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Abstract: Many algorithms use 3D accelerometer and/or gyroscope data from inertial measurement
unit (IMU) sensors to detect gait events (i.e., initial and final foot contact). However, these algorithms
often require knowledge about sensor orientation and use empirically derived thresholds. As align-
ment cannot always be controlled for in ambulatory assessments, methods are needed that require
little knowledge on sensor location and orientation, e.g., a convolutional neural network-based deep
learning model. Therefore, 157 participants from healthy and neurologically diseased cohorts walked
5 m distances at slow, preferred, and fast walking speed, while data were collected from IMUs on
the left and right ankle and shank. Gait events were detected and stride parameters were extracted
using a deep learning model and an optoelectronic motion capture (OMC) system for reference. The
deep learning model consisted of convolutional layers using dilated convolutions, followed by two
independent fully connected layers to predict whether a time step corresponded to the event of
initial contact (IC) or final contact (FC), respectively. Results showed a high detection rate for both
initial and final contacts across sensor locations (recall ≥ 92%, precision ≥ 97%). Time agreement
was excellent as witnessed from the median time error (0.005 s) and corresponding inter-quartile
range (0.020 s). The extracted stride-specific parameters were in good agreement with parameters
derived from the OMC system (maximum mean difference 0.003 s and corresponding maximum
limits of agreement (−0.049 s, 0.051 s) for a 95% confidence level). Thus, the deep learning approach
was considered a valid approach for detecting gait events and extracting stride-specific parameters
with little knowledge on exact IMU location and orientation in conditions with and without walking
pathologies due to neurological diseases.

Keywords: gait; gait events; inertial measurement unit; deep learning

1. Introduction

Gait deficits are common in older adults and possibly reflect the presence of an under-
lying neurodegenerative disease [1,2]. For example, conversion to Parkinson’s Disease [3]
or conversion from mild cognitive impairment to Alzheimer’s Disease [4,5] are linked
with changes in spatiotemporal gait parameters. Similarly, temporal gait parameters are
different for stroke patients [6,7] and patients with multiple sclerosis [8,9] when compared
to healthy controls. To objectively quantify gait deficits, stride-specific parameters such
as stride time or stride length are often used [10]. The beginning and end of a stride are
determined from two successive initial contacts (ICs) of the same foot [11,12]. The IC is
when the foot contacts the ground and together with the instant at which the foot leaves the
ground (final contact, FC), each stride can be divided in a stance and swing phase [13,14].
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The events of IC and FC, also referred to as gait events, are commonly determined using
force or pressure measuring devices [14] or marker-based optoelectronic motion capture
systems (OMC; henceforth referred to as the marker-based system or method) [15,16]. These
systems are relatively expensive and restricted to usage in expertise laboratories [17,18].
As there is increasing evidence that gait measured in the lab does not reflect daily-life
gait [19–21], there is increasingly more interest in measurement systems that allow for
continuous gait analysis in ambulatory settings. Therefore, the use of inertial measurement
units (IMUs) is especially attractive, as these can be used to measure gait in ecologically
valid environments, such as the home environment, thereby painting a more complete
picture of health status [22,23] and providing clinical information that is complementary to
standardized lab-based assessments [20,21,24,25].

Previous research suggests that gait event detection is more accurate using an IMU
worn on a lower limb (e.g., shank or foot) compared to an IMU worn on the low back [26–28].
In order to get from abstract IMU sensor readings to clinically relevant gait parameters
(i.e., from accelerations and angular velocities to stride times) [10], different algorithmic
approaches have been developed in the last twenty years of clinical gait research. A recent
study evaluated a cross-section of these algorithms for different sensor locations on the
lower leg and foot [29]. The algorithms were categorized according to which signals were
analyzed, for example, the angular velocity about the medio-lateral axis or the accelerations
along vertical and antero-posterior axes. This means the sensor readings need to be
linked with the anatomical axes, that is, one needs to know which sensor axis aligns
with, for example, the medio-lateral axis. In most approaches, it is simply assumed that
due to sensor attachment, the sensor axis aligns roughly with the anatomical axis of
interest [30–36], or an additional calibration procedure (e.g., [37]) is required [29,38]. In
ambulatory assessments, however, study participants often attach the sensor themselves,
for example, after showering, and therefore the sensor location and alignment cannot
be controlled for. Furthermore, it is unlikely that each time the sensor is (re-)attached,
study participants, especially those with gait deficits, perform a calibration procedure that
usually consists of holding a pre-defined pose and performing some known movement
sequences [39,40].

