanding field. 
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1. Introduction 

Alzheimer’s disease (AD), the most common form of dementia, is a major public health and 

clinical challenge globally.1 Despite decades in research, the pathophysiology of AD remains 

unclear. The current thinking is that the neuropathology of AD, as characterised by accumulation 

of misfolded amyloid-β and tau protein, begins years before the onset of clinical symptoms. Given 

this long natural history, there are opportunities for early disease detection and thus timely 

intervention.2 3 Indeed, recent clinical trials have suggested the efficacy of certain measures (e.g. 

lifestyle interventions or medication) in improving symptoms or slowing progression of AD.4   

 The definition of AD has also evolved in the past decade with the discovery of novel in 

vivo biomarkers for AD.5 6 It has been shown that clinically diagnosed cases of dementia 

presumably due to AD may be amyloid-negative in up to 25% of cases.7 8 Thus, biomarker 

confirmation has been proposed to improve the precision of AD diagnosis and now even 

biomarkers are indispensable for an AD diagnosis.9-11 The evolution in definition and diagnostic 

criteria of AD and other dementias may account for some of the variations and differences seen 

between studies discussed in this review.  The 2018  National Institute on Aging and Alzheimer’s 

Association Research Framework defines AD in vivo by abnormal biomarkers of cerebral amyloid-

β deposition and pathologic tau and treats cognitive impairment as a symptom or sign of the 

disease.9 This implies the cognitive function of a person affected by AD can thus range from 

cognitively unimpaired (preclinical AD), to mild cognitive impairment (MCI) (AD MCI), to 

dementia (AD dementia).9 Although this latest framework encourages in vivo detection and study 

of AD at an earlier stage (e.g. preclinical AD or AD MCI), current technologies to detect amyloid-

β and tau pathology using positron emission tomography (PET) brain imaging or cerebrospinal 

fluid (CSF) examination are limited due to their high cost, technical complexity, invasiveness of 
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the procedures, and/or the necessity of using radioactive tracers. Thus, identifying alternative, 

more accessible technologies and biomarkers of pre-clinical AD prior to onset of cognitive 

impairment may accelerate the understanding of the pathogenesis of AD, facilitate screening and 

stratification of risk, and ultimately aid in the discovery, development and testing of new 

treatments or preventive therapies in clinical trials.3 

 The retina, a neurosensory layered tissue lining the back of the eye and directly connected 

to the brain via the optic nerve, receives light that the lens has focused, converts the light into 

neural signals, and sends these signals on to the brain for visual recognition. The retina has long 

been considered a “platform” to study disorders in the central nervous system (CNS), as it is an 

accessible extension of the brain in terms of embryology, anatomy and physiology (Box 1).12 

Figure 1. shows the optic nerve head, macular area, nerve fiber layer, arterioles and venules 

captured from a retinal photograph. Similar to the neurovascular unit (NVU) in the CNS, the retinal 

NVU contains neurons (ganglion cells, amacrine cells, horizontal and bipolar cells), glial cells 

(Müller cells and astrocytes) and vascular cells (endothelial cells and pericytes).13 Evidence of 

retinal involvement in AD dementia has been shown in histopathological studies of postmortem 

specimens.14,S1 Associations of AD dementia with common eye diseases with overt clinical signs, 

such as age-related macular degeneration (AMD), diabetic retinopathy (DR) and glaucoma, have 

also been reported.  In addition to digital retinal photography (Figure 1), recent advances in non-

invasive retinal imaging technologies allow more detailed interrogation of the different retinal 

layers, and even deeper structures beyond the retina, such as the choroid including the choroidal 

vasculature. These retinal imaging technologies which include optical coherence tomography 

(OCT) (Figure 2) and OCT-angiography (OCT-A) (Figure 3), have provided researchers with 

further access to detailed retinal neuronal structure (e.g. nerve fiber layer, ganglion cell layer and 
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inner-plexiform layer) and microvasculature (e.g. foveal avascular zone), respectively. Table 1 

shows a glossary of retinal imaging technologies and parameters used in studying AD. Details of 

these technologies are summarized in Supplementary Section 1.  In comparison to brain imaging 

technology, retinal imaging has the advantages of being non-invasive, comparatively low cost, 

increasingly widely available in non-tertiary (e.g. primary care and community) settings, and 

having different variables for quantifying the structures of retina. The development of next 

generation computational techniques such as artificial intelligence (AI) and deep learning (DL) 

algorithms have further enhanced the potential of data rich retinal imaging as a promising tool and 

a source of biomarker for AD, particular for individuals at preclinical AD stage. However, most 

of the retinal imaging technologies are still specialized equipment and the interpretation of data 

requires expertise from ophthalmologists or visual scientists.  

 In this review, we present an update of the current retinal imaging technologies, recent 

research findings, and future research applications in the study of AD.  

 

2. Common Eye Diseases and AD  

Vision itself may be an important stimulus for the maintenance of cognitive health or reflect 

possible relationships between AD with underlying eye diseases.S2-S7 Population-based and clinical 

studies have consistently shown that visual impairmentS8-S14 and a range of common eye 

diseasesS15-S19 are associated with dementia and impaired cognitive function. For example, in one 

study, older persons with visual impairment were twice as likely to have cognitive dysfunction 

than those with good vision.S11  

 Supplementary Table 1 summarizes research on the relationship between common eye 

diseases, including AMD,S2-S5 DRS5 and open-angle glaucoma,S5-S7 with AD dementia. These 
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epidemiological relationships suggest shared risk factors (e.g., hypertension, smoking) and 

possibly pathogenic pathways (e.g. neurodegeneration, amyloid-β deposits, chronic microvascular 

insults) between these ocular diseases and AD dementia. However, the associations have not been 

consistently observed in the literature, particularly in studies at a population-level using large data 

linkage.S2,S3,S7 For example, a linkage study using English National Health Service data (AD cohort 

n=251,703, reference cohort n>2.5M), found no associations between AMD (relative risk: 0.86 

[0.67-1.08], compared with the reference cohort) and glaucoma (rate ratio: 1.01 [0.96, 1.06], 

compared with the reference cohort) with AD dementia.S2,S7 Lee et al. however suggested that the 

patterns of associations between eye diseases and AD dementia may be different when the ocular 

conditions are categorized as recent (diagnosed within 0-5 years) or established (>5 years) 

diagnoses.S5 They found only established AMD (hazard ratio: 1.50 [1.25, 1.8]) and recent 

glaucoma (hazard ratio: 1.46 [1.08, 1.91]) are associated with AD dementia, while both established 

DR (hazard ratio: 1.50 [1.05, 2.15]) and recent DR (hazard ratio: 1.67 [1.01, 2.74]) are associated 

with AD dementia.S5 A recent meta-analysis (21 studies, 7,876,499 study subjects) reported that 

patients with AD dementia are at greater risk for AMD (odds ratio: 2.22, I2=50%), and patients 

with AMD are also at increased risk of AD dementia/cognitive dementia (odds ratio:2.42, 

I2=38%).15 Hence, it is likely that AD dementia and common eye diseases are linked via complex, 

inter-linked, multi-mechanistic pathophysiology and pathways.  

 

3. Retinal Imaging Measures and AD  

 

3.1 Retinal neuronal layer changes at optic disc and macula 
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AD is classically characterised by loss of neurons and synapses in the cerebral cortex and specific 

subcortical regions. Previous histological studies have demonstrated that patients with AD also 

have loss of retinal ganglion cells (RGCs) and their axons.S20,S21 A more recent postmortem study 

further suggested that the number of melanopsin RGCs, photoreceptors driving circadian 

photoentrainment, may be reduced in AD.14 These observations have been the basis of clinical 

studies using OCT to determine the relationship between different retinal layers and AD. 

 The retinal nerve fiber layer (RNFL) surrounding the optic disc (peripapillary RNFL) 

reflects RGC axons (Figure 1). RNFL thickness can be measured by techniques including time-

domain OCT (first generation of OCT)S22-S32 as well as confocal scanning laser ophthalmoscopyS33 

and scanning laser polarimetry.S34  These studies showed that in AD dementia patients, there is a 

significant reduction in RNFL thickness compared to age-matched cognitively normal controls.  

 Spectral-domain OCT (SD-OCT) and swept-source OCT, a newer generation of OCT, 

provides information on inner retinal layers with greater resolution, such as the ganglion cell layer 

and the inner-plexiform layer (Figure 2).S35 SD-OCT is now routinely used to not only to measure 

peripapillary RNFL but also to assess RGC cell body and dendrites together by segmenting and 

quantifying the thickness of the ganglion cell inner plexiform layer (GC-IPL, a combination of the 

ganglion cell layer and the inner plexiform layer) at the macula, since this region contains more 

than 50% of the total RGCs volume.S36 Numerous studies have investigated the association 

between SD-OCT measures and AD (Supplementary Table 2). These studies first showed that 

SD-OCT measurements of both peripapillary RNFL (inter-visit intra-class correlation coefficient 

[ICC]: 0.927 [range: 0.845–0.961] and coefficients of variation [CoV]: 3.83% [range: 2.71–

5.25%]), and GC-IPL (inter-visit ICC was 0.968 (0.941–0.985), and CoV was 1.91% [range: 1.24–

2.32%]) are reproducible in patients with cognitive impairment.S37 Second, while a few studies 
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have reported thicker retinal layers in eyes of patients with AD dementia compared to 

controls,S38,S39 or no significant thickness differences,16,17 the majority of studies, including a meta-

analysis, indicate that patients with AD dementia have thinner peripapillary RNFL (standardized 

mean difference [SMD]= -0.67; I2 = 89%) and macular GC-IPL (SMD= -0.46,  I2= 71%) compared 

with controls,18  consistent with a human postmortem study.19  

 Of the two SD-OCT measurements, some studies suggested that macular GC-IPL may be 

more sensitive than peripapillary RNFL for assessing neurodegeneration related to AD.20,21 For 

example, Cheung et al reported that macular GC-IPL has a better performance to discriminate AD 

from normal controls than that of peripapillary RNFL (area under receiver operating characteristic 

curves [AUROCs] 0.685 vs. 0.601), adjusting for age and gender.20 Figure 2B and 2C show an 

example of GC-IPL and RNFL measurement in a MCI subject with a positive cerebral amyloid 

PET imaging. Finally, these OCT studies are also consistent with research on other 

neurodegenerative diseases, such as patients with Parkinson disease and Lewy body dementia, 

who also have thinner RNFL and thinner inner retinal layers.S40,S41 Furthermore, thinner RNFL, 

GC-IPL and ganglion cell layer are also associated with reduced cerebral grey matter and white 

matter volumes and brain volume measured from MRI.22-26  

 Several possibilities have been proposed to explain the above findings on thinning of the 

retinal neuronal layer.18,27 First, the cerebral pathology of AD may affect the neuronal connections 

of the visual tract and cause retrograde degeneration of the optic nerve and retinal layers, resulting 

in thinner retinal neuronal and axonal layers including RNFL and GC-IPL.27 However, 

peripapillary RNFL could not discriminate controls from AD patients with posterior cortical 

atrophy, a clinical variant of AD with dominant involvement of parieto-occipital (i.e. visual) cortex, 

where one would explicitly expect this retrograde degeneration to occur.S42 Alternatively, it is 
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speculated that cerebral signs of AD pathology including amyloid-β plaques, fibrillar tau and signs 

of neuroinflammation occur simultaneously both in the brain and the retina, underlining a common 

pathogenesis linking retinal neuronal and axonal layer changes and AD.S1 S43-S47 The less common 

observation of thickened RNFL in ADS38,S39 may be explained by occurrence of reactive gliosis in 

inner retina, an inflammatory response, during early stages of AD, which may precede retinal 

neuronal layer thinning or mask underlying subtle retinal neuronal layer thinning on OCT.S48 

