1,964 research outputs found

    Evaluating Data Assimilation Algorithms

    Get PDF
    Data assimilation leads naturally to a Bayesian formulation in which the posterior probability distribution of the system state, given the observations, plays a central conceptual role. The aim of this paper is to use this Bayesian posterior probability distribution as a gold standard against which to evaluate various commonly used data assimilation algorithms. A key aspect of geophysical data assimilation is the high dimensionality and low predictability of the computational model. With this in mind, yet with the goal of allowing an explicit and accurate computation of the posterior distribution, we study the 2D Navier-Stokes equations in a periodic geometry. We compute the posterior probability distribution by state-of-the-art statistical sampling techniques. The commonly used algorithms that we evaluate against this accurate gold standard, as quantified by comparing the relative error in reproducing its moments, are 4DVAR and a variety of sequential filtering approximations based on 3DVAR and on extended and ensemble Kalman filters. The primary conclusions are that: (i) with appropriate parameter choices, approximate filters can perform well in reproducing the mean of the desired probability distribution; (ii) however they typically perform poorly when attempting to reproduce the covariance; (iii) this poor performance is compounded by the need to modify the covariance, in order to induce stability. Thus, whilst filters can be a useful tool in predicting mean behavior, they should be viewed with caution as predictors of uncertainty. These conclusions are intrinsic to the algorithms and will not change if the model complexity is increased, for example by employing a smaller viscosity, or by using a detailed NWP model

    NEP: A Module for the Parallel Solution of Nonlinear Eigenvalue Problems in SLEPc

    Full text link
    [EN] SLEPc is a parallel library for the solution of various types of large-scale eigenvalue problems. Over the past few years, we have been developing a module within SLEPc, called NEP, that is intended for solving nonlinear eigenvalue problems. These problems can be defined by means of a matrix-valued function that depends nonlinearly on a single scalar parameter. We do not consider the particular case of polynomial eigenvalue problems (which are implemented in a different module in SLEPc) and focus here on rational eigenvalue problems and other general nonlinear eigenproblems involving square roots or any other nonlinear function. The article discusses how the NEP module has been designed to fit the needs of applications and provides a description of the available solvers, including some implementation details such as parallelization. Several test problems coming from real applications are used to evaluate the performance and reliability of the solvers.This work was partially funded by the Spanish Agencia Estatal de Investigacion AEI http://ciencia.gob.es under grants TIN2016-75985-P AEI and PID2019-107379RB-I00 AEI (including European Commission FEDER funds).Campos, C.; Roman, JE. (2021). NEP: A Module for the Parallel Solution of Nonlinear Eigenvalue Problems in SLEPc. ACM Transactions on Mathematical Software. 47(3):1-29. https://doi.org/10.1145/3447544S12947

    Filtering and control algorithms for crystal pulling processes

    Get PDF
    This master thesis addresses model-based state estimation and radius regulation for semiconductor crystals grown with the Czochralski process. These crystals are cut into thin slices (wafers), used for the fabrication of electronic micro devices. In industry currently radius control is achieved with PID controllers, not very appropriate for the time-variant, nonlinear Czochralski process. Thus more advanced regulation systems are required; for this purpose a nonlinear state space model, describing the hydro mechanical part of the process, was derived. Based on this model a linear-quadratic regulator (LQR) was designed. Furthermore for the estimation of the hidden state variables two statistical algorithms were compared, namely the Extended Kalman Filter and the Unscented Kalman Filter. These algorithms were found to yield equal statistical performance; furthermore the LQR approach works fine in simulation. So far no experimental closed loop tests were madeopenEmbargo per motivi di segretezza e di proprietà dei risultati e informazioni di enti esterni o aziende private che hanno partecipato alla realizzazione del lavoro di ricerca relativo alla tes

    Deterministic Sampling for Nonlinear Dynamic State Estimation

    Get PDF
    The goal of this work is improving existing and suggesting novel filtering algorithms for nonlinear dynamic state estimation. Nonlinearity is considered in two ways: First, propagation is improved by proposing novel methods for approximating continuous probability distributions by discrete distributions defined on the same continuous domain. Second, nonlinear underlying domains are considered by proposing novel filters that inherently take the underlying geometry of these domains into account
    corecore