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The intricacies of real-world and constructed spatial entities call for versatile spatial data 

types to model complex spatial objects, often characterized by the presence of holes. To 

date, however, relations of simple, hole-free regions have been the prevailing approaches 

for spatial qualitative reasoning. Even though such relations may be applied to holed 

regions, they do not take into consideration the consequences of the existence of the 

holes, limiting the ability to query and compare more complex spatial configurations. To 

overcome such limitations, this thesis develops a formal framework for spatial reasoning 

with topological relations over two-dimensional holed regions, called the Holed Regions 

Model (HRM), and a similarity evaluation method for comparing relations featuring a 

multi-holed region, called the Frequency Distribution Method (FDM).  

The HRM comprises a set of 23 relations between a hole-free and a single-holed 

region, a set of 152 relations between two single-holed regions, as well as the 

composition inferences enabled from both sets of relations. The inference results reveal 

that the fine-grained topological relations over holed regions provide more refined 

composition results in over 50% of the cases when compared with the results of hole-free 

regions relations. The HRM also accommodates the relations between a hole-free region 



 

and a multi-holed region. Each such relation is called a multi-element relation, as it can 

be deconstructed into a number of elements—relations between a hole-free and a single-

holed region—that is equal to the number of holes, regarding each hole as if it were the 

only one. 

FDM facilitates the similarity assessment among multi-element relations. The 

similarity is evaluated by comparing the frequency summaries of the single-holed region 

relations. The multi-holed regions of the relations under comparison may differ in the 

number of holes. In order to assess the similarity of such relations, one multi-holed region 

is considered as the result of dropping from or adding holes to the other region. 

Therefore, the effect that two concurrent changes have on the similarity of the relations is 

evaluated. The first is the change in the topological relation between the regions, and the 

second is the change in a region’s topology brought upon by elimination or addition of 

holes. The results from the similarity evaluations examined in this thesis show that the 

topological placement of the holes in relation to the hole-free region influences relation 

similarity as much as the relation between the hole-free region and the host of the holes. 

When the relations under comparison have fewer characteristics in common, the 

placement of the holes is the determining factor for the similarity rankings among 

relations.  

The distilled and more correct composition and similarity evaluation results enabled 

by the relations over holed regions indicate that spatial reasoning over such regions 

differs from the prevailing reasoning over hole-free regions. Insights from such results 

are expected to contribute to the design of future geographic information systems that 

more adequately process complex spatial phenomena, and are better equipped for 

advanced database query answering. 
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Chapter 1  Introduction 

In an effort to model and reason about geographic reality, Geographic Information 

Systems (GISs) rely on geometric representations of natural and constructed geographic 

entities and the spatial relations between them. Geographic entities have different spatial 

dimensions and may be represented by point, linear, areal features, or combinations of 

these. Among the relations between spatial entities that are essential to GISs are the 

topological relations, which are derived by such topological information as connectivity, 

adjacency, continuity, and containment of the geometric representations.  

Frequently, more complex spatial objects, such as two-dimensional regions with 

holes, are necessary for modeling the plethora of geographic phenomena that extend over 

a specific area and are characterized by cavities or other internal discontinuities. 

Examples of holes in spatial entities include the space left out after imposing a buffer 

zone around an entity (Fig. 1.1a), an island in a lake (Fig. 1.1b), or Lesotho, which is 

completely surrounded by South Africa (Fig. 1.1c). While geometric models of spatial 

data have matured enough to capture complex spatial objects such as regions with holes 

(Frank and Kuhn 1986; OGC 1999, 2005; Worboys and Bofakos 1993, Clementini et al. 

1995, Schneider and Behr 2006), there are no relation models that offer explicit support 

for querying and reasoning about topological relations between holed regions.   
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(a) (b) (c) 

Figure 1.1 Examples of regions with holes: (a) the smoke free zone around two buildings 
on the UMaine campus implied by a 30ft buffer zone, (b) Lago D’Iseo with island Monte 
Isola, and (c) South Africa surrounding Lesotho. 

The recent proliferation of geosensor networks (Stefanidis and Nittel 2004) for 

monitoring spatially distributed phenomena further challenges the current spatial 

querying and reasoning methods of information systems. Sensor networks often capture 

information about continuous properties of a phenomenon, such as air temperature or 

water contamination, and that information is displayed in the form of regions of a certain 

quality within the area covered by the network. In that setting, holes occur frequently, for 

example, in the form of coverage holes (Fig. 1.2a-b)—areas that cannot be reached by a 

certain number of sensors (Ahmed et al. 2005)—due to technical failures, resulting also 

in information displayed in the form of regions with holes.  

Most of the underlying collected data are in the form of quantitative measures (e.g., 

water contamination is recorded when the quantity of the sensed chemical elements 

reaches or exceeds a certain threshold). However, most of the reasoning is qualitative in 

nature, since it is often the areal objects formed by the collected data (e.g., regions of 

high water contamination) and the objects’ properties and relations that are of importance 

for further reasoning and analysis. Representing continuous properties by discrete 

systems of symbols and providing calculi for reasoning with spatial entities is the essence 

of qualitative reasoning (Cohn and Hazarika 2001).  
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Topology offers a useful toolkit for abstracting and generating qualitative 

descriptions of spatial data. In the case of sensor data, for example, models that address 

explicitly the topological relations between regions with holes due to missing data 

provide the opportunity for enhancing qualitative reasoning. In general, topological 

information is an important component of any geographic database and GIS, permitting 

users to derive spatial relationships between entities. This thesis provides a framework 

for qualitative spatial reasoning using topological relations involving holed regions and 

investigates the results of inference mechanisms over such relations such as composition 

and similarity assessment. 

  
(a) (b) 

Figure 1.2 Coverage holes in networks: (a) A cellular telephony provider’s coverage area 
(darker) with holes (white parts) in New England and neighbors, and (b) a coverage hole 
in a sensor network (disks represent the coverage range around each sensor).  

1.1 Qualitative Spatial Representation and Reasoning about Holed Regions  

The two main approaches to representing spatial information are quantitative and 

qualitative in nature. In the quantitative approach, it is common to have a coordinate 

system in which all spatial information is maintained. The exact position and extent of all 

entities is required and reasoning is usually performed with geometrical or numerical 

methods such as computing the distances between objects. In the alternative approach, 

spatial information is represented using a finite vocabulary—a set of symbols—that 

describes the spatial configurations by specifying the properties of and the relations 

between spatial entities (Hernández 1994). These sets of symbols have to be relevant to 
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the kind of reasoning performed and the resulting group of qualitative values is termed a 

qualitative quantity space (Hayes 1979; Forbus 1984), in which indistinguishable values 

have been grouped into equivalence classes (Cohn and Hazarika 2001). 

People conceptualize geographic space differently from manipulable, table-top 

spaces (Zubin 1989; Mark 1993; Montello 1993; Mark and Freundshuh 1995). When 

interacting with the world, people’s cognitive mechanisms handle complex situations by 

storing and processing qualitative information, even if it is originally obtained in 

quantitative form through perception (Freksa and Röhrig 1993; Kuipers 1994).  

Qualitative spatial representations (Hernández 1994; Cohn 1997) appear to 

resemble closer how humans represent and communicate spatial knowledge, namely by 

specifying the relationships of and between spatial entities. Qualitative spatial reasoning 

is challenged to provide calculi and appropriate reasoning techniques that allow GISs to 

represent and reason with spatial entities, make predictions and help in decision making 

about physical systems without employing traditional quantitative techniques, so 

prevalent in computer graphics and computer vision (Cohn and Renz 2007). 

1.1.1 Topological Spatial Relations 

It is common in qualitative spatial reasoning to consider a specific aspect of space, such 

as topology, orientation, distance, shape, or size, with the exception of a few cases of 

combined information (Worboys 1996; Gerevini and Renz 2002; Li 2007), and to 

develop a system of qualitative relations between spatial entities (Hernández 1994). The 

focus here is on topology. Topological distinctions are inherently qualitative and 

topology offers a rich theory of space by categorizing it into different kinds, called 

topological spaces, according to different properties (Renz 2002). Topological relations 
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are invariant under continuous transformations of the underlying space and are related to 

the notions of connectivity, adjacency, inclusion and continuity.  

In this thesis we consider the topological relations that involve two-dimensional 

holed regions embedded in 

! 

IR
2 with the usual topology. To determine such relations we 

build on the set of eight binary topological relations {disjoint, meet, overlap, coveredBy, 

inside, covers, contains, equal} between hole-free regions, as defined by the 9-

intersection (Egenhofer and Herring 1990). In order to reason about the relations 

involving holed regions we employ the inference mechanisms of relation composition 

and similarity and we assess how the presence of holes in the regions influences the 

inference results. 

1.1.2 Composition Inferences 

One of the most important inference mechanisms in qualitative spatial reasoning is the 

composition of relations. The composition over a common region B is the deduction of 

the topological relation tk between regions A and C from the knowledge of the two 

topological relations, ti(A, B) and tj(B, C), and it is denoted by ti ; tj. The composition 

inference is actually a set of relations. If the outcome is the empty set, then a 

contradiction is implied, while the universal relation—the union of all possible 

relations—indicates that no information can be obtained by the inference. For the rest of 

the cases, the smaller the inference set, the more precise, refined, and less ambiguous is 

the composition result, with the singleton being optimum, implying a completely 

determined inference. The composition of pairs of n relations can be stored in an n × n 

composition table for reference, a technique that is useful given a fixed set of relations 

(Cohn and Hazarika 2001). Based on the composition results available in the composition 



6 

table for the eight binary relations between hole-free regions (Egenhofer 1994), this 

thesis determines the composition tables for sets of relations involving one or two single-

holed regions. 

1.1.3 Consistency of Topological Relations 

When determining a new set of binary relations, it is essential to verify their topological 

consistency, that is, to ensure that the relations experience no internal contradictions due 

to their properties and can be realized in a particular space (Egenhofer and Sharma 1993). 

Topological consistency problems may be expressed as constraint satisfaction problems 

(CSPs) (Ladkin and Maddux 1994) over a network of binary topological relations 

(Egenhofer and Sharma 1993): each relation is interpreted as a constraint restricting 

possible values of its arguments. Topological relations can be formulated as constraints 

operating on a relation algebra (Tarski 1941; Ladkin and Maddux 1994).  

A relation algebra on a set A comprises a set of binary relations R, and each binary 

relation is a subset of the Cartesian product A × A. The set of relations is closed under the 

operations of union, intersection, composition, conversion, and complement (Renz 2002). 

The jointly exhaustive and pairwise disjoint (JEPD) relations defined in the 9-intersection 

(Egenhofer and Herring 1990) form a relation algebra with equal being the identity 

relation and the disjunction of all relations in the set being the universal relation 

(Egenhofer and Sharma 1993). To solve CSPs, a special purpose inference procedure, 

which can be shown to be complete for checking consistency of a set of relations is 

necessary (Bennett 1998). For binary topological relations this inference procedure is the 

composition of relations, which tests the consistency of any triple of relations. The 
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compositions of the base 9-intersection relations are computed using the semantics of the 

relations and their composition table has already been defined in (Egenhofer 1994).  

Relying on the fact that the 9-intersection relations are closed under intersection, 

converse, and composition, constraint propagation can be applied in order to eliminate 

from the domain those values that are not consistent with the constraints (Cohn and Renz 

2007). A well-known constraint propagation method for spatial CSPs is the path-

consistency algorithm (Mackworth 1977). Path consistency is enforced by making sure 

that for any consistent instantiation of any two variables x and y, there exists an 

instantiation of any third variable z, such that the three variables together are consistent 

for the relations r(x, y), s(x, z) and t(z, y) (Eqn. 1.1).  

 

! 

"x, y, z :=  r(x, y) #  (s(x, z) ; t(z, y))  (1.1) 

The path-consistency algorithm refines the resulting relations until either a fixed 

point is reached or one constraint is refined to the empty relation. If the propagation 

reaches the empty relation then the constraint set is inconsistent, otherwise the resulting 

set is path-consistent. By verifying path consistency of relations for holed regions that are 

combinations of the 9-intersection relations, it is possible to determine which of these 

relations and their compositions are topologically consistent.  

1.1.4 Relation Similarity 

Frequently, spatial entities with a certain area have more than one internal discontinuity, 

thus, their geometric representations are multi-holed regions. The most fine-grained 

model for topological relations between regions with holes explicitly enumerates the 

realizable 9-intersection relations for pairs of regions, considering each hole to be a 

region as well (Egenhofer et al. 1994). The resulting relations are dependent on the 
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number of the holes, making this approach inefficient and painstaking as the number of 

holes increases. It is often the case that cognitively, the details of a topological scenario 

get absorbed and give way to the more general, dominant topological features. When 

querying, for instance, a database of different archived scenarios that feature relations 

involving multi-holed regions, the user is more likely to pay less attention to the exact 

number and individual relations of the holes. Focus is rather on the quest for closely 

related scenarios that could either substitute the query relation with minimum 

consequences or provide useful information due to their similarity with the query. It is 

desirable, therefore, to look for a way of comparing different relations that feature multi-

holed regions rather than continuing the enumeration of plausible relations. 

1.2 Motivation 

A model of topological relations that addresses holed regions explicitly provides 

additional opportunities for spatial querying and analysis. Figure 1.3 shows a sensor 

network of buoys deployed in the Gulf of Maine to record such variables as wind speed, 

wave height, air and water temperatures, and atmospheric pressure 

(http://www.gomoos.com). The two snapshots in Figures 1.3a and 1.3b refer to the 

available data on two consecutive days, where the highlighted regions depict two zones 

with data unavailability, each around a malfunctioning buoy, yielding holes in the 

coverage regions. With the movement of the buoys on the ocean surface, these zones of 

data availability shift, and so do the holes of missing data. The comparison of both 

regions over the 2-day period reveals that for the first buoy, both the region and its hole 

have moved on the second day (Figure 1.3c), while the second buoy’s region has changed 

only slightly in size but its hole has moved (Figure 1.3d). In order to perform such 
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analyses at a more abstract level, so that it could be achieved conveniently through a 

spatial query language, one needs an account of the possible relations between such 

regions with holes. Beyond the enumeration of all possible cases, however, the inferences 

that can be drawn from such relations reveal new insights. For instance, what could be 

derived if one had further information available that on day 3 the regions have moved 

such that they are now disjoint from their positions on day 2? 

  
(a) (b) 

  
(c) (d) 

Figure 1.3 Example of regions with a hole due to coverage holes in a buoy network in 
the Gulf of Maine: (a) two regions, A (left) and B (right), with missing data on 
02/04/2005, (b) two regions, A' (left) and B' (right), with missing data on 02/05/2005, (c) 
overlay regions A and A', and (d) overlay of regions B and B'. 

Figure 1.4 shows a sketched topological scenario that requires comparisons among 

different multi-holed region relations. Region D represents an underground sedimentary 

rock formation with concentrations of oil residing in the holes H1 through H8. Regions 

A, B and C are ground, hole-free regions that have been deemed appropriate for 

excavation in order to reach the oil deposits. Given that all holes are of equal profit 

importance, how different is the topological relation between regions A and D from that 

between B and D and the relation between regions C and D? If all three relations are 
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topologically similar, choosing any excavation region is comparably beneficial, but if 

they are very dissimilar, further oil-drilling profit estimations are needed.  

 

Figure 1.4 Example sketched geological application with multi-holed oil-baring region D 
and hole-free excavating regions A, B and C.  

To answer such and similar questions, this thesis develops a reasoning framework 

that applies to two-dimensional regions with holes. This framework comprises sets of 

topological relations, which enable new information inferences using the relation 

composition mechanism and a similarity evaluation model that quantifies the similarity of 

topological relations of holed regions against a query relation. 

1.3 Need for Explicit Accounting for Holes 

Qualitative spatial reasoning has mostly been performed either using models that 

explicitly exclude regions with holes, or that implicitly consider hole-free and holed 

regions in the same manner. The 9-intersection (Egenhofer and Herring 1990), based on 

point set topology, and the Region Connection Calculus (RCC) (Randell et al. 1992b), 

which employs spatial logic, are two fundamental approaches to defining topological 

relations between two-dimensional spatial entities. The 9-intersection—as defined in 

(Egenhofer and Herring 1990)—specifically excludes regions with holes by applying 

only to two-dimensional point sets that are topologically equivalent to a closed disc, 

while RCC treats regions with holes the same as hole-free, homogeneous regions.  
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The following example, however, highlights the need for an explicit distinction of 

relations over holed-regions from relations over hole-free regions. If a simple region B 

overlaps with simple region A and also overlaps with simple region C, then for the 

composition A overlaps B and B overlaps C, one can deduce from the composition table 

in (Egenhofer 1994) the set of all the possible relations between A and C. In this case, the 

composition yields the universal relation U8 (i.e., all the eight binary topological relations 

are possible between A and C) (Fig. 1.5a-h). 

 

Figure 1.5 The eight possible configurations if region A overlaps region B and B 
overlaps region C: (a) A disjoint C, (b) A meet C, (c) A overlaps C, (d) A equal C, (e) A 
covers C, (f) A coveredBy C, (g) A contains C, and (h) A inside C. 

On the other hand, if we take into consideration that the common region B has a 

hole and it overlaps with the two hole-free regions, A and C, then the existence of the 

hole changes the composition scenario. For instance, let A overlap with B and completely 

contain B’s hole, and let B overlap with C such that B’s hole meets C. This composition 

results in three possible relations between A and C: they could overlap (Fig. 1.6a), A 

could cover C (Fig. 1.6b), or A could contain C (Fig. 1.6c). 
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Figure 1.6 The three possible configurations if B overlaps with A such that B’s hole is 
inside A, and B also overlaps with C such that B’s hole meets C: (a) A overlaps C, (b) 
A covers C, and (c) A contains C. 

The insertion of a hole into the common region of a composition scenario changes 

the results, in this case, into a more refined set (i.e., three vs. eight possible relations). 

Treating both cases with the same model for hole-free regions would neglect the 

constraints that the hole imposes, leading to incorrect and more ambiguous results for the 

end user who has to make the choices.  

1.4 Scope of the Thesis 

This thesis focuses on spatial relations between two-dimensional regions with holes, 

which are the geometric representations of natural or constructed holed entities found in 

geographic space. Such entities may be lakes with islands, temporary buffer zones with 

uncovered central areas or coverage holes created by the absence of sensor nodes in a 

network. The holed regions are embedded in the Euclidean plane 

! 

IR
2  only, since they are 

represented by continuous point-sets; thus regions in the discrete plane   

! 

ZZ
2 are not 

included. The relations we consider are between regions in the same plane, therefore, 

regions cannot be embedded in 

! 

IR
3 . In cases where examples from the three-dimensional 

physical world are used, it is implied that we consider the projection of the holed regions 

on the plane, a two-dimensional ‘slice’ of the objects. Finally, regions embedded on the 

surface of the sphere (S2) are also excluded, because even though the surface of the 

sphere resembles the Euclidean plane, the set of basic relations between hole-free regions 
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on the sphere is different from that on the plane—eleven vs. eight basic relations 

(Egenhofer 2005). Since the sets of relations derived in this thesis are based on the eight 

binary relations as these are defined for the plane, they do not cover all possibilities for 

two-dimensional regions on the sphere.  

The types of relations that we are concerned with here are topological, as topology 

provides appropriate calculi for qualitative spatial reasoning. Relations of the metric type, 

expressed in terms of distances and directions  (Peuquet and Ci-Xiang 1987; Hernández 

1991; Frank 1992, 1995; Goyal 2000) or partial and total order relations (Kainz et al. 

1993) such as in front of or above (Freeman 1975; Chang et al. 1989; Hernández 1991) 

are not objects of concern in this work. The goal for the thesis is to identify where and 

how holes matter for reasoning with topological relations and not necessarily to obtain 

shortcuts for the fast implementation of such relations. To achieve a higher-level 

reasoning, the sets of relations derived in this work explicitly for holed regions are based 

on the region-region relations, rather than the intersections or connections of the regions 

for supplementing relations that apply to a wider range of two-dimensional abstractions 

of spatial entities.  

The topological relations considered are only coarse relations based on the empty or 

non-empty intersections of boundaries, interiors and exteriors of regions. Details about 

the dimensions of these three components or the dimension of their intersections 

(Egenhofer and Franzosa 1995) are not considered. The relations are also restricted 

between objects of co-dimension zero (the difference between the dimension of the 

embedding space and the dimension of the object). As a result, relations between regions 

and lines, or regions with points are not examined. Finally, the regions may not comprise 

different components due to a separated interior (i.e., multi-component regions).  
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The higher-level models of relations developed here apply to abstract geometric 

representations of regions and do not carry with them any particular semantic or 

ontological restrictions for either the host regions or the holes themselves. The domain of 

the regions and what they stand for depends on the specific application for which the 

representations are constructed and is not of focus in this work. A region with holes is a 

two-dimensional entity with separated exterior and boundary. The holes are disjoint from 

each other and they do not touch the region’s boundary. If the holes are filled with some 

material, they may resemble distinguished parts of the same region. However, the set of 

relations for regions with distinguished parts would be different than the sets of relations 

derived for holed regions in this thesis. This is because different relations may hold 

between parts of the same entity than the relation between holes. Therefore, relations for 

regions with distinguished parts are not considered in this thesis. The sets of relations for 

holed regions could only apply for regions with not only distinguished, but also disjoint 

parts.  

1.5 Hypothesis 

GISs have so far used models of topological relations that have either explicitly ignored 

two-dimensional regions with holes, or have treated them in the same manner as simple, 

homogeneous regions. The hypothesis of this thesis is: “Taking into consideration the 

holes in two-dimensional regions that represent real-world spatial entities with cavities, 

imposes new constraints on the topological relations that can hold between such regions, 

differentiating these relations from the relations that hold between hole-free regions, and 

affects the inferences of the reasoning process towards more refined results.” The 

hypothesis is verified by (1) building a model of topological relations that comprises 
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different sets of relations when mixed scenarios of hole-free and single-holed regions are 

involved, and (2) studying the composition inferences of such relations, which allows for 

the derivation of new quantitative measures that verify the hypothesis. Furthermore, the 

similarity assessment among relations featuring a multi-holed region against a query 

relation, show that taking into consideration the holes produces more exact similarity 

rankings than the rankings produced by ignoring the holes and only comparing the 

relations that the host region is involved in. 

1.6 Research Approach 

In order to build a new formalism for reasoning with two-dimensional single-holed 

regions, new sets of relations are derived. Their basis is the 9-intersection (Egenhofer and 

Herring 1990), in which the values empty or non-empty of the nine intersections among 

interiors, boundaries, and exteriors specify the topological relations between two hole-

free regions. A spatial scene, which captures the binary relations between host-regions, 

between holes, and between host-regions and holes, serves as the conceptual model for 

deriving the new sets (Egenhofer and Vasardani 2007; Vasardani and Egenhofer 2008). A 

customized consistency checker ensures that each new relation is node-, arc- and path- 

consistent (Mackworth 1977).  

Composition tables provide benchmarks for the inferences that are made possible 

using the new sets of relations. In order to make inference comparisons, we complement 

the qualitative analysis with new quantitative measures such as the composition crispness 

(i.e., the difference in the cardinality of the inference result when a hole is present in one 

of the regions) and the cumulative frequencies (i.e., the consecutive summing of the 

frequencies in the composition results) that provide numerical evidence for hypothesis’ 
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evaluation. Much of the analysis is based on a set of graphs created with the quantitative 

data from the numerical examination of the composition tables (Vasardani and Egenhofer 

2008).  

To compare relations featuring a multi-holed region, a similarity evaluation method 

is built using the transportation algorithm (Murty 1976; Strayer 1989). The comparison of 

relations is translated into a balanced transportation problem of calculating the cost for 

transforming one relation into the other. By decomposing relations between a hole-free 

and a multi-holed region into elements—relations between the hole-free region and 

single-holed regions, as if each hole was unique—transformation of relations is 

interpreted as transforming the elements of one relation into those of another (Vasardani 

and Egenhofer 2009). The cost of such transformations is a direct indication of the 

dissimilarity of relations, therefore, an indirect indication of their similarity  

The costs of element transformations are identified as the distances of the elements 

on the conceptual neighborhood graph of the relations between a hole-free and a single-

holed region. Modification of that graph into a hybrid one that contains distances between 

relations with a single-holed region and relations of hole-free regions facilitates similarity 

comparisons of relations with different numbers of holes. The assumption is that the 

different number of holes is the result of eliminating holes and changing the relations 

between a hole-free and a single-holed region into relations between two hole-free 

regions. There also exist different reasoning processes for evaluating the change in the 

topological structure of a region attributed to the elimination of the hole and therefore, 

different possibilities are discussed. 
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1.7 Major Results 

This thesis develops the Holed Regions Model (HRM), a formal framework for 

qualitative spatial reasoning using topological relations. HRM differs from existing 

models in that it explicitly incorporates relations with holed regions in the reasoning 

process. The HRM has two parts: (1) the Single-Holed Regions Model (S-HRM) and (2) 

the Multi-Holed Region Model (M-HRM). The S-HRM analytically examines the effects 

of single holes in the reasoning process and it comprises: 

• 23 relations between a hole-free and a single-holed region; 

• 152 relations between two single-holed regions; 

• composition tables for pairs of relations between hole-free and/or single-holed 

regions that enable the derivation of composition inferences; and 

• conceptual neighborhood graphs of the new sets of relations.  

Along with the S-HRM, a number of quantitative measures that enable the 

comparison of composition tables over different domains is developed. Systematic 

examination using such measures shows that compositions of relations with single-holed 

regions are more refined and yield more unique results than compositions over hole-free 

regions, while reducing the ambiguities for close-to-unique references. 

The M-HRM examines relations involving a multi-holed region, providing a 

similarity evaluation method for such relations and answering questions as to which 

relations may be surrogate to each other in decision-making cases. The importance of the 

method lies in its independence from the number of holes involved and the flexibility to 

accommodate various models for comparing relations of regions with different numbers 

of holes. The similarity results prove as well, that holes impose additional constraints for 
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qualitative reasoning, making similarity comparisons based only on the relation of the 

hosts of the holes less adequate for decision-making.  

1.8 Intended Audience 

This thesis is intended for people working in qualitative spatial reasoning in general and 

the use of spatial relations to model and reason about reality in particular. It is of interest 

to designers of spatial databases and spatial query languages that seek to built models 

based on the relations between entities and to researches from the field of geographic 

information science that study spatial-relation algebras. It may be of interest to experts 

from the fields of artificial intelligence, cognitive science, and computer science as well, 

as it relates to the representation of spatial information, which is necessary to any 

intelligent system. This thesis is of particular interest to designers of future GISs who are 

concerned with incorporating commonsense geographic knowledge in the systems and to 

researchers in cartographic generalization. Finally, it may be of interest to scientists 

working on various environmental subjects that require the representation and the 

analysis of information in the form of areas with missing data due to a sensor network’s 

failures.  

1.9 Thesis Organization 

The remainder of this thesis is organized into seven chapters: 

Chapter 2 reviews the different aspects of a complete theory about holes and a 

number of existing models of topological relations. The focus is specifically on the 9-

intersection that serves as the basis for the development of the HRM, and other 

extensions of it or different models, such as RCC, that can possibly deal with two-
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dimensional regions with holes. Models of geometric arrangements that resemble regions 

with holes are also examined.  

Chapter 3 introduces the methodology used to derive the new sets of relations and 

the composition tables. The first step in the development of the HRM is the derivation of 

the set of relations between a hole-free and a single-holed region and their ordering in a 

conceptual neighborhood graph. Initially, the conceptual model of a single-holed region 

and the conceptual framework for deriving new relations, as well the derivation of the 

compositions of such relations, are introduced. The examination of the relation’s 

properties is followed by the numerical analysis of the relations’ composition inferences. 

New quantitative measures and comparisons with previous work provide insights about 

the influence of the presence of the holes.  

The complementary step of the reasoning framework is the determination and 

analysis of the relations between two single-holed regions, which is the subject of 

Chapter 4. Similarly, the relations’ properties are analyzed, their conceptual 

neighborhood graph is constructed, and their composition tables are derived. The 

composition inferences are compared with compositions of the same, as well as different 

domains. Measurements such as the absolute and the cumulative composition 

frequencies, accompanied by a set of graphs, complete the quantitative analysis of the 

comparisons.  

The focus of Chapter 5 is the development of a method that assesses the similarity 

among relations between a hole-free and a multi-holed region when the multi-holed 

regions have the same number of holes. Such relations are decomposed into elements 

whose frequencies are stored in vectors. The chapter introduces the concept of 

associating the relation similarity with the cost of transforming one relation to the other, 
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by transforming one relation’s frequency vector into that of the other. The vectors’ 

transformation is interpreted as a case of the balanced transportation problem and the 

transportation algorithm is applied for its solution. This chapter also analyzes how the 

basis for calculating the cost of the overall relation transformation are the relation 

distances on the conceptual neighborhood graph of the 23 relations between a hole-free 

and a single-holed region. 

Chapter 6 expands the similarity evaluation method to cover relations between a 

hole-free and a multi-holed region when the multi-holed regions have different numbers 

of holes. To achieve this the method is altered based on the assumption that the difference 

in the number of holes is due to the elimination of holes from one relation to the other. To 

enable the calculation of the cost of relation transformation when holes are dropped, the 

conceptual graph is replaced by a hybrid graph, which provides the distances between 

relations with a single-holed region and relations with hole-free regions that result from 

dropping holes. Different models that evaluate such distances are discussed. 

In order to asses the similarity evaluation method and the different relation distance 

models developed in the previous chapter, Chapter 7 systematically analyzes the results 

of ranking two synthetic datasets for their similarity against specific queries. By using 

certain evaluation criteria, the different models are compared for their results and the 

similarity rankings are analyzed with the visual aid of graphs designed to facilitate 

interpretation. The chapter discusses the various patterns recognized in the analysis of the 

results and the main conclusions from comparing relations with different numbers of 

holes.  
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Chapter 8 concludes this thesis with a summary, a review of the major contributions 

and findings, as well as the opportunities for future research that either complement or 

are made possible through this study. 
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Chapter 2  Spatial Objects with Holes 

The existence of holed objects and holed regions has been acknowledged and discussed 

in the literature not only from the spatial (Egenhofer and Herring 1990a; Clementini 

et al. 1993), but also from a more philosophical point of view (Casati and Varzi 1994; 

Lewis and Lewis 1970; 1996). Hole-free regions have been the prevailing data types for 

spatial analysis within GISs (Egenhofer 1989; Egenhofer and Franzosa 1995; Randell et 

al. 1992b), therefore the first attempts to reason with holed regions have evolved from 

models for hole-free regions (Egenhofer et al. 1994; Clementini et al. 1996b). Certain 

research efforts, however, have focused on representing more complex objects (Worboys 

and Bofakos 1993; Clementini et al. 1995; Schneider and Behr 2006), among them 

regions with holes as well, and modeling relations between them (Cohn et al. 1997; 

McKenney et al. 2007). In addition, models also exist for objects, the geometric 

representations of which visually resemble regions with a hole (Cohn and Gotts 1996a; 

Erwig and Schneider 1997; Roy and Stell 2001; Bejaoui et al. 2008).  

This chapter reviews such research efforts and builds the necessary knowledge for 

examining exclusively two-dimensional regions with a hole in the plane, the relations 

among them, as well as tools that may be used for inferring new knowledge from 

comparisons between topological relations.  
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The chapter is structured as follows: Section 2.1 provides a brief review of a theory 

about holes in three-dimensional objects, while the discussion about holes in two-

dimensional objects in the plane and how to distinguish them from figures in the plane 

starts in Section 2.2. Section 2.3 deals explicitly with the representation and topological 

relations between regions in the plane, examining first models for hole-free regions and 

then expanding to models for more complex regions. Models of objects that visually 

resemble a region with a hole are studied in Section 2.4, while the dynamic changes that 

occur in the structure of a region with the appearance or disappearance of a hole are 

discussed in Section 2.5. Section 2.6 examines how changes in the topological relations 

between regions are modeled, and the chapter is summarized in Section 2.7. 

2.1 Theory of Holes in Three-Dimensional Objects 

The nature of holes can be perceived in a variety of ways. Holes can be either considered 

synonymous to perforations on a material (Lewis and Lewis 1970), or from a 

materialistic viewpoint, holes are equated with the hole-linings of their material host-

object. In that sense, holes are that part of their host’s material that surrounds them 

(Lewis and Lewis 1996). Holes are dependent entities: they cannot exist alone unless 

some host provides a surface in which they exist. This ontological dependency suggests 

that holehood is a relational property—there are no holes simpliciter (Casati and Varzi 

1994). However, holes are interpenetrated by other entities—including other holes 

(Fig. 2.1). This property implies that something can be spatially enclosed in a hole 

without being a part thereof (Varzi 1996). 
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Figure 2.1 The hole in surface y encloses object x and its hole, however, x is not part of 
the hole.  

Part-whole relations for holes can be formulated in the framework of mereology, 

the formal theory of parthood and relations (Varzi 1996). The basic ontological premise 

H(x, y), interpreted as “x is a hole in (or through) y,” is eventually supplemented with 

hole-specific axioms. The primitive mereological relation is P(x, y), which reads “x is a 

(possibly improper) part of y” and is given the basic axiom that being a part of means 

overlapping, where O(x, y) reads “x overlaps y” and is usually defined as having some 

part in common.  

Topology can be used to differentiate three main kinds of holes in three-dimensional 

objects. Superficial holes (or hollows) correspond to simple depressions of various depths 

or indentations in the surface of the host. They could, in principle, be eliminated by 

elastic deformation. Perforating holes (tunnels) introduce non-eliminable topological 

discontinuities. Internal holes (cavities) are completely hidden inside the host so that they 

mark a splitting in the host’s complement (Casati and Varzi 1994).  

