1,780 research outputs found

    Locomotion Traces Data Mining for Supporting Frail People with Cognitive Impairment

    Get PDF
    The rapid increase in the senior population is posing serious challenges to national healthcare systems. Hence, innovative tools are needed to early detect health issues, including cognitive decline. Several clinical studies show that it is possible to identify cognitive impairment based on the locomotion patterns of older people. Thus, this thesis at first focused on providing a systematic literature review of locomotion data mining systems for supporting Neuro-Degenerative Diseases (NDD) diagnosis, identifying locomotion anomaly indicators and movement patterns for discovering low-level locomotion indicators, sensor data acquisition, and processing methods, as well as NDD detection algorithms considering their pros and cons. Then, we investigated the use of sensor data and Deep Learning (DL) to recognize abnormal movement patterns in instrumented smart-homes. In order to get rid of the noise introduced by indoor constraints and activity execution, we introduced novel visual feature extraction methods for locomotion data. Our solutions rely on locomotion traces segmentation, image-based extraction of salient features from locomotion segments, and vision-based DL. Furthermore, we proposed a data augmentation strategy to increase the volume of collected data and generalize the solution to different smart-homes with different layouts. We carried out extensive experiments with a large real-world dataset acquired in a smart-home test-bed from older people, including people with cognitive diseases. Experimental comparisons show that our system outperforms state-of-the-art methods

