2,592 research outputs found

    Design and implementation of an integrated surface texture information system for design, manufacture and measurement

    Get PDF
    The optimised design and reliable measurement of surface texture are essential to guarantee the functional performance of a geometric product. Current support tools are however often limited in functionality, integrity and efficiency. In this paper, an integrated surface texture information system for design, manufacture and measurement, called “CatSurf”, has been designed and developed, which aims to facilitate rapid and flexible manufacturing requirements. A category theory based knowledge acquisition and knowledge representation mechanism has been devised to retrieve and organize knowledge from various Geometrical Product Specifications (GPS) documents in surface texture. Two modules (for profile and areal surface texture) each with five components are developed in the CatSurf. It also focuses on integrating the surface texture information into a Computer-aided Technology (CAx) framework. Two test cases demonstrate design process of specifications for the profile and areal surface texture in AutoCAD and SolidWorks environments respectively

    KBGIS-2: A knowledge-based geographic information system

    Get PDF
    The architecture and working of a recently implemented knowledge-based geographic information system (KBGIS-2) that was designed to satisfy several general criteria for the geographic information system are described. The system has four major functions that include query-answering, learning, and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial objects language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is currently performing all its designated tasks successfully, although currently implemented on inadequate hardware. Future reports will detail the performance characteristics of the system, and various new extensions are planned in order to enhance the power of KBGIS-2

    The WFCAM Science Archive

    Full text link
    We describe the WFCAM Science Archive (WSA), which is the primary point of access for users of data from the wide-field infrared camera WFCAM on the United Kingdom Infrared Telescope (UKIRT), especially science catalogue products from the UKIRT Infrared Deep Sky Survey (UKIDSS). We describe the database design with emphasis on those aspects of the system that enable users to fully exploit the survey datasets in a variety of different ways. We give details of the database-driven curation applications that take data from the standard nightly pipeline-processed and calibrated files for the production of science-ready survey datasets. We describe the fundamentals of querying relational databases with a set of astronomy usage examples, and illustrate the results.Comment: 28 pages, 18 figures; accepted for publication in MNRAS (2007 November 8

    Trends and concerns in digital cartography

    Get PDF
    CISRG discussion paper ;

    Remote Sensing Information Sciences Research Group, Santa Barbara Information Sciences Research Group, year 3

    Get PDF
    Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined

    Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model

    Get PDF
    The fundamental principle of the Semantic Web is the creation and use of semantic annotations connected to formal descriptions, such as domain ontologies. The lack of an integrated view of all web nodes and the existence of heterogeneous domain ontologies drive new challenges in the discovery of knowledge resources, which are relevant to a user´s request. New eficient approaches for developing web intelligence and helping users to avoid irrelevant search results on the web have recently appeared. Artificial Neural Networks (ANN) being one of the most recent ones. However,there still remains a lot of work to be done in this area. This work makes a contribution to the field of knowledge-resource discovery and ontology matching techniques for the Semantic Web by presenting an approach which is based on an ANN classifier. Experimental results show that the ANN-based ontology matching model has provided satisfactory responses to the test cases.Fil: Rubiolo, Mariano. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Caliusco, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Coronel, M.. Universidad Tecnológica Nacional; ArgentinaFil: Gareli Fabrizi, M.. Universidad Tecnológica Nacional; Argentin

