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Abstract 
Introduction: In this retrospective cohort study, we wanted to evaluate the performance and 
analyze the insights of an artificial intelligence (AI) algorithm in detecting retinal fluid in spectral-
domain OCT volume scans from a large cohort of patients with neovascular age-related macular 
degeneration (AMD) and diabetic macular edema (DME).  
Methods: A total of 3’981 OCT volumes from 374 patients with AMD and 11’501 OCT volumes from 
811 patients with DME, acquired with Heidelberg Spectralis OCT device (Heidelberg Engineering Inc., 
Heidelberg, Germany) between 2013 and 2021. Each OCT volume was annotated for the presence or 
absence of intraretinal fluid (IRF) and subretinal fluid (SRF) by masked reading center graders 
(ground truth). The performance of an already published AI-algorithm to detect IRF, SRF separately 
and a combined fluid detector (IRF and/or SRF) of the same OCT volumes was evaluated. An analysis 
of the sources of disagreement between annotation and prediction and their relationship to central 
retinal thickness was performed. We computed the mean areas under the curves (AUC) and under 
the precision-recall curves (AP), accuracy, sensitivity, specificity and precision. 
Results: The AUC for IRF was 0.92 and 0.98, for SRF 0.98 and 0.99, in the AMD and DME cohort, 
respectively. The AP for IRF was 0.89 and 1.00, for SRF 0.97 and 0.93, in the AMD and DME cohort, 
respectively. The accuracy, specificity and sensitivity for IRF was 0.87, 0.88, 0.84, and 0.93, 0.95, 
0.93, and for SRF 0.93, 0.93, 0.93, and 0.95, 0.95, 0.95 in the AMD and DME cohort respectively. For 
detecting any fluid, the AUC was 0.95 and 0.98, the accuracy, specificity and sensitivity was 0.89, 
0.93, 0.90 and 0.95, 0.88 and 0.93, in the AMD and DME cohort, respectively. False positives were 
present when retinal shadow artifacts and strong retinal deformation were present. False negatives 
were due to small hyporeflective areas in combination with poor image quality. The combined 
detector correctly predicted more OCT volumes than the single detectors for IRF and SRF, 89.0% 
versus 81.6% in the AMD and 93.1% versus 88.6% in the DME cohort.  
Discussion/Conclusion:  
The AI-based fluid detector achieves high performance for retinal fluid detection in a very large 
dataset dedicated to AMD and DME. Combining single detectors provides better fluid detection 
accuracy than considering the single detectors separately. The observed independence of the single 
detectors ensures that the detectors learned features particular to IRF and SRF.   



   
 

   
 