    Human Gait Analysis using Spatiotemporal Data Obtained from Gait Videos

    Get PDF
    Mit der Entwicklung von Deep-Learning-Techniken sind Deep-acNN-basierte Methoden zum Standard fĂŒr Bildverarbeitungsaufgaben geworden, wie z. B. die Verfolgung menschlicher Bewegungen und PosenschĂ€tzung, die Erkennung menschlicher AktivitĂ€ten und die Erkennung von Gesichtern. Deep-Learning-Techniken haben den Entwurf, die Implementierung und den Einsatz komplexer und vielfĂ€ltiger Anwendungen verbessert, die nun in einer Vielzahl von Bereichen, einschließlich der Biomedizintechnik, eingesetzt werden. Die Anwendung von Computer-Vision-Techniken auf die medizinische Bild- und Videoanalyse hat zu bemerkenswerten Ergebnissen bei der Erkennung von Ereignissen gefĂŒhrt. Die eingebaute FĂ€higkeit von convolutional neural network (CNN), Merkmale aus komplexen medizinischen Bildern zu extrahieren, hat in Verbindung mit der FĂ€higkeit von long short term memory network (LSTM), die zeitlichen Informationen zwischen Ereignissen zu erhalten, viele neue Horizonte fĂŒr die medizinische Forschung geschaffen. Der Gang ist einer der kritischen physiologischen Bereiche, der viele Störungen im Zusammenhang mit Alterung und Neurodegeneration widerspiegeln kann. Eine umfassende und genaue Ganganalyse kann Einblicke in die physiologischen Bedingungen des Menschen geben. Bestehende Ganganalyseverfahren erfordern eine spezielle Umgebung, komplexe medizinische GerĂ€te und geschultes Personal fĂŒr die Erfassung der Gangdaten. Im Falle von tragbaren Systemen kann ein solches System die kognitiven FĂ€higkeiten beeintrĂ€chtigen und fĂŒr die Patienten unangenehm sein. Außerdem wurde berichtet, dass die Patienten in der Regel versuchen, wĂ€hrend des Labortests bessere Leistungen zu erbringen, was möglicherweise nicht ihrem tatsĂ€chlichen Gang entspricht. Trotz technologischer Fortschritte stoßen wir bei der Messung des menschlichen Gehens in klinischen und Laborumgebungen nach wie vor an Grenzen. Der Einsatz aktueller Ganganalyseverfahren ist nach wie vor teuer und zeitaufwĂ€ndig und erschwert den Zugang zu SpezialgerĂ€ten und Fachwissen. Daher ist es zwingend erforderlich, ĂŒber Methoden zu verfĂŒgen, die langfristige Daten ĂŒber den Gesundheitszustand des Patienten liefern, ohne doppelte kognitive Aufgaben oder Unannehmlichkeiten bei der Verwendung tragbarer Sensoren. In dieser Arbeit wird daher eine einfache, leicht zu implementierende und kostengĂŒnstige Methode zur Erfassung von Gangdaten vorgeschlagen. Diese Methode basiert auf der Aufnahme von Gehvideos mit einer Smartphone-Kamera in einer hĂ€uslichen Umgebung unter freien Bedingungen. Deep neural network (NN) verarbeitet dann diese Videos, um die Gangereignisse zu extrahieren. Die erkannten Ereignisse werden dann weiter verwendet, um verschiedene rĂ€umlich-zeitliche Parameter des Gangs zu quantifizieren, die fĂŒr jedes Ganganalysesystem wichtig sind. In dieser Arbeit wurden Gangvideos verwendet, die mit einer Smartphone-Kamera mit geringer Auflösung außerhalb der Laborumgebung aufgenommen wurden. Viele Deep- Learning-basierte NNs wurden implementiert, um die grundlegenden Gangereignisse wie die Fußposition in Bezug auf den Boden aus diesen Videos zu erkennen. In der ersten Studie wurde die Architektur von AlexNet verwendet, um das Modell anhand von Gehvideos und öffentlich verfĂŒgbaren DatensĂ€tzen von Grund auf zu trainieren. Mit diesem Modell wurde eine Gesamtgenauigkeit von 74% erreicht. Im nĂ€chsten Schritt wurde jedoch die LSTM-Schicht in dieselbe Architektur integriert. Die eingebaute FĂ€higkeit von LSTM in Bezug auf die zeitliche Information fĂŒhrte zu einer verbesserten Vorhersage der Etiketten fĂŒr die Fußposition, und es wurde eine Genauigkeit von 91% erreicht. Allerdings gibt es Schwierigkeiten bei der Vorhersage der richtigen Bezeichnungen in der letzten Phase des Schwungs und der Standphase jedes Fußes. Im nĂ€chsten Schritt wird das Transfer-Lernen eingesetzt, um die Vorteile von bereits trainierten tiefen NNs zu nutzen, indem vortrainierte Gewichte verwendet werden. Zwei bekannte Modelle, inceptionresnetv2 (IRNV-2) und densenet201 (DN-201), wurden mit ihren gelernten Gewichten fĂŒr das erneute Training des NN auf neuen Daten verwendet. Das auf Transfer-Lernen basierende vortrainierte NN verbesserte die Vorhersage von Kennzeichnungen fĂŒr verschiedene Fußpositionen. Es reduzierte insbesondere die Schwankungen in den Vorhersagen in der letzten Phase des Gangschwungs und der Standphase. Bei der Vorhersage der Klassenbezeichnungen der Testdaten wurde eine Genauigkeit von 94% erreicht. Da die Abweichung bei der Vorhersage des wahren Labels hauptsĂ€chlich ein Bild betrug, konnte sie bei einer Bildrate von 30 Bildern pro Sekunde ignoriert werden. Die vorhergesagten Markierungen wurden verwendet, um verschiedene rĂ€umlich-zeitliche Parameter des Gangs zu extrahieren, die fĂŒr jedes Ganganalysesystem entscheidend sind. Insgesamt wurden 12 Gangparameter quantifiziert und mit der durch Beobachtungsmethoden gewonnenen Grundwahrheit verglichen. Die NN-basierten rĂ€umlich-zeitlichen Parameter zeigten eine hohe Korrelation mit der Grundwahrheit, und in einigen FĂ€llen wurde eine sehr hohe Korrelation erzielt. Die Ergebnisse belegen die NĂŒtzlichkeit der vorgeschlagenen Methode. DerWert des Parameters ĂŒber die Zeit ergab eine Zeitreihe, eine langfristige Darstellung des Ganges. Diese Zeitreihe konnte mit verschiedenen mathematischen Methoden weiter analysiert werden. Als dritter Beitrag in dieser Dissertation wurden Verbesserungen an den bestehenden mathematischen Methoden der Zeitreihenanalyse von zeitlichen Gangdaten vorgeschlagen. Zu diesem Zweck werden zwei Verfeinerungen bestehender entropiebasierter Methoden zur Analyse von Schrittintervall-Zeitreihen vorgeschlagen. Diese Verfeinerungen wurden an Schrittintervall-Zeitseriendaten von normalen und neurodegenerativen Erkrankungen validiert, die aus der öffentlich zugĂ€nglichen Datenbank PhysioNet heruntergeladen wurden. Die Ergebnisse zeigten, dass die von uns vorgeschlagene Methode eine klare Trennung zwischen gesunden und kranken Gruppen ermöglicht. In Zukunft könnten fortschrittliche medizinische UnterstĂŒtzungssysteme, die kĂŒnstliche Intelligenz nutzen und von den hier vorgestellten Methoden abgeleitet sind, Ärzte bei der Diagnose und langfristigen Überwachung des Gangs von Patienten unterstĂŒtzen und so die klinische Arbeitsbelastung verringern und die Patientensicherheit verbessern