 There are fewer prospective studies on the longitudinal relationship of SD-OCT measures 

and development of cognitive function deterioration and AD dementia.27-31 The Rotterdam Study 

(n=3,289) showed that a thinner peripapillary RNFL is associated with a higher risk of developing 

dementia (per 1-µm decrease hazard ratio: 1.02 [1.01, 1.04]), including AD dementia (per 1-µm 

decrease hazard ratio: 1.02 [1.01, 1.04]), independent of cardiovascular risk factors.27 In addition, 

longitudinal data from the UK Biobank (n=32,038) enrolling  healthy community dwelling 

participants also showed that thinner RNFL is a precursor of future decline in cognitive function.28 

Specifically, they found that those in the lowest 2 quintiles of baseline peripapillary RNFL 

distribution had twice the likelihood of a developing a decline in cognitive function over a 3-year 

follow-up interval compared with those in the top RNFL quintile.28 In regard to GC-IPL, data from 

the Rotterdam Study showed that thinner GC-IPL is only associated with prevalent dementia (per 

1-µm decrease odds ratio: 1.03 [1.00, 1.09]), but not with incident dementia (per 1-µm decrease 

hazard ratio: 1.02 [0.99, 1.05]) or incident AD dementia (per 1-µm decrease hazard ratio: 1.02 

[0.99, 1.05]).27 The Rotterdam study group speculated that there may be a time delay between 

optic nerve degeneration (reflected by RNFL thinning) and RGC loss (reflected by GC-IPL 

thinning) as the damage to the optic nerve may cause swelling or gliosis formation of the RGC 
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axons (i.e. RNFL). Therefore, the neurodegenerative process may manifest itself in the retina 

initially as thinner peripapillary RNFL, after which thinning of GC-IPL follows.27  

  

3.2 Retinal arteriolar and venular changes 

There is also substantial evidence indicating a vascular disease component in AD pathophysiology. 

Clinical and epidemiological studies show that vascular diseases and their risk factors commonly 

accompanies AD.32 Vascular risk factors are associated with higher cerebral Αβ burden.33 

Comorbidity of cerebrovascular disease and amyloid-β is associated with cognitive decline and 

neurodegeneration.34 In particular, microvascular or small vessel disease is now thought to be a 

major contributor to dementia and cognitive decline.S49-S52 For example, an autopsy-based 

neuropathological study showed that a large majority of patients diagnosed with AD without 

clinical evidence of mixed (vascular) dementia, had microvascular pathology including lacunes, 

cerebral microbleeds and multiple microinfarcts indicative of small vessel disease.35 

 The retinal circulation of arterioles and venules, measuring 100-300 µm in size, are the 

only optically accessible small blood vessels in the human body. The retinal vasculature can be 

imaged by either conventional retinal photography (Figure 1A) or dye-based fluorescein 

angiography. However, because dye-based fluorescein angiography is invasive, conventional 

retinal photography has been the most commonly used retinal imaging technique to capture clinical 

vascular disease signs, such as those typically seen in patients with diabetes or hypertension (e.g. 

retinal hemorrhage, cotton wool spots, microaneurysms, arteriovenous nicking, enhanced 

arteriolar light reflex). In addition to these qualitative signs, computerized algorithms have been 

developed to measure quantitative changes in the retinal vasculature, for instance the calibre of 

arterioles and venules.36-38 Furthermore, geometric patterns of the retinal vasculature may also 
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provide information on microvascular health. Based on Murray’s principle of minimum work, the 

human circulatory system is a branching system that conforms to optimum design principal to 

minimize the energy required to maintain blood flow.S53 Algorithms estimating a number of retinal 

geometric parameters such as fractal dimension, tortuosity and bifurcation have been further 

reported.S54-S61 These algorithms capture deviations from the normal optimal architecture of the 

retinal vascular network . Several algorithms can be used to analyze retinal photographs taken by 

conventional retinal cameras. Figure 1B and 1C show examples of  quantitative retinal 

vasculature analysis using a widely used software, the Singapore I Vessel Assessment (SIVA), in 

a cognitively normal subject and a subject with AD, respectively. Other software and algorithms 

include IVAN (Integrative Vessel Analysis),36 VAMPIRE (Vascular Assessment and 

Measurement Platform for Images of the REtina),S57 and QUARTZ (QUantitative Analysis of 

Retinal vessel Topology and siZe).S58  

   Supplementary Table 2 summarizes the clinical studies reporting relationship of 

quantitative retinal vasculature analysis from retinal photographs with AD. In general, these 

studies showed a sparser retinal vascular network (indicated by decreased retinal vascular fractal 

dimension) is associated with AD dementia,39-42 poorer cognitive test score performances43,44 and 

MRI markers of cerebral small vessel disease.45 For example, Frost et al found that decreased  

arteriolar fractal dimension (1.201 vs. 1.235, p=0.008) and venular fractal dimension (1.171 vs. 

1.210, p<0.001) in AD dimension, compared with controls.39 Cheung et al found that decreased 

arteriolar fractal dimension (per-standard deviation [SD] decrease odds ratio 1.35 [1.08, 1.68]) and 

venular fractal dimension (per-SD decrease odds ratio 1.47 [1.17, 1.84]) are associated with AD 

dementia.40 These findings suggest that changes in the retinal vascular fractal dimension may also 

reflect a departure from optimal integrity of the cerebral microcirculation (e.g., rarefaction) related 
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to cognitive impairment.46 Studies also showed that narrower retinal venular calibre is associated 

with AD dementia, which may be related to an increased venous wall thickness due to collagen 

deposition in cerebral veins.39,40 Although some studies observed significant associations between 

retinal vascular tortuosity and AD dementia, the relationship remains equivocal. Cheung et al.40 

found that both increased retinal arteriolar (per-SD increase odds ratio 1.80 [1.40, 2.31]) and 

venular tortuosity (per-SD increase odds ratio 1.94 [1.48, 2.53]) are associated with AD dementia, 

while Williams et al.41 found that decreased retinal arteriolar (per-SD increase OR 0.78 [0.63, 

0.97]) tortuosity is associated with AD dementia. It is noted that increased retinal vascular 

tortuosity is associated with higher blood pressure and diabetes,S59,S62 and difference between 

studies may reflect differences in prevalence of hypertension and diabetes (e.g. participants in the 

study by Cheung et al had higher prevalence of both hypertension and diabetes than participants 

in studies by Williams and Frost). On the other hand, if different pathophysiological mechanisms 

occur at different stages of AD,47 associations with retinal parameters would be expected to change 

correspondingly. Thus, clinical and demographic data and stages of AD should be taken into 

account when interpreting findings across studies.   

 

3.3 Retinal capillary changes 

In addition to the arterioles and venules, changes at the capillary level (5 to 15 µm) may also be 

studied for their relationship to AD.48,49 The retinal capillary network can now be imaged by dye-

free OCT-angiography (OCT-A) which visualizes capillary levels at different levels and sites of 

the retina: the superficial capillary plexus, the deep capillary plexus and the radial peripapillary 

capillary plexus. Images captured by OCT-A  (Figure 3) have helped to identify and quantify 

capillary level abnormalities in primary retinal diseases such as DR and AMD.S63-S66 
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Supplementary Figure 1 shows image processing steps adopted to quantify the capillary 

networks from OCT-A images.S63 Recent reports (Supplementary Table 2) have identified 

changes in the retinal capillary networks using OCT-A in AD dementia and preclinical AD. S67-S75 

For example, Bulut et al. observed decreased capillary network density (45.5% vs. 48.7%, 

p=0.002) and an enlarged foveal avascular zone area (0.47mm2 vs. 0.33mm2, p=0.001) in 26 

patients with AD dementia, compared with 26 age- and sex-match controls.S67 O’Bryhim et al. 

further demonstrated that enlarged foveal avascular zone measured from OCT-A is associated with 

preclinical AD (0.364mm2 vs. 0.275mm2, p=0.002), as defined by presence of amyloid-β 

biomarkers from PET or CSF, compared with those amyloid-β-negative control subjects (n=32 

participants).S74 In addition, they reported that foveal avascular zone area can discriminate 

participants with biomarker-positive and biomarker-negative with an AUROC of 0.801.S74 These 

observations are in line with disturbances in the morphology and function of cerebral capillary 

networks observed as antecedents to neurodegenerative changes associated with AD in animal 

models and postmortem studies. S76-S78 However, the current literature is not entirely consistent. 

For example, Querques et al. and den Haan et al. did not observe any differences in capillary 

network density and foveal avascular zone between patients with AD dementia and controls.S71,S72 

Van de Kreeke et al. have reported that an increased capillary network density in patients with 

preclinical AD, instead of a decreased one, compared with controls (inner ring macula difference: 

0.81%, p=0.002; outer ring macula difference: 0.50%, p=0.024; and around optic nerve head 

difference: 0.83%, p=0.015), which may be due to an inflammatory state of the retina in the early 

stages of amyloid-β accumulation.S75 It is noteworthy that similar to the literature on retinal 

imaging technologies as mentioned above, the diagnosis of AD dementia differ between different 
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OCT-A studies, and most of studies are currently limited by small sample size and the inability to 

adequately account for potential confounding factors (e.g. diabetes, axial length of the eyeball).   

 

3.4 Choroidal vasculature changes 

Deep to the retina, the choroid contributes blood supply to the outer retina. In addition to the retinal 

vasculature (arterioles, venules, capillary network), SD-OCT with enhanced depth imaging, or 

swept-source OCT, has now made it possible to image the choroidal vasculature. Figure 2D and 

2Eshow a cross-sectional view of the choroidal vasculature imaged by SS-OCT in a cognitively 

normal subject and a subject with AD, respectively. A few case-control studies have observed 

thinning of the choroidal layer as assessed by SD-OCT with enhanced depth imaging in AD 

dementia (Supplementary Table 2).S67,S79,S80 For example, Gharbiya et al. firstly reported reduced 

subfoveal choroidal thicknesses (200.9µm vs. 266.1µm, p=0.001) in 21 patients with mild to 

moderate AD dementia, compared with controls.  It was postulated that choroidal thinning 

indicates an abnormal choroidal blood supply associated with vasoregression or atrophic changes 

related to a series of pathologic events (e.g. inflammatory cascade) triggered by amyloid-β 

deposition in the brain.S80,S81 In a recent prospective study (n=78), a larger reduction in choroidal 

thicknesses is observed in AD dementia over a 12-month follow-up (changes in subfoveal 

choroidal thickness: -10.47µm vs. -2.0 µm), compared with controls.S81 This finding is consistent 

with a report on postmortem eyes from AD dementia patients and animal models of AD.S82 

Furthermore, a population-based study with more than 3,000 participants found reduced subfoveal 

choroidal thickness is significantly associated with lower Mini Mental Status Examination score, 

in line with the findings in AD dementia eyes.S83  
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3.5 Vasodilatory response changes 

The retinal NVU contains neurons, glial cells and vascular cells, similar to the NVU in the CNS.13 

Flickering light stimulates activity of the neural retina and leads to retinal vessel dilation as a result 

of the release of vasodilating factors, especially nitric oxide, from endothelial and neural cells. 