Introduction 
The advent of high-resolution Optical Coherence Tomography (OCT) has led to the identification of 
biomarkers in diabetic retinopathy (DR) with diabetic macular edema (DME) and neovascular age-
related macular degeneration (nAMD), delivering a vast amount of morphological information, 
which could be used to individualize treatment decisions [1-3]. In nAMD, subretinal fluid (SRF) is 
associated with a better visual outcome and a lower rate of transformation into geographic atrophy, 
while intraretinal fluid (IRF) has a poorer visual outcome with increasing rates of macular atrophy [4, 
5]. In DME, the size and location of the macular cystoid spaces are predictive in the functional 
outcomes, large cysts (>200 µm) located in the outer nuclear layer being associated with poorer 
visual prognosis [6, 7].  
However, the necessary human resources and expertise to assess these images are challenged with 
the increasing number of patients requiring OCT examinations for optimal management of macular 
diseases [5, 8]. In addition, even in the pivotal clinical trials discrepant qualitative assessment of fluid 
between ophthalmologists and certified reading center graders have been reported, leading to a 
significant number of missed treatments [9, 10].   
Machine learning has already shown an immense cost-effective potential to assist ophthalmologists 
in clinical routine, such as detecting biological markers in retinal OCT-scans and predicting the 
treatment demand for a given patient [11-14]. Most of these works evaluated their proposed 
methods in controlled data, usually on a single dataset obtained from the same center, a single 
clinical trial, or using OCT scans with a single disease, selected manually by a specialist [11-13, 15-
17]. However, this promising technology requires a stronger assessment of the performances and 
robustness, evaluating on larger datasets and understanding the discrepancies between algorithmic 
predictions and human annotations .  
The aim of this study was to evaluate such a method in a more thorough way and to have a clearer 
view of its practical capability. For this, our evaluation relied on a large set of OCTs and two groups 
of pathologies and was intended to verify that the detectors of IRF and SRF learned specific features 
to IRF and SRF respectively. Along with reporting the general performance, we analyzed the 
performances according to central subfield thickness and identified the most important cases where 
the algorithm fails. The assessed method is a CE-marked deep-learning-based biomarker classifier 
capable of identifying the presence of SRF and IRF in OCT volumes and comparing it with reading 
center grader annotations in a systematic way. 
Methods 
Study Cohort and Evaluation Data 
The evaluation was performed using completely anonymized OCTs volumes of two cohorts of 
patients, respectively including patients with exudative AMD and DME. We refer to them as AMD 
and DME cohorts. All patients received an anti-VEGF treatment, were treated and monitored 
between October 2013 and June 2021 and were initially treatment naïve.    
We extracted anonymized OCT volumes from these patients from the database of the 
Ophthalmology department at the University Hospital of Bern, Bern, Switzerland, which have been 
imaged with a Spectralis SD-OCT imaging system (Heidelberg Engineering Inc., Heidelberg, Germany) 
and for which grader annotations were available. Our study focuses on OCT volumes using a 49 B-
scans acquisition protocol and a resolution of 496 x 512 pixels per B-scan corresponding to an area 
of 5.90mm x 5.75mm x 1.92mm centered on the fovea. For each horizontal scan, 9 B-scans were 
averaged. We did not exclude patients with poor image quality. 
In the AMD cohort we collected 3’981 OCT volume scans corresponding to 374 patients (748 eyes) 
for SRF and 3’619 OCT volume scans from 371 patients (742 eyes) for IRF. In the DME cohort, we 
collected 11’501 OCT volume scans from 809 patients (1618 eyes) for SRF and 11’499 OCT volume 
scans related to 811 patients (1’620 eyes) for IRF. The discrepancies in the number of OCT volume 
scans for IRF and SRF are explained by the fact that only the annotated ones were taken into 
consideration, ungradable OCT volume scans being excluded. 
Annotation Protocol – Reading Center Assessments  



   
 

   
 

A central reading center (Bern Photographic Reading Center, Inselspital, University hospital Bern, 
department of ophthalmology, Bern, Switzerland) performed an independent, masked review of all 
OCT volume scans.  For each above-mentioned cohort, a grading protocol and grading form were 
used, containing for instance the definitions of morphological changes/biomarkers. Each OCT 
volume scan was graded independently by two certified-graders and without access to each other’s 
grading. In case of disagreement among the annotations of both graders, a third evaluation by a 
senior grader was performed. Details of the annotation protocols and biomarkers definition are 
available as supplementary material.  
Figure 1 reports the distribution of present and absent biomarkers in both studies, as annotated by 
the graders of the central reading center.  
Automatic System for Biomarkers Detection 
The biomarker detector we evaluated in this study is the CE-marked Discovery® OCT Biomarker 
detector (RetinAI AG, Switzerland) the one from Kurmann et al., 2019 [12].  We used the trained 
model from Kurmann et al., 2019, but evaluated on a different dataset described earlier. This model 
aims to detect the presence probability of a set of 10 biomarkers at the B-scan level. These include: 
SRF, IRF, hyperreflective foci (HF), drusen, reticular pseudodrusen (RPD), epiretinal membrane 
(ERM), geographic atrophy (GA), outer retinal atrophy (ORA), fibrovascular pigment epithelial 
detachment (FPED) and healthy B-scans (defined by the absence of all the listed biomarkers). This 
detector relies on a CNN architecture and was trained in a supervised way on B-scans for which the 
presence of these 10 biomarkers were manually annotated. 23’030 annotated B-scans were used to 
train this architecture and 1’029 B-scans were used for the evaluation performance reported by the 
authors. Training pathologies included early, intermediate, and late AMD, as well as DR but without 
DME. It is important to note that none of the B-scans used for model development, i.e., training and 
evaluation,   are included in the present study. We refer the readers to the paper for the description 
of these biomarkers, the annotation protocol, and the distribution of each biomarker in the training 
and testing set [12].  While Kurmann et al. evaluated the detection of 10 biomarkers at the B-scan 
level, we evaluated the detection of IRF and SRF at the volume level. This is because the 15’482 OCT 
volumes used in our work are annotated at the volume level for IRF and SRF, as explained in the 
previous section. As the biomarker detector gives the presence probability of the B-scan level, we 
used the maximum presence probability of the biomarkers across the whole volume as the final 
predicted presence probability for the OCT volume. 
 