    Effects of dance therapy on balance, gait and neuro-psychological performances in patients with Parkinson's disease and postural instability

    Get PDF
    Postural Instability (PI) is a core feature of Parkinson’s Disease (PD) and a major cause of falls and disabilities. Impairment of executive functions has been called as an aggravating factor on motor performances. Dance therapy has been shown effective for improving gait and has been suggested as an alternative rehabilitative method. To evaluate gait performance, spatial-temporal (S-T) gait parameters and cognitive performances in a cohort of patients with PD and PI modifications in balance after a cycle of dance therapy

    Implementation of a Computer-Vision System as a Supportive Diagnostic Tool for Parkinson’s Disease

    Get PDF
    Parkinson’s disease is the second most common neurodegenerative disorder, affecting nearly 1 million people in the US and it is predicted that the number will keep increasing. Parkinson’s disease is difficult to diagnose due to its similarity with other diseases that share the parkinsonian symptoms and the subjectivity of its assessment, thus increasing the probabilities of misdiagnosis. Therefore, it is relevant to develop diagnostic tools that are quantitatively based and monitoring tools to improve the patient’s quality of life. Computer-based assessment systems have shown to be successful in this field through diverse approaches that can be classified into two main categories: sensor-based and computer vision-based systems. In this thesis, the implementation of a computer vision system to detect Parkinson’s disease is explored. As Parkinson’s diseases has characteristic motor symptoms, and gait is mainly affected, a computer vision system is proposed to analyze the gait features to classify subjects with Parkinson’s disease. Using Microsoft’s Kinect sensor and Azure Kinect sensor, the position of body joints in a 3D space was obtained and angles between those were calculated. The standard deviation of 7 different angles over time was calculated for each and used as features in a support vector machine with the purpose of classifying Parkinson’s disease patients versus controls. Moreover, challenges and future perspectives for the implementation of computer-vision systems as supportive diagnostic tools for Parkinson’s disease are discussed

    A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts

    Get PDF
    Many algorithms use 3D accelerometer and/or gyroscope data from inertial measurement unit (IMU) sensors to detect gait events (i.e., initial and final foot contact). However, these algorithms often require knowledge about sensor orientation and use empirically derived thresholds. As align ment cannot always be controlled for in ambulatory assessments, methods are needed that require little knowledge on sensor location and orientation, e.g., a convolutional neural network-based deep learning model. Therefore, 157 participants from healthy and neurologically diseased cohorts walked 5 m distances at slow, preferred, and fast walking speed, while data were collected from IMUs on the left and right ankle and shank. Gait events were detected and stride parameters were extracted using a deep learning model and an optoelectronic motion capture (OMC) system for reference. The deep learning model consisted of convolutional layers using dilated convolutions, followed by two independent fully connected layers to predict whether a time step corresponded to the event of initial contact (IC) or final contact (FC), respectively. Results showed a high detection rate for both initial and final contacts across sensor locations (recall ≄ 92%, precision ≄ 97%). Time agreement was excellent as witnessed from the median time error (0.005 s) and corresponding inter-quartile range (0.020 s). The extracted stride-specific parameters were in good agreement with parameters derived from the OMC system (maximum mean difference 0.003 s and corresponding maximum limits of agreement (−0.049 s, 0.051 s) for a 95% confidence level). Thus, the deep learning approach was considered a valid approach for detecting gait events and extracting stride-specific parameters with little knowledge on exact IMU location and orientation in conditions with and without walking pathologies due to neurological diseases