Finally, an explicit morphological (shape-oriented) analysis relies on a 

characteristic property of holes: they are fillable because they are spacious and involve 

concavities (Varzi 1996). The relation considered is F(x, y) which reads “x fills y” (Casati 

and Varzi 1994) and it can be taken to indicate various types of fillers (Fig. 2.2) 

(Varzi 1996).  
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Figure 2.2 Various hole fillers: (a) exact filler, (b) proper, but not complete, (c) complete 
but not proper, and (d) neither complete nor proper (after Varzi 1996).  

2.2 Deciphering Holes from Figures in the Plane  

Defining holes in the three-dimensional context is a complex procedure that involves 

hollows, perforations, and cavities. In a geographic setting, however, the embedding in a 

space that resembles the bird’s-eye-view is most popular. In the plane, a visual hole can 

be defined as a two-dimensional region on a surface, perceived as an aperture (i.e., a 

missing piece of the surface) through which the background surface is visible. In this 

context, holes in the plane are background regions that are surrounded by a foreground 

figure (Bertamini 2006). The letter O provides such an example. In mathematical terms 

this configuration implies that a hole in an object is a topological structure that prevents 

the object from being continuously shrunk to a point (Weisstein 2007).  

However, the perceptual interpretation of a uniform, connected region that is 

surrounded by another such region can be visually ambiguous. Holes may be confused 

for smaller objects in front of larger ones, especially if the shape of their boundary 

resembles a well-identified object. Since background regions only exist relative to some 

foreground, enclosure is a defining criterion for a hole to be perceived as such, and not as 

an object (Bertamini and Croucher 2003; Bertamini 2006). Apart from enclosure, three 

additional factors are critical for identifying a hole: (1) depth factors that indicate that the 

enclosed region sits behind its surrounding (Fig. 2.3a), (2) grouping factors that relate the 
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enclosed region to its surrounding, and (3) the absence of figural factors, such as 

convexity, symmetry, or familiarity (Fig. 2.3b) (Nelson and Palmer 2001). 

  
(a) (b) 

Figure 2.3 Holes vs. figures: (a) a hole is recognized due to depth factor, and (b) an 
hourglass figure is distinguished due to familiarity with the object (Nelson and Palmer 
2001).  

2.3 Topological Relations Between Two-dimensional Regions In the Plane 

In qualitative spatial representations it is commonplace to describe properties of and 

relations between such geometric entities as points, lines, and regions of a certain space 

(i.e., the two-dimensional or three-dimensional Euclidean space). Relations between such 

entities capture various aspects of space, such as topology, orientation, distance, size, and 

shape.  In general, relations can be grouped into three different categories: (1) topological 

relations, which remain invariant with respect to continuous transformations of the 

underlying space, such as translation, scaling and rotation (Egenhofer 1989; Egenhofer 

and Herring 1990; Randell et al. 1992b; Clementini et al. 1993); (2) metric relations in 

terms of distances and directions (Peuquet and Ci-Xiang 1987; Hernández 1991; Frank 

1992, 1995; Goyal 2000), and (3) partial and total order relations of spatial objects 

(Kainz et al. 1993) as described by prepositions such as in front of, behind, above, and 

below (Freeman 1975; Chang et al. 1989; Hernández 1991).  

The focus of this thesis is on the topological relations that may hold between two 

regions if at least one of them has a hole. However, topological relations have first been 
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examined for simple regions; therefore, the most prevalent among the models for 

relations between simple regions are discussed.  

2.3.1 Models of Topological Relations for Hole-Free Regions 

The 9-intersection (Egenhofer and Herring 1990), which forms relations between hole-

free regions, and the Region Connection Calculus (RCC) (Randell et al. 1992b), which 

defines relations for both hole-free and holed regions without an explicit differentiation, 

are the most popular theories of topological relations in geographic information science. 

The 9-intersection uses concepts from point-set topology (Alexandroff 1961; Munkres 

1966; Spanier 1966), while RCC employs spatial logic. The two models have been 

developed using different definitions of a region. Therefore, before examining them, it is 

appropriate to refer to a few basic concepts of point-set topology with neighborhoods, 

open and closed sets that help distinguish the differences in the regions as used by the 

two models and by extensions of the models that cover more complex objects, or by 

alternative theories.  

2.3.1.1 Basic Topological Concepts 

Let S be a topological space and X be a subset of points of S. The interior of X, denoted 

by Xº, is the union of all open sets contained in X, that is, the interior of X is the largest 

open set contained in X. A point x ∈ Xº, if and only if there is an open set U such that x ∈ 

U ⊂ X, which means that there is a neighborhood of x contained in X.  

The closure of X, denoted by 

! 

X , is the intersection of all closed sets that contain X, 

i.e., the closure of X is the smallest closed set containing X. A point x ∈ 

! 

X , if and only if 

U ∩ X ≠

! 

" for every open set U containing x. The exterior of X then, denoted by 

! 

X
", is 

the complement of the closure of X, i.e., 

! 

X
"=

! 

S"X . If C is a closed set, then 

! 

C =C. 
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The boundary of X, denoted by ∂X, is the intersection of the closure of X and the 

closure of the complement of X, i.e., ∂X=  

! 

X  " S#X . The boundary is then a closed set 

and a point x ∈ ∂X, if and only U ∩ X ≠

! 

" and U ∩ (

! 

S"X)≠

! 

" for every open set U 

containing x. The relations between interior, closure and boundary are given in Equations 

2.1a and 2.1b. 

 Xº ∩ ∂X = 

! 

" (2.1a) 

 Xº ∪ ∂X = 

! 

X  (2.1b) 

A separation of X is a pair of non-empt subsets, A and B, such that A ∪ B = X, 

  

! 

A  " B=# and   

! 

A " B =#. If there exists a separation of X, then X is said to be 

disconnected, otherwise X is connected. If C is connected, then 

! 

C  is also connected. 

The regularization of X is the closure of the interior of X, that is, reg(X) = 

! 

X°. The 

regularization process eliminates from a set any pathological features such as punctures 

or arcs and any non-areal points such a mixtures of points, lines and areas. An object on 

which regularization has no effect is termed regular closed, i.e., X is regular closed if and 

only if 

! 

X° = X (Worboys and Duckham 2004).  

The Euclidean plane with the usual topology is the most important example of a 

topological space for the purposes of GIS. A homeomorphism (or topological 

transformation) of 

! 

IR
2  is a bijection of the plane that transforms each neighborhood in 

the domain to a neighborhood in the image. Any neighborhood in the image must be the 

result of the application of the transformation to a neighborhood in the domain. If Y is the 

result of applying a homeomorphism to a point set X, then X and Y are topologically 

equivalent. Examples of homeomorphisms include the notions of translation, rotation 

scaling and skew in the Euclidean plane. Properties that are preserved under 

homeomorphisms, such as connectedness, are called topological invariants. 
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2.3.1.2 9-Intersection 

The 9-intersection (Egenhofer and Herring 1990b) is a generalization of the 4-

interscection (Egenhofer 1989; Egenhofer and Herring 1990a; Egenhofer and Franzosa 

1991). Even though the intersection method can be applied to geometric features of 

different dimensions, such as points, lines, and polygonal areas in the plane, the focus 

here is on polygonal areas alone. Specifically, the sets of interest are spatial regions, as 

these are defined in Egenhofer and Franzosa (1991): Let S be a connected topological 

space. A spatial region A in S is a non-empty proper subset of S such that Aº is 

connected, and A is regular closed, that is, A=

! 

A° . It follows from the definition that the 

interior of a spatial region is non-empty and that a spatial region is closed and connected 

since it is the closure of a connected set. The boundary of such a spatial region A is 

always non-empty, that is, ∂A≠

! 

" (Egenhofer and Franzosa 1991).  

The definition of binary topological relations between two spatial regions, A and B, 

is based on the intersections of the interiors, boundaries and, exteriors of A and B. A 3x3 

matrix, M, called the 9-intersection, concisely represents these intersections (Eqn. 2.2). 

The 4-intersection is the 2×2 subset of M—the intersections of interiors and boundaries, 

in this standardized sequence.  

 
    

! 

M =

A°IB°   A°I"B  A°IB
#

"AIB°  "AI"B  "AIB
#

A
#
IB°  A

#
I"B  A

#
IB

#

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 
    (2.2) 

Each intersection in M is examined against topologically invariant criteria under 

homeomorphisms. By considering the property of content (i.e., empty and non-empty 

values)—which is set-theoretic and, therefore, topologically invariant—one distinguishes 

29=512 possible matrices. For each such matrix, there exists a corresponding binary 

topological relation.  The relations that can actually be realized in a particular space are a 
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subset of the 512 ones, depending on the particular properties of the objects, the 

embedding space (i.e.,   

! 

IR
n ,   

! 

ZZ
n , the surface of an n-sphere) and their co-dimensions, that 

is, the difference between the dimension of the embedding space and the objects. For two 

spatial regions embedded in the plane, a set of 18 binary relations can be defined according 

to the content criterion (Egenhofer and Herring 1990b). These relations apply to spatial 

regions with either connected or disconnected boundaries an example of the latter case 

being a region with holes. However, if only regions with connected boundaries, or 

homeomorphic to a two-dimensional disk are considered, then there are only eight jointly 

exhaustive and pairwise disjoint (JEPD) relations between two regions—disjoint, meet, 

overlap, equal, covers, coveredBy, contains, inside (Fig. 2.4) (Egenhofer and Herring 

1990a).  

    

! 

0 0 1

0 0 1

1 1 1

" 

# 
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$ 

% 

& 
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Figure 2.4 The eight binary topological relations for hole-free regions as defined in the 
9-intersection and their matrices. 

This set is a closed set of relations with complete coverage.  The converse relation 

! 

t  

is defined for each topological relation t such that     

! 

t(A, B)=t(B, A) , and the disjunction of 

all eight topological relations forms the universal relation, denoted by U. All 

compositions in the 9-intersection are extensional and therefore form the basis for a 



31 

strong relation algebra that can be used to reason about topological relations (Egenhofer 

1991; Smith and Park 1992).  

The 9-intersection on simple regions has been refined in a number of ways, 

especially using additional topological invariants, such as the dimension of the 

intersection components, their types (touching or crossing), or the number of the 

components, to express more details about the topological relations (Egenhofer 1989; 

1993; Clementini et al. 1993; Egenhofer and Franzosa 1995) 

2.3.1.3 Region Connection Calculus 

The Region Connection Calculus (RCC) is a fully axiomatized first-order theory of 

topological relations (Randell et al. 1992b; Cohn et al. 1997). It is founded on Clarke’s 

(1981, 1985) calculus of individuals based on connection. Unlike the 9-intersection, 

which models relations between different spatial entities (i.e., points, lines, regions), RCC 

applies to a single domain, that is, spatial regions, which for RCC are defined as non-

empty, regular closed subsets of some topological space U. The interiors and exteriors of 

such regions need not be connected and can therefore, have holes or disjoints parts of 

arbitrary, but all of the same, dimension. 

The basic primitive relation of RCC is the binary relation C(x, y) between two 

regions x and y, which reads “x connects with y.” The interpretation of C(x, y) in RCC is 

that spatial regions x and y are connected if their topological closures share a common 

point and the only requirement is that the relation C is reflexive and symmetric, enforced 

by axioms included in the theory. Using C(x, y), a large number of different relations can 

be defined (Gotts 1994; Gotts 1996), such as 

! 

P(x,y)"#z C(z,x)$C(z,y)[ ] , which reads 

“x is part of y”, or 

! 

O(x,y)"#z P(z,x)$P(z,y)[ ] , which reads “x overlaps y.” A set of eight 
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JEPD base relations, denoted as RCC-8 (Table 2.1), allows for topological distinctions 

rather than just mereological (Randell et al. 1992b). Most other relations definable in 

RCC are refinements of these relations and other primitive functions can be added, such 

as the convex-hull function (Randell et al. 1992b; Davis et al. 1999). 

 

Table 2.1 Topological interpretation of the eight base relations of RCC-8 (Bennett 1998). 

RCC-8 Relation Topological Constraints 

〈A, B〉 ∈ DC (A is disconnected from B) 

! 

A"B=#  

〈A, B〉 ∈ EC (A is externally connected with B)   

! 

A°"B°=#, A"B=# 

〈A, B〉 ∈ PO (A partially overlaps B) 
  

! 

A°"B°#$, A%B, B%A  

〈A, B〉 ∈ TPP (A is a tangential proper part of B) 
〈A, B〉 ∈ TPP−1 (B is a tangential proper part of A) 

  

! 

A"B, A#B°  
  

! 

B"A, B#A°  

〈A, B〉 ∈ NTPP (A is a non-tangential proper part of B) 
〈A, B〉 ∈ NTPP−1 (B is a non-tangential proper part of A) 

! 

A"B°  

! 

B"A°  

〈A, B〉 ∈ EQ (A is equal to B) 

! 

A=B  

RCC-8 is the constraint language formed by the eight JEPD base relations and by 

all possible unions of the base relations. The latter represent indefinite knowledge. Using 

first-order definitions, it can be verified that exactly one of the eight base relations holds 

between two spatial regions. Since they are pairwise disjoint, there are 28 = 256 different 

RCC-8 relations altogether (including the empty and the universal relation). The spatial 

regions in RCC-8, without loss of generality, due to the intended interpretation of the C 

relation, are regular closed (equivalent to the closure of their interior) subsets of a 

topological space, not necessarily internally or externally connected, and with no 

particular dimension. By applying the appropriate set-theoretic operations, the converse, 

intersection, and union of relations can be defined. The eight base relations are closed 

under composition and their composition table can be computed using their formal 

definitions (Randell et al. 1992a).  
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If given a straightforward topological interpretation in terms of point-set topology, 

the RCC-8 relations correspond to the eight topological relations of the 9-intersection 

(Li 2006). This matching seems to be a natural agreement of what topological distinctions 

are important (Renz 2002). However, the two models have different domains of 

discourse: the 9-intersection applies to simple regions, which are two-dimensional objects 

that are embedded in 

! 

IR
2 and homeomorphic to the unit disk, while RCC takes the 

general definition of a region as a non-empty regular closed set. This difference explains 

also why the 9-intersection is applicable to hole-free, one-piece regions, while RCC is 

implicitly applicable to regions with possible disconnected interiors or exteriors.  

2.3.2 Models for Representing Complex Regions 

Complex regions, a sub-category of complex spatial objects, mainly refer to regions with 

separations of the interior (multiple components) and of the exterior (holes). For example, 

Italy has multiple components (the mainland and the islands) and two holes (the Vatican 

City and San Marino). A few models have been developed for representing complex 

spatial objects in general. The focus here is on complex regions.  

Worboys and Bofakos (1993) introduced the concept of a generic area based on a 

labeled-tree representation. Areal objects with holes and islands nested to any finite level 

are modeled by describing each level with a set of nodes. The nodes are topologically 

equivalent to the unit disk, pairwise disjoint or with a finite intersection, and may 

spatially contain their child nodes. The root node represents the whole region object. 

Clementini et al. (1995) define composite regions as closed (non-empty) two-

dimensional subsets of 

! 

IR
2  that have closed components. Each component is a simple 

region (with no holes). The components’ interiors are pairwise disjoint and their 
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boundaries are either pairwise disjoint or intersect at a finite set of points. A complex 

region, however, has components that may either be simple regions or regions with holes 

(Clementini and Di Felice 1996). 

The OpenGIS Consortium (OGC) has informally described geometric features, 

called simple features, in the OGC Abstract Specification (OGC 1999) and in the 

Geography Markup Language (GML) (OGC 2005), an XML encoding for the transport 

and storage of geographic information. Among these features, MultiPolygons refer to 

complex regions that may have multiple components and holes. An informal definition of 

such objects that permit multi-components and holes has also been given in ESRI’s 

Spatial Database Engine (SDE) (ESRI 1995).  

A complex region (Schneider and Behr 2006) comprises one or several regular sets, 

called faces that may have holes and other faces as islands in the holes. A hole within a 

face can touch the boundary of the face or of another hole, at a single point at most. Each 

face is atomic and cannot be further decomposed. A complex region can comprise 

multiple faces which can be disjoint, meet at one or many single boundary points, or lie 

inside a hole of another face and possibly share one or several single boundary points 

with the hole (Fig. 2.5).  

   
(a) (b) (c) 

Figure 2.5 A complex region: (a) with five faces, (b) its boundary, and (c) its interior. 

2.3.3 Models of Topological Relations for Complex Objects 

Models of relations for hole-free regions have been typically either applied directly to 

more complex regions or formed the basis for developing models for such complex 
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regions. An example of the former approach is RCC-8, which considers for regions with 

holes the same relation definitions as for regions without holes (Randell et al. 1992b). 

While compact and compatible across regions with an arbitrary number of holes, this 

approach implies, for instance, that the three external-connection configurations—B is 

externally connected to A from the outside (Fig. 2.6a), through A’s hole (Fig. 2.6b), or by 

filling A’s hole completely (Fig. 2.6c)—are categorized by the same RCC-8 relation. In 

order to distinguish these cases would either have to count the components of the 

complement or use different kinds of connection of increasing strength identified in a 

later study (Cohn and Varzi 2003). The problem is partially addressed with RCC-23, a 

larger number of relations based on the conv primitive, a function such that conv(A) 

denotes the convex hull of region A. While RCC-23 differentiates externally connected 

(Fig. 2.6a) from connected from the inside (Fig. 2.6b), it groups together the latter case 

with that of B filling A’s hole (Fig. 2.6c). This problematic grouping of topologically 

different configurations under the same relation is a limitation that can be remedied if the 

model of relations is explicitly designed to account for the holes in the regions.  

   
(a) (b) (c) 

Figure 2.6 Three topologically distinct grouped together by RCC. RCC-8 groups all three 
together under relation EC(A, B). RCC-23 groups (b) and (c) together under 
INSIDEi_EC(A, B). 

Models for complex objects have been systematically derived, either directly or 

indirectly, from the intersections between interiors, boundaries and possibly exteriors of 

two objects, in three main ways: (1) building on the atomic relations between hole-free 

regions (Egenhofer et al. 1994), (2) forming a smaller group of relations and adding 
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boundary operators (Clementini et al. 1995; Clementini and Di Felice 1996), and (3) 

recognizing different components and exteriors of the complex objects and imposing 

additional intersection constraints to differentiate between enriched intersection matrices 

(Schneider and Behr 2006; McKenney et al. 2007; McKenney et al. 2008; Kurata 2008). 

2.3.3.1 Building on Relations between Hole-Free Regions  

A holed region has a separated exterior, unlike hole-free regions. In the case of a 

separated exterior, there exists an unbounded set that is the outer exterior (or the set of 

points in the plane that surrounds the region and its holes) and a number n > 0 of bounded 

sets that form the inner exterior(s). The union of the outer and the inner exterior(s) makes 

up the entire exterior of a holed region. A hole in a region A corresponds to the closure of 

an inner exterior and it is pairwise disjoint from any other hole. The generalized region 

A* (Egenhofer et al. 1994) is defined as the union of A and all the holes that are 

contained in A, essentially exactly filling all holes, similar to the filling between holes 

and material bodies (Section 2.4). Both the generalized region and each of the holes are 

then simple regions, homeomorphic to the unit-disk, and the generalized region always 

contains each of the holes.  

Using the relations defined in the 9-intersection, the topological relationship 

between two holed regions is characterized as the conjunction of the relations between 

the underlying hole-free regions—the generalized regions and the holes. For two holed 

regions A and B with n and m holes respectively, a matrix of (n+1)(m+1) elements 

represents the topological relation between A and B (Egenhofer et al. 1994). A relaxation 

on the restrictions of the model allows the holes to be at the region’s boundary or along 

the boundary of another hole. This relaxation changes the types of topological relations 

that may hold between the generalized region and each hole to 
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(contains∨covers∨equal), and between any two holes to (disjoint∨meet). In an 

extension of the model, the dimension of the relation meet between two touching holes 

can vary, depending on whether the holes meet at a common point or along a set of points 

that form a line (Paiva 1998). 

 In this model, the number of topological relationships between two holed regions is 

dependent on the number of holes in each region, resulting in an arbitrary number of 

relations. To avoid production of an infinite set of valid topological relations, this thesis 

identifies the finite set of relations that can hold in topological configurations involving a 

certain number of single-holed regions, even if the underlying concept of using the 

relations between the simple regions in such configurations is the same. 

2.3.3.2 Models Based on A Smaller Group of Relations 

Initially applied to composite regions (Clementini et al. 1995), the relations between 

hole-free regions defined in the Calculus-Based Method (CBM) (Clementini et al. 1993) 

are extended to cover complex geometric features (Clementini and Di Felice 1996). The 

CBM uses the four intersections between the interiors and boundaries of simple features 

(points, lines or areas) to define five topological relations—touch, in, cross, overlap and 

disjoint. To enhance the use of the relations, operators that extract boundaries from areas 

and lines are defined. For a simple region A, the boundary operator (b) returns the closed 

curve ∂A (Eqn. 2.3). 

 (A, b) = ∂A (2.3) 

Based on the relations of the CBM for hole-free regions, the Topological Relations 

for Composite Regions (TRCR) are defined at two levels of granularity called the course 

level and the detailed level, respectively (Clementini et al. 1995). At the course level, the 
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general relationship between two composite regions is given, while at the detailed level, 

the single components are considered. A set of rules links the two levels of description. 

When dealing with a composite region A made up of n components, the boundary is 

made up of n closed curves that may be disjoint or touch at a finite set of points 

(Eqn. 2.4). With TRCR, however, the relations between composite regions are defined in 

an ad hoc manner and not systematically derived from the underlying model.  

 
  

! 

(A, b)= "Ai
i=1

n

U  (2.4) 

For a model of relations between complex regions that may have holes, the 

boundary operator returns a complex line, which is the union of several (either disjoint or 

intersecting at a finite set of points) circular lines. Additionally, the cross relationship 

needs to be modified appropriately (Clementini and Di Felice 1996). This approach 

allows self-intersecting features and the objects of representation resulting from its 

definitions are not necessarily unique.  

2.3.3.3 Enhanced 9-Intersection 

The relations defined in the 9-intersection, combined with a collection of topological 

constraint rules enable the definition of topological relations between complex regions 

with holes in a number of different models.  

In the Schneider and Behr (2006) relation model topological relations are derived in 

a manner independent from the number of components that make up the participating 

complex regions (faces in this case), by extending the 9-intersection to point sets that 

belong to complex rather than to simple spatial objects. The philosophy is that if two 

regions intersect for example, according to a given definition, then the number of 

intersecting face pairs (as long as it is greater than zero) is irrelevant, since it does not 
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influence the fact of intersection. In order to exclude impossible configurations, a number 

of topological constraints (conditions) are imposed in each of the 29=521 possible 

matrices of the 9-intersection. The ones that pass that initial test are also subject to 

validation through drawing, to determine whether they represent realizable configurations 

in the plane. 

For determining the topological relations between two complex regions, nine 

constraint rules are applied to all 512 9-intersection matrices and this process reveals that 

33 matrices satisfy the rules. All 33 configurations proved realizable in the plane. Among 

them, the eight topological relations between simple regions (Egenhofer 1989; Egenhofer 

and Franzosa 1991) can also be identified.  

Much like RCC-8, this model provides a single relation for configurations with or 

without holes distinguishing, however, some additional details that are grouped together 

in RCC-8. These distinctions come, nevertheless, at the premium of causing some 

anomalies when holes are introduced into or removed from regions, leading at times to 

perplexing reclassifications of relations. For instance, configurations in Figures 2.7a and 

2.7b have the same 9-intersection matrices and the difference between the two is that in 

2.7b, B’s hole is filled. The same 9-intersection is shared by Figure 2.7c, in which B fills 

A’s hole, as well as Figures 2.6a and 2.6b (Fig. 2.6c is the same as 2.7c). However, when 

B’s hole is filled, going from Figure 2.7c to 2.7d, the vanilla 9-intersection of Figure 2.7d 

is a different one, classifying it as a new relation. What would be expected is the 

grouping of figures 2.7a-b (and probably 2.6a-b) under the same relation, allowing 

Figures 2.7c-d to share another relation, since they involve the different configuration of 

having one region filling the other’s hole. RCC-8, on the other hand, offers a more 

consistent treatment of such scenarios. 
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(a) (b) (c) (d) 

Figure 2.7 Topological configurations realized by the Schneider-Behr model (2006). 
Relations (a), (b), and (c) have the same vanilla 9-intersection, whereas (d) has a different 
one. 

If the 9-inersection is applied to complex spatial objects, it considers only the 

interior, exterior and boundary point sets of the whole object, providing the relation for 

the coarse or global level (Clementini et al. 1995). As a result, local topological 

information regarding relations between individual and separate components of the object 

is lost. By defining global topological relations based on the existence of local 

topological relations between the various components, a hybrid model for topological 

relations between complex regions is developed (McKenney et al. 2007).  

Given that the set of simple regions with holes (SRHs) is a subset of the set of 

complex regions, it follows that the set of topological relations that hold between two 

SRHs is a subset of the set of topological relations that can hold between two complex 

regions. Applying a new constraint to the 33 identified topological relations between 

complex regions (Schneider and Behr 2006), 15 relations are eliminated, allowing 18 

relations between two SRHs (McKenney et al. 2007). A localized topological predicate 

(LTP) characterizes the topological relations between two complex regions A and B, by 

asserting which of the 18 relations between two SRHs hold between the components of 

the regions. Each LTP then is a conjunctive Boolean expression with exactly 18 clauses, 

denoted by an 18-bit vector. With the use of 17 constraints, all the invalid bit vectors are 

eliminated. The remaining set of LTP for complex regions consists of 137,209 18-bit 

vectors. If four additional bits are added to each LTP, which reveal the global relation of 

the objects, the number of valid 22-bit vectors is much higher. These extremely large 
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numbers of relations defined between two complex regions and their non-intuitive 

representation as Boolean 22-bit vectors are some of the drawbacks of this model, 

making its use cumbersome.  

Problematic is also the fact that these models are based on topological relations 

between SRHs, a data type which is not typically implemented in current spatial database 

systems. A solution to this problem was sought in a later approach, where predicates as 

the relations that can hold between the simple regions that are included in a SRH—

namely the hosts of the holes and the holes themselves—are first identified (McKenney 

et al. 2008). The topological relation between two SRHs is characterized as a component 

based topological relationship (CBTR). Each CBTR consists of four sets of topological 

predicates, containing all predicates that exist between the simple regions in the two 

SRHs, and two Boolean values that indicate whether a special condition holds. However, 

even this approach does not offer a manageable set of intuitively named topological 

relations between regions with holes that could facilitate the recognition of such relations 

by the user of a system.  

As an extension of the 9-intersection, the 9+-intersection distinguishes the 

intersections between the subparts of the objects’ topological parts (i.e., the subdivisions 

of the object’s interior, boundary or exterior) (Kurata and Egenhofer 2006).  In this 

model, the topological relations between A and B are characterized by the 9+-intersection 

matrix in Equation 2.5, whose nine bracketed elements are matrices by themselves, each 

representing the intersection between the subparts of A’s one topological part and those 

of B’s one topological part.   
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between A and B are distinguished by the presence or absence of all intersections listed 

in the matrix.  
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The 9+-intersection is extended to derive the candidates for the topological relations 

between various pairs of objects embedded in the various spaces (Kurata 2008). The 

difference with the previous models based on the 9-intersection extensions, is that the 

constraints applied on the 9+-intersection are nine universal constraints, instead of 

specific constraints to each pair of objects in each space. Using this model and the 9+-

intersection matrix in Equation 2.5, the same set of relations between a hole-free region A 

and a single-holed region B that are derived in this thesis, is produced by different 9+-

intersection matrices. In these matrices 
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B, 
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B, 
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B
"1 and 
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B
"2 are B’s outer boundary, 

hole boundary, outer exterior and inner exterior (the hole). The advantage of this thesis’ 

approach over the 9+-intersection is that the relations defined in this work are based on 

the relations identified by the original 9-intersection, whose definitions are readily 

available in current geographic information systems for the simple regions data type and 

need not be reconstructed by applying the universal constraints for the subparts on the 

fly.  

2.4 Look-A-Likes of Regions with Holes 

Apart from crisp regions of space that represent two-dimensional geographic phenomena 

with well-determined boundaries (i.e., the area occupied by a shopping mall), data stored 

in a GIS are frequently about areas of space with vague or indeterminate boundaries 
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(Burrough and Frank 1996), such as urban areas or areas occupied by particular species 

or habitats of plants. Such vague regions may visually resemble regions with a hole, if 

one depicts them graphically by only drawing the regions’ outlines.  

A vague region in Erwig and Schneider (1997) is a pair of disjoint regions: the 

kernel, which describes the area that belongs to the vague region and the boundary, 

which is the area or parts of it that may or may not belong to the vague area or it is 

unknown whether they belong to the vague area or not. The boundary need not 

necessarily be one-dimensional but can be a region as well. Kernels and boundaries may 

be adjacent, and may have holes which themselves may contain kernels and boundaries 

with holes (Fig. 2.8) (Erwig and Schneider 1997). 

 

Figure 2.8 A vague region with kernels (k), boundary (b) and a hole (blank area). 

While RCC (Section 2.3.1.3) deals with crisp regions (i.e., regions with determined 

boundaries and certain extent), the egg-yolk model specifies relations between vague 

regions. It is possible to use two or more concentric subregions that indicate degrees of 

membership in a vague region (Lehmann and Cohn 1994). In the simplest case with two 

subregions, the inner one is referred to as the yolk, the outer as the white. Taken together, 

they define the egg (Fig. 2.9). The following constraint conservatively defines limits on 

the possible complete crisping or precise versions of the pair of vague regions that 

represent the egg and the yolk of an egg-yolk configuration: any acceptable complete 

crisping must lie between the inner and outer limits defined by the egg and yolk (Cohn 
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and Gotts 1996a). This is a way to show that the entire non-crisp region’s penumbra of 

vagueness lies between these limits.  

 

Figure 2.9 Example of a vague region modeled by the egg-yolk representation. 

The egg-yolk formalism allows for the RCC-5 relations (i.e., a subset of the RCC-8 

where PP and TPP are grouped under PP, their converses under PP-1, and DC and EC are 

grouped together under DC) between any egg-egg, yolk-yolk, or any egg and yolk each 

belonging to different configurations, with the constraint that a yolk is always a proper 

part of its own egg. There are 46 possible configurations recognized between two egg-

yolk pairs (Fig. 2.10). Each of these configurations may result in a subset of the RCC-5 

set of relations, according to the various complete crispings of the vague regions that can 

take place in each occasion (Cohn and Gotts 1996a).  

 

Figure 2.10 The 46 possible relations between two egg-yolk pairs (numbering after Cohn 
and Gotts 1996a). 
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The egg-yolk approach may be considered comparable to the regions with holes 

approach (Egenhofer et al. 1994). A correspondence between a region with a hole and an 

egg-yolk pair gives almost the same analysis. Each relation between two vague regions in 

RCC-5 is found as a scene representation that shows the relations according to the 9-

intersection between each pair of simple regions that exist in the scene (Li 2006). 

However, eight base relations are considered in (Egenhofer et al. 1994), in contrast to 

five base relations in the egg-yolk theory. Since disjoint and meet are grouped under the 

DR relation, and TPP and NTPP under PP, the egg-yolk theory leaves out many more 

relations between regions with holes than the 9-intersection method does. For example, if 

two regions meet and they each cover their single hole as shown in Fig. 2.11a, then 

according to the egg-yolk model their relation would be classified the same as the 

topologically different relation shown in Fig. 2.11b. In a different approach, where 

regions may or may not be crisp, referred to as OCregions (for ‘Optionally Crisp’), more 

relations than the original 46 between two egg-yolk pairs are possible (Cohn and 

Cotts 1996b).   

 
             (a)             (b) 

Figure 2.11 Two topologically distinct scenarios of a relation between two single-holed 
regions that are grouped together under the egg-yolk theory. Both (a) meet and (b) 
disjoint relations are grouped together under case (b).  

In a generalization of the egg-yolk model, a vague region is modeled by a pair of 

RCC regions representing the lower and upper approximations (Roy and Stell 2001). 

When the lower and upper approximations are equal, the region is crisp. Alternatively, 

rough sets (Pawlak 1994) are used to model vague regions (Bittner and Stell 2000). In 
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this case, the lower and upper approximations are a pair of classical sets that together 

represent the rough set. As expected, the lower approximation consists of all the elements 

that certainly belong to the set, whereas the upper approximation consists of all elements 

that possibly belong to the set. Finally, vague regions that visually resemble regions with 

holes may also be represented by as a single-component fuzzy set that does not have 

irregularities such as isolated vague points and vague lines, or punctures and cuts (i.e. 

removed vague points and vague lines, respectively) (Dilo et al. 2007). A vague region is 

then a broad boundary region, such that points in the broad boundary have different 

membership values that gradually change between neighboring points. If the membership 

values change abruptly along a line making a stepwise jump, a core area is more 

distinguishable, resembling more in this case a region with a hole (Fig. 2.12). However, 

such abrupt value changes from both sides of the line are not allowed (Dilo et al. 2007). 

 

Figure 2.12 A vague region with a single-component core.  

Another model for spatial objects with indeterminate boundaries includes, in many 

occasions, geometric representations that resemble those of regions with a hole 

(Clementini and Di Felice 1996b). The broad-boundary model describes the uncertainty 

in the boundaries as a two-dimensional exact zone surrounding the object, which acts as a 

separation of the space that surely belongs to the region from the space that is surely 

outside. It uses as basis the 9-intersection, only now the boundary of each region may be 

at parts or completely two-dimensional. The following definitions, different from the 9-

intersection, apply: 



47 

• A region with a broad boundary A is made up of two simple regions, A1 and A2, 

with A1 ⊆ A2, where ∂A1 is the inner boundary of A and ∂A2 is the outer boundary 

of A. 

• The broad boundary ΔA of a region with a broad boundary is a closed connected 

subset of 

! 

IR
2  with a hole. ΔA comprises the area between the inner boundary and 

the outer boundary of A, such that ΔA = 
  

! 

A
2
"A

1
. The interior of region A is defined 

as: A°= A2 - ΔA (Fig. 2.13) (Clementini and Di Felice 1996b). 

