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Zusammenfassung

Das Ziel der vorliegenden Arbeit ist die Verbesserung bestehender und
Entwicklung neuer Algorithmen für die nichtlineare dynamische Zustands-
schätzung. Die wichtigsten Beiträge sind neue Verfahren, um stetige Wahr-
scheinlichkeitsverteilungen durch diskrete Verteilungen zu approximieren.
Dabei werden lineare und periodische zugrundeliegende Zustandsräume
betrachtet. Für den linearen Fall schlagen wir ein neues Verfahren zur
Approximation von gaußschen Dichten vor, welches ein globales Distanz-
maß verwendet. Dieses kann stetige und diskrete Verteilungen simultan
berücksichtigen. Es basiert auf lokalisierten kumulativen Verteilungen,
einer Alternative zur Verteilungsfunktion, welche alle möglichen lokalen
Wahrscheinlichkeitsmassen um einen vorgegebenen Punkt beschreibt. Die
aus der Minimierung dieses Distanzmaßes resultierende diskrete Verteilung
wird für approximative Integration verwendet und es wird gezeigt, dass
die dadurch erhaltenen Ergebnisse aktuelle Verfahren übertreffen.

Im Falle periodischer Zustandsräume wird in dieser Arbeit ein deterministi-
sches Sampling-Schema für die Bingham-Verteilung vorgeschlagen, die eine
antipodal symmetrische Verteilung auf der n-dimensionalen Hyperkugel
ist. Dieser Zustandsraum ist aufgrund der Möglichkeit Winkel und Ori-
entierungen darzustellen von besonderem Interesse. Einheitsvektoren
in 2D werden als Winkel aufgefasst, während Einheitsvektoren in 4D
als Einheitsquaternionen und damit Orientierungen aufgefasst werden.
Das Sampling-Verfahren beruht auf der Momentenmethode und kann als
Hyperkugel-Äquivalent zum deterministischen Sampling im Unscented
Kalman Filter (UKF) aufgefasst werden. Somit ist die Anwendung nicht
nur auf die Bingham Verteilung beschränkt, sondern auch bei anderen an-
tipodal symmetrischen Verteilungen auf der Hyperkugel möglich. Auch hier
werden die deterministischen Sampling-Verfahren für approximative Inte-
gration verwendet. Dies erweitert und verbessert den Stand der Forschung
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auf zwei Arten. Zum einen ist es das erste Mal, dass ein deterministi-
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sches Sampling-Verfahren für die Hyperkugel vorgeschlagen wurde. Zum
anderen wird nun die Betrachtung hoher Unsicherheiten möglich, indem
die übliche Annahme lokaler Linearität des zugrundeliegenden Raumes
vermieden wird.

Des Weiteren werden das deterministische Sampling auf linearen Zustands-
räumen und Hyperkugeln für das Schätzen von Bewegungen starrer Kör-
per in der Ebene kombiniert. Eine multiplikative Untergruppe dualer
Quaternionen wird hergeleitet, um diese Art von Bewegungen darstellen
zu können. Um die Unsicherheit von Bewegungen starrer Körper in der
Ebene beschreiben zu können wird eine neue Verteilung vorgeschlagen.
Durch diese Verteilung können Abhängigkeiten zwischen Position und Ori-
entierung berücksichtigt werden. Diese Arbeit enthält die Herleitung von
Parameterschätzern und ein effizientes Verfahren zur Berechnung der Nor-
mierungskonstante, welches auf einer Beziehung zur Bingham Verteilung
beruht. Es wird gezeigt, wie deterministische Samples dieser neuen Vertei-
lung aus deterministischen Samples der Bingham- und der Gauß-Verteilung
berechnet werden können.

Die resultierenden Verfahren können unmittelbar auf nichtlineare dynamis-
che Zustandsschätzung angewandt werden. Im Fall linearer Zustandsräume
kann die vorgeschlagene Approximation der Gauß Verteilung in einem
Linear Regression Kalman Filter (LRKF) eingesetzt werden und somit
seine Qualität durch bessere numerische Propagation unsicherer Größen
verbessern. Auf periodischen Bereichen führt das vorgeschlagene Sampling-
Schema zu einem neuen Filter auf Grundlage der Bingham-Verteilung.
Der vorgeschlagene Schätzalgorithmus hat im Falle schwachen Rauschens
eine ähnliche Qualität wie aktuelle Verfahren welche üblicherweise auf der
Annahme lokaler Linearität beruhen und übertrifft diese in beträchtlichem
Maße, wenn starkes System- und/oder Messrauschen auftreten. Die neue
Verteilung für ebene Bewegungen starrer Körper und das dazugehörige de-
terministische Sampling-Schema werden ebenfalls für die Herleitung eines
neuen Filter genutzt, welches Position und Orientierung aus verrauschten
Messungen schätzen kann. Dieses Filter hat ähnliche Vorteile, wie das
vorgeschlagene Verfahren zur Orientierungsschätzung aufgrund ähnlicher
Eigenschaften der zugrundeliegenden Verteilungen. Der Hauptvorteil
dieser neu vorgeschlagenen Verfahren liegt darin begründet, dass sie gute
Ergebnisse sowohl im Falle von hohem als auch im Falle von geringem
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Rauschen erzielen. Deswegen erleichtert der Beitrag dieser Arbeit den
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Einsatz günstiger Sensoren und die simultane Verarbeitung qualitativ
unterschiedlicher Daten in vielen realen Anwendungen, wie beispielsweise
Wahrnehmung in der Robotik, intelligente Mobilität und der augmentierten
sowie virtuellen Realität.

XIII





Abstract

The goal of this thesis is improving existing and suggesting novel filtering
algorithms for nonlinear dynamic state estimation. Its main contributions
are novel techniques for approximating continuous probability distributions
by discrete distributions defined on the same continuous domain. It consid-
ers both, linear and periodic underlying state spaces. In the linear case, we
propose a method for approximating Gaussian densities by using a global
distance measure capable of handling continuous and discrete probability
distributions simultaneously. It is based on the Localized Cumulative
Distribution (LCD), an alternative to the cumulative distribution function
that considers all possible local probability masses around a given point.
The sample set obtained from minimizing the distance measure is applied
to approximate integration, where the results are shown to outperform
state-of-the-art approaches.

In case of periodic state spaces, this thesis proposes a deterministic sam-
pling scheme for the Bingham distribution, which is an antipodally sym-
metric distribution defined on an N-dimensional hypersphere. This state
space is of particular interest due to its capability of representing angles
and orientations. Unit vectors in 2D are interpreted as angles, whereas unit
vectors in 4D are interpreted as unit quaternions and, thus, are a suitable
representation of uncertain orientations. The sampling scheme is based on
moment matching and can be thought of as a hyperspherical equivalent
to the samples obtained in the Unscented Kalman filter (UKF). Thus, its
applicability is not restricted to the Bingham case but it is more broadly
applicable to other antipodally symmetric hyperspherical distributions.
Again, the resulting set of deterministically computed samples is applied
to approximate integration. This contributes and improves the current
state-of-the-art in two ways. First, it is the first time that a determin-

XV

istic sampling scheme for the hypersphere has been proposed. Second,
consideration of large uncertainties is now possible, because the typical
exploitation of local linearity of the underlying domain is avoided.



Abstract

Furthermore, deterministic sampling on linear domains and on hyper-
spheres is combined for estimation of planar rigid-body motions, which is
an inference problem involving both directional and linear quantities. A
multiplicative subgroup of dual quaternions for representing this type of
motions is derived. A novel probability distribution is proposed in order
to represent uncertain planar rigid-body motions. The proposed distribu-
tion is capable of describing dependencies between uncertain position and
orientation. The contribution involves a derivation of parameter estima-
tion techniques and an efficient method for computing the normalization
constant that is based on a relationship with the Bingham distribution.
It is shown how computing deterministic samples that approximate this
distribution can be carried out using deterministic samples from the Bing-
ham and the Gaussian distributions.

The resulting methods can be immediately applied to nonlinear dynamic
state estimation. In case of linear state spaces, the proposed approximation
of a Gaussian distribution can be used directly in a Linear Regression
Kalman filter (LRKF) and, thus, improve its performance due to better
numerical propagation of uncertain quantities. For periodic domains, the
proposed deterministic sampling scheme gives rise to a new filter based on
the Bingham distribution. The resulting estimation algorithm has similar
performance to state of the art filtering techniques (which are usually based
on assuming local linearity and then applying the UKF) in the case of
weak noise, but significantly outperforms these techniques whenever strong
system or measurement noise is present. The newly proposed distribution
for planar rigid-body motions and its deterministic sampling scheme are
also used for developing a new filter capable of estimating position and
orientation from noisy measurements. It has similar advantages as the
proposed orientation estimation procedure due to similarities between the
underlying distributions. The main advantage of these newly proposed
methods is the fact, that they are simultaneously capable of achieving good
performance in both scenarios, those involving low noise and those involving
high noise. Consequently, the contribution of this thesis facilitates the use
of cheaper sensors and simultaneous handling of different sensor qualities

XVI

in many real-world applications such as robotic perception, intelligent
mobility, and mixed- and augmented reality.



CHAPTER
1

Introduction

“I believe in evidence. I believe in observation,
measurement, and reasoning, confirmed by independent

observers. I’ll believe anything, no matter how wild
and ridiculous, if there is evidence for it. The wilder

and more ridiculous something is, however, the firmer
and more solid the evidence will have to be.”

- Isaac Asimov

The recent years have witnessed a massive deployment of different kinds of
sensors in consumer goods. On the one hand, this development was driven
by advances in sensor production, e.g., Microelectromechanical Systems
(MEMS) pushing the limits towards ever cheaper, more precise, and less
energy consuming sensors. On the other hand, the demand for better
perception within products such as smartphones, cars, and novel robotic
applications has created massive market opportunities for these sensors.
Practical applications, e.g., processing of camera streams or measurements
from an inertial measurement unit (IMU), have to overcome several chal-
lenges. First, limited energy supply has to be considered. This particularly
happens for battery-based mobile sensing applications such as smartphones
and smartwatches. Second, it is necessary to process a potentially big
amount of data, which typically arises in applications that use cameras or
laser scanners. Third, algorithms need to cope with complicated models
that describe the observed process and the measurement system. Finally,
algorithms need to be robust to changes in measurement quality. That is,

1



Chapter 1. Introduction

they need to be capable of handling very poor and very precise measure-
ments simultaneously in order to make use of all available information or
to account for the fact that some sensors are not available at all time. A
typical example for this issue is fusion of information from a magnetometer
with other sensors (e.g. a Gyroscope) while accounting for the fact that
the former is prone to local disturbances in the magnetic field.

This thesis addresses these challenges by contributing to the field of dy-
namic state estimation, which is the formal framework for many inference
problems including those discussed above. In particular, we are interested
in estimation of a not directly observable system state from noisy measure-
ments. This formulation takes both types of uncertainties into account,
uncertain system evolution (e.g., wind turbulences affecting aerial vehicles)
and uncertainty in measurement systems. Usually, uncertainty is modeled
using a set based or a stochastic approach. That is, the uncertainty is
either considered to be described by a set of possible values or by a proba-
bility distribution. This thesis focuses on the latter case, where system
evolution and measurements can be understood as a stochastic process,
and thus, the estimation problem can be considered as a stochastic filtering
problem. Within the field of stochastic filtering, this thesis addresses the
special case of discrete-time filters. This is motivated by the fact that
most continuous-time filtering techniques are computationally intractable,
and thus, require discretization at some point anyway, e.g., for numerical
solution of stochastic differential equations.

We are interested in a very general case of nonlinear discrete-time dynamic
state estimation. That is, we assume our system and measurement models
to be nonlinear. Furthermore, we consider system states and measurements
to be defined not only on linear spaces, but also on nonlinear domains.
Particularly, the domains of orientations in Euclidean space (or —more
general— the hypersphere) and planar rigid-body motions. In order to
obtain tractable algorithms for the considered scenario, we make use of
sample-based approaches, which are gaining ever more popularity for
dynamic state estimation because they are capable of better capturing
the behavior of nonlinear functions. Among these approaches, use of
deterministic sampling has emerged as a novel trend in recent years. This
is particularly interesting because deterministic sampling schemes offer
the advantages of sample-based approaches while simultaneously avoiding
the computational burden of random sampling and an absence of deter-
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ministic quality guarantees. Thus, we contribute by the development of
novel deterministic-sampling techniques and their application to nonlinear
dynamic state estimation.

In what follows, a brief overview of state-of-the-art discrete-time filtering
techniques will be given. Using three example areas of application, it will
be shown where and how improving current filtering algorithms might
yield significantly better results. Finally, the contribution of this thesis is
outlined followed by an overview of its structure.

1.1 State of The Art

An early discussion of the filtering problem goes back to Kolmogorov [67],
[68] and Krein [71], [72] for the discrete-time case and to Wiener [124] for
the continuous-time case. However, it was Gauß himself who developed
the theory of recursive least squares in [29], [30]. His contribution stayed
unnoticed for a long time until over a century later these methods were
rediscovered. The first rediscovery happened in the work of Plackett [97]
in 1950. The second rediscovery was the seminal work by Kalman [59]
in 1960 and Kalman and Bucy [60] in 1961. There, the Kalman filter
was proposed for dynamic state estimation in linear systems. Today, it
is considered as almost certain that Kalman must have been unaware of
the works of Plackett and Gauß because he uses a significantly different
derivation. One of the earliest discussions of the Kalman filter from the
viewpoint of regression analysis was given in [25].

Application of the ideas of Kalman to nonlinear systems was of considerable
interest. Linearizing the system equation using multivariate Taylor series
in order to make Kalman filter formulas applicable has been used in
the context of the Apollo project [111]. This procedure is known as the
extended Kalman filter (EKF). Later, statistical linearization (which was
independently developed by Booton [12], [13] and Kazakov [63], [64]) has
been used to derive better filters [31], [114] by considering the uncertainty of
the current estimate within the linearization procedure. Another approach
for handling nonlinear densities was based on approximating the nonlinear
density by a mixture of well-known densities. For the Gaussian case, this
was done for the first time in [2].
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Filters based on random sampling were proposed in order to avoid any type
of linearization and to improve the quality of the propagation procedure.
Methods based on this approach are known as Particle filters [39] or
Sequential Monte Carlo methods [85]. They are discussed more deeply in
[4], [23]. Typically, they impose some computational burden for repeated
random sampling and suffer from degeneration of particles, which has to
be addressed, e.g., by use of resampling techniques.

An entirely deterministic sampling approach was used within the unscented
Kalman filter, which was proposed in [54], [55], [53]. It uses 2𝑛 + 1
deterministically placed samples for propagation of 𝑛-dimensional uncertain
quantities. This contribution can be interpreted as a linear regression
Kalman filter [82], [83]. The UKF has sparked off the development of
several filtering approaches based on deterministic sampling schemes,
because this approaches avoid some of the problems within the particle
filter such as the need for performing repeated random sampling of a
possibly high number of particles or a potentially poor coverage of the
underlying state space. Deterministic sampling was recently also used
within advanced filtering techniques, e.g., for introduction of a progressive
variant of the measurement update [41] in order to cope with nonlinear
measurement models.

Research on nonlinear filtering mostly addressed the problem of handling
nonlinear system and measurement functions and did not explicitly consider
nonlinear domains. Thus, filters for estimation problems involving a
nonlinear underlying domain were mostly based on the Kalman filter or
some of its variants discussed above. Therefore, these filters wrongly
assumed the underlying domain to be a linear space, which is a good
approximation for scenarios with low noise. Examples of these approaches
involve [38], [116], [125], [104], [90], [81]. A sound consideration of the
underlying domain is made possible by using results from directional
statistics [89], which is a subfield of statistics that considers uncertain
quantities on nonlinear domains. An approach based on these results
was presented in [35]. It used the Bingham distribution for representing
uncertain orientations and required random sampling for propagation when
the system function was more complicated than a pure rotation. Another
thesis [78] that made use of directional statistics was created simultaneously
with this work. It mostly focuses on consideration of circular quantities,
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dependencies between circular quantities, and applications to robotic
beating heart surgery.

There is also a huge number of books on stochastic filtering. The following
examples might be particularly interesting. Multiple different derivations
of the Kalman filter are given in [110]. A discussion of several mostly recent
filtering and smoothing techniques can be found in [105]. A fundamental
discussion of filtering theory involving both, discrete and continuous time,
can be found in [50]. [7], [1], [58]. This brief overview focused mostly on
the developments relevant to the contributions made in this thesis. In
general, stochastic filtering techniques are a very broad and highly active
area of research. A more in-depth historic discussion of stochastic filtering
techniques with a stronger emphasis on the case of continuous time can
be found in [7].

1.2 Example Areas of Application

The following three examples represent application scenarios that are
amongst those that can benefit the most from the development of the con-
tributions made in this thesis. Thus, the challenges involved in these areas
are discussed in order to motivate the contributions made in this work.

1.2.1 Mixed and Augmented Reality

Use of a Head Mounted Display (HMD), such as the Oculus Rift, requires
tracking of pose and orientation in order to avoid motion sickness. This
tracking needs to have a high accuracy for delivering sufficient quality
for entertainment applications. Unfortunately, it is insufficient to use
an IMU due to possible precision issues and bias. Thus, these systems
are typically equipped with an additional external sensor, e.g. a camrea.
Therefore, fusion of measurements from both sensors is required in order
to produce an accurate estimate. Furthermore, orientation estimation also
happens in smartphones, e.g., within gaming and in context of localization
applications. In these devices, linear approximations of the underlying
domain seem impossible when fusing the magnetometer due to its high
uncertainty. Thus, these applications require estimation techniques capable
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of coping with high uncertainty on nonlinear underlying domains, because
assuming local linearity might yield infeasible results.

1.2.2 Intelligent Mobility

One of the early applications of dynamic state estimation techniques within
mobility was the use of Global Navigation Satellite Systems (GNSS), such
as the Global Positioning System (GPS), the Global Navigation Satellite
System (GLONASS), or the Galileo system. In this application, the re-
ceiver fuses signals from several satellites in order to obtain a position
estimate. Its accuracy can be increased by additionally fusing a correction
signal, which is transmitted by a local emitter as it is done in differential
GPS. Even if the movement of the underlying object can be approximated
by a linear model, this estimation problem still involves the consideration
of nonlinearities in the measurement system. Typically, specialized algo-
rithms are used for processing data from a GNSS for position estimation.
However, nonlinear filtering techniques are used when additional sensors
are involved [107].

A potentially big amount of sensor data needs to be processed by driving
assistance systems. For example, modern automatic parking systems carry
out several dynamic state estimation procedures. These involve the need
to estimate the pose of the car, positions of obstacles for path planning,
and tracking of pedestrians who pass by. Further assistance systems, such
as lane keeping assistance, traffic jam assistance, or collision avoidance
systems typically combine camera-based sensors with radars in order to
perform inference about the driving environment. This challenge also
exists in driver monitoring systems, such as those estimating the head
pose and gaze direction. They are used in order to detect symptoms of
fatigue, and thus, potential threats to safety.

The challenges involved in developing driver assistance systems culminate
in systems for fully autonomous driving, because estimation algorithms
have to cope with less defined environments. This refers to poor road
conditions, poor weather conditions, and unpredictable behavior of other
drivers and pedestrians. Even though the estimation and decision problems
might be similar to the case of driving assistance, a higher robustness is
typically required.
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Figure 1.1.: Fusing information from intertial sensors in the car and GNSS systems is
a typical nonlinear state estimation problem.

1.2.3 Robotic Perception

A major problem in robotics is simultaneous localization and mapping
(SLAM) of the environment. Algorithms addressing this problem have
made their way into first consumer products, e.g., robotic vacuum cleaners
or lawn mowers. These algorithms are strongly related or even entirely
based on dynamic state estimation techniques. Examples of filtering
approaches in SLAM are algorithms based on the EKF [6] or the UKF
[91].

More broadly, dynamic state estimation techniques are used in most areas
of robotic perception. This involves sensor calibration [93], sensor fusion
[119], and tracking. An early application involving directional statistics
was presented for tracking the spin of a ping-pong ball [36].

1.3 Contribution

The examples presented above usually involve some sort of nonlinearity.
Either, the system dynamics are described by a nonlinear model or the
system state is defined on a nonlinear domain. This thesis contributes
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techniques that are capable of coping with these nonlinearities by address-
ing two problems within dynamic state estimation. First, we address the
problem of propagation of uncertainty through nonlinear system functions.
Second, we address the problem of a sound consideration of underlying
domains with a focus on the manifold of uncertain orientations and the
manifold of planar rigid-body motions.