    Qualitative Spatial Reasoning with Holed Regions

    Get PDF
    The intricacies of real-world and constructed spatial entities call for versatile spatial data types to model complex spatial objects, often characterized by the presence of holes. To date, however, relations of simple, hole-free regions have been the prevailing approaches for spatial qualitative reasoning. Even though such relations may be applied to holed regions, they do not take into consideration the consequences of the existence of the holes, limiting the ability to query and compare more complex spatial configurations. To overcome such limitations, this thesis develops a formal framework for spatial reasoning with topological relations over two-dimensional holed regions, called the Holed Regions Model (HRM), and a similarity evaluation method for comparing relations featuring a multi-holed region, called the Frequency Distribution Method (FDM). The HRM comprises a set of 23 relations between a hole-free and a single-holed region, a set of 152 relations between two single-holed regions, as well as the composition inferences enabled from both sets of relations. The inference results reveal that the fine-grained topological relations over holed regions provide more refined composition results in over 50% of the cases when compared with the results of hole-free regions relations. The HRM also accommodates the relations between a hole-free region and a multi-holed region. Each such relation is called a multi-element relation, as it can be deconstructed into a number of elements—relations between a hole-free and a singleholed region—that is equal to the number of holes, regarding each hole as if it were the only one. FDM facilitates the similarity assessment among multi-element relations. The similarity is evaluated by comparing the frequency summaries of the single-holed region relations. The multi-holed regions of the relations under comparison may differ in the number of holes. In order to assess the similarity of such relations, one multi-holed region is considered as the result of dropping from or adding holes to the other region. Therefore, the effect that two concurrent changes have on the similarity of the relations is evaluated. The first is the change in the topological relation between the regions, and the second is the change in a region’s topology brought upon by elimination or addition of holes. The results from the similarity evaluations examined in this thesis show that the topological placement of the holes in relation to the hole-free region influences relation similarity as much as the relation between the hole-free region and the host of the holes. When the relations under comparison have fewer characteristics in common, the placement of the holes is the determining factor for the similarity rankings among relations. The distilled and more correct composition and similarity evaluation results enabled by the relations over holed regions indicate that spatial reasoning over such regions differs from the prevailing reasoning over hole-free regions. Insights from such results are expected to contribute to the design of future geographic information systems that more adequately process complex spatial phenomena, and are better equipped for advanced database query answering

    Qualitative Spatial Reasoning with Holed Regions

    Get PDF
    The intricacies of real-world and constructed spatial entities call for versatile spatial data types to model complex spatial objects, often characterized by the presence of holes. To date, however, relations of simple, hole-free regions have been the prevailing approaches for spatial qualitative reasoning. Even though such relations may be applied to holed regions, they do not take into consideration the consequences of the existence of the holes, limiting the ability to query and compare more complex spatial configurations. To overcome such limitations, this thesis develops a formal framework for spatial reasoning with topological relations over two-dimensional holed regions, called the Holed Regions Model (HRM), and a similarity evaluation method for comparing relations featuring a multi-holed region, called the Frequency Distribution Method (FDM). The HRM comprises a set of 23 relations between a hole-free and a single-holed region, a set of 152 relations between two single-holed regions, as well as the composition inferences enabled from both sets of relations. The inference results reveal that the fine-grained topological relations over holed regions provide more refined composition results in over 50% of the cases when compared with the results of hole-free regions relations. The HRM also accommodates the relations between a hole-free region and a multi-holed region. Each such relation is called a multi-element relation, as it can be deconstructed into a number of elements—relations between a hole-free and a singleholed region—that is equal to the number of holes, regarding each hole as if it were the only one. FDM facilitates the similarity assessment among multi-element relations. The similarity is evaluated by comparing the frequency summaries of the single-holed region relations. The multi-holed regions of the relations under comparison may differ in the number of holes. In order to assess the similarity of such relations, one multi-holed region is considered as the result of dropping from or adding holes to the other region. Therefore, the effect that two concurrent changes have on the similarity of the relations is evaluated. The first is the change in the topological relation between the regions, and the second is the change in a region’s topology brought upon by elimination or addition of holes. The results from the similarity evaluations examined in this thesis show that the topological placement of the holes in relation to the hole-free region influences relation similarity as much as the relation between the hole-free region and the host of the holes. When the relations under comparison have fewer characteristics in common, the placement of the holes is the determining factor for the similarity rankings among relations. The distilled and more correct composition and similarity evaluation results enabled by the relations over holed regions indicate that spatial reasoning over such regions differs from the prevailing reasoning over hole-free regions. Insights from such results are expected to contribute to the design of future geographic information systems that more adequately process complex spatial phenomena, and are better equipped for advanced database query answering

    Resolution of linear entity and path geometries expressed via partially-geospatial natural language

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 100-102).When conveying geospatial information via natural language, people typically combine implicit, commonsense knowledge with explicitly-stated information. Usually, much of this is contextual and relies on establishing locations by relating them to other locations mentioned earlier in the conversation. Because people and objects move through the world, a common and useful kind of geospatial phrase is the path expression, which is formed by designating multiple locations as landmarks on the path and relating those landmarks to one another in sequence. These phrases often include nongeospatial information, and the paths often include linear entities. This thesis builds upon the work done for the GeoCoder spatial reasoning system, by addressing several of its limitations and extending its functionality.by John Javier Marrero.M.Eng
    • …
    corecore