Evaluation 
The evaluation was conducted by comparing the predictions of the biomarker detection model and 
the annotations performed by the BPRC independently in both cohorts. First, the performance of the 
model was measured using the area under the receiver operating characteristic (ROC) curve (AUC) 
with 95% confidence intervals (CI), sensitivities and specificities. ROC curves were computed 
separately for IRF and SRF.  
Second, we computed the Precision and Recall (PR) curves, which are useful in case of distribution 
imbalance between two classes of a binary model.   
Third, we performed an analysis of the sources of disagreement between annotation and prediction. 
For this purpose, the false positive and false negative rate of each cohort and of each biomarker 
were calculated. The operating point of the predictive model was set to maximize sensitivity and 
specificity for each biomarker in both cohorts. Among the false positive and false negative samples, 
we also identified the main categories of the underlying errors. Some representative cases with 
strong disagreements between the annotation and the prediction were manually inspected and 
reported here. This aims to identify the current challenges and evaluate whether these are inherent 
to the collected data, the acquisition protocol or the evaluated system.  
Fourth, the retinal thickness of the false positive and false negative samples was compared to that of 
true negative and true positive. 



   
 

   
 

Lastly, we wished to analyze the relationship of the detectors of IRF and SRF and the performance of 
a joint detector of IRF and SRF, referred to as fluid detector. We first aimed to identify any covariate 
between the two single detectors, i.e., another variable/factor, which affects the detection of fluid, 
and which appears only when the IRF and SRF are considered jointly. Thus, we compared the final 
predictions, i.e., after setting an operating point, of the single detectors of IRF and SRF to the ones of 
the fluid detector. The operating point was set to maximize sensitivity and specificity. The output 
probability of the joint detector is set to the maximum probability between the output of the IRF and 
SRF detectors.  
We used Python 3 and its open-source package Scikit-learn v0.20.3 for the ROC and PR 
implementation and AUC/AP calculations. Statistical software were used to conduct data analysis 
(Prism 9.2.0; GraphPad Software, Inc., La Jolla, CA, USA, and IBM, SPSS statistics, Version 21; SPSS 
Inc, Chicago, IL, USA). To compare retinal thickness values among the subgroups, we performed a 
Welch's unequal variances t-test, as the groups have different size and variance.  
Results 
Performance of IRF and SRF Detection 
AMD cohort  
Predicted and annotated IRF and SRF presence correlated strongly in the AMD cohort. The AUC per 
OCT-volume scan for IRF detection was 0.92 (CI = 0.91-0.93, n = 3’618) and the AUC for SRF 
detection per OCT-volume scan was 0.98 (CI = 0.98, n = 3’981). These results are presented in Figure 
2A and demonstrate the robust capability of the deep-learning algorithm to accurately predict the 
presence of IRF and SRF among a significant number of OCT volume scans. The computed precision-
recall (PR) curves with the calculated APs are presented in Figure 2B and showed an AP per OCT 
volume scan of 0.97 (CI = 0.96-0.98) and 0.89 (CI = 0.87-0.90) for SRF and IRF, respectively.  
DME cohort 
Predicted and annotated IRF and SRF also showed a high level of correlation in the DME cohort. The 
AUC for IRF (n=11’499) and SRF (n= 11’501) per OCT-volume scan was 0.98 (CI = 0.98-0.99) and 0.99 
(CI = 0.98-0.99), respectively. These results are displayed in Figure 2C. The PR curves are presented 
in Figure 2D and supported our observations with an AP per OCT-volume scan for SRF of nearly 1.00, 
though a modest decrease in the calculated AP regarding SRF was found, with an AP per OCT-volume 
scan of 0.93 (CI 0.91-0.94).   
Annotation and Prediction Disagreement, Analysis of Representative Cases  
Figure 3 summarizes the total number of false positive (FP), false negative (FN), true negative (TN) 
and true positive (TP) samples, the ground truth being the graders annotation. The threshold value 
used to assign each OCT volume scan to the categories was calculated with the aim of maximizing 
sensitivity and specificity for each cohort and each biomarker. The threshold for IRF was 0.946 and 
0.985 and for SRF 0.95 and 0.68 in the AMD and DME cohorts, respectively. For instance, an OCT 
volume scan in the AMD cohort with IRF annotated as present by the grader and with a prediction 
probability of 0.94 was classified as false negative.  
To understand the sources of disagreement, 15% of false negative and false positive samples of each 
biomarker were randomly selected and manually analyzed. Figure 4 illustrates eight representative 
sources of discrepancies. In the AMD cohort, cases 1 and 3 present false positive results for IRF and 
SRF, respectively. Cases 2 and 4 display false negative results for IRF and SRF, respectively. Regarding 
the DME cohort, cases 5 and 7 show false positive samples and cases 6 and 8 false negative 
examples for IRF and SRF, respectively.  
 
