271 research outputs found

    First-Order Logical Duality

    Get PDF
    From a logical point of view, Stone duality for Boolean algebras relates theories in classical propositional logic and their collections of models. The theories can be seen as presentations of Boolean algebras, and the collections of models can be topologized in such a way that the theory can be recovered from its space of models. The situation can be cast as a formal duality relating two categories of syntax and semantics, mediated by homming into a common dualizing object, in this case 2. In the present work, we generalize the entire arrangement from propositional to first-order logic. Boolean algebras are replaced by Boolean categories presented by theories in first-order logic, and spaces of models are replaced by topological groupoids of models and their isomorphisms. A duality between the resulting categories of syntax and semantics, expressed first in the form of a contravariant adjunction, is established by homming into a common dualizing object, now \Sets, regarded once as a boolean category, and once as a groupoid equipped with an intrinsic topology. The overall framework of our investigation is provided by topos theory. Direct proofs of the main results are given, but the specialist will recognize toposophical ideas in the background. Indeed, the duality between syntax and semantics is really a manifestation of that between algebra and geometry in the two directions of the geometric morphisms that lurk behind our formal theory. Along the way, we construct the classifying topos of a decidable coherent theory out of its groupoid of models via a simplified covering theorem for coherent toposes.Comment: Final pre-print version. 62 page

    Homotopy theoretic models of identity types

    Full text link
    This paper presents a novel connection between homotopical algebra and mathematical logic. It is shown that a form of intensional type theory is valid in any Quillen model category, generalizing the Hofmann-Streicher groupoid model of Martin-Loef type theory.Comment: 11 page

    Impredicative Encodings of (Higher) Inductive Types

    Full text link
    Postulating an impredicative universe in dependent type theory allows System F style encodings of finitary inductive types, but these fail to satisfy the relevant {\eta}-equalities and consequently do not admit dependent eliminators. To recover {\eta} and dependent elimination, we present a method to construct refinements of these impredicative encodings, using ideas from homotopy type theory. We then extend our method to construct impredicative encodings of some higher inductive types, such as 1-truncation and the unit circle S1

    Topos Semantics for Higher-Order Modal Logic

    Full text link
    We define the notion of a model of higher-order modal logic in an arbitrary elementary topos E\mathcal{E}. In contrast to the well-known interpretation of (non-modal) higher-order logic, the type of propositions is not interpreted by the subobject classifier ΩE\Omega_{\mathcal{E}}, but rather by a suitable complete Heyting algebra HH. The canonical map relating HH and ΩE\Omega_{\mathcal{E}} both serves to interpret equality and provides a modal operator on HH in the form of a comonad. Examples of such structures arise from surjective geometric morphisms f:F→Ef : \mathcal{F} \to \mathcal{E}, where H=f∗ΩFH = f_\ast \Omega_{\mathcal{F}}. The logic differs from non-modal higher-order logic in that the principles of functional and propositional extensionality are no longer valid but may be replaced by modalized versions. The usual Kripke, neighborhood, and sheaf semantics for propositional and first-order modal logic are subsumed by this notion

    Natural models of homotopy type theory

    Full text link
    The notion of a natural model of type theory is defined in terms of that of a representable natural transfomation of presheaves. It is shown that such models agree exactly with the concept of a category with families in the sense of Dybjer, which can be regarded as an algebraic formulation of type theory. We determine conditions for such models to satisfy the inference rules for dependent sums, dependent products, and intensional identity types, as used in homotopy type theory. It is then shown that a category admits such a model if it has a class of maps that behave like the abstract fibrations in axiomatic homotopy theory: they should be stable under pullback, closed under composition and relative products, and there should be weakly orthogonal factorizations into the class. It follows that many familiar settings for homotopy theory also admit natural models of the basic system of homotopy type theory.Comment: 51 page

    Completeness and Categoricty, Part II: 20th Century Metalogic to 21st Century Semantics

    Get PDF
    This paper is the second in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics so as to shed new light on the relevant strengths and limits of higher-order logic
    • …
    corecore