1.3.1 Deterministic Sampling of Gaussian Distributions

The main contribution of this thesis is the improvement of existing and the
derivation of novel deterministic sampling techniques. That is, we approxi-
mate the original continuous distribution by a discrete distribution defined
on the same underlying domain. Rather than obtaining this approximation
by random sampling, we use entirely deterministic procedures which try
to minimize a dissimilarity measure or match some other distributional
characteristics. The conceptual differences are visualized in Figure 1.2.

For approximating multivariate Gaussian densities (and Gaussian mixture
densities), we use a measure that compares local probability mass at all
scales. The contribution of this thesis not only involves investigations of
theoretical properties of that measure, but also the derivation of computa-
tion formulas for approximating a Gaussian mixture based on numerical
optimization or use of precomputed samples. We show that in an important
special case of the considered scenario (when both compared distributions
have the same mean), the evaluation can actually be performed on all
scales, and thus, there is no need to choose a maximum scale as it was
done in earlier methods. Furthermore, easily computable formulas are
derived for the case of even-dimensional Gaussians.

1.3.2 Domain Specific Probability Distributions

As already mentioned above, algorithms within most real-world applica-
tions model uncertainties by assuming a Gaussian distribution or at least
a linear underlying state space. An important scenario in which dropping
this assumption might yield better results is the handling of uncertain
orientations, which can be described by a hyperspherical distribution.
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(a) Random Sampling (b) Deterministic Sampling

Figure 1.2.: Contrary to random sampling, the deterministic sampling approach that
is presented in this thesis offers a better and more homogeneous coverage
of the underlying state space.

In particular, unit quaternions can be interpreted as points on the unit
hypersphere in R4. Thus, choosing a suitable probability distribution on
this hypersphere makes representation of uncertain orientations possible
by representing them as uncertain quaternions. In this work, the Bingham
distribution will be used for this representation, because of some convenient
properties due to its relation with the Gaussian distribution.

For representation of uncertainties on the manifold of planar rigid-body
motions, this thesis proposes a novel distribution reminiscent of the Bing-
ham distribution, and thus, exhibiting similar properties. Its particular
advantage is the possibility of a systematically correct consideration of
dependencies between position and orientation. Both distributions are
employed in order to derive novel filtering techniques for dynamic state
estimation on their respective manifolds. Taken altogether, these filters
can be thought of as a hyperspherical and 𝑆𝐸(2) counterpart to the
linear regression Kalman filter (LRKF), and thus, they also require a sam-
pling scheme in order to cope with the manifold-equivalent of a nonlinear
system function.

1.3.3 Deterministic Sampling on Nonlinear Domains

Deterministic sampling of uncertain orientations is solved by proposing
a more general technique for deterministic sampling on hypershepres
of arbitrary dimension. This approach is based on matching the second
moment and generating an antipodally symmetric sample set exhibiting this
moment. The resulting methodology can be thought of as a hyperspherical
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analogue to the UKF. Finally, we propose a deterministic sampling scheme
for approximating the newly proposed distribution of uncertain planar
rigid-body motions. This scheme is based on a hybrid approach. On the
one hand, it makes use of the dependency structure within this distribution,
and thus, cannot be seen as a purely moment-based approximation. On the
other hand, it combines approximations of the Gaussian and the Bingham
distributions in order to obtain the final result.

As a result, the newly proposed techniques improve state-of-the-art stochas-
tic filtering algorithms by introducing better approximations of continuous
distributions and thus better propagation of uncertainty at low computa-
tional cost. Furthermore, they make better consideration of two important
nonlinear domains possible by introducing deterministic sampling tech-
niques on these domains and, thus, making stochastic filtering applicable
to a broader class of systems.

1.4 Thesis Outline

The entire thesis is subdivided in four parts. In the first part, the considered
problem is introduced and motivated (Chapters 1 & 2). In the second part,
we consider shape-based deterministic approximation of Gaussian densities
(Chapter 3 & 4). Then, deterministic sampling approaches on nonlinear
domains are considered (Chapter 5 & 6), which is followed by concluding
remarks (Chapter 7). The thesis structure is visualized in Figure 1.3. The
following brief overview gives an outlook on the upcoming chapters.

Chapter 2 - Stochastic Filtering
The contributions are motivated by an introductory discussion in Chapter
2. First, modeling of discrete-time dynamical systems and the filtering
problem are presented. Second, several techniques for filtering are discussed.
This discussion includes the Kalman filter and its adoptions to cope
with nonlinearities. Particularly, approaches based on assuming Gaussian
uncertainties are considered. They involve well-known filtering techniques
based on statistical linearization and moment matching. Additionally,
limits of these filtering approaches are presented motivating the need
for better algorithms in stochastic filtering. Finally, a formal problem
statement describes the problems addressed by this thesis.
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Figure 1.3.: Structure of this thesis.

Chapter 3 - A Distance Measure for Probability Distributions
A distance measure for comparing probability distributions is discussed
in Chapter 3. It is based on Localized Cumulative Distributions (LCDs),
a modification of the cumulative distribution function that takes local
probability mass around a given point into account. It is shown that
the Weierstrass transform appears as a special-case in this framework.
Furthermore, this chapter contributes by providing a uniqueness result
for a special variant of the LCD based on Gaussian kernels. This chapter
also discusses some properties of the distance measure and establishes
conditions that ensure it to be a metric.

Chapter 4 - Approximation of Gaussian Densities
Subsequently, Chapter 4 contains the main application of the distance
measure. That is, a novel approach to approximate multivariate Gaussian
distributions (and their mixtures) using a discrete distribution (Dirac
mixture) defined on the same domain. This involves overcoming the
challenge of multiple integration posed by the computation of the distance
measure, which is first discussed for the general case of approximating
Gaussian mixtures. Building up on an earlier result, a simplification is
proposed for the even-dimensional case of a single Gaussian. First, this is
expressing the distance measure in terms of the well-known exponential
integral. Second, the distance measure is computed without a limiting
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maximum kernel size for the case where both distributions, the Gaussian
and the Dirac mixture, have the same mean.

Chapter 5 - Unscented Orientation Estimation
A first consideration of nonlinear domains appears in Chapter 5. There,
we propose a purely moment-based deterministic sampling scheme for
antipodally symmetric uncertainties on the hypersphere. The proposed
scheme is used for approximating the Bingham distribution, which arises
naturally when conditioning a Gaussian random vector to unit length.
A new filter is derived based on this distribution, which is applicable
to orientation estimation based on unit quaternions and generally for
hyperspherical estimation problems involving 180∘ symmetry. Furthermore,
a recently proposed saddlepoint approximation is used in order to reduce
the computational burden when handling the Bingham normalization
constant. The proposed algorithm is compared against a quaternion
version of the UKF and the particle filter.

Chapter 6 - Estimation of Planar Rigid-Body Motions
The combination of periodic and non-periodic quantities is considered in
Chapter 6. It contains a novel filter for estimation of rigid-body motions
in the plane. These are represented by unit dual-quaternions, which
are typically used for the more general group of rigid-body motions in
Euclidean space. Derivation of the filter is based on two contributions. The
first contribution is a novel probability distribution capable of representing
uncertain position and orientation simultaneously, and thus, periodic and
non-periodic quantities, and dependencies between them. The second
contribution is a hybrid deterministic sampling scheme for the newly
proposed distribution. It is based on deterministic sampling of both, the
Bingham and the Gaussian distributions.

Chapter 7 - Conclusions and Outlook
Finally, the work is concluded in Chapter 7 by summarizing the contribu-
tions and discussing interesting open challenges for possible future research.
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Stochastic Filtering
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2.1 State-Space Representation

In this work, we consider discrete-time dynamic systems. They are charac-
terized by a system state 𝑥𝑡 ∈ Ω defined on some domain Ω, some control
input 𝑢𝑡, and a transition function 𝑎𝑡 (which may be different in each time
step). The state evolution is then described by a difference equation

𝑥𝑡 = 𝑎𝑡(𝑥𝑡, 𝑢𝑡) .
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We are interested in the more general case of dynamic systems involving
stochastic noise described by 𝑤𝑡. This system is described by the stochastic
difference equation

𝑥𝑡+1 = 𝑎𝑡(𝑥𝑡, 𝑢𝑡, 𝑤𝑡) .

For simplicity of presentation, this work will usually not consider any
control input 𝑢𝑡, because this can be thought of as a suitable choice of
the transition function. Furthermore, we will only consider time-invariant
system dynamics. Nonlinear filters considered in this work can be easily
adapted to a time-variant scenario involving control inputs. Thus, the
model under consideration here will be given by the stochastic difference
equation

𝑥𝑡 = 𝑎(𝑥𝑡, 𝑤𝑡) .

In many applications, it is common to model all arising uncertainties using
Gaussian distributions, i.e., in the case above, we would model the noise
𝑤𝑡 with a Gaussian distribution. In a general setting, this distribution
may have a time-dependent mean and covariance matrix. Throughout this
thesis, the noise parameters will usually be assumed to be time-invariant.
Once again, this purely serves for better presentation. Assuming Gaussian
noise for modeling real-world systems is motivated by the central limit
theorem (CLT). As there are several central limit theorems, we usually
refer to the theorem by Lindenberg & Lévy. In its univariate version, it is
formulated as follows.

Theorem 2.1 (Lindenberg-Lévy). Let 𝑥1, 𝑥2, . . . be independent identi-
cally distributed (i.i.d.) random variables with mean 𝜇 and variance 𝜎2.
Then

1√
𝑛

𝑛∑︁
𝑖=0

𝑥𝑖 − 𝜇

𝜎

converges in distribution (i.e., the cumulative distribution function con-
verges pointwise) to a 𝒩 (0, 1) distribution as 𝑛→∞.

A proof can be found in most probability theory textbooks, e.g. [108].
Furthermore, there are other versions of the CLT weakening the conditions
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of this theorem, e.g., allowing for some weak dependence. Thus, it is
reasonable to assume that the noise of a real world system follows a
Gaussian distribution. There are more reasons for the popularity of this
assumption. They are discussed in [65]. It is also typical to use simpler
model assumptions in order to ensure tractability of the computations.
A first simplification is the assumption of additive noise resulting in the
model

𝑥𝑡+1 = 𝑎(𝑥𝑡) + 𝑤𝑡 .

This is often used when the transition model 𝑎(·) is well understood
whereas the noise model accounts for all types of uncertainty. Another
simplification is the use of an entirely linear model

𝑥𝑡+1 = A 𝑥𝑡 + 𝑤𝑡 .

The use of linear models is highly popular even though most real-world
dynamics are nonlinear. This has mainly two reasons. First, it is easier to
derive most theory for the linear case. Second, linearization often yields a
sufficiently good approximation.

Example 2.2 (Target Tracking). A typical model in target tracking is the
so called constant velocity model [103]. It assumes a target to move in the
same direction as in the step before at constant speed. For the 2D case the
model is given by

𝑥𝑡+1 =

⎛⎜⎜⎝
1 0 𝑇 0
0 1 0 𝑇
0 0 1 0
0 0 0 1

⎞⎟⎟⎠𝑥𝑡 + 𝑤𝑡 ,

where 𝑥𝑡 is a four dimensional state vector and 𝑤𝑡 a Gaussian noise term.
The first two entries of 𝑥𝑡 describe the position of the target whereas the
last two entries describe its speed. 𝑇 represents the length of the time
discretization. Here, the parameters of the noise term 𝑤𝑡 are typically
chosen not only to account for system noise (e.g., turbulences, wind, ...)
but also to account for uncertainty in control input of the target, e.g.,
maneuvers of the target.
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Typically, measurement systems are modeled in a similar way. In its full
generality, the measurement model can be assumed to be given by

𝑧𝑡 = ℎ𝑡(𝑥𝑡, 𝑢𝑡, 𝑣𝑡) .

Here 𝑥𝑡, 𝑢𝑡 are defined as above, 𝑣𝑡 accounts for measurement noise, and
𝑧𝑡 is the actual measurement. The reason for considering a control input
in the measurement model is the fact that in some applications, the main
goal is the control of measurement systems. A typical example for this
type of applications is the sensor scheduling problem.

Example 2.3 (Sensor Scheduling). Consider a constant velocity system
model as given in the previous example. Furthermore, consider a measure-
ment system consisting of two sensors located at 𝑠1 and 𝑠2 and performing
distance measurements with some distance dependent additive noise. Fur-
thermore, we assume limited energy supply, and thus, only one of the sensor
is involved in the typical measurement process. The resulting measurement
model can be described by

𝑧𝑡 = ℎ(𝑥𝑡, 𝑢𝑡, 𝑣𝑡) =
{︃
||𝑠1 − 𝑥𝑡|| · (1 + 𝑣𝑡) 𝑢 = 1 ,

||𝑠2 − 𝑥𝑡|| · (1 + 𝑣𝑡) 𝑢 = 2 .

In this scenario, the typical task is choosing an optimal sequence of mea-
surements by a suitable choice of 𝑢 with respect to some optimality criterion,
e.g., uncertainty about the position of the target.

However, all of the discussion on considering a simplified system model is
analogously applicable to characterizing uncertain measurement systems.
Thus, we will usually assume these to be described by the stochastic
difference equation

𝑧𝑡 = ℎ(𝑥𝑡, 𝑣𝑡) .

2.2 The Stochastic Filtering Problem

Performing inference from uncertain measurements has been the driving
factor behind the development of many statistical techniques. Here, we
consider the stochastic filtering problem [50], [58], [7]. This problem
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can be formulated for both, continuous-time and discrete-time scenarios.
We consider the discrete-time filtering case. It is characterized by two
stochastic processes 𝑥𝑡 and 𝑧𝑡 with 𝑡 ∈ N and it is assumed that 𝑧𝑡 depends
on 𝑥𝑡 and 𝑥𝑡 is Markovian. The filter problem can be characterized as
follows. Given values 𝑧1, . . . , 𝑧𝑡, we want to obtain an optimal estimate 𝑥̂𝑡

of 𝑥𝑡. Optimality is understood in the sense that the estimator minimizes
the Mean Square Error (MSE) defined as E(||𝑥𝑡 − 𝑥̂𝑡||

2) or in the sense of
finding the density 𝑓(𝑥𝑡|𝑧1:𝑡).

The solution to this problem is given by the recursive Bayesian estimator,
which is obtained from Bayes’ theorem

𝑓(𝑥𝑡|𝑧1:𝑡) ∝ 𝑓(𝑧𝑡|𝑥𝑡)𝑓(𝑥𝑡|𝑧1:𝑡−1) .

Computation of the Bayesian estimate might involve several problems.
First, obtaining the exact prior 𝑓(𝑥𝑡|𝑧1:𝑡−1) or the exact likelihood 𝑓(𝑧𝑡|𝑥𝑡)
might be computationally burdensome. Second, the representation of
the density 𝑓(𝑥𝑡|𝑧1:𝑡) might become more and more complex over time.
Finally, depending on the noise distributions, even simple system functions
might result in complicated computations.

In order to apply stochastic filtering for estimating the state of a discrete-
time dynamical system as described above, it is necessary to formulate a
probabilistic model of the dynamic system. The system evolution can be
formulated as

𝑓(𝑥𝑡+1 |𝑥𝑡) =
∫︁

Ω
𝛿(𝑎(𝑥𝑡, 𝑤𝑡)− 𝑥𝑡+1) 𝑓(𝑤𝑡) d𝑤𝑡 .

Here 𝛿(·) denotes the Dirac 𝛿-function. In this context it can be interpreted
in a measure theoretic sense as a Dirac measure or in a distribution
theoretic sense as a Dirac 𝛿-distribution. The measurement likelihood can
be formulated as follows

𝑓(𝑧𝑡|𝑥𝑡) =
∫︁

Ω
𝛿(ℎ(𝑥𝑡, 𝑣𝑡)− 𝑧𝑡) 𝑓(𝑣𝑡) d𝑣𝑡 .
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Figure 2.1.: General setup considered in this thesis.

Using this formulation, we can obtain the recursive Bayesian estimator in
a two step procedure. In the first step, the system state 𝑥𝑡+1 is predicted
using all measurements up to time 𝑡 by computing

𝑓(𝑥𝑡+1 | 𝑧1, . . . , 𝑧𝑡) =
∫︁

Ω
𝑓(𝑥𝑡+1, 𝑥𝑡 | 𝑧1, . . . , 𝑧𝑡) d𝑥𝑡

=
∫︁

Ω
𝑓(𝑥𝑡+1|𝑥𝑡, 𝑧1, . . . 𝑧𝑡) · 𝑓(𝑥𝑡 | 𝑧1, . . . 𝑧𝑡) d𝑥𝑡

=
∫︁

Ω
𝑓(𝑥𝑡+1|𝑥𝑡) · 𝑓(𝑥𝑡 | 𝑧1, . . . 𝑧𝑡) d𝑥𝑡 .

The second step, known as the measurement update, incorporates the
measurement into the estimate by computing

𝑓(𝑥𝑡|𝑧1:𝑡) =
𝑓(𝑧𝑡 |𝑥𝑡, 𝑧1:𝑡−1) · 𝑓(𝑥𝑡 | 𝑧1:𝑡−1)

𝑓(𝑧𝑡 | 𝑧1:𝑡−1)

=
𝑓(𝑧𝑡 |𝑥𝑡) · 𝑓(𝑥𝑡 | 𝑧1:𝑡−1)

𝑓(𝑧𝑡 | 𝑧1:𝑡−1) .

In general, these computations may not be possible in closed form and
might be numerically burdensome. Thus, we will discuss a number of

18



2.3 Linear Case and the Kalman Filter

filtering techniques dealing with these problems and their limitations. The
entire setup outlined in this first two sections is visualized in Figure 2.1.

2.3 Linear Case and the Kalman Filter

As already mentioned, an important special case is the linear case. Here,
the entire filter can be carried out in closed form. We assume the system
model to be given by

𝑥𝑡+1 = A 𝑥𝑡 + 𝑤𝑡

and a linear measurement model

𝑧𝑡 = H 𝑥𝑡 + 𝑣𝑡 .

Furthermore, we also assume an uncertain initial state characterized by
𝒩 (𝑥̂0, C0) and all arising noise variables to be Gaussian, independent,
and identically distributed (i.i.d.), i.e., 𝑤𝑡 ∼ 𝒩 (0, C𝑤) and 𝑣𝑡 ∼ 𝒩 (0, C𝑣).
The prediction step starts with the current estimate 𝑥̂𝑒

𝑡 and its correspond-
ing uncertainty C𝑒

𝑡 . In order to obtain the estimate of 𝑥𝑡+1 given all
information up to time 𝑡 we compute

𝑥̂𝑝
𝑡+1 = A 𝑥̂𝑒

𝑡

C𝑝
𝑡+1 = A C𝑒

𝑡 A⊤ + C𝑤

The measurement update is carried out as follows

𝑥̂𝑒
𝑡 = 𝑥̂𝑝

𝑡 −K𝑡(𝑧𝑡 −H𝑥̂𝑝
𝑡 ) ,

C𝑒
𝑡 = C𝑝

𝑡 −K𝑡 H𝑡 C𝑝
𝑡 ,

with Kalman gain

K𝑡 =C𝑝
𝑡 H⊤

𝑡 S−1
𝑡

and cross-covariance

S𝑡 = (H𝑡 C𝑝
𝑡 H⊤

𝑡 + C𝑣) .

The notation for writing the covariance as C rather than Ĉ is justified
because the computation of the covariance matrices does not involve
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Chapter 2. Stochastic Filtering

any processing of the measurements and can be carried out in advance.
Consequently, the covariance is not an estimate.

This filter is optimal in several respects. It can be shown that the Kalman
filter is the best linear estimator even if no Gaussian assumption is made.
Furthermore, it is also the optimal Bayesian estimator in the case of
Gaussian noise. Consequently, there is also a big number of possible
derivations of this filter. The original derivation by Kalman [59] made
use of infinite-dimensional Hilbert Spaces. Subsequently, other derivations
have been proposed to simplify the presentation. In what follows, we
take a Bayesian viewpoint and consider scenarios, where the noise can be
assumed to follow a Gaussian distribution.

2.4 Nonlinear Case

Handling of estimation problems in scenarios, where the underlying system
is described by a nonlinear model requires the use of approximation
techniques. A typical simplifying assumption is assuming the system state
and the measurement to follow a jointly Gaussian distribution, and thus,
the posterior to be Gaussian. Filters making this assumption are known as
Assumed Gaussian Density filters. They are based on purely propagating
means and covariances. The goal of this section is to present some of these
filters and discuss their respective limitations.