Taken together, this drives the need for an approach that is invariant to sensor ori-
entation and is applicable across a variety of pathological gait patterns. In the field of
image analysis, similar requirements have been successfully addressed by algorithms that
share a common underlying methodology referred to as deep learning (DL) [10,41,42], for
example, in differentiating diseased from healthy cells [43]. The main advantage of DL
is that rather than relying on expert-defined, hand-crafted features, the algorithm learns
relevant data representations automatically [41,44]. Furthermore, DL approaches allow for
individualization of the algorithm to a specific patient [45–47]. Previously, DL approaches
for wearable IMU data have successfully been applied in classification of bradykinesia [44],
detection of freezing of gait [48], and prediction of spatiotemporal gait parameters in people
with osteoarthritis and total knee arthroplasty [49]. DL was used to detect gait events from
marker-based motion capture and showed improved performance when compared to con-
ventional, often heuristics-based, algorithms [50–52]. Another study used a DL approach
to detect gait events from either three IMUs (worn on the low back, and both ankles) or a
single IMU (worn on the low back) and showed that the time error was considerably smaller
for the deep learning algorithm than for a commonly applied wavelet-based approach [53].

To the best of our knowledge, this is the first study that validates the performance
of a DL approach for detecting gait events in a heterogeneous cohort of healthy and
neurodegenerative diseases at multiple self-selected walking speeds from short walking
distances using a single sensor setup that can be worn on either side, either laterally just
above the ankle joint or proximally just below the knee joint.

The structure of the paper is as follows: in the Material and Methods section the data
collection, data pre-processing, and the model architecture are introduced. The Results
section presents the results from gait event detection and the subsequently extracted stride-
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specific gait parameters. In the Discussion, the results are set in relation to relevant literature,
and finally in the Conclusions we outline the research content, results, and innovations.

2. Materials and Methods
2.1. Data Collection

Gait analyses were performed in the Universitätsklinikum Schleswig-Holstein (UKSH)
campus Kiel, Germany. The study [54] was approved by the ethical committee of the
medical faculty at the UKSH (no: D438/18). In total, data from 157 participants were
included for the current analysis, including data from young adults (YA; age: 18–60 years),
older adults (OA; age: >60 years), people with Parkinson’s Disease (PD; according to
the UK Brain Bank criteria [55]), people with a recent (<4 weeks) symptomatic stroke
(stroke), people with multiple sclerosis (MS; according to the McDonalds criteria [56]),
people with chronic low back pain (cLBP), and people with diagnoses not fitting in any
aforementioned groups or disorders with no explicit diagnosis (other) (Table 1). Inclusion
criteria were an age of 18 years or older and the ability to walk independently without
a walking aid. Participants were excluded from the study with a Montreal Cognitive
Assessment [57] score < 15 and other movement disorders that affected mobility, as noticed
by the clinical assessor.

Table 1. Demographics data of the study participants. Age, height, and weight are presented as mean
(standard deviation).

Group Gender Number of Age Height Weight
Participants years cm kg

YA F 21 27 (7) 173 (5) 67 (9)
M 21 29 (9) 185 (8) 80 (12)

OA F 12 70 (6) 167 (6) 72 (17)
M 10 73 (6) 180 (6) 83 (12)

PD F 12 67 (6) 168 (7) 70 (15)
M 19 61 (11) 178 (7) 86 (14)

MS F 12 37 (10) 174 (9) 75 (9)
M 9 42 (16) 189 (9) 96 (32)

stroke F 4 66 (11) 160 (7) 65 (13)
M 17 67 (18) 178 (7) 84 (15)

cLBP F 3 64 (12) 166 (6) 65 (6)
M 6 66 (17) 177 (8) 86 (14)

other F 3 60 (16) 166 (4) 79 (19)
M 8 68 (19) 182 (7) 85 (14)

Group: YA: younger adults, OA: older adults, PD: Parkinson’s Disease, MS: multiple sclerosis, cLBP: chronic low
back pain; Gender: F: female, M: male.

