552 research outputs found

    Quantum state transfer between field and atoms in Electromagnetically Induced Transparency

    Full text link
    We show that a quasi-perfect quantum state transfer between an atomic ensemble and fields in an optical cavity can be achieved in Electromagnetically Induced Transparency (EIT). A squeezed vacuum field state can be mapped onto the long-lived atomic spin associated to the ground state sublevels of the Lambda-type atoms considered. The EIT on-resonance situation show interesting similarities with the Raman off-resonant configuration. We then show how to transfer the atomic squeezing back to the field exiting the cavity, thus realizing a quantum memory-type operation.Comment: 8 pages, 4 figure

    Light-matter interactions in multi-element resonators

    Full text link
    We investigate structural resonances in multi-element optical resonators and provide a roadmap for the description of the interaction of single extended cavity modes with quantum emitters or mechanical resonators. Using a first principle approach based on the transfer matrix formalism we analyze, both numerically and analytically, the static and dynamical properties of three- and four-mirror cavities. We investigate in particular conditions under which the confinement of the field in specific subcavities allows for enhanced light-matter interactions in the context of cavity quantum electrodynamics and cavity optomechanics

    Squeezing and entangling nuclear spins in helium 3

    Full text link
    We present a realistic model for transferring the squeezing or the entanglement of optical field modes to the collective ground state nuclear spin of 3^3He using metastability exchange collisions. We discuss in detail the requirements for obtaining good quantum state transfer efficiency and study the possibility to readout the nuclear spin state optically

    Strong coupling and long-range collective interactions in optomechanical arrays

    Get PDF
    We investigate the collective optomechanics of an ensemble of scatterers inside a Fabry-Perot resonator and identify an optimized configuration where the ensemble is transmissive, in contrast with the usual reflective optomechanics approach. In this configuration, the optomechanical coupling of a specific collective mechanical mode can be several orders of magnitude larger than the single-element case, and long-range interactions can be generated between the different elements since light permeates throughout the array. This new regime should realistically allow for achieving strong single-photon optomechanical coupling with massive resonators, realizing hybrid quantum interfaces, and exploiting collective long-range interactions in arrays of atoms or mechanical oscillators.Comment: 11 pages, 12 figure

    Cavity optomechanics with arrays of thick dielectric membranes

    Get PDF
    Optomechanical arrays made of structured flexible dielectrics are a promising system for exploring quantum and many-body optomechanical phenomena. We generalize investigations of the optomechanical properties of periodic arrays of one-dimensional scatterers in optical resonators to the case of vibrating membranes whose thickness is not necessarily small with respect to the optical wavelength of interest. The array optical transmission spectrum and its optomechanical coupling with a linear Fabry-Perot cavity field are investigated both analytically and numerically.Comment: 7 pages, 6 figure

    Virtual manufacturing: prediction of work piece geometric quality by considering machine and set-up

    Get PDF
    Lien vers la version éditeur: http://www.tandfonline.com/doi/full/10.1080/0951192X.2011.569952#.U4yZIHeqP3UIn the context of concurrent engineering, the design of the parts, the production planning and the manufacturing facility must be considered simultaneously. The design and development cycle can thus be reduced as manufacturing constraints are taken into account as early as possible. Thus, the design phase takes into account the manufacturing constraints as the customer requirements; more these constraints must not restrict the creativity of design. Also to facilitate the choice of the most suitable system for a specific process, Virtual Manufacturing is supplemented with developments of numerical computations (Altintas et al. 2005, Bianchi et al. 1996) in order to compare at low cost several solutions developed with several hypothesis without manufacturing of prototypes. In this context, the authors want to predict the work piece geometric more accurately by considering machine defects and work piece set-up, through the use of process simulation. A particular case study based on a 3 axis milling machine will be used here to illustrate the authors’ point of view. This study focuses on the following geometric defects: machine geometric errors, work piece positioning errors due to fixture system and part accuracy

    Manufacturing Process Modeling and Simulation

    Get PDF
    This paper presents a methodology to be employed in the whole process design phase including first and second processing. This methodology consists of a set of steps which are characterised by an independent model. This paper’s objective is to analyse the coherence between the different models and the coherence between the model and the objectives of each step. The final stage is to develop the production plans. The casting process was the first one to be analyzed. Casting models were created using CAD software (Catia V5R17) and imported into the casting simulation environment (Magmasoft). Filling and solidifying processes have been simulated using different casting models in order to optimize the final configuration. The machining process was modeled using the machining features concept and it was simulated using Catia’s Advanced Machining environment. Two machining strategies have been analyzed according to positioning strategies. Process engineering software was used to create the process plans and to analyze the resource allocation
    • …
    corecore