2.4.1 Extended Kalman Filter

The key idea of the extended Kalman filter (EKF) [111] is the linearization
of the system and measurement model. The linearization is performed
around the current estimate, and thus, carried out according to

A𝑡 = J𝑎(𝑥̂𝑒
𝑡 ) , H𝑡 = Jℎ(𝑥̂𝑝

𝑡 ) .

Using these linearized models, the filter equations resemble the original
Kalman filter. The prediction step is given by

𝑥̂𝑝
𝑡+1 = 𝑎(𝑥̂𝑒

𝑡 ) , Ĉ𝑝
𝑡+1 = A𝑡 Ĉ𝑒

𝑡 A⊤
𝑡 + C𝑤 .
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2.4 Nonlinear Case

And the measurement update is obtained as

𝑥̂𝑒
𝑡 = 𝑥̂𝑝

𝑡 −K𝑡(𝑧𝑡 −H𝑡 𝑥𝑝
𝑡 ) ,

Ĉ𝑒
𝑡 = Ĉ𝑝

𝑡 −K𝑡 H𝑡 Ĉ𝑝
𝑡 ,

S𝑡 = (H𝑡 Ĉ𝑝
𝑡 H⊤

𝑡 + C𝑣) ,

K𝑡 = Ĉ𝑝
𝑡 H⊤

𝑡 S−1
𝑡 .

Here, the situation for the covariance matrix differs from the Kalman filter
case because it depends on the linearization point, which in turn depends
on preceding measurements. Thus, the covariance is an actual estimate and
depends on the obtained measurements. The choice of the linearization
point is obviously important for the result of the actual estimation process.
When the true system state is known, e.g., in case of a deterministic
system, linearization yields an accurate local approximation of the system
behavior. However, the true system state 𝑥𝑡 might significantly differ from
the estimate 𝑥𝑒

𝑡 , which has a stronger impact on the true system state as
the nonlinearity grows.

2.4.2 Statistical Linearization

The problem of choosing the correct linearization point is addressed by
statistical linearization. The key idea of filters based on this concept
(which were discussed in [31] and under the name of quasi-linear filter in
[114]) is to consider the uncertainty of the underlying system state for
computing the linear approximate of the true system function. Statistically
linearizing a nonlinear function 𝑓(·) is carried out by minimizing

arg min
F,𝑏

E
(︀
𝑒(F, 𝑏, 𝑥)⊤ · 𝑒(F, 𝑏, 𝑥)

)︀
,

where

𝑒(F, 𝑏, 𝑥) := 𝑓(𝑥)− (F · 𝑥 + 𝑏) .

It can be shown (see [31] eqns. (6.2-7) and (6.2-9) ) that this minimization
procedure results in

F = E
(︀
𝑓(𝑥)(𝑥− E(𝑥))⊤)︀C−1

𝑥 ,

𝑏 = E(𝑓(𝑥)− F 𝑥) .
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Here C𝑥 denotes the covariance matrix of 𝑥. The resulting approximation
of 𝑓(·) is given by

𝑓(𝑥) ≈ F 𝑥 + 𝑏

= E(𝑓(𝑥)) + F (𝑥− E(𝑥)) .

This result is reminiscent of the Taylor approximation made by the ex-
tended Kalman filter. However, due to consideration of the underlying
uncertainty, this approach usually outperforms the extended Kalman
filter.

Designing a filter based on this procedure is carried out by statistically
linearizing both, the system and the measurement function. Thus, the
resulting filter is obtained in the same way as the EKF by replacing
the linearized functions in the EKF with their statistically linearized
counterparts. For the prediction step, we obtain

𝑥̂𝑝
𝑡+1 = E(𝑎(𝑥𝑒

𝑡 )) ,

Ĉ𝑝
𝑡+1 = A𝑡 Ĉ𝑒

𝑡 A⊤
𝑡 + C𝑤

= E
(︀
𝑎(𝑥𝑒

𝑡 )(𝑥𝑒
𝑡 − E(𝑥𝑒

𝑡 ))⊤)︀ (Ĉ𝑒
𝑡 )−1 E

(︀
𝑎(𝑥𝑒

𝑡 )(𝑥𝑒
𝑡 − E(𝑥𝑒

𝑡 ))⊤)︀⊤ + C𝑤 .

For the measurement update, we first compute

𝑣𝑡 = 𝑧𝑘 − E(ℎ(𝑥𝑝
𝑡 )) ,

H𝑡 = E
(︀
ℎ(𝑥̂𝑝

𝑡 )(𝑥𝑝
𝑡 − E(𝑥𝑝

𝑡 ))⊤)︀ (Ĉ𝑝
𝑡 )−1

and then obtain

𝑥̂𝑒
𝑡 = 𝑥̂𝑝

𝑡 −K 𝑣𝑡 ,

Ĉ𝑒
𝑡 = C𝑝

𝑡 −K𝑡 H𝑡 Ĉ𝑝
𝑡 ,

S𝑡 = (H𝑡 Ĉ𝑝
𝑡 H⊤

𝑡 + C𝑣)
K𝑡 = Ĉ𝑝

𝑡 H⊤
𝑡 S−1

𝑡 .

Here and in what follows 𝑥𝑝
𝑡 ∼ 𝒩 (𝑥̂𝑝

𝑡 , Ĉ𝑝
𝑡 ) and 𝑥𝑒

𝑡 ∼ 𝒩 (𝑥̂𝑒
𝑡 , Ĉ𝑒

𝑡 ). The entire
resulting estimator is still an approximate procedure even when the mean is
computed analytically. This is not only because of the underlying Gaussian
assumption but also because of the approximation made in computing the
covariance.
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2.4 Nonlinear Case

2.4.3 Analytic Approach

The approximate computation of the covariance matrices can be avoided
by taking an entirely analytic approach for the moment computation. The
prediction step is then obtained by

𝑥̂𝑝
𝑡+1 = E(𝑎(𝑥𝑒

𝑡 )) ,

Ĉ𝑝
𝑡+1 = E(𝑎(𝑥𝑒

𝑡 )𝑎(𝑥𝑒
𝑡 )⊤)− E(𝑎(𝑥𝑒

𝑡 ))E(𝑎(𝑥𝑒
𝑡 ))⊤ .

For the measurement update, we obtain

S𝑡 = E(ℎ(𝑥𝑝
𝑡 )ℎ(𝑥𝑝

𝑡 )⊤)− E(ℎ(𝑥𝑝
𝑡 ))E(ℎ(𝑥𝑝

𝑡 ))⊤ ,

K𝑡 = E((𝑥𝑝
𝑡 − E(𝑥𝑝

𝑡 ))(ℎ(𝑥𝑝
𝑡 )− E(ℎ(𝑥𝑝

𝑡 )))⊤) S−1 ,

𝑥̂𝑒
𝑡 = 𝑥̂𝑝

𝑡 + K𝑡(𝑧𝑡 − E(ℎ(𝑥𝑝
𝑡 ))) ,

Ĉ𝑒
𝑡 = Ĉ𝑝

𝑡 −K𝑡 S𝑡 K⊤
𝑡 .

From a computational viewpoint, this approach is more burdensome than
the statistical linearization approach. The latter can be implemented using
𝒪(𝑛) univariate numerical integration procedures whereas this approach
requires 𝑂(𝑛2) univariate numerical integration procedures. However, as
both approaches require numerical integration, they might be infeasible
for a broad class of real-world applications.

Even though there is no explicit linearization in this approach, it implicitly
assumes a linear dependency structure by assuming the state and the
measurement to be jointly Gaussian distributed. Thus, this approach is
sometimes also referred to as implicit linearization. It is the Gaussian
assumption that is the main cause for approximation errors made by the
filter. These approximation errors are not only limited to the measurement
update step. By assuming the predicted density to be Gaussian, this
approach also leads to an approximation error in the prediction step.

2.4.4 Linear Regression Kalman Filter

In order to address the computational burden of numerical integration
in both procedures above, an approach based on deterministic sampling
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has emerged in recent years. Beginning with the unscented Kalman filter
(UKF) [53], there has been the development of a great number of methods
based on this approach. These approaches are usually known as linear
regression Kalman filters [82] or sigma-point filters [118]. They are based
on the idea that weighted multivariate linear regression can be applied in
order to obtain a linear approximation of the true system function.

Statistical linear regression of a system function as outlined in [82] can
be formulated as follows. We consider a set of 𝑚 deterministic samples
𝑠𝑖 ∈ R𝑛 and a nonlinear function 𝑓 . We can also assign weights 𝑤𝑖 to
each of these samples (assuming all 𝑤𝑖 > 0 and their sum to be 1). These
deterministic samples can be interpreted as a probability distribution and
they will be used to perform a statistical linear regression of the function
𝑓 . Let 𝑠 denote a random variable distributed according to this sample
distribution. Then, we can define

C1 = E
(︀
𝑠⊤ · 𝑠

)︀
− E(𝑠)⊤ · E(𝑠) ,

C2 = E
(︀
(𝑠⊤ − E(𝑠)) · (𝑓(𝑠)− E(𝑓(𝑠)))

)︀
,

C3 = E(𝑓(𝑠)⊤ · 𝑓(𝑠))− E(𝑓(𝑠))⊤ · E(𝑓(𝑠)) .

Now, statistical linear regression is carried out as follows

arg min
F,𝑏

𝑚∑︁
𝑖=0

(︀
𝑒𝑖(F, 𝑏)⊤ · 𝑒𝑖(F, 𝑏)

)︀
,

where

𝑒𝑖(F, 𝑏) := 𝑓(𝑠)− (F · 𝑠− 𝑏) .

From [3, Theorem 8.2.1] it follows

F = C2C−1
1 .

This basic idea can now be used to design filters where the estimate of the
system state is approximated by a deterministic sample set 𝑠𝑖 that has the
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same mean and covariance matrix as the original estimate. The prediction
step is then given as follows

𝑥̂𝑝
𝑡+1 =

𝑚∑︁
𝑖=1

𝑤𝑖𝑎(𝑠𝑖) ,

Ĉ𝑝
𝑡+1 =

𝑚∑︁
𝑖=1

𝑤𝑖

(︀
𝑎(𝑠𝑖)− 𝑥̂𝑝

𝑡+1
)︀ (︀

𝑎(𝑠𝑖)− 𝑥̂𝑝
𝑡+1
)︀⊤ + C𝑤 .

For the measurement update, once again, deterministic sampling is carried
out. That is, we generate a deterministic sample set 𝑟𝑖 that has the same
mean and covariance matrix as the original predicted state 𝑥̂𝑝

𝑡 . First, this
is used to predict the measurement

𝑧𝑡 =
𝑚∑︁

𝑖=1
ℎ(𝑟𝑖) .

Then, we compute the variance of the predicted measurement and their
cross covariance.

C𝑧 = E
(︀
ℎ(𝑟)⊤ · ℎ(𝑟)

)︀
− 𝑧⊤

𝑡 · 𝑧𝑡 ,

C𝑥,𝑧 = E
(︀
(𝑟⊤ − 𝑥𝑝

𝑡 ) · (ℎ(𝑟)− 𝑧𝑡)
)︀

,

where 𝑟 is a random variable distributed according to the discrete distribu-
tion induced by the deterministic sampling set consisting of the samples
𝑟𝑖. The remainder of the update is given as follows

K𝑡 = C𝑥,𝑧C−1
𝑧 ,

𝑥̂𝑒
𝑡 = 𝑥̂𝑝

𝑡 + K𝑡(𝑧𝑡 − 𝑧𝑡) ,

C𝑒
𝑡 = C𝑝

𝑡 −K𝑡 C𝑧 K⊤
𝑡 .

The choice of the sampling scheme is obviously crucial for the quality and
performance of this filter, e.g., the UKF matches the first two moments
with a fairly small number of samples. A better coverage of the state space
can be achieved by combining the concept of deterministic and random
sampling or using entirely deterministic approaches, which approximate
the shape of the underlying continuous density. These will be discussed in
more detail in Chapter 4.
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(a) Function through which the Gaussian
is propagated (blue), its invert (red),
and the derivative of the invert (or-
ange).
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(b) True density (blue) and its moment
matching based Gaussian approxima-
tion (red).

Figure 2.2.: Example where propagation of a single Gaussian through a system-
function results in a multimodal distribution. Reapproximating this
distribution by a Gaussian might yield an inherently misleading result.

2.4.5 Filtering Based on Gaussian Mixtures

Approximating the distribution of the system state by a Gaussian might
be feasible in several scenarios. However, it is very simple to construct
an example in which this approximation yields an inherently infeasible
result.

Example 2.4. Consider the model

𝑎(𝑥) = sign(𝑥) · |𝑥|1/5

with

sign(𝑥) =

⎧⎪⎨⎪⎩
1 𝑥 > 0 ,

0 𝑥 = 0 ,

−1 𝑥 < 0

and let 𝑥 ∼ 𝒩 (0, 1). Then, a moment matching based Gaussian ap-
proximation of the true distribution of 𝑎(𝑥) is obtained by 𝒩 (𝜇, 𝜎2) with
𝜇 = E(𝑎(𝑥))) = 0 and 𝜎2 = E(𝑎(𝑥)2 − 𝜇2) ≈ 0.841248. Furthermore,
𝑎−1(𝑥) = 𝑥5 and 𝜕𝑎−1(𝑥)/𝜕𝑥 = 5 𝑥4.
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The true density of 𝑎(𝑥) is obtained using the substitution rule, which
results in

𝑓𝑎(𝑥) =
⃒⃒⃒⃒
𝜕𝑎−1(𝑥)

𝜕𝑥

⃒⃒⃒⃒
· 𝑓(𝑎−1(𝑥))

= 5𝑥4
√

2𝜋
exp

(︂
−𝑥10

2

)︂
.

As can be seen in Figure 2.2, this true density significantly differs from
the best Gaussian approximation. Furthermore, this example also shows
why the mean is sometimes a very poor estimate of the system-state and
why it might be useful to maintain the entire posterior density.

The problem illustrated by this example can be addressed by an approach
approximating the true posterior density. This can be done in several
ways. An entirely deterministic approach is based on using Gaussian
mixtures for filtering [2],[112]. This is justified because of their capability
to approximate probability distributions [126]. In their simplest form,
Gaussian mixture based approaches simply perform a component-wise
extended Kalman filter.

For a filter based on Gaussian mixtures, we assume our estimate to be
given by a Gaussian mixture distribution with 𝑚 components

𝑥𝑒
𝑡 ∼

𝑚∑︁
𝑖=1

𝑝𝑖𝒩 (𝑥̂𝑒
𝑡,𝑖, C𝑒

𝑡,𝑖) .

An early version of a filter that uses Gaussian mixtures (as proposed in
[2]) is shown in algorithm 2.1. It is based on the EKF, which is carried
out for each mixture component.

This type of filter still requires good handling of nonlinearities due to its
componentwise approach. Its performance can be improved by replacing
the EKF by one of the more sophisticated filtering techniques discussed
above. Furthermore, when the noise also follows a Gaussian mixture distri-
bution, the number of Gaussian mixture components grows exponentially
over time. This might require the use of mixture reduction techniques
(e.g., [46]), which impose additional computational burden.
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Algorithm 2.1 EKF-based Gaussian mixture filter
1: procedure GMFilter(𝑥̂𝑡,1:𝑚, C𝑒

𝑡,1:𝑚, 𝑝1:𝑚, 𝑧𝑡+1, C𝑤, 𝑎(·), C𝑣, ℎ(·))
2: for 𝑖 ∈ {1, . . . , 𝑚} do
3: A = J𝑎(𝑥̂𝑒

𝑡,𝑖); ◁ Prediction
4: 𝑥̂𝑝

𝑡+1,𝑖 = 𝑎(𝑥̂𝑒
𝑡,𝑖);

5: Ĉ𝑝
𝑡+1,𝑖 = A Ĉ𝑒

𝑡,𝑖 A⊤ + C𝑤;
6: H = Jℎ(𝑥̂𝑝

𝑡+1,𝑖); ◁ Update
7: S = (H Ĉ𝑝

𝑡+1,𝑖 H⊤ + C𝑣);
8: 𝑝𝑖 ← 𝑝𝑖 · 𝑓(𝑧𝑡+1 − ℎ(𝑥𝑝

𝑡+1));
9: Ĉ𝑒

𝑡+1,𝑖 ← Ĉ𝑝
𝑡 −K𝑡 H𝑡 Ĉ𝑝

𝑡 ;
10: 𝑥𝑒

𝑡,𝑖 ← 𝑥𝑝
𝑡 −K(𝑧𝑡+1 −H𝑡 𝑥̂𝑝

𝑡+1,𝑖);
11: K𝑡 ← Ĉ𝑝

𝑡 H⊤
𝑡 S−1

𝑡 ; ◁ Reweighting
12: 𝑓𝑖(𝑥) ∼ 𝒩 (0, S);
13: end for

14: 𝑐←
𝑚∑︁

𝑖=0
𝑝𝑖; ◁ Renormalization

15: for 𝑖 ∈ {1, . . . , 𝑚} do
16: 𝑝𝑖 ← 𝑝𝑖/𝑐;
17: end for
18: return (𝑥̂𝑡+1,1:𝑚, C𝑒

𝑡+1,1:𝑚, 𝑝1:𝑚𝑡);
19: end procedure

Entirely different problems may arise when the state space is a nonlinear
domain because assuming a distribution defined on a linear domain is
inherently wrong in these cases and not necessarily a good approximation.
The main reason for this is the fact that usually these approximations not
only involve false assumptions about the true underlying distribution, but
also make false assumptions about the geometry of the underlying domain.
Thus, it is important to know in which cases these approximations are
justified.
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2.5 Problem Formalization

The problems discussed so far motivate the contribution of this thesis.
In order to cope with nonlinearities, it is necessary to be capable of
approximation probability densities efficiently and accurate. Furthermore,
it is necessary to correctly consider a nonlinear underlying domain.

2.5.1 Problem 1: Density Approximation

For improving performance of deterministic sampling based filters our first
goal is the approximation of Gaussian densities (or mixtures of Gaussian
densities) by a discrete density defined on the same domain. That is, for a
Gaussian (mixture) described by its density 𝑓𝐺(·), we want to obtain a
discrete distribution described by

𝑓𝐷(𝑥) =
𝑚∑︁

𝑖=1
𝑤𝑖𝛿(𝑠𝑖 − 𝑥)

in a way minimizing some dissimilarity measure 𝐷(𝑓𝐺, 𝑓𝐷). This is moti-
vated by the need for computing expectations of the type E(𝑔(𝑥)), where
𝑥 is a Gaussian (mixture) random vector. This can be directly used in a
linear regression Kalman filter or as a propagation scheme in a Gaussian
mixture based filter.

On the one hand, use of very rough approximations might be compu-
tationally tractable but yield poor results. On the other hand, use of
adaptive numerical integration techniques might result in very accurate
computation of the expectation. However, as mentioned above, this might
be computationally intractable. The same problem might occur for Monte
Carlo integration requiring a repeated-random sampling procedure. Thus,
the main objective in the development of our deterministic sampling pro-
cedure is to offer a good tradeoff between inaccuracy and computational
burden. Due to the widespread use of Gaussian distributions, this result
is of particular importance for the Gaussian special case.
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2.5.2 Problem 2: Consideration of Nonlinear Domains

For stochastic filtering on nonlinear domains, it is in general not suf-
ficient to simply adapt the sampling scheme. A correct description of
uncertainties on these domains is required. Among all nonlinear domains,
the unit hypersphere 𝑆𝑛−1 ⊂ R𝑛 and the manifold of planar rigid-body
motions are of particular interest. For the hyperspherical case, we are
particularly interested in the special case 𝑛 = 4, because a 4-dimensional
unit hypersphere can be used to represent orientations in 3d space.

Thus, our goal is to discuss or even propose new probability distributions,
which can be used to represent uncertainty on the hypersphere. Further-
more, we want to derive deterministic approximation schemes on these
domains. Finally, the challenge lies in using these results to derive new
filtering techniques on these domains.
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3.1 Overview

Measures for comparing two probability distributions are motivated by ap-
plications such as parameter estimation, hypothesis testing, data compres-
sion, or density approximation. These measures are known as probability
metrics in literature [98], [127]. Furthermore,there are several measures mo-
tivated by information theory, such as the Kullback-Leibler divergence [74]
or the —more general— Rényi divergence [101]. Most of these measures
usually suffer from one of the following drawbacks. For some measures, it
is not possible to evaluate the measure in a computationally tractable way
(e.g., because they are formulated as an infimum over all joint distributions
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between the two originally compared distributions.). In these situations,
bounds are typically used to approximate the true value of the measure
[32]. Furthermore, some similarity measures are not applicable in context
with discrete probability distributions or require that at least one of the
compared distributions is absolute continuous (in the measure-theoretic
sense) with respect to the other. This makes comparison of continuous
and discrete probability distributions impossible. Finally, some measures
are not symmetric, and thus, their interpretability is difficult for several
applications.