Participants performed three walking trials consisting of walking 5 m at either (1) pre-
ferred speed (“Please walk at your normal walking speed.”), (2) slow speed (“Please walk at
half of your normal walking speed.”), or (3) fast speed (“Please walk as fast as possible, without
running or falling.”). The 5 m distance was marked with two cones on both ends, and
participants were asked to start walking approximately two steps before the cones on one
end, and stop walking approximately two steps after passing the cones on the other end.

For the current analysis, data from four IMUs (Noraxon USA Inc., myoMOTION,
Scottsdale, AZ, USA) were considered, namely those that were attached laterally above
the left and right ankle joint and those attached proximally at the left and right shank.
IMUs were secured to participants using elastic bands with a special hold for the IMU.
Furthermore, reflective markers were attached on top of the usual foot wear at the heel
and toe of both feet (Figure 1). Marker data were recorded using a twelve-camera OMC
system (Qualisys AB, Göteborg, Sweden) at a sampling frequency of 200 Hz. IMU data
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were recorded at the same sampling frequency, and both systems were synchronized using
a TTL signal [54].

5 meter~ 2 steps ~ 2 steps
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Figure 1. Schematic depiction (Picture from: https://www.vecteezy.com/free-vector/man-walking,
accessed on 11 November 2021) of the current study. Study participants wore IMUs on the ankle and
shanks, and reflective markers were adhered on the heel and toe of usual footwear (illustrated on the
left). Marker data were used to obtain reference values for the timings of initial and final contacts
(top), where accelerometer and gyroscope data from each tracked point were inputted to a neural
network that predicted timings of the same initial and final contacts (bottom).

2.2. Data Pre-Processing
2.2.1. Marker Data

First, data from both marker and IMU systems were cropped so that only data from
within the 5 m distance were considered. Any gaps in the marker data were filled by
interpolation making use of inter-correlations between markers [58,59]. The data were then
low-pass filtered using a sixth-order Butterworth filter with a cut-off frequency of 20 Hz [60].
The filter was applied twice to the input data [61]. After filtering in the forward direction,
the filtered sequence was reversed and run back through the filter [30]. The filtered data
were differentiated to get velocity signals, and timings of ICs and FCs were determined
from local maxima and minima in the heel and toe vertical velocity signals [62,63]. All
identified ICs and FCs were manually checked using Qualisys Track Manager 2018.1 soft-
ware (Qualisys AB, Göteborg, Sweden) and corrected if necessary [34,64]. The resulting
annotated ICs and FCs were considered the true events (also labels or targets), and were
used as reference timings to derive stride-specific gait parameters.

2.2.2. IMU Data

The idea behind the deep learning approach was that a model was trained to predict
the likelihood of an IC and FC, given accelerometer and gyroscope data from a single IMU.
The data from a single sensor channel, e.g., the acceleration in forward direction, were
denoted by xd =

[
xd[1] xd[2] · · · xd[N]

]T, with d referring to the dth sensor channel
(i.e., d = 1, · · · , D) and n referring to the nth sample or time step (i.e., n = 1, · · · , N).
Similarly, the data from all D sensor channels at a given time instant n, were denoted by

https://www.vecteezy.com/free-vector/man-walking
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x[n] =
[
x1[n] x2[n] · · · xD[n]

]T. Data from all D channels, and for all N time steps,
were then denoted by:

X =

x1 x2 · · · xD

 =


x1[1] x2[1] xD[1]
x1[2] x2[2] xD[2]

...
... · · ·

...
x1[N] x2[N] xD[N]

, X ∈ RN×D (1)

Likewise, the labels were denoted by:

yIC =


yIC[1]
yIC[2]

...
yIC[N]

, yFC =


yFC[1]
yFC[2]

...
yFC[N]

, yIC/FC[n] ∈ [0, 1] (2)

The model was iteratively trained to learn a mapping hΘ(X) : X→ y, where hΘ was
also referred to as the hypothesis parameterized by the weights, collectively denoted by
Θ, and X was an array with raw sensor data from the 3-axis accelerometer and 3-axis
gyroscope of a single sensor location.