  
(a) (b) 

Figure 2.13 Different broad boundary regions: (a) a region with a completely two-
dimensional broad boundary and (b) a region with a broad boundary that is only at parts 
two-dimensional. 

Applying geometric conditions less restrictive than for simple regions results in 44 

out of the 29 matrices that correspond to possible geometric realizations between regions 

with broad boundaries, instead of 8 between simple regions (Clementini and Di Felice 

1996b). In case the boundary maintains its 2-dimensionality, the geometric models 

visually resemble regions with a hole (Fig. 2.13a).  

This approach considers a broad boundary region (BBR) as a whole and uses the 9-

intersections among interiors, broad boundaries and exteriors for determining topological 

relations between two BBRs A and B made up of two crisp regions each. A different 

approach, the 4-tuple method, represents such relations as the combination of four 

individual relations: t(A1, B1), t(A1, B2), t(A2, B1), and t(A2, B2) (Du et al. 2007). 

Relations t(A1, B1) and t(A2, B2) can be any of the set of five relations {disjoint, overlap, 

contain, inside, equal} while t(A1, B2) and t(A2, B1) can be any of the same set, excluding 
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equal. The 4-tuple method makes finer distinctions and is more expressive than the 44 

BBRs relations in (Clementini and Di Felice 1996b).  

In a similar fashion, in the Qualitative Min-Max (QMM) model a region with a 

broad boundary is composed by two crisp subregions: (1) a maximal extent Amax (i.e., the 

representation of the region when the boundary is considered as far as possible) and (2) a 

minimal extent Amin (i.e., the representation of the region when the boundary is 

considered as close as possible) (Bejaoui et al. 2008). Amax and Amin are related by one of 

the following relations: equal(Amax, Amin), covers(Amax, Amin), or contains(Amax, Amin) and 

the broad boundary is then the difference between the two extents (Fig. 2.14).  

 

Figure 2.14 Minimal and maximal extends of a region with a broad boundary. 

Topological relations between two regions with broad boundaries are determined by 

specifying the subrelations between the minimal and maximal extents of the regions 

involved, in a 2×2 matrix (Eqn. 2.6) (Bejaui et al. 2008). Considering the restriction to 

three possible relations between the two extents of each region, only 242 out of the 

84=4096 possible matrices are valid relations between two regions with broad boundaries.  
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Vague or indeterminate regions may frequently resemble holed regions; they are, 

however, conceptually and semantically dissimilar. Pairs of egg-yolk regions for example 

conceptualize the initial possible configurations that delimit the crispening of regions. 

The actual relation is realized only after one or both egg-yolk regions have been replaced 
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with a crisp region, resulting possibly in the relation that holds between two simple 

regions. Semantically, an egg-yolk region is an area wherein somewhere the actual entity 

lies, therefore, presenting no topological discontinuity.  

Broad-boundary regions conceptualize an entity and a distinct surrounding area that 

is considered the possible boundary extend. Therefore, the inner border separates parts of 

the same entity. Holed regions, however, conceptualize real-world holed entities with a 

distinct topological discontinuity—the boundary of the hole—separating the actual region 

from the hole (empty space) inside it. Consequently, relations specified between broad-

boundary regions cannot properly capture the semantics of relations between regions that 

represent actual holed entities. Furthermore, some of the conditions acknowledged in 

(Clementini and Di Felice 1996b), which prevent the regions from having thick 

boundaries for example, exclude a number of relations between holed regions where the 

thickness of the generalized region is not an issue. A more complete set of relations 

defined explicitly to capture unique configurations between two holed regions (or 

between hole-free and holed regions) can prove more valuable. 

2.5 Change in the Structure of Dynamic Areal Phenomena 

Apart from models that represent the topology of static regions with holes, current 

research has also focused on the changes that may occur in the topological structure of 

evolving complex regions. Users are often interested in the changes that occur over time 

in dynamic geographic phenomena such as floods and wildfires, which are monitored by 

wireless sensor networks (Jixiang and Worboys 2008). The locations occupied by a 

phenomenon at a particular time are abstracted into areal objects (Jixiang and 
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Worboys 2006), the evolution of which through time represents the spatial evolution of 

the geographic phenomenon.  

An areal object is defined as a set of points R in 2D space, such that R is regular 

closed, bounded (contained in the ‘inside’ of a Jordan curve) and both R and its 

complement have a finite number of connected components. It is not assumed that R is 

simply connected or even connected, so holes and disconnected components are allowed. 

Holes themselves may contain islands with holes, recursively (Jixiang and 

Worboys 2009). 

The topological relationship between the areal objects, holes and islands at a 

particular snapshot are represented by a rooted tree structure (Worboys and 

Bofakos 1993). In the tree, each node represents a region and the direct successors of 

each node represent the holes or islands contained in it. A region is contained within 

another region if and only if there is a directed path from the node representing the host 

region, to the node representing the contained region. The root is double circled 

(Fig. 2.15) (Jixiang and Worboys 2009). As the areal objects evolve through time, their 

topological structure may undergo changes such as the appearance and disappearance of 

holes. Such topological changes are called topological events and result in changes in the 

corresponding tree structure. With the use of different tree morphisms, which are 

structure-preserving functions from one tree to another, different kinds of topological 

changes are distinguished (Jixian and Worboys 2006; 2009).  
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(a) (b) 

Figure 2.15 An areal object: (a) the object and (b) its tree representation. 

2.6 Change in Topological Relations between Regions 

The model discussed in Section 2.5 represents the dynamic topology of areal objects, 

which evolve due to topological changes in the structure of the objects such as the 

appearance or disappearance of holes. Another approach to topological change is the 

analysis of the transitions between binary topological relations as the result of continuous 

changes that preserve the topological structure of the objects involved. Therefore, the 

study of transitions between relations differs from the study of changes in the topological 

structure of objects. The analysis of transitions aims at the construction of conceptual 

neighborhood graphs (CNGs) that describe all immediate transitions among members of 

a set of relations (Egenhofer and Al Taha 1992; Egenhofer and Mark 1995), and serve as 

frameworks for the determination of relations’ similarity (Bruns and Egenhofer 1996).  

2.6.1 Conceptual Neighborhood Graphs for Binary Topological Relations 

In closed sets of binary topological relations whose members are mutually exclusive, a 

deformation changes the relation between two objects into a new one that must be one of 

the remaining members in the set. Both sets of binary relations defined from the 9-

intersection and the RCC-8 present these properties. Deformations are gradual changes 

that may occur by typical translation, scaling (expansion or reduction), or rotation of 

either object in the embedded space. Even though the differences in the various paths 
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through the neighborhood graph may not be a sufficient factor in human 

conceptualization of moving geographic regions for example, they are a necessary one, 

along with others, such as the identity of the moving region, or the concept of a referent 

region (Klippel et al. 2008). Each of the relations has as set of “closest relations” to 

which it is more likely to deform to when the geometry of one of the objects is altered. 

The changes are gradual and each relation has to deform first to its closest neighbors 

before subsequently changing to more distant relations—no jumps are expected. 

In the case of the 9-intersection, each relation corresponds to a different intersection 

matrix. By evaluating the different entries in different matrices—empty or non empty— 

the topological difference for all pairs of the eight binary relations may be calculated. If 

transferred to a graph where nodes represent the topological relations and the edges stand 

for the possible changes, the topological difference reveals for each node, which of the 

edges link it with its topologically closest relations. Each edge represents the smallest 

necessary topological change to transform one relation to a different one, with no 

intermediate cases. The formed graph is called the Conceptual Neighborhood Graph 

(CNG) (Fig. 2.16) and it makes evident which of the transitions can occur gradually when 

changing the geometry of one object (Egenhofer and Al Taha 1992). 

Accordingly, in RCC, different sets of base relations can be expressed in the form 

of axioms which stipulate direct transitions that are allowed between pairs of objects over 

time. A pictorial representation of the RCC-8 CNG and their direct topological transitions 

produces their conceptual neighborhood graph (Fig. 2.17) (Randell et al. 1992b). 
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Figure 2.16 Conceptual neighborhood graph of the 9-intersection for regions (Egenhofer 
and Al-Taha 1992). 

 
Figure 2.17 Conceptual neighborhood graph for RCC-8 (Randell et al. 1992b). The 
graph is rotated by 90° to be aligned with Fig. 1.16. 

2.6.2 Similarity of Binary Relations 

Similarity, as the assessment of deviation from equivalence, is an organizing mechanism 

by which individuals classify objects, form concepts, and make generalizations 

(Tversky 1977). People frequently and casually judge the similarity of spatial 

configurations in everyday life. While the common principle is enabling the 
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quantification of deviations from equivalence for spatial configurations, the methods 

employed may differ. One of the methods is applying the concept of gradual change as 

this was described in Section 2.6.1, to impose an order on sets of spatial relations. Two 

spatial relations that require little change to deform one into the other are more similar 

than relations that require more change (Bruns and Egenhofer 1996). 

Topological constraints are attractive for assessing similarity as they don’t respond 

to subtle geometric variations and they only get changed when significant alterations 

occur. Based on the concept of gradual change, topological relations are organized on 

conceptual neighborhood graphs, which facilitate the ordering of topological relations, 

and support the determination of similar relations. For example, on the CNG for the 9-

intersection for simple regions, statements like “meet is similar to overlap” or “meet is 

more similar to overlap than to contains” are enabled. The similarity ordering of sets of 

relations was first introduced for Allen’s 1-dimensional interval relations (Freksa 1992), 

while conceptual neighbors of distance and direction relations between regions (Bruns 

and Egenhofer 1996) and of topological line-regions relations have also been described 

(Egenhofer and Mark 1995). 

2.7  Summary 

Many real world entities have holes of some sort and therefore when reasoning about 

objects in the three dimensions or in the plane, it is desirable if not necessary that holed 

objects are also accounted for. In the three-dimensional environment, holes have mainly 

been studied in philosophy and in visual cognition. In qualitative spatial reasoning, which 

is the focus of this thesis, there have been efforts to incorporate two-dimensional holed 

regions in models of topological relations between spatial entities.  
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The basis of the initial models have been models of topological relations between 

simple regions, such as the 9-intersection, which has been modified and extended to 

include regions with holes, or RCC, which implicitly applies uniformly to simple, holed 

or multi-component regions. Different models focus on more complex objects, among 

them regions with holes. Furthermore, the use of models for objects with indeterminate 

boundaries that resemble geometrically regions with holes has been suggested.  

We use the 9-intersection model to develop our approach for reasoning about two-

dimensional regions with holes as well, but we offer a more thorough examination of the 

sets of possible relations between specific configurations involving regions with a single 

hole. The following chapter describes an important first step for our reasoning 

framework: the complete set of topological relations between a simple region and a 

region with a single hole. 
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Chapter 3  Relations between a Hole-Free and a Single-

Holed Region 

A first step in the development of the Holed Regions Model (HRM) is the derivation of 

the set of relations between a hole-free and single-holed region, when both regions are 

two-dimensional and embedded in the plane. This chapter defines and analyzes the new 

set of 23 relations between a hole-free and a single-holed region and examines 

quantitatively the relation composition inferences. As the foundation, this chapter 

introduces the qualitative model and the conceptual tools necessary for deriving sets of 

relations and their composition tables, as well as analysis techniques. Quantitative 

measures, such as crispness and complete crispness, which complement the qualitative 

analysis of the compositions are employed. Overall, this chapter exposes the reader to the 

methodology applied to developing the Single-Holed Regions Model (S-HRM), which 

incorporates single-holed regions in the reasoning process. 

Section 3.1 specifies the qualitative conceptualization of a region with a hole and 

the canonical model used for modeling a single-holed region as well as such a region’s 

topological relation with another region. Section 3.2 presents a method to derive the 

binary relations that are feasible between a hole-free and a single-holed region. Section 

3.3 presents the 23 relations that can be found between such a pair of regions, followed 
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by an analysis of these relations’ algebraic properties in Section 3.4. Section 3.5 presents 

the conceptual neighborhood graph for the 23 relations while Section 3.6 derives the 

qualitative inferences that can be made with the new set of relations, focusing on 

compositions over a common single-holed region. Section 3.7 analyzes these 

compositions, comparing their reasoning power with the compositions of topological 

relations between hole-free regions. The chapter is summarized in Section 3.8. 

3.1 Qualitative Model of a Single-Holed Region 

The S-HRM is based on the relations between a spatial region and a single-holed region, 

or between two single-holed regions so it is important to specify what spatial regions, 

holes, and single-holed regions are. The definition of a spatial region is adopted from 

Egenhofer and Herring (1990a): A spatial region A is a connected point-set with non-

empty interior and connected boundary, homeomorphic to a 2-disk.  

A single-holed region B (Fig. 3.1) is a spatial region with a disconnected boundary 

and separated exterior. There exists a semi-bounded set, which is the outer exterior, 

separated from the interior of the region by the outer boundary, and an inner exterior, 

which fills the region’s hole. The hole is bounded by the inner boundary of the holed 

region. In order to get a single-holed region, we subtract from a hole-free region A the 

interior of another spatial region H, which is fully contained in A (Eqn. 3.1a). The hole is 

then defined as the closure of the interior of H (Eqn. 3.1b)  

 B = A \ H°, with A contains H (3.1a) 

 BH =   

! 

H° (3.1b) 
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Figure 3.1 A single-holed region B. 

A single-holed region B is further analyzed in five topologically distinct and 

mutually exclusive parts (B°, ∂0B, ∂1B, B-0, B-1) (Fig. 3.2), which establish four 

neighborhood relations—neighbor(B-1, ∂1B), neighbor(∂1B , B°), neighbor(B°, ∂0B) and 

neighbor(∂0B, B-0). 

B° is B’s interior 
B-1 is the inner exterior of B, which fills B’s hole 
B-0 is the outer exterior of B 
∂1B is the inner boundary of B, which separates 

B° from B-1  
∂0B is the outer boundary of B, which separates 

B° from B-0  

Figure 3.2 Single-holed region B’s five topologically distinct and mutually exclusive 
parts. 

There are two elements for the qualitative description of a region with a hole: (1) 

the hole BH (B-1 ∪ ∂1B) and (2) the generalized region B*, formed by the union of the 

hole and the single-holed region (BH ∪ B). The definitions of B* and BH imply that they 

are each a spatial region and, therefore, homeomorphic to a 2-disk so that the eight binary 

relations defined from the 9-intersection (Egenhofer and Herring 1990a) apply to B* and 

BH (but not to B, because B has a hole and is, therefore, not homeomorphic to a 2-disk). 

The topological relation between B* and BH is always contains. This is a more restrictive 

model than the generic region-with-holes model (Egenhofer et al. 1994), where BH could 

have also been coveredBy or even equal to B*, thereby leading to somewhat different 

semantics of a region with a hole.  
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The topological relation between a region A and a region with a hole B is modeled 

as a spatial scene (Egenhofer 1997), comprising A, B*, and BH together with the nine 

binary topological relations among these three regions (Fig. 3.3). 

 

 A B* BH 
A equal overlaps covers 
B* overlaps equal contains 
BH coveredBy inside equal  

(a) (b) 

Figure 3.3 Topological relation between a hole-free A and a single-holed region B: (a) a 
graphical depiction of the configuration and (b) the corresponding symbolic description 
as a spatial scene. 

The notation tRR is used for the relation between two hole-free regions, whereas tRRh 

and tRhR are used for the relation between a hole-free and a single-holed region and its 

converse, respectively. In such a spatial scene, five of the nine binary topological 

relations are implied for any configuration between a hole-free and single-holed region: 

each region is equal to itself, B* contains BH, conversely BH is inside B*, and for the two 

relations between A and B* and A and BH, their converse relations (from B* to A and 

from BH to A) are implied by the arc consistency constraint (Macworth 1977); therefore, 

a model of such a spatial scene only requires the explicit specification of the two relations 

between A and B* and A and BH to denote tRRh. These relations between A and B* and A 

and BH are called the constituent relations κi of a topological relation between a hole-free 

and a single-holed region. Their horizontal 1×2 matrix is a direct projection of the top 

elements in the two right-most columns of the spatial scene description (Eqn. 3.1).  

 tRRh(A, B)=[κ1 κ2]=[t(A, B*) t(A, BH)] (3.1) 

The first constituent relation is called the principal relation π(tRRh) (Eqn. 3.2a), and 

the second constituent relation is called the refining relation ρ(tRRh) (Eqn.3.2b). In some 

cases, only the principal relation suffices to specify a tRRh completely (Section 3.2). 
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However, the choice of the terminology for the constituent relations does not imply a 

more significant weight for the semantics of the principal relation, over that of the 

refining.  

 π(tRRh(A, B)) = t(A, B*) (3.2a) 

 ρ(tRRh(A, B)) = t(A, BH) (3.2b) 

3.2 Deriving the Topological Relations between a Hole-Free and a Single-Holed 

Region  

The spatial scene can also be used for the derivation of the topological relations that may 

actually exist between a hole-free and a single-holed region. Since two of the scene’s 

nine topological relations are subject to variations (the relations between A and B* and A 

and BH), a total of 82=64 tRRh could be specified. But only a subset of these 64 relations is 

feasible. For example, tRRh = [contains disjoint] is infeasible, because A cannot contain B* 

and at the same time be disjoint from BH (which is inside B*). Therefore, a topological 

relation between a hole-free and a single-holed region is feasible if (1) the relation’s 

scene representation is consistent and (2) there exists a corresponding graphical 

depiction.  

The binary topological relation between a region A and a single-holed region B is 

established as a 3-region scene comprising A, B*, and BH with the constraint that B* 

contains BH (Fig. 3.4). The topological relation between a hole-free and a single-holed 

region holds if this 3-region scene is node-consistent, arc-consistent, and path-consistent 

(Macworth 1977) for the four values t(A, B*), t(A, BH) and their corresponding converse 

relations t(B*, A) and t(BH, A). 
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 A B* BH 
A equal t(A, B*)  t(A, BH) 
B* t(B*, A) equal contains 
BH  t(BH, A) inside equal 

Figure 3.4 A three-region spatial scene. The scene captures the constituent relations of a 
binary topological relation between a region A and a single-holed region B. 

The range of these four relations is the set of the eight tRR. With four variables over 

this domain, a total of 84 = 4,096 configurations could be described for the topological 

relations between a hole-free and a single-holed region. Only a subset of them is feasible, 

however. The feasible configurations are those whose 3-region scenes are consistent. 

Since in the feasible configurations, t(A, B*) must be equal to the converse of t(B*, A), 

the enumeration of the relations in the feasible configuration can be reduced. The same 

converseness constraint also holds for t(A, BH) and t(BH, A); therefore, for a feasible tRRh, 

two of the four relations are implied. Thus, only two of the four unknown relations are 

necessary to completely describe a feasible tRRh, reducing the number of possible 

configurations to 82 = 64. 

3.3 Twenty-Three Relations between a Hole-Free and a Single-Holed Region 

In order to determine systematically the feasible tRRhs, a scene consistency checker has 

been implemented, which iterates for each unknown (i.e., universal) relation over the 

eight possible relations and determines whether that spatial scene is node-consistent, arc-

consistent, and path-consistent (Macworth 1977). Only those configurations that fulfill all 

three consistency constraints are candidates for a valid tRRh. Twenty-three spatial scenes 

representing a hole-free and a single-holed region have been found to be consistent and 

examples of their graphic depictions have been identified (Fig. 3.5). The remaining 64–

23=41 candidate configurations for tRRh have been found to be inconsistent.  
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The set of the 23-tRRh consists of jointly exhaustive and pairwise disjoint (JEPD) 

relations—there is always one of the 23 relations that applies between any possible pair 

of a hole-free and a single-holed region, and for any configuration no more than one of 

the 23 relations applies. 

    
tRRh1 = [disjoint disjoint] tRRh2 = [meet disjoint] tRRh3 = [overlap disjoint] tRRh4 = [overlap meet] 

    
tRRh5 = [overlap overlap] tRRh6 = [overlap covers] tRRh7 = [overlap contains] tRRh8 = [covers contains] 

    
tRRh9 = [contains contains] tRRh10 = [equal contains] tRRh11 = [coveredBy disjoint] tRRh12 = [coveredBy meet] 

    
tRRh13 = [coveredBy overlap] tRRh14 = [coveredBy covers] tRRh15 = [coveredBy contains] tRRh16 = [inside disjoint] 

    
tRRh17 = [inside meet] tRRh18 = [inside overlap] tRRh19 = [inside covers] tRRh20 = [inside contains] 

                                                                                                              
tRRh21 = [inside equal] tRRh22 = [inside coveredBy] tRRh23 = [inside inside] 

Figure 3.5 Graphical depictions and specifications of the 23 topological relations 
between a hole-free and a single-holed region. 

3.4 Properties of the Twenty-Three Relations 

These 23-tRRh can be viewed as refinements of the eight tRR. Five of the eight tRR—

disjoint, meet, covers, contains, equal—do not reveal further details if region B has a 
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hole, because in each of these cases the relation between A and B* is so strongly 

constrained that only a single relation is possible between A and B’s hole, BH. The 

remaining three tRR—overlap, coveredBy, inside—are less constraining as each offers 

multiple variations for the topological relations between A and BH: overlap and 

coveredBy each have five refinements, while inside has a total of eight refinements. 

Without a specification of the relation between A and BH, the configurations A 

overlap B* and A coveredBy B* are underdetermined, that is, one can only exclude for 

each case the three relations A equal BH, A coveredBy BH, and A inside BH, but cannot 

pin down which of the remaining five choices—A disjoint BH, A meet BH, A overlap BH, 

A covers BH, A contains BH—actually holds. Likewise, the configuration A inside B* is 

undetermined without a specification of the relation between A and BH, because any of 

the eight tRR could hold between A and BH.  

The 23 relations between a hole-free and a single-holed region are coarse 

topological relations, which means that different topological configurations may be 

attributed by the same tRRh, even if the topological relations they represent are not 

equivalent. Figure 3.6 shows three examples of distinct topological configurations that 

are characterized by the same tRRh, in this case [overlap meet]. To allow for topological 

distinguishability in these cases, knowledge of additional topological invariants about the 

constituent relations, such as the dimension of the boundary intersection for the meet 

relation (Fig. 3.6a-b), or the number of the components of the boundary intersection for 

the overlap relation (Fig. 3.6a and 3.6c), is necessary (Egenhofer and Franzosa 1995). 

   
(a) (b) (c) 

Figure 3.6 Topologically different configurations for the [overlap meet] tRRh. 
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3.4.1 Converse Relations 

Since the domain and co-domain of a tRRh refer to different types—a hole-free region and 

a single-holed region—there are no symmetric tRRhs. There is neither an identity relation, 

nor are there reflexive, or transitive tRRhs. The concept of a converse relation (i.e., the 

relation between a single-holed and a hole-free region) still exists, however. The relation 

converse to tRRh is implied through the converse property of the constituent relations 

(Eqn. 3.2)—    

! 

t(B*,A)=t(A,B*) and     

! 

t(BH,A)=t(A,BH)—which is captured in a transposed 

matrix of the constituent relations (Eqn. 3.3).  

 tRhR 

! 

=
t(B*,A)

t(BH,A)

" 

# 
$ 

% 

& 
' = t(A,B*) t(A,BH)[ ]

T

 (3.3) 

The converse property leads immediately to 23-tRhR. Their names are chosen 

systematically so that all pairs of converse relations have the same index (Eqn. 3.4). 

     

! 

"x :1...23: tRhRx = tRRhx  (3.4) 

From among the 23 pairs of converse relations, five pairs have identical constituent 

relations (Eqn. 3.5a-e), because each element of these five pairs has a symmetric 

converse relation, that is,     

! 

tRhRx = (tRRhx)T . This type of symmetry refers to the specification 

of the constituent relations and differs from the symmetry at the level of the domains.   

 

! 

disjoint
disjoint

" 

# $ 
% 

& ' 

T

= disjoint disjoint[ ] (3.5a) 

 

! 

meet
disjoint
" 
# $ 

% 
& ' 

T

= meet disjoint[ ]  (3.5b) 

 

! 

overlap
disjoint

" 

# $ 
% 

& ' 

T

= overlap disjoint[ ]  (3.5c) 

 

! 

overlap

meet

" 

# $ 
% 

& ' 

T

= overlap meet[ ]  (3.5d) 

 

! 

overlap

overlap

" 

# $ 
% 

& ' 

T

= overlap overlap[ ]  (3.5e) 
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3.4.2 Implied Relations 

The dependencies among a hole-free region’s relations to the generalized region and the 

hole reveal various levels of constraints (Fig. 3.7). While five t(A, B*) imply a unique 

relation for t(A, BH), two other t(A, B*) restrict t(A, BH) to five choices. Only one 

t(A, B*)—inside—yields the universal relation U8, imposing no constraints on t(A, BH). 

 
Known Relation t(A, B*) Implied Relation t(A, BH) 

disjoint disjoint 
meet disjoint 

covers contains 
contains contains 

equal contains 
overlap not {equal, coveredBy, inside} 

coveredBy not {equal, coveredBy, inside} 
inside U8 

Figure 3.7 Constraints imposed by a specified t(A, B*) on t(A, BH). 

Conversely, knowledge of the relation t(A, BH) constrains t(A, B*) in three cases—

if t(A, BH) is equal, coveredBy, or inside—to a unique relation; there are three choices for 

three relations between A and B* (if t(A, BH) is meet, overlap, or covers); five choices in 

one case (if t(A, BH) is disjoint); and six choices if t(A, BH) is contains (Fig. 3.8).  

 
Known Relation t(A, BH) Implied Relation t(A, B*) 

equal inside 
coveredBy inside 

inside inside 
disjoint not {equal, covers,contains} 

meet {overlap, coveredBy, inside} 
overlap {overlap, coveredBy, inside} 
covers {overlap, coveredBy, inside} 

contains not {disjoint, meet} 

Figure 3.8 Constraints imposed by a specified t(A, BH) on t(A, B*). 
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The dependencies may be seen as an opportunity for minimizing the number of 

relations that are recorded. For example, if knowledge of either one constituent relation 

implied a unique relation, then it would be sufficient to record only the known relation, 

thereby cutting into half the amount of relations to be stored for each tRRh. Such a simple 

choice does not apply, however. Since five t(A, BH) are implied uniquely by t(A, B*), 

t(A, BH) needs to be recorded only in three cases to fix a complete tRRh specification. 

Conversely only three t(A, B*) are implied uniquely by their t(A, BH). Therefore, the 

common-sense choice of favoring the relation with respect to the generalized region over 

the relation to the hole gets further support. 

3.5 Conceptual Neighborhood Graph of the 23-tRRh  

With closed sets of JEPD relations, such as the 23-tRRh, it is possible to track the 

topological changes that transform one relation into another of the set (Section 2.6.1). 

Since more than one relation may be the immediate result of a certain topological change, 

a linear ordering is usually impossible; therefore, linking together relations that can be 

immediately transformed into each other results in the conceptual neighborhood graph 

(CNG), which corresponds to a partially ordered set. The ordering maintained by the 

CNG also facilitates the determination of similar relations, by considering more similar 

the relations that are separated by fewer changes. Relations that belong to the same level 

of the partially ordered set are equally similar to the reference relation (Bruns and 

Egenhofer 1996). The sum of the steps of topological change between two relations 

determines their distance on the graph.  
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3.5.1 Construction of the Graph 

In order to assemble the 23-tRRh CNG it is essential to specify the closest neighbor(s) for 

each relation. The immediate neighboring relations will differ in either the principal 

relation (i.e., between the hole-free and the generalized region) or the refining relation 

(i.e., between the hole-free region and the hole), but not both. Each of these two 

constituent relations is one of the 8-tRR between two simple, hole-free regions. Thus, each 

such relation is separated by one edge from the relation(s) with which it shares one of its 

constituent relations and their remaining constituent relations are immediate neighbors on 

the 8-tRR CNG (Egenhofer and Al Taha 1992).  

Table 5.1 shows the results of analyzing each of the 23-tRRh for determining their 

closest neighbors by examining the constituent relations on the 8-tRR CNG. The closest 

neighbors in the first column of Table 3.1 share the same refining but differ in their 

principal relations. In the second column the closest neighbors share the same principal 

and differ in their refining relations. Using an edge to link the closest neighbors, one 

derives the 23-tRRh CNG (Fig. 3.9).  

Examination of the graph reveals certain distinct local neighborhoods with a certain 

number of members each: two singleton neighborhoods for those tRRh with disjoint, meet, 

equals, covers and contains as their principal relation, five-member neighborhoods for 

principal relations overlap and coveredBy, and an eight-member neighborhood for 

principal relation inside.  
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Table 3.1 Each of the 23-tRRh’s neighboring relations according to the constituent 
relations. 

tRRh Principal Relation Closest Neighbors Refining Relation Closest Neighbors 
[d d] [m d] - 
[m d] [d d], [o d] - 
[o d] [m d], [cB d] [o m] 
[o m] [cB m] [o d], [o o] 
[o o] [cB o] [o m], [o cv] 

[o cv] [cB cv] [o o], [o ct] 
[o ct] [cB ct], [cv ct] [o cv] 
[cv ct] [e ct], [ct ct] - 
[ct ct] [cv ct] - 
[e ct] [cv ct], [cB ct] - 
[cB d] [o d], [i d] [cB m] 
[cB m] [o m], [i m] [cB d], [cB o] 
[cB o] [o o], [i o] [cB m], [cB cv] 
[cB cv] [o cv], [i cv] [cB o], [cB ct] 
[cB ct] [o ct], [i ct], [e ct] [cB cv] 

[i d] [cB d] [i m] 
[i m] [cB m] [i d], [i o] 
[i o] [cB o] [i m], [i cB], [i cv] 
[i cv] [cB cv] [i o], [i ct], [i e] 
[i ct] [cB ct] [i cv] 
[i e] - [i cv], [i cB] 

[i cB] - [i o], [i e], [i i] 
[i i] - [i cB] 

 

 

Figure 3.9 Conceptual Neighborhood Graph for the 23-tRRh. 
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3.5.2 Distances between the 23-tRRh on the CNG 

The distance between two relations is the length of the shortest path between them. Two 

identical relations have zero distance between them, which is the shortest of all distances. 

The next shortest distance is the path of length one between two immediate neighbors and 

it is the minimum change that occurs in order to have one relation transform into another. 

The maximum distance, dmax23, of the 23-tRRh CNG is the shortest path of length eight 

between four pairs of relations: tRRh = [d d] - tRRh = [ct ct], tRRh = [d d] - tRRh = [i i], 

tRRh = [i d] - tRRh = [ct ct] and tRRh = [i i] - tRRh = [ct ct], and it is the biggest change that 

can happen to one tRRh relation to transform it into another. Table 3.2 shows the distances 

for all possible pairs of the 23-tRRh relations.  

 

Table 3.2 Distances between relations for the 23-tRRh (for pairs tRRhi-tRRhj, i=1..23 and 
j=1..12). 

tRRhi               tRRhj [d d] [m d] [o d] [o m] [o o] [o cv] [o ct]  [cv ct] [ct ct] [e ct]  [cB d] [cB m] 
[d d] 0 1 2 3 4 5 6 7 8 8 3 4 
[m d] 1 0 1 2 3 4 5 6 7 7 2 3 
[o d] 2 1 0 1 2 3 4 5 6 6 1 2 
[o m] 3 2 1 0 1 2 3 4 5 5 2 1 
[o o] 4 3 2 1 0 1 2 3 4 4 3 2 
[o cv] 5 4 3 2 1 0 1 2 3 3 4 3 
[o ct] 6 5 4 3 2 1 0 1 2 2 5 4 
[cv ct] 7 6 5 4 3 2 1 0 1 1 6 5 
[ct ct] 8 7 6 5 4 3 2 1 0 2 7 6 
[e ct] 8 7 6 5 4 3 2 1 2 0 5 4 
[cB d] 3 2 1 2 3 4 5 6 7 5 0 1 
[cB m] 4 3 2 1 2 3 4 5 6 4 1 0 
[cB o] 5 4 3 2 1 2 3 4 5 3 2 1 
[cB cv] 6 5 4 3 2 1 2 3 4 2 3 2 
[cB ct] 7 6 5 4 3 2 1 2 3 1 4 3 

[i d] 4 3 2 3 4 5 6 7 8 6 1 2 
[i m] 5 4 3 2 3 4 5 6 7 5 2 1 
[i o] 6 5 4 3 2 3 4 5 6 4 3 2 
[i cv] 7 6 5 4 3 2 3 4 5 3 4 3 
[i ct] 8 7 6 5 4 3 2 3 4 2 5 4 
[i e] 8 7 6 5 4 3 4 5 6 4 5 4 

[i cB] 7 6 5 4 3 4 5 6 7 5 4 3 
[i i] 8 7 6 5 4 5 6 7 8 6 5 4 
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Table 3.2 Continued (for pairs tRRhi-tRRhj, i=1..23 and j=13..23). 

tRRhi               tRRhj  [cB o] [cB cv]  [cB ct]  [i d]  [i m]  [i o]  [i cv]  [i ct]  [i e]  [i cB]  [i i] 
[d d] 5 6 7 4 5 6 7 8 8 7 8 
[m d] 4 5 6 3 4 5 6 7 7 6 7 
[o d] 3 4 5 2 3 4 5 6 6 5 6 
[o m] 2 3 4 3 2 3 4 5 5 4 5 
[o o] 1 2 3 4 3 2 3 4 4 3 4 
[o cv] 2 1 2 5 4 3 2 3 3 4 5 
[o ct] 3 2 1 6 5 4 3 2 4 5 6 
[cv ct] 4 3 2 7 6 5 4 3 5 6 7 
[ct ct] 5 4 3 8 7 6 5 4 6 7 8 
[e ct] 3 2 1 6 5 4 3 2 4 5 6 
[cB d] 2 3 4 1 2 3 4 5 5 4 5 
[cB m] 1 2 3 2 1 2 3 4 4 3 4 
[cB o] 0 1 2 3 2 1 2 3 3 2 3 
[cB cv] 1 0 1 4 3 2 1 2 2 3 4 
[cB ct] 2 1 0 5 4 3 2 1 3 4 5 
[i d] 3 4 5 0 1 2 3 4 4 3 4 
[i m] 2 3 4 1 0 1 2 3 3 2 3 
[i o] 1 2 3 2 1 0 1 2 2 1 2 
[i cv] 2 1 2 3 2 1 0 1 1 2 3 
[i ct] 3 2 1 4 3 2 1 0 2 3 4 
[i e] 3 2 3 4 3 2 1 2 0 1 2 

[i cB] 2 3 4 3 2 1 2 3 1 0 1 
[i i] 3 4 5 4 3 2 3 4 2 1 0 

3.6 Compositions over a Single-Holed Region 

A key inference mechanism for relations is their composition, that is, the derivation of the 

relation t(A, C) from the knowledge of the two relations t(A, B) and t(B, C). A complete 

account of all relevant compositions considers first all combinatorial compositions of 

relations with hole-free regions (R) and single-holed regions (Rh). Since all compositions 

involve two binary relations (i.e., _ _ ; _ _ ), each over a pair of R and Rh, there are 24 = 

16 possible combinations (Fig. 3.10). Eight of these sixteen combinations specify invalid 

compositions (C 3–6 and C 11–14), because the domain and co-domain of the composing 

relations’ common argument are of different types (i.e., trying to form a composition over 

a region and a region with a hole). Among the remaining eight combinations, C 1 is the 
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well-known composition of region-region relations. Two pairs of combinations capture 

converse compositions—C 2 and C 9, as well as C 8 and C 15—while three combinations 

capture symmetric compositions—C 7, C 10, and C 16. 