    Subthalamic nucleus shows opposite functional connectivity pattern in Huntington's and Parkinson's disease

    Get PDF
    Huntington's and Parkinson's disease are two movement disorders representing mainly opposite states of the basal ganglia inhibitory function. Despite being an integral part of the cortico-subcortico-cortical circuitry, the subthalamic nucleus function has been studied at the level of detail required to isolate its signal only through invasive studies in Huntington's and Parkinson's disease. Here, we tested whether the subthalamic nucleus exhibited opposite functional signatures in early Huntington's and Parkinson's disease. We included both movement disorders in the same whole-brain imaging study, and leveraged ultra-high-field 7T MRI to achieve the very fine resolution needed to investigate the smallest of the basal ganglia nuclei. Eleven of the 12 Huntington's disease carriers were recruited at a premanifest stage, while 16 of the 18 Parkinson's disease patients only exhibited unilateral motor symptoms (15 were at Stage I of Hoehn and Yahr off medication). Our group comparison interaction analyses, including 24 healthy controls, revealed a differential effect of Huntington's and Parkinson's disease on the functional connectivity at rest of the subthalamic nucleus within the sensorimotor network, i.e. an opposite effect compared with their respective age-matched healthy control groups. This differential impact in the subthalamic nucleus included an area precisely corresponding to the deep brain stimulation 'sweet spot'-the area with maximum overall efficacy-in Parkinson's disease. Importantly, the severity of deviation away from controls' resting-state values in the subthalamic nucleus was associated with the severity of motor and cognitive symptoms in both diseases, despite functional connectivity going in opposite directions in each disorder. We also observed an altered, opposite impact of Huntington's and Parkinson's disease on functional connectivity within the sensorimotor cortex, once again with relevant associations with clinical symptoms. The high resolution offered by the 7T scanner has thus made it possible to explore the complex interplay between the disease effects and their contribution on the subthalamic nucleus, and sensorimotor cortex. Taken altogether, these findings reveal for the first time non-invasively in humans a differential, clinically meaningful impact of the pathophysiological process of these two movement disorders on the overall sensorimotor functional connection of the subthalamic nucleus and sensorimotor cortex

    A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts

    Get PDF
    Many algorithms use 3D accelerometer and/or gyroscope data from inertial measurement unit (IMU) sensors to detect gait events (i.e., initial and final foot contact). However, these algorithms often require knowledge about sensor orientation and use empirically derived thresholds. As alignment cannot always be controlled for in ambulatory assessments, methods are needed that require little knowledge on sensor location and orientation, e.g., a convolutional neural network-based deep learning model. Therefore, 157 participants from healthy and neurologically diseased cohorts walked 5 m distances at slow, preferred, and fast walking speed, while data were collected from IMUs on the left and right ankle and shank. Gait events were detected and stride parameters were extracted using a deep learning model and an optoelectronic motion capture (OMC) system for reference. The deep learning model consisted of convolutional layers using dilated convolutions, followed by two independent fully connected layers to predict whether a time step corresponded to the event of initial contact (IC) or final contact (FC), respectively. Results showed a high detection rate for both initial and final contacts across sensor locations (recall ≄92%, precision ≄97%). Time agreement was excellent as witnessed from the median time error (0.005 s) and corresponding inter-quartile range (0.020 s). The extracted stride-specific parameters were in good agreement with parameters derived from the OMC system (maximum mean difference 0.003 s and corresponding maximum limits of agreement (-0.049 s, 0.051 s) for a 95% confidence level). Thus, the deep learning approach was considered a valid approach for detecting gait events and extracting stride-specific parameters with little knowledge on exact IMU location and orientation in conditions with and without walking pathologies due to neurological diseases