In this chapter, we investigate the properties of a similarity measure that
addresses several of the problems outlined above. Its key idea is to perform
a transformation of a probability distribution in order to achieve a rep-
resentation as a continuous function that can be used as a basis for a 𝐿2
distance measure. The transform is based on a convolution transform with
a suitable kernel function that characterizes the area of considered proba-
bility mass, which is typically chosen in a way putting stronger emphasis
around a given point. These so-called Localized Cumulative Distributions
(LCDs) can be thought of as a generalization of the cumulative distribu-
tion function (CDFs). This entire framework was originally proposed in
[44] and further elaborated on in [43]. Here, we revisit these definitions
and prove new results providing a theoretical justification for considering
this representation of probability distributions. In an important special
case, we show that the LCD is a unique representation of a probability
distribution and that the proposed similarity measure is a metric. Thus, a
number of desirable properties, e.g. symmetry or positive definiteness, are
maintained. Furthermore, a relationship to the generalized multivariate
Weierstrass transform is used for the derivation of an inversion formula.

In what follows, we will first discuss some existing similarity measures and
their respective problems. This is followed by an introduction to LCDs and
the corresponding distance measure. In this general framework, we then
consider the special case of the LCD transform that is based on Gaussian
kernels and discuss its relationship with the Weierstrass transform. The
chapter is concluded by a discussion of possible application and some
summarizing remarks.
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3.2 Existing Similarity Measures

One of the most widely used approaches for comparing probability dis-
tributions is the Kullback-Leibler divergence (often also referred to as
information gain or relative entropy). It is defined as

𝑑𝐾𝐿(𝑃1, 𝑃2) =
∫︁

Ω
𝑓1(𝑥) ln

(︂
𝑓1(𝑥)
𝑓2(𝑥)

)︂
d𝑥 ,

with 𝑓𝑖 being the density of 𝑃𝑖. It has a natural information theoretic
interpretation as the amount of information lost when 𝑃1 is approximated
by 𝑃2. The definition above can be adapted to discrete distributions
defined on the same set by replacing the densities 𝑓𝑖 by the corresponding
probability mass functions. However, this relationship is not symmetric,
and thus, neither is the measure itself. Even though the Kullback-Leibler
divergence is defined for both, continuous and discrete probability distri-
butions, it is incapable of comparing both types simultaneously. These
problems also exist in the Rényi divergence.

A true metric for probability distributions on some metric space was
proposed by Wasserstein [123]. In its general form, it is defined as

𝑊𝑝(𝑃1, 𝑃2) = inf
𝑃 ∈𝒥 (𝑃1,𝑃2)

(︀
E𝑃 (𝑑(𝑥, 𝑦)𝑝)

)︀1/𝑝
,

where 𝑥 ∼ 𝑃1, 𝑦 ∼ 𝑃2, and 𝒥 (𝑃1, 𝑃2) is the set of all joint probability
distributions with marginals 𝑃1 and 𝑃2. An intuitive interpretation of
this metric is related to transportation theory. That is, the metric can be
viewed as the minimum cost of transforming one probability distribution
into another. It does not only obey the axioms of a metric but is also
capable of handling continuous and discrete distributions simultaneously.
There are several applications of this metric in certain special cases such
as [10]. Unfortunately, in the general case, computation of this metric
becomes intractable, because the infimum is taken over all possible joint
distributions.
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Figure 3.1.: Different possible kernel choices for Localized Cumulative Distribution.
This results in a generalization of several concepts of representing a
probability distribution.

A computationally feasible approach for comparing the shape of continuous
probability densities is based on the 𝐿2 norm

||𝑓1 − 𝑓2||𝐿2 =

√︃∫︁
Ω

(𝑓1(𝑥)− 𝑓2(𝑥))2 d𝑥 .

This also has the desirable property of being an actual metric and thus,
satisfying intuitively desirable properties such as symmetry and the triangle
inequality. Replacing densities by probability mass functions and the
integral by a sum makes this measure applicable to comparing two discrete
distributions. Unfortunately, similarly to the Kullback-Leibler divergence,
it is also not capable of comparing a discrete with a continuous probability
distribution.

3.3 Localized Cumulative Distributions

In the following, we define a very general transform of probability distribu-
tions that makes the intuitive idea of representing local probability mass
precise. This is achieved by taking expectation over a kernel function that
characterizes the area of considered probability mass around a given point.
The following definition is a generalized version of the original (as proposed
in [44]). In its general formulation it was originally proposed in [43].
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3.3 Localized Cumulative Distributions

Definition 3.1. Consider a probability distribution 𝑃 and a random
variable 𝑥 ∼ 𝑃 . Then the Localized Cumulative Distribution (LCD) of 𝑃
is given by

ℒ𝐾 [𝑃 ](𝑚, 𝑏) := E (𝐾(𝑥−𝑚, 𝑏)) ,

where 𝐾(·, ·) is a suitable kernel, which is located at 𝑚 and characterized
by 𝑏 (which will be usually used to represent the kernel width). We call
𝐾(𝑥, 𝑏) separable, if it can be decomposed according to

𝐾(𝑥, 𝑏) =
𝑛∏︁

𝑖=1
𝐾(𝑥(𝑖), 𝑏(𝑖)) .

For brevity, we will write ℒ[𝑃 ](𝑚, 𝑏) whenever the chosen kernel is clear
from the context. The notation ℒ[𝑓 ](𝑚, 𝑏) will be used for the LCD trans-
form of the probability density 𝑓 of 𝑃 .

Typical representations of probability distributions such as the CDF can
now be seen as a special case of the LCD. Unfortunately, the existence
of an LCD representation is not guaranteed and highly dependent on the
combination of distribution and kernel function. Thus, the choice of the
kernel is of particular importance. Several examples for kernel functions
for a 2d distribution are shown in Figure 3.1. In order to account for
the basic idea of representation of localized probability mass, we focus on
kernels symmetric around 𝑚.

The LCD representation has several desirable properties. In [44], it was
pointed out that the LCD of 𝑥 can be decomposed into the LCD of all
entries 𝑥𝑖 if the kernel 𝐾 is separable (in the sense that it can be written
as a product of kernels 𝐾𝑖 each of which only affects 𝑥𝑖) and all entries
are pairwise independent, that is

𝐹 (𝑚, 𝑏) =
𝑛∏︁

𝑖=1
𝐹𝑖(𝑚𝑖, 𝑏𝑖) ,

where 𝐹𝑖(·, ·) denotes the LCD of 𝑥𝑖.
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Figure 3.2.: LCD distance computation scheme.

3.3.1 A Distance Measure for Probability Distributions

The definition of the LCD was motivated by the need for comparing
probability distributions, particularly by the need for comparing discrete
and continuous distributions simultaneously. The key idea for the definition
of the distance measure is to compare the entire state space and to compare
probability masses on all scales. That is, the distance measure is based
on comparing the LCD representations of two probability distributions at
all kernel positions and for all possible kernel sizes. These considerations
result in the following definition.

Definition 3.2. Consider two probability distributions 𝑃1, 𝑃2 defined on
Ω. Then, the LCD distance between 𝑃1 and 𝑃2 is

𝑑𝑤,𝐾(𝑃1, 𝑃2) :=

√︃∫︁ ∞

0
𝑤(𝑏)

∫︁
Ω

(ℒ𝐾 [𝑃1](𝑚, 𝑏)− ℒ𝐾 [𝑃2](𝑚, 𝑏))2 d𝑚 d𝑏 ,

where 𝐾(·, ·) is the LCD Kernel and 𝑤(·) a positive weighting function.

The entire computation process of this distance is visualized in Figure 3.2.
Whether this definition is meaningful is highly dependent on the combi-
nation of the considered weighting function 𝑤 and LCD kernel 𝐾. At
the very least, 𝐾 and 𝑤 need to be chosen properly to ensure that the
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3.3 Localized Cumulative Distributions

integrals defining the distance converge. In order for 𝑑𝑤,𝐾 to be a metric,
it needs to satisfy the usual conditions

(M1) 𝑑𝑤,𝐾(𝑃1, 𝑃2) ≥ 0 ,

(M2) 𝑑𝑤,𝐾(𝑃1, 𝑃2) = 0⇔ 𝑃1 = 𝑃2 ,

(M3) 𝑑𝑤,𝐾(𝑃1, 𝑃2) = 𝑑𝑤,𝐾(𝑃2, 𝑃1) ,

(M4) 𝑑𝑤,𝐾(𝑃1, 𝑃2) ≤ 𝑑𝑤,𝐾(𝑃1, 𝑃3) + 𝑑𝑤,𝐾(𝑃3, 𝑃2) .

The conditions (M1) and (M3) hold as a consequence of our definition
of the LCD distance. For (M2) to hold, it is necessary that the LCD
representation is unique and 𝑤(𝑏) is not vanishing for at least some interval
where ℒ𝐾 [𝑃1](𝑚, 𝑏) ̸= ℒ𝐾 [𝑃2](𝑚, 𝑏). The triangle inequality (M4) is shown
using the typical proof with the help of the Cauchy-Schwarz-Bunyakowsky
(CSB) inequality. For simplicity, let 𝑠 := (𝑏, 𝑚⊤)⊤, 𝑀 := R+ × Ω, and

𝐴1(𝑠) :=
√︀

𝑤(𝑏) (ℒ𝐾 [𝑃1](𝑚, 𝑏)− ℒ𝐾 [𝑃3](𝑚, 𝑏)) ,

𝐴2(𝑠) :=
√︀

𝑤(𝑏) (ℒ𝐾 [𝑃3](𝑚, 𝑏)− ℒ𝐾 [𝑃2](𝑚, 𝑏)) .

Then, we obtain

𝑑𝑤,𝐾(𝑃1, 𝑃2)2 =
∫︁

𝑀

(𝐴1(𝑠) + 𝐴2(𝑠))2 d𝑠

=
∫︁

𝑀

𝐴1(𝑠)2 + 2 𝐴1(𝑠) 𝐴2(𝑠) + 𝐴2(𝑠)2 d𝑠

≤
∫︁

𝑀

𝐴1(𝑠)2 d𝑠 + 2
⃒⃒⃒⃒∫︁

𝑀

𝐴1(𝑠) 𝐴2(𝑠) d𝑠

⃒⃒⃒⃒
+
∫︁

𝑀

𝐴2(𝑠)2 d𝑠

CSB
≤
∫︁

𝑀

𝐴1(𝑠)2 d𝑠 + 2

√︃∫︁
𝑀

𝐴1(𝑠)2 d𝑠 ·

√︃∫︁
𝑀

𝐴2(𝑠)2 d𝑠

+
∫︁

𝑀

𝐴2(𝑠)2 d𝑠

=
(︃√︃∫︁

𝑀

𝐴1(𝑠)2 d𝑠 +

√︃∫︁
𝑀

𝐴2(𝑠)2 d𝑠

)︃2

= (𝑑𝑤,𝐾(𝑃1, 𝑃3) + 𝑑𝑤,𝐾(𝑃3, 𝑃2))2
.

Finally, (M4) results as a consequence of the monotonicity of the square root.
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When the Gaussian kernel is used, possible choices for the weighting factor
𝑤(𝑏) might be

𝑤(𝑏) =
{︃

𝑏−𝑛+1 , 𝑏 ∈ [0, 𝑏𝑚𝑎𝑥)
0 , otherwise

or even 𝑤(𝑏) = 𝑏−𝑛. The distance measure presented here can be intu-
itively interpreted as describing the similarity between the shapes of two
probability distributions. Comparison on all scales 𝑏 guarantees, that not
only local dissimilarities are considered. Finally, the proposed weighting
function guarantees that a stronger emphasis is put on local dissimilarities
in characterizing the distance.

3.4 Gaussian Kernels

Particularly, the Gaussian radial basis function (RBF), will be used in the
further work. It is given by

𝐾(𝑥, 𝑏) = exp
(︃
−
||𝑥−𝑚||22

2𝑏2

)︃
.

With this choice, we have existence of the LCD of an arbitrary probability
distribution. Furthermore, using RBFs guarantees uniqueness of the LCD
as a representation of the original distribution. This is established by the
following result.

Theorem 3.3 (Uniqueness). Consider the probability distributions 𝑃1,
𝑃2 and their corresponding LCDs 𝐹1(𝑚, 𝑏), 𝐹2(𝑚, 𝑏). Then 𝐹1(𝑚, 𝑏) ≡
𝐹2(𝑚, 𝑏) if and only if 𝑃1 = 𝑃2.

Proof. If 𝑃1 = 𝑃2 then the equality of the LCD representation follows
from the definition of the LCD. Thus, we only need to consider the case
where 𝐹1(𝑚, 𝑏) ≡ 𝐹2(𝑚, 𝑏). Let 𝑥1 ∼ 𝑃1 and 𝑥2 ∼ 𝑃2. Furthermore let
𝑐(𝑏) denote the normalization constant of a 𝒩 (0, 𝑏2 I) distribution, that is

𝑐(𝑏) = 1
(2𝜋)𝑛/2 𝑏𝑛

.
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Figure 3.3.: Probability density function of a standard normal Gaussian and probabil-
ity mass of a discrete distribution and their corresponding representations
as LCD.

Furthermore, let 𝑧 ∼ 𝒩 (0, I). Then the density of 𝑦
𝑏,1 := 𝑥1 + 𝑏 𝑧 is given

by 𝑓1(𝑥) = 𝑐(𝑏) 𝐹1(𝑥, 𝑏). The density 𝑓2(𝑥) of 𝑦
𝑏,2 := 𝑥2 + 𝑏 𝑧 is defined

analogously and we have 𝑓1(𝑥) = 𝑓2(𝑥). Moreover, we also obtain almost
sure convergence of 𝑦

𝑏,1 to 𝑥1 by

P
(︂

lim
𝑏→0

𝑦
𝑏,1 = 𝑥1

)︂
= P

(︂
lim
𝑏→0

(𝑥1 + 𝑏𝑧) = 𝑥1

)︂
= 1

and an analogous result for almost sure convergence of 𝑦
𝑏,2 to 𝑥2. Almost

sure convergence implies convergence in distribution (see Theorem 9.2.1
and Proposition 9.3.5 in [24]). Thus, we obtain

𝑥1
𝑑= lim

𝑏→0
𝑦

𝑏,1
𝑑= lim

𝑏→0
𝑦

𝑏,2
𝑑= 𝑥2 ,
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Using the Gaussian kernel results in a smooth representation of probability
distributions even if the original distribution has been discrete (see example
in Figure 3.3).

Example 3.4. LCD Computation for different distribution types.

a) The LCD of a standard normal distribution is obtained as

ℒ𝐾 [𝒩 (0, 1)](𝑐, 𝑏) =E(𝐾(𝑥− 𝑐, 𝑏))

=
∫︁
R

exp
(︂
− (𝑥− 𝑐)2

2𝑏2

)︂
1√
2𝜋

exp
(︂
−𝑥2

2

)︂
d𝑥

= 1√
1 + 𝑏2

exp
(︂
− 𝑐2

2(1 + 𝑏2)

)︂

b)

ℒ𝐾 [𝑃 ](𝑐, 𝑏) =E(𝐾(𝑥− 𝑐, 𝑏))

=1
5

5∑︁
𝑖=1

𝐾(𝑠𝑖 − 𝑐, 𝑏) ,

where 𝑥 ∼ 𝑃 .

Both examples are visualized in Figure 3.3.

3.4.1 Relationship to Weierstrass Transform

The Gaussian LCD of a univariate probability distribution with density 𝑓
is related to the Weierstrass transform of a function 𝑓 , which is defined
as

𝒲[𝑓 ](𝑐) :=
∫︁ ∞

−∞

1√
4𝜋

exp
(︂
−𝑐− 𝑥

4

)︂
𝑓(𝑥) d𝑥
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The LCD of discrete distributions is somewhat easier. For a one-
dimensional probability distribution 𝑃 defined on the points − 4, 2, 0,
2, 4 with equal probability, the LCD is a weighted sum of the kernels,
that is
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or —in its generalized variant— as

𝒲𝑎[𝑓 ](𝑐) :=
∫︁ ∞

−∞

1√
4𝜋𝑎

exp
(︂
−𝑐− 𝑥

4𝑎

)︂
𝑓(𝑥) d𝑥 .

Thus, we have

ℒ[𝑓 ](𝑚, 𝑏) =
√

2𝜋𝑏2 · 𝒲𝑏2/2[𝑓 ](𝑚) .

This relationship gives rise to a number of interesting results already avail-
able for the Weierstrass transform, e.g., the existence of an inversion formula

𝒲−1[𝒲[𝑓 ]](𝑐) =
∞∑︁

𝑛=0
𝑣𝑛𝐻𝑛(𝑥/2) ,

where 𝑣𝑛 are coefficients of a series expansion of 𝒲[𝑓 ] (assuming it to be
analytic). Thus, an inversion formula for the LCD representation can be
given by

𝑓(𝑐) =𝒲−1
[︂
ℒ[𝑓 ](·,

√
2)√

2𝜋𝑏2

]︂
(𝑐) .

A generalization to the multivariate case requires the use of the multivariate
Weierstrass transform and further development of its theory. Its application
in the context of probability theory has been discussed in [122].

3.5 Summary and Discussion

In this chapter, we revisited a smooth representation of probability dis-
tributions called the localized cumulative distribution. It is based on a
convolution transform with a properly chosen kernel function. Further-
more, a distance measure based on this representation was considered. We
have shown that this distance measure is a true metric in several special
cases. One of these cases is choosing Gaussian kernel functions. We have
shown this choice to yield an LCD uniquely representing a probability
distribution. Furthermore, a relationship to the Weierstrass transform
made results involving this transform easily applicable to the LCD, e.g.,
the derivation of an inversion formula.
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The considered density representation and the corresponding distance
can be utilized in a wide range of applications, whenever a comparison
of probability distributions is necessary. These applications involve the
approximation of a discrete probability distribution on a continuous domain
by another distribution with a smaller number of Dirac-Delta components
[42], parameter estimation [70], and nonlinear stochastic model predictive
control [19]. In the next chapter, we will discuss one particular application
in more detail. The representation discussed here will be used for an entirely
deterministic approximation procedure for approximation of Gaussian
densities and Gaussian mixtures. Areas of possible future research involve
application of the proposed measure to hypothesis testing, information
theoretic control, and a deeper investigation of its theoretical properties.
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4.1 Introduction

In this chapter, we consider the approximation of Gaussian distributions
(including the more general case of Gaussian mixtures) by a discrete
distribution defined on the same continuous domain. Our approach is
based on using a global comparison measure which was presented in the
previous chapter. This can be thought of as finding a Dirac mixture that
is most similar (in shape) to the given Gaussian (mixture).
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Chapter 4. Approximation of Gaussian Densities

First, we will introduce a very general approximation scheme for Gaussian
mixtures. This is motivated by the fact that a convex combination of
Gaussian densities can be used to approximate other probability densities
[126]. The main challenge is the derivation of a computationally tractable
approximation scheme. Particularly, it is important to simplify the com-
putation of the LCD distance measure. Use of a naïve entirely numerical
evaluation of this distance is intractable, because it would require the com-
putation of a (𝑛 + 1)-dimensional integral when performing a comparison
of two 𝑛-dimensional distributions. Here, we contribute by removing the
need for multiple numerical integration leaving one integral which can be
evaluated numerically. This generalizes a result from [43], where this was
done for one single Gaussian.

Second, we consider the special case of a Gaussian density. Approximations
of these densities are not only important as a special case of the Gaussian
mixture, but also motivated by the fact that the Gaussian distribution
arises as the limit distribution in the central limit theorem. Its considera-
tion is more than merely a special case of the Gaussian mixture, because
in the case of approximating standard normal even-dimensional densities
several important simplifications occur making the formulation of the
distance measure in terms of well-known mathematical functions possible.
This narrow case can be generalized to a suboptimal (w.r.t. the distance
measure) sampling scheme of arbitrary even-dimensional Gaussians.

Finally, in the case where the mean of the Gaussian and the mean of
the Dirac mixture are equal, we can obtain another simplification in the
computation. This is based on removing the need for choosing integration
bounds by cutting off the weighting function within the distance mea-
sure. This does not only result in simpler practical applications, but also
simplifies the actual computation of the distance measure.

The proposed density approximation approach is evaluated in simulations
by comparing it to other density approximation approaches. We evaluate
both, the optimal online approximation and the faster approach based
on precomputing an approximation of the standard Gaussian and then
applying a suitable transformation in order to obtain the desired mean and
covariance. We show that both, online and offline sampling approaches
outperform comparable state-of-the-art approximation techniques.
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4.2 Related Approaches

Figure 4.1.: Example function for which approximate propagation by placing samples
on the main axes yields wrong results.

