Human Gait Analysis using Spatiotemporal Data Obtained from Gait Videos

Abstract

Mit der Entwicklung von Deep-Learning-Techniken sind Deep-acNN-basierte Methoden zum Standard für Bildverarbeitungsaufgaben geworden, wie z. B. die Verfolgung menschlicher Bewegungen und Posenschätzung, die Erkennung menschlicher Aktivitäten und die Erkennung von Gesichtern. Deep-Learning-Techniken haben den Entwurf, die Implementierung und den Einsatz komplexer und vielfältiger Anwendungen verbessert, die nun in einer Vielzahl von Bereichen, einschließlich der Biomedizintechnik, eingesetzt werden. Die Anwendung von Computer-Vision-Techniken auf die medizinische Bild- und Videoanalyse hat zu bemerkenswerten Ergebnissen bei der Erkennung von Ereignissen geführt. Die eingebaute Fähigkeit von convolutional neural network (CNN), Merkmale aus komplexen medizinischen Bildern zu extrahieren, hat in Verbindung mit der Fähigkeit von long short term memory network (LSTM), die zeitlichen Informationen zwischen Ereignissen zu erhalten, viele neue Horizonte für die medizinische Forschung geschaffen. Der Gang ist einer der kritischen physiologischen Bereiche, der viele Störungen im Zusammenhang mit Alterung und Neurodegeneration widerspiegeln kann. Eine umfassende und genaue Ganganalyse kann Einblicke in die physiologischen Bedingungen des Menschen geben. Bestehende Ganganalyseverfahren erfordern eine spezielle Umgebung, komplexe medizinische Geräte und geschultes Personal für die Erfassung der Gangdaten. Im Falle von tragbaren Systemen kann ein solches System die kognitiven Fähigkeiten beeinträchtigen und für die Patienten unangenehm sein. Außerdem wurde berichtet, dass die Patienten in der Regel versuchen, während des Labortests bessere Leistungen zu erbringen, was möglicherweise nicht ihrem tatsächlichen Gang entspricht. Trotz technologischer Fortschritte stoßen wir bei der Messung des menschlichen Gehens in klinischen und Laborumgebungen nach wie vor an Grenzen. Der Einsatz aktueller Ganganalyseverfahren ist nach wie vor teuer und zeitaufwändig und erschwert den Zugang zu Spezialgeräten und Fachwissen. Daher ist es zwingend erforderlich, über Methoden zu verfügen, die langfristige Daten über den Gesundheitszustand des Patienten liefern, ohne doppelte kognitive Aufgaben oder Unannehmlichkeiten bei der Verwendung tragbarer Sensoren. In dieser Arbeit wird daher eine einfache, leicht zu implementierende und kostengünstige Methode zur Erfassung von Gangdaten vorgeschlagen. Diese Methode basiert auf der Aufnahme von Gehvideos mit einer Smartphone-Kamera in einer häuslichen Umgebung unter freien Bedingungen. Deep neural network (NN) verarbeitet dann diese Videos, um die Gangereignisse zu extrahieren. Die erkannten Ereignisse werden dann weiter verwendet, um verschiedene räumlich-zeitliche Parameter des Gangs zu quantifizieren, die für jedes Ganganalysesystem wichtig sind. In dieser Arbeit wurden Gangvideos verwendet, die mit einer Smartphone-Kamera mit geringer Auflösung außerhalb der Laborumgebung aufgenommen wurden. Viele Deep- Learning-basierte NNs wurden implementiert, um die grundlegenden Gangereignisse wie die Fußposition in Bezug auf den Boden aus diesen Videos zu erkennen. In der ersten Studie wurde die Architektur von AlexNet verwendet, um das Modell anhand von Gehvideos und öffentlich verfügbaren Datensätzen von Grund auf zu trainieren. Mit diesem Modell wurde eine Gesamtgenauigkeit von 74% erreicht. Im nächsten Schritt wurde jedoch die LSTM-Schicht in dieselbe Architektur integriert. Die eingebaute Fähigkeit von LSTM in Bezug auf die zeitliche Information führte zu einer verbesserten Vorhersage der Etiketten für die Fußposition, und es wurde eine Genauigkeit von 91% erreicht. Allerdings gibt es Schwierigkeiten bei der Vorhersage der richtigen Bezeichnungen in der letzten Phase des Schwungs und der Standphase jedes Fußes. Im nächsten Schritt wird das Transfer-Lernen eingesetzt, um die Vorteile von bereits trainierten tiefen NNs zu nutzen, indem vortrainierte Gewichte verwendet werden. Zwei bekannte Modelle, inceptionresnetv2 (IRNV-2) und densenet201 (DN-201), wurden mit ihren gelernten Gewichten für das erneute Training des NN auf neuen Daten verwendet. Das auf Transfer-Lernen basierende vortrainierte NN verbesserte die Vorhersage von Kennzeichnungen für verschiedene Fußpositionen. Es reduzierte insbesondere die Schwankungen in den Vorhersagen in der letzten Phase des Gangschwungs und der Standphase. Bei der Vorhersage der Klassenbezeichnungen der Testdaten wurde eine Genauigkeit von 94% erreicht. Da die Abweichung bei der Vorhersage des wahren Labels hauptsächlich ein Bild betrug, konnte sie bei einer Bildrate von 30 Bildern pro Sekunde ignoriert werden. Die vorhergesagten Markierungen wurden verwendet, um verschiedene räumlich-zeitliche Parameter des Gangs zu extrahieren, die für jedes Ganganalysesystem entscheidend sind. Insgesamt wurden 12 Gangparameter quantifiziert und mit der durch Beobachtungsmethoden gewonnenen Grundwahrheit verglichen. Die NN-basierten räumlich-zeitlichen Parameter zeigten eine hohe Korrelation mit der Grundwahrheit, und in einigen Fällen wurde eine sehr hohe Korrelation erzielt. Die Ergebnisse belegen die Nützlichkeit der vorgeschlagenen Methode. DerWert des Parameters über die Zeit ergab eine Zeitreihe, eine langfristige Darstellung des Ganges. Diese Zeitreihe konnte mit verschiedenen mathematischen Methoden weiter analysiert werden. Als dritter Beitrag in dieser Dissertation wurden Verbesserungen an den bestehenden mathematischen Methoden der Zeitreihenanalyse von zeitlichen Gangdaten vorgeschlagen. Zu diesem Zweck werden zwei Verfeinerungen bestehender entropiebasierter Methoden zur Analyse von Schrittintervall-Zeitreihen vorgeschlagen. Diese Verfeinerungen wurden an Schrittintervall-Zeitseriendaten von normalen und neurodegenerativen Erkrankungen validiert, die aus der öffentlich zugänglichen Datenbank PhysioNet heruntergeladen wurden. Die Ergebnisse zeigten, dass die von uns vorgeschlagene Methode eine klare Trennung zwischen gesunden und kranken Gruppen ermöglicht. In Zukunft könnten fortschrittliche medizinische Unterstützungssysteme, die künstliche Intelligenz nutzen und von den hier vorgestellten Methoden abgeleitet sind, Ärzte bei der Diagnose und langfristigen Überwachung des Gangs von Patienten unterstützen und so die klinische Arbeitsbelastung verringern und die Patientensicherheit verbessern

    Similar works