This dynamic reaction of retinal vessels to flickering light is influenced by neurovascular coupling 

and can therefore be used to assess the function of NVU in the retina.S84 The flicker-induced 

vasodilatory response can now be measured non-invasively using a dynamic vessel analyser 

(DVA). A few studies have explored to use DVA to investigate the flicker-induced vasodilatory 

response in AD, but the current findings are still preliminary and inconclusive. Kotliar et al. 

observed that overall flicker-induced vasodilatory response is delayed  in AD dementia (arterial 

time to reach 30% of maximum dilation: 7.0 seconds vs. 5.0 seconds, p<0.001), compared with 

controls, suggesting delayed arterial reaction in AD.50 They also demonstrated that this DVA 

parameter can discriminate AD dementia with an AUROC of 0.853.50 However, Golzan et al. only 

found a positive correlation between neocortical amyloid-β standardised uptake value ratio (SUVR) 

measured by PET with the amplitude of retinal arterial pulsations, but did not observe any 

correlations with  dynamic flicker-induced retinal arteriolar or venular dilation in an elderly 

cohort.51 It is noteworthy that patients with diabetes and DR have reduced flicker-induced 

vasodilatory response.S85,S86 Kotliar’s and Golzan’s studies did not specifically exclude those with 

diabetes and with ocular diseases, which may confound the results reported. Querques et al. 

recently conducted a similar study but excluded subjects with diabetes and optic nerve or retinal 

diseases and reported that retinal arteriolar dilation in response to flickering light is reduced in the 

AD dementia group, compared with controls (0.77% vs. 3.53%, p=0.002) and the MCI group (0.77% 

vs. 2.84%, p=0.045).S71 This study suggests that the neurovascular coupling of retinal vessels in 
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AD dementia is impaired, especially in retinal arterioles, and the effect is independent of diabetes. 

This observation suggests that decreased retinal and cerebral blood flow (i.e. hypoperfusion) might 

impair the endothelial function and the production of nitric oxide, which is vital for the 

vasodilatation process. 52, S71  

 

3.6 Retinal vessel oxygen saturation changes 

The retina is one of the most metabolically active tissues in the human body. Retinal vessel oxygen 

saturation can now also be measured noninvasively, based on estimation of haemoglobin oxygen 

saturation in retinal vessels by taking two simultaneous retinal photographs with 570- and 600-nm 

light.S87 Studies have reported that retinal oxygen saturation in arterioles and venules is 

significantly higher in both AD dementia and MCI eyes, compared with controls.S88, S89 

Einarsdottir et al showed that retinal arterioles have 94.2±5.4% oxygen saturation in moderate AD 

compared with 90.5±3.1% in healthy subjects (p=0.028). Retinal venules were 51.9±6.0% 

saturated in moderate AD compared with 49.7±7.0% in healthy subjects (p=0.02).S88 Olafsdottir et 

al further showed that arteriolar and venular oxygen saturation was increased in MCI patients, 

compared with healthy individuals (93.1 ± 3.7% vs. 91.1 ± 3.4%, p=0.01; 59.6 ± 6.1% vs. 54.9 ± 

6.4%, p=0.001, respectively). S89 These studies demonstrate a decreased metabolic activity in the 

retina and this exploratory finding may provide new insight into the pathophysiology of AD related 

to hypometabolism.  

 

3.7 Peripheral retinal changes 

Drusen deposits are the hallmark of AMD. Amyloid-β has been found in drusen deposits in the 

retina.S90 In a recent pilot study, Csincsik et al. utilized ultra-widefield scanning laser 
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ophthalmoscopy and examined AMD-like drusen deposits in a wider field of the peripheral retina, 

in addition to the macular region.42 They found that patients with AD dementia are more likely to 

have drusen deposits in the peripheral retina compared to controls (25.4% vs. 4.2%, p=0.04), 

especially in the superior nasal quadrant.42 Supplementary Figure 2 shows an example of 

presence of drusen deposits in the peripheral retina imaged by ultra-widefield scanning laser 

ophthalmoscopy in a subject with AD dementia. In addition, Ukalovin et al. also found that the 

severity of cerebral amyloid angiopathy, a vascular feature associated with AD dementia and 

cognitive decline,S91 is correlated with the number of drusen in the peripheral retina from 

postmortem AD eyes (r=0.78, p<0.05).S92 The preliminary findings from these exploratory studies 

suggest that retinal abnormalities related to AD are also present in peripheral retina, in addition to 

retinal changes measured from conventional retinal imaging areas focused centrally (i.e. macular 

and optic disc regions). Further studies are required to determine whether the peripheral retinal 

changes have similar or additional predictive value for AD dementia or cognitive decline, and to 

develop better understanding of the significance of these associations, particularly since peripheral 

changes can also occur in the intermediate to advanced stage of AMD.S93  

 

3.8 Retinal fluorescence lifetime changes 

The retina has several kinds of endogenous fluorophores, including lipofuscin, advanced glycation 

end products, collagen, melanin, and elastin. Retinal fluorophores can be excited by 

monochromatic light (e.g. laser) and gain a higher level of energy before returning to their ground 

state by emitting photons of longer wavelengths than the exciting light (i.e. fluorescence 

lifetime).S94 Each fluorophore possesses a characteristic fluorescence lifetime. Fluorescence 

lifetime imaging ophthalmoscopy (FLIO) is a technique for measuring fluorescence lifetime, 
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which is calculated by the average amount of time a fluorophore remains in the excited state 

following excitation, to allow detecting metabolic alterations in the retina for various retinal 

disease such as AMD at an early stage.S94 Jentsch et al. found that a longer retinal fluorescence 

lifetime measured by FLIO is correlated with higher tau protein concentration in CSF in patients 

with AD dementia.S95 In a pilot study, Sadda et al. also found that subjects with preclinical AD, 

compared with controls, have longer retinal fluorescence lifetime (593.9 ± 93.3, 454.4 ± 38.6 

picosecond; 475.0 ± 71.6, 394.1 ± 28.2 picosecond in short spectral channel and long spectral 

channel of AD and control groups, respectively, p = 0.036 and 0.024), which is also correlated 

with GC-IPL thickness, amyloid-β and tau protein in CSF.S96 The preliminary findings from these 

exploratory studies suggest that the fluorophore composition in the retina may be related to AD. 

 

4. Age-related effect on the retina 

Age-related changes are well-reported in the retinal neuronal and vascular structures as well as in 

the choroid. RNFL and GC-IPL thicknesses decrease with increasing age in healthy adults.S97-S99 

In a longitudinal analysis, the mean rate of change of average RNFL is -0.52µm/year in normal 

individuals.S100 Similarly, narrower retinal vessel caliber, straighter retinal vessels, sparser retinal 

vasculature and decreased choroidal thickness are correlated with increasing age in healthy adults 

as reported from population-based studies.S101-S105  In the Singapore Malay Eye Study-2, for each 

1-year increase in age, subfoveal choroidal thickness decreased by 3.10μm.S104 These age-related 

effect on retinal imaging measures are considered as a physiological process; however, the current 

measurements are not standardized by age. Although most of the reported studies were case-

control study design matched with age or included age as a confounding factor in the statistical 
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models, how to taking aging effect into account during image interpretation in clinical practice 

should be further addressed.  

 

5. Evidence of AD pathology in the retina is equivocal 

Amyloid-β protein plaques and neurofibrillary tangles comprised of hyperphosphorylated tau 

protein are pathological hallmarks of AD. Several histopathological studies have identified retinal 

amyloid-β deposits in animal models of ADS82,S106 as well as human subjects with definite AD14 S1 

and suspected early AD.S44 The majority of amyloid-β deposits are in the GC-IPL,S46 and some 

show perivascular clustering.14, S1 A clinical study by Koronyo et al. also demonstrated an 

increased presence of amyloid-β in the retina of AD dementia patients compared to controls, 

especially in the peripheral superior quadrant, often clustered along blood vessels.S1 These retinal 

amyloid-β plaques qualitatively resemble those found in the cerebrum of AD dementia subjects 

and were only detected in minimal quantities in age-matched non-AD controls.14, S1 Moreover, it 

is possible that accumulation of retinal amyloid-β plaques occurs earlier than in the brain and the 

amount increases with disease progression.S44 Similar to those in the brain, retinal amyloid-β 

deposition also showed to be associated with marked neurodegeneration. La Morgia et al. 

demonstrated that there is amyloid-β deposition in and around degenerating melanopsin RGCs, 

suggesting amyloid-β is toxic to retinal neurons.14 Koronyo et al. also reported that, when 

compared to matched controls, reduced cell counts in the RGC layer, inner nuclear layer and outer 

nuclear layer are observed in AD dementia patients along with accumulation of amyloid-β.S1 In 

line with these findings, the neurotoxicity of amyloid-β to retinal neurons has also been shown in 

both cell-line studiesS107,S108 and animal model studies.S43,S109,S110 These findings from animal 

studies are therefore consistent with the observations of clinical studies reporting  thinner RNFL 
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and GC-IPL in patients with AD dementia discussed above. Apart from retinal amyloid-β 

deposition, animal studies also showed that there are tau aggregates in the retina of transgenic mice 

with a tau mutation.S111 These mice display abnormal neurotrophic factor signaling, increased 

susceptibility to excitotoxic damage, early axonopathy, and functional deficits of RGCs.S111,S112  

 However, it is noteworthy that the evidence of AD pathology in the retina is not consistent 

across the literature, and presence of amyloid-β or tau in the retina still remains controversial.S113 

For example, Schön et al. reported that the postmortem retinas of AD dementia patients only 

contain hyperphosphorylated tau but not amyloid-β or fibrillar tau aggregates.S45 Several studies 

did not find any AD related pathology in AD retinas, and could not replicate previous 

findings.S21,S114,S115 Haan et al found that despite amyloid-β/amyloid precursor protein being 

present in postmortem AD retinas, there are no amyloid-β/amyloid precursor protein related 

differences, but rather tau related changes, between AD and control retinas.S116 It is noted that 

adoption of different tissue processing methods and immunostaining protocols, and co-morbidity 

of ocular diseases and AD may possibly explain some discrepancies. On the other hand, although 

amyloid is proclaimed as a toxic substance, it triggers the pathological process in the very initial 

state of the disease. For instance, hippocampal volume is characteristically reduced in AD with 

congruent tau pathology in the corresponding region, whereas it lacks amyloid pathology in 

hippocampal region.S117 Findings on presence of amyloid-β or tau in the retina should be further 

replicated before we assume that AD pathology in the retina is present. Furthermore, studies on 

relationships among amyloid, tau and retinal changes in the pathological study of AD are 

warranted. 

 

6. Future Research  
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Studies to date suggest a range of retinal imaging technologies can be utilized to study different 

stages of AD. However, more research is clearly needed. For example, studies on relationships 

between retinal imaging measures and "standard" biomarkers of AD pathophysiology, as well as 

direct comparisons between different retinal imaging measures to determine relative 

sensitivity/specificity of each measure for AD clinical diagnosis or biomarker status are warranted. 

Furthermore, some neuronal and vascular changes in the retina are similar between AD and ocular 

disease. Some of these researches are discussed below. 

 

6.1 Framework of Development and Validation of Retinal Imaging as a Source of Biomarkers 

Disease-modifying treatments for AD are most likely to be successful if initiated early in the 

disease process, ideally before irreversible neurodegeneration and functional decline set in.53,54 

Biomarkers may aid in risk profiling to identify those at greatest risk, detection of pathology at the 

earliest possible stage, and by providing end points for trials that identify benefit earlier in the 

natural history of the disease, thus accelerating the development of new treatments. Therefore, 

discovering effective biomarkers of AD is a priority for development of new treatment.  