All participant data were split into three independent datasets, namely a training set,
a validation set, and a test set. Each set contained data from approximately one-third of
the participants. Participants were randomly assigned to one of the sets, stratified by both
group (i.e., diagnosis) and gender (Table 2). The training and validation set were used to
train an optimal deep learning model. Test set data were not used for training the model or
hyperparameter tuning. The results on the model’s performance were only based on the
test set, and therefore reflected how good the model generalizes to new, unseen data.

Table 2. Overview of the total number of participants, walking trials, and number of instances in
the training, validation, and test set. A detailed overview with exactly for which trial and sensor
location valid data were available can be found at https://github.com/rmndrs89/my-gait-events-tcn,
accessed on 1 April 2022.

Dataset No. of Participants No. of Trials No. of Instances

Train 61 749 3366
Validation 48 564 2570

Test 48 620 620

Accelerometer and gyroscope data were normalized by subtracting the channel-wise
mean and dividing by the channel-wise standard deviation. For the training and validation
datasets, the data were then partitioned into equal length time windows [52] of 400 samples,
with an overlap of 50% between successive windows (corresponding to 2 s windows, and
1 s overlap, respectively). For the test set, the complete trial was fed as input to the model
for predicting ICs and FCs (hence the number of instances is the same as the number of
trials, Table 2).

2.3. Model
2.3.1. Model Architecture

The generic architecture for the deep learning model was based on a temporal convo-
lutional network (TCN) [52,65,66]. The TCN consisted of a sequence of residual blocks with
exponentially increasing dilation factor [66,67]. Each residual block was built from two
sequences of a dilated convolutional layer [67], a batch normalization layer [68], a rectified
linear unit (ReLU) activation layer, and a dropout layer [69] (Figure 2). The model was built
in Python [70] using the high-level TensorFlow API Keras [65,71].

https://github.com/rmndrs89/my-gait-events-tcn
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Figure 2. The generic model architecture of the deep learning model to predict initial contacts
(ICs) and final contacts (FCs). The inputs are the accelerometer and gyroscope data from a single
inertial measurement unit, which are fed to a temporal convolutional network (TCN) (left). The
TCN consisted of repeating residual blocks (ResBlocks) with exponentially increasing dilation factor
(middle). Each ResBlock was built from two sequences of a convolutional layer (Conv), batch
normalization layer (BatchNorm), a rectified linear unit activation layer (ReLU), and a dropout layer
(DropOut) (right).

For the current analysis, only convolutions of the “same” type were considered [65], i.e.,
the model was non-causal and zero-padded to account for edge effects, and the likelihood
of an IC or FC was based on input data both before and after the current sample, n:

ŷi[n] = f (· · · , x[n− 1], x[n], x[n + 1], · · · ), i ∈ {IC, FC} (3)

The number of samples that the predictions at time n “sees” was referred to as the
receptive field [72] and was a function of the kernel size and the dilation factors [65]. Dilation
factors were always given as a sequence of increasing power of 2 [66,67,73].

The outputs of the TCN block were fed to two separate fully connected (FCN, or
dense) layers, that were both followed by a sigmoid activation layer. Outputs were then
predicted separately for ICs and FCs [52,53]. The mean squared error (MSE) was used as a
loss function, and a gradient descent-based optimization algorithm with adaptive moment
(Adam) optimizer was used to iteratively learn the weights [74,75].

2.3.2. Hyperparameter Optimization

In order to find the best model architecture, hyperparameter tuning was perfomed
using KerasTuner [76]. Here, the number of filters, the kernel size, and the maximum
dilation factor (Table 3) were optimized for using a random search strategy [77].

Table 3. Model hyperparameters that were optimized for, and the corresponding sets of possible
values.

Description Possible Values

Number of filters 8, 16, 32, 64, 128
Kernel size 3, 5, 7
Dilations [1, 2], [1, 2, 4], [1, 2, 4, 8]

The hyperparameter values that were selected for the trained model to make predictions on the test set are shown
in bold.

The model architecture that resulted from the hyperparameter optimization (Table 4)
was then trained on the combined set of training and validation data. The trained model
was used to predict the likelihoods of ICs and FCs on the test set data.
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Table 4. Model layer hyperparameters.