The results in this chapter are partially based on and extend those presented
in [113], [135], [141]. A filter based on deterministic sampling procedures
that minimize the LCD distance was presented in [113].

4.2 Related Approaches

A naïve distribution approximation approach is the use of random sampling
as is done in particle filters [23]. Propagation of uncertainty using these
approaches is shown to converge (as the number of samples grows) in many
cases. However, there is a number of drawbacks. First, a higher number
of samples is required compared to deterministic positioning. Second,
the process of random sampling might be computationally burdensome.
Finally, reproducibility of results can not be maintained unless a predefined
seed is used for generation of pseudo-random numbers.

The unscented transform [53], [54], [55] presents an approximation of the
first two moments requiring 2𝑛 + 1 samples in 𝑛 dimensions. It places the
samples along the principal axes of the described covariance. In a later work,
a version requiring 𝑛 + 2 samples was proposed [52]. A filter generalizing
the original idea of the unscented transform was presented in [47]. The
algorithm proposed therein accounts for the fact that 2𝑛 + 1 samples
might be insufficient for capturing the behavior of the considered system
function. Thus, it offers the possibility to place an arbitrary predefined
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Chapter 4. Approximation of Gaussian Densities

number of samples on the main axes of the covariance ellipsoids which
yields better results. This, in turn, might be insufficient for propagating
uncertainties through functions where the interesting behavior happens
outside the considered axes as will be seen in the following example.

Example 4.1. Consider the propagation of a standard normal bivariate
random variable 𝑤 ∼ 𝒩 (0, I) through a function 𝑔 : R2 → R (shown in
Figure 4.1) given by

𝑔(𝑥) = 𝑥(1) + 𝑥(2) + (𝑥(1) · 𝑥(2))2 .

Let 𝑤̃𝑛 denote a random variable whose distribution is meant to approx-
imate 𝒩 (0, I) by placing values symmetrically on the main axes while
maintaining the first two moments. Then, E(𝑔(𝑤̃𝑛)) = 0 for all 𝑛 whereas
the true expectation is

E(𝑔(𝑤)) = E(𝑤(1))⏟  ⏞  
=0

+E(𝑤(2))⏟  ⏞  
=0

+E((𝑤(1))2)⏟  ⏞  
=1

·E((𝑤(2))2)⏟  ⏞  
=1

= 1 .

Thus, approximation approaches with an arbitrary number of samples might
fail to converge as long as all of these samples are placed on the main axes
of the covariance ellipsoid.

The problem outlined in the preceding example is addressed in a further
generalization of the unscented transform, which is discussed in [26],
[115]. The basic idea of this approach is using several UKF sample sets
simultaneously. Each of these sample sets is rotated with a random angle,
and the spread of the samples is also chosen randomly. Thus, the resulting
approach combines deterministic and random sampling and we would
expect it to outperform randomized approaches and yield worse results
compared to entirely deterministic approximation schemes covering regions
with high probability mass.

The approach discussed in context of the Gaussian Hermite Kalman
filter (GHKF) proposed in [48] is based on using a grid. That is, the
approximation procedure comes down to choosing the respective probability
weights for each grid point. This approach is particularly prone to the
curse of dimensionality, because the number of grid points always grows
exponentially with the dimension, even if the approximated density has
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almost vanishing variance in all but a few of the main axes of its covariance
ellipsoid. Some sampling approaches that were discussed here are visualized
in Figure 4.2 and an overview is given in Table 4.1.

Approach Sample Method References
Count

Gauss Filter 𝐿 · 𝑛 deterministic [47]
Gauss-Hermite KF 𝐿𝑛 deterministic [48]
LCD 𝐿 deterministic [43], [113], [135],

[141], this thesis
Particle Filter 𝐿 random [4], [23],[39]
Randomized UKF 2 · 𝐿 · 𝑛 + 1 mixed [26], [115]
Spherical Simplex UKF 𝑛 + 2 deterministic [52]
UKF 2 · 𝑛 + 1 deterministic [53], [54], [55]

Table 4.1.: Overview of different sampling approaches used in stochastic filters. In
the number of samples 𝑛 denotes the dimension and 𝐿 ∈ N+ is a constant
that may be chosen by the user.

4.3 Formal Problem Statement

We consider a Gaussian mixture distribution in R𝑛 given by its density

𝑓𝐺𝑀 (𝑥) =
𝑙∑︁

𝑖=0
𝑝𝑖 𝑓𝑖(𝑥)

where 𝑓𝑖 is the density of a Gaussian 𝒩 (𝜇
𝑖
, Σ𝑖) distribution. Given a pre-

defined number of samples 𝑚 and their respective weights 𝑤𝑖 (𝑖 = 1, ..., 𝑚),
the first goal considered in this chapter is deterministically obtaining posi-
tions 𝑠𝑖 (𝑖 = 1, ..., 𝑚) for optimally approximating the Gaussian mixture
distribution by a deterministic positioning of these samples. The resulting
distribution described by

𝑓𝐷𝑀 (𝑥; S) =
𝑚∑︁

𝑖=1
𝑤𝑖 · 𝛿(𝑥− 𝑠𝑖) ,

where S = (𝑠1, ..., 𝑠𝑀 ).
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(a) Unscented Transform (b) Gaussian Filter

(c) Random Sampling (d) Randomized UKF

(e) Gaussian-Hermite KF (f) LCD

Figure 4.2.: Different sampling schemes.

48



4.4 Distance Measure for Gaussian Mixtures

We are therefore interested in computing

S* = arg min
S

𝑑𝑤,𝐾 (𝑓𝐺𝑀 (𝑥), 𝑓𝐷𝑀 (𝑥; S)) ,

where 𝐾 is a Gaussian RBF kernel and the weighting function is given
by

𝑤(𝑏) =
{︃

𝑏−𝑛+1 𝑏 ∈ [0, 𝑏𝑚𝑎𝑥) ,

0 otherwise

In the following, we will discuss this general problem and the important
special case of obtaining an approximation of a standard Gaussian. The
latter will give rise to an algorithm for generally approximating Gaussian
densities.

4.4 Distance Measure
for Gaussian Mixtures

For computing the LCD distance measure between a Gaussian mixture
and an Dirac mixture, we first need their respective LCDs. For the Dirac
mixture the LCD is easily obtained as

ℒ[𝑓𝐷𝑀 (𝑥)](𝑐, 𝑏) =
𝑀∑︁

𝑖=1
𝐾(𝑐− 𝑠𝑖) .

The LCD of the Gaussian mixture is a generalization of the LCD of a
single axis-aligned Gaussian as derived in [43]. This results in

ℒ[𝑓𝐺𝑀 ](𝑐, 𝑏) =E(𝐾(𝑐− 𝑥, 𝑏))

=
∫︁
R𝑛

𝐾(𝑐− 𝑥, 𝑏) · 𝑓𝐺𝑀 (𝑥) d𝑥

=
𝐿∑︁

𝑖=1
𝑝𝑖

∫︁
R𝑛

𝐾(𝑐− 𝑥) · 𝑓𝑖(𝑥) d𝑥

=
𝐿∑︁

𝑖=1
𝑝𝑖

𝑏𝑛 exp
(︁
− 1

2 (𝑐− 𝜇
𝑖
)⊤ (︀Σ𝑖 + 𝑏2 I

)︀−1 (𝑐− 𝜇
𝑖
)
)︁

√︀
det (Σ𝑖 + 𝑏2 I)
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These representations can now be used directly for computing the LCD
distance. However, this requires the computation of multivariate integrals
which, when done numerically, is infeasible for most applications. Thus,
our first objective is reducing the number of integrals as far as possible.

Proposition 4.2. The LCD distance 𝑑(𝑓𝐺𝑀 , 𝑓𝐷𝑀 ) can be represented as

𝑑𝑤,𝐾(𝑓𝐺𝑀 , 𝑓𝐷𝑀 ) =
∫︁
R+

𝑤 · (𝐼1 − 2 𝐼2 + 𝐼3) d𝑏 (4.1)

where

𝐼1 =
𝑙∑︁

𝑖=1

𝑙∑︁
𝑗=1

𝑝𝑖 𝑝𝑗

(︀√
2𝜋 𝑏2)︀𝑛√︀

det(Σ𝑖 + Σ𝑗 + 2𝑏2I)

× exp
(︂
−1

2 (𝜇
𝑖
− 𝜇

𝑗
)⊤(Σ𝑖 + Σ𝑗 + 2𝑏2I)−1(𝜇

𝑖
− 𝜇

𝑗
)
)︂

,

𝐼2 =
𝑙∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑝𝑖 𝑤𝑗

(︀√
2𝜋 𝑏2)︀𝑛√︀

det(Σ𝑖 + 2𝑏2I)

× exp
(︂
−1

2(𝜇
𝑖
− 𝑠𝑗)⊤(Σ𝑖 + 2𝑏2I)−1(𝜇

𝑖
− 𝑠𝑗)

)︂
,

𝐼3 =
𝑚∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑤𝑖 𝑤𝑗 𝜋𝑛/2 𝑏𝑛

× exp
(︂
−1

2(𝑠𝑖 − 𝑠𝑗)⊤(2𝑏2I)−1(𝑠𝑖 − 𝑠𝑗)
)︂

.

Proof. The proof is based in decomposing the original integral into three
parts and computing each part individually. This decomposition is obtained
by

𝑑(𝑓𝐺𝑀 , 𝑝𝐷𝑀 ) =
∫︁
R+

𝑤(𝑏)
(︁∫︁

R𝑛

ℒ[𝑓𝐺𝑀 ](𝑐, 𝑏)2 d𝑐

− 2 ·
∫︁
R𝑛

ℒ[𝑓𝐺𝑀 ](𝑐, 𝑏) · ℒ[𝑝𝐷𝑀 ](𝑐, 𝑏) d𝑐

+
∫︁
R𝑛

ℒ[𝑝𝐷𝑀 ](𝑐, 𝑏)2 d𝑐
)︁

d𝑏
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Figure 4.3.: Comparing a standard Gaussian with a two-component equally weighted
Dirac mixture.

It is now sufficient to show, that the three inner integrals correspond to
𝐼1(𝑏) to 𝐼3(𝑏). For reasons of brevity, this will only be done for 𝐼1(𝑏). For
computing 𝐼1(𝑏), we make use of the fact that it is basically an integral
over the product of two (not properly normalized) Gaussian densities.
Thus, we have∫︁

R𝑛

ℒ[𝑓𝐺𝑀 ](𝑐, 𝑏)2 d𝑐 =
𝑙∑︁

𝑖=1

𝑙∑︁
𝑗=1

𝑝𝑖 𝑝𝑗

∫︁
R𝑛

ℒ[𝑓𝑖](𝑐, 𝑏) · ℒ[𝑓𝑗 ](𝑐, 𝑏) d𝑐

=
𝑙∑︁

𝑖=1

𝑙∑︁
𝑗=1

𝑝𝑖 𝑝𝑗

(︀
2 𝜋 𝑏2)︀𝑛

∫︁
R𝑛

𝑓𝑖(𝑐) · 𝑓𝑗(𝑐) d𝑐 ,

where 𝑓𝑖(𝑐) is the density of an 𝒩 (𝜇
𝑖
, Σ𝑖 + 𝑏2I) distribution. Applying the

formula for an integral over the product of two Gaussian densities yields
the desired result. Carrying out an analogous procedure for 𝐼2(𝑏) and 𝐼3(𝑏)
completes the proof.

This has removed all but one integral significantly improving the feasibility
of actually performing computations involving the considered distance
measure. A visualization of this distance and the obtained integrands
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is shown in Figure 4.3. For many numerical computation procedures
the performance can be significantly improved by providing a gradient
with respect to the positions of the Dirac delta components. From an
algorithmic viewpoint, computation of a gradient is not much different
from computing the distance measure itself.

Proposition 4.3. The derivative of 𝑑𝑤,𝐾(𝑓𝐺𝑀 , 𝑓𝐷𝑀 ) with respect to 𝑠
(𝑟)
𝑞

is given by∫︁
R+

𝑤(𝑏) 𝐺𝑞,𝑟(𝑏) d𝑏 =
∫︁
R+

𝑤(𝑏) (−2 𝐺1,𝑞,𝑟(𝑏) + 𝐺2,𝑞,𝑟(𝑏)) d𝑏

with

𝐺1,𝑞,𝑟 = 𝑤𝑞

𝑙∑︁
𝑖=1

𝑝𝑖
(
√

2𝜋 𝑏2)𝑛√︀
det(Σ𝑖 + 2𝑏2I)

× exp
(︂
−1

2(𝜇
𝑖
− 𝑠𝑞)⊤(Σ𝑖 + 2𝑏2I)−1(𝜇

𝑖
− 𝑠𝑞)

)︂
,

×
(︁

(Σ𝑖 + 2𝑏2I)−1 (𝜇
𝑖
− 𝑠𝑞)

)︁(𝑟)
,

𝐺2,𝑞,𝑟 = 𝑤𝑞

𝑚∑︁
𝑖=1

𝑤𝑖 𝜋𝑛/2 𝑏𝑛−2 exp
(︂
−1

2(𝑠𝑖 − 𝑠𝑞)⊤(2𝑏2I)−1(𝑠𝑖 − 𝑠𝑞)
)︂

×
(︀
𝑠𝑖 − 𝑠𝑞

)︀(𝑟)
.

Proof. We first observe that due to Lebniz’s rule, it is justified to inter-
change integration and differentiation in 𝜕𝑑(𝑓𝐺𝑀 , 𝑓𝐷𝑀 )/𝜕𝑠

(𝑖)
𝑞 and thus

restate this derivative as∫︁
R+

𝜕

𝜕𝑠
(𝑖)
𝑞

[𝑤(𝑏) · (𝐼1(𝑏)− 2 𝐼2(𝑏) + 𝐼3(𝑏))] d𝑏

The term 𝐼1(𝑏) is not considered because it does not involve any 𝑠𝑖 and
thus vanishes after differentiation. Thus, we interpret 𝐼2(𝑏) and 𝐼3(𝑏) as
functions of 𝑠𝑖 and define

𝐺1,𝑞,𝑟(𝑏) := 𝜕𝐼2(𝑏)
𝜕𝑠

(𝑟)
𝑞

, 𝐺2,𝑞,𝑟(𝑏) := 𝜕𝐼3(𝑏)
𝜕𝑠

(𝑟)
𝑞

.
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Both derivatives, 𝐺1,𝑞,𝑟 and 𝐺2,𝑞,𝑟, are obtained by a straight forward
application of the chain rule. For computing 𝐺2,𝑞,𝑟, we first leave out all
terms not involving 𝑠𝑞. This gives us

𝐺2,𝑞,𝑟 =2 𝑤𝑞

𝑚∑︁
𝑖=1

𝑤𝑖 𝜋𝑛/2 𝑏𝑛

× 𝜕

𝜕𝑠
(𝑟)
𝑞

exp
(︁
−1

2(𝑠𝑖 − 𝑠𝑞)⊤(2𝑏2I)−1(𝑠𝑖 − 𝑠𝑞)⏟  ⏞  
𝐴𝑖,𝑞 :=

)︁
.

The chain rule gives us

𝐺2,𝑞,𝑟 = 2 𝑤𝑞

𝑚∑︁
𝑖=1

𝑤𝑖 𝜋𝑛/2 𝑏𝑛

× exp
(︂
−1

2(𝑠𝑖 − 𝑠𝑞)⊤(2𝑏2I)−1(𝑠𝑖 − 𝑠𝑞)
)︂

× 𝜕𝐴𝑖,𝑞

𝜕𝑠
(𝑟)
𝑞

.

(4.2)

Next, we note that the gradient (with respect to 𝑥) of the product of two
vectors 𝑥 and 𝑐 can be obtained directly as

∇𝑥

(︀
𝑐⊤𝑥

)︀
= ∇𝑥

(︀
𝑥⊤𝑐

)︀
= 𝑐 . (4.3)

Furthermore, the gradient of a quadratic form when assuming a matrix A
to be symmetric is given by

∇𝑥

(︀
𝑥⊤ A 𝑥

)︀
= 2 A 𝑥 (4.4)

Let Σ𝑏 := (2𝑏2I)−1. Reformulating 𝐴𝑖,𝑞 as

−1
2
(︀
𝑠⊤

𝑞 Σ𝑏 𝑠𝑞 − 2𝑠⊤
𝑖 Σ𝑏 𝑠𝑞 + 𝑠⊤

𝑖 Σ𝑏 𝑠𝑖

)︀
and then using (4.3) and (4.4) we obtain

𝜕𝐴𝑖,𝑗

𝜕𝑠
(𝑟)
𝑞

= (∇𝑠𝑞
𝐴𝑖,𝑞)(𝑟) =

(︀
Σ𝑏 (𝑠𝑖 − 𝑠𝑞)

)︀(𝑟) = 1
2 𝑏2 (𝑠𝑖 − 𝑠𝑞)(𝑟) .

Using this, (4.2) can be simplified to the desired result. The corresponding
result for 𝐺1,𝑞,𝑟 is obtained analogously.
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The results of the previous two propositions give rise to an algorithmic
implementation of the considered approximation procedure. In the general
case of arbitrary Gaussian mixtures, this optimization procedure is nonlin-
ear. Thus, a nonlinear numerical optimizer has to be used for obtaining
an approximation. A simplification for the computation of 𝐼3(𝑏) was given
in [43] as follows.

Theorem 4.4 (Hanebeck & Huber (2009)). For large 𝑏max, the following
closed–form expression for 𝐼3(𝑏) is obtained∫︁

R+
𝑤 · 𝐼3 d𝑏 ≈ 𝜋

𝑛
2

8

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑤𝑖𝑤𝑗

(︀
4𝑏2

max − 𝐶𝑏 𝑇𝑖,𝑗 + xlog(𝑇𝑖,𝑗)
)︀

,

with xlog(𝑧) = 𝑧 ·log(𝑧) and constants 𝐶𝑏 = log(4 𝑏2
max)−𝛾 (here, 𝛾 denotes

the Euler-Mascheroni constant) and

𝑇𝑖𝑗 =
𝑛∑︁

𝑘=1

(︁
𝑠

(𝑘)
𝑖 − 𝑠

(𝑘)
𝑗

)︁2
. (4.5)

In the same paper, the methodology to obtain this result was also used
for a simplification of the derivative 𝐺2,𝑞,𝑟.

Theorem 4.5 (Hanebeck & Huber (2009)). For large 𝑏max, a closed–form
expression for the second term of the gradient of the distance measure with
respect to the locations of the Dirac components is given by∫︁

R+
𝑤 ·𝐺2,𝑞,𝑟 d𝑏 ≈ 𝜋𝑛/2

2 𝑤𝑞

[︃
𝑚∑︁

𝑖=1
𝑤𝑖

(︁
𝑠(𝑟)

𝑞 − 𝑠
(𝑟)
𝑖

)︁
log
(︁⃒⃒⃒⃒

𝑠𝑞 − 𝑠𝑖

⃒⃒⃒⃒2
2

)︁
+𝐶𝑏

(︃
𝑚∑︁

𝑖=1
𝑤𝑖 𝑠

(𝑟)
𝑖 − 𝑠(𝑟)

𝑞

)︃]︃
,

where 𝐶𝑏 is defined as in the previous theorem.

These two theorems additionally simplify the computation of the distance
measure. However, there are still two challenges. First, the entire distance
measure involves still a 𝑏𝑚𝑎𝑥 parameter, which needs to be chosen properly.
Second, there is still an integral, which, so far, has to be solved numerically.
In the following, our goal is to investigate special cases where these problems
can be avoided.
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4.5 Approximation of Even-Dimensional
Gaussians

This section addresses the problem of numerical integration in (4.1) for
computation of the LCD distance. In the even-dimensional case, the nu-
merical integration can be replaced by well known mathematical functions,
particularly the exponential integral, which can be implemented using
precomputed lookup tables or based on its series expansion.

Thus, the first two terms from Proposition 4.2 simplify to

𝐼1 =
(︀√

𝜋 𝑏2)︀𝑛

√
1 + 𝑏2

,

𝐼2 =
𝑙∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑝𝑖 𝑤𝑗

(︀√
2𝜋 𝑏2)︀𝑛√︀

det(Σ𝑖 + 2𝑏2I)

× exp
(︂
−1

2(𝜇
𝑖
− 𝑠𝑗)⊤(Σ𝑖 + 2𝑏2I)−1(𝜇

𝑖
− 𝑠𝑗)

)︂
.