Relation to central subfield thickness of the retina  
We  compared the mean central subfield thickness (CST) value of the false negative OCT volume 
scans to that of true positive, and as well as the false positives to true negatives the results are 
displayed in Table 1. The definition of the CST was the average value of the retinal thickness in the 
central-1mm ETDRS region, where the retina is defined as the space between the ILM and Bruch’s 
membrane. 



   
 

   
 

 
Independence of the single detectors and analysis of a combined fluid detector 
Table 2 compares the number of OCTs correctly predicted (true positives and true negatives) by the 
single detectors of IRF and SRF, when combined into a single fluid detector and reports the number 
of OCTs correctly predicted by the combination of the single detectors and the fluid detector, as well 
as the accuracy, specificity, sensitivity and precision. The proportion of OCT volume scans annotated 
with fluid (IRF and/or SRF) was 54.64% in the AMD cohort and 89.05% in the DME cohort.  
We note, in general, that there were very high percentages of correctly predicted samples across the 
different detectors, especially in the DME cohort. Checking independence of the two single 
detectors led to consider the product of the probabilities of correct detection by the IRF and SRF 
detectors (rows 1 and 2 in Table 2), respectively and to compare the product to the probability of 
correct detection of IRF and SRF simultaneously. We used the detector accuracy as the probability of 
correct detection. We then obtained a probability of 0.8684x0.9384=0.8149 of correct detection of 
any fluid when considering the two single detectors separately and a probability of 0.8159 of correct 
detection for the combined fluid detector. Such a small difference supported the independence 
between the two single detectors.  
We report very good performances of the fluid detection (IRF and SRF) with an AUC of 0.95 and 0.98 
for AMD and DME, respectively, and an average precision of 0.97 and 1.00 for AMD and DME, 
respectively.  In Table 2, we observe that the fluid detector presented a higher accuracy than the 
combination of the two single detectors. A more precise analysis of the performance of the single 
detectors in comparison to the combined detector is presented in the supplementary material. 
 
Discussion 
IRF and SRF detection 
The presence or absence of pathological fluid in exudative retinal diseases is of great importance to 
evaluate disease activity. Our experimental results demonstrate that the evaluated deep learning 
algorithm can predict the presence of both major features of exudative disease activity, IRF and SRF, 
on a large dataset of OCT volumes of patients with AMD and DME with a very high degree of 
accuracy.  In addition, since the testing data differ from the training data, this study demonstrates a 
powerful external validation of an AI-based algorithm. These excellent results are supported by the 
computed area under the precision-recall curves (Figure 2), which do not consider the true negative 
classes. However, we noticed a slight decrease in the AP of IRF (0.89) in the AMD cohort and SRF 
(0.93) in the DME cohort as compared to their respective AUC. The accuracy, sensitivity, specificity, 
and precision (Table 2) for IRF were superior in the DME cohort (0.93, 0.93, 0.95 and 0.99) than in 
the AMD cohort (0.87, 0.84, 0.88 and 0.76). However, this trend was reversed for SRF, with 
sensitivity and precision of 0.93 and 0.88 in the AMD cohort versus 0.87 and 0.83 in the DME cohort. 
The accuracy and specificity for SRF in the AMD cohort remained slightly lower than in the DME 
cohort (0.95 and 0.93 versus 0.95 and 0.95, respectively). The distribution of the presence 
probabilities of the biomarkers can explain these discrepancies, as the positive class for IRF in the 
AMD and SRF in the DME cohort was lower than SRF and IRF in the AMD and DME cohorts, 
respectively (Figure 1). An alternative explanation for the slightly lower performance for IRF in the 
AMD cohort is the relatively high false positive rate of 8.18 % and false negative rate of 4.98 % 
(Figure 3a), suggesting a greater challenge for the evaluated system in discriminating IRF from 
degenerative small cystoid fluid or retinal shadow artifacts. A diffuse non-cystoid fluid accumulation 
with clearer borders could also be considered as an additional factor, as this kind of fluid is more 
difficult to distinguish in OCT volume scans of low quality. The slight improvement in performance in 
the DME cohort may also lie in the intrinsic characteristic of retinal lesions architecture, as AMD 
lesions tend to have more pigment epithelial detachments (PEDs), which sometimes distort heavily 
the image, complicate focusing in the context of a thicker retina and expand into areas that might be 
prone to IRF [7, 18].   