Layer # Layer Type Hyperparameters Output Shape

0 inputs batch size × 400 × 6

1a conv no. of filters: 16 batch size × 400 × 16
kernel size: 5
stride: 1
padding: same
dilation: 1

1b conv no. of filters: 16 batch size × 400 × 16
kernel size: 1
stride: 1
padding: same
dilation: 1

2 conv no. of filters: 16 batch size × 400 × 16
kernel size: 5
stride: 1
padding: same
dilation: 1

3 conv no. of filters: 16 batch size × 400 × 16
kernel size: 5
stride: 1
padding: same
dilation: 2

4 conv no. of filters: 16 batch size × 400 × 16
kernel size: 5
stride: 1
padding: same
dilation: 2

5 conv no. of filters: 16 batch size × 400 × 16
kernel size: 5
stride: 1
padding: same
dilation: 4

6 conv no. of filters: 16 batch size × 400 × 16
kernel size: 5
stride: 1
padding: same
dilation: 4

7a dense no. of units: 1 batch size × 400 × 1
7b dense no. of units: 1 batch size × 400 × 1

conv: convolutional layer.

2.4. Analysis

The predictions of the model on the test set data were compared with the labels from
the test set. The model performance was evaluated for (1) overall detection performance,
(2) time agreement between the predicted events and the (marker-based) annotated events,
and (3) agreement between subsequently derived stride-specific gait parameters.

2.4.1. Overall Detection Performance

The overall detection performance quantified how many of the annotated events were
detected by the model (true positives, TP), how many of the annotated events were not
detected (false negatives, FN), and how many events that were detected, were actually not
annotated (false positives, FP). From these metrics, the recall (or sensitivity), precision, and
F1 score were calculated as:

recall =
TP

TP + FN
(4)
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precision =
TP

TP + FP
(5)

F1 score = 2 · recall · precision
recall + precision

(6)

Here, recall represented the ratio of gait events that were detected, precision repre-
sented the ratio of detected gait events that were truly gait events, and F1 score was the
harmonic mean of the recall and precision.

2.4.2. Time Agreement

For all correctly detected gait events (TP, Section 2.4.1), time agreement was assessed
by the time error between the annotated and detect gait event, which was defined as

time error = tref − tpred (7)

with tref the gait event time from the marker-based annotations, and tpred the gait event
time from the model predictions. As a robust measure for the average time error and its
spread, the median time error and the inter-quartile range (IQR) were reported [78].

2.4.3. Stride-Specific Gait Parameters

For those trials for which all gait events were detected and no false positives were
detected, the stride time, stance time, and swing were calculated. Stride was the time
between two successive ICs of the same foot. Stance time was the time between a FC and
the preceding IC of the same foot. Swing time was the time between the IC following the
last FC of the same foot.

3. Results
3.1. Overall Detection Performance

The performance of detecting ICs and FCs was objectively quantified by the number
of TPs, the number of FNs, and the number of FPs. From these numbers, recall, precision,
and F1 score were calculated (Table 5).

Table 5. Overall detection performance for initial contacts and final contacts as quantified by recall,
precision, and F1 score.

Initial Contacts Final Contacts

Tracked Point TP FN FP Recall Precision F1 TP FN FP Recall Precision F1

Left ankle 624 19 5 97% 99% 98% 606 32 10 95% 98% 97%
Right ankle 599 42 8 93% 99% 96% 614 17 12 97% 98% 98%
Left shank 605 38 15 94% 98% 96% 585 53 18 92% 97% 94%

Right shank 603 36 15 94% 98% 96% 595 30 9 95% 99% 97%

TP: true positives, FN: false negatives, FP: false positives, F1: F1 score.

For both ICs and FCs, recall is high for each of the sensor locations (i.e., ≥92%) and
so is precision (i.e., ≥97%). Differences between the sensor locations are small, i.e., the
minimum recall is 92% and the maximum recall is 97%, and the minimum precision is 97%
and the maximum precision is 99%. The recall and precision result in F1 scores of ≥96% for
ICs and ≥94% for FCs.

3.2. Time Agreement

Time agreement between the annotated and detected events was quantified for the
TPs for each of the sensor locations (Figure 3). The median time error for each of the sensor
locations and for both ICs and FCs was close to zero (Table 6), and the largest median
time error was −0.005 s, corresponding to one sample period (at a sampling frequency of
200 Hz). The IQR was at most 0.020 s, corresponding to four sample periods.
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Figure 3. Time errors for initial (left) and final (right) contacts detection, for each of the different
tracked points.