In the proof of Theorem 4.4, the following representation for the integral
of 𝑤 · 𝐼3 was obtained∫︁

R+
𝑤 · 𝐼3 d𝑏 =𝜋

𝑛
2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑤𝑖𝑤𝑗 𝐶(𝑏𝑚𝑎𝑥, 𝑇𝑖,𝑗)

with

𝐶(𝑏, 𝑐) = 𝑏2

2 exp
(︂
−1

2
𝑐

2𝑏2

)︂
+ 𝑐

8 Ei
(︂
−1

2
𝑐

2𝑏2

)︂
(4.6)

This representation is exact for arbitrary positive 𝑏𝑚𝑎𝑥. However, it in-
volves the exponential integral Ei(𝑥), which needs to be either precomputed
or evaluated using a series expansion. A definition is given in appendix A.1
and an algorithm for its computation can be found in [21]. For the gradient
component 𝐺2,𝑞,𝑟 we have an analogous situation, that is∫︁

R+
𝑤 ·𝐺2,𝑞,𝑟 d𝑏 = 𝜋

𝑛
2

2 𝑝𝑞

𝑚∑︁
𝑖=1

𝑝𝑖(𝑠(𝑟)
𝑞 − 𝑠

(𝑟)
𝑖 ) Ei

(︂
−1

2
𝑇𝑞,𝑖

2𝑏2
𝑚𝑎𝑥

)︂
.
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It remains to derive similar representations for integrals of 𝑤 · 𝐼1, 𝑤 · 𝐼2,
and 𝑤 ·𝐺1,𝑞,𝑟. The proofs given below were originally derived in a slightly
modified form in [135]. In the first case, a very general result is possible.

Theorem 4.6. For the case of an 𝑛-dimensional standard normal Gaus-
sian, the integral of 𝑤 · 𝐼1 is obtained as∫︁

R+
𝑤 · 𝐼1 d𝑏 = 𝜋𝑛/2𝐴𝑛(𝑏𝑚𝑎𝑥)

where

𝐴1(𝑏) =1
2

(︁
𝑏
√︀

1 + 𝑏2 − arcsinh(𝑏)
)︁

,

𝐴2(𝑏) =1
2
(︀
𝑏2 − log(1 + 𝑏2)

)︀
,

𝐴2𝑘(𝑏) =2𝑘

(︃
𝐴2(𝑏)

2 −
𝑘−1∑︁
𝑖=2

𝑏2𝑖(
√

1 + 𝑏2)2−2𝑖

2𝑖(2𝑖− 2)

)︃
− 𝑡2𝑘(

√
1 + 𝑡2)2−2𝑘

(2𝑘 − 2) ,

(4.7)

𝐴2𝑘−1(𝑏) =(2𝑘 − 1)
(︃

𝐴1(𝑏)−
𝑘−2∑︁
𝑖=1

𝑡2𝑖+1(
√

1 + 𝑏2)1−2𝑖

4𝑖2 − 1

)︃

− 𝑏2𝑘−1(
√

1 + 𝑏2)3−2𝑘

(2𝑘 − 3) ,

for 𝑘 ∈ N and 𝑘 ≥ 2.

Proof. The proof is subdivided three steps. In the first two steps we com-
pute the base cases 𝐴1 and 𝐴2 respectively. Then, we obtain a recursion
formula that gives us the result for 𝐴2𝑘 and 𝐴2𝑘−1.

Computation of 𝐴1
The considered integral can be separated using 𝑓(𝑏) = 𝑏/2 and 𝑔(𝑏) =√

1 + 𝑏2 as follows

𝐴1(𝑏) =
∫︁ 𝑏

0

𝑥2
√

1 + 2𝑥2
d𝑥 =

∫︁ 𝑏

0
𝑓(𝑥)𝑔′(𝑥) d𝑥
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Applying integration by parts yields

𝐴1(𝑏) =
[︂

1
2𝑥
√︀

1 + 𝑥2
]︂𝑏

0
−
∫︁ 𝑏

0

1
2
√

1 + 𝑥2

=1
2𝑏
√︀

1 + 𝑏2 − arcsinh(𝑏)
2 .

Computation of 𝐴2
For computing 𝐴2 we make use of the fact that

𝜕 ln(1 + 𝑥2)
𝜕𝑥

= 𝑥

1 + 𝑥2 . (*)

Now, we compute directly

𝐴2(𝑏) =
∫︁ 𝑏

0

𝑥3

1 + 𝑥2 d𝑥 =
∫︁ 𝑏

0

𝑥(𝑥2 + 1− 1)
1 + 𝑥2 d𝑥

=
∫︁ 𝑏

0
𝑥− 𝑥

1 + 𝑥2 d𝑥
(*)= 𝑏2

2 −
1
2 log(1 + 𝑏2) .

Derivation of Recursion formula for 𝑛 > 2
Once again, integration by parts is used. Therefore, we define 𝑓(𝑥) =√

1 + 𝑥2 and 𝑔(𝑥) := 𝑥𝑛(1+𝑥2)(−𝑛+1)/2. The derivatives of these functions
are given by

𝑓 ′(𝑥) = 𝑥√
1 + 𝑥2

𝑔′(𝑥) = 𝑛 𝑥𝑛−1

(
√

1 + 𝑥2)𝑛−1
− (𝑛− 1)𝑥𝑛+1

(
√

1 + 𝑥2)𝑛−1
.

The integrand can be separated into 𝑓 ′(𝑥)𝑔(𝑥). This gives us

𝐴𝑛(𝑏) =
∫︁ 𝑏

0

𝑥𝑛+1(︀√
1 + 𝑥2

)︀𝑛 d𝑥 =
∫︁ 𝑏

0
𝑓 ′(𝑥) 𝑔(𝑥) d𝑥

=
[︂

𝑥𝑛

(
√

1 + 𝑥2)𝑛−2

]︂𝑏

0
−
∫︁ 𝑏

0

𝑛 𝑥𝑛−1

(
√

1 + 𝑥2)𝑛−2
− (𝑛− 1) 𝑥𝑛+1

(
√

1 + 𝑥2)𝑛
d𝑥

= 𝑏𝑛

(
√

1 + 𝑏2)𝑛−2
− 𝑛 𝐴𝑛−2(𝑏) + (𝑛− 1) 𝐴𝑛(𝑏) .

57



Chapter 4. Approximation of Gaussian Densities

This is used to compute a recursion formula

𝐴𝑛(𝑏) = 1
𝑛− 2

(︂
𝑛 𝐴𝑛−2(𝑏)− 𝑏𝑛

(
√

1 + 𝑏2)𝑛−2

)︂
.

Formulas for 𝐴2𝑘(𝑏) and 𝐴2𝑘−1(𝑏) are obtained by resolving this recursion
using an induction argument.

A similar result was also obtained for 𝑤 · 𝐼2. However, this is unfortunately
only possible for even-dimensional scenarios.

Theorem 4.7. In an even-dimensional scenario with 𝑛 = 2 𝑘 for 𝑘 ∈ N,
the integral of 𝑤 · 𝐼2 is given by∫︁

R+
𝑤 · 𝐼2 d𝑏 = (2𝜋)𝑛/2

𝑚∑︁
𝑖=1

𝑤𝑖

(︀
𝐵𝑘,𝑘

(︀
𝑏max, ||𝑠𝑖||22

)︀
−𝐵𝑘,𝑘

(︀
0, ||𝑠𝑖||22

)︀)︀
with

𝐵𝑘,𝑘(𝑏, 𝑐) = 1
2𝑘

𝑘∑︁
𝑗=0

(−1)𝑗

(︂
𝑘

𝑗

)︂
𝐵0,𝑗(𝑏, 𝑐) ,

and the base cases

𝐵0,0(𝑏, 𝑐) =1 + 2𝑏2

4 exp
(︂
− 𝑐

2 + 4𝑏2

)︂
+ 𝑐

8 Ei
(︂
− 𝑐

2 + 4𝑏2

)︂
,

𝐵0,1(𝑏, 𝑐) =− 1
4 Ei

(︂
− 𝑐

2 + 4𝑏2

)︂
,

𝐵0,𝑑(𝑏.𝑐) = exp
(︂
− 𝑐

2 + 4𝑏2

)︂
×

𝑑∑︁
𝑗=2

(𝑑− 2)! 2𝑑−𝑗−1

(𝑗 − 2)! 𝑐𝑑−𝑗+1 (1 + 2𝑏2)𝑗−2 ,

(4.8)

for 𝑑 ≥ 2.

Proof. Every summand in 𝑤 · 𝐼2 is of the form

𝑤𝑖
(2𝜋)𝑘 𝑏2𝑘+1

(1 + 2𝑏2)𝑘
exp

(︂
−1

2
𝑐

1 + 2𝑏2

)︂
,
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with some 𝑐 > 0. Thus, it is sufficient to compute the antiderivative of this
function. Once again, this will be done in three steps. First, a very general
recursive relationship will be derived. Then, a recursive relationship for
the base case 𝐵0,𝑑 when 𝑑 ≥ 2. Finally, the base cases 𝐵0,0 and 𝐵0,1 will
be computed.

Derivation of a general recursion
First, we observe that for 𝑢, 𝑣 ∈ N it holds

𝑏2𝑢+1

(1 + 2𝑏2)𝑣
=2𝑏2𝑢+1 + 𝑏2𝑢−1 − 𝑏2𝑢−1

2(1 + 2𝑏2)𝑣

=𝑏2𝑢−1(1 + 2𝑏2)− 𝑏2𝑢−1

2(1 + 2𝑏2)𝑣

= 𝑏2𝑢−1

2(1 + 2𝑏2)𝑣−1 −
𝑏2𝑢−1

2(1 + 2𝑏2)𝑣
.

This motivates the definition

𝜕𝐵𝑢,𝑣(𝑏, 𝑐)
𝜕𝑏

:= 𝑏2𝑘+1

(1 + 2𝑏2)𝑘
exp

(︂
−1

2 ·
𝑐

1 + 2𝑏2

)︂
and yields the following recursion

𝐵𝑢,𝑣(𝑏, 𝑐) = 1
2 (𝐵𝑢−1,𝑣−1(𝑏, 𝑐)−𝐵𝑢−1,𝑣(𝑏, 𝑐)) . (*)

This resembles the summation scheme in Pascal’s triangle. Thus, a corre-
sponding representation of this recursion yields the result for 𝐵𝑘,𝑘.

Derivation of base cases 𝐵0,𝑑 for 𝑑 ≥ 2
First, we only consider the case where 𝑑 ≥ 3. In order to use integration
by parts, we define

𝑓𝑑(𝑥, 𝑐) := 1
2𝑐(1 + 2𝑥2)𝑑−2 , 𝑔(𝑥, 𝑐) := exp

(︂
𝑐

2 + 4𝑥2

)︂
with partial derivatives (with respect to 𝑥)

𝜕𝑓𝑑(𝑥, 𝑐)
𝜕𝑥

= 1
2𝑐(1 + 2𝑥2)𝑑−2 ,

𝜕𝑔(𝑥, 𝑐)
𝜕𝑥

= exp
(︂

𝑐

2 + 4𝑥2

)︂
.
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Thus, we have

𝐵0,𝑑(𝑏, 𝑐)−𝐵0,𝑑(0, 𝑐) =
∫︁ 𝑏

0
𝑓𝑑(𝑥) 𝜕𝑔′(𝑥, 𝑐)

𝜕𝑥
d𝑥

=

⎡⎣ exp
(︁
− 𝑐

2+4𝑥2

)︁
2𝑐(1 + 2𝑥2)𝑑−2

⎤⎦𝑏

0

−
∫︁ 𝑏

0

4 𝑥(2− 𝑑) exp
(︁
− 𝑐

2+4 𝑥2

)︁
2𝑐(1 + 2 𝑥2)𝑑−1 d𝑥 .

This yields the recursive equation

𝐵0,𝑑(𝑏, 𝑐) =

⎛⎝ exp
(︁
− 𝑐

2+4𝑏2

)︁
2𝑐(1 + 2𝑏2)𝑑−2

⎞⎠+ 2(𝑑− 2)
𝑐

𝐵0,𝑑−1(𝑏, 𝑐) .

Computation of the base case 𝐵0,2(𝑏, 𝑐) is straightforward

𝐵0,2(𝑏, 𝑐)−𝐵0,2(0, 𝑐) =
∫︁ 𝑏

0

𝑥

2 + 4𝑥2 exp
(︂
− 𝑐

(1 + 2𝑥2)2

)︂
d𝑥

= 1
2𝑐

∫︁ 𝑏

0

2𝑐𝑥

(1 + 2𝑥2)2 exp
(︂
− 𝑐

2 + 4𝑥2

)︂
d𝑥

= 1
2𝑐

∫︁ 𝑏

0

8𝑐𝑥

(2 + 4𝑥2)2 exp
(︂
− 𝑐

2 + 4𝑥2

)︂
d𝑥

=
[︂

1
2𝑐

exp
(︂
− 𝑐

2 + 4𝑥2

)︂]︂𝑏

0
.

Using this base case, the recursion above can be resolved, which yields our
formula for 𝐵0,𝑗(𝑏) for 𝑗 ≥ 2.

Computation of 𝐵0,1(𝑏, 𝑐)
We use substitution to compute the antiderivative 𝐵0,1(𝑏). Therefore, we
define 𝑓(𝑏, 𝑐) := −𝑐(2 + 4𝑏2)−1. Using this definition, we obtain

𝐵0,1(𝑏, 𝑐)−𝐵0,1(0, 𝑐) =
∫︁ 𝑏

0

𝑥

1 + 2𝑥2 exp
(︂
− 𝑐

2 + 4𝑥2

)︂
d𝑥
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=− 1
4

∫︁ 𝑏

0
𝑓(𝑥, 𝑐)

(︂
𝜕𝑓(𝑦, 𝑐)

𝜕𝑦

)︂
𝑦=𝑥

exp(𝜙(𝑥)) d𝑥

=− 1
4

∫︁ 𝑓(𝑏,𝑐)

𝑓(0,𝑐)

e𝑥

𝑥
d𝑥

=− 1
4

[︂
Ei
(︂
− 𝑐

2 + 4𝑥2

)︂]︂𝑏

0
.

Computation of 𝐵0,0(𝑏, 𝑐)
We show that 𝐵0,0 can be expressed in terms of 𝐵0,1 and 𝐵0,2. Integration
by parts is used as a first step. Thus, we define 𝑓(𝑏) = 𝑏2/2 and 𝑔(𝑏, 𝑐) =
exp(−𝑐(2 + 4𝑏2)−1) and obtain

𝐵0,0(𝑏, 𝑐)−𝐵0,0(0, 𝑐) =
∫︁ 𝑏

0
𝑓 ′(𝑥)𝑔(𝑥, 𝑐) d𝑥

=
[︂

𝑥2

2 exp
(︂
− 𝑐

2 + 4𝑥2

)︂]︂𝑏

0

−
∫︁ 𝑏

0

8 𝑐 𝑥3

2(2 + 4𝑥2)2 exp
(︂
− 𝑐

2 + 4𝑥2

)︂
d𝑥 .

The integrand of the remaining integral is 𝑐 · 𝜕𝐵1,2(𝑏, 𝑐)/𝜕𝑏. Using (*), we
get

𝐵0,0(𝑏, 𝑐) =𝑏2

2 exp
(︂
− 𝑐

2 + 4𝑏2

)︂
− 𝑐

2𝐵0,1(𝑏, 𝑐) + 𝑐

2𝐵0,2(𝑏, 𝑐)

=1 + 2𝑏2

4 exp
(︂
− 𝑐

2 + 4𝑏2

)︂
+ 𝑐

8 Ei
(︂
− 𝑐

2 + 4𝑏2

)︂
,

which completes the proof.

The integral of 𝑤 ·𝐺1,𝑞,𝑟 is computed in a similar way. The proof is omitted
for brevity and we only state the following result.
Proposition 4.8. In an even-dimensional scenario with 𝑛 = 2 𝑘 for 𝑘 ∈ N,
the integral 𝑤 ·𝐺1,𝑞,𝑟 is given by∫︁

R+
𝑤 ·𝐺1,𝑞,𝑟 d𝑏 = 𝑠(𝑟)

𝑞 (𝐵𝑘,𝑘+1(𝑏𝑚𝑎𝑥, ||𝑠𝑞||22)−𝐵𝑘,𝑘+1(0, ||𝑠𝑞||22))
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with

𝐵𝑘,𝑘+1(𝑏, 𝑐) = 1
2𝑘

𝑘∑︁
𝑗=0

(−1)𝑗

(︂
𝑘

𝑗

)︂
𝐵0,𝑗+1(𝑏, 𝑐) ,

where the base cases 𝐵0,𝑖(𝑏, 𝑐) are the same as in the previous proof.

This results can be used directly to approximating standard Gaussian den-
sities. Use of efficient algorithms computing Ei(·) yields faster evaluation
of the LCD distance measure for low dimensions. An approximation of an
arbitrary non-standard Gaussian distribution 𝒩 (𝜇, Σ) is possible using the
following relationship. If 𝑥 ∼ 𝒩 (0, I), then

(︀
Σ1/2 𝑥 + 𝜇

)︀
∼ 𝒩 (𝜇, Σ). That

is, our approximation of a standard Gaussian can be used to approximate
arbitrary Gaussian distributions. Thus, the resulting procedure is given in
Algorithm 4.1.

Algorithm 4.1 Approximation of Gaussians
1: procedure DM Approximation(𝜇, Σ, 𝑚)
2: (𝑠*

1, ..., 𝑠*
𝑚)← arg min 𝑑𝑤,𝐾(𝒩 (0, I),

∑︀𝑚
𝑖=1 𝛿(𝑥− 𝑠𝑖));

3: for 𝑖 ∈ {1, ..., 𝑚} do
4: 𝑠*

𝑖 ← Σ1/2 𝑠*
𝑖 + 𝜇;

5: end for
6: return (𝑠*

1, ..., 𝑠*
𝑚);

7: end procedure

This approximation is suboptimal in the sense that it does not minimize
the LCD distance measure, because this measure is in general not invariant
under transformations involving multiplications of a random vector with a
matrix square-root of a covariance matrix. This has also some impact on
the propagation properties of the LCD as will be seen in the evaluations.
However, this sub-optimality can be dealt with by choosing an even higher
number of samples.

The proposed method still requires the use of some numerical techniques or
precomputed lookup tables for the evaluation of Ei(·) and a minimization
procedure to obtain an optimal approximation of a standard Gaussian.
However, this approach might be infeasible in real-time applications. In
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these scenarios, it is still possible to precompute an approximation of
standard Gaussians and then apply the proposed algorithm without the
numerical optimization step. This methodology can be generalized to
approximation of Gaussian mixtures by approximating each component in-
dividually. The fact, that the number of samples may be chosen arbitrarily
can compensate for the suboptimality of this approach.

4.6 Avoiding Choice of 𝑏𝑚𝑎𝑥 in the Case
of Equal Means

So far, our method still requires choosing a suitable 𝑏𝑚𝑎𝑥. Thus, our goal
is the derivation of a method avoiding this choice. An algebraically tedious
look at the series expansions suggests that letting 𝑏𝑚𝑎𝑥 →∞ is possible
in the case of equal means of the Gaussian and the Dirac mixture. That
is, with our combined choice of kernel and weighting function the integral
over 𝑏 in our distance measure 𝑑 converges only in this case.

We will also need the series expansion of the exponential which is

exp(𝑥) =
∞∑︁

𝑖=0

𝑥𝑖

𝑖! . (4.9)

Finally, the following Lemma will be helpful in the course of the proof.

Lemma 4.9. For arbitrary 𝑘 ∈ N with 𝑘 ≥ 2, the following identity holds

𝑘

2 −
1

2𝑘 − 2 − 2𝑘

𝑘−1∑︁
𝑖=2

1
2𝑖(2𝑖− 2) = 1

2 . (4.10)

Proof. First, we restate the following simple identity.