   
 

   
 

Our results are also in line with the results of recent works on automated detection and/or 
quantification of retinal fluid, which demonstrated high accuracy in detecting retinal fluid such as IRF 
and SRF [19, 20], detecting any retinal fluid [21-23] or giving a binary yes-no classifier of the 
presence of an exudative disease [24-26]. In our experiment, we focused on the accuracy of IRF and 
SRF detection as well as the ability of the evaluated algorithm to discriminate between these two 
features, since IRF and SRF are associated with variable visual outcomes [4, 7, 27]. The developed 
method of Schlegl et al. [19] showed  excellent results on a testing set containing 1’200 OCT volume 
scans from 400 patients with AMD, DME and retinal vein occlusion (RVO), of which 65 and 100 
contained IRF and 69 and 11 contained SRF in AMD and DME, respectively, and were performed with 
the a Spectralis device as the present study. However, a decrease in the sensitivity for SRF in eyes 
with DME was noticed by the authors and explained by the fact that the algorithm was solely trained 
on AMD and RVO cases and SRF is scarce in DME patients. Lu et al. [20] obtained promising similar 
results concerning SRF in DME on testing their method on an unseen dataset containing 750 B-scan 
images. Our results suggest that these challenges can be overcome with a larger sample size and a 
sufficient amount of positive classes, and showed that training an algorithm on a set with different 
biomarker distribution among multiple exudative diseases does not necessarily reduce the detection 
performance. Furthermore, testing a deep-learning approach on a set with entire OCT volume scans 
(in contrast to individual B-scans) may be beneficial in the perspective of a potential upcoming 
generalized clinical application, allowing the training of an algorithm to come as close as possible to 
routine conditions.  
Discrepancies between algorithmic predictions and human annotations 
In recent years, an increasing number of research groups focused their works on automated 
detection and segmentation of retinal fluid, comparing their results to expert human graders [28, 
29]. In this way, Kurmann et al. [12] provided some additional insights on the biomarker detector for 
which we propose a more thorough evaluation in this paper. We focused in this paper on a 
qualitative and quantitative analysis of cases with disagreement to unveil the limitations of the 
system predictions. 
Explanation of the major sources of errors 
IRF was mistakenly predicted when retinal shadow artifacts caused by anterior hyperreflective 
opacities were present (Figure 4, case 1) as well as in cases of strong retinal alteration with poor 
acquisition quality and/or more segmentations failures, where the low contrast resulted in a 
darkening of the neurosensory retina, which in turn were falsely interpreted as fluid (case 5). The 
mean CST of the false positive volume scans regarding IRF in the AMD cohort was higher than the 
one for true negatives (p=<0.0001), which supports our previous finding. However, these 
observations were not applicable to the false positive samples for IRF in the DME cohort, where no 
significant difference with the true negatives was detected (p=0.559). In addition, the false positive 
rate of IRF in DME (0.52%) was lower than in AMD (8.18%).  This could be explained by the very 
small sample size of the false positive class for IRF in the DME cohort, as nearly 90% of the DME 
dataset was annotated with IRF present (Figure 1) and because low acquisition quality represents 
the principal factor, leading to false positive results in this cohort (Figure 4, case 5).   
The vast majority of missed IRF was attributed to the presence of small hyporeflective areas in 
combination with poor image quality and resulting lower contrast (cases 2 and 6). This observation is 
supported by the comparison of the CST of each positive and negative class. Regarding IRF in both 
cohorts, the mean CST of the false negative samples was significantly smaller than the one of the 
true positive volume scans (AMD; p=0.0048, DME; p=<0.0001). A previous study comparing the 
performance of an AI-algorithm to retinal specialists 27, showed that the estimated fluid volume in 
the false negative cases was significantly lower to that of the true positives. The clinical implication 
of this observation is questionable, as the presence of peripheral small degenerative cystoid fluid 
does not always lead to a modification of the therapy management in DME and as degenerative 
cystoid fluid does not necessarily respond to anti-VEGF therapy 31,35 . Therefore, the ability to detect 