C 1 tRR ; tRR  C 5 — C 9 tRhR ; tRR  C 13 — 
C 2 tRR ; tRRh  C 6 — C 10 tRhR ; tRRh C 14 — 
C 3 — C 7 tRRh ; tRhR  C 11 — C 15 tRhRh ; tRhR  
C 4 — C 8 tRRh ; tRhRh  C 12 — C 16 tRhRh ; tRhRh  

Figure 3.10 The 16 combinations of compositions of binary relations with hole-free 
regions (R) and single-holed regions (Rh). 

From among these combinations of compositions involving a single-holed region, 

we focus here on C 7, the inferences from tRRh ; tRhR . With this specific combination it is 

possible to evaluate the influence that the hole bears when inserted in the common region 

of the composed relations. The range of the composition results is the set of eight tRRs 

between two hole-free regions, the same as the range of the tRR ; tRR composition results, 

which are known from earlier work (Egenhofer 1994). By comparing the two 

composition tables, one can distinguish how the resulting tRRs of the corresponding 

compositions differ when a hole is inserted in the common region, from when it is absent. 

For combinations C 2, C 8, C 9 and C 15 the range of the composition results is the set of 

the 23-tRRh or their converse tRhRs, therefore, the composition tables of these combinations 

cannot be examined against hole-free composition results. Finally, the range of the 

compositions results for combinations C 10 and C 16 is the set of tRhRhs between two 

single-holed regions (Rh), which will be examined in the next chapter.  

A spatial scene serves again as the framework for a computational derivation of all 

compositions for C 7. Objects A and C are two regions without a hole, whereas object B 

is a single-holed region. The corresponding spatial scene has four regions (A, B*, BH, and 

C) with their sixteen region-region relations (Fig. 3.11). The pair of relations t(A, B*)-
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t(A, BH) must be a subset of the 23 valid tRRh, while the pair of relations t(B*, C)-t(BH, C) 

must be a subset of the 23 valid tRhR. Furthermore, t(B*, A) and t(BH, A) must be the 

respective converse relations of t(A, B*) and t(A, BH). The same converse property must 

hold for the pair t(C, B*)-t(C, BH) with respect to t(B*, C)-t(BH, C). With 23 relations for 

each tRRh and tRhR, there are 529 compositions. The range of the inferred relation t(A, C) is 

the set of the eight tRR. This composition t(A, B) ; t(B, C) is specified for any spatial 

scene that is node-consistent, arc-consistent, and path-consistent. To determine 

systematically all consistent compositions, we have developed a software prototype of a 

consistency checker that evaluates a spatial scene for the three consistencies. All 

compositions were found to be valid (i.e., none of the compositions resulted in the empty 

relation).  

 A B* BH C 
A equal U U U 
B* U equal contains U 
BH U inside equal U 
C U U U equal 

Figure 3.11 The spatial scene over four regions used for the derivation of the 
composition t(A, B) ; t(B, C). 

To summarize the composition results graphically, the iconic representation of the 

region-region relations based on their conceptual neighborhood graph is used (Hernández 

1994). A highlighted relation in the graph indicates that this relation is part of the 

particular composition result. The universal relation U8 is an icon with all relations 

highlighted (Fig. 3.12a), and a unique inference has one relation highlighted (Fig. 3.12b). 

  
(a) (b) 

Figure 3.12 Iconic representation of compositions and relations on the 8-tRRh CNG: (a) 
the universal relation, and (b) a unique composition result (inside). 
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The composing relations range over the 23 relations between a hole-free and a 

single-holed region tRRh, and their converses tRhR. Therefore, their iconic representation 

would be captured on different neighborhood graphs, namely the 23-tRRh CNG and the 

23-tRhR CNG. However, in order to allow for a more concise, less crowded, and consistent 

representation of the composition table the composing relations are also depicted on the 

8-tRR CNG. Correspondence between the representations on different graphs is achieved 

by using two different symbols for depicting the two constituent relations of a tRRh or a 

tRhR on the 8-tRR CNG. In particular, a large empty circle highlights the principal relation, 

while the black disc emphasizes the refining relation of either a tRRh or a tRhR. Figure 3.13 

shows examples of corresponding representations of a tRRh on the 23-tRRh CNG and on the 

8-tRR CNG when the two constituent relations are different (Fig. 3.13a) and when the two 

constituent relations are the same (Fig. 3.13b). Using the iconic representations of 

composing relations and results on the 8-tRR, the complete composition table for 

tRRh ; tRhR  is given in Figure 3.14.  

 
(a) 

 
(b) 

Figure 3.13 Correspondence between the iconic representations of tRRhs on the 23-tRRh 
CNG and on the 8-tRR CNG: (a) for tRRh = [inside meet] and (b) for 
tRRh = [overlap overlap]. 
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Figure 3.14 Composition table tRRh ; tRhR (for tRhR=[tRhR1…tRhR12]). 
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Figure 3.14 Continued (for tRhR=[tRhR13…tRhR23]). 
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3.7 Analysis of Compositions 

The examination of the 529 tRRh ; tRhR compositions and the comparison against the 64 

compositions of tRR ; tRR (Egenhofer 1994), which form the benchmark for the assessment 

of the reasoning power of compositions involving regions with holes reveal the 

following: 

The tRRh ; tRhR composition table (Fig. 3.14a and 3.14b) shows that all 529 

compositions are valid (i.e., there is no empty relation as the result of any of the 

compositions). This means none of the 529 4-object scenes considered to calculate the 

compositions (Fig. 3.11) is inconsistent. The same level of consistency was also found for 

the tRR ; tRR composition table. Furthermore, all compositions are compatible with the 

composition results of their principal relations (Eqn. 3.6), that is, the inferences from the 

principal relations provide an upper bound for the reasoning over regions with a hole. 

     

! 

"a,b:1...23:   tRRha ; tRhRb #  $( tRRha) ;  $(tRhRb) (3.6)  

Among the 529 compositions there are 263 (49.7%) whose results are identical to 

the compositions of the relations’ principal relations (Eqn. 3.7). Therefore, for slightly 

less than half of the inferences the hole is of no importance, while it matters for the 

remaining 266 inferences. Among the 266 compositions whose results are more refined 

than the compositions of their principal relations, 95 compositions are refined to 

uniqueness (Eqn. 3.8). If one were to resort in these cases to the compositions of their 

principal relations, one would incorrectly infer that these compositions are 

underdetermined. 

     

! 

"a,b |  a#b:   tRRha ; tRhRb=$(tRRha) ; $(tRhRb) (3.7) 

     

! 

"a,b |  a#b:   tRRha ; tRhRb$%(tRRha) ; %(tRhRb) & #(tRRha ; tRhRb)=1 (3.8) 
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3.7.1 Cardinality and Crispness 

To further assess the inference power of the compositions, we use the composition’s 

cardinality and the composition table’s cardinality. The composition cardinality     

! 

card
23

ij  is 

the count of relations in that composition result (Eqn. 3.9a). The composition cardinality 

of a unique composition is 1, a composition with two choices has composition cardinality 

2, etc. Therefore, the upper bound of the composition cardinality applies to compositions 

that result in the universal relation, yielding a cardinality equal to the number of relations 

in that set. The composition table’s cardinality 
  

! 

"
23  is the sum of the cardinalities of all 

compositions in the table (Eqn. 3.9b). This yields the composition table’s normalized 

crispness 

! 

"
23

 (Eqn. 3.9c), whose lowest value of 0 stands for compositions that result in 

the universal relation and whose value increases linearly for composition results with 

fewer choices. The latter measure also applies to subsets of a composition table to assess 

and compare the inferences of particular groups of relations. The corresponding measures 

for tRR ; tRR  can be defined accordingly. 

     

! 

card23

ij =  #(tRRhi ; tRhRj)  (3.9a) 

 
    

! 

"
23 = card

23

ij

i=1...#(U23 )

j=1...#(U23 )

#  (3.9b) 

 
  

! 

"
23

=1-
#
23

#(U
8
)$#(U

23
)$#(U

23
)
 (3.9c) 

While the cardinality of the tRRh ; tRhR composition table is over seven times higher 

than that of the tRR ; tRR composition table (γ23=1389 vs. γ8=193), the overall inferences 

from tRRh ; tRhR are crisper, because the average composition cardinality of all tRRh ; tRhR is 

approximately 8% higher than that of tRR ; tRR  (

! 

"
23

=0.67 vs. 

! 

"
8
=0.62).  
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The increase in crispness is primarily due to a decrease in the relative number of 

compositions with a cardinality of 5 (and to a lesser degree cardinalities 6 and 8), while 

simultaneously the relative numbers of compositions with cardinalities 3, 2, and 4 (and to 

a miniscule amount those of compositions with cardinality 1) increase (Fig. 3.15). 

Overall, 239 ambiguities of pure topological reasoning are reduced but not fully 

eliminated, when considering the holes in the regions.  

 

Figure 3.15 Comparison of the frequencies of compositions results. The cardinalities 
range between 1 (unique inference) and 8 (universal relation) and the composition tables 
being compared are tRRh ; tRhR and tRR ; tRR. 

Compositions tRRha ; tRhRb are only subject to crispening if π(tRRha ) ∈ {overlap, 

coveredBy, inside} and π(tRhRb ) ∈ {overlap, covers, contains}, yielding nine groups of 

compositions that feature crispenings (Figure 3.16). In these groups, the compositions 

with π(tRRha )=inside and π(tRhRb )=contains have the highest crispness improvements, 

both in absolute counts (319) as well as per composition (i.e., 5.23, which corresponds to 

an average crispness improvement of 75%).  
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Figure 3.16 Crispness improvements (in absolute counts) for tRRh ; tRhR vs. tRR ; tRR 
(compositions without improvement left out; darker shading indicates stronger 
improvement). 

The crispness improvements displayed in Figure 3.16 demonstrate also the 

advantage of using the 23-tRRh for reasoning with single-holed region relations instead of 

sets of relations whose domain includes both holed and hole-free regions with no 

distinction. Such a set is the RCC-8 (Randell et al. 1992b), which implicitly applies to 

regions with holes as well. The RCC-8 composition table shares the same number of 

relations in each composition result as the 9-intersection composition table for hole-free 

regions (Randell et al. 1992a). However, even though holed regions are not excluded 

from its domain, the restrictions imposed by the presence of holes on the relation 

compositions are ignored, resulting many times in composition results that cannot be 

realized. Figure 3.17 shows an example of a composition over a single-holed region 

which results in a single relation (Fig. 3.17a), but using RCC-8, seven more invalid 
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relations  (Fig. 3.17b) are allowed in the composition set. In the specific example, if hole-

free region A is inside single-holed region B and it contains its hole, and region B and its 

hole both contain hole-free region C, then the only possible relation between A and C is 

contains (Fig. 3.17a). Using RCC-8, the relation between B’s hole and region C is 

ignored, therefore, if relation inside/NTPP is composed with relation contains/NTPPi, 

any of the eight basic relations is possible between A and C. However, it is clear that 

given that C is contained in B’s hole, only relation contains—NTTPi in RCC 

terminology—is possible, while the rest of the composition relations are invalid 

(Fig. 3.17b). 

 
(a) 

 

+ 

 
(b) 

Figure 3.17 Composition of relations inside and contains over a single-holed region B 
using different sets of relations: (a) using the 23-tRRh and (b) using RCC-8, which 
produces seven additional invalid composition relations, because of ignoring the relation 
between region C and region B’s hole.  

3.7.2 Unambiguous Composition Results 

In absolute numbers the count of compositions with unique results goes up from 27 in 

tRR ; tRR to 224 in tRRh ; tRhR. Since—for a different set of relations, though—people have 
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been found to make composition inferences more correctly if the result is unique 

(Rodríguez and Egenhofer 2000), this increase augurs well for people’s performance 

when reasoning over relations with holes.  

From among the 266 compositions with crisper results, 27 (i.e., 10.2%) yield a 

complete crispening, that is a conversion from a universal composition to a unique 

composition. Complete crispenings occur only for compositions tRRha ; tRhRb with 

π(tRRha )=inside and π(tRhRb )=contains (Fig. 3.16). Resorting in these cases to the 

composition of their principal relations would incorrectly imply that these inferences are 

undetermined. For all 266 compositions whose results are crisper, on average the 

crispness of each of these 266 compositions improves by 3.5 counts. Given that the 

highest possible improvement is seven (for a complete crispening), the average crispness 

improvement is 50%. 

3.8 Summary 

This chapter studied systematically the topological relations between a hole-free and a 

single-holed region, offering new insights for spatial reasoning over such relations. While 

the 9-intersection captures eight topological relations between two regions, this number 

increases by 187.5% to 23 when one of the regions has a hole, yielding refinements of the 

eight region-region relations. Knowing the relation between a hole-free region and the 

generalized region implies a 63% chance (5 out of 8 relations) of uniquely identifying the 

complete relation between the two objects without any explicit reference to the relation 

with the hole. 

The 23 relations’ compositions over a common region with a hole show that these 

compositions form subsets—although not necessarily true subsets—of the results 
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obtained from the compositions of hole-free regions. In 36% of the true subsets, the result 

is unique (i.e., a single relation). Approximately half of the compositions over a region 

with a hole yield fewer possible relations, with an 8% increase in the average crispness 

when compared to the results of compositions over a hole-free region. This decrease in 

the number of relations in the composition results is due to a general trend of fewer 

results comprising five or more possibilities, in combination with an increase of the 

occurrence of results of fewer possibilities (four or less) and by a 10% increase of 

complete crispness—yielding a unique relation—among these improved results. This 

leads to an average crispness improvement of 50% for those results. These insights relate 

to people’s reasoning, because relations that include a single-holed region lead to a higher 

relative number of unique possible results. 
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Chapter 4  Relations between Two Single-Holed Regions 

This chapter develops the second part of the S-HRM, with the focus being on the 

definition, analysis, and quantitative examination of the composition inferences of the 

relations between two single-holed regions. The same techniques that were introduced in 

Chapter 3 are used to derive the set of relations, the conceptual neighborhood graph, as 

well as the composition tables. However, the composition inferences are now compared 

with compositions over the same, as well as different domains. This analysis is enabled 

by using quantitative measurements, such as the absolute and the cumulative composition 

cardinality frequencies, which are based on a set of graphs that the numerical analysis of 

the composition tables yields.  

The remainder of chapter is structured as follows: in Section 4.1 a set of JEPD 

topological relations between two single-holed regions is systematically derived and 

analyzed for their properties (Section 4.2). Section 4.3 presents the CNG for the set of 

relations between two single-holed regions and Section 4.4 determines the inferences that 

one obtains from the composition of two relations: (1) with one single-holed region each, 

and (2) with two single-holed regions each, and examines the influence of introducing a 

hole to the common region. Section 4.5 introduces a novel set of quantitative measures to 
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compare composition tables with different domains and applies them to the composition 

tables derived in Chapters 3 and 4. The chapter is summarized in Section 4.6. 

4.1 Topological Relations between Two Single-Holed Regions 

The topological relation between two single-holed regions, A and B, denoted tRhRh(A, B), 

is modeled in a spatial scene comprising the generalized regions, A* and B*, and their 

corresponding holes, AH and BH, together with the sixteen binary topological relations 

among these four regions (Fig. 4.1).  

 A* AH B* BH 
A* equal contains t(A*, B*) t(A*, BH) 
AH inside equal t(AH, B*) t(AH, B*) 
B* t(B*, A*) t(B*, AH) equal contains 
BH t(BH, A*) t(BH, AH) inside equal 

Figure 4.1 Representation of the topological relation between two single-holed regions, 
A and B. The spatial scene comprises eight binary relations and their converses (the 
remaining eight relations are fixed for two single-holed regions).  

At most the four relations t(A*, B*), t(A*, BH), t(AH, B*), and t(AH, BH)  are 

required to specify any tRhRh (Eqn. 4.1), because their converse relations are implied by 

the arc consistency constraint (Mackworth 1977). These four relations are called the 

constituent relations κj of a topological relation between two single-holed regions. Their 

2×2 matrix is a direct projection of the top-right elements of the spatial scene (Fig. 4.1).  

 tRhRh(A, B)= 
  

! 

"
1
"

2

"
3
"

4

# 

$ 
% 

& 

' 
( =  

t(A*, B*) t(A*, BH)

t(AH, B*) t(AH, BH)

# 

$ 
% 

& 

' 
(  (4.1) 

The principal relation between two single-holed regions, π(tRhRh), captures the 

relation between the two generalized regions. It is the top-left constituent relation 

(Eqn. 4.2a). The other three constituent relations are referred to as the inter-hole relation 

ω(tRhRh) (Eqn. 4.2b), the minor relation ψ(tRhRh) (Eqn. 4.2c), and the reverse minor 
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relation ψ-1(tRhRh) (Eqn. 4.2d) and they are the refining relations of a tRhRh. Figure 4.2 

shows the hierarchy of the constituent relations for a tRRh and a tRhRh.  

 π(tRhRh(Α, Β))=t(A*, B*) (4.2a) 

 ω(tRhRh(A, B)= t(AH, BH) (4.2b) 

 ψ(tRhRh(A, B))= t(A*, BH)  (4.2c) 

 ψ-1(tRhRh(A, B))= t(AH, B*) (4.2d) 
 

 

Figure 4.2 Hierarchy of the constituent relations (κ) for a tRRh and a tRhRh. The different 
symbols highlight which constituent relations are featured in each type of relation: circle 
for tRRhs, square for tRhRhs. 

While the domain of the constituent relations is the set of eight region-region 

relations, only a subset of the 84 = 4,096 is feasible, given the constraint that each hole 

must be included in its corresponding generalized region. For instance, the configuration 

with the principal relation meet and all other constituent relations overlap is impossible, 

whereas the configuration with the principal relation meet and all other constituent 

relations disjoint is feasible.  

The complete set of feasible topological relations between two single-holed regions 

A and B is derived from the 4-region spatial scene (Fig. 4.1). To specify a tRhRh, each of 

the four constituent relations is replaced in the spatial scene by a single tRR. The tRhRh is 

then feasible if (1) its 4-region scene is node-, arc-, and path consistent (Mackworth 

1977) and (2) there exists a planar graphical depiction of that spatial scene.  

By taking into account the dependencies known from the 23-tRRh (Egenhofer and 

Vasardani 2007), the upper bound of 4,096 tests can be reduced. Splitting the constituent 
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relations into two 1×2 matrices generates two tRRh—one between simple region A* and a 

single-holed region B (Eqn. 4.3a) and another between a simple region AH and the single-

holed region B (Eqn. 4.3b). Instead of four variables that range over the 8-tRR, this 

approach leaves two variables that each range over the 23-tRRh, yielding a total of 

232=529 possible combinations. 

 tRRh(A*, B)=[κ1 κ2]=[t(A*, B*) t(A*, BH)] (4.3a) 

 tRRh(AH, B)=[κ3 κ4]=[t(AH, B*) t(AH, BH)] (4.3b) 

The set of all consistent configurations is derived with the scene consistency 

checker that iterated over the 23 feasible relations for each of the unknown tRRh and 

determined computationally whether that scene was node-consistent, arc-consistent, and 

path-consistent. Out of the 529 candidates, 152 combinations fulfilled these criteria. Their 

feasibility was confirmed by drawing for each, an example configuration (Fig. 4.3). 

Figure 4.4 provides a numbering scheme to enable the mapping from the graphical 

domain onto their symbolic representations. This scheme is purely symbolic as the 

numbers in the symbolic names do not imply an ordering. Like other sets of topological 

relations, the 152 tRhRh are JEPD. 

 

Figure 4.3 Example configurations of the 152 tRhRh (for tRhRh1…tRhRh20) 
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Figure 4.3 Continued (for tRhRh21…tRhRh85) 
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Figure 4.3 Continued (for tRhRh86…tRhRh152) 
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Figure 4.4 The specifications of the 152 topological relations between two holed regions, 
captured by their constituent relations (d=disjoint, m=meet, o=overlap, e=equal, 
cB=coveredBy, i=inside, cv=covers, ct=contains).  
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4.2 Properties of the Single-Holed Region Relations 

Are all four constituent relations needed to capture the 152 relations? To answer this 

question we examine the occurrence of the 152 relations for each constituent relation. 

Figure 4.5 summarizes the occurrences of all tRhRh by their principal relation π(tRhRh), 

inter-hole relation ω(tRhRh), minor relation ψ(tRhRh), and reverse-minor relation ψ-1(tRhRh). 

The counts of the latter two show the expected converse behavior, but otherwise the 

distributions of these counts differ widely. 

rel #(π(tRhRh)=rel) #(ω(tRhRh)=rel) #(ψ(tRhRh)=rel) #(ψ-1(tRhRh)=rel) 
disjoint 1 48 9 9 

meet 1 22 7 7 
overlap 56 23 23 23 
equal 8 5 1 1 
covers 20 12 23 1 
inside 23 15 1 87 

coveredBy 20 12 1 23 
contains 23 15 87 1 

Figure 4.5 Counts (#) of tRhRhs by their principal relation π(tRhRh), inter-hole relation 
ω(tRhRh), minor relation ψ(tRhRh), and reverse-minor relation ψ-1(tRhRh).  

The summary reveals that the most constraining principal relations are disjoint and 

meet, which each yield only a single possible relation for two single-holed regions. In 

both cases the relation between the generalized regions is so strong that the two holes 

must be disjoint and each hole must be disjoint from the other generalized region as well. 

For the remaining 150 relations, the mere knowledge of the principal relation leaves the 

tRhRh underdetermined, that is, one can exclude some—but not all—options for the three 

constituent relations with the holes. Among the underdetermined relations, those with the 

principal relation equal are the most constraining ones yielding eight variations, which is 

the same count as the cardinality of different region-region relations. This coincidence is 

not accidental, however, because when two generalized regions are equal, then they 
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necessarily contain each other’s holes, which may assume any of the eight region-region 

relations between them. So any underdetermined tRhRh with an equal principal relation is 

completed with the specification of the inter-hole relation ω(tRhRh). Less restrictive is the 

principal relation covers (and its converse coveredBy). When A* covers B* then it 

necessarily contains BH, which means all but three of the 23-tRRh between AH and a region 

with a hole B apply (AH cannot be equal to, cover or contain B*). Even less restrictive is 

the principal relation contains (and its converse inside). Since A* contains B* also 

implies A* contains BH, these tRhRh are completed with the information about which of 

the 23-tRRh holds between AH and the region with hole B. The least constraining principal 

relation is overlap, for which 56 different cases apply. 

The occurrences of tRhRh according to the inter-hole relation ω(tRhRh) show that no 

tRhRh is fully determined by its ω(tRhRh) alone, while the remaining two constituent 

relations—the minor ψ(tRhRh) and the reverse-minor ψ-1(tRhRh) with the same distributions 

for pairs of converse relations—each has three uniquely defined relations: (1) when one 

generalized region is equal to the other region’s hole and (2) when the generalized region 

is somehow contained in the region’s hole, or converse the region’s hole is somehow 

contained in the generalized region.  

When considering combinations of the constituent relations, two of these duals 

exhibit good increases in uniquely defined relations: π(tRhRh) and ω(tRhRh) together specify 

another 21 relations that are not yet covered by them individually, while ψ(tRhRh) and      

ψ-1(tRhRh)  together yield another 11 unique relations. The best result from considering 

triples—π(tRhRh), ω(tRhRh), and ψ(tRhRh) or ψ-1(tRhRh)—yields altogether 66 uniquely 

specified relations. The analysis of the triples also shows that 20 of the 152 relations (i.e., 
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13%) are not covered by the union of all three-combination triples, therefore, requiring 

all four constituent relations. 

The relation converse to tRhRh, denoted by   

! 

t
RhRh

, is implied through the converse 

property of each constituent relation (Eqns. 4.4a-d). For the matrix representation of tRhRh 

(Eqn. 4.1) this means that   

! 

t
RhRh

 is the transposed matrix of the corresponding converse 

constituent relations (Eqn. 4.4e).  
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This dependency allows us to derive for each of the 152-tRhRh (Fig. 4.2) its converse 

relation. For instance, t97 and t140 form a pair of converse relations, because the 

constituent relations along the main diagonal form converse pairs—inside/contains and 

coveredBy/covers—and the converses of the constituent relations off the diagonal map 

onto each other—covers/coveredBy and inside/contains.  

A special role is assumed by those tRhRh whose constituent relations are identical to 

their own converse relations, which identifies these tRhRh as symmetric relations. For the 

tRhRh, symmetry is implied both at the level of the domain and co-domain—both regions 

are single-holed—and at the level of relation specifications, in contrast to the tRRh which 

have symmetric relations only at the level of relation specifications (Section 3.4.1). An 

obvious symmetric relation is t1 with each constituent relation disjoint, because the 

converses of all four constituent relations are disjoint again, whereas a less obvious case 
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is t51 (with overlap and disjoint along the main diagonal being identical to their 

converses, while the two elements off the diagonal—contains and inside—map onto each 

other). Among the 152-tRhRh, eighteen relations are symmetric (t1 through t3, t9, t15 

through t17, t31 through t33, t51 through t53, t58 through t61, and t64), while the remaining 

134 relations form 67 pairs of converse relations. 

4.3 Conceptual Neighborhood Graph of the 152-tRhRh 

As with the set of 23-tRRh, it is possible to construct the CNG for the set of JEPD relations 

between two single-holed regions. Two tRhRhs are neighbors if they share three constituent 

relations (κ) and the fourth κ of one relation is an immediate neighbor of the other 

relation’s corresponding κ on the 8-tRR CNG. After analyzing each of the 152-tRhRh for 

determining the closest neighbors by examining the constituent relations and using an 

edge to link the closest neighbors, one derives the 152-tRhRh CNG (Fig. 4.6).  

The numbering scheme of the graph corresponds to that of Figure 4.3. The 152-tRhRh 

CNG is symmetric, in contrast to the 23-tRRh CNG. The symmetry axis comprises the 

eighteen symmetric relations, while the remaining 134 relations form pairs of converses 

at mirroring locations on both sides of the symmetry axis. The relations on the CNG have 

between one and seven neighbors each. Table 4.1 shows the number of the relations that 

are characterized by a certain neighbor cardinality. 

 

Table 4.1 Neighbor cardinalities for the 152-tRhRh CNG. 

Neighbor Cardinality 1 2 3 4 5 6 7 
Relation Frequency 3 7 29 41 51 18 3 
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Figure 4.6 The Conceptual Neighborhood Graph for the 152-tRhRh. The numbering 
scheme corresponds to the one in Figures 4.3 and 4.4. 

4.4 Compositions Involving Single-Holed Region Relations 

This section examines the influence of the hole on the inferences that result from a 

composition. It is suggested that when the hole of the common region of the two 

composed relations is taken into account, then the composition results comprise fewer 

relations, reducing ambiguities.  

We consider the two composition cases that result in a tRhRh: (1) the compositions 

tRhR ; tRRh—that is, the composition of a relation between a single-holed and a hole-free 

region, with a relation between a hole-free and a single-holed region—and (2) the 
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compositions tRhRh ; tRhRh—that is, the composition of two relations each between two 

single-holed regions. The results are also compared with the composition cases that result 

in a tRR—the compositions tRR ; tRR and tRRh ; tRhR, both available from earlier 

investigations (Egenhofer 1994, Egenhofer and Vasardani 2007). The goal is to examine 

the influence of adding a hole to the common region of the composed relations, when the 

rest of the involved regions remain the same.  

It might be tempting to derive the compositions tRhRh ; tRhRh simply from their 

constituent relations by applying region-region composition (Egenhofer 1994) for each 

corresponding pair of relations and mapping these constituent compositions back onto 

tRhRh. For instance, the composition of t109 ; t109 could be determined over each pair of 

constituent relations, deriving four times that inside ; inside = inside, so that t109 ; t109 is 

t109. While this result is correct in this particular case, the approach is incomplete and too 

simplistic, leading at times to incorrect composition inferences. It would, for instance, 

derive for the composition of t99 ; t99 with three compositions of inside ; inside = inside 

and one composition of equal ; equal = equal the incorrect result t99. Instead, the 

derivation of the compositions of tRhR ; tRRh and tRhRh ; tRhRh requires the more involved 

model of a spatial scene with the complete set of relations between generalized regions 

and their holes.  

To derive the compositions of tRhR ; tRRh, a spatial scene over five regions (A*, AH, 

B, C* and CH) is needed as the framework for deriving the tRhR ; tRRh composition table. 

Regions A and C have a hole, whereas the common region B is hole-free, yielding 25 

region-region relations (Fig. 4.7). The four derived relations t(A*, C*), t(A*, CH), 

t(AH, C*), and t(AH, CH) are the constituent relations of the inferred tRhRh. 
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 A* AH B C* CH 
A* equal contains t(A*, B*) t(A*, C*) t(A*, CH) 
AH inside equal t(AH, B*) t(AH, C*) t(AH, CH) 
B t(B, A*) t(B, AH) equal t(B, C*) t(B, CH) 

C* t(C*, A*) t(C*, AH) t(C*, B) equal contains 
CH t(CH, A*) t(CH, AH) t(CH, B) inside equal 

Figure 4.7 The spatial scene for deriving the composition tRhR(A, B) ; tRRh(B, C).  

The range of t(A, B) and t(C, B) is the set of 23-tRhR, therefore, there are 232 = 529 

compositions. The range of the inferred t(A, C) is the set of 152-tRhRh. The scene 

consistency checker found all compositions to be valid (i.e., node-, arc- and path-

consistent) so that no composition resulted in an empty relation. The two extreme 

scenarios—compositions with unique and universal results—reveal 44 unique cases (i.e., 

8.3% of the 529 compositions) and six universal cases (i.e., 1.1%). 

The analogous approach was used to derive the tRhRh ; tRhRh composition table, 

starting with a spatial scene over six regions for three single-holed regions (Fig. 4.8). 

 A* AH B* BH C* CH 
A* equal contains t(A*, B*) t(A*, BH) t(A*, C*) t(A*, CH) 
AH inside equal t(AH, B*) t(AH, BH) t(AH, C*) t(AH, CH) 
B* t(B*, A*) t(B*, AH) equal contains t(B*, C*) t(B*, CH) 
BH t(BH, A*) t(BH, AH) inside equal t(BH, C*) t(BH, CH) 
C* t(C*, A*) t(C*, AH) t(C*, B*) t(C*, BH) equal contains 
CH t(CH, A*) t(CH, AH) t(CH, B*) t(CH, BH) inside equal 

Figure 4.8 The spatial scene for deriving the composition tRhRh(A, B) ; tRhRh(B, C).  

Since the range of each t(A, B) and t(B, C) is the 152 tRhRh, there are 1522 = 23,104 

compositions. The scene consistency checker found all of them valid—that is, each 

relation inferred with the three network consistency constraints has no empty relation as 

its composition result. Among the 23,104 compositions, 2,239 inferences (i.e., 9.7%) are 

unique and six (i.e., 0.03%) are universal. 
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The tRhRh ; tRhRh composition table identifies that three tRhRh relations are transitive 

(i.e., the composition of such relations results in the same relation). These are t61, t109 and 

t152. Among them t61 is the identity relation for tRhRh, because it is symmetric, transitive, 

and reflexive. For t61, the pair of generalized regions A* and B*, as well as the pair of 

holes AH and BH, is equal—the two constituent relations along t61’s main diagonal. These 

two constraints imply that A* contains BH and AH is inside B*, which are t61’s two 

constituent relations off the main diagonal. 

The typical non-transitive composition with a unique inference composes two 

different relations and implies a single relation of a different category. For instance, 

t2 ; t152 implies t1. Among the non-transitive compositions with unique inferences is, 

however, an interesting case that deviates from this pattern, providing a scenario that 

does not occur with region-region relations. The composition of t143 ; t143—a single-holed 

region whose hole is filled by another single-holed region, which in turn has its hole 

filled with yet another single-holed region—is unique, but unlike a transitive relation, it 

does not result in t143. Instead, this composition results in t152 (i.e., the most-inner nested 

region is fully contained in the hole of the outer most region).  

4.5 Analysis of Compositions 

In order to examine a hole’s influence on the inferences, we compare some properties of 

the composition tables involving holed regions. The results offer an insight into how the 

reasoning changes when holes are taken into account and justify the need for a separate 

qualitative model that acknowledges holed regions explicitly.  