𝑘

2 −
1

2𝑘 − 2 = 𝑘2 − 𝑘 − 1
2𝑘 − 2 (4.11)

Second, it holds for all 𝑘 ∈ N with 𝑘 ≥ 2
𝑘−1∑︁
𝑖=2

1
𝑖(𝑖− 1) = 𝑘 − 2

𝑘 − 1 , (4.12)

63



Chapter 4. Approximation of Gaussian Densities

which can be seen by an induction argument. Obviously, this is true for
𝑘 = 2. If 𝑘 > 2, then

𝑘−1∑︁
𝑖=1

1
𝑖(𝑖− 1) =

𝑘−2∑︁
𝑖=1

1
𝑖(𝑖− 1) + 1

(𝑘 − 1)(𝑘 − 2) = 𝑘 − 3
𝑘 − 2 + 1

(𝑘 − 1)(𝑘 − 2)

=𝑘 − 2
𝑘 − 1

and, thus, (4.12) holds. With these identities, the left hand side of (4.10)
can be finally formulated as

𝑘

2 −
1

2𝑘 − 2 − 2𝑘

𝑘−1∑︁
𝑖=2

1
2𝑖(2𝑖− 2)

(4.11)= 𝑘2 − 𝑘 − 1
2𝑘 − 2 − 2𝑘

𝑘−1∑︁
𝑖=2

1
2𝑖(2𝑖− 2)

= 𝑘2 − 𝑘 − 1
2𝑘 − 2 − 𝑘

2

𝑘−1∑︁
𝑖=2

1
𝑖(𝑖− 1)

(4.12)= 𝑘2 − 𝑘 − 1
2𝑘 − 2 − 𝑘2 − 2𝑘

2𝑘 − 2

= 1
2 .

Now, we have everything we need to proof the main result.
Theorem 4.10. In the case of equal means and even dimensions 𝑛 = 2𝑘,
we obtain the LCD distance between a standard Gaussian and a Dirac
mixture for 𝑏𝑚𝑎𝑥 →∞ as

𝜋−𝑘 𝐷 = lim
𝑏→∞

[︂
𝑘

𝑘−1∑︁
𝑖=2

1
2𝑖

− 2
𝑚∑︁

𝑖=1
𝑤𝑖

(︂
𝑐𝑖 + 2𝑘

8 ln
(︁𝑐𝑖

4

)︁
+ 𝑘𝛾

4 −𝐵𝑘,𝑘(0, 𝑐𝑖)

+
𝑘∑︁

𝑗=2
(−1)𝑗

(︂
𝑘

𝑗

)︂
(𝑗 − 2)! 2𝑗−3

𝑐𝑗−1
𝑖

)︂

+
∑︁
𝑖,𝑗

𝑤𝑖 𝑤𝑗
𝑇𝑖,𝑗

8 ln
⃒⃒⃒⃒
𝑇𝑖,𝑗

4

⃒⃒⃒⃒ ]︂
.

(4.13)
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with

𝑐𝑖 = ||𝑠𝑖||22 , 𝑇𝑖,𝑗 =
𝑛∑︁

𝑘=1
(𝑠(𝑘)

𝑖 − 𝑠
(𝑘)
𝑗 )2 .

Proof. The proof is carried out by investigating which terms in the inte-
grals over 𝑤 · 𝐼1, 𝑤 · 𝐼2, and 𝑤 · 𝐼3 converge as 𝑏 goes to ∞ (they will be
usually denoted by 𝑟) and then making use of the fact that the mean of
the Dirac mixture is 0.

Consideration of 𝑤 · 𝐼1
For the integral of 𝑤 · 𝐼1, we first consider the case of 𝑛 = 2 using (4.7)
and observe that

0 =
(︂

𝐴2(𝑏)− 𝑏2 − ln(1 + 𝑏2)
2

)︂
=
(︂

𝐴2(𝑏)− 𝑏2 − ln(𝑏−2 + 1)− ln(𝑏2)
2

)︂
= lim

𝑏→∞

(︂
𝐴2(𝑏)− 𝑏2 − ln(𝑏2)

2

)︂
⏟  ⏞  

𝑟1,1(𝑏):=

,

Using (4.7) again, we can rewrite the integral of 𝑤 · 𝐼1 for even dimension
𝑛 ≥ 4 (and thus 𝑘 ≥ 2) as

𝜋−𝑛/2
∫︁

𝑤(𝑏) · 𝐼1(𝑏) d𝑏 =𝐴2𝑘(𝑏)

=2𝑘

(︃
𝐴2(𝑏)

2 −
𝑘−1∑︁
𝑖=2

𝑏2𝑖(
√

1 + 𝑏2)2−2𝑖

2𝑖(2𝑖− 2)

)︃

− 𝑏2𝑘(
√

1 + 𝑏2)2−2𝑘

(2𝑘 − 2)

=2𝑘

(︃
1
4
(︀
𝑏2 − ln(1 + 𝑏2)

)︀
−

𝑘−1∑︁
𝑖=2

𝑏2𝑖(1 + 𝑏2)1−𝑖

2𝑖(2𝑖− 2)

)︃

− 𝑏2𝑘(1 + 𝑏2)1−𝑘

(2𝑘 − 2)
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For a later term by term investigation, we will make use of the following
identities. First, by letting 𝑖 >= 2, we obtain

𝑏2𝑖(1 + 𝑏2)1−𝑖

2𝑖(2𝑖− 2) − 𝑏2

2𝑖(2𝑖− 2) =𝑏2𝑖(1 + 𝑏2)− 𝑏2(1 + 𝑏2)𝑖

2𝑖(2𝑖− 2)(1 + 𝑏2)𝑖

=
𝑏2𝑖 + 𝑏2𝑖+2 −

[︁
𝑏2∑︀𝑖

𝑗=0
(︀

𝑖
𝑗

)︀
𝑏2𝑗
]︁

2𝑖(2𝑖− 2)(1 + 𝑏2)𝑖

= 𝑏2𝑖(1− 𝑖)
2𝑖(2𝑖− 2)(1 + 𝑏2)𝑖

+𝒪
(︂

1
𝑏2

)︂
=− 𝑏2𝑖

4𝑖(1 + 𝑏2)𝑖
+𝒪

(︂
1
𝑏2

)︂
,

(4.14)

which converges to −(4𝑖)−1 as 𝑏→∞. The second consideration is similar

𝑏2𝑘(1 + 𝑏2)1−𝑘

(2𝑘 − 2) − 𝑏2

2𝑘 − 2 =𝑏2𝑘(1 + 𝑏2)− 𝑏2(1 + 𝑏2)𝑘

(2𝑘 − 2)(1 + 𝑏2)𝑘

= 𝑏2𝑘(1− 𝑘)
(2𝑘 − 2)(1 + 𝑏2)𝑘

+𝒪
(︂

1
𝑏2

)︂
=− 𝑏2𝑘

2(1 + 𝑏2)𝑘
+𝒪

(︂
1
𝑏2

)︂ (4.15)

which converges to −0.5 as 𝑏→∞. Now, we are ready to consider 𝐴2𝑘(𝑏).
We make use of our result for 𝐴2(𝑏) and rewrite the terms as

0 =
(︂

𝐴2𝑘(𝑏)− 2𝑘

(︃
1
4
(︀
𝑏2 − ln(1 + 𝑏2)

)︀
−

𝑘−1∑︁
𝑖=2

𝑏2𝑖(1 + 𝑏2)1−𝑖

2𝑖(2𝑖− 2)

)︃

+ 𝑏2𝑘(1 + 𝑏2)1−𝑘

(2𝑘 − 2)

)︂
= lim

𝑏→∞

(︂
𝐴2𝑘(𝑏)− 𝑘

2
(︀
𝑏2 − ln(𝑏2)

)︀
+ 2𝑘

𝑘−1∑︁
𝑖=2

𝑏2𝑖(1 + 𝑏2)1−𝑖

2𝑖(2𝑖− 2)

+ 𝑏2𝑘(1 + 𝑏2)1−𝑘

(2𝑘 − 2)

)︂
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Now, we use Lemma 4.9 in order to obtain

0 = lim
𝑏→∞

(︂
𝐴2𝑘(𝑏)− 𝑘

2
(︀
𝑏2 − ln(𝑏2)

)︀
+ 2𝑘

𝑘−1∑︁
𝑖=2

𝑏2𝑖(1 + 𝑏2)1−𝑖

2𝑖(2𝑖− 2)

+ 𝑏2𝑘(1 + 𝑏2)1−𝑘

(2𝑘 − 2)

)︂
= lim

𝑏→∞

(︂
𝐴2𝑘(𝑏) + 𝑏2

2 −
𝑘

2 ln(𝑏2)

+ 2𝑘

𝑘−1∑︁
𝑖=2

(︂
𝑏2𝑖(1 + 𝑏2)1−𝑖

2𝑖(2𝑖− 2) − 𝑏2

2𝑖(2𝑖− 2)

)︂
+
(︂

𝑏2𝑘(1 + 𝑏2)1−𝑘

(2𝑘 − 2) − 𝑏2

2𝑘 − 2

)︂
− 𝑏2

(︃
𝑘

2 −
1

2𝑘 − 2 − 2𝑘

𝑘−1∑︁
𝑖=2

1
2𝑖(2𝑖− 2) −

1
2

)︃
⏟  ⏞  

=0

)︂

Due to the convergence (as 𝑏→∞) of (4.14) and (4.15) this simplifies to

0 = lim
𝑏→∞

(︃
𝐴2𝑘(𝑏)− 1

2
(︀
𝑏2 − 𝑘 ln(𝑏2)

)︀
− 𝑘

𝑘−1∑︁
𝑖=2

1
2𝑖
− 1

2

)︃
⏟  ⏞  

𝑟1,𝑘(𝑏):=

.

This formula for 𝑟1,𝑘 only holds for 𝑘 > 1, because there is no summand
0.5 in 𝑟1,1. However, it can be formulated in its full generality as follows

𝑟1,𝑘(𝑏) = 𝐴2𝑘(𝑏)− 1
2
(︀
𝑏2 − 𝑘 ln(𝑏2)

)︀
− 𝑘

𝑘∑︁
𝑖=2

1
2𝑖

.

And we can rewrite 𝐴2𝑘(𝑏) as

𝐴2𝑘(𝑏) = 𝑏2

2 −
𝑘

2 ln(𝑏2) + 𝑘
𝑘∑︁

𝑖=2

1
2𝑖

+ 𝑟1,𝑘(𝑏) . (4.16)
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Consideration of 𝑤 · 𝐼2
For the integral of 𝑤 · 𝐼2, we first investigate the asymptotic behavior
of 𝐵0,𝑑(𝑏, 𝑐) (defined as in (4.8)) for 𝑑 ≥ 2 as 𝑏 → ∞. This converges
according to

0 = lim
𝑏→∞

(︂
𝐵0,𝑑(𝑏, 𝑐)− (𝑑− 2)! 2𝑑−3

𝑐𝑑−1

)︂
⏟  ⏞  

𝑟2,𝑘,𝑑(𝑏,𝑐):=

and thus we have

𝐵0,𝑑(𝑏, 𝑐) = (𝑑− 2)! 2𝑑−3

𝑐𝑑−1 + 𝑟2,𝑘,𝑑(𝑏, 𝑐) .

Next, we consider 𝐵0,1(𝑏, 𝑐). Using (A.2) we obtain

0 = lim
𝑏→∞

(︂
𝐵0,1(𝑏, 𝑐) + 1

4 ln
(︂

𝑐

2 + 4𝑏2

)︂
+ 𝛾

4

)︂
= lim

𝑏→∞

(︂
𝐵0,1(𝑏, 𝑐) + 1

4

(︂
ln
(︂

𝑐

2𝑏−2 + 4

)︂
− ln(𝑏2)

)︂
+ 𝛾

4

)︂
= lim

𝑏→∞

(︂
𝐵0,1(𝑏, 𝑐) + 1

4

(︁
ln
(︁ 𝑐

4

)︁
− ln(𝑏2)

)︁
+ 𝛾

4

)︂
⏟  ⏞  

𝑟2,𝑘,1(𝑏,𝑐):=

where 𝛾 is the Euler-Mascheroni constant (𝛾 ≈ 0.5772). This yields

𝐵0,1(𝑏, 𝑐) = −1
4

(︁
ln
(︁ 𝑐

4

)︁
− ln(𝑏2) + 𝛾

)︁
+ 𝑟2,𝑘,1(𝑏, 𝑐) .

For 𝐵0,0(𝑏, 𝑐), we use a similar approach additionally making use of (4.9)
and obtain

0 = lim
𝑏→∞

(︂
𝐵0,0(𝑏, 𝑐)− 2 + 4𝑏2 − 𝑐

8 − 𝑐

8

(︂
ln
(︂

𝑐

2 + 4𝑏2

)︂
+ 𝛾

)︂)︂
= lim

𝑏→∞

(︂
𝐵0,0(𝑏, 𝑐)− 1

4 −
𝑏2

2 −
𝑐

8

(︁
ln
(︁ 𝑐

4

)︁
− ln(𝑏2)− 1 + 𝛾

)︁)︂
⏟  ⏞  

𝑟2,𝑘,0(𝑏,𝑐):=

,
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which yields

𝐵0,0(𝑏, 𝑐) = 1
4 + 𝑏2

2 + 𝑐

8

(︁
ln
(︁ 𝑐

4

)︁
− ln(𝑏2)− 1 + 𝛾

)︁
+ 𝑟2,𝑘,0(𝑏, 𝑐)

We use these three observations to define the function

𝑟2,𝑘(𝑏, 𝑐) := 1
2𝑘

𝑘∑︁
𝑗=0

(−1)𝑗

(︂
𝑘

𝑗

)︂
𝑟2,𝑘,𝑗(𝑏, 𝑐) ,

which converges to 0 as 𝑏→∞. This is used to rewrite 𝐵𝑘,𝑘(𝑏, 𝑐) as

𝐵𝑘,𝑘(𝑏, 𝑐) = 1
2𝑘

(︂
1
4 + 𝑏2

2 + 𝑐

8

(︁
ln
(︁ 𝑐

4

)︁
− ln(𝑏2)− 1 + 𝛾

)︁
+ 𝑘

4

(︁
ln
(︁ 𝑐

4

)︁
− ln(𝑏2) + 𝛾

)︁
+

𝑘∑︁
𝑗=2

(−1)𝑗

(︂
𝑘

𝑗

)︂
(𝑑− 2)! 2𝑑−3

𝑐𝑑−1

)︂
+ 𝑟2,𝑘(𝑏, 𝑐)

= 1
2𝑘

(︂
1
4 + 𝑏2

2 + 𝑐 + 2𝑘

8

(︁
ln
(︁ 𝑐

4

)︁
− ln(𝑏2) + 𝛾

)︁
− 𝑐

8

+
𝑘∑︁

𝑗=2
(−1)𝑗

(︂
𝑘

𝑗

)︂
(𝑗 − 2)! 2𝑗−3

𝑐𝑗−1

)︂
+ 𝑟2,𝑘(𝑏, 𝑐) .

(4.17)

Consideration of 𝑤 · 𝐼3
For the integral of 𝑤 · 𝐼3, we investigate the asymptotic behavior of 𝐶(𝑏, 𝑐)
as defined in (4.6) for 𝑏→∞. For the summand involving the exponential
function, we make use of (4.9) and obtain

lim
𝑏→∞

(︂
𝑏2

2 exp
(︂
−1

2
𝑐

2𝑏2

)︂
−
(︂

𝑏2

2 −
𝑐

8

)︂)︂
= 0 .

For treating the summand involving the exponential integral, we make use
of (A.2) and obtain

lim
𝑏→∞

(︂
𝑐

8 Ei
(︂
−1

2
𝑐

2𝑏2

)︂
− 𝑐

8

(︁
𝛾 + ln

⃒⃒⃒ 𝑐

4𝑏2

⃒⃒⃒)︁)︂
= 0 .
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We define

𝑟3,𝑘(𝑏, 𝑐) := 𝐶(𝑏, 𝑐)−
(︂

𝑏2

2 −
𝑐

8

)︂
− 𝑐

8

(︁
𝛾 + ln

⃒⃒⃒ 𝑐

4𝑏2

⃒⃒⃒)︁
= 𝐶(𝑏, 𝑐)− 𝑏2

2 −
𝑐

8

(︁
𝛾 − 1 + ln

⃒⃒⃒ 𝑐
4

⃒⃒⃒
− ln(𝑏2)

)︁
.

A consequence of the preceding discussion is the fact that 𝑟3,𝑘(𝑏, 𝑐) con-
verges to 0 as 𝑏 → ∞. This definition is now used to rewrite 𝐶(𝑏, 𝑐) as

𝐶(𝑏, 𝑐) = 𝑏2

2 + 𝑐

8

(︁
𝛾 − 1 + ln

⃒⃒⃒ 𝑐
4

⃒⃒⃒
− ln

(︀
𝑏2)︀)︁+ 𝑟3,𝑘(𝑏, 𝑐) . (4.18)

Computing the Distance Measure
For computation of the entire distance measure, we make use of the fact
that both means are equal, i.e., our sample set has mean 0. Using the
definition of 𝑇𝑖,𝑗 and 𝑐𝑖 as above, we obtain

∑︁
𝑖,𝑗

𝑤𝑖𝑤𝑗 𝑇𝑖,𝑗 =
∑︁
𝑖,𝑗

𝑤𝑖𝑤𝑗 ||𝑠𝑖 − 𝑠𝑗 ||22 =
∑︁
𝑖,𝑗

𝑤𝑖𝑤𝑗

𝑛∑︁
𝑑=0

(︁
𝑠

(𝑑)
𝑖 − 𝑠

(𝑑)
𝑗

)︁2

=
∑︁
𝑖,𝑗

𝑤𝑖𝑤𝑗

𝑛∑︁
𝑑=0

(︁
𝑠

(𝑑)
𝑖

)︁2

⏟  ⏞  
𝑐𝑖

−2𝑠
(𝑑)
𝑖 𝑠

(𝑑)
𝑗 +

(︁
𝑠

(𝑑)
𝑗

)︁2

⏟  ⏞  
𝑐𝑗

=
∑︁

𝑖

𝑤𝑖 𝑐𝑖 +
∑︁

𝑗

𝑤𝑗 𝑐𝑗 (4.19)

−
𝑛∑︁

𝑑=0
2
(︃∑︁

𝑖

𝑤𝑖 𝑠
(𝑑)
𝑖

)︃
⏟  ⏞  

0

·

⎛⎝∑︁
𝑗

𝑤𝑗 𝑠
(𝑑)
𝑗

⎞⎠
⏟  ⏞  

0

= 2
∑︁

𝑖

𝑤𝑖 𝑐𝑖 .

Now, (4.16), (4.17), and (4.18) can be brought together, which finally
results in

𝐷 =
∫︁ ∞

0
𝑤(𝑏) (𝐼1(𝑏)− 2𝐼2(𝑏) + 𝐼3(𝑏)) d𝑏
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= 𝜋𝑘 lim
𝑏→∞

(𝐴2𝑘(𝑏)− 2𝑘+1
𝑚∑︁

𝑖=1
𝑤𝑖(𝐵𝑘,𝑘(𝑏, 𝑐𝑖)−𝐵𝑘,𝑘(0, 𝑐𝑖))

+
∑︁
𝑖,𝑗

𝑤𝑖𝑤𝑗 𝐶(𝑏, 𝑇𝑖,𝑗)) .

Leaving out 𝑟𝑖,𝑘 as they converge to zero anyway yields

𝜋−𝑘 𝐷 = lim
𝑏→∞

[︂(︃
𝑏2

2 −
𝑘

2 ln(𝑏2) + 𝑘

𝑘∑︁
𝑖=2

1
2𝑖

)︃

− 2
𝑚∑︁

𝑖=1
𝑤𝑖

(︂
1
4 + 𝑏2

2 + 𝑐𝑖 + 2𝑘

8

(︁
ln
(︁𝑐𝑖

4

)︁
− ln(𝑏2) + 𝛾

)︁
− 𝑐𝑖

8 −𝐵𝑘,𝑘(0, 𝑐𝑖) +
𝑘∑︁

𝑗=2
(−1)𝑗

(︂
𝑘

𝑗

)︂
(𝑗 − 2)! 2𝑗−3

𝑐𝑗−1
𝑖

)︂

+
∑︁
𝑖,𝑗

𝑤𝑖 𝑤𝑗

(︂
𝑏2

2 + 𝑇𝑖,𝑗

8

(︂
𝛾 − 1 + ln

⃒⃒⃒⃒
𝑇𝑖,𝑗

4

⃒⃒⃒⃒
− ln

(︀
𝑏2)︀)︂)︂]︂ .

Some of the terms cancel out immediately

𝜋−𝑘 𝐷 = lim
𝑏→∞

[︂
𝑘

𝑘∑︁
𝑖=2

1
2𝑖

− 2
𝑚∑︁

𝑖=1
𝑤𝑖

(︂
1
4 + 𝑐𝑖

8

(︁
ln
(︁𝑐𝑖

4

)︁
− ln(𝑏2) + 𝛾

)︁
+ 𝑘

4

(︁
ln
(︁𝑐𝑖

4

)︁
+ 𝛾
)︁
− 𝑐𝑖

8 −𝐵𝑘,𝑘(0, 𝑐𝑖)

+
𝑘∑︁

𝑗=2
(−1)𝑗

(︂
𝑘

𝑗

)︂
(𝑗 − 2)! 2𝑗−3

𝑐𝑗−1
𝑖

)︂

+
∑︁
𝑖,𝑗

𝑤𝑖 𝑤𝑗

(︂
𝑇𝑖,𝑗

8

(︂
𝛾 − 1 + ln

⃒⃒⃒⃒
𝑇𝑖,𝑗

4

⃒⃒⃒⃒
− ln

(︀
𝑏2)︀)︂)︂]︂ .
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Now, (4.19) is applied.