Table 6. Time errors for the correctly detected gait events. Note that 0.005 s corresponds to 1 sample
period, given the sampling frequency of 200 Hz.

Initial Contacts Final Contacts

Tracked Point Median IQR Median IQR
s s s s

Left ankle 0.000 0.020 0.000 0.010
Right ankle 0.000 0.020 −0.005 0.015
Left shank −0.005 0.020 −0.005 0.020

Right shank −0.003 0.020 −0.005 0.020
IQR: inter-quartile range.

3.3. Stride-Specific Gait Parameters

For those trials for which all gait events were correctly detected (and no false positives
were detected), stride time, stance time, and swing time were calculated. The mean
difference and the limits of agreement between the marker-based annotations and the
model-based detections were calculated.

For all stride-specific gait parameters, and for all sensor locations, the mean difference
was close to zero, i.e., the maximum mean difference was 0.003 s, namely for the calculated
swing time of the right ankle (Table 7). Furthermore, for all gait parameters and for
all sensor locations, the limits of agreement, based on a 95% confidence interval, were
distributed around a zero-mean difference with the overall limits of agreement at −0.049 s
and 0.051 s (Figure 4).

Table 7. Time agreement between the stride-specific parameters.

Tracked Point Parameters Mean Difference Limits of Agreement
s (s, s)

Left ankle
stride time 0.001 (−0.035, 0.036)
stance time 0.002 (−0.039, 0.042)
swing time −0.001 (−0.045, 0.043)

Right ankle
stride time 0.000 (−0.039, 0.040)
stance time −0.002 (−0.048, 0.044)
swing time 0.003 (−0.046, 0.051)

Left shank
stride time 0.001 (−0.039, 0.041)
stance time 0.002 (−0.043, 0.046)
swing time −0.001 (−0.049, 0.047)
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Table 7. Cont.

Tracked Point Parameters Mean Difference Limits of Agreement
s (s, s)

Right shank
stride time −0.000 (−0.031, 0.031)
stance time 0.002 (−0.046, 0.049)
swing time −0.002 (−0.049, 0.046)
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+1.96 SD: 0.045

Stance time
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+1.96 SD: 0.047

Swing time

left ankle right ankle left shank right shank

Figure 4. The agreement of extracted gait parameters between the sensor-based and marker-based
methods. The differences between the stride-specific temporal gait parameters extracted from the
marker-based and proposed approach are plotted against the means.

4. Discussion

The current study aimed to validate a deep learning approach for detecting gait
events from a single IMU worn on the lower leg. Data from left and right ankle- and
shank-worn IMUs were used for training a neural network to detect gait events from
walking trials performed by healthy YA, healthy OA, participants diagnosed with PD, MS,
or cLBP, participants who had a recent symptomatic stroke, and participants diagnosed
with other neurological diseases. Participants walked a 5 m distance at three different
self-selected walking speeds. The gait event timings that were predicted by the neural
network were compared to a common reference method, i.e., OMC system, and clinically
relevant stride-specific gait parameters were extracted.

A first measure for the model performance was given by the recall (how many anno-
tated events were detected) and precision (how many detected events were annotated). For
both ICs and FCs, a high recall (≥95%), high precision (≥98%), and high F1 score (≥94%)
were observed, meaning that most events were detected and most detected events were
actually true events. There was little difference in recall, precision, and F1 score between
sensor locations (Table 5), confirming that the deep learning approach is relatively invariant
to exact sensor localization. The values for recall, precision, and F1 score are comparable to
recall (≥85%), precision (≥95%), F1 score (≥91%) from studies that detected gait events in
OA, people with PD, and people with MS [34] or adults and hemiplegic patients [79].