Four composition tables are available for this analysis. The first two composition 

tables (tRR ; tRR and tRRh ; tRhR) both yield tRR, while the second two composition tables 
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(tRhR ; tRRh and tRhRh ; tRhRh) both yield tRhRh. Therefore, each pair of comparisons has 

compatible domains. They also feature the same pattern of inserting a hole into the 

previously hole-free common region. 

4.5.1 Absolute Frequencies of Composition Cardinalities 

The result of each composition consists of some subset of the complete set of relations 

over which the resulting type of relations ranges. The number of the relations in each 

subset is the cardinality of each composition result. For the compositions resulting in 

tRR—tRR ; tRR and tRRh ; tRhR—the results are subsets of the eight tRR, while for 

compositions resulting in tRhRh—tRhR ; tRRh and tRhRh ; tRhRh—the results are subsets of the 

152 tRhRh. The focus here is on the frequencies of the composition cardinalities in each 

composition table. In order to make the results comparable, the cardinality frequencies 

are normalized (Fig. 4.9). 

  
(a) (b) 

Figure 4.9 Normalized cardinality frequencies for compositions that result in (a) tRR and 
(b) tRhRh. 

Examination of both pairs of composition table frequencies shows that inserting a 

hole into the common region increases the frequencies of crisper compositions. This 

increase is due to the additional constraints that the hole imposes on the relation with 
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other regions. The frequencies of tRR inferences increase for composition cardinalities 1–4 

(Fig. 4.9a), while for tRhRh inferences the frequencies increase, with a few exceptions, for 

composition cardinalities 1 to approximately 38 (Fig. 4.9b).  

The frequencies also reveal that compositions of relations with more holes make 

more fully unambiguous inferences. For both pairs of composition tables summarized in 

Figure 4.9, the compositions with the highest normalized frequencies are those with a 

singleton, that is, cardinality 1. For the two composition tables with tRR inferences, the 

normalized frequencies of the singleton results are very similar—42.2% for tRR ; tRR  and 

42.3% for tRRh ; tRhR—whereas for the two composition tables with tRhRh inferences, the 

normalized frequencies increase—from 8.3% for tRhR ; tRRh to 9.7% for tRhRh ; tRhRh. These 

quantified relative increases are smaller due to the larger range of the composition results 

(i.e., 152 vs. 8 possible relations). However, the larger number of single-holed regions 

involved in the compositions with tRhRh imposes more constraints on the reasoning, 

thereby increasing the number of fully unambiguous inferences. 

4.5.2 Cumulative Frequencies of Composition Cardinalities 

The cumulative frequency of the composition cardinalities provides another measure for 

a hole’s influence on the inferences. Each composition cardinality cci has a corresponding 

normalized frequency 

! 

˜ f i . Composition cardinalities are ordered, such that cci < cci+1, with 

ccmin = 1 and ccmax being the cardinality of the set’s universal relation. Taken over the 

ordered sequence j of all composition cardinalities ccj, the cumulative frequency of the 

composition cardinalities captures the sum of all normalized frequencies 
    

! 

f 1

~

... fj
~

. Since 

the composition cardinalities typically differ depending on the set of relations considered, 

they are also normalized onto a scale of 0 to 1 (by the cardinality of the set’s universal 
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relation), yielding normalized composition cardinalities. Figure 4.10 shows the 

cumulative normalized frequencies over normalized composition cardinalities for the two 

compositions tRR ; tRR and tRhR ; tRRh. Both are compositions over a hole-free region. The 

differences in the two graphs stem from properties of the underlying domains of the 

composition results—8 vs. 152 composition cardinalities—as well as the inference power 

of the different relation sets. 

 

Figure 4.10 Cumulative normalized frequencies over normalized composition 
cardinalities for tRR ; tRR and tRhR ; tRRh. 

Better comparisons can be made between pairs of compositions with equal 

inference ranges (Fig. 4.11). Both pairs of corresponding curves have approximately the 

same origin and lead to the identical culmination point (at 100% accumulation for all 

composition cardinalities). 

  
(a) (b) 

Figure 4.11 Cumulative normalized frequencies over normalized composition 
cardinalities for compositions resulting in (a) tRR and (b) tRhRh. 
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Examination of the graphs shows that the insertion of a hole increases 

monotonically the cumulative frequencies of the compositions, preserving the change in 

the accumulation pace. The pairs of cumulative frequency graphs for tRR ; tRR and 

tRRh ; tRhR (Fig.4.11a) as well as tRhR ; tRRh and tRhRh ; tRhRh  (Fig. 4.11b) have similar 

shapes. In both cases, the curves increase strictly monotonically, except at their tail ends 

where they remain almost constant. The composition cardinalities over a single-holed 

region always have higher cumulative frequencies than their respective composition 

cardinalities over a hole-free region. The same shape and the higher cumulative 

frequencies, motivate further investigations into the properties of the cumulative 

normalized frequencies.  

4.5.2.1 Average Increase of Cumulative Cardinality Frequencies 

Since the curves of corresponding composition pairs form essentially closed areas, it is 

feasible to quantify the difference in the cumulative frequencies by considering the 

increase in the area from the composition curve without a hole to the composition curve 

with a hole (Eqn. 4.5a,b). 
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To calculate the area increases, 6th degree polynomial trend lines were fitted to the 

curves (Fig. 4.12). Since the single trend lines for tRR results did not generate the desired 

fit (Fig. 4.12a), another approximation with the curves split in half at their apparent break 

points was used as well (Fig. 4.12b). The increase calculated from these two 

approximations was then averaged. The quantitative values obtained are ΔHRR = 8% 

and ΔHRhRh = 12%. 
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(a) (b) 

 
(c) 

Figure 4.12 Approximations for cumulative frequency graphs: (a)-(b) trendlines for 
compositions resulting in tRR, and (c) single trendline for compositions resulting in tRhRh.  

Diversions from the average increase in cumulative frequencies reflect an increase 

of the frequencies of crisper composition results when a hole is inserted. For the pair of 

compositions resulting in tRR, the increase in the cumulative frequencies was assessed at 

the eight normalized composition cardinalities separately, in order to compare them with 

the average increase of 8%. For up to 0.5 normalized composition cardinalities, the 

increase in cumulative frequencies is above average—18.39% for up to 0.5 normalized 

composition cardinalities and 17.25% for up to 0.375 normalized composition 

cardinalities (which translates to 3 and 4 out of the eight tRR) (Fig. 4.11a). These numbers 

indicate that overall, when the composition’s common region is a single-holed region, it 

increases the occurrence of crisper results, and specifically for composition results with 

up to 3 or 4 relations. 



103 

This increase of crisper composition results is also verified for compositions that 

result in tRhRh. Samples of cumulative frequencies, taken at the normalized composition 

cardinalities of 0.125, 0.250, 0.375, 0.5, 0.625, 0.750, 0.875, and 1, show that the biggest 

increase in cumulative frequencies occurs for up to 0.125 composition cardinalities—

which translates to 19 out of 152 relations for the tRhRh domain. This increase is 36%, in 

contrast to 12%, which was the average increase calculated by the difference in the areas 

under the trendlines. The increase in the cumulative frequencies continues to be higher 

than the average for up to a normalized composition cardinality of 0.5 (i.e., compositions 

with 76 relations in their results) (Fig. 4.11b). These observations verify the hypothesis 

that when the composition’s common region is a single-holed region, crisper results are 

anticipated than for compositions over a region without a hole.  

4.5.2.2 Saturation and Accumulation Pace of Cumulative Cardinality Frequencies 

It is also observed that saturation of the cumulative frequency is reached earlier when the 

common region of the composition has a hole. For tRRh ; tRhR, for a composition 

cardinality of up to 0.5 relations, the accumulation reaches 78%, compared to 66% 

reached at the same point for tRR ; tRR (Fig. 4.11a). Therefore, up through a composition 

cardinality of 4 relations, the accumulation of the tRRh ; tRhR is reached earlier than that of 

tRR ; tRR . For composition cardinalities of more than 0.5 normalized relations, the 

accumulation slows down for tRRh ; tRhR, but increases for tRR ; tRR, confirming that the 

hole in the common region affects the reasoning by decreasing ambiguity of the 

inferences. Similarly due to the higher frequencies of crisper results, the cumulative 

frequencies for tRhRh ; tRhRh increase faster up to 0.5 normalized relations, after which they 

slow down. At this point, however, the pace increases for tRhR ; tRRh (Fig. 4.11b). 
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Finally, examining the cumulative frequency graphs reveals that the accumulation 

pace is even faster when more holes are included in the pair of composed relations. For 

the crisper composition results, the accumulation pace in tRhRh ; tRhRh  is the highest among 

all composition scenarios considered. For up to 50% of the composition cardinalities, the 

cumulative normalized frequency has already reached 95%, in contrast to 84% for 

tRhR ; tRRh, 78% for tRRh ; tRhR, and 66% for tRR ; tRR (Fig. 4.11). When compared with the 

composition of the same domain, approximately 60% of the accumulation has been 

reached already for a composition cardinality of up to 0.125 normalized relations, which 

translates to up to 19 relations per composition (Fig. 4.11b). The same percentage is 

reached only after the number of relations has more than doubled in the case of tRhR ; tRRh, 

where the cumulative frequency reaches 60% after the composition cardinality has 

reached 0.263 normalized relations (which translates to up to 40 relations per 

composition results). This faster pace continues until the accumulation is approximately 

90%, after which the pace is smaller for tRhRh ; tRhRh. The additional constraints that the 

higher number of holes overall impose in this composition scenario (i.e., each pair of 

composed relations comprises two single-holed regions whereas all the rest of the 

compositions happen between relations that comprise at most one single-holed region) 

are responsible for crisper composition results. 

4.6 Summary 

This chapter completed the S-HRM by providing the definition of the set of 152 relations 

between two single-holed regions, their neighborhood graph, and the analysis of the 

relations’ composition tables. While the number of relations increases to 152 when both 

regions in the relation are single-holed, overall the frequencies of composition results 
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with lower cardinalities are the highest for relations with two single-holed regions, than 

for relations with one or with no single-holed region.  

The compositions that result in two single-holed region relations, tRhRh, were 

compared against compositions that result in hole-free region relations, tRR, using not 

only the absolute, but also the cumulative cardinality frequencies. The frequency graphs 

that correspond to the composition tables revealed that inserting a hole in the common 

region of a pair of composed relations increases monotonically the cumulative cardinality 

frequencies, independently of the range of the resulting relations (i.e., tRR or tRhRh). 

Furthermore, lower cardinalities presented increases much higher than the average 

increase in the cumulative cardinality frequencies, while frequency saturation is achieved 

earlier for relations with a hole in the common region, than for relations with a hole-free 

common region. The composition cardinalities of relations with two single-holed regions 

experience the fastest accumulation pace, reaching 95% of the total accumulation for up 

to 76 relations (50% cardinality) in the composition results. The results verify the 

assumption that taking into consideration the holes in the reasoning process leads to more 

refined inferences, implying less ambiguous choices for the end user. 
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Chapter 5  Comparing Relations with A Multi-Holed Region 

Frequently, topological scenarios involving holed regions extend beyond regions with a 

single hole. Relations between a hole-free and a single-holed region and between two 

single-holed regions have been examined in Chapters 3 and 4, respectively. Three types 

of relations involve multi-holed regions: (1) relations between a hole-free and a multi-

holed region (Fig. 5.1a), (2) relations between a single-holed and a multi-holed region 

(Fig. 5.1b), and (3) relations between two multi-holed regions (Fig. 5.1c).  

   
(a) (b) (c) 

Figure 5.1 Topological relations between a multi-holed region B and a region A: (a) 
region A is hole-free, (b) A is single-holed, and (c) A is a multi-holed region, where both 
regions may have the same or different number of holes.  

The relation model discussed in this chapter considers relations of the first type—

between a hole-free and a multi-holed region. It is called the Multi-Holed Region Model 

(M-HRM) and it complements the S-HRM. The approach is to summarize for each 

relation, which of the 23 topological relations hold between the hole-free and a single-

holed region (Egenhofer and Vasardani 2007), selecting one hole at a time. This model 
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also allows for relations between a hole-free and a multi-holed region to be compared for 

their topological similarity by applying a balanced algorithm that uses their summaries to 

transform one relation into the other. The cost associated with the transformation 

expresses a measure of the dissimilarity between the two relations, which is subsequently 

converted into their similarity value (Nedas 2006). Quantification of the relations’ 

similarity provides a measure with which relations can be compared and ranked against a 

query, aiding users with their database quests for resembling topological scenarios. 

Similarity values are yet another inference mechanism made available using the sets of 

relations derived in this thesis.  

In Section 5.1 the formal definitions of a multi-holed region and of the relation 

between a hole-free and a multi-holed region are given. Section 5.2 describes in detail the 

similarity evaluation method. First, the computation of the dissimilarity between relations 

is translated into evaluating the cost of transforming one relation into the other, followed 

by descriptions of how to compute the minimum cost for this transformation using the 

transportation algorithm and how to convert it into a similarity value. Section 5.3 

provides an example of how to determine the topological similarity among relations 

between a hole-free and a multi-holed region. Section 5.4 studies the properties of the 

similarity assessment method and the results of applying it on a set of randomly 

generated relations for ranking them against a specific query, with the help of a software 

prototype. Section 5.5 concludes the chapter.  
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5.1 A Multi-Holed Region and the Relation between a Hole-Free and a Multi-Holed 

Region 

A multi-holed region with n holes, denoted by n-B, is derived by subtracting from a hole-

free region B, the union of the interiors of n simple regions Hi, i=1…n (Fig. 5.2). Region 

n-B comprises the generalized region B* and n holes such that B*contains each of the 

holes and all holes are pairwise disjoint. The generalized region B* is defined as the 

union of the multi-holed region n-B and the regions Hi, which fill its n holes. 

Multi-holed region n-B with holes Hi, i=1.. n: 
• 

        

! 

n- B=B - Hi
i=1

n

U °  
•     

! 

B
*

=n- B"H1..."Hn -1"Hn 
•   

! 

"i:i=1...n, B
*
 contains Hi 

•       

! 

"i, j:i =1...n, j=1...n, i# j: Hi disjoint Hj   

Figure 5.2 A multi-holed region n-B. 

The topological relation between a hole-free region A and a multi-holed region n-B, 

denoted by t(A, n-B), is modeled as the union of the n relations between A and each of 

the single-holed regions Bi, i=1…n, as if each hole Hi was unique (Eqn. 5.1a). Because 

of this trait, the relation is named multi-element and each of the n elements, denoted by 

t(A, Bi), is one of the 23-tRRh between a hole-free and a single-holed region (Egenhofer 

and Vasardani 2007). Each single-holed region Bi is equal to what remains after 

extracting region Hi’s interior from the generalized region B* (Eqn. 5.1b). A depiction of 

a four-element topological relation between region A and a four-holed region 4-B, is 

given in Figure 5.3. 
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t(A, n-B)= U
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n

t(A, Bi), where i=1…n and t(A, Bi) ∈ 23-tRRh (5.1a) 
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B
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t(A, B1) 

 
t(A, B2) 

 
t(A, B3) 

 
t(A, B4) 

 

 
 

t(A, 4-B)=
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U
i=1

4

t(A, Bi) 

 

Figure 5.3 Depiction of the different t(A, Bi) that together make up the four-element 
relation t(A, 4-B) between hole-free region A and multi-holed region 4-B. 

5.2 Frequency Distribution Method 

It follows from the multi-element relation model that each such relation is characterized 

by certain element frequencies, thus topologically different relations exhibit different 

frequencies. To compare multi-element relations for their topological similarity, the 

Frequency Distribution Method (FDM) first summarizes the relations in the frequencies 

of their participating elements. Subsequently, transformation of one multi-element 

relation into another is achieved using the concept of redistributing their summary 

frequencies. By assigning a cost to this transformation and translating the cost into a 

similarity value, FDM enables the assessment of relation similarity.  

Two multi-element relations are used as reference for calculating the cost of 

relation transformation: Relation t(A, n-B) between hole-free region A and multi-holed 

region n-B and relation t(C, n-D) between hole-free region C and multi-holed region n-D, 

n being the number of holes. For short, the relations are denoted t1 and t2, respectively.  
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5.2.1 Topological Dissimilarity and Relation Difference 

Relations t1 and t2 may consist of different tRRhs as their elements. The normalized 

frequencies of t1 and t2’ s elements are summarized in vectors with m elements each, m 

being the collective number of different tRRhs present in t1 and t2 (Eqn. 5.2). Vector V1 

records the normalized frequencies 

! 

Fii=1
m  of t1, where Fi is the count (fi) of t1’s elements 

of type tRRhi, divided by the total number of holes n for normalization. Accordingly, 

vector V2 records the normalized frequencies of t2. Normalization of the frequencies 

enables the comparison of the different frequency vectors, since each value becomes a 

percentage of the total number of different tRRhs in t1 and t2. Elements with a zero 

frequency value in a vector correspond to tRRhs not present in the respective multi-element 

relation.  
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n
 (5.2) 

The sum of a frequency vector V is defined as the sum of the frequency values F of 

its m elements. Since the frequency values in vectors V1 and V2 are normalized by the 

total number of holes, they are counted in frequency units and lie in the interval [0, 1]. A 

frequency unit is equal to the division of the unit by n (i.e., 1/n). Each frequency vector 

records all of the n elements of either t1 or t2; therefore, the sum of each vector is equal to 

the unit (Eqn. 5.3). 

 

! 

sum(V)= Fi
i=1

m

" =1  (5.3) 

If the vectors differ in frequency values for their corresponding elements, relations 

t1 and t2 are different. A quantification of this difference is their topological dissimilarity 
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δ(t1,t2) (Def. 1). In order to determine this dissimilarity, one relation is transformed into 

the other, and the cost of this transformation is evaluated. 

Definition 1: The topological dissimilarity δ(t1,t2) of two multi-element relations, t1 and 

t2, is determined by the minimum cost of transforming frequency vector V1 into vector V2 

by redistributing the normalized frequencies of V1 so that they are identical to those 

of V2. 

Matching vector frequencies for corresponding elements imply that the topology of 

the two relations is very similar. Nevertheless, t1 and t2 should not necessarily be regarded 

as exactly the same, unless their graphic depictions on the plane verify so.  

The total cost of the frequency vector transformation is the weighted sum of the 

distances along the 23-tRRh CNG between the elements, among which the redistribution of 

frequency units occurs. The number of frequency units moved between two tRRhs 

represents the weight assigned to their distance on the 23-tRRh CNG (Table 3.2). The 

maximum cost is incurred when the maximum possible amount of frequency units is 

redistributed over the longest shortest path on the CNG. The maximum amount of 

frequency units of vector V is the sum(V), which is equal to the unit (Eqn. 5.3), and the 

longest shortest path of the 23-tRRh CNG, dmax23, is eight (Section 3.5.2). Subsequently, 

the maximum cost of transformation 

! 

"
max

t
1
#t
2  between t1 and t2, is eight (Eqn. 5.4). 

 

! 

"
max

t
1
#t
2 = sum(V)*dmax23 =8 (5.4) 

In order to identify the amount of frequency units and the elements between which 

they are redistributed, the relation difference is calculated.  
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Definition 2: The relation difference (
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"
t
1
t
2

) between two relations, t1 and t2, is a 

frequency vector, defined as the difference of the relations’ normalized frequency 

vectors (Eqn. 5.5). 
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The values of the elements in 
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"
t
1
t
2
 are the frequency units that need to be 

redistributed. These values are both positive and negative, with the positive 

corresponding to excess frequency units that will be transferred to balance the negative 

ones. Consequently, 

! 

"
t
1
t
2

 carries the weight information necessary for computing the 

minimum cost of transforming V1 into V2, in the form of the exchanged frequency units. 

The elements of 

! 

"
t
1
t
2

 represent the difference units between the two relations’ frequency 

vectors. The vectors are normalized by the same number of holes n, therefore, the sum of 

the positive values in 

! 

"
t
1
t
2

 is equal to the sum of the negative values, canceling each other 

out (Eqn. 5.6). 

 

! 

sum("
t1t2
)= 0  (5.6) 

5.2.2 Computing the Minimum Cost of Relation Transformation with the 

Transportation Algorithm 

The determination of the minimum cost for transforming frequency vector V1 into V2 can 

be translated into a balanced transportation problem (Murty 1976; Strayer 1989). This 

section discusses how this translation is done, and the use of the transportation algorithm 

for acquiring a solution. The transportation algorithm, as well as the Hungarian (Kuhn 

1955) and other algorithms are used to solve the assignment and the balanced 

transportation problems (Munkres 1957), which are cases of the minimum cost flow 
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problem, which in turn is a special case of the linear programming problem (Dantzig 

1963; Dantzig and Thapa 1997). 

5.2.2.1 Balanced Transportation Problem 

An analogy of warehouses and markets is used for discussing the transportation problem. 

This problem, which considers the supplies of all the warehouses and the demands of all 

the markets, along with the unit costs for transportation between all pairs of warehouses 

and markets, is about finding the minimum cost for transporting all supplies from the 

warehouses to the markets so that all demands can be met. This analogy’s components 

have their counterparts in the case of transforming one frequency vector into another. In 

particular, the p different elements with positive frequency differences in the relation-

difference 
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t
1
t
2

 correspond to warehouses and the n different elements with negative 

frequency differences correspond to markets. The ith warehouse’s (Wi) supply, denoted 

by si, is equal to the value of its corresponding frequency difference in 

! 

"
t
1
t
2

. Similarly, 

the jth market’s (Mj) demand, denoted by dj, equals the value of the analogous frequency 

difference in 

! 

"
t
1
t
2

.  

The unit cost cij for moving a supply unit (i.e., a frequency unit) from Wi to Mj is 

the distance dist(Wi, Mj) between the two tRRh that correspond to Wi and Mj on the 23-tRRh 

CNG (Fig. 3.9). The sum of the relation-difference is zero (Eqn. 5.6); therefore, the sum 

of all supplies equals the sum of all demands (Table 5.3) and, due to this equality, this 

transportation problem is a balanced transportation problem.  
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Table 5.3 The balanced transportation problem for 
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If xij frequency units are to be transferred from warehouse Wi to market Mj, then the 

transportation problem is expressed as determining those values of x for which the total 

cost z is a minimum (Eqn. 5.7) and the supply and demand constraints are satisfied. The 

supply constraint states that the sum of all frequency units distributed out from a certain 

warehouse must equal the total supply capacity of that warehouse (Eqn. 5.8a), and 

similarly, the demand constraint states that the sum of all frequency units received by that 

market must equal the total demand of that market (Eqn. 5.8b). Cost z is then the 

minimum cost for transforming frequency vector V1 into vector V2.  
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5.2.2.2 Similarity Values Obtained from the Transportation Algorithm  

Solutions to the balanced transportation problem of identifying the topological 

dissimilarity between two multi-element relations or the minimum cost for transforming 

one relation into the other can be obtained by employing the transportation algorithm 

(Murty 1976; Strayer 1989). This algorithm operates in two steps: First a basic feasible 
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solution is found by randomly redistributing the frequency units in 

! 

"
t
1
t
2

 so that the supply 

and demand constraints are met (Eqn. 5.8a-b). Since the basic solution might not be 

optimal as far as the minimum cost z of the transportation is concerned, the algorithm, in 

a second step, iteratively improves the redistribution, until an optimal solution is found 

(Strayer 1989). There may be more than one way to distribute the frequency units, so that 

the minimum value of z is obtained. The higher the final solution, the more costly is the 

redistribution of frequency units. 

The computed value of z actually stands for the topological dissimilarity δ(t1,t2) 

between two multi-element relations. The similarity sim(t1,t2) and dissimilarity δ(t1,t2) of 

two relations are complement values; therefore, they add up to a constant (i.e., g) 

(Eqn. 5.9). Dissimilarity δ(t1,t2) lies in the interval [0, 

! 

"
max

t
1
#t
2 ] , and can be normalized in 

the closed interval [0, 1] if divided by 

! 

"
max

t
1
#t
2  (Eqn. 5.10a). In this case, similarity is the 

dissimilarity’s complement from the unit, and it also lies in the closed interval [0, 1] 

(Eqn. 5.10b). 

 sim(t1,t2) + δ(t1,t2) = g (5.9)  

 
  

! 

"(t1,t2)=
z(t1,t2)

dmax
t
1
-t
2

 (5.10a) 

 sim(t1,t2) = 1 - δ(t1,t2) (5.10b) 

5.3 Example of Relation Similarity Evaluation 

The similarity between relations t(A, 8-C) and t(B, 8-D) (Fig. 5.4), or t1 and t2 for short, is 

evaluated using the FDM. Since, in this case, overlap is the principal relation for both 

cases, five different tRRhs are possible (Fig. 3.9). Table 5.4 displays these five tRRh along 
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with the single-holed regions that participate in each tRRh with A or B (
  

! 

C i=1

8  and 
  

! 

Di=1

8  

respectively), according to the placements of the holes.  

  
(a) (b) 

Figure 5.4 Example topological multi-element relations: (a) t(A, 8-C) and (b) t(B, 8-D). 

 

Table 5.4 The tRRh elements of the multi-holed relations t(A, 8-C) and t(B, 8-D). 

 [o d] [o m] [o o] [o cv] [o ct] 
A C4 C1 C7 + C5 - C2 + C3 + C6 + C8 
B D5 - D8 D7 D1 + D2 + D3 + D4 + D6 
      

Table 5.4 reveals also the elements’ frequencies for each of the multi-element 

relations. It is, therefore, possible to construct the normalized frequency vectors V1 and 

V2 for each multi-element relation, respectively (Eqn. 5.11). Since there are eight holes, 

normalization is achieved by dividing each frequency by eight (i.e., f/8, where f is the 

frequency of the element) and the frequency unit is 1/8. 
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Vectors V1 and V2 do not share the same frequencies for corresponding types of 

elements; therefore, the transportation algorithm is employed in order to produce a 

dissimilarity value between them. Equation 5.12 gives their relation difference 
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By enforcing the sums constraint (Table 5.3), frequency units need to be 

redistributed so that balance is acquired. The relation difference shows which elements 

with excess (positive) frequency differences will offer units—[o cv] and [o ct] in this 

case—to the receiving elements with the negative frequency differences—[o m] and 

[o d]. The distances between the elements on the 23-tRRh CNG (Fig. 3.9) provide the costs 

of the transportations (Table 3.2). A basic feasible solution—which is also optimal for 

this simple case—is obtained if 0.125 units are transferred from [o cv] to [o m] and 0.125 

units from [o ct] to [o o]. Table 3.2 records the costs for these transfers as 2 and 2, 

respectively. Therefore, the value z for the cost of redistribution in 

! 

"
t
1
t
2
 is 0.5 

(Eqn. 5.13). 

       

! 

z=0.125*dist([o cv]" [o m]) + 0.125*dist([o ct ]" [o o]) = 0.5 (5.13) 

This value z is the cost of transforming V1 into V2 (or vise versa). Using Equation 

5.10a, the dissimilarity δ(t1,t2) between the two multi-element relations is evaluated 

(Eqn. 5.14); subsequently, using Equation 5.10b, the similarity sim(t1,t2) between the two 

relations is estimated (Eqn. 5.15).  

 
  

! 

"(t1,t2)=
z

dmax
t1#t2

=
0.5

8
=0.0625  (5.14) 

 

! 

sim(t1,t2)=1"#(t1,t2)=1"0.0625=0.9375  (5.15) 

Converted to a percentage, this similarity value is 93.75%. However, FDM is for 

comparing relations for their similarity to another relation. Similarity evaluation between 

two relations implies that one of them is the reference relation. To enable similarity 

comparisons, the similarity between the reference and at least one more relation has to be 

calculated (Janowicz 2006). The similarity computed with FDM does not imply that two 

relations are as similar, percentage wise, as the calculated number indicates.  

Occasionally, multiple different distributions yield the same minimal result. For more 
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complex frequency units distributions, the second phase of the transportation algorithm 

performs iteratively, starting from a basic feasible solution until an optimal distribution is 

found.  

5.4 Properties of the Frequency Distribution Method 

The FDM has certain characteristics: 

• The number of holes n is the same between query and random relations that are ranked 

for their similarity against the query. 

• There are three possible ways in which two multi-element relations—between a hole-

free and a multi-holed region—may differ: (1) the principal relation is the same, while 

the refining relations—those associated with the placement of the holes—are different, 

(2) the principal relation differs but the placement of the holes remains invariable, and 

(3) the principal relation and some or all of the refining relations differ.  

• All edges in the 23-tRRh CNG have the same weight (i.e., the unit), so that the distance 

between any two relations on the graph solely depends on the length of the shortest 

path between them.  

This section examines in detail the three ways that multi-element relations can 

differ, as well as how the weight constant affects the similarity evaluation procedure.  

5.4.1 Effect of the Principal Relation on the Similarity Evaluation 

There are five relations—disjoint, meet, equal, covers, and contains—whose strong 

influence on the topology forces the hole-free region to be in the same relation with all 

holes—disjoint for principal relations disjoint and meet, and contains for the remaining 
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three principal relations, in the given order (Fig. 5.5). Other multi-element relations may 

differ only in their principal relations, or both their principal and refining relations. They 

cannot, nonetheless, differ only in their refining relations. As this information is 

imprinted in the 23-tRRh CNG, in case two multi-element relations share any of these five 

principal relations, their possible topological distinguishability is not recognized in the 

FDM and no further calculations are performed.  

 

Figure 5.5 The five multi-elements indistinguishable relations. 

For the remaining three principal relations—overlap, coveredBy, and inside—there 

are no restrictions; therefore, multi-element relations may differ in any of their 

constituent relations, or in both simultaneously. There are, however, a few exceptions for 

the principal relation inside. While having eight possibilities for different hole 

placements, inside shares only five common refining relations with principal relations 

coveredBy and overlap—namely disjoint, meet, overlap, covers, and contains. When the 

principal relation is inside and the refining relations are equal, coveredBy, or inside, 

multi-element relations can vary only in their principal relation or in both their 

constituent relations, but not solely in their refining relations. Figure 5.6 depicts various 

paths on the 23-tRRh CNG between two different elements with overlap, coveredBy, or 

inside for their principal relation. These paths connect relations that have the same 

principal relation and different hole placements (Fig. 5.6a), or the same hole placements 
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and different principal relations (Fig. 5.6b), or both principal and refining relations 

different (Fig. 5.6c). 

   
(a) (b) (c) 

Figure 5.6 Paths connecting different elements. The elements have (a) the same 
principal, but different refining relations, (b) different principal, but the same refining 
relations, or (c) different principal and refining relations. 

5.4.2 Ramifications of the Weight Constant 

The weight constant—the fact that all edges in the 23-tRRh CNG have the same weight—

is related to the dependency of the method on the 23-tRRh topological relations. In order to 

evaluate the ramifications of this constant on the FDM, the ranking of a few especially 

chosen example relations against a specific query is examined. The choice of the unit as 

the weight for all the edges of the 23-tRRh CNG equalizes the amount of change from one 

principal relation to a neighboring one while keeping the refining relation the same, with 

the amount of change of keeping the same principal relation and moving to a neighboring 

refining relation (Fig. 5.7). It implies that a topological change in the relation between the 

hole-free region and the generalized region has the same topological importance as a 

topological change in the relation between the hole-free region and any one of the holes.  
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Figure 5.7 Moving from relation [cB cv] to any of its four neighboring relations causes 
the same amount of topological change. 

The importance of the invariant distance unit weight is highlighted in the following 

examples. Figure 5.8a shows the query topological scene against which four other scenes 

will be evaluated for their degree of similarity. They are chosen so that the first one has 

the same principal but different refining relations (Fig. 5.8b), the second and third have 

different principal but the same refining relations (Fig. 5.8c-d), and the fourth one has 

different principal and some but not all different refining relations (Fig. 5.8e).  

     
(a) (b) (c) (d) (e) 

Figure 5.8 Similarity evaluation of multi-element relations: (a) the query relation and 
(b)–(e) the relations to be assessed according to their similarity with the query. 

For the first relation (Fig. 5.8a), using the FDM to calculate the cost associated with 

transforming it to the query, four frequency units need to be transferred from the [o ct] 

elements, to each of the query’s elements. The normalized frequency unit is 1/4—there 

are four holes in total—and the distances over which the units need to be transferred are 

dist([o ct]→[o d])=4, dist([o ct]→[o m])=3, dist([o ct]→[o o])=2 and 

dist([o ct]→[o cv)=1, as indicated from Table 3.2. The similarity sim(b, query) is 
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calculated to be 68.75%. For the second relation (Fig. 5.8c), four frequency units need to 

be transferred again, but this time the principal relation changes, while the holes’ 

placement remains the same. Applying FDM gives sim(c, query) = 87.5%. 

The third relation (Fig. 5.8d) has different principal but the same refining relations 

again, only this time the elements are farther apart from the query’s respective relations 

on the CNG. The analogous calculations give sim(d, query)=75%. For the fourth relation 

(Fig. 5.8e), the principal and some, but not all, refining relations are different. The 

redistribution of frequency units gives sim(e, query) = 62.5%. 

While relation 5.8b exposes no change from the query with respect to the principal 

relation, it does not rank the highest in the similarity assessment. Instead relations 5.8c 

and 5.8d, with different principal relations but with the same topological placement of 

their holes, rank higher. Last in ranking comes 5.8e, with both principal and refining 

relations different from the query’s corresponding relations. Figure 5.9 orders the 

relations according to their ranking.  

 
Query relation 

 
1st— sim=87.5% 

 
2nd—sim=75% 

 
3rd—sim=68.75% 

 
4th—sim=62.5% 

(a) (b) (c) (d) (e) 

Figure 5.9 The ranking of multi-element relations according to their similarity with the 
query relation. (a) the query relation and (b)–(e) the ranked relations. 