A biomarker is defined as an objective substance, characteristic, or other parameter of a 

biological process that enables the assessment of a disease risk or prognosis and provides guidance 

for diagnosis or monitoring of treatment.10 Different groups have proposed frameworks or 

roadmaps for biomarker development and validation for AD.9, 10, 55,56 For example, Frisoni et al. 

proposed a five-phase framework to foster the clinical validation of biomarkers for an early 

diagnosis of AD, adapted from the approach for cancer biomarkers. These include preclinical 

exploratory studies, clinical assay development for AD pathology, retrospective studies using 

longitudinal data available in repositories, prospective diagnostic accuracy studies, and disease 
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burden reduction studies.10 A consistent framework to assess the validity of biomarkers for 

different clinical purposes is essentially important for implementation and clinical use in AD. 

Currently, retinal imaging technologies cannot yet be considered a source of biomarker of 

AD as many areas of research remain conflicting and evidence-based guidelines on the use and 

interpretation of retinal imaging are currently lacking. Most published studies have focused on 

demonstrating measure difference compared with controls and associations (linear or logistic 

regression models) between a set of retinal imaging measures with AD dementia only. Moreover, 

studies on preclinical AD are largely lacking. Table 2 summarizes the findings on retinal neuronal 

changes, retinal capillary changes, retinal arteriolar and venular changes, and choroidal vasculature 

changes. In addition, some of the reported associations may not account for potential confounding 

factors (e.g. ocular diseases and systemic conditions) and clinical stages of AD. The current retinal 

imaging features (e.g., RNFL loss) are also non-specific to AD and not designed to fully describe 

and characterize the spectrum of AD-related disorders. For example, there is a lack of consensus 

on how best to differentiate between retinal changes seen in glaucoma and AD dementia. 

Typically, in patients with glaucoma, the reduction in peripapillary RNFL occurs in inferior and 

superior sectorsS118 but the studies in AD dementia have also shown similar patterns of RNFL 

reduction.18 Many prior studies have also not evaluated retinal imaging for a specific clinical 

purpose such as screening, diagnosis, prognosis or monitoring of AD dementia. Appropriate 

statistical analysis of biomarker validation should be performed (e.g. performing area under the 

receiver operating characteristic curve to evaluate discriminative performance). Finally, the 

definition of AD in the reports did not consistently include confirmation from current available 

biomarkers. Thus, there is inadequate evidence on the clinical usefulness of retinal imaging 

measures as a biomarker for AD.  
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We suggest the following framework of research (Supplementary Table 3). First, studies 

should be designed and conducted to validate biomarkers from retinal images with a specific 

clinical purpose (e.g. screening or risk stratification). Second, diagnosis of AD should be defined 

in a consistent manner with the latest available criteria (e.g. confirmation with current biomarkers). 

Third, standard statistical measures of accuracy of biomarkers should be reported. For example, if 

a study evaluates measures from retinal images as a potential screening tool, the sensitivity, 

specificity, false-positive and false-negative rates of retinal imaging should be reported. The 

degree of abnormality and the prevalence (i.e. how frequent is the abnormality found in AD) 

should be described. Fourth, studies should be designed carefully to take into account many age-

related ocular conditions. The effects of ocular factors (e.g. axial length of the eyeball) on retinal 

imaging measures and the associations with common eye diseases (e.g. glaucoma and AMD) 

should be determined and considered in the analysis and interpretation. Fifth, the reproducibility 

of the retinal imaging measures should be determined, particularly if retinal imaging is used for 

disease diagnosis and monitoring on multiple follow-up visits. Finally, the incremental benefit and 

cost-effectiveness of retinal imaging as well as acceptability to patients in different settings should 

be evaluated. These areas should be reported in the framework of retinal imaging studies for AD.  

 

6.2 Other New Retinal Imaging Technologies Related to AD  

Several new retinal imaging technologies are also being explored which might provide additional 

value in this field.   

 Retinal hyperspectral imaging obtains a series of hyperspectral reflectance images, 

combing both spectral and spatial information, by scanning the retina with a continuous range of 

wavelengths of light.S119  More et al showed that amyloid-β exerts a characteristic influence on the 
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reflectance of light as assessed by retinal hyperspectral imaging and that the magnitude of this 

effect varies in proportion with the amount of amyloid-β in the retina of AD mouse.S120,S121 This 

finding was further validated in recent in vivo human clinical studies by showing optical density 

spectral profiles are different between AD and controls,S122 and cases who are amyloid-β positive 

and negative on PET can be discriminated from the reflectance of hyperspectral retinal images 

with a machine learning based model for the classification.S123,S124 Hyperspectral imaging 

technology is also being investigated to identify brain cancerS125 as well as to estimate cerebral 

metabolism and hemodynamics from brain tissues.S126  

 Adaptive optics , improving the performance of optical systems by reducing the effects of 

optical aberrations, can be employed in scanning laser ophthalmoscopy to achieve very high 

resolution (~2µm) in the human retina resulting in the direct visualization of nerve fibre bundles 

and other minute retinal features.S127 Zhang et al. found that individuals with MCI have a 

significantly higher number of hyperreflective granular membranes at the peripapillary area 

covered the RNFL as assessed by adaptive optics scanning laser ophthalmoscopy.S48 The authors 

speculated that the hyperreflective granular membranes are due to inner retinal gliosis which 

supports a previously established association between AD and glial cell activation in the brain and 

retina.S128,S129  

 Given that the retina is an easily accessible window and connected to the CNS, it is believed 

that further advance in retinal imaging as well as multi-modal, composite biomarkers for AD will 

be continuously developed. 

 

6.3. Artificial intelligence  
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Another major area of future research in the analysis of retinal images is AI. The current retinal 

imaging measures (e.g. reduction in RNFL thickness) are not necessarily specific to AD and not 

designed to fully describe and characterize the spectrum of AD-related disorders. Recent 

developments of AI, particularly in DL, have potential to transform imaging technology in 

healthcare.S130,S131 DL is based on deep neural networks, involving many layers of linear 

(convolutional) and nonlinear operations trained on previously unfeasible amounts of data.  

In retinal imaging, AI and DL technology have been developed in several areas, the two 

most prominent ones being first, in the assessment of retinal photographs for detection and 

screening of DR,S132-S137 AMD,S138-S140 glaucoma,S141, S142 and retinopathy of prematurity,S143,S144 

and second, the segmentation and assessment of OCT images for diagnosis and screening of major 

retinal diseases.S145-S148  These studies demonstrate the promise of  DL for discovering 

discriminative latent information associated with AD as well as neurodegenerative disease and 

cerebrovascular disease from retinal images.S149,S150 For example, using DL, target-specific 

features are automatically learnt by DL algorithm in the feature extraction stage and numerous 

unconventional features that are neither noticed by human previously nor examined by appropriate 

clinical study will also be assessed. DL could be used to recognize specific pattern of retinal 

changes secondary to AD pathology (i.e. “retinal fingerprint” of AD) potentially.   

How might AI based retinal imaging be used potentially? Supplementary Figure 3 shows 

a proposed pathway of screening AD using retinal imaging. By providing a simple 2-tier risk 

stratification output, this algorithm could assist physicians to identify asymptomatic individuals 

who are more likely to have AD in the community. The availability of retinal imaging in eye clinics 

for assessing ocular diseases allows opportunistic screening for AD on a large scale. Introducing 

retinal imaging in neurology clinics for subjects with memory issues would add a complementary 
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risk profiling tool for assessing the risk of AD. Higher-risk patients could then benefit from 

subsequent more intensive and specific (but expensive) examinations (e.g. PET imaging of CSP 

analysis for identification of underlying disease pathologies). This would potentially benefit the 

treatment workflow of AD if a disease-modifying therapy is successfully developed.  

 

6.4 Clinical trials and outcome monitoring  

While retinal imaging cannot fully replace current tests such as PET imaging or CSF 

analysis for detecting AD pathology (e.g. amyloid-β and tau accumulation), retinal imaging offers 

several unique advantages over current biomarkers. First, retinal imaging offers lower costs 

methods to identify appropriate study cohorts (i.e. cognitively normal individuals with AD-related 

retinal characteristics) for recruitment into clinical trials of new treatments for dementia (e.g. anti-

amyloid therapy to delay cognitive decline). Measurements from retinal imaging (e.g. neuronal 

and vascular changes) may also be used to assess optimal or suboptimal therapeutic response to 

medical intervention. For example, the ENVIS-ion study, which aims to determine the 

effectiveness of low-dose aspirin in reducing the development of white-matter lesion and silent 

brain infraction, is also validating retinal vascular changes as potential treatment outcomes.57 In 

addition, blood-based biomarkers, a less invasive and potentially cheaper approach, are being 

explored for aiding AD detection at early stage. 58,59,S151-S152 Combining both retinal imaging and 

blood-based biomarkers (i.e. “multiple marker approach”) may increase the accuracy to identify 

appropriate study cohorts for recruitment into the clinical trials, compared with using only a single 

marker.  

 

7. Conclusions 
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There is an increasing body of research using current and emerging retinal imaging technology to 

study AD. Newer retinal imaging technologies are increasingly available, are non-invasive, and 

comparatively low cost and easy to use for clinical and population studies. While current research 

shows promising evidence that many retinal imaging measures show associations with AD, 

longitudinal studies are lacking and larger replication studies are necessary. A framework for 

retinal imaging development and validation in AD should be developed, and followed by future 

studies to allow consistent comparison of findings. Newer computational technology, such as AI 

hold promise to use retinal imaging as a “point of care” level test for screening, early risk 

assessment and stratification.   
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Figure Legends: 

Figure 1: (A) Retinal photograph showing the optic nerve head, macular area, nerve fiber layer, 

arterioles and venules.  (B) Examples of a cognitively normal subject; and (C) a subject with 

Alzheimer’s disease (AD) dementia (global clinical dementia rating score of 1). 

Retinal photographs assessed quantitatively with Singapore I Vessel Assessment software 

(SIVA, versions 4.0; National University of Singapore, Singapore). Arterioles are in red and 

venules are in blue. The measured area is standardized and defined as the region 0.5 to 2.0 disc 

diameters away from the disc margin. The subject with AD dementia was also diagnosed with 

age-related macular degeneration. The subject with AD dementia had a sparser retinal vascular 

network (arteriolar fractal dimension: 1.246 vs. 1.316; venualr fractal dimension: 1.253 vs. 

1.273) and more tortuous retinal vessels (arteriolar tortuosity (x104): 0.61 vs. 0.48; venular 

tortuosity (x104): 1.4 vs. 0.50), compared with the cognitively normal subject. 

Figure 2: (A) Cross-sectional view of retina captured by optical coherence tomography (OCT). 

(B) Assessment of macular ganglion cell-inner plexiform layer (GC-IPL) and (C) peripapillary 

retinal nerve fibre layer (RNFL) of a subject who presented with mild cognitive impairment 

having a positive cerebral amyloid PET imaging, measured with Cirrus HD-OCT (Carl Zeiss 

Meditec, Inc., Dublin, CA, USA) (OD=right eye; OS=left eye). No retinal disorders were 

observed in this subject. The GC-IPL thickness map (B) and peripapillary RNFL thickness map 

(C) uses a false colour coding with warm colours represent high and cool colours represent low 

thickness values. The software further compares the measured thickness to the device’s internal 

normative age-matched database, and generates a deviation map. Thinner GC-IPL and RNFL 

thicknesses are observed in this example in prodromal stage. (D) A cross-sectional view of 

choroidal vasculature in an example of a cognitively normal subject; and (E) in a subject with 



Review for JNNP 

Alzheimer’s disease (AD) dementia (global clinical dementia rating score of 1). The choroid is 

indicated by red arrows. Choroidal-scleral interface can be clearly identified. The subject with 

AD dementia had a thinner choroidal layer, compared with the cognitively normal subject.  