   
 

   
 

small amounts of fluid does not necessarily provides an advantage to an automated method, but 
underlines that an algorithm can be considered as a second grader in the scope of clinical trials. 
The algorithm tended also to overestimate the presence of SRF, even if the homogeneous 
hyporeflective area was less than 100μm in a horizontal extent (case 3). This situation occurred 
mostly in cases of strong retinal deformation with retinal shadowing (case 7), but did not result in a 
significant difference in the scope of the CST concerning the false positive and true negative samples 
in the AMD cohort (p=0.112). In the DME cohort, SRF was falsely predicted as present in cases with 
strong retinal deformation (case 7), which resulted in a slightly thicker CST in the false positive 
subgroup compared to the true negatives (p=0.0088). 
Concerning SRF in both cohorts, the mean CST value of the false negatives did not differ significantly 
from the one of the true positives (AMD; p=0.2526, DME; p=0.185). This could be explained either in 
the light of the relatively small sample size or in the context of extended retinal alterations within 
the false negative samples, causing shadow artifacts and/or low-quality acquisition (cases 4 and 8).  
Further, a marked difference was observed between the false negative rates of SRF in the AMD 
(2.54%) and DME cohorts (0.39%), which could be explained by the biomarker distribution, given 
that only 8.5% of the DME set was annotated with SRF versus 34.9% of the AMD set (Figure 1). 
This non-exhaustive analysis of cases provides an interesting insight into the characteristics of the 
volume scans where the algorithm encountered difficulties, suggesting that clinical relevant areas in 
an OCT scan are considered as critical in the classification task of a deep-learning algorithm, which 
correlate with previous studies 27,30.  We must add that the standard deviation values were relatively 
high, indicating a certain dispersion around the mean, which could negatively influence our findings. 
Furthermore, the relatively small sample size of the false classes emphasizes the robustness of the 
evaluated system but limits the interpretation of Table 1. 
Independence of the IRF and SRF detectors and analysis of a combined fluid detector 
We found, overall, a high diagnostic accuracy, specificity, sensitivity and precision in detecting fluid 
on a large set of OCT volume scans of patients with DME and AMD (Table 2). These metrics are slight 
higher than the one reported by the recent published prospective study [22]. The observed 
independence of the single detectors is a positive characteristic, which ensures in some ways that 
the detectors of IRF and SRF learned features particular to IRF and SRF respectively.  The higher 
accuracy of the fluid detector compared to the two single detectors suggests that combining single 
detectors in the case of fluid provides better fluid detection accuracy than considering separately 
the single detectors. These observations support the development of an AI-based assistance for 
clinicians with the intention of minimizing missed cases of fluid detection and thus improving the 
visual outcome. A combined fluid detector cannot discriminate the fluid type but would be relevant 
in such a context. Another interesting application would be in clinical trial settings with large 
numbers of OCT volume scans requiring grading, where such a detector could be used as a 
supportive tool to reduce the burden on expert graders by not sending for annotations the OCTs 
where no fluid is detected. This would allow a better allocation of workload of the human graders 
and could improve the performance of reading centers.  Lastly, such an algorithm could be 
implemented in clinical routine as a supportive tool to screen patients with active exudative macular 
disease, especially in settings where ophthalmologists are not readily available. 
Limitations and future works 
A major limitation of our study is its retrospective design and resulting lack of data and possible 
selection bias, as the OCT volume scans were completely anonymized. Second, our data was 
obtained from devices from a same manufacturer, which severely limits the generalization of the 
evaluated system. Third, our dataset comprised OCT volume scans with a single disease per OCT. The 
performance of the tested algorithm could be lower in the real-world setting, especially in presence 
of two or more distinct pathologies. Fourth, as we considered the grader’s annotations as ground 
truth, possible human errors might have appeared and led to incorrect results. However, the 
excellent correlation between annotations and prediction in the present study and the low 
probabilities of three expert-graders being mistaken, somewhat mitigates this limitation. Fifth, the 