The weight constant is responsible for the specific ranking of the results. The 23-

tRRh CNG captures all topological changes among the 23 possible elements of a multi-

element relation. The path between two relations on the graph represents a path of least 

topological difference, implying that the closer the relations are on the graph, the smaller 

is the amount of change required in order to gradually transform one relation to the other 
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(Bruns and Egenhofer 1996). Topological changes of the 23-tRRh, however, have the 

characteristic of comprising two, not totally independent, variables: (1) change in the 

principal and (2) change in the refining relation. Neighboring relations on the graph may 

differ by a step of change in either of their constituent relations. Therefore, the placement 

of the elements on the 23-tRRh CNG dictates the similarity ranking. Closeness between 

tRRhs on the graph has a strong bearing on a multi-element relation’s similarity to the 

query relation, even if their principal relations are different. In a different similarity 

model, where the two variables are treated separately by using a different principle than 

least topological change, the lengths between neighbors on the CNG would vary. In such 

a case, differences in their principal relation and differences in their refining relations 

would play distinct roles in the similarity assessment between relations over holed 

regions. In the model presented here, however, topological changes in both constituent 

relations are of the same importance.  

5.4.3 Analysis of Random Query Experiments 

With the help of a software prototype for randomly generating multi-element topological 

relations, experiments were conducted for ranking a set of ten such random relations 

(Fig. 5.10b-k) according to their similarity with a query multi-element relation 

(Fig. 5.10a), using FDM. The results of the similarity evaluation are given in Table 5.5.  

     
(b) (c) (d) (e) (f) 

 

     
(a) (g) (h) (i) (j) (k) 

Figure 5.10 Randomly generated archived topological scenarios: (a) the query relations 
and (b)–(k) the relations to be ranked according to their similarity to the query. 
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Table 5.5 Similarity evaluation for the ten randomly generated relations (Fig. 5.10b-k) 
with respect to the query relation (Fig. 5.10a). 

Relation b c d e f g h i j k 
Sim% 53.1 71.9 90.6 40.6 59.4 53.1 87.5 78.1 59.4 78.1 

 

The similarity assessment determines that the relation topologically closest to the 

query is relation 5.10d with sim(d) = 90.6%, followed by relation 5.10h with 

sim(h) = 87.5%. In this case, the two most highly ranked scenarios not only share the 

same principal relation, but also display hole placements that resemble the topology of 

the query. Therefore, the elements of each relation appear very close to the query’s 

corresponding elements on the 23-tRRh CNG, and are responsible for the high similarity 

ranking. The scenarios that follow in the ranking present a combination of different 

principal and also quite different refining relations from the analogous relations of the 

query. The last rank is occupied by case 5.10e that has elements located the farthest from 

the corresponding query elements, on the 23-tRRh CNG. Specifically, [ct ct] is the farthest 

from elements [o m] and [o o] of the query, with distances four and five, respectively. 

Such distances are the longest distances that both elements can have from any other 

relation on the graph. Therefore, their placement on the 23-tRRh CNG is responsible for 

placing 5.10e to the lowest ranking.  

5.5 Summary 

The Frequency Distribution Method (FDM) enables the similarity comparison among 

relations between a hole-free and a multi-holed region, when the number of holes is the 

same. The relations under comparison are summarized in vectors that display the 

frequency of the relations’ elements—the tRRhs identified in each relation, when each hole 

is considered as unique in the host region. Modeling relations in frequency vectors allows 
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the similarity evaluation to be described as calculating the cost for transforming one 

relation into the other in the form of a balanced transportation problem, where the 

differences in the frequencies of their corresponding elements are considered. Positive 

frequency elements transfer frequency units to elements with frequency deficiency, to 

acquire equilibrium.  

By calculating the overall cost of these transfers for the relation transformation, 

using the transportation algorithm, a dissimilarity between relations is evaluated. 

Subsequently, dissimilarity is expressed in its complement similarity value. The costs are 

identified as distances between two elements on the 23-tRRh CNG. The FDM addresses 

this way, questions of similarity ranking of a group of relations against a specific query. 

Example similarity rankings reveal that the positioning of the holes relative to the hole-

free region is as important for the similarity evaluation as is the overall relation between 

the hole-free region and the host of the holes.  
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Chapter 6  Similarity Assessment with Varying Numbers   of 

Holes 

In Chapter 5 the comparisons among relations between a hole-free and a multi-holed 

region were restricted to the cases when the multi-holed regions have the same number of 

holes, as this requirement is one of the basic properties of the Frequency Distribution 

Method (FDM). In many real-world scenarios, however, the need to compare such 

relations extends to comparing relations with regions that have different numbers of holes 

(Fig. 6.1).  

  
(a) (b) 

Figure 6.1 Relations between a hole-free and a multi-holed region with different 
numbers of holes: (a) relation t(A, n-B) and (b) relation t(C, m-D). 

Apart from the different number of holes, such relations may also vary in the way 

that the hosts and the hole-free regions are related, in the way the holes are placed with 

respect to the hole-free region, or in all three ways. Assuming that the holes are all of the 

same importance and that their placements, as well as the host region’s placement with 
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respect to the hole-free region are the same for the different relations, the difference in 

the number of holes can be interpreted as comparing scenarios where holes have been 

dropped from or added to the multi-holed region. If a number of parameters are different, 

however, the question is which of the topological scenarios under examination are more 

similar to the query relation and how do the number of holes, the principal relation, and 

the hole positioning affect the similarity ranking. This chapter examines whether FDM, 

unaltered, can handle these questions to compare relations with different numbers of 

holes and, if not, what adjustments are needed to allow FDM to deal with such cases. 

Figure 6.2 displays a sketched geological scenario where a comparison among 

relations between a hole-free and a multi-holed region, with regions of different numbers 

of holes is needed. Even though geologic formations exist in the three dimensions, 

geologists often study and make decisions over the two-dimensional representations of 

the formations on geological maps. Such representations are used in this example. Region 

B represents an underground sedimentary rock formation with concentrations of oil 

residing in the holes H1 through H8. Regions D and F are similar rock formations with 

holes H1 through H6 and H1 through H7, respectively, filled with oil as well. Regions A, 

C, and E are ground hole-free regions that have been deemed appropriate for excavation 

in order to reach the oil deposits from the reservoirs in D, B, and F, correspondingly. All 

holes are of equal profit importance and the topological relation between excavation 

region A and reservoir B, for which the profit from the oil exploitation is known, is 

considered the reference relation. Which one of the remaining two topological relations is 

then more similar topologically to the reference relation and, therefore, has a similar 

economic value? Is it the relation between C and D, where D has the same hole 

placements as B but is missing two holes, or is it the relation between E and reservoir F, 
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which presents different hole placements than B with respect to the excavation region, 

but is only missing one hole? 

   
(a) (b) (c) 

Figure 6.2 Sketched geological scenarios of multi-holed oil baring reservoirs. The 
reservoirs are represented by regions 8-B, 6-D, and 7-F, while the hole-free regions A, C, 
and E have been identified as excavation areas.  

When the number of holes between the regions in the relations under comparison is 

different, the supply and demand constraints (Section 5.2.2.1) are no longer in effect, 

therefore the transportation problem gets out of balance and the transportation algorithm 

cannot be applied. As a result, FDM is inappropriate for addressing such questions in a 

reasoned matter. To allow for comparisons of relations where the regions have different 

number of holes, this chapter modifies FDM, and in particular, the 23-tRRh conceptual 

neighborhood graph to account for the costs related with the change in the number of 

holes between the multi-holed regions in the relations. The extension of the FDM implies 

that future alterations can also accommodate comparisons among relations between 

regions that are both multi-holed. 

Section 6.1 points out the limitations of the FDM for dealing with relations of 

multi-holed regions with varying numbers of holes. The required changes result in an 

extended version of the 23-tRRh CNG (Section 6.2). Section 6.3 examines different cost 

assigning methods for producing the table of costs for the extended CNG and Section 6.4 

presents the alternative FDM and demonstrates its use with an example. The chapter is 

summarized in Section 6.5.  
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6.1 Limitations of the FDM 

The Frequency Distribution Method relies on satisfying the supply and demand 

constraints in order to maintain the transportation problem in balance, ensuring that the 

transportation algorithm can be applied. When the number of holes is the same in the 

regions of the relations under comparison, it suffices to redistribute the element 

frequencies in order to transform one relation into the other and achieve balance. 

Therefore, when the number of holes is different, the surplus or deficit in element 

frequencies cannot be met by mere frequency units’ redistribution, and the system gets 

out of balance (Section 6.1.1). A solution for rebalancing the system comes from 

studying the connection between the 8-tRR and the 23-tRRh CNGs (Section 6.1.2). 

6.1.1 Out-of-Balance System 

An example featuring two multi-element topological relations t(A, 5-B) and t(C, 4-D) 

(Fig. 6.3) is used as reference for discussing how the difference in the number of holes 

brings the system out of balance, rendering the unaltered FDM insufficient for evaluating 

the similarity in such cases. For simplicity, the principal relation and the placement of the 

holes is the same for the two relations; however, this is not a general precondition for the 

alternative FDM studied in this chapter.  

  
(a) (b) 

Figure 6.3 Example multi-element relations with different numbers of holes: (a) relation 
between hole-free region A and region B with five holes and (b) relation between hole-
free region C and region D with four hole. Both multi-element relations share the 
principal relation coveredBy and the same refining relations.  
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When applying the FDM for evaluating the similarity, the first step is to record the 

frequencies of the tRRhs that compose the relations, in the frequency vectors V1 and V2 for 

t(A, 5-B) and t(C, 4-D), respectively (Eqn. 6.1a). The maximum number of holes in one 

region is 5, thus one frequency unit equals 1/5 (Section 5.3.1). After recording the 

normalized frequencies, it is also possible to calculate the relation difference Δ, which 

carries the weights information necessary for computing the minimum cost of 

transforming V1 into V2 in the form of the exchanged frequency units (Eqn. 6.1b).  
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The sum of the positive frequency differences is no longer equal to the sum of the 

negative frequency differences, however, as required by the nil sum of the relation 

difference (Eqn. 5.6). The inequality is explained by the extra hole in 5-B (i.e., hole H5), 

which has been dropped in 4-D. This extra hole’s presence creates an excess of frequency 

units and is responsible for throwing the system out of balance. The transportation 

algorithm cannot be applied, because there is no indication as to where the excess 

frequency unit should be transferred, as there is no demand in the form of a negative 

element of equal absolute value in the relation difference (Eqn. 6.1b).  
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6.1.2 Rebalancing the System 

In order to bring the system back into balance, a way to create the appropriate demand to 

counterbalance the excess positive frequency units in the relation difference is necessary. 

The frequency vectors record the frequencies of the tRRhs and summarize the relations, but 

the vectors’ numerical difference (Δ) does not allow for the change in the number of 

holes to affect the similarity evaluation. This change, therefore, needs to be represented in 

Δ as well. The current section discusses the concept of adding a new quantity in Δ, of 

absolute value equal to the excess created by reducing the number of holes. This new 

quantity allows for the difference in the number of holes to affect the similarity 

evaluation, rebalances the system by bringing the sum of Δ back to zero, and allows for 

the transportation algorithm to perform.  

The approach described in this chapter is based on the following basic assumption. 

Each value in Δ represents the weight (i.e., the frequency units) assigned to the cost of 

transforming a tRRh into another. The cost is the distance on the 23-tRRh CNG between the 

two tRRhs that transform into each other—the shortest path between them. Therefore, the 

additional weight quantity that rebalances Δ is related to a distance between two relations 

that transform into each other as well. In particular, it is related to the distance that 

connects the relations over the region, which drops or gains the hole. From now on, since 

adding and dropping a hole are inverse operations of equal cost, only the dropping of a 

hole will be considered, without loss of generality.  

It is necessary then that new distances, which represent costs associated with 

dropping holes from the tRRhs and to which the new weight elements in Δ will be 

assigned, are appended to the neighborhood graph. Each time a hole is dropped, it is 

dropped from one of the single-holed regions that collectively make up for the multi-
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holed region, as dictated from the HFM (Chapter 5). The single-holed region becomes 

then hole-free, and the tRRh to which it was involved (i.e., the relation between the hole-

free and the single-holed region that drops the hole) becomes one of the 8-tRR. 

Specifically, the former tRRh is replaced by its tRR principal relation (Fig. 6.4).  

                                                       
   

  
[cB ct] 

 
[cB o] 

 
[cB cv] 

 
[cB m] 

 
[cB d] 

 
coveredBy 

 
[cB o] 

 
[cB cv] 

 
[cB m]  

[cB d] 

Figure 6.4 Example of transforming a multi-element relation into another, when the 
number of holes between them is different. Single-holed region D5 becomes hole free 
region D—marked with a dashed border—as it loses hole H5. The tRRh [cB ct] between C 
and D5 becomes the tRR coveredBy between hole-free regions C and D. 

6.2 Bridging Different Topological Changes 

The new distances added to the CNG connect relations of different types—a tRRh with a 

tRR—implying that the 8-tRR CNG is appended to the 23-tRRh CNG, with additional edges 

that connect each tRRh with its principal tRR. Each of these two graphs is a depiction of 

steps of topological change between relations of two-dimensional regions—both hole-

free for the 8-tRR and a hole-free and a single-holed for the 23-tRRh. Before studying the 

changes along the connections of the two graphs, section 6.2.1 examines the topological 

changes portrayed on each separate graph.  

6.2.1 Changes in the Relation between Regions  

The reasoning behind constructing the 8-tRR CNG is that the edges correspond to gradual 

changes between the relations on the graph. Particularly, each edge is a step of 
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topological change between the two relations it connects. It is the necessary topological 

change that transforms one topological relation into a different one, with no intermediate 

cases (Egenhofer and Al Taha 1992). The 8-tRR CNG considered here is the one that 

depicts the A-neighbors, where none of the three topological changes of scaling, 

translation, or rotation may transform relation equal to relations overlap, inside, or 

contains, directly. The transformation needs to go through relations coveredBy and 

covers, respectively. A discussion of the B-neighbors or the C-neighbors graph where 

such direct transformations are possible is included in the Future Work section of the 

thesis (Section 8.3). The change occurs on one of the two objects of the relation and it 

alters the relation to one of its immediate neighbors on the graph. The topological 

structure of the object (i.e., region) itself, however, remains intact. The typical 

topological changes considered for the 8-tRR are translation of the object in any direction 

in the plane, scaling (expansion or reduction), or rotation. Figure 6.5a depicts the 8-tRR 

CNG with labeled edges according to the possible change of one region in relation to the 

other.  

When a hole is added to one of the two regions, each of the 8-tRR on the graph is 

replaced by its set of refining tRRhs, resulting in the 23-tRRh CNG. The refinements are due 

to the additional possibilities for relations created by the different placements of the hole 

relative to the hole-free region. The reasoning for connecting the relations on the 23-tRRh 

CNG remains the same—each edge represents a step of topological change between the 

relations it connects (Section 5.2). The change occurs on one of the two regions of the 

relation, altering either the principal or the refining relation. Consequently, the edges on 

the 23-tRRh CNG connect tRRhs that either share the same principal relation and their 

refining relations are immediate neighbors on the 8-tRR CNG, or they share the same 
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refining relations and their principal relations are immediate neighbors on the 8-tRR CNG. 

The changes considered are, similarly, translation, scaling and rotation. When the 

principal relation remains invariant, the change happens to either the hole-free region or 

the hole, while when the refining relation remains the same the change occurs to either 

the hole-free region or the host of the hole. Figure 6.5b depicts the 23-tRRh CNG with 

labeled edges according to the possible change to the hole, the generalized, or the hole-

free region. 

  
(a) (b) 

Figure 6.5 The Conceptual Neighborhood Graphs for (a) 8-tRR and (b) 23-tRRh with edge 
labels for possible topological changes from one relation to the other: t=translation, 
s=scaling, r=rotation 

The three topological changes—translation, scaling and rotation—that may occur to 

a region are of equal importance and the precondition in this work is that only one 

topological change occurs between two neighboring relations. Examination of the 

relations in both graphs shows that in most cases one relation can be transformed to its 

neighbor by translation, scaling, or rotation, equally. There are exceptions, however, 
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when either the relation itself (for the tRRs) or one of its constituent relations (for the 

tRRhs) is the relation equal. For the 8-tRR CNG, the only topological change for the pairs of 

relations coveredBy-equal and covers-equal is scaling. In either case, one of the two 

regions has to increase or decrease from coveredBy or covers to equal, respectively. The 

reverse is necessary in the opposite direction (Fig. 6.5a). The change, nonetheless, cannot 

be achieved by translation of one region. 

Due to the same reasoning, for the 23-tRRh CNG the only topological change for the 

pairs of relations [i cB]-[i e] and [i e]-[i cv] is scaling. The hole-free region, for example, 

has to scale up in order to change from coveredBy to being equal to the hole, or scale 

down in the reverse direction. Similarly, the hole-free region scales up when changing 

from equal to covers the hole and scales down in the reverse direction (Fig. 6.5b). Scaling 

can only hold for the pairs [cB e]-[e ct] and [e ct]-[cv ct] as well. The difference this time 

is that the hole-free region has to scale up or down to turn into or turn out of equal with 

the generalized region, instead of the hole (Fig. 6.5b).  

6.2.2 Changes in the Topological Structure of a Region Between Relations 

Starting with two hole-free regions, the formation of a hole in one of the regions 

transforms the initial tRR into one of its refining tRRhs. It is, therefore, possible to align the 

8-tRR CNG with the 23-tRRh CNG by adding edges between them (Fig. 6.6). During 

transformations between relations on the two separate levels—the 8-tRR and the 23-tRRh 

CNG—of the complete graph, the topology of the regions themselves remains unaltered; 

however, the same is not true for the changes occurring along the edges that align the two 

levels. Such edges connect relations between regions whose topological structure changes 

from a modification—addition or elimination—of a hole. These edges, therefore, carry 
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different semantics from the ones occurring on the separate graphs. They do not indicate 

topological transformations (translation, scaling or rotation) anymore. Rather, they 

represent a change in the topological structure of the region that drops or gains a hole, 

while the principal topological relation with the hole-free region remains the same.  

 

Figure 6.6 The alignment of the 8-tRR with the 23-tRRh CNG. Solid lines indicate a 
topological change in the relation of the regions, while the dotted lines indicate a change 
in the topological structure of one of the regions. 

6.2.3 The Hybrid Conceptual Neighborhood Graph 

The resulting graph is an extended, hybrid 8-tRRh and 23-tRRh CNG built by connecting the 

two separate graphs (Fig. 6.6). The additional edges link the 8-tRR with the sets of their 

refining relations, yielding 23 new edges: one between disjoint and {[d d]}, one between 

meet and {[m d]}, five between overlap and each of {[o d], [o m], [o o], [o cv], [o ct]}, 

one between covers and {[cv ct]}, one between equal and {[e ct]}, five between 

coveredBy and each of {[cB d], [cB m], [cB o], [cB cv], [cB ct]}, one between contains 

and {[ct ct]} and eight between inside and each of {[i d], [i m], [i o], [i cv], [i cB], [i e], 
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[i ct], [i i]}. The two separate graphs are each occupying their own level where relations 

of the same type reside—one level for tRRs and another level for tRRhs—resulting in a two-

level graph. The edges that connect relations of the same type are called intra-level 

edges—8 for the tRR level and 23 for the tRRh level, whereas the 23 additional edges that 

connect relations of different type are called cross-level edges.  

6.2.4 Cost of the Change in the Topological Structure of the Region  

In the two separate graphs (Fig. 6.6), the topological changes of translation, scaling, and 

rotation are considered of equal importance. Since each edge on each separate graph 

represents one possible topological change, all edges are assigned the unit length, which 

is one of the basic characteristics of the FDM. Therefore, the cost of transforming one 

tRRh into another solely depends on the length of the shortest path between the two 

relations, along the 23-tRRh CNG (Table 5.2). Given the unit length of each edge, this 

length corresponds to the least amount of edges between the two tRRhs. 

Dropping a hole, however, is a topological change that differs from translation, 

scaling, and rotation. The change in the topological structure of a single-holed region that 

occurs when its hole is dropped corresponds to a certain cost as well, assigned to the 

cross-level edge that connects the tRRh—between the hole-free region and the single-holed 

region that loses the hole—with its principal tRR, the relation that remains between the 

hole-free region and the newly formed hole-free region after dropping the hole. Once the 

costs for all the cross-level edges are identified, the hybrid CNG provides the complete 

costs information necessary for enabling the FDM to evaluate the similarity between 

relations of regions featuring different numbers of holes.  
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6.2.4.1 Cost of Hole Modification: Cost Model A  

There are several reasoning procedures for evaluating the cost of hole elimination and 

specifying how this cost relates to the translation, scaling, or rotation costs. For the 

performance of the FDM, however, a consistent cost assigning technique is needed for 

the creation of the table of costs that enables the exchange of frequency units between 

relations with regions of different numbers of holes.  

One approach is to consider the hole elimination as an atomic change in the 

topology of the region and to assign to it the unit cost, depicted as course B in Figure 6.7. 

This reasoning equalizes the topological change in the relation (i.e., translation, scaling, 

or rotation) with the change in the topological structure of a region (i.e., hole elimination) 

and results in a hybrid CNG with edges of equal length along and across the two levels. A 

different line of thinking considers the possible sub-atomic changes. The hole collapsing 

to a cut in the region, the cut collapsing to a piercing in the region, and then the piercing 

disappearing are three possible consecutive steps that change the topology of the region, 

leaving it hole-free (Fig. 6.7 course C). If each of these changes is assigned the unit cost, 

then the total cost for dropping a hole from a region totals three units. This cost model, 

called Cost Model A (CMA) is used in the construction of the table of costs in Section 

6.2.4.2. It differentiates the cost of hole elimination from the topological changes of 

translation and scaling. However, it is not considered the only or the most reasonable 

method for evaluating the cost of transforming every one of the 23-tRRh to its principal 

tRR, and different cost assigning methods are considered in Section 6.3. 

When more than one holes exist in a region, one possible approach to hole 

reduction is to consider the moving and merging of neighboring holes (Fig. 6.7). If the 

moving of the neighboring holes is assigned the unit cost, and the merging of the holes is 
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assigned the unit cost as well, then the cost of hole number reduction by hole merging 

would be two. However, in the intermediate step the holes meet, therefore, this approach 

is not considered. 

 
(a) 

 

 
(b) 

Figure 6.7 Different hole elimination procedures: (a) the atomic change in the region’s 
topology when the hole is eliminated as course A, and the gradual change in the region’s 
topology in three steps as course B, and (b) hole merging. 

6.2.4.2 The Weighted Hybrid CNG and the Table of Costs from CMA 

The assignment of costs to the cross-level edges that connect the 23-tRRh CNG and the 8-

tRR CNG using CMA completes the costs information for the hybrid CNG. The graph has 

been modified in Figure 6.8 for clarity, as the costs assigned to each edge are added. The 

additional costs are summarized in Table 6.1 in the form of distances between relations of 

different type—23-tRRh and 8-tRR—of the hybrid CNG. Distances are calculated as the 

sum of the costs assigned to the edges belonging to the shortest path between two 

relations.  
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Figure 6.8 Hybrid CNG with costs of relation transformations assigned to the edges for 
CMA.  One cost unit is assigned to the topological change of a relation, three cost units to 
the change in the topological structure of a region.  

The table of costs for CMA breaks down into four sub-tables: (1) the table of costs 

for the 23-tRRh×23-tRRh (Table 3.2), (2) the table of costs for the 23-tRRh×8-tRR (Table 6.1), 

(3) its inverse table 8-tRR×23-tRRh, and (4) the table of costs for the 8-tRR×8-tRR that 

records the distances between all possible pairs of the 8-tRR. The extended table 

(Table 6.2) corresponds to the complete record of the costs necessary for employing the 

transportation algorithm to the assessment of similarity between relations with different 

numbers of holes. The absolute value of the additional quantity in Δ represents the 

frequency units that are equal to the number of holes that have been dropped and acts as 

the weight assigned to the distance between the tRRh and the tRR formed after dropping the 

hole. 
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Table 6.1 Distances between relations of different type (tRRh and tRR) of the hybrid CNG, 
assigned using CMA.  

 disjoint meet overlap covers contains equals  coveredBy inside 
[d d] 3 4 5 6 7 7 6 7 
[m d] 4 3 4 5 6 6 5 6 
[o d] 5 4 3 4 5 5 4 5 
[o m] 5 4 3 4 5 5 4 5 
[o o] 5 4 3 4 5 5 4 5 
[o cv] 5 4 3 4 5 5 4 5 
[o ct] 5 4 3 4 5 5 4 5 
[cv ct] 6 5 4 3 4 4 5 6 
[ct ct] 7 6 5 4 3 5 6 7 
[e ct] 7 6 5 4 5 3 4 5 
[cB d] 6 5 4 5 6 4 3 4 
[cB m] 6 5 4 5 6 4 3 4 
[cB o] 6 5 4 5 6 4 3 4 
[cB cv] 6 5 4 5 6 4 3 4 
[cB ct] 6 5 4 5 6 4 3 4 

[i d] 7 6 5 6 7 5 4 3 
[i m] 7 6 5 6 7 5 4 3 
[i o] 7 6 5 6 7 5 4 3 
[i cv] 7 6 5 6 7 5 4 3 
[i ct] 7 6 5 6 7 5 4 3 
[i e] 7 6 5 6 7 5 4 3 

[i cB] 7 6 5 6 7 5 4 3 
[i i] 7 6 5 6 7 5 4 3 

 

Table 6.2 Schematic depiction of the complete table of costs for Cost Model A. 

 tRRhi, i=1..23 tRRj, j=1..8 
tRRhi, i=1..23 Table 3.2 Table 6.1 
tRRj, j=1..8 

  

! 

Table 6.1( )
T  8-tRR× 8-tRR 

6.3 Alternative Cost Assigning Methods 

The reasoning behind quantifying the change in the topological structure of a region 

when a hole is eliminated, and expressing it as a cost assigned to transforming a tRRh into 

a tRR, may vary. Common factors in the logic are the need to quantify the change in the 

topology and to apply a consistent reasoning while evaluating the hole elimination from 

each of the 23-tRRh. The hole elimination costs are recorded in tables, which are 
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subsequently used in the FDM for assessing similarity among relations with varying 

numbers of holes. This section examines three more reasoning techniques for evaluating 

the cost of dropping a hole. These techniques produce distinct tables of costs.  

6.3.1 Balanced Hybrid CNG: Cost Model B 

For the similarity evaluation between relations with regions of different numbers of 

holes, the costs of transforming relations to other relations of the same or different type 

are necessary. The costs for transformations of the same type are the weighted distances 

between relations along one of the levels of the hybrid CNG. The costs of transformation 

of different type, however, are weighted distances between relations across the two 

levels. The path of edges that leads from a tRRh to a tRR has to traverse one of the cross-

level edges that connect the two separate levels (i.e., neighborhood graphs) on the hybrid 

CNG.  

When the relations under comparison share the same principal relation, the path 

between the tRRh that loses its hole and the newly formed tRR comprises only the cross-

level edge between the tRRh and its principal relation. If the two relations that are 

compared have different principal relations, the newly formed tRR after the hole 

elimination has to be transformed into a different tRR, which means that a movement 

along the 8-tRR level has to be performed as well (Fig. 6.9 path A). Alternatively, the tRRh 

can first be transformed to the tRRh with the different principal relation and then the 

single-holed region can drop its hole, which means that a traverse along the 23-tRRh CNG 

is followed by a cross-traverse between the two graphs (Fig. 6.9 path B). 
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(a) (b) 

Figure 6.9 Different relation transformation paths. (a) Transformation paths A: [i cv] 
  

! 

A1" # "  [cv ct]   

! 

A2" # " covers, and B: [ i cv]   

! 

B1" # " inside  

! 

B2" # " covers, and (b) display of 
the paths A and B on the hybrid CNG. 

The movements along the two separate graphs may be considered of known cost, 

equal to the number of steps of topological deformations of translation, scaling, or 

rotation (e.g., movements A2 and B1 in Figure 6.9b). It is the movements along the cross-

level edges on the hybrid graph that are of unknown value (e.g., movements A1 and B1 

in Figure 6.9b). The basic premise for computing Cost Model B (CMB) is that if a 

specific cross-level edge is considered as reference and assigned a cost, then values for 

the rest of the cross-level edges on the hybrid CNG may be estimated. The assumption is 

that the two paths A and B, that lead from any random tRRh to the tRR at the end of the 

reference cross-level edge, are of equal overall cost.  

As the cross-level reference edge, the edge between [d d] and disjoint, denoted by 

E([d d]—disjoint) is chosen. The choice is based on the fact that since the region that loses 

the hole is in disjoint relation with the hole-free region, the change in its topological 
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structure will not alter in any way the relation between the two regions. The reference 

edge is assigned the unit cost by considering the disappearance of the hole as an atomic 

step in the change of the region’s topology (Fig. 6.10), in contrast to Cost Model A, in 

which the elimination of the hole is a three-step procedure (Fig. 6.7 B).  

 

Figure 6.10 The reference edge E([d d]—disjoint) for Cost Model B, assigned the unit cost 
after hole disappearance. 

The cost assigned to the cross-level edge connecting a random tRRhx with its 

principal relation π(tRRhx), denoted by E(tRRhx—π(tRRhx)), may be evaluated using 

E([d d]—disjoint) and the known costs of the traverses along the separate CNGs of the 

hybrid graph. These traverses are either the distance between tRRhx and [d d] on the 23-

tRRh CNG, denoted by dist(tRRhx→[d d]), or the distance between π(tRRhx) and disjoint on 

the 8-tRR CNG, denoted by dist(π(tRRhx)→disjoint). According to CMB’s basic 

assumption, the two paths that lead from tRRhx to disjoint are considered of equal cost 

(Eqn. 6.2a). Since the reference edge is assigned the unit cost, each of the 23 edges that 

connect the two separate CNGs on the hybrid graph may then be calculated using 

Equation (6.2b).  

 E(tRRhx—π(tRRhx)) + dist(π(tRRhx)→disjoint) = dist(tRRhx→[d d]) + E([d d]—disjoint) (6.2a) 

 E(tRRhx—π(tRRhx)) = dist(tRRhx→[d d]) - dist(π(tRRhx)→disjoint) + 1, x =1..23 (6.2b) 

As an example, the cost assigned to E([i i]—inside) is calculated (Fig. 6.11). The 

distance between [i i] and [d d] on the 23-tRRh CNG is eight and the distance between 
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inside and disjoint on the 8-tRR CNG is four, therefore, using Equation 6.2b, E([i i]—

inside) equals five (Eqn. 6.3). 

 E([i i]—inside) = dist([i i]→[d d]) - dist(inside→disjoint) +1= 8-4+1= 5 (6.3) 

 

Figure 6.11 Schematic example of calculating the cost of an intra-level link.  

The assignment of costs following this reasoning also implies that the cost of hole 

elimination increases in parallel with the increasing interaction between the hole-free and 

the single-holed region. As the relation between the hole-free region and the host region 

or the hole changes (from completely disjoint, to sharing boundary parts when meet, to 

sharing both interior and boundary parts when overlap, etc.), so do the distances 

dist(tRRhx→[d d]) and dist(π(tRRhx)→disjoint). For principal relations with more than one 

refinement, while dist(π(tRRhx)→disjoint) remains constant, dist(tRRhx→[d d]) increases 

as the hole-free region gets more involved with the hole (Eqn. 6.2b). For principal 

relations with one refinement, both distances increase as the interaction between the hole-

free and the single-holed region changes. So there is an outward expansion from the 

reference edge that implies an increasing involvement between the hole-free and the host 

region initially, and subsequently with its hole. This expansion on the hybrid graph is 

responsible for the differentiation in the costs assigned to the edges connecting the 

principal tRRs and their refining tRRhs.  
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Using Table 3.2 and the 8-tRR×8-tRR table of costs, the costs assigned to all 23 cross-

level edges that connect the two separate graphs of the hybrid CNG are calculated, using 

Equation 6.2b. Once the costs are known, the distances from any tRRh to any tRR on the 

hybrid graph are evaluated (Table 6.3). With these costs, the distance between any two 

relations on the hybrid graph is calculated as the sum of the costs on the path between the 

two relations. The result is the Table of Costs (Table 6.4) and the hybrid CNG for CMB 

(Fig. 6.12). 

Table 6.3 Distances between relations of different type (tRRh and tRR) on the hybrid CNG, 
assigned using CMB.  

 disjoint meet overlap covers contains equals  coveredBy inside 
[d d] 1 2 3 4 5 5 4 5 
[m d] 2 1 2 3 4 4 3 4 
[o d] 3 2 1 2 3 3 2 3 
[o m] 4 3 2 3 4 4 3 4 
[o o] 5 4 3 4 5 5 4 5 
[o cv] 6 5 4 5 6 6 5 6 
[o ct] 7 6 5 6 7 7 6 7 
[cv ct] 8 7 6 5 6 6 7 8 
[ct ct] 9 8 7 6 5 7 8 9 
[e ct] 9 9 7 6 7 5 6 7 
[cB d] 4 3 2 3 4 2 1 2 
[cB m] 5 4 3 4 5 3 2 3 
[cB o] 6 5 4 5 6 4 3 4 
[cB cv] 7 6 5 6 7 5 4 5 
[cB ct] 8 7 6 7 8 6 5 6 

[i d] 5 4 3 4 5 3 2 1 
[i m] 6 5 4 5 6 4 3 2 
[i o] 7 6 5 6 7 5 4 3 
[i cv] 8 7 6 7 8 6 5 4 
[i ct] 9 8 7 8 9 7 6 5 
[i e] 9 8 7 8 9 7 6 5 

[i cB] 8 7 6 7 8 6 5 4 
[i i] 9 8 7 8 9 7 6 5 

Table 6.4 Schematic depiction of the complete table of costs for Cost Model B. 

 tRRhi, i=1..23 tRRj, j=1..8 

tRRhi, i=1..23 Table 3.2 Table 6.3 
tRRj, j=1..8 

  

! 

Table 6.3( )
T  8-tRR× 8-tRR 
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Figure 6.12 Hybrid CNG with costs of relation transformations assigned to the edges 
from Cost Model B. 