    Technology in Parkinson's disease:challenges and opportunities

    Get PDF
    The miniaturization, sophistication, proliferation, and accessibility of technologies are enabling the capture of more and previously inaccessible phenomena in Parkinson's disease (PD). However, more information has not translated into a greater understanding of disease complexity to satisfy diagnostic and therapeutic needs. Challenges include noncompatible technology platforms, the need for wide-scale and long-term deployment of sensor technology (among vulnerable elderly patients in particular), and the gap between the "big data" acquired with sensitive measurement technologies and their limited clinical application. Major opportunities could be realized if new technologies are developed as part of open-source and/or open-hardware platforms that enable multichannel data capture sensitive to the broad range of motor and nonmotor problems that characterize PD and are adaptable into self-adjusting, individualized treatment delivery systems. The International Parkinson and Movement Disorders Society Task Force on Technology is entrusted to convene engineers, clinicians, researchers, and patients to promote the development of integrated measurement and closed-loop therapeutic systems with high patient adherence that also serve to (1) encourage the adoption of clinico-pathophysiologic phenotyping and early detection of critical disease milestones, (2) enhance the tailoring of symptomatic therapy, (3) improve subgroup targeting of patients for future testing of disease-modifying treatments, and (4) identify objective biomarkers to improve the longitudinal tracking of impairments in clinical care and research. This article summarizes the work carried out by the task force toward identifying challenges and opportunities in the development of technologies with potential for improving the clinical management and the quality of life of individuals with PD. © 2016 International Parkinson and Movement Disorder Society

    Detecting and monitoring the symptoms of Parkinson's disease using smartphones:a pilot study

    Get PDF
    Background: Remote, non-invasive and objective tests that can be used to support expert diagnosis for Parkinson's disease (PD) are lacking. Methods: Participants underwent baseline in-clinic assessments, including the Unified Parkinson's Disease Rating Scale (UPDRS), and were provided smartphones with an Android operating system that contained a smartphone application that assessed voice, posture, gait, finger tapping, and response time. Participants then took the smart phones home to perform the five tasks four times a day for a month. Once a week participants had a remote (telemedicine) visit with a Parkinson disease specialist in which a modified (excluding assessments of rigidity and balance) UPDRS performed. Using statistical analyses of the five tasks recorded using the smartphone from 10 individuals with PD and 10 controls, we sought to: (1) discriminate whether the participant had PD and (2) predict the modified motor portion of the UPDRS. Results: Twenty participants performed an average of 2.7 tests per day (68.9% adherence) for the study duration (average of 34.4 days) in a home and community setting. The analyses of the five tasks differed between those with Parkinson disease and those without. In discriminating participants with PD from controls, the mean sensitivity was 96.2% (SD 2%) and mean specificity was 96.9% (SD 1.9%). The mean error in predicting the modified motor component of the UPDRS (range 11-34) was 1.26 UPDRS points (SD 0.16). Conclusion: Measuring PD symptoms via a smartphone is feasible and has potential value as a diagnostic support tool

    Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach

    Get PDF
    Progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and idiopathic Parkinson’s disease (IPD) can be clinically indistinguishable, especially in the early stages, despite distinct patterns of molecular pathology. Structural neuroimaging holds promise for providing objective biomarkers for discriminating these diseases at the single subject level but all studies to date have reported incomplete separation of disease groups. In this study, we employed multi-class pattern recognition to assess the value of anatomical patterns derived from a widely available structural neuroimaging sequence for automated classification of these disorders. To achieve this, 17 patients with PSP, 14 with IPD and 19 with MSA were scanned using structural MRI along with 19 healthy controls (HCs). An advanced probabilistic pattern recognition approach was employed to evaluate the diagnostic value of several pre-defined anatomical patterns for discriminating the disorders, including: (i) a subcortical motor network; (ii) each of its component regions and (iii) the whole brain. All disease groups could be discriminated simultaneously with high accuracy using the subcortical motor network. The region providing the most accurate predictions overall was the midbrain/brainstem, which discriminated all disease groups from one another and from HCs. The subcortical network also produced more accurate predictions than the whole brain and all of its constituent regions. PSP was accurately predicted from the midbrain/brainstem, cerebellum and all basal ganglia compartments; MSA from the midbrain/brainstem and cerebellum and IPD from the midbrain/brainstem only. This study demonstrates that automated analysis of structural MRI can accurately predict diagnosis in individual patients with Parkinsonian disorders, and identifies distinct patterns of regional atrophy particularly useful for this process
    • 

    corecore