Next, the time error, that is, the difference between the annotated event and the
detected event, was of interest. For both ICs and FCs, and for all sensor locations, the
observed time error was small, and the middle 50% of the time errors were within a range
of [−0.015, 0.010] s (Table 6, Figure 3). These data showed that the deep learning-based
approach is precise in detecting initial and final contacts. Time errors were slightly smaller
than our previously reported results [34] that used a heuristics-based approach [30]. The
heuristics-based approach determined ICs and FCs as local minima in the medio-lateral
angular velocity [30], and it could be that these minima do not exactly coincide with
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the reference event timing as determined from the OMC systems. Previous studies that
investigated the time error of IMU-based gait event detection reported a 95% confidence
interval of [0.007, 0.013] s for IC, and [−0.005, 0.004] s for FC for young and older adults
in treadmill and overground walking [80], or [−0.016, 0.001] s for IC or [0.037, 0.063] s
for FC for typically developing children in overground walking [31]. Others reported the
mean for the time error in healthy elderly subjects, subjects with PD, subjects with choreatic
movement disorder, and hemiparetic subjects, and found a maximum mean error of 0.011 s
at normal walking speed, and 0.022 s at faster speed [36]. Similarly, for healthy subjects,
a mean error of 0.017 s for ICs and −0.016 s for FCs were reported, whereas for a single
transfemoral amputee the mean error was 0.012 s for ICs and −0.024 s for FCs for the intact
limb [33]. The median and IQR of the time errors of the current study were in the same
range as previously found by [53], and time errors were smaller than previously reported
time errors from a continuous wavelet-based approach [79]. Hence, our proposed deep
learning approach resulted in time errors that are in the same range or better than those
from previous approaches, while not being restricted to an exact sensor location (left or
right ankle, or shank) and sensor alignment.

From the correctly detected gait events, stride-specific gait parameters were derived.
These are probably of greatest clinical relevance, as changes in stride-specific gait parame-
ters have been linked directly with disease onset and progression [3–9]. Therefore, stride
time, stance time, and swing time were calculated, and the differences between the deep
learning-based approach and the marker-based reference method were quantified (Table 7,
Figure 4). The limits of agreement for a 95% confidence interval were calculated, and for all
metrics the zero-mean difference was enclosed in the limit of agreement. These data pro-
vided evidence that the deep learning-based model was able to derive stride-specific gait
parameters. The differences between the deep learning model-based stride parameters and
the marker-based stride parameters were in a similar range as a recent study that compared
IMU-derived stride parameters against stride parameters obtained with a pressure sensing
walkway [29,53] and were also in the same range as results from a study that compared
IMU-derived stride parameters with stride parameters obtained with an OMC systems [64].
The mean error was lower than the mean errors reported for stance and swing time (0.011 s
and 0.011 s, respectively) across elderly subjects, subjects with PD, subjects with choreatic
movement disorder, and hemiparetic subjects [36].

The main limitations of the current study were that only walking trials involving
straight-line walking were considered, and the walking distance was relatively short.
Therefore, it may be that the observed gait patterns from these walking trials are not fully
representative of gait patterns observed in daily life [19–21]. However, as the deep learning-
based approach does not rely on fixed thresholds or assumptions of which sensor axis
is used, it is theoretically transferable and scalable to other conditions if input data and
corresponding labels can be provided.

Furthermore, although the proposed approach allows for relatively arbitrary sensor
placement on the lower leg, it was not investigated to what extent participants would be
willing to wear such a sensor for a prolonged period of time in the home environment.
Previous research found that user acceptance and adherence to wearing IMUs was generally
high in people with neurodegenerative diseases [81–84], although reduced adherence was
linked with multi-day wear [82] and wearing multiple sensors [85].

5. Conclusions

In this study we have validated a DL-based approach to detect gait events and subse-
quently extract clinically relevant stride-specific gait parameters from a single IMU worn
either laterally above the ankle joint or proximal below the knee joint. Performance analysis
showed an excellent detection rate and low time errors in both event detection and stride
parameter calculation for different walking speeds and across both healthy and neurologi-
cal cohorts. Compared to relevant approaches that detected gait events from an ankle- or
shank-worn IMU, the DL approach reached a performance that was on par or better, and
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it did not rely on expert-defined, hand-crafted features or empirically derived thresholds.
The performance of the DL approach was not affected by the exact sensor placement and
orientation, and hence is less obtrusive for potential applications in long-term continuous
monitoring. In contrast to previous approaches, it allows for personalization of the network
to individual study participants and is easily transferable even to other sensor placement
locations (e.g., a foot-worn or low back-worn IMU) without the need for rethinking the set
of decision rules and thresholds. Our next step is to further develop and validate these
methods with real-life walking sequences in patients with neurodegenerative diseases.
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