Figure 3. Imaging of retinal capillary network using optical coherence tomography angiography 

(OCTA), which is not visualized using conventional retinal camera.  
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Box 1. Similarities between the retina and the brain. 

Embryological  

 During embryonic development, the retina and optic nerve originate from the diencephalon. The 

retina maintains its connection with the brain via the optic nerve after birth, being an integral 

component of the CNS.12  

Anatomical 

 Anatomically, the layered cytological and vascular structures and the presence of a blood barrier 

are similar in the retina and the brain. The retinal layers are composed of several types of neurons 

including the retinal ganglion cell (RGC) which comprises a cell body, dendrites and an axon, 

similar to neurons in the CNS. In addition, the RGCs axons, which collectively form the optic 

nerve, are myelinated by oligodendrocytes and are ensheathed by all three layers of meninges. 

Furthermore, the retinal tissue is isolated by the blood-retinal barrier which maintains a distinct 

immunological and physiological environment, similar to the blood-brain barrier.S153 In terms of 

vascular structure, both the cerebral and the retinal microvasculature components are surrounded 

by a single layer of endothelial cells, which are non-fenestrated and possess similar intercellular 

tight junctional complexes.S154 Both are also surrounded by the perivascular end feet from 

astrocytes.S155 The choroid, the primary vascular supply for the outer retina, is sandwiched 

between the retina and the sclera. This has one of the highest blood flows per volume unit of any 

structure in the body. 

Physiological  

 There are many physiological similarities between retina and brain. First, a NVU is present in 

both retina and brain, widely known as the “blood-retinal barrier” and “blood-brain barrier”, 

respectively.13, S156 The NVU allows functional coupling and interdependency of neurons, glia 

and the vasculature, for example, regulating blood flow in response to neural activity or 

metabolic demands. S157,S158 Retinal vascular autoregulation is achieved by retinal glial-synaptic 
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interaction.S158 Second, similar to the CNS neurons, the RGCs produce an identical response to 

insults, including axonal degeneration, myelin destruction, scar formation, and secondary 

degeneration.S159-S161 In addition, the RGCs have limited regenerative ability after injury.S162 

Third, the retina is considered an immune-privileged site and contain similar collection of cell-

surface molecules, immunoregulatory molecules and cytokines.S163,S164 Moreover, both cerebral 

and retinal microglia show phagocytic properties and phagocytose injured neurons.S165,S166 The 

cerebral vasculature is devoid of autonomic innervation beyond the pia vessels.S167 Similarly, 

there is no autonomic innervation to the retinal vasculature beyond the level of the lamina 

cribrosa (except the choroidal circulation).S168,S169 Finally, both the inner retinal and the cerebral 

circulation are under the fine control of the autoregulatory mechanism, which consists of 

myogenic and metabolic components.S154  
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Table 1: Glossary of retinal imaging technologies and parameters used in studying Alzheimer’s disease.  

 
Retinal imaging technologies  Parameters measured 

from retinal imaging 

Descriptions of the parameters 

Spectral-domain optical coherence 

tomography (SD-OCT) 

Peripapillary retinal nerve 

fiber layer (RNFL) 

thickness 

A thickness of RNFL layer in peripapillary region to assess retinal ganglion cell 

(RGC) axon. Traditionally, peripapillary RNFL thickness is calculated along a 

3.4 mm circle around optic disc. 

 Macular ganglion cell inner 

plexiform layer (GC-IPL) 

thickness 

A combined thickness of ganglion cell layer and inner plexiform layer in macular 

region to assess RGC cell bodies and dendrites.  

 Macular ganglion cell 

complex (GCC) layer 

A combined thickness of RNFL, ganglion cell layer and inner plexiform layer in 

macular region to assess RGC axon, cell bodies and dendrites. 

 Macular thickness or 

volume 

A thickness or volume between inner limiting membrane and the retinal pigment 

epithelium at macular region.  

Quantitative retinal vasculature 

analysis with retinal fundus 

photography 

Central retinal artery 

equivalent (CRAE)  

A summary index reflecting the average width of retinal arterioles. 

 Central retinal venule 

equivalent (CRVE) 

A summary index reflecting the average width of retinal venules. 

 

 Fractal dimension  A measure of a fractal structure, that exhibits the property of self-similarity, 

characterizing the distribution of the branching retinal vasculature. 

 Tortuosity A measure of the straightness/curliness of the retinal vessels. 

 Length-diameter-ratio A measure of the ratio of the length between 2 branching points to trunk vessel 

width. 

Optical coherence tomography 

angiography (OCT-A) 

Vessel density A measure of the area occupied by blood vessels (including capillaries) over total 

area within the interested region. 
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 Foveal avascular zone 

(FAZ) area 

A capillary-free area in the central macula with highest cone photoreceptor 

density and oxygen consumption. 

Optical coherence tomography with 

enhanced depth imaging (OCT-EDI) 

Choroidal thickness or 

volume 

A thickness or volume between the outer border of retina pigment epithelium and 

sclera-choroidal interface. 

Dynamic vessel analyzer  Flicker-induced vessel 

dilation 

An average percentage increase in the vessel diameter in response to the 

flickering-light during measurement cycles, relative to the baseline diameter size. 

Retinal oximetry Retinal vessel oxygen 

saturation 

A measure of the oxygen saturation in retinal arterioles and venules to detect 

changes in oxygen metabolism. 

Ultra-widefield retinal photography Presence of peripheral hard 

drusen 

Presence of small and distinct yellow deposits under retina in the periphery. 

Fluorescence lifetime imaging 

ophthalmoscopy (FLIO) 

Fluorescence lifetime 

 

A measure to describe the average time a single fluorophore remains in its 

electronically excited state after absorbing the energy of a photon and before 

returning to the ground state by emitting a photon.  
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Table 2. The summary of current findings on retinal neuronal changes, retinal capillary changes, retinal arteriolar and venular 

changes, and choroidal vasculature changes. 

 Preclinical AD or MCI AD dementia 

Retinal Neuronal Changes 
  

Peripapillary RNFL Thickness  Some studies showed reduced 

peripapillary RNFL, macular GC-IPL and 
GCC thicknesses, compared with controls 

 But a few studies showed no differences in 

the measures, compared with controls and 

AD dementia  

 A few studies also showed thickened 

peripapillary RNFL and macular GC-IPL 
thicknesses in MCI, compared with 

controls  

 Majority of studies and meta- analysis 

showed reduced peripapillary RNFL, 
macular GC-IPL and macular thicknesses, 

compared with controls 

 But a few studies showed no differences in 

the measures, compare with controls 

 A few studies also showed thickened 

peripapillary RNFL and macular GC-IPL 
thicknesses, compared with controls 

 In a population-based study, reduced 

peripapillary associated with incident AD 

dementia  

Retinal Capillary Changes   

Vessel density and foveal avascular zone  Majority of studies showed decreased 

vessel density and enlarged foveal 

avascular zone area, compared with 
controls 

 But a few studies showed no differences in 

the measures, and one study showed 

increased vessel density in preclinical AD, 
compared with controls. 

 Majority of studies showed decreased 

vessel density and enlarged foveal 

avascular zone area, compared with 
controls 

 But a few studies showed no differences in 

the measures. 

Retinal Arteriolar and Venular  Changes 
  

Vessel caliber (CRAE and CRVE) 
 No data  Majority of studies showed narrower 

CRVE, compared with controls. 



Review for JNNP 

Fractal dimension 

 No data  Majority of studies showed decreased 

arteriolar and venular fractal dimensions, 

compared with controls. 

Tortuosity 

 No data  The association is equivocal. Both 

increased and decreased 
retinal vascular tortuosity were observed. 

Choroidal vasculature changes 
  

Choroidal thickness 

 No data  Reduced choroidal thicknesses, compared 

with controls 

 A larger reduction in choroidal thicknesses 

over a 12-month follow-up, compared with 

controls. 

 

CRAE=central retinal artery equivalent; CRVE=central retinal vein equivalent; GCC=ganglion cell complex; GC-IPL=ganglion cell-

inner plexiform layer; MCI=mild cognitive impairment; RNFL=retinal nerve fiber layer.  



Supplementary Section 1. Details of Retinal Imaging Technology for Specific Structures 

 

1. Spectral-domain optical coherence tomography for imaging retinal neuronal and axonal layers 

Optical coherence tomography (OCT) is an optical imaging technique that utilises a low-coherence 

light source near the infra-red spectrum to penetrate biological tissue and provides cross-sectional 

imaging of the retinal layered structure.S170 Spectral-domain OCT (SD-OCT) employs a 

spectrometer to analyse the interference spectrum data from the back-scattered light which 

includes the retina depth information and generate axial measurements of the retina.S35 Comparing 

with the earlier generation of OCT (time-domain OCT) which collected the signal as a function of 

time by moving a reference mirror mechanically, SD-OCT with the spectral analysis provides a  

higher resolution and higher speed for imaging the retinal layered structure.S35 The recent 

development of swept-source OCT (SS-OCT), with a longer wavelength (>1µm) than SD-OCT 

and utilizing a frequency-swept light source, further enhances tissue penetration into the choroid 

and provides a faster scanning speed.S171,S172 

Assessment of inner retinal layers in greater details is possible after the development of SD-OCT, 

in particular the ganglion cell layer and inner-plexiform layer, which indicate cell bodies and 

dendrites of retinal ganglion cells (RGCs), respectively.S173 Retinal layers (e.g. inner limiting 

membrane, nerve fibre layer, ganglion cell layer, inner plexiform layer and retinal pigment 

epithelium) are segmented automatically for different thickness and volume measurements (e.g. 

retinal nerve fibre layer (RNFL) thickness, ganglion cell-inner plexiform layer (GC-IPL) thickness, 

macular thickness and macular volume) at different locations by built-in segmentation algorithms 

in commercial OCT systems.  



In addition to thickness measurement, built-in normative databases from healthy subjects are also 

provided for comparing the measured thickness or volume to age-matched data. The normative 

database uses a colour code to indicate the normal distribution percentiles (red: <1%, below normal 

limits; yellow: within 1% to 5%, suspect below normal; green: within 5%-95%, normal limits; 

light yellow: within 95%-99%, above normal limits; light red: >99%, above normal limits). For 

example, areas flagged in red indicate significant thickness reduction, compared with normative 

database.  

 

2. Optical coherence tomography angiography for imaging retinal capillary networks 

Optical coherence tomography-angiography (OCT-A) is based on mapping red blood cells 

movement over time from volumetric OCT scans.S65 At each cross-sectional OCT image position, 

scan is repeated few times in order to detect and quantify the motion contrast. The degree of motion 

contrast is corresponding to angiographic flow, as the only expected motion in the retina is blood 

flow in vessels. Based on different image processing algorithms such as OCT Angiography Ratio 

Analysis (OCTARA),S174 split-spectrum amplitude-decorrelation angiography (SSADA)S64 and 

optical microangiography (OMAG) algorithm,S175 OCT-angiography is able to penetrate into the 

retinal layers and image the various different capillary plexuses by selecting different en face slabs, 

thereby providing us the unique ability to reconstruct and view the retinal vasculature in a 3-

dimensional fashion, as well as to visualize in isolation the individual retinal plexuses without 

intravenous dye injection (e.g. the superficial capillary plexus and deep capillary plexus).  