6.3.2 Grouped Hybrid CNG: Cost Model C 

The conjecture for model C is that the cost for eliminating a hole from tRRhs that share the 

same principal relation should be the same. In contrast to CMB, the different degrees of 

interaction between the hole-free region and the hole are not important. Rather, the cost is 

only affected by the degree of interaction between the hole-free region and the host of the 

holes, which is reflected in the principal relation. Therefore, the cross-level edges 

extending from a specific principal tRR to its refinement(s) are all assigned the same cost. 

For the multi-refinement relations, the multiple edges may be schematically grouped in a 

single edge. This grouping can be depicted as morphing the 23-tRRh CNG into a copy of 

the 8-tRR CNG (Fig. 6.13).  
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Figure 6.13 The grouped hybrid CNG.  

The edges or the groups of edges extending from principal relations that indicate 

less interaction between the hole-free and the host region are attributed lower costs than 

edges or groups extending from principal relations that indicate more interaction between 

the two regions. The increase in interaction is determined by the sequence of the principal 

relations on the 8-tRR CNG (Fig. 6.14a). Starting from two completely disjoint regions, 

the interaction between them increases gradually up to complete containment or 

conversely inclusion, as the relations change one step at a time on the CNG. Each step of 

change produces the relation(s) of the next level of interaction. The linking edges 

extending from the principal relations of each level are assigned one additional cost unit 

from the edges of the previous level, starting with one unit for E([d d]—disjoint), up to a 

total of 5 units (Fig. 6.14b). Edges of principal relations belonging to the same level are 

assigned equal costs.  

The result of the cost assigning reasoning is the grouped hybrid graph according to 

CMC, depicted in Figure 6.15. Once the costs are known, the distances from any tRRh to 

any tRR on the hybrid graph are evaluated (Table 6.5). With these costs, the distance 

between any two relations on the hybrid graph is calculated as the path between the two 
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relations with the smaller overall cost. The result is the Table of Costs for CMC 

(Table 6.6). 

 
 

(a) (b) 

Figure 6.14 Grouped hybrid CNG reasoning: (a) levels of region interaction on the 8-tRR 
CNG, and (b) costs assigned to plain and grouped linking edges on the hybrid CNG, 
according to CMC. 

 

Figure 6.15 Hybrid CNG with costs of relation transformations assigned from Cost 
Model C. 
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Table 6.5 Distances between relations of different type (tRRh and tRR) on the hybrid CNG, 
assigned using CMC.  

 disjoint meet overlap covers contains equals  coveredBy inside 
[d d] 1 2 3 4 5 5 4 5 
[m d] 2 2 3 4 5 5 4 5 
[o d] 3 3 3 4 5 5 4 5 
[o m] 4 4 3 4 5 5 4 5 
[o o] 5 4 3 4 5 5 4 5 
[o cv] 5 4 3 4 5 5 4 5 
[o ct] 5 4 3 4 5 5 4 5 
[cv ct] 6 5 4 4 5 5 6 6 
[ct ct] 7 6 5 5 5 7 6 7 
[e ct] 7 6 5 5 6 5 5 7 
[cB d] 4 5 4 5 6 5 4 5 
[cB m] 5 5 4 5 6 5 4 5 
[cB o] 6 5 4 5 6 5 4 5 
[cB cv] 6 5 4 5 6 5 4 5 
[cB ct] 6 5 4 5 6 5 4 5 

[i d] 5 6 5 6 7 6 5 5 
[i m] 6 6 5 6 7 6 5 5 
[i o] 7 6 5 6 7 6 5 5 
[i cv] 7 6 5 6 7 6 5 5 
[i ct] 7 6 5 6 7 6 5 5 
[i e] 8 7 6 7 8 7 6 5 

[i cB] 8 7 6 7 8 7 6 5 
[i i] 9 8 7 8 9 7 6 5 

         
 

Table 6.6 Schematic depiction of the complete table of costs for Cost Model C. 

 

 

6.3.3 Modified Grouped Hybrid CNG – Longest Paths: Cost Model D 

The last alternative cost model examined is a modified version of CMC. As described in 

Section 6.3.1 for CMB, there are two paths connecting two relations of different type on 

the hybrid CNG: (1) the traverse along the 23-tRRh CNG followed by the cross over to the 

8-tRR CNG and (2) the cross over to the 8-tRR CNG followed by the traverse along that 

graph. For all previous models, except CMB, these two paths are of different overall cost, 

 tRRhi, i=1..23 tRRj, j=1..8 

tRRhi, i=1..23 Table 5.2 Table 6.5 
tRRj, j=1..8 

  

! 

Table 6.5( )
T 8-tRR× 8-tRR 
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and the one with the lower cost is the one always recorded in the tables of costs. In CMB, 

these paths are of equal cost. In order to examine how the similarity evaluation results 

change from those of CMC, model D’s table of costs is built by recording the more costly 

path between relations, produced from the same cost assigning method. For this model, 

the most costly path actually coincides with the path that first crosses over the 8-tRR CNG 

and then traverses the graph to the desired principal relation. Consequently, models CMC 

and CMD share the same hybrid CNG (Fig. 6.15), but have different tables of costs by 

recording different paths between relations. Table 6.7 shows the distances between 

relations of different type for CMD, while the depiction of the overall cost table is given 

in Table 6.8. 

 

Table 6.7 Distances between relations of different type (tRRh and tRR) on the hybrid CNG, 
assigned using CMD. 

 disjoint meet overlap covers contains equals  coveredBy inside 
[d d] 1 2 3 4 5 5 4 5 
[m d] 3 2 3 4 5 5 4 5 
[o d] 5 4 3 4 5 5 4 5 
[o m] 5 4 3 4 5 5 4 5 
[o o] 5 4 3 4 5 5 4 5 
[o cv] 5 4 3 4 5 5 4 5 
[o ct] 5 4 3 4 5 5 4 5 
[cv ct] 7 6 5 4 5 5 6 7 
[ct ct] 9 8 7 6 5 7 8 9 
[e ct] 9 8 7 6 7 5 6 7 
[cB d] 7 6 5 6 7 5 4 5 
[cB m] 7 6 5 6 7 5 4 5 
[cB o] 7 6 5 6 7 5 4 5 
[cB cv] 7 6 5 6 7 5 4 5 
[cB ct] 7 6 5 6 7 5 4 5 

[i d] 9 8 7 8 9 7 6 5 
[i m] 9 8 7 8 9 7 6 5 
[i o] 9 8 7 8 9 7 6 5 
[i cv] 9 8 7 8 9 7 6 5 
[i ct] 9 8 7 8 9 7 6 5 
[i e] 9 8 7 8 9 7 6 5 

[i cB] 9 8 7 8 9 7 6 5 
[i i] 9 8 7 8 9 7 6 5 
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Table 6.8 Schematic depiction of the complete table of costs for Cost Model D. 

 tRRhi, i=1..23 tRRj, j=1..8 

tRRhi, i=1..23 Table 5.2 Table 6.7 

tRRj, j=1..8 
  

! 

Table 6.7( )
T

 
8-tRR× 8-tRR 

Table of Costs 

6.4 Adapted FDM for Relations of Regions with Different Numbers of Holes 

With the hybrid CNG acting as the source of information for the costs associated with 

dropping a hole, the FDM is altered to accommodate similarity evaluation between 

relations of regions with varying numbers of holes. This section discusses the alternative 

FDM (Section 6.4.1) and illustrates its application with an example, using Cost Model A 

(Section 6.4.2).  

6.4.1 Frequency Units that Rebalance the System 

The new element necessary for bringing the sum of relation difference Δ(t1,t2) back to 

zero is actually the difference in the values of a new frequency element h added to 

vectors V. This new element denotes the normalized number of holes that have been 

dropped, creating the inequality. If n1 and n2 are the different numbers of holes in the two 

multi-holed regions, h equals the normalized difference 
  

! 

n1- n2  in the vector that 

corresponds to the relation with number of holes equal to min(n1, n2) and it is zero for the 

relation with number of holes max(n1, n2) (Eqn. 6.3). Normalization is achieved by 

division with n, where n=max(n1, n2). The remaining m elements in V are the same as 

described in Equation 5.3. 
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, where h ={
0,  for the relation with # holes = max(n1, n2)

n1(n2

n
,  where n= max(n1, n2),  for the relation with # holes = min(n1, n2)

 (6.3) 
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Since h is zero in one of the vectors, its value is the normalized difference 
  

! 

n1- n2  in 

the relation difference Δ as well, and its addition to Δ brings sum(Δ) back to zero. Then 

the sum of all supplies equals the sum of all demands, yielding a balanced transportation 

problem, for which the transportation algorithm may be applied. The methodology for 

relation similarity evaluation, in the form of calculating the minimum cost of 

transforming one relation’s frequency vector into the other relation’s vector, is the same 

as the one described in Chapter 5, now that the additional element in the vectors and the 

relation difference (Δ) has rebalanced the system.  

However, the maximum cost of transformation—the maximum dissimilarity 

    

! 

"maxHybrid

t1-t 2  between relations t1 and t2—needs to be reevaluated. The maximum possible 

amount of frequency units that can be redistributed is sum(V). The addition of h matches 

the deficit in frequency units in the vector of the relation with the fewer holes and makes 

sum(V) equal to the unit again (Section 5.2.1). The frequency units introduced through h, 

nevertheless, are distributed on a different path on the hybrid CNG than the rest of the 

units, because they make up for the dropped holes. The value of h is distributed between 

the two levels of the graph, from a tRRh to a tRR. The redistribution of the rest of the 

frequency units, which are responsible for the transformation of a tRRh to a different tRRh, 

is limited at the 23-tRRh CNG level. 

Accordingly, there are two maximum costs of transformation: (1) 

! 

"
max

RRh#RRh , equal to 

the product of sum(V) with the maximum shortest path on the 23-tRRh, which is eight 

(Eqn. 6.4a), and (2) 

! 

"
max

RRh#RR , equal to the product of sum(V) with the maximum distance 

across the two graphs and along the 8-tRR CNG, denoted by dmax(tRRh-tRR), which is equal to 

seven (Eqn. 6.4b). The value of dmax(tRRh-tRR) is seven, because it is equal to the sum of the 
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three units for any cross-level edge and the maximum distance along the 8-tRR graph, 

which is four. 

 
  

! 

d
max

RRh"RRh=sum(V)* dmax23=1*8=8 (6.4a) 

 
  

! 

d
max

RRh"RR=sum(V)*dmax(tRRh-tRR)=1*7=7 (6.4b) 

The calculation of z, the minimum cost for transforming vector V1 into vector V2, is 

the same as the calculation in the initial FDM (Eqn. 5.2.2). It is essential, however, to 

differentiate the part of z that represents the distribution between tRRhs, from the part that 

represents the cost of distribution between a tRRh and a tRR. To achieve this, first the 

redistribution scheme is decided (or is performed by the transportation algorithm if the 

algorithm is applied) and two different costs are calculated: (1) z1, equal to the sum of the 

products of the frequency units that are distributed between tRRhs with the appropriate 

distances on the 23-tRRh CNG, and (2) z2, equal to the sum of the products of the 

frequency units that are distributed between a tRRh and a tRR with the appropriate distances 

from the hybrid graph. The overall cost z then is the sum of z1 and z2 (Eqn. 6.5).  

 z = z1 + z2 (6.5) 

The computation of the dissimilarity δ(t1,t2) is also modified to reflect the different 

parts of the overall cost of transforming t1 into t2. To normalize the dissimilarity δ it is 

now necessary to normalize each part of the cost with the appropriate maximum cost of 

redistribution, 

! 

"
max

RRh#RRh  or 

! 

"
max

RRh#RR , respectively (Eqn. 6.6). Similarity and dissimilarity are 

still complement values; therefore, since δ(t1,t2) is normalized to the interval [0 1] by 

division with the maximum costs for redistribution, similarity is still the complement of 

dissimilarity from the unit (Eqn. 6.7). 

 
      

! 

"(t1,t 2) =
z1

"
max

RRh#RRh
+

z2

"
max

RRh#RR  (6.6) 

 sim(t1,t2) = 1- δ(t1,t2) (6.7) 
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6.4.2 Example of Similarity Evaluation with the Modified FDM 

The multi-element relations t(A, 5-B) and t(C, 4-D) used as an example in Section 6.1.1 

are used again here, only this time, t(A, 5-B) is the reference relation t1 against which 

t(C, 4-D) and two more relations, t(E, 4-F) and t(G, 4-H), or t2, t3 and t4 for short, are 

ranked according to their similarity. All three relations have a multi-holed region with 

one less hole than the reference relation, two of them (t(C, 4-D) and t(E, 4-F)) share the 

same principal relation with the reference relation—that is, coveredBy—while the third 

(t(G, 4-H)) has a different one—inside. 

    
(a) (b) (c) (d) 

Figure 6.16 Multi-element relation comparison. (b) Relation t(C, 4-D), (c) relation t(E, 4-
F), and (d) relation t(G, 4-H) compared against reference relation (a) t(A, 5-B). 

For calculating the similarity of relation t(C, 4-D), the frequency vectors V1 and V2 

(Section 6.1.1) are modified accordingly. The reference relation has one extra hole, which 

is dropped in t(C, 4-D), therefore, 1/5=0.2 frequency units are excess for V1. In V2 these 

0.2 frequency units are assigned to the additional element h. The relation name of 

element h is coveredBy, since the tRRh = [cB ct] between hole-free region C and single-

holed region D5 is transformed to tRR = coveredBy between hole-free regions C and D, 

after D5 drops its hole (Fig. 6.4). The value of h is zero for V1 that presents no change in 

the number of holes (Eqn. 6.8a). The relation difference is calculated accordingly 

(Eqn. 6.8b). 
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 (6.8b) 

The relation difference now reflects the necessary redistribution of frequency units 

for transforming t2 into t1: one frequency unit will be transferred from coveredBy to 

[cB ct], since one hole that was contained in D is dropped. There is no other redistribution 

of frequency units that would take place between tRRhs only, therefore, the minimum cost 

of redistribution is of type z2 only. The distance dist(coveredBy→[cB ct]) is three cost 

units (Table 6.1) and so the cost of redistribution, z2, using Equation 5.7 is 0.6 (Eqn. 6.9). 

       

! 

z
2

= 0.2"dist(coveredBy#[cB ct])=0.2"3=0.6  (6.9) 

With z determined, the dissimilarity δ(t2,t1) and similarity sim(t2,t1) values can be 

evaluated using Equations 6.6 and 6.7, respectively (Eqn. 6.10a-b). 

 
      

! 

"(t 2,t1)= 0+
z 2

"maxHybrid
t1-t 2

=
0.6

7
= 0.086 (6.10a) 

 sim(t2,t1)=1-δ(t2,t1)=1- 0.086=0.914 or 91.4% (6.10b) 

Following the same methodology, sim(t3,t1) is evaluated. Relation t3 has one less 

hole and the placements of the remaining holes are different than t1. The relation’s 

frequency vector V3 and the relation difference   

! 

"(t 3,t1)  are given in Equation 6.11. 
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 (6.11) 

Since the cost of transforming coveredBy to any of the tRRh = [cB x] is three, the 

transportation algorithm distributes first the frequency units from [cB d] to the demands 

that are the closest. In this case, the shorter distances from [cB d] are 
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dist([cB d]→[cB o])=2 and dist([cB d]→[cB cv])=3. The tRRh that will receive the 

additional 0.2 frequency units that are assigned to coveredBy after one hole has been 

dropped is [cB ct]. Now, both types of costs—z1 and z2—exist, since frequency units are 

distributed both between tRRhs and between a tRR and a tRRh. The results after applying 

Equations 6.12a-c and 6.13 are: z1=1, z2=0.6, δ(t3,t1)=0.21 and sim(t3,t1)=79% 

       

! 

zt 3t1 =z1+z2 (6.12a) 

 
      

! 

z1= 0.2"dist([cB d ]#[cB o])+0.2*dist([cB d ]#[cB cv])

             z2 = 0.2*dist(coveredBy#[cB ct])
 (6.12b) 

 
      

! 

"(t3,t1) =
z1

"
max

RRh#RRh
+

z2

"
max

RRh#RR
 (6.12c) 

 sim(t3,t1)=1-δ(t3,t1)= 0.79 or 79% (6.13) 

Finally, the similarity between relations t4 and t1 is evaluated. In this case, while the 

refining relations that denote the placement of the holes relative to the hole-free region 

are the same, the principal relation has changed to inside. The modified V1 and also V4 

are given in Equation 6.14a and the relation difference in Equation 6.14b.  

 

 

  

! 

V1=

[cB d ]

[cB m]

[cB o]

[cB cv]

[cB ct ]

[i m]

[i o]

[i cv ]

[i ct ]

inside

0.2

0.2

0.2

0.2

0.2

0

0

0

0

0

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 
' 
' 

   and   

    

! 

V4=

[cB d ]

[cB m]

[cB o]

[cB cv]

[cB ct ]

[i m]

[i o]

[i cv ]

[i ct ]

inside

0

0

0

0

0

0.2

0.2

0.2

0.2

0.2

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 
' 
' 

 (6.14a) 
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 (6.14b) 

The difference from t2 and t3 is that a hole is dropped from relation inside, 

therefore, the tRRh between the hole-free region G and single-holed region H5 is changed 

to tRR inside for hole-free regions G and H after the hole is dropped (Fig. 6.16d). All 

distances between the neighboring tRRhs that share the same refining relation (e.g., 

dist([i m]→[cB m]), dist([i o]→[cB o])) are equal to one cost unit. This is the distribution 

with the minimum cost, since the distance from inside to any of the tRRhs with coverdBy 

as their principal relation is four units. The results after applying Equations 6.15a-c, and 

6.16. are: z1=0.8, z2=0.8, δ(t4,t1)=0.21 and sim(t4,t1)=79%. 
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z
t 4t1

= z1+z2  (6.15a) 
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z
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      dist([i ct ]# [cB ct ])]

                               z
2
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 (6.15b) 
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"(t 4,t1) =
z1

"
max

RRh#RRh
+

z2

"
max

RRh#RR  (6.15c) 

 sim(t4,t1)=1-δ(t4,t1)=0.79 or 79% (6.16) 

The cost of redistribution is the same as for t3, therefore, t3 and t4 rank in second 

place together (Fig. 6. 16). The tie can be attributed to the fact that even though t4 has a 

different principal relation than the reference relation t1, the placement of the holes is the 

same. Relations inside and coveredBy are immediate neighbors on the CNG. The relative 

placement of the elements of each relation on the graph in a close local neighborhood is 
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responsible for the ranking. Relations whose majority of elements are placed closer to the 

elements of the reference relation on the hybrid CNG will rank higher, even if the 

principal relation is different. 

 
Reference relation 

 
1st—sim=91.4% 

 
2nd—sim=79% 

(a) (b) (c) 

Figure 6.17 Ranking results against reference relation t(A, 5-B): (b) Relation t(C, 4-D), 
which ranks the closest to the reference, and (c) relations t(E, 4-F) and t(G, 4-H), which 
both rank second. 

6.5  Summary 

This chapter discussed the modifications in the reasoning process of the FDM so that the 

method can address cases of similarity ranking among multi-element relations, when the 

multi-holed regions have different numbers of holes. The key differentiation point from 

FDM for relations of regions with the same number of holes is the assignment of a cost to 

the modification of the topology of the region due to the elimination or addition of a hole. 

It is a rational addition to reestablish an equilibrium to the system that was thrown out of 

balance due to the difference in the topological structure of the participating regions. 

Therefore, the main characteristic of the altered FDM is the coexistence of topological 

changes that alter the relation between two regions with changes that modify the 

topological structure of the regions themselves. Coexistence is achieved through hybrid 

CNGs that connect the 23-tRRh CNG with the 8-tRR CNG.  

It has been displayed that there are different reasoning practices for selecting the 

cost that will be assigned to changes due to hole eliminations. Four possible models—

CMA, CMB, CMC, and CMD—have been analyzed. The results of the different cost 
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models are: (1) hybrid CNGs with alternative tables of costs, (2) extended frequency 

vectors that depict the deficit in frequency units due to the elimination of holes and, (3) 

appropriately modified calculations for the minimum cost of transformation between two 

relations and subsequently, their similarity. The example similarity evaluation shows that 

the relative placement of the elements of each multi-element relation on the graph, in 

locally close neighborhoods, is responsible for higher similarity rankings, even if the 

overall principal relation differs from that of the reference relation. 
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Chapter 7  Evaluation of Similarity Results 

The various cost-assigning models developed in Chapter 6—CMA, CMB, CMC, and 

CMD—are expected to result in—at least numerically—different similarity rankings. 

Each model produces a distinct table of costs, from which the similarity evaluation 

method acquires the distances between relations. Other than the disparity in the numerical 

percentages, however, the possible variations in the rankings within and across the 

models need to be studied. This chapter examines the results of using FDM and 

employing the various cost models to compare relations between a hole-free and a multi-

holed region, when the regions have different numbers of holes. For text brevity, we shall 

refer to relations as having a number of holes, even though the number of holes is a 

property of the multi-holed regions. By testing how such parameters as the different 

number of holes from the query relation or the change in the constituent relations shape 

the results, the goal is to compare the models, assess whether they produce the same, 

comparable or even contradictory similarity rankings, and evaluate the method. The 

closeness or deviation of each model from what would be considered an expected 

behavior is also appraised.  

Section 7.1 describes the experimental framework for testing FDM using the 

different cost models. The analysis of the similarity rankings against specific criteria is 
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discussed in Section 7.2 while the overall assessment of the FDM for comparing relations 

of regions with different numbers of holes is presented in Section 7.3. The chapter is 

summarized in Section 7.4. 

7.1 Experimental Setup  

The evaluation of the FDM and the different cost models is performed by examining the 

results of ranking specific groups of relations for their similarity against particular 

queries. Both the queries and the relation groups are chosen so that certain general 

characteristics of a cost model may be examined. Section 7.1.1 describes the criteria 

against which each model is tested, while section 7.1.2 discusses the different datasets 

and the reasoning behind their selection as test beds. Section 7.1.3 illustrates the general 

evaluation procedure. 

7.1.1 Evaluation Criteria 

There are certain expectations against which the different cost models are evaluated 

according to the similarity rankings they produce (Section 7.2). These expectations are 

based on the fact that the cost models are internally linked to the hybrid neighborhood 

graph, therefore, the positioning of the various relations on the graph (e.g., their local 

neighborhoods) and the distances among the relations are the main determining factors 

for the similarity ranking against specific queries. Furthermore, the FDM that uses these 

cost models evaluates relations whose number of holes differs from that in the query; 

therefore, the number of holes is another determining factor for the similarity rankings. 

The criteria for evaluating the behavior of the different cost models are: (1) the number of 
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holes criterion, (2) the principal relation criterion, and (3) the refining relation criterion, 

and they are summarized below.  

1. Relations with a smaller difference in the number of holes from the query relation, 

are expected to rank closer to the query than relations with a bigger difference in 

the number of holes. 

2. Relations with the same principal relation as the query are expected to be more 

similar to the query relation than those with a different principal relation.  

3a. Among relations with the same principal relation as the query, those with 

most or all refining relations equal to the query relation are expected to be 

more similar to the query than those with most or all refining relations 

different.  

3b. Among relations with the same principal relation, but which differs from the 

query’s principal relation, those with most or all refining relations equal to the 

query relation are expected to be more similar to the query than those with 

most or all refining relations different.  

Deviations from this baseline are anticipated to show how the different cost-

assigning methods influence the similarity rankings, and whether there is a preferable 

model for similarity ranking of relations with different numbers of holes. The behavior of 

the models against the evaluation criteria and the interpretation of the results will also 

verify whether the expected model behavior is justified or not.  
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7.1.2 Datasets and Queries 

An experimental evaluation with synthetic datasets was performed. The use of synthetic, 

rather than actual data, allowed for an experimental set up that is tailored to cover all 

possibilities of relations presenting a higher or lower degree of resemblance to the query, 

according to the evaluation criteria. Synthetic data are also free of the need to be cleaned 

up for errors and inconsistencies. They provide a systematic and controlled approach for 

testing how a variety of relations over a multi-holed region rank against specific queries, 

as well as how their similarity changes with monitored changes in their number of holes 

and their constituent relations.  

Two datasets, DI and DII, are examined for their similarities against query QO, with 

principal relation overlap and queries QI2 and QI5, with principal relation inside 

(Fig. 7.1). Each dataset comprises a group of eight relations and each such dataset 

relation has a different principal relation, so that all eight principal relations may be 

evaluated against the query. Relations with one of the five single-refinement principal 

relations—disjoint, meet, covers, contains, and equal—are common for all datasets. 

Relations with the remaining three multi-refinement principal relations—overlap, 

coveredBy, and inside—vary in the two datasets. The queries are also selected from the 

group of the multi-refinement relations so that query and dataset relations exhibit variable 

combinations of common and different constituent relations (Fig. 7.1). The subscript 

index of a query or multi-refinement dataset relation reveals the number of refining 

relations in each case. Table 7.1 summarizes the refining relations for each query and 

each multi-refinement relation in the datasets. 
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Figure 7.1 Depiction of instances of queries QO, QI2, QI5 and datasets DI and DII. 

 

Table 7.1 Refining relations for queries and multi-refinement dataset relations. 

 disjoint   meet overlap  covers  contains equal  coveredBy  inside 
QO √ √ √ √ √ - - - 
QI2 √      √  
QI5 √ √ √ √ √    

DI-o5 √ √ √ √ √ - - - 
DII-o1 √     - - - 
DI-cB5 √ √ √ √ √ - - - 
DII-cB1 √     - - - 
DI-i5 √ √ √ √ √    
DII-i1 √        

7.1.3 Evaluation Procedure 

All datasets are evaluated for their similarity against all queries, yielding six 

combinations. The combination of query and dataset for pairs DI-QO and DI-QI5 

examines the cases where query and dataset relations with multi-refinement principal 

relations overlap, coveredBy, and inside share all of their common refining relations. 

Pairs DII-QO and DII-QI5 examine the case where query and multi-refinement relations 

share some of their common refinements. Finally, pairs DI-QI2 and DII-QI2 examine the 
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cases where query and multi-refinement relations share some of their refinements and 

query inside introduces one uncommon refinement (Table 7.1).  

Each query relation has five holes. The relations in the datasets also start with five 

holes and each dataset iterates over five rounds of evaluation. In each iteration, the 

dataset relations each drop one hole; thus, at the last round the relations comprise hole-

free regions. This setup results in five rankings of eight relations against each query, for 

each dataset and each model. Not all possible sequences with which the holes are 

dropped were examined, as we deemed necessary to rather test one sequence that 

provided certain combinations of relations, the comparison of which would show the 

behavior of the altered FDM against the evaluation criteria. The individual similarity 

results would differ for different hole-dropping sequences. However, the final 

conclusions that may be drawn for the similarity evaluation method and the cost-

assigning models are independent of the sequence with which the holes are dropped. The 

selection of five as the initial number of holes is equally significant as any other number 

of holes. The choice is based on the fact that having five consecutive single hole 

eliminations for all eight relations creates a large enough, but still manageable, body of 

data for observing the behavior of each model.  

7.2 Analysis of Similarity Rankings  

This section examines the similarity rankings of all datasets for the four cost models 

against the evaluation criteria. The common characteristics of the models are presented 

for each criterion separately, followed by additional observations and variations in the 

models’ performance.  
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The similarity values are displayed along three continua, in which the dataset 

relations are depicted according to three local neighborhoods that their principal relations 

form on the 8-tRR CNG (Fig. 7.2): (1) the left neighborhood disjoint-meet-overlap-

coveredBy-inside, (2) the right neighborhood disjoint-meet-overlap-covers-contains, and 

(3) the bottom neighborhood inside-coveredBy-equal-covers-contains. The union of these 

three neighborhoods covers all principal relations and each of them allows for a 

continuous depiction of the similarity values for relations with neighboring principal 

relations, avoiding gaps and jumps to non-immediate neighbors. The dataset relations are 

depicted during the first round of evaluation, having four holes. 

 

Figure 7.2 The left (L), right (R), and bottom (B) continua of the principal relations on 
the 8-tRR. 

7.2.1 First Criterion: Influence of the Number of Holes  

Examination of the models’ rankings for all datasets against the first criterion (Section 

7.1.1) shows the following patterns: 

• Relations with fewer holes may rank higher than relations with number of holes 

closer to the query’s number.  
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• Depending on the combination of cost model and dataset, the decrease in the 

similarity of relations with the reduction in the number of holes may be 

monotonic or non-monotonic. 

Figure 7.3 depicts dataset DII’s similarity ranking against QI5 with model C, along 

the three continua. There are relations with three or two holes that rank higher than 

relations with four holes, especially pronounced in Figure 7.3b. The similarity ranking for 

this dataset and model, therefore, is non-monotonic with a decreasing number of holes. 

However, the combination of model D and dataset DI produces monotonic similarity 

rankings against the same query (QI5) (Fig. 7.4), as relations with more holes always rank 

higher than relation with fewer holes. 

 

  
(a) (b) 

                                
                                                          (c) 

 Figure 7.3 Similarity ranking of dataset DII against QI5, with cost model C. 
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(a) (b) 

                                   
                                                            (c) 

Figure 7.4 Similarity rankings of dataset DI against QI5, with cost model D. 

7.2.2 Second Criterion: Influence of the Principal Relation 

Examination of the models’ rankings for all datasets against the second criterion (Section 

7.1.1) displays the following patterns: 

• Among relations with the same number of holes (i.e., relations of a certain 

evaluation round) and with the same refining relations that are very different than 

the query’s, the relation that shares the same principal relation with the query 

ranks first.  

Such is the case exemplified in Figure 7.5 for dataset DI’s rankings against QI2, 

with cost model A. Relations inside, with four or even three holes rank above the 

remaining relations.  
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(a) (b) 

                            
                                                   (c) 

Figure 7.5 Similarity rankings of dataset DI against QI2, with cost model A. 

7.2.3 Third Criterion: Influence of the Refining Relations 

Examination of the models’ rankings for all datasets against the third criterion (Section 

7.1.1) reveals the following results: 

• All models produce rankings that validate the influence of the refining relations. 

Among dataset relations with the same principal relation, which may or may not 

be the same as the query’s, those with most or all refining relations the same as 

the query’s rank higher than those with most or all refining relations different than 

the query’s. By implication, the combination of both principal and most or all 

refining relations the same as the query’s rank higher than the rest of the relations, 

in the same evaluation round.  
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The differentiating role that the refining relations play for dataset relations that 

share the same principal relation as the query is important, since the difference in the 

similarity value may be substantial. Such a case is the different similarity values for 

relations with principal relation inside in datasets DI and DII, against QI5, for cost model 

B (Fig. 7.6). The relation in DI (Fig. 7.6b) has four common refining relations with the 

query QI5 (Fig. 7.6a), while DII’s relation has only one refining relation common with QI5 

(Fig. 7.6c). The approximate difference in the value is 24%.  

 
 

97.78% 
 

73.61% 
(a) (b) (c) 

Figure 7.6 Similarity values after the first evaluation round of cost model B. The 
relations are inside in datasets DI (b) and DII (c), against query relation QI5 (a). 

Accordingly, there is a noticeable difference in the similarity among relations 

with the same principal relation that is different from the query’s. For example, the 

similarity value for cost model D of the overlap relations in DI (Fig. 7.7b) is higher than 

the value of the corresponding relation in DII (Fig. 7.7c) because of the fewer refining 

relations it has in common with query QI5 (Fig. 7.7a).  

 
 

64.44% 
 

49.44% 
(a) (b) (c) 

Figure 7.7 Similarity values after the first evaluation round of cost model C.  The 
relations are overlap in datasets DII (b) and DII (c), against query relation QI5 (a). 

Figure 7.8 displays an example where relations inside, which have not only the 

same principal, but also very similar refining relations as query QI2’s not only rank 
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higher than the rest in every evaluation round, but also posses the first few ranking 

positions, even with fewer holes than the rest of the relations.  

 

 
 

(a) (b) 

                            
                                                     (c) 
Figure 7.8 Similarity rankings of dataset DII, against QI2, with cost model B. 

7.2.4 Additional Observations On the Similarity Rankings  

Apart from the observations related with the evaluation criteria, the analysis of the 

similarity rankings further reveals characteristics that some or all models display through 

their results, as well as some differences among them.  

• An additional consequence of the influence of the refining relations is verified in 

all models. Among relations with different principal relations, none of which is 

the same as the query’s, the ones with most or all refining relations equal to the 

query’s rank higher than those with different refining relations.  
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• The ranking of relations with both principal and most or all refining relations 

different than the query’s, depends on their relative distances from the query on 

the hybrid CNG, regardless of the cost model. 

Figure 7.5 is an example of the difference in the similarity value due to the refining 

relations between two relations from the same dataset. Relations with meet and overlap as 

their principal relations both have different principal relations than query QI2. However, 

meet shares the same refining relations with the query and ranks higher for the first three 

evaluation rounds, while overlap has most refining relations different ranking lower for 

these rounds. Even if the principal relation overlap is closer to relation inside on the 8-tRR 

CNG, the refinements’ distance on the 23-tRRh CNG is what eventually indicates which 

relation ranks higher in similarity. In the example illustrated in Figure 7.8, the remaining 

refinement [m d] is closer to the query’s [i d] refinement when one, two, and three holes 

have been dropped. After the fourth iteration, overlap refinements sit closer to [i cB], 

which is the QI2’s other refining relation, thus ranking higher than the meet relations. 

7.3 Assessment of the Similarity Evaluation Method for Relations with Different 

Numbers of Holes 

The overall assessment of the outcomes of applying the alternative FDM (Chapter 6) to 

various datasets, using different cost models, reveals some interesting insights about the 

method and the cost assigning techniques described. They are summarized and discussed 

below. 

1. All models produce mostly unsurprising similarity rankings that differ in the absolute 

values. 
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The results mostly fulfill the expectations set by the evaluation criteria. This 

realization has implications for the method and the different cost models. The fact that 

none of the models produced especially surprising or controversial rankings implies the 

soundness of the method as an evaluation technique for relation similarity. It also implies 

that none of the described approaches for evaluating the cost of dropping a hole is 

irrational or interferes with the rankings in an uncontrolled manner. 