   
 

   
 

evaluated system faces difficulties in discriminating IRF from intraretinal degenerative cysts, which 
can be tackled by a larger collection of this biomarker to improve the capability to distinguish cysts. 
However, we obtained an overall small false positive rate, indicating an acceptable global. In order 
to generalize the application in clinical routine, further evaluation using real-life data is needed. A 
continuation of this work could focus on the quantification of fluid and testing and validating the 
evaluated AI-based algorithm on different OCT devices and others biomarkers.  We were able to 
illustrate the ability of such an algorithm to learn specific features about IRF and SRF, and its 
robustness according to many CST, i.e. in different pathomorphological stages in DME and AMD. This 
study presents some interesting insights to understand the limitations of an automated method, 
which appears to approach the human levels in grading difficult OCT volume scans. Further works 
are needed to understand to which extend an algorithm transposes bias, especially human biases 
and how this affects its performance. Similarly, future work could include saliency maps combined 
with different grading methods in order to improve the interpretability of an automated method. 
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Figure and table legends 
Fig. 1. Distribution of intraretinal fluid (IRF) and subretinal fluid (SRF) in the Age related macular degeneration 
(AMD) and Diabetic macular edema (DME) cohorts, as annotated by the experts of the Bern Photographic Reading 
Center (BPRC).  The “n” value indicates the total number of annotated (i.e., present/absent) OCT volume scans for 
IRF and SRF in both cohorts. In the DME cohort, we included 11’499 and 11’501 annotated OCT volumes scans for 
IRF and SRF, respectively. In the AMD cohort, we included 3’618 and 3’981 annotated OCT volume scans for IRF 
and SRF, respectively.  
Fig. 2. Receiver operating characteristic (ROC) and precision-recall (PR) curves on detection performance of 
intraretinal fluid (IRF) and subretinal fluid (SRF). First row: Age-related macular degeneration (AMD). Second row: 
Diabetic macular edema (DME). A and C, ROC curves. B and D, PR curves. The area under the curve (AUC) and 
area under the precision-recall curve (AP) with the confidence intervals as measures of general performance are 
specified in parentheses. 
Fig. 3. Confusion matrix on detection performance (prediction, x-axis) of intraretinal fluid (IRF) and subretinal fluid 
(SRF), the samples divided in four categories based on the grader’s annotations (ground truth, y-axis); true 
negative (TN), false positive (FP), false negative (FN) and true positive (TP). First row: Age-related macular 
degeneration (AMD). Second row: Diabetic macular edema (DME). A and C, IRF. B and D, SRF. The threshold was 
set to maximize sensitivity and specificity for each group and each biomarker. The horizontal bottom bar gives the 
color code from the minimum (purple) to the maximum (yellow) sample numbers for the four categories. 
Fig. 4. Eight OCT volumes with discrepancies between the annotation and prediction of intraretinal fluid (IRF) and 
subretinal fluid (SRF). The study cohort, evaluated fluid, grader annotation, prediction of the evaluated system 
with presence probability in parenthesis and source of discrepancy are displayed above the OCT scan image. For 
each case, in the bottom left of the OCT scan image is the image-index reported (out of 49 B-scans in a volume). 
The location of the error source is framed in red with a zoomed view. The computed presence probability for both 
detectors per OCT B-scan image over the whole OCT volume-scan (total 49 images) is presented underneath the 
OCT scan image. The red-box corresponds to the image-index of the displayed OCT images. The presence 
probability is illustrated with a color code, ranging from purple (0%, absent) to yellow (100%, present). 
Table 1. AMD = age-related macular degeneration; DME = diabetic macular edema; IRF = intraretinal fluid; SRF = 
subretinal fluid. The “n” value indicates the number of each OCT volume scan per disease/group. We collected 
the mean of central subfield thickness of the false negative, true positive, false positive and true negative OCT 
volume scans. The corresponding standard deviations are specified in parentheses. The “p“ value represents the 
statistical significance of the mean differences between the false negative and true positive as well as false 
positive and true negative. We used a two-sided Welch's unequal variances t-test with a level of significance alpha 
of 0.05.  
Table 2. AMD = age-related macular degeneration; DME = diabetic macular edema; IRF = intraretinal fluid; SRF = 
subretinal fluid. For both cohorts, we collected the threshold for fluid detection, accuracy, specificity, sensitivity, 
precision and the number of OCTs correctly predicted by the single detector of IRF, the single detector of SRF, the 
combination of the two single detectors, the detector of fluid, i.e., IRF and SRF, and the number of OCTs 
simultaneously well predicted by the fluid detector and the combination of the two single detectors. 