It is noteworthy that the definition of “segmentation of retinal capillary plexuses” vary in different 

algorithms. For example, in the OCTARA, at macular region, the superficial capillary plexus 

default segmentation is defined as the region between the inner limiting membrane (ILM) + 2.6 



μm to the inner plexiform layer (IPL)/ inner nuclear layer (INL) border + 15.6 μm, while the deep 

capillary plexus default segmentation is defined as the region from the IPL/INL border + 15.6 μm 

to the IPL/INL border + 70.2 μm. In the SSASD, the superficial capillary plexus upper border is 

at 3 µm below ILM to the lower border at 15 µm below the IPL, while the deep capillary plexus 

spans from 15 µm below the IPL to 70 µm below the IPL.S176 

Quantification of capillary network from OCT-A to identify early and subtle microvascular 

changes objectively is one of the next important milestones for the application of OCT-A into 

clinical practice. Currently, several quantitative OCT-A measurements (e.g. vessel density, foveal 

avascular zone area and circularity, fractal dimension, vessel density index) have been defined and 

different automated and semi-automated algorithms developed to quantify the capillary 

networks.S63, S64, S177 It is noted that projection artifacts from superficial blood vessels on the deeper 

layers (a fluctuating shadow cast by the flowing blood cells in the overlying retinal vessels 

projecting to the deeper layers) are common, which may lead to incorrect interpretations.S178  

 

3. Enhanced depth imaging OCT for imaging choroidal vasculature 

The choroid is the posterior part of the eyeball, which is sandwiched between the retina and the 

sclera, and is one of the most vascularized structures in the human body. Although SD-OCT can 

image the layered retina in details, imaging the choroid with SD-OCT is impeded by poor signal 

penetration beyond the heavily pigmented retinal pigment epithelium.S179 With the introduction of 

enhanced depth imaging (EDI) technique of SD-OCT, the visualization of choroidal scleral 

interface is enhanced and imaging of choroidal vasculature has become possible.S179 SS-OCT with 

a loner wavelength than SD-OCT, reducing the scatter reflection of the retinal pigment epithelium, 

also enables a better  imaging of choroidal vasculature.S171,S172 The thickness and volume of the 



choroid at different regions (e.g. subfovea, macula, peripapillary) can be subsequently measured 

by computer software.S104,S180 It is noteworthy that choroidal thickness is associated with several 

physiological variables (e.g. age, axial length of eyeball, intraocular pressure) in normal 

individuals.S181 Choroidal vascularity index, defined as the ratio of vascular area to the total 

choroidal area, is recently proposed to quantify choroidal vascular alterations in a more reliable 

manner as it has lesser variability and influence by these factors.S182 

 

4. Retinal vasculature analysis with retinal photography for imaging and quantifying retinal 

vasculature 

The optical design of retinal photography with fundus camera is based on the principle of 

monocular indirect ophthalmoscopy, with the pupil used as both an entrance and exit for the fundus 

camera's illuminating and imaging light rays. With advancements in digital retinal photography 

and image processing technologies, quantitative retinal vasculature analysis from retinal 

photographs can be performed with computer software and standardized photographic protocols. 

Retinal Analysis (RA; University of Wisconsin, Madison, WI) and Integrative Vessel Analysis 

(IVAN; University of Wisconsin, Madison; WI) were widely used for measuring retinal arteriolar 

caliber and retinal venular caliber from retinal photographs in numerous large population-based 

studies.S183,S184 Retinal vessels, coursing through a specified area of a standardized grid (0.5–1.0 

disc diameter from the disc margin), are measured. The revised Knudtson-Parr-Hubbard formula 

is widely used to summarize the retinal arteriolar and venular calibers of the large six arterioles 

and venules as central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) 

respectively.S185 Subsequently, newer retinal geometric branching parameters were defined to 

quantify the optimal state of retinal vasculature in recent computer software systems (e.g. SIVA 



(Singapore I Vessel Assessment) softwareS103,S186 and VAMPIRE software (Vascular Assessment 

and Measurement Platform for Images of the REtina))S61 measured from a wider measured area, 

based on Murray’s principle that the branching pattern of vascular networks develops to minimize 

the energy required to maintain efficient blood flow.S53 It is noted that the current retinal 

vasculature analysis software tools are mainly semi-automated, and require manual adjustment and 

assessment usually by trained technicians to maximise the accuracy of the measurements. 

 

5. Dynamic vessel analyzer for measuring the flicker-induced vasodilatory response 

The principle of dynamic vessel analyzer (DVA) is based on dynamic reaction of retinal vessels 

to flickering light  which stimulates activity of the neural retina and leads to retinal vessel dilation 

influenced by neurovascular coupling. In order to generate flickering light during DVA imaging, 

an optoelectric shutter is inserted in a retinal camera to produce a bright-to-dark contrast ratio of 

at least 25:1.S187 In each imaging cycle, retinal arteriolar and venular diameters are firstly measured 

in a certain time period for baseline measurement, followed by a stimulation with flickering light 

of the same wavelength for another time period, and then a non-flicker period. The responses to 

flickering light can be represented as an average increase in the retinal arteriolar and venular 

diameters during several cycles, and defined as the percentage increase relative to the baseline 

diameter size.S84  

 

6. Retinal oximetry for measuring retinal vessel oxygen saturation  

Retinal oximeter, composed of an optical adapter and an image splitter fitted to a fundus camera, 

measures retinal vessel oxygen saturation based on acquisition of two images of the same area of 

the retinal fundus at two different wavelengths of light simultaneously. One of the two wavelengths 



is sensitive to oxygen saturation (isosbestic wavelength of 570nm), i.e. the light absorbance 

changes with the oxygen saturation, while the other is insensitive to oxygen saturation (non-

isosbestic wavelength of 600nm) and is used to calibrate the light intensity. The oxygen saturation 

can therefore be estimated by comparing light absorption at oxygen sensitive wavelengths for 

assessing retinal oxygen metabolism.S87 Nevertheless, the choroid may have a considerable role in 

oxygenating the inner retina under some circumstances (e.g. 100% oxygen breathing), but this is 

not accounted for in the current estimation of haemoglobin oxygen saturation.S87 

 

7. Ultra-wide field retinal photography for imaging the retinal periphery  

The technology of ultra-wide field retinal photography is based on confocal laser scanning 

microscopy combined with a concave ellipsoidal mirror, or white-light light-emitting diode 

illuminator, which enable a wide field of view to be imaged without the need for pupillary 

dilation.S188  Ultra-wide field retinal photography has the ability to capture a much wider view of 

the retina (up to 200o horizontally or 82% of the retina) in a single image for assessment of 

peripheral lesions (e.g. drusen deposits, diabetic retinopathy), compared with conventional retinal 

photography (30o to 50o of the retina).S189,S190 The confocal laser scanning microscopy based 

system can allow for fundus autofluorescence imaging at the same time.S191  It is noted that images 

from the confocal laser scanning microscopy can only produce pseudo-color images, but not true 

colour imaging like conventional fundus photography.  

 

8. Fluorescence lifetime imaging ophthalmology for measuring and quantifying lifetimes of retinal 

fluorophore  



Retinal fluorophores, including lipofuscin, advanced glycation end products, collagen, melanin, 

and elastin, absorb and emit light at specific wavelengths. Electrons in retinal fluorophores are 

excited by absorbing photons from a monochromatic light source (e.g. laser), thus moving to a 

higher level of energy. They return to their energy ground state by emitting photons of longer 

wavelengths than the exciting light. Fluorescence lifetime imaging ophthalmoscope (FLIO) is 

based on a commercial scanning laser ophthalmoscope which is equipped with an infrared camera 

for active eye tracking to correct for eye movements.S94 During imaging, the excitation laser raster 

scans the retina in multiple periods, detects the emitted fluorophore and builds up a distribution 

histogram over time. The fluorescence lifetime describes the average time a single fluorophore 

remains in its electronically excited state after absorbing the energy of a photon and before 

returning to the ground state by emitting a photon. Every fluorophore is characterized by its own 

excitation and emission wavelength spectrum and exhibits an individual fluorescence lifetime. 

Therefore, it can produce quantitative images based on the lifetimes of the different retinal 

fluorophores.S191 

 

 

 

 



Supplementary Table 1. Recent clinical studies of common primary age-related ocular diseases and Alzheimer’s diseases (AD) dementia. 

Clinical retinal diseases Authors, 
years 

Sample Summary of results 

Age-related macular 
degeneration (AMD) 

   

 Keenan et al. 
(2014)S2 

Record linkage data of English 
National Health Service: an AMD 
cohort of 65,894 persons, a dementia 
cohort of 168, 092 persons and a 
reference cohort of 7.7 million 
persons. 

• For people with AMD: the rate ratio, comparing observed 
and expected cases of dementia in the AMD cohort with 
those of the reference cohort, was 0.91 (0.79, 1.04). The 
rate ratio for AD dementia after AMD was 0.86 (0.67, 
1.08). 

• Persons with AMD not associated with incident dementia 
(RR: 0.91 [0.79,1.04]) or AD dementia (RR: 0.86 [0.67-
1.08]), compared with the reference cohort.  

• Persons with any forms of dementia (RR: 0.07 [0.04, 
0.11]) and persons with AD dementia (RR: 0.04 
[0.01,0.10]) were unlikely to develop AMD, compared 
with the reference cohort.   

 Williams et 
al. (2014)S3 

258 AD dementia, and 322 healthy 
control subjects 

• AMD grades not associated with AD dementia, compare 
with AMD Grade 0 (Grade 1: OR: 0.65 [0.4–1.1]; Grade 2: 
OR: 1.00 [0.5–1.9]; Grade 3: OR: 1.38 [0.6–3.2]). 

 Tsai et al. 
(2015)S4  

Claims data of the Taiwan National 
Health Insurance Research Database: 
an AMD cohort of 4,993 person (4,453 
non-exudative AMD and 540 
exudative AMD) and an age-gender-
matched reference cohort of 24,965 
persons. 

• 5.9% and 5.2% persons were diagnosed with AD or senile 
dementia during a mean follow-up period of 4.4 years in 
the AMD cohort and the control cohort, respectively. 

• Persons with AMD were more likely to develop AD 
dementia or senile dementia (HR: 1.44 [1.26, 1.64]), 
compared with controls. 

• The association was stronger in non-exudative AMD 
(HR:1.44 [1.26, 1.65]).  

 
 Lee et al. 

(2018)S5 
3,877 participants with dementia-free 
at enrollment from the Adult Changes 
in Thought Study 

• 347 (9%) had an AMD diagnosis at enrollment, and 689 
(18%) developed AMD 

• Established AMD (>5 years) associated with incident AD 
dementia (HR: 1.50 [1.25, 1.8]).    

Diabetic retinopathy (DR)     



 
 Lee et al. 

(2018)S5 
3,877 participants with dementia-free 
at enrollment from the Adult Changes 
in Thought Study 

• 136 (4%) had a DR diagnosis at enrollment, and 112 (3%) 
developed DR. 

• Both recent DR (within 5 years) (HR: 1.67 [1.01, 2.74]) 
and established DR (>5 years) (HR: 1.50 [1.05, 2.15]) 
associated with incident AD dementia.    