2. The patterns of the similarity rankings for a specific dataset are more similar 

between pairs of models. In particular, the pairs with similar patterns are CMA-

CMD, and CMB-CMC. Responsible for the formation of the pairs are the cost 

assigning techniques. 

In general, CMA and CMD more distinctively differentiate the cost of dropping a 

hole from a region from the change in the topological relation between two regions. The 

part of the dissimilarity δ(t1,t2) that corresponds to the normalized cost of the dropped 

holes, 
  

! 

z2

"
max

RRh#RR
, is higher for these two models, than it is for the pair CMB-CMC 

(Eqn. 7.1). 

 
      

! 

"(t1,t 2) =
z1

"
max

RRh#RRh
+

z2

"
max

RRh#RR  (7.1) 

 For CMA, the cost   

! 

z2  of the dropped holes is higher as a consequence of 

normalization by a smaller 

! 

"
max

RRh#RR  than the rest of the models (Section 6.4.2). For the 

CMD, cost   

! 

z2  is higher, because the distances between relations of different type that are 

recorded in model D’s table of costs are the longer of the two paths that may lead from 

one relation to the other. The part 
  

! 

z1

"
max

RRh#RRh , which corresponds to the transformation of 

one tRRh relation to another, is common for all models (Chapter 6). 
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The common patterns appear according to the combination of query and dataset 

relations. While the pattern for query QO and dataset DI is almost the same for all 

models, the patterns for the datasets compared against queries QI2 and QI5 are different 

between the two pairs of models. For the pair CMA-CMD, the pattern for QI2 and any 

dataset resembles the one in Figure 7.8, and for QI5 and any dataset the one in Figure 7.4. 

Accordingly, for the pair CMB-CMC, the pattern for QI2 and any dataset resembles the 

one depicted in Figure 7.5, and finally for QI5 and any dataset, the pattern follows the one 

illustrated in Figure 7.3.  

3. The closer the elements of the dataset relation are to the elements of the query 

relation, the closer the evaluation results of the different models are. When the 

distances between the elements of the relation and the elements of the query are 

bigger, the two pairs of models behave differently.  

This realization becomes apparent in the rankings of the different datasets. For 

dataset DI, when compared against QO, the rankings of all models are very similar and 

look like the one depicted in Figure 7.9. The elements of query QO are placed centrally 

on the hybrid CNG. In addition, relations coveredBy and inside in dataset DI share the 

same refining relations as the query, therefore, the distances of their elements on the 

graph are small (Fig. 7.10). The different cost-assigning methods that are responsible for 

the grouping of the models in two pairs do not vary greatly when the distances between 

the elements of query and relation remain small. 
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(a) (b) 

                                 
                                                     (c) 

Figure 7.9 Similarity rankings of dataset DI against QO, with cost model D. 

 

Figure 7.10 Hybrid CNG highlighting the overlap, coveredBy, and inside relations that 
participate in dataset DI.  

The differences in the similarity rankings between the pairs of models, however, are 

more accentuated when the elements of the query relation and the elements of the dataset 
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relations are placed farther away on the graph. Such an example is when dataset DII’s 

relations are compared against QI2. The elements [i d] and [i cB] of query QI2 are placed 

farther away from the elements of the rest of the relations, as they are situated close to the 

edges of the graph (Fig. 7.11). In such cases, the magnitude of the difference between the 

similarity values of relations in consecutive evaluation rounds is bigger for the pair 

CMA-CMD (Fig. 7.8 and Fig. 7.4) than the magnitude of the respective similarity 

differences for pair CMB-CMC (Fig. 7.5 and Fig. 7.3).  

The magnitude of the similarity differences changes for the two pairs of models, 

when it comes to relations with elements that are in even greater distances from the 

elements of QI2 on the graph, such as the elements of relations with principal relation 

covers, contains, and equal (i.e., elements [cv ct], [ct ct] and [e ct]) (Fig. 7.11). Models 

CMA and CMD have the same similarity value for any number of holes and get a zero 

value when no holes are left (Fig. 7.8b,c), whereas models CMB and CMC keep 

increasing the similarity values of these relations, as more holes are dropped (Fig. 7.5b,c).  

 

Figure 7.11 Highlighted elements. Elements of query QI2 [i d] and [i cB] with solid 
ellipses and elements [cv ct], [ct ct] and [e ct] from the relations in dataset DII with 
dashed ellipses.  
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The rankings in this case depend on how the different costs in δ(t1,t2) contribute to 

the overall dissimilarity value (Eqn. 7.1). For both pairs of models, cost 
  

! 

z1

"
max

RRh#RRh  steadily 

decreases in value, since the more holes are dropped, the less remaining [cv ct], [ct ct] 

and [e ct] elements need to be transformed to the [i d] and [i cB] elements. For pair 

CMA-CMD, cost 
  

! 

z2

"
max

RRh#RR  changes with big increments as more holes are dropped. The 

bigger value in each evaluation round balances out the decreases in 
  

! 

z1

"
max

RRh#RRh  and keeps 

the similarity constant for almost all rounds (Fig. 7.8b,c). For pair CMB-CMC, however, 

the increments in 
  

! 

z2

"
max

RRh#RR  are much smaller and do not balance out the decrease in cost 

  

! 

z1

"
max

RRh#RRh , making the overall δ(t1,t2) value lower, as more holes are dropped. 

Consequently, the similarity value becomes higher in each evaluation round, imposing 

relations with more holes to rank lower than relations with fewer or no holes 

(Fig. 7.5b,c).  

4. Overall, cost-assigning methods that more notably differentiate the cost of dropping 

a hole from the cost of change in the topological relation between regions produce 

more distinct and expected—according to the evaluation criteria—similarity 

rankings.  

Such cost models also avoid increasing similarity values with number of holes that 

gets less and less equal to that of the query, when the relations under comparison are very 

different. So it may be suggested that such models, as for example CMA and CMD, are 

to be preferred for the similarity evaluation between relations with different number of 

holes. However, the attractiveness of the FDM for comparing such relations is its 

flexibility to adjust to any cost-assigning approach that is deemed appropriate according 

to the application at hand, without the fear of inexplicable or totally unexpected similarity 

results. This stability is provided by the basic infrastructure of the method, which is the 
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specific placement of the relations on the hybrid CNG. The infrastructure provides a 

benchmark against which the rankings of the various cost assigning techniques are 

criticized and with which the results may also be explained.  

7.4 Summary 

The assessment of the FDM as a similarity evaluation technique between relations with 

different numbers of holes and the interpretation of the similarity results were discussed. 

Three evaluation criteria set a benchmark against which four different cost models were 

examined for their rankings of various combinations of datasets and queries. None of the 

results of the cost models greatly deviates from the expected rankings set by the criteria. 

All models rank first those relations that have most of the three parameters—principal 

relation, refining relations, and number of holes—in common with the query. However, 

models with cost-assigning techniques that more solidly differentiate the costs of 

changing the topological structure of a region from the change that happens in the 

topological relation between two regions produce fewer controversial results. The 

controversy is generally generated with highly different relations whose elements are 

separated from the query’s elements by longer distances on the hybrid CNG. 

Nevertheless, the results demonstrate that FDM is a reliable method for comparing 

relations with different numbers of holes, with some evidence for an ability to adapt to 

any cost model that may better accommodate the needs of an application.  
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Chapter 8  Conclusions 

Versatile spatial data types are required for modeling complex spatial objects, often 

characterized by the presence of holes. To date, however, relations between hole-free 

regions have been the prevailing tools for spatial qualitative reasoning, limiting the 

ability to query and compare more complex spatial configurations. This thesis focused on 

the topological relations of single-holed regions and their composition inferences, 

examining how the presence of holes affects spatial reasoning and requires the 

development of new qualitative models and quantitative measurements for analysis. For 

advanced query answering, similarity evaluation among topological relations is a 

desirable asset of any geographic database. Using the topological relations for single-

holed regions, a method of comparing relations featuring a multi-holed region 

complements the analytic framework developed in this thesis. Insights about the 

differences between reasoning over hole-free regions and reasoning over holed regions is 

expected to contribute to the design of future geographic information systems that more 

adequately process complex spatial phenomena and are better equipped to answer 

similarity database queries. This chapter summarizes the thesis (Section 8.1), describes 

the major findings and contributions (Section 8.2), and discusses possible future research 

avenues motivated by the results of this thesis (Section 8.3).  
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8.1 Summary of the Thesis 

This thesis developed a formal framework for spatial reasoning with topological relations 

featuring single-holed regions using the eight possible relations between two hole-free 

regions defined in the 9-intersection (Egenhofer and Herring 1990). The Single-Holed 

Regions Model (S-HRM) comprises a set of 23 relations between a hole-free and a 

single-holed region, a set of 152 relations between two single-holed regions, composition 

tables of both sets, as well as their conceptual neighborhood graphs. Both sets involve 

relations that are jointly exhaustive and pairwise disjoint, differentiating between 

different topological structures imposed by the hole’s presence. A custom-made checker 

verified that the spatial configuration of each relation and relation composition is valid 

according to Mackworth’s (1977) network consistency constraints.  

The compositions of the new sets of relations enabled qualitative inferences that 

were complemented with such quantitative measures as the composition crispness and the 

cumulative frequencies. The quantitative composition analysis supports the assumption 

that the presence of holes is responsible for more refined inference results.  

Spatial phenomena of the real word often contain multiple holes. To examine 

relations featuring a multi-holed region, this thesis developed the Multi-Holed Region 

Model (M-HRM) and a method, called the Frequency Distribution Method (FDM), for 

comparing relations between a hole-free and a multi-holed region for their similarity. 

FDM builds on the representation of relations between a hole-free and a multi-holed 

region as multi-element relations, comprising as many elements—relations between the 

hole-free and a single-holed region—as the number of holes, considering each hole as if 

it were the only one.  
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Based on the conceptual neighborhood graph of the elements, FDM assesses the 

similarity between relations with a multi-holed region having the same number of holes 

as the complement of their dissimilarity. Dissimilarity is computed as the minimum cost 

of transforming one relation’s elements to those of the other. The cost of the element 

transformation equals the distance of the two elements along the neighborhood graph. 

The transportation algorithm (Murty 1976; Strayer 1989) is employed to calculate the 

minimum cost in cases for which multiple transformations are possible. The similarity 

evaluation method demonstrated that among relations whose multi-holed regions have the 

same number of holes, the placement of the holes with respect to the hole-free region is 

as influencing for the similarity rankings as is the relation between the hole-free region 

and the host of the holes. 

The FDM was, subsequently, modified to compare for their similarity relations 

featuring a multi-holed region when the regions have different numbers of holes. The 

difference in the number of holes was added to the representation of the relation with the 

fewer holes in the form of the relation between two hole-free regions created by the hole 

elimination. As a result, this thesis introduced the concept of simultaneously evaluating 

the change in the topological relation between regions with the change in a region’s 

topology caused by eliminating a hole. To accommodate such changes, a hybrid graph is 

required so that the neighborhood graph of relations between a hole-free and a single-

holed region is connected to the graph of relations between hole-free regions. The cost 

for hole elimination from each relation was added to the graph, enabling the method to 

compute the dissimilarity between relations with different numbers of holes.  

There are different approaches for assigning a cost to hole elimination from a 

single-holed region. This thesis examined four different cost-assigning methods and their 
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similarity rankings for two synthetic datasets. The behavior of each model was studied 

against a baseline for the similarity results. The analysis of all rankings verified the 

expected behavior for the models and the dependability of the method, as none of the 

models produced completely extraordinary results. Differences between the rankings are 

intensified in cases where relations under comparison have the fewest characteristics in 

common and it is suggested that cost-assigning techniques that more distinctly 

differentiate the cost of hole elimination from that of change in the topological relation 

produce the most expected patterns in the similarity rankings.  

8.2 Contributions and Major Findings 

In this thesis, a comprehensive formal framework for qualitative reasoning with relations 

featuring single-holed regions was developed. This framework differs from previous 

approaches that either ignored the holes or treated them with techniques suited to 

relations for hole-free regions. This section discusses the major contributions of this work 

and the research findings that address the hypothesis of the thesis.  

8.2.1 Contributions 

The main contributions of this thesis are the following: 

• A formal framework for relations featuring single-holed regions. 

The Single-Holed Region Model is an exhaustive collection of binary relations involving 

one or two single-holed regions, explicit conceptual neighborhood graphs that define the 

sequence of relation change, and complete composition tables with valid inference 

results. New quantitative measures introduced with the model, help quantify the results of 

the composition analysis and reveal patterns related with the existence of the holes.  
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The set of 23 relations between a hole-free and a single-holed region is novel in its 

approach to cover relations between multi-sorted regions—regions originating from two 

different domains. Members of other explicit sets of relations are typically of the same 

type, namely either simple, hole-free regions, or complex regions with possible 

separations of the exterior as well as the interior. Through the converse property of the 

constituent relations, the concept of a converse relation still exists (i.e., the relations 

between a single-holed and a hole-free region, tRhR=  

! 

t
RRh

). However, there is neither an 

identity relation, nor is any relation reflexive, symmetric, or transitive. Therefore, the 

basic requirements are not met for a relation algebra. Lack of symmetric relations results 

in an asymmetric 23-tRRh CNG. Many of these properties, such as an identity relation, 

symmetric relations, and transitivity are restored for the 152 relations between two sing-

holed regions.  

• A model for comparing relations between a hole-free and a multi-holed region for 

their similarity, which is independent of the number of holes.  

The Frequency Distribution Method developed in this thesis is a model for comparing 

relations with multi-holed regions that is independent of the number of holes. Instead of 

explicitly accounting for each hole separately, multi-holed region relations are 

summarized with the Multi-Holed Region Model, which uses the frequencies of the 

relations’ single-holed region elements. FDM departs from previous efforts involving the 

tedious enumeration of binary relations between the holes, the host, and the external 

regions. The utilization of the transportation algorithm for evaluating the minimum cost 

of relation transformation makes for an elegant approach to similarity evaluation that 

relies on the actual conceptual neighborhood graph of the relations for producing 

similarity values. Such an approach enables the quantification of the qualitative change of 
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relations traced on the neighborhood graph, providing a numerical representation of the 

differences and commonalities between relations with a multi-holed region.  

• Concurrent evaluation of the change in the topological relation between regions with 

the change in the topological structure of a region.  

This thesis introduced a novel way of thinking about relations similarity, with the concept 

of assessing in parallel the change in a binary with the change in a unary topological 

relation. Creating the hybrid graph that connects the neighborhood graph of single-holed 

region relations with that of the hole-free region relations, FDM makes up for a reference 

model of bringing the two changes together and enabling the similarity evaluation 

between relations with different numbers of holes. Such an approach takes into account 

the difference in the topological structure of the participating regions, in contrast to 

previous similarity evaluation methods that only assess either the numerical difference of 

regions as components of a relation, or the differences in the topological relations 

between the regions.  

• A reliable similarity evaluation method for relations with different numbers of holes, 

adaptable to different cost-assigning methods. 

The underlying structure of the method—the hybrid conceptual neighborhood graph—

ensures that the FDM may be used with different cost-assigning methods for evaluating 

the cost for eliminating a hole, without resulting in utterly contentious similarity 

rankings. The cost values assigned to the edges that connect the single-holed region 

relations with their principal relations do not affect the neighboring of either the hole-free 

or the single-holed region relations. The reliance on the basic structure of the 

neighborhood graph allows flexibility on the cost assigning procedure for meeting the 

needs of an application. 
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8.2.2 Major Findings  

The hypothesis of the thesis stated that taking into consideration the existence of holes in 

two-dimensional regions, imposes new constraints on the topological relations that can 

hold between such regions, and affects the inferences of the reasoning processes towards 

more refined results. This thesis addressed the hypothesis with the following findings: 

• Reasoning with holed regions differs from reasoning with hole-free regions, 

producing more refined composition inferences.  

The quantification of the composition analysis verifies that new constraints imposed on 

the topological relations from holes differentiate the reasoning with relations over holed 

regions from that with relations over hole-free regions. The numerical analysis indicates 

that acknowledging the holes, instead of favoring a hole-free region approach, leads to 

less ambiguous inferences for a little over 50% of the cases. Such results indicate that a 

model of topological relations of holed regions favors better decision making by 

providing more refined and accurate outcomes. In addition, the inference results 

demonstrate that the more holes that are initially involved in the composition of relations, 

the higher the percentage of unique relation results, which implies complete certainty in 

the outcome.  

• Consideration of the placement of the holes during the similarity evaluation among 

relations with a multi-holed region enables more exact similarity rankings. In 

particular: 

− When the multi-holed regions contain equal numbers of holes, the holes’ 

placement with respect to the hole-free region affects the similarity, as much as 

the relation between the hole-free region and the host does.  
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When comparing relations over regions with the same number of holes, FDM’s basis is 

the structure provided by the neighborhood graph of the 23 single-holed region relations. 

Therefore, two relations that have different principal relations, but share all or most 

refining relations, may be regarded as more similar than relations that share the same 

principal relation, but differ in all or most refining relations. Responsible for this 

similarity evaluation result is the shorter distance between relations that share the same 

refining relations on the graph. Conversely, longer distances separate relations with 

different refining relations. The similarity rankings in this thesis demonstrate that taking 

into consideration the placement of the holes, instead of solely relying on the overall 

relation between the hole-free and the host region, returns more detailed similarity 

rankings.  

− When the multi-holed regions have different numbers of holes, the placement of 

the holes matters even more for the similarity rankings, especially when the 

relations under comparison are topologically very different.  

The numerical similarity differences among the various cost-assigning models 

demonstrated that the placement of the holes with respect to the hole-free region affects 

the similarity ranking more strongly when the relations under comparison have fewer or 

no elements in common. Longer distances on the hybrid graph between relations that do 

not share common refining relations more explicitly display the difference among various 

cost models, resulting in more prominent differences in the numerical rankings of such 

relations. The similarity rankings examined in this thesis suggest that the more distinct 

the costs assigned to cross-level edges are from the costs of the distances between intra-

level relations, the more expected are the rankings.  
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These findings verify the hypothesis that spatial reasoning about relations over 

regions with holes differs from reasoning about relations over hole-free regions. The 

additional constraints imposed by the holes lead to sets of more fine-grained relations, 

more refined composition inferences, and more accurate similarity comparisons. The 

topological relation between a hole-free region and the host region of the holes is a key 

controlling parameter of the inference mechanisms. However, it is the relations between 

the hole-free region and the holes that refine the composition results and finalize the 

similarity rankings, especially for relations over multi-holed regions with very different 

hole placements.  

8.3 Future Work 

This thesis presented a formal framework for reasoning with single-holed region relations 

and used it as a basis for developing a similarity assessment method for multi-holed 

region relations. The results open new research avenues and anticipate further 

development of the reasoning tools presented in this thesis. This section first discusses 

some research alternatives about the S-HRM and then provides guidance about 

expanding the range of the FDM.  

8.3.1 Alternatives to the S-HRM 

The S-HRM developed in this thesis is based on two principal assumptions: (1) the 

relation between the generalized region B* and its hole BH is always t(B*, BH) = contains, 

and (2) the neighborhood graph of the eight relations between two hole-free regions 

captures only the A-neighbors,  so that if a region expands from the inside relation it can 

be transformed to coveredBy in one step, but not to equal. Conversely, if a region is 
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reduced in size when it contains the other region, it can be converted to covers, but not to 

equal. It is possible, however, to allow for different or additional relations to hold 

between the generalized region and the hole, which would result in different relation sets 

than the ones derived in this thesis. The CNGs of the sets are also modified with the 

addition or elimination of certain edges, due to different topological constraints for the 

different host-to-hole relations.  

8.3.1.1 Relaxing the Definition of the Single-Holed Region 

Chapter 3 defined that a single-holed region B comprises the generalized region B* and 

the hole BH, which is completely inside B*. A less restrictive model allows the hole to be 

coveredBy (Fig. 8.1a) or even equal to B* (Fig. 8.1b), leading to different semantics of a 

region with a hole (Egenhofer et al. 1994).  

  
(a) (b) 

Figure 8.1 Single-holed region B in different relations with the hole BH: (a) BH 

coveredBy B* or (b) BH equal to B*. 

According to the constraint of the hole placement, the sets of relations between a 

hole-free and a single-holed region, or between two single-holed regions, would be 

different than the ones developed in S-HRM. Seven different sets of tRRhs may be 

developed, allowing either one of the three different relations between the hole and the 

generalized region or combinations thereof: (BH inside B*), (BH coveredBy B*), (BH equal 

B*), (BH inside or coveredBy B*), (BH inside or equal B*), (BH coveredBy or equal B*) 

and (BH inside or coveredBy or equal B*). 
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The relaxation of the hole placement definition is interesting, because it implies a 

variation in the set of realizable relations. For instance, the set of tRRhs for which the hole 

is always coveredBy the generalized region has the same number of relations as the set 

developed in this thesis, namely 23. However, five relations—[i e], [i cv], [i ct], [cB ct], 

and [e ct]—have been replaced by five different ones (Fig. 8.2)—[m m], [cB cB], [cB e], 

[e cv], and [cv cv]—due to the new limitations imposed by the coveredBy relation, on the 

relation between the hole-free region and the hole. Accordingly, the conceptual 

neighborhood graph for the 23-tRRh based on the coveredBy relation is different (Fig. 8.3). 

     
(a) (b) (c) (d) (e) 

Figure 8.2 The five new tRRh relations when the hole is coveredBy the generalized region: 
(a) [m m], (b) [cB cB], (c) [cB e], (d) [e cv], and (e) [cv cv]. 

 

Figure 8.3 The 23-tRRh CNG for which BH coveredBy B*.  

It is expected that allowing combinations of two or all three relations between the 

hole and the generalized region will result in sets of relations larger than 23. For example, 
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if both inside and coveredBy are allowed, the set comprises 28 relations. The increased 

sets of relations produces larger composition tables, and inferences are expected to be 

less refined than the ones derived in this thesis, due to fewer topological constraints.  

Accordingly, the CNGs will expand, and the FDM for evaluating similarity 

between relations featuring multi-holed regions will have to be based on larger tables of 

costs. Further work is then required for providing all possible topological configurations 

of relations with single-holed regions and making the S-HRM a more complete 

framework for extracting composition inferences. Such a complete framework would be 

used with the FDM for similarity rankings among a wider range of holed-region relations. 

8.3.1.2 Relaxing the Scaling Transformation Requirements 

The conceptual neighborhood graphs developed in this thesis support connectivity of the 

A-neighbors only. In A-neighbors, the scaling transformation is responsible for 

restraining connectivity of relation equal with relations coveredBy and covers only. Such 

a constraint forces the expansion or reduction of a region in relations inside and contains, 

respectively, to be a two-step procedure in order to change to equal. However, if that 

constraint is relaxed, the scaling transformation from inside or contains to equal can be a 

one step procedure. This is the scenario of two regions being concentric, and one of them 

expanding or collapsing to equality with the other region. Such a neighborhood captures 

the C-neighbors (Egenhofer and Al-Taha 1992; Freksa 1992). 

Accordingly, if the regions have the same size and shape, the translation or rotation 

transformation between relations overlap and equal can also be reduced to one step, 

instead of two—through coveredBy or covers—and vise versa, as it is in the A-
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neighborhood graph. The one step transformations result in the B-neighbors (Egenhofer 

and Al-Taha 1992; Freksa 1992).  

The implication that the relaxation of the scaling transformation has on the S-HRM 

and the FDM is that tRRhs featuring equal as any of their constituent relations are to be 

connected with the appropriate relations having inside and contains as their constituent 

relations, while losing the links to relations with coveredBy and covers as their principal 

relation. The only tRRh with equal as its principal relation is [e ct] and it is connected with 

relations [cB ct] and [cv ct], which have the same refining relations (Fig. 6.5b). In the C-

neighbors graph, these links are removed and replaced by the links between [e ct] and 

relations [i ct] and [ct ct], which also share the same refining relations, but have now 

inside or contains as their principal relations (Fig. 8.4). Additionally, the only tRRh with 

equal as its refining relation is [i e], connected with [i cB] and [i cv]. These links are now 

replaced by the links with [i i] and [i ct] (Fig. 8.4).  

 

Figure 8.4 The 23-tRRh CNG featuring the C-neighbors. 

Further work is needed in order to evaluate how the change in the neighborhoods of 

the 23-tRRh CNG and the table of costs affect the similarity results. It is expected that 
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relations with equal in any of their constituent relations would now rank closer to the 

inside and contains constituent relations, rather than coveredBy and covers, which was 

the case for the similarity results examined in this thesis. Analogous work would have to 

examine the effects on the similarity rankings of the B-neighbors, whereby translation 

and rotation may directly change the relation from overlap to equal, and vise versa. 

8.3.2 Relations of Holed Regions on the Sphere 

The regions participating in the relations developed in S-HRM are embedded in the two-

dimensional plane. There are many GIS applications, however, that deal with phenomena 

that spread across the entire globe, such as a national minority’s world-wide distribution 

or the spatio-temporal spread of a disease over two or more continents. Such applications 

require semantic models of spatial relations proper for the sphere, the two-dimensional 

surface embedded in the three-dimensional space, and its particular properties 

(Usery 2002).  

While most models of topological relations apply to regions embedded either in the 

two- or three-dimensional space, a set of 11 relations based on the 9-intersection, has 

been developed for the sphere   

! 

IP
2 , where   

! 

IP " IR  such that   

! 

IP  is connected and 

min(  

! 

IP )=max(  

! 

IP ) (Egenhofer 2007). For applications such as monitoring the long-term 

change of the position of the ozone hole in the earth’s atmosphere, a model of relations 

over holed regions on the sphere is of value. Further work is required then to develop the 

set of relations between a hole-free and a single-holed region and between two single-

holed regions, using the set of 11 sphere relations, in the same way such sets were 

developed for the plane, in this thesis. It is expected that the corresponding sets will be 

larger, since there are three more binary relations—attach, entwined, and embrace—
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realizable only on the sphere, in addition to the eight realizable both on the plane and the 

sphere.  

In Chapter 3, a region with a hole on the plane was defined as a spatial region with 

a separated exterior. The separations are the outer exterior, an unbounded set separated 

from the interior of the region by the outer boundary, and the inner interior, bounded 

from the inner boundary of the region. The inner interior fills the region’s hole. On the 

sphere, however, this separation is not so clear, since the outer exterior is now bounded as 

well, and homeomorphic to a half-sphere. The fact that both the inner and the outer 

exterior of the region on the sphere are bounded by the boundaries of the region and are 

homeomorphic to half-spheres makes is difficult to distinguish which one is the hole and 

which one is the exterior, especially in the case where the region’s extend surrounds the 

sphere (Fig. 8.5). Furthermore, in such a depiction, both regions could either be in 

relation meet or attach with the region.  

 

Figure 8.5 An ambiguous depiction of the hole in a region that sits on the sphere.  

It is, therefore, crucial for the derivation of the sets of relations with a single-holed 

region on the sphere to enforce some constraint about the relation between the region and 

its hole, as for example the one used in this thesis for regions in the plane—the hole is 

always inside the region. Then it is only the region’s outer exterior that is in relation 

attach with the region. This kind of constraint ensures that the relations between a hole-

free region and the generalized region or the hole of the single-holed region can be 
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clearly specified on the sphere. Absence of such a constraint would create yet another 

visual confusion, as the mere demarcation of the holed region on the sphere using Jordan 

curves does not suffice for distinguishing the hole, from the outer exterior of the region.  

8.3.3 Extending the FDM 

The similarity evaluation method developed in this thesis enables the comparison of 

relations with one multi-holed region. There are certain aspects of the method that need 

to be further enhanced in order for the FDM to provide more complete answers to 

database similarity queries. Improvements include enabling the method to compare 

relations where both holes are multi-holed, to differentiate holes according to their 

distinctive roles, and to possibly group holes according to their properties. In addition, 

FDM as developed in this thesis, offers numerical similarity results. It is highly desirable 

to examine how these numbers are matched against natural language expressions that 

people use when asked to compare relations for their similarity. 

8.3.3.1 M : N-Holed Regions Relations 

In case both regions in a relation have holes, a technique analogous to the one developed 

in this thesis, the M-HRM, for summarizing the relations in hole placement frequencies 

needs to be adopted. With the sets of relations for single-holed regions, two possibilities 

exist for summarizing the m : n-holed relations: (1) using the set of 23-tRRhs, one region at 

a time is considered as hole-free and the tRRhs with the other region are recorded in 

frequency vectors (Fig. 8.6), or (2) using the set of 152-tRhRhs, both regions are considered 

as single-holed and the tRhRhs between them are recorded for all pairs of holes (Fig. 8.7).  
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Figure 8.6 The 2-holed region to 2-holed region relation between A and B as the union of 
two multi-element relations, each of which may be broken down to two elements.  

 
 

 

Figure 8.7 The two tRhRhs that form the 2-holed to 2-holed region relation between A and 
B. 

With the set of 23 tRRhs, two frequency vectors VA and VB are defined for each of 

the two relations under comparison. As in the 2-holed region to 2-holed region relation in 

the example (Fig. 8.6a), this duplexity is necessary since each of the regions, A and B, are 

in turn considered as hole-free and their relations with the holes of the other region are 

recorded (Fig. 8.6b and 8.6c). The deviation from the method developed in this thesis is 

that rather than one cost, two costs—c1 and c2—of transformations of the two vectors 

summarizing one relation into the vectors of the other relation, are recorded. The final 

cost c of the relation transformation then is the sum of these two costs.  

Using the set of 152-tRhRh, the relation in the example would be the union of two 

single-holed to single-holed region relations (Fig. 8.7). The frequencies would then be 

recorded in an analogous way and the costs for relation transformations would have to be 

acquired by the 152-tRhRh CNG. It is an open question whether the two methods based on 

the two different relation sets produce the same or different similarity results.  
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8.3.3.2 Holes with Different Roles 

The relations compared in this thesis are over regions in which all holes have the same 

role. The role of a hole may have a two-fold interpretation—it may have to do with its 

relative importance in comparison with the rest of the holes, or it may be related to its 

semantics. In the first case, all holes may be of the same nature, for example, coverage 

holes in a network setting, various lakes in the same plain, patches of different land use in 

an agricultural division, or oil deposits in an underground geologic formation. In the 

second case, holes or their content may belong to ontologically different categories. For 

example, in an urban environment, holes may be open-air recreational parks, state 

protected land, a chemically contaminated and restricted area, or a natural discontinuity 

such as a lake or a hill.  

In case the holes are all of the same nature, the importance of each hole is relative. 

It may be measured by the size of the hole, or any of the other properties of the hole or its 

content that is appropriate for the application. In the example of the oil-baring geologic 

formation, the bigger the size of a hole, the higher its economic value. In other cases the 

importance of a hole may be related to the hole’s relative placement or neighboring with 

an accessibility point. The cost of relation transformations examined in this thesis, did not 

take into consideration different weights for holes. To enable the differentiation of holes 

according to their importance, a weight factor wij needs to be added to the calculation of 

the cost (Eqn. 8.1). The values of the weight factor and the property to which it is 

associated are depended on the application under consideration and are the subject of 

further research.  

 
  

! 

z=min( wijcijxij
j=1

n

"
i=1

p

" )  (8.1) 
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However, if the holes vary semantically, defining a weight factor is a more 

complicated, multi-variable procedure. The mere addition of the weight factor is not 

enough, as the weights themselves would be attributed to properties of holes of different 

nature, which may not be comparable. It is left for future work to decipher the 

appropriate linking property that would allow semantically different holes to be attributed 

a weight from the same scale.  

8.3.3.3 Hole Generalization 

Examining holes for their properties may also allow for certain groupings of holes. For 

example, if holes are judged for their size, smaller holes that are in proximity (Fig. 8.8a) 

may be seen as one single hole (Fig. 8.8b). In such a case, when compared with other 

relations, it is interesting to examine whether relations over regions with grouped holes 

and their ungrouped versions, share the same similarity against other relations. Groups of 

holes may also have different implications for map generalization. When moving to 

smaller scale map representations, the size of map objects is compared against a certain 

threshold. For example, holes smaller than the threshold are eliminated. A different 

approach is to replace a number of neighboring small holes with a single bigger one hole, 

much like in Gestalt theory of perception (Wertheimer 1923), which would meet the size 

threshold. The single hole would need to cover the spatial extent of the group of holes. 

What is necessary then, is a method to determine the relation between the newly formed 

conglomeration and the rest of the regions involved in a topological relation.  
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(a) (b) 

Figure 8.8 Hole generalization: (a) a number of small holes getting replaced by (b) a 
single hole.  

8.3.4 Introducing Human Language Expressions 

With the development of any new GIS application, the goal is to facilitate interaction 

between user and system in a way that feels intuitive and natural to the user. Therefore, 

for FDM to be a complete similarity evaluation method, it needs to be calibrated 

according human subjects’ similarity assessments, and to incorporate natural-language 

expressions in the results’ presentation. 

To calibrate the method, a series of human subject tests need to be performed in 

order to examine how people rank the relations in the same datasets evaluated by FDM. 

Examination of the test results will verify whether or not people judge similarity between 

relations with multi-holed regions with the same criteria as FDM does. It is also desirable 

to enable FDM to express the similarity results with natural-language expressions much 

like people do. To realize this, various similarity percentage ranges need to be matched 

against certain assessment terms that people use, such as almost identical, very similar, 

similar, and not similar. This matching resembles the effort to extend the terminology of 

expressing topological relations involving regions with broad boundaries, since the firm 

terms that concern regions with crisp boundaries cannot cover vague spatial objects 

(Bejaoui et al. 2008).  The difference in the case of FDM is that ranges of absolute 

numerical similarity values will have to be matched with vague natural language terms.  

Achieving so, will facilitate a human-computer system collaboration that resembles more 
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the person-to-person communication and will contribute to the development of more 

interactive, innovative systems.  
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