   
 

   
 

 



   
 

   
 

 



   
 

   
 

 



   
 

   
 

 
 



   
 

   
 

 

  

   
   Annotated Central subfield thickness (CST) 

  False negative True positive   False positive True negative  

Fluid type   mean CST (SD) n mean CST (SD) n p-value  mean CST (SD) n mean CST (SD) n p-value 

IRF AMD 323.3μm (135.1) 180 357.7μm (108.9) 930 0.0048  358.8μm (121.3) 295 311.1μm (95.8) 2205 <0.0001 

 DME 281.4μm (42.1) 736 354.9μm (112.6) 9503 <0.0001  278.9μm (36.5) 60 276.0μm (35.3) 1200 0.56 

SRF AMD 442.9μm (257.6) 101 413.1μm (149.3) 1285 0.25  309.3μm (83.9) 189 299.3μm (73.9) 2398 0.11 

 DME 525.7μm (183.4) 125 502.6μm (162.7) 855 0.18  351.3μm (124.5) 170 325.9μm (84.9) 10351 0.0088 

Table header: Table 1. Relation between central subfield thickness and classification 

Table 1. AMD = age-related macular degeneration; DME = diabetic macular edema; IRF = intraretinal fluid; SRF = subretinal fluid. The “n” value indicates the number of each OCT volume scan per 
disease/group. We collected the mean of central subfield thickness of the false negative, true positive, false positive and true negative OCT volume scans. The corresponding standard deviations are 
specified in parentheses. The “p“ value represents the statistical significance of the mean differences between the false negative and true positive as well as false positive and true negative. We used 
a two-sided Welch's unequal variances t-test with a level of significance alpha of 0.05. 

 



   
 

   
 

 

Table header: Table 2. Single fluid detector vs. combined fluid detector 

 

   

  Threshold Accuracy Specificity Sensitivity Precision #OCTs correctly 
predicted 

AMD IRF detector 0.946 0.87 (0.86-0.88) 0.88 (0.87-0.89) 0.84 (0.81-0.86) 0.76 (0.73-0.78) 3142 (86.8%) 

 SRF detector 0.966 0.93 (0.92-0.93) 0.93 (0.92-0.94) 0.93 (0.91-0.94) 0.87 (0.86-0.88) 3395 (93.8%) 

 IRF detector + SRF detector 
OCTs correctly predicted by both detectors at the same time 
 

2952 (81.6%) 

 Combined detector 0.97 0.89 (0.88-0.90) 0.9 (0.88-0.91) 0.88 (0.87-0.90) 0.91 (0.90-0.92) 3220 (89.0%) 

DME IRF detector 0.985 0.93 (0.92-0.94) 0.95 (0.94-0.96) 0.93 (0.92-0.93) 0.99 (0.99-0.99) 10702 (93.1%) 

 SRF detector 0.68 0.95 (0.94-0.96) 0.95 (0.95-0.96) 0.95 (0.94-0.96) 0.65 (0.63-0.67) 10959 (95.3%) 

IRF detector + SRF detector 
OCTs correctly predicted by both detectors at the same time 
 

10189 (88.6%) 

Combined detector 0.985 0.93 (0.92-0.94) 0.95 (0.94-0.96) 0.93 (0.92-0.4) 0.99 (0.99-0.99) 10703 (93.1%) 

Table 2. AMD = age-related macular degeneration; DME = diabetic macular edema; IRF = intraretinal fluid; SRF = subretinal fluid. For both cohorts, we collected the threshold for 
fluid detection, accuracy, specificity, sensitivity, precision and the number of OCTs correctly predicted by the single detector of IRF, the single detector of SRF, and the combination 
of the two single detectors, the detector of fluid, i.e., IRF and SRF. 
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