Glaucoma 
 

   

 Lin et al. 
(2014) S6 

Claims data of the Taiwan National 
Health Insurance Research Database: a 
primary open-angle glaucoma (POAG) 
cohort of 3,979 persons and a non-
glaucoma cohort of 15,916 persons 

• The incidence rates of AD dementia among the patients 
with and without POAG were 2.85 (2.19, 3.70) and 1.98 
(1.68, 2.31) per 1000 person-years, respectively.  

• Persons with POAG were more likely to develop AD 
dementia (HR: 1.40 [1.03, 1.90]), but not Parkinson 
disease (HR: 0.98 [0.77, 1.24]), over 8 years, compared 
with non-glaucoma cohort. 

 Keenan et al. 
(2015)S7 

Record linkage data of English 
National Health Service: a POAG 
cohort of 87,658 persons, an AD 
dementia cohort of 251,703 persons, a 
vascular dementia cohort of 217,302 
persons and a reference cohort of >2.5 
million persons.  
 

• For people with POAG, there was no significant 
association with AD: the rate ratio, comparing the POAG 
cohort with the reference cohort, was 1.01 (0.96, 1.06). 
The rate ratio for AD dementia after AMD was 0.86 (0.67, 
1.08). 

• Persons with POAG not associated with incident AD 
dementia (RR:1.01 [0.96, 1.06]), but likely to develop 
vascular dementia (RR: 1.10 [1.05 to 1.16]), compared 
with the reference cohort. 

• Persons with AD dementia (RR: 0.28 [0.24 to 0.31]) or 
vascular dementia (RR: 0.32 [0.28 to 0.37]), were unlikely 
to develop POAG, compared with the reference cohort. 

 Lee et al. 
(2018)S5 

3,877 participants from the Adult 
Changes in Thought Study 

• 404 (10%) had a glaucoma diagnosis at enrollment, and 
290 (7%) developed glaucoma. 

• Recent glaucoma (within 5 years) associated with incident 
AD dementia (HR: 1.46 [1.08, 1.91]).    

Aβ=amyloid-beta; AD=Alzheimer’s disease; HR= hazard ratio; OR=odds ratio; RNFL= retinal nerve fiber layer; RR= relative risk; PET=positron emission 
tomography. 

 

 



Supplementary Table 2. Recent clinical studies of spectrum of Alzheimer’s diseases (AD) (AD dementia, mild cognitive impairment (AD MCI), 
preclinical AD), and retinal imaging measures, as defined from spectral-domain optical coherence tomography (SD-OCT), OCT-angiography, 
enhanced depth imaging (EDI) with OCT and retinal photography. It is noted that the definition of AD varies in the existing literature: not all 
publications have included AD biomarkers for their AD diagnosis. The evolution in definition and diagnostic criteria of AD and other dementias 
may account for some of the variations and differences seen between studies discussed in this review. 

 

Authors, years Sample Imaging measure Summary of results 
Cross-sectional 
SD-OCT studies 

   

Larrosa et al. 
(2014)S193 

151 AD dementia, and 61age-
matched normal control 
subjects  

A selective combination of 
peripapillary RNFL and 
macular thicknesses using 
linear discriminant function 

• Reduced peripapillary RNFL thickness using linear 
discriminant function in AD dementia (all p<0.001), 
compared with controls. 

• The largest AUROCs were 0.967 for the Spectralis 
RNFL based linear discriminant function and 0.830 for 
the Cirrus RNFL based linear discriminant function. 

Polo et al. 
(2014)S194 

75 AD dementia, and 75 age-
matched normal control 
subjects 

Peripapillary RNFL and  
macular thickness 

• Reduced peripapillary RNFL in superior (113.59µm vs. 
118.58µm, p=0.006) and inferior (121.96 µm vs. 127.97 
µm, p=0.018) quadrants, and macular thicknesses (all 
p≤0.009, except measurement at fovea [p=0.115]) in AD 
dementia, compared with controls. 

Cheung et al. 
(2015)20 
 

100 AD dementia, 41 MCI, 
and 123 normal control 
subjects   

Macular GC-IPL and 
Peripapillary RNFL 
thicknesses 

• Reduced macular GC-IPL thickness in MCI (all 
p≤0.049, except measurement at superior [p=0.064], 
inferonasal [p=0.051] and supertemporal [p=0.359] 
sectors) in AD dementia (all p≤0.031), compared with 
controls.  

• Reduced peripapillary RNFL thickness in superior 
quadrant in AD dementia (109.1µm vs. 111.1µm, 
p=0.039), compared with controls.  

• No difference in macular GC-IPL and peripapillary 
RNFL thicknesses between MCI and AD dementia. 

Ferrari et al. 
(2016)S195 

39 AD dementia, 17 
frontotemporal dementia 
(FTD), 27 MCI and 49 
normal control subjects  

Peripapillary RNFL and GC-
IPL thicknesses 

• Reduced peripapillary RNFL and GC-IPL thicknesses in 
AD dementia (mild AD: RNFL=94.55 µm, 
GCIPL=57.52µm; moderate AD: RNFL=91.33µm, 
GCIPL=50.07µm) , FTD (RNFL=87.47µm, 
GCIPL=51.83µm) and MCI (RNFL=92.79µm, 



GCIPL=55.61 µm) (all p<0.05), compared with controls 
(RNFL=97.49µm, GCIPL=58.18µm). 

Garcia-Martin et al. 
(2016)S196 

150 AD dementia and 75 age-
gender-matched normal 
control subjects 

Macular RNFL, GCL, IPL, 
INL, OPL, ONL, RPE layer 
and photoreceptor layer 
thicknesses 

• Reduced macular RNFL (6.11 vs. 6.22), GCL (6.27 vs. 
6.45), INL (6.56 vs. 6.71) and ONL (6.56 vs. 6.71) 
thicknesses in AD dementia (p<0.050), compared with 
controls. 

• Reduced RNFL (p=0.018), GCL (p=0.009) and INL 
(p=0.006) thicknesses correlated with disease duration in 
AD dementia. 

Snyder et al. 
(2016)S39 

10 Aβ-positive and 53 Aβ-
negative subjects at high-risk 
for AD (self-reported first-
degree family history of the 
disease, and self-
identification of subjective 
memory concerns) 

Peripapillary RNFL and 
macular RNFL, GCL, IPL, 
INL, OPL, and ONL 
thicknesses. 

• Increased IPL in Aβ-positive group (p=0.029), 
compared with Aβ-negative group (0.371µm3 vs. 0.354 
µm3). 

Cunha et al. 
(2017)S197 

50 mild AD dementia and 
152 normal control subjects 

Peripapillary RNFL and 
macular thicknesses  

• Reduced peripapillary RNFL thickness in 
superiotemporal sector (p<0.05) and macular thicknesses 
in pericentral (p=0.001) and peripheral superior 
(p<0.001) sectors in AD dementia, compared with 
controls. 

Lad et al. (2018)S38 15 AD dementia, 15 MCI and 
18 normal control subjects 

Peripapillary RNFL and 
macular RNFL and GC-IPL 
thicknesses 

• No significant associations observed.  
• Using a multivariate regression model with quasi-least 

squares, there are areas of thickening of macular GC-
IPL and RNFL in subjects with AD dementia and MCI, 
compares with controls. 

O’Bryhim et al. 
(2018)S74 
 

14 preclinical AD (Aβ-
positive from PET or CSF but 
not dementia) and 16 normal 
control subjects 

Inner, outer, and total foveal 
thicknesses 
  

• Reduced inner foveal thickness (66.0µm vs. 75.4µm, 
p=0.03) in preclinical AD, compared with controls. 

Sanchez et al. 
(2018)17 

324 AD dementia, 192 MCI 
and 414 normal control 
subjects 
 

Peripapillary RNFL thickness • No difference in peripapillary RNFL thickness among 
the groups. 

den Haan et al. 
(2019)S42 

57 AD dementia and 85 
normal control subjects 

Peripapillary RNFL, total 
macular and macular RNFL, 
GCL and IPL thicknesses 
 

• No difference in peripapillary RNFL, total macular and 
macular RNFL, GCL and IPL thicknesses among the 
groups. 

 



Tao et al. 
(2019)26 

73 AD dementia, 51 MCI and 
67 normal control subjects 

Peripapillary RNFL and 
macular GCC thicknesses  

• Reduced peripapillary RNFL (97.99µm vs. 98.35µm vs. 
107.19µm) and macular GCC thicknesses (94.16µm vs. 
94.1µm vs. 99.64µm) in AD dementia and MCI (all 
p<0.05), compared with controls. 

• No difference in peripapillary RNFL and macular GCC 
thicknesses between MCI and AD dementia. 

 
Asanad et al. 
(2020)S198 

27 preclinical AD 
(pathological Aß42/Tau ratio 
from CSF but not dementia) 
and 16 normal control 
subjects 

Peripapillary RNFL, macular 
GC-IPL and macular 
thicknesses 

• Reduced peripapillary RNFL thicknesses in preclinical 
AD dementia (83.46µm vs. 93.27µm, p=0.0009), 
compared with controls. 

McCann et al. 
(2020)S199 

3,221 subjects from the  
Northern Ireland Cohort for 
the Longitudinal Study of 
Ageing (NICOLA) 

Peripapillary RNFL thickness • Reduced associated with AD (self-reported) in the age-
adjusted and sex-adjusted model. 

Prospective SD-
OCT studies 

   

Shi et al. (2014)29 20 MCI and 58 normal 
control subjects  

Peripapillary RNFL thickness • The reduction in peripapillary RNFL at inferior region in 
the converted participants was greater than that in stable 
participants (−11.0µm vs 0.4µm, p = 0.009) over a  25-
month follow-up. 

Trebbastoni et al. 
(2016)31 

36 AD dementia and 36 age-
matched normal control 
subjects 

Peripapillary RNFL thickness • Changes in peripapillary RNFL thickness in inferior 
region associated with worsening cognitive scores 
(ADAS-Cog scores change: r = −0.35, p = 0.02;  CDR 
scores change: r = − 0.39, p = 0.008) over a 12-month 
follow-up. 

Choi et al. (2016)30 42 AD dementia, 26 MCI and 
66 normal control subjects 

Peripapillary RNFL, macular 
GC-IPL  and macular 
thicknesses  

• Reduced average (Beta=-0.150, p=0.006) and sectoral 
GC-IPL (all p<0.05) and macular (Beta=-1.700, p=0.02) 
thicknesses at baseline associated with progression of 
AD dementia and MCI over a 2-year follow-up. 

Mutlu et al. 
(2018)27 

3,289 subjects from the 
Rotterdam Study 

Peripapillary RNFL and 
macular GC-IPL thicknesses 

• Reduced GC-IPL (OR: 1.03 [1.00, 1.09]) associated 
with prevalent dementia.   

• Reduced RNFL (HR: 1.02 [1.01, 1.04]) associated with 
incident of dementia, including AD dementia (HR: 1.02 
[1.01, 1.04]).  



Santos et al. 
(2018)S200 

15 preclinical AD and 41 
normal control subjects  

Peripapillary RNFL and 
macular RNFL, GCL, IPL, 
INL, OPL, and ONL 
thicknesses. 

• A larger reduction in macular RNFL (-0.032mm3 vs. -
0.019mm3, p=0.050), ONL (-0.029mm3 vs. -0.007mm3, 
p=0.026), and IPL (-0.014mm3 vs. -0.006mm3, p=0.020) 
volumes, in preclinical AD over a 27-month follow-up, 
compared with controls. 