𝜋−𝑘 𝐷 = lim
𝑏→∞

[︂
𝑘

𝑘∑︁
𝑖=2

1
2𝑖
− 2

𝑚∑︁
𝑖=1

𝑤𝑖

(︂
1
4 + 𝑐𝑖

8

(︁
ln
(︁𝑐𝑖

4

)︁
− ln(𝑏2) + 𝛾

)︁
+ 𝑘

4

(︁
ln
(︁𝑐𝑖

4

)︁
+ 𝛾
)︁
−𝐵𝑘,𝑘(0, 𝑐𝑖)

− 𝑐𝑖

8 +
𝑘∑︁

𝑗=2
(−1)𝑗

(︂
𝑘

𝑗

)︂
(𝑗 − 2)! 2𝑗−3

𝑐𝑗−1
𝑖

)︂

+ 2
𝑚∑︁

𝑖=1
𝑤𝑖

(︁𝑐𝑖

8
(︀
𝛾 − 1− ln

(︀
𝑏2)︀)︀)︁+

∑︁
𝑖,𝑗

𝑤𝑖 𝑤𝑗
𝑇𝑖,𝑗

8 ln
⃒⃒⃒⃒
𝑇𝑖,𝑗

4

⃒⃒⃒⃒ ]︂
.

Once again several terms cancel out, which yields the desired result

𝜋−𝑘 𝐷 =
[︂
𝑘

𝑘∑︁
𝑖=2

1
2𝑖
− 2

𝑚∑︁
𝑖=1

𝑤𝑖

(︂
1
4 + 𝑐𝑖 + 2𝑘

8 ln
(︁𝑐𝑖

4

)︁
+ 𝑘𝛾

4 −𝐵𝑘,𝑘(0, 𝑐𝑖)

+
𝑘∑︁

𝑗=2
(−1)𝑗

(︂
𝑘

𝑗

)︂
(𝑗 − 2)! 2𝑗−3

𝑐𝑗−1
𝑖

)︂

+
∑︁
𝑖,𝑗

𝑤𝑖 𝑤𝑗
𝑇𝑖,𝑗

8 ln
⃒⃒⃒⃒
𝑇𝑖,𝑗

4

⃒⃒⃒⃒ ]︂
.

The result might seem somewhat surprising because choosing a sample
set without zero mean and computing the distance measure according to
(4.13) still yields a finite result. However, this result would not be the true
distance measure, because it does not include the terms which disappeared
when using the fact that the sample mean is zero. Thus, this result can
not be applied to computing the distance measure for cases without zero
mean of the deterministic sample set.

4.7 Evaluation and Discussion

In order to evaluate the proposed approximation, we first give an example
of the differences between offline sampling and online sampling. This is

72



4.7 Evaluation and Discussion

simply done by approximating a Gaussian mixture with both approaches.
Then, the quality of the sampling scheme is investigated based on an
approximate propagation example.

4.7.1 Examples for Online and Offline Sampling

We have performed an approximation of two dimensional Gaussian mixtures
in three scenarios. These scenarios were chosen in order to visualize the
impact of the overlap on the actual approximation. In all scenarios, a
three component Gaussian mixture was used. The covariance matrices of
the respective components are given by

Σ1 =
(︂

3 0
0 0.1

)︂
, Σ2 = R(𝜃1) Σ1 R(𝜃1)⊤ , Σ2 = R(𝜃2) Σ1 R(𝜃2)⊤ ,

where 𝑅(𝜃) is a rotation matrix (with angle 𝜃) and 𝜃1 = 60∘, 𝜃2 = 120∘.
These covariance matrices were the same for all three scenarios. However,
different means were chosen in order to visualize how overlapping affects
the approximation. For the first case, all means were chosen 𝜇1 = 𝜇2 =
𝜇3 = (0, 0)⊤. In the second case the means were chosen as 𝜇1 = (0, 1)⊤,
𝜇2 = R(60∘) · (0, 1)⊤, and 𝜇3 = R(−60∘) · (0, 1)⊤. Finally, in the third
scenario, the means were chosen as 𝜇1 = (0, 2)⊤, 𝜇2 = R(60∘) · (0, 2)⊤,
and 𝜇3 = R(−60∘) · (0, 2)⊤.

The approximation results are visualized in Figure 4.4. The online variant
was generated with 51 equally weighted samples using the fminunc method
in Matlab, which uses a trust region algorithm. For the offline approach,
we approximated each Gaussian mixture component individually. This
was done by computing an optimal approximation (with 17 samples) of a
standard Gaussian. Multiplying the matrix square root (obtained by using
the Cholesky decomposition) of the covariance matrix and a subsequent
repositioning resulted in the desired approximation of each component.
At first glance, the offline approximation might seem unsatisfying, because
its coverage of the state-space looks less homogeneous. However, it still
results in a good approximation of the underlying density as will be seen
in the following evaluation.
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(a) Means 𝜇1 = 𝜇2 = 𝜇3 = (0, 0)⊤.

(b) Means 𝜇1 = (0, 1)⊤, 𝜇2 = R(60∘) · (0, 1)⊤, and 𝜇3 = R(−60∘) · (0, 1)⊤.

(c) Means 𝜇1 = (0, 2)⊤, 𝜇2 = R(60∘) · (0, 2)⊤, and 𝜇3 = R(−60∘) · (0, 2)⊤.

Figure 4.4.: Comparing the online approach (left column) with the offline approach
(right column).
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4.7.2 Evaluation of Uncertainty Propagation

In the following, we investigate the quality of the LCD approximation by
applying it to approximate propagation. That is, we evaluate the quality
of computing E(𝑔(𝑥)). As comparison methods, we chose random sampling
and the randomized UKF. This choice is due to the fact that these methods
have a similarly adaptable number of samples and thus do not suffer from
the curse of dimensionality in the same way as the Gauss-Hermite Kalman
filter or other grid based numerical integration techniques.

For evaluating the propagation of uncertainty, we considered the function
𝑔(𝑥) = atan2(𝑥(2), 𝑥(1))7, where atan2 is the quadrant aware inverse
tangent given by

atan2(𝑦, 𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan(𝑦 · 𝑥−1) 𝑥 > 0 ,

arctan(𝑦 · 𝑥−1 + 𝜋) 𝑦 ≥ 0 , 𝑥 < 0 ,

arctan(𝑦 · 𝑥−1 − 𝜋) 𝑦 < 0 , 𝑥 < 0 ,

𝜋/2 𝑦 > 0 , 𝑥 = 0 ,

−𝜋/2 𝑦 < 0 , 𝑥 = 0 ,

undefined 𝑥 = 𝑦 = 0 .

This function returns the angle between the positive real axis and the
line that connects 0 with (𝑥, 𝑦)⊤. Thus, it is typically used in bearings-
only tracking applications (e.g. in [14]). Furthermore, 𝑥 is assumed to
be a Gaussian 𝒩 (𝜇, C𝑖) random vector with 𝜇 = (1, 1)⊤. Two noise
scenarios are considered. In the first scenario, the covariance is given by
the identity matrix C1 = I . In the second scenario the covariance is given
by C2 = diag(3, 0.5). The reason for using two scenarios is the fact that
we want to evaluate both, the online and the offline approach.

The evaluation is carried out as follows. The LCD based approximation
of a standard Gaussian is obtained by minimizing the distance measure.
After a repositioning to the desired mean 𝜇, the resulting sample set can
be directly used in the first scenario. For the second scenario, each sample
is multiplied with a matrix square-root of C2 before repositioning. Thus,
the first scenario can be thought of as an online approximation approach
whereas the second scenario represents the offline approximation.
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(a) Scenario 1 (Online): C = I.
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(b) Scenario 2 (Offline): C = diag(3, 0.5).

Figure 4.5.: Relative error of propagation for an online (Scenario 1) and an offline
(Scenario 2) approximation scenario using a random sampling based
approach (green), the randomized UKF (orange), and the LCD based
approximation approach (blue). Dashed lines indicate the 0.5𝜎 bounds.

The result of the optimization procedure that we use for obtaining the
estimate of a standard Gaussian is dependent on the initial values provided
to the optimization procedure. Furthermore, the optimum is invariant
under rotation. For this reason, we use different randomly sampled initial
values for the optimizer in each run. These initial values are obtained
by random sampling from a standard Gaussian. The randomized UKF
involves two random sampling steps within each iteration. First, an
orthogonal matrix is sampled for randomly rotating an UKF sample set.
Second, the UKF sampling set is rescaled randomly.

The results were generated using 100 simulation runs. Ground-truth was
obtained using the integral2 function in Matlab. The relative error is
visualized in Figure 4.5. As can be seen, all three approaches converge.
However, the LCD based approach has the fastest speed of convergence
while simultaneously having the smallest variance. Its main advantage is
not limited to this fast convergence speed. More important is the fact that
the LCD samples are precomputed in advance which results in a lower
computational cost for practical applications.

76



4.8 Summary and Discussion

4.8 Summary and Discussion

This chapter addressed the problem of approximating Gaussians (and their
mixtures) by a discrete distribution defined on the same underlying domain.
This approximation is of particular interest for stochastic filtering because
numerical handling of continuous densities is computationally burdensome.
Particularly, linear regression Kalman filters benefit from the proposed
approach. The entire approximation procedure is based on obtaining a
discrete sample set by minimizing the distance measure from the previous
chapter. This is done by a numerical optimization procedure, and thus,
requires multiple evaluations of the proposed distance measure.

First, we derived the distance measure for the general case of Gaussian
mixtures. Its evaluation is not possible in closed-form and, up to now, it
required the choice of a maximum kernel size. To simplify the computation,
this chapter proposed a better representation of the distance measure when
comparing one single Gaussian with a discrete sample set (which also can
be generalized to other cases). Furthermore, it was shown that the choice
of a maximum kernel size can be avoided in the case of equal means, which
motivates an optimization procedure considering symmetry. Applications
in scenarios with real-time requirements and thus not allowing for numerical
optimization can be considered by precomputing an approximation of the
standard Gaussian and then multiplying with a suitable matrix square-
root in order to achieve the desired variance. The evaluations show
both approaches to outperform similar state-of-the art approximation
techniques.

For future work, it is important to derive error bounds based on the LCD
distance measure for the approximate integration procedure. This gives
rise to a conceptual advantage of the approach proposed here compared
to randomized approaches, which is the fact that the value of the distance
measure is known in advance, and thus, the error is not dependent on
the outcome of a randomized procedure. The consequence for the use of
linear regression Kalman filters based on the LCD approximation would be
the ability to obtain deterministic performance guarantees of approximate
integration in advance by choosing a sufficient number of samples.
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5.1 Introduction

So far, our consideration of nonlinear systems focused on considering
nonlinearities of the system dynamics. As most real world systems exhibit
nonlinear dynamics, the considered scenario was of particular importance.
In this chapter, we consider an even more complicated situation by not
only assuming nonlinear system dynamics but also nonlinear underlying
state spaces.

This is motivated by a big number of applications because many state
estimation problems, particularly in robotics or mixed and augmented
reality, usually estimate values that are defined on a nonlinear domain. In
that instance, estimation in periodic state spaces is of particular impor-
tance. Examples of this type of estimation problems involve estimating
positions on a ball, states of angular joints, or orientations of objects.
In a prepared environment, costly high precision sensors can be used for
certain specialized applications. However, the widespread deployment of
poor sensors and novel robotic perception applications that involve high
uncertainty motivates the development of novel algorithms to deal with
these scenarios.

Whenever low levels of uncertainty are involved, estimation algorithms can
be derived from the linear case by making use of local linearity. That is, a
differentiable manifold can be locally approximated by a linear space. The
practical consequence of this fact is a justification for using different types
of Kalman Filters for estimating quantities such as angles or orientations.
Handling of periodic boundaries is usually done by ad-hoc fixes, such
as an intelligent repositioning of measurements. Alternatively, nonlinear
projection [56] is used in order to ensure that domain restrictions are
satisfied.

However, once high uncertainties are involved, none of these approaches
seems promising because they fail to take periodicity into account in
their distribution assumption.This also explains why assuming a Gaussian
distribution at any point is inherently wrong. One of its main motivations,
the central limit theorem, does not hold on (and is not formulated for)
periodic domains such as the circle or the hypersphere. In case of the
circle, the true limit distribution might be a wrapped normal, which arises
by wrapping the one-dimensional Gaussian probability density around
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an interval of length 2𝜋, or equivalently by taking a Gaussian random
variable modulo 2𝜋. Thus, taking the summation scheme from the central
limit theorem modulo 2𝜋 yields convergence (in distributional sense) to a
wrapped normal distribution.

Therefore, we use results from directional statistics [89, 49] for a correct
consideration of the underlying domain. This chapter contributes to
periodicity-aware estimation algorithms by proposing a novel deterministic
sampling scheme for hyperspherical antipodally symmetric distributions
based on. The proposed algorithm is based on moment matching and can be
thought of as a hyperspherical equivalent of the UKF. This sampling scheme
is used to develop a novel filter based on the Bingham distribution, which
is suitable for estimation on the hypersphere. In particular, we focus on
orientation estimation, where orientation is represented by unit quaternions.
One of the challenges involved in using the Bingham distribution is the
computation of its normalization constant. We address this challenge
by making use of a recent result proposed in [77] and show that the
optimization problem involved always converges when Newton’s method is
used. The proposed methodology is based on the contributions made in
[140], [139].

In the remainder of this chapter, we first revisit some existing works on
directional statistics and its applications to stochastic filtering. This is
followed by an introduction to quaternion-based orientation representation
and to the Bingham distribution. In the succeeding two sections, the
actual contribution is presented, which is a sampling scheme for antipodally
symmetric distributions on hyperspheres and a filter making use of this
sampling scheme. Finally, we evaluate the entire framework discussed in
this chapter.

5.2 Related Approaches

Directional statistics has been used in a variety of applications. These
involve (but are not limited to) biology [8], geology [87], the estimation of
wind directions [17], seasonal data in political and social sciences [33], and
time pattern analysis in crimes [15]. Applications of directional statistics
involve a number of different probability distributions. From a theoretical
viewpoint, the wrapped normal distribution, which was used for the first
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time in [106], is of particular interest. It not only appears as a limit
distribution, but its p.d.f. is also a solution of the heat equation on
the circle. Unfortunately, it is not closed under multiplication. That is,
the product of two wrapped normal densities is not again a (possibly
unnormalized) wrapped normal density.

Thus, the von Mises distribution (originally proposed in [120]) is often used
as an alternative on the unit circle. Products of the von Mises densities are
not only again (unnormalized) von Mises densities, but the distribution
also has the maximum entropy property among all circular distributions
given the first circular moment. The von Mises distribution can also be
generalized to higher dimensional hyperspheres. This generalization is
called the von Mises-Fisher distribution. It arises naturally by considering
a Gaussian distribution with a mean given by a vector of unit length.
The Bingham distribution also arises by restricting a Gaussian density to
unit length. However, contrary to the von Mises-Fisher case, the original
Gaussian distribution has zero mean. For this reason, a Bingham density
usually has two modes.

Stochastic filtering based on directional statistics is an emerging area of
research. To the best of the authors’ knowledge, the first filters using
directional statistics date back to the 1970s, e.g. the filter proposed in
[86]. Later, a filter based on the von Mises-Fisher distribution with an
identity system model was derived in [18]. More recently, Azmani [5]
proposed a filter based on the von Mises distribution that also assumed
an identity system model and direct measurements. A filter considering
more complicated models using deterministic sampling of three samples
was proposed in [143]. This sampling scheme was extended to the use of
five samples in [144].

An application of the Bingham distribution is discussed in [37]. A filter
was proposed and independently developed in [149], [36], [35]. These
filters either assume an identity system model or, as done in [36], propose
an orientational equivalent to a constant velocity model. In that work,
random sampling is used to approximately propagate an uncertain quantity
defined on the hypersphere. In the following, we describe a methodology
for avoiding the use of random sampling in that case.

Handling of the Bingham normalization constant, which is a hypergeoe-
metric function of matrix argument [45], [94], is discussed in several works.
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A very general method for computing hypergeometric functions of matrix
argument was proposed in [66]. In [36], precomputed lookup tables are
used for handling the normalization constant and performing parameter
estimation. Use of holonomic gradient descent is proposed in [95], [69].

5.3 Quaternion-Based Orientation
Representation

Quaternions were introduced by William Hamilton and are a convenient
way of representing orientations in three dimensional space. In this section,
we will give a brief overview of operations on quaternions and how they
can be used for orientation representation. A more thorough discussion
can be found in [73].

A quaternion can be thought of as a generalization of a complex number.
In addition to the complex unit 𝑖, it involves two further units 𝑗 and 𝑘, all
of which do not commute when multiplied with one of the others. However,
they are connected by the property

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 . (5.1)

Thus, a quaternion is given using a tuple of 4 real numbers as

𝑎1 + 𝑎2 𝑖 + 𝑎3 𝑗 + 𝑎4 𝑘 ,

which will be denoted by a four dimensional vector in this work (𝑎 in this
case).

5.3.1 Fundamental Properties

Summation of quaternions corresponds to addition of two vectors in R4.
Multiplication of quaternions, in this work denoted by ⊕, is a generalization
of multiplication of complex numbers and can be obtained from (5.1) as⎛⎜⎜⎝

𝑎1
𝑎2
𝑎3
𝑎4

⎞⎟⎟⎠⊕
⎛⎜⎜⎝

𝑏1
𝑏2
𝑏3
𝑏4

⎞⎟⎟⎠ :=

⎛⎜⎜⎝
𝑎1𝑏1 − 𝑎2𝑏2 − 𝑎3𝑏3 − 𝑎4𝑏4
𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎3𝑏4 − 𝑎4𝑏3
𝑎1𝑏3 − 𝑎2𝑏4 + 𝑎3𝑏1 + 𝑎4𝑏2
𝑎1𝑏4 + 𝑎2𝑏3 − 𝑎3𝑏2 + 𝑎4𝑏1

⎞⎟⎟⎠ .
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The product of quaternions is also known as the Hamilton product in
reference to its inventor. Together with these two operations quaternions
form a skew field, which is usually denoted by H. Another useful operation
is the conjugation of a quaternion 𝑎, which will be denoted by 𝑎*. Once
again, this is a generalization of the conjugation of complex numbers. It is
given by

𝑎* = (𝑎1,−𝑎2,−𝑎3,−𝑎4)⊤ .

Using this definition, we can define a norm as
√

𝑎* ⊕ 𝑎 and it can be shown
that √︀

𝑎* ⊕ 𝑎 =
√︁

𝑎2
1 + 𝑎2

2 + 𝑎2
3 + 𝑎2

4 .

That is, the quaternion norm corresponds to the Euclidean norm ||𝑎||. The
inverse of a quaternion, denoted as 𝑎−1, is given by

𝑎−1 = 𝑎*

||𝑎||2
.

This inverse is unique even though multiplication is not commutative. The
power of a quaternion 𝑎 with a real exponent 𝑐 ∈ R is defined as

𝑎𝑐 = ||𝑎||𝑐

⎛⎜⎜⎝
⎛⎜⎜⎝

cos(𝑐 · 𝛼)
0
0
0

⎞⎟⎟⎠+ 𝑏

||𝑏||
sin(𝑐 · 𝛼)

⎞⎟⎟⎠ ,

where 𝑏 = (0, 𝑎2, 𝑎3, 𝑎4)⊤ and 𝛼 is obtained as the solution of

cos(𝛼) = 𝑎1

||𝑎||
, sin(𝛼) = ||𝑏||

||𝑎||
.

The multiplicative group of quaternions is also a matrix group. Conse-
quently, every quaternion 𝑎 can be represented as a real matrix

Q𝑎 =

⎛⎜⎜⎝
𝑎1 𝑎2 𝑎3 𝑎4
−𝑎2 𝑎1 −𝑎4 𝑎3
−𝑎3 𝑎4 𝑎1 −𝑎2
−𝑎4 −𝑎3 𝑎2 𝑎1

⎞⎟⎟⎠ (5.2)

84



5.3 Quaternion-Based Orientation Representation

and consequently Q⊤
𝑎 is the matrix representation