OCT-angiography 
studies 

   

Jiang et al. 
(2018)S68 

12 AD dementia, 19 MCI and 
21 age-matched normal 
control subjects 
 

Vessel density of retinal 
vascular network, superficial 
capillary plexus, and deep 
capillary plexus.  

• Decreased density of retinal vascular network, 
superficial vascular plexus, and deep vascular plexus in 
AD dementia (p<0.05), compared with controls. 
 

Bulut et al. 
(2018)S67 

26 AD dementia and 26 age-
gender matched normal 
control subjects 

Vessel density and foveal 
avascular zone area of 
superficial capillary plexus. 

• Decreased density (45.40% vs. 48.67%, p=0.002) and 
enlarged foveal avascular zone area (0.47mm2 vs. 
0.33mm2, p=0.001) of superficial capillary plexus in AD 
dementia, compared with controls.  

O’Bryhim et al. 
(2018)S74 
 

14 preclinical AD (Aβ-
positive from PET or CSF but 
not dementia) and 16 normal 
control subjects 

Foveal avascular zone area. 
 

• Enlarged foveal avascular zone area (0.364mm2 vs. 
0.275mm2, p=0.002) in preclinical AD, compared with 
controls, with AUROC of 0.8007. 

Lahme et al. 
(2018)S69 

36 AD dementia and 27 
normal control subjects 

Foveal avascular zone area 
and vessel density of 
superficial capillary plexus, 
deep capillary plexus and 
radial peripapillary capillary. 

• Decreased vessel density of superficial capillary plexus 
(48.77% vs. 51.64%, p=0.001) and radial peripapillary 
capillary (53.07% vs. 55.39%, p=0.015) in AD 
dementia, compared with controls. 

• No significant correlation between Aβ or tau levels in 
the CSF and OCT-angiography measures. 

Querques et al. 
(2019)S71 
 

12 AD dementia, 12 MCI, 
and 32 age-gender matched 
normal control subjects 

Vessel density of superficial 
capillary plexus and deep 
capillary plexus 

• No differences in all the measures. 

den Haan et al. 
(2019)S72 

48 AD dementia, and 38 
normal control subjects 

Vessel density and foveal 
avascular zone area 
 

• No differences in all the measures. 

Zhang et al. 
(2019)S70 

16 early AD or amnestic 
MCI, and 16 normal control 
subjects 

Vessel density and vessel 
length density of superficial 
capillary plexus, radial 
peripapillary capillary and 
peripapillary superficial 
vascular plexus. Adjusted 

• Decreased vessel density (40.67% vs. 44.5%, p=0.028) 
and adjusted flow index (0.376 vs. 0.407, p=0.047) of 
superficial capillary plexus in early AD or amnestic 
MCI, compared with controls. 



flow index of superficial 
capillary plexus. 

van de Kreeke et al. 
(2019)S75 

13 preclinical AD (Aβ-
positive from PET but not 
dementia) and 111 normal 
control subjects  

Foveal avascular zone area 
and vessel density of retinal 
vascular network at inner ring 
macula and outer ring macula, 
and around optic nerve head. 

• Increased vessel density of retinal vascular network at 
inner ring macula (difference: 0.81%, p=0.002) and 
outer ring macula (difference: 0.50%, p=0.024), and 
around optic nerve head (difference: 0.83%, p=0.015) in 
preclinical AD, compared with controls. 

• AUROCs for vessel densities in inner and outer ring of 
the macula and around the optic nerve head were 0.651, 
0.640 and 0.764, 

Zabel et al. 
(2019)S73 

27 AD dementia, 27 open-
angle glaucoma and 27 
normal control subjects 

Foveal avascular zone area 
and vessel density of 
superficial capillary plexus, 
deep capillary plexus and 
radial peripapillary capillary. 

• Decreased vessel density of deep capillary plexus 
(43.95% vs. 47.44% vs. 49.46%, p=0.0006) and 
enlarged foveal avascular zone area (0.32mm2 vs. 
0.26mm2 vs. 0.21mm2, p<0.001) in AD dementia, 
compared with open-angle glaucoma and controls. 

Lee et al. 
(2020)S201 

29 AD-related cognitive 
impairment, 25 subcortical 
vascular cognitive 
impairment and 15 normal 
control subjects 

Vessel density of radial 
peripapillary capillary. 

• No differences in vessel density of radial peripapillary 
capillary between AD-related cognitive impairment and 
normal control subjects. 

OCT with EDI 
studies 

   

Gharbiya et al. 
(2014)S80 
 

21 mild to moderate AD 
dementia and 21 age-matched 
normal control subjects 

Choroidal thickness • Reduced choroidal thicknesses in AD dementia 
(subfoveal choroidal thickness: 200.9µm vs. 266.1µm, 
p=0.001; other regions:  p≤0.036).  

Bayhan et al. 
(2015)S79 
 

31 AD dementia and 30 age-
matched normal control 
subjects 

Choroidal thickness • Reduced choroidal (subfoveal choroidal thickness: 
221.48µm vs. 251.86µm, p=0.001; other regions: all 
p≤0.036, except measurement at 3.0 mm temporal to the 
fovea [p=0.067]) thickness in AD dementia. 

Trebbastoni et al. 
(2017)S81 

39 AD dementia and 39 
normal control subjects 

Choroidal thickness  • A larger reduction in choroidal thicknesses (changes in 
subfoveal choroidal thickness: -10.47µm vs. -2.0µm) in 
AD dementia over a 12-month follow-up, compared 
with controls.  

Bulut et al. 
(2018)S67 

26 AD dementia and 26 age-
gender matched normal 
control subjects 

Choroidal thickness • Reduced choroidal thickness (198.27µm vs. 251.88µm, 
p<0.001) in AD dementia, compared with controls.  



Retinal 
photography 
studies 

   

 Frost et al. (2013)39 25 AD dementia, and 123 
age-matched control subjects 
 
Among control group, 15 Aβ-
positive (preclinical AD) and 
30 Aβ-negative subjects 

CRAE, CRVE, FD, tortuosity, 
bifurcation 

• Decreased CRAE (122.9µm vs. 129.1µm, p=0.01), 
CRVE (169.7µm vs. 182.7µm, p<0.001), arteriolar FD 
(1.201 vs. 1.235, p=0.008), venular FD (1.171 vs. 1.210, 
p<0.001), venular tortuosity (6.953x10-5 vs. 7.660x10-5, 
p=0.024) and venular branching coefficient (1.347 vs. 
1.253, p=0.019) in AD dementia, compared with 
controls. 

• Increased venular branching asymmetry factor (p=0.01) 
and arteriolar length-to-diameter ratio (p=0.02) in 
preclinical AD, compared with Aβ-negative subjects. 

Cheung et al. 
(2014)40 

136 AD dementia, and 290 
age-matched control subjects 

CRAE, CRVE, FD, tortuosity, 
bifurcation 

• Decreased CRVE (OR 2.01 [1.27, 3.19]), arteriolar (OR 
1.35 [1.08, 1.68]) and venular (OR 1.47 [1.17, 1.84]) 
FDs, and increased arteriolar (OR 1.80 [1.40, 2.31]) and 
venular (OR 1.94 [1.48, 2.53]) tortuosity associated with 
AD dementia. 

Williams et 
al.(2015)41 

213 AD dementia, and 294 
age-matched control subjects  

CRAE, CRVE, FD, tortuosity, 
bifurcation 

• Decreased total FD (OR 0.77 [0.62, 0.97]) and arteriolar 
tortuosity (OR 0.78 [0.63, 0.97]) associated with AD 
dementia. 

den Haan et al. 
(2019) S72 

48 AD dementia, and 38 
normal control subjects 

CRAE, CRVE, FD, tortuosity 
 

• No differences in all the measures 

 

Aβ=amyloid-beta; AD=Alzheimer’s disease; AUROC=area under receiver operating characteristic curve; CRAE=central retinal artery 
equivalent; CRVE=central retinal vein equivalent; CSF=cerebrospinal fluid; EDI=enhanced depth imaging; FD=fractal dimension; GCC=ganglion cell 
complex; GC-IPL=ganglion cell-inner plexiform layer; GCL= ganglion cell layer; HR=hazard ratio; INL=inner nuclear layer; IPL=inner plexiform layer; 
MCI=mild cognitive impairment; OPL=outer plexiform layer; ONL=outer nuclear layer; OR=odds ratio; RNFL=retinal nerve fiber layer; RPE=retinal 
pigment epithelium; OCT=optical coherence tomography; PET=positron emission tomography. 

 

 

 

 



Supplementary Table 3. A proposed framework of research using retinal imaging technology as a source of biomarkers for Alzheimer’s 
disease (AD). 
 
Items in the Framework Examples 

1. Study should be designed and conducted with a specific clinical purpose. Can spectral-domain (SD-OCT) be used as a 
screening tool to identify asymptomatic individuals 
who are more likely to have AD in community, 
neurology clinics, eye clinics or optical shops?  

2. Diagnosis of AD should be defined in a consistent manner with the latest 
available criteria. 

AD should be defined by biomarkers of amyloid-β 
deposition, pathologic tau, and neurodegeneration.8 

3. Standard statistical measures of accuracy of biomarkers should be reported. The sensitivity, specificity, false-positive and false-
negative rates of SD-OCT measures should be 
reported, using the above as a reference standard.  

4. Studies should be designed carefully to take into account many age-related ocular 
conditions. 

How do different ocular conditions (e.g. glaucoma, 
age-related macular degeneration and elongated 
eyeball) manifest on SD-OCT? How do these ocular 
conditions be considered in the analysis and 
interpretation?   

5. The reproducibility of the retinal imaging measures should be determined. What are the intra-visit repeatability and inter-visit 
reproducibility of SD-OCT measures? 

6. The incremental benefit and cost-effectiveness of retinal imaging as well as 
acceptability to patients in different settings should be evaluated. 

What are the benefits to screen AD using SD-OCT in 
community, neurology clinics, eye clinics or optical 
shops? 

 



Supplementary Figure 1. Image processing steps (e.g. image denoising, binarization, skeletonization) to quantify the retinal capillary 
networks (superficial capillary plexus, deep capillary plexus and radial peripapillary capillary plexus) from optical coherence 
tomography angiography (OCT-A) images in a subject with Alzheimer disease dementia. 

 
 

 



Supplementary Figure 2. An example of presence of drusen deposits in the peripheral retina (appear as yellow deposits under the retina, 
indicated by white arrows) imaged by ultra-widefield scanning laser ophthalmoscopy (Daytona, Optos, Dunfermline, UK) in a 77-year-
old subject with Alzheimer’s disease dementia (global clinical dementia rating score of 1). Except presence of drusen deposits in the 
peripheral retina, no other retinal disorders were observed in this subject. These peripheral drusen deposits are not present in healthy 
individuals without eye diseases. 
 

 



Supplementary Figure 3. A proposed pathway of screening Alzheimer’s disease (AD) using retinal imaging assisted by artificial 
intelligence (AI). By providing a simple 2-tier risk stratification output, the AI algorithm could assist physicians to identify asymptomatic 
individuals who are more likely to have AD in different settings (e.g. community-based, eye clinic-based, general or specialized clinics). 
The high-risk group can then benefit from subsequent confirmatory investigations (e.g. PET imaging and cerebrospinal fluid tests), 
implementation of potential preventive therapies or recruitment into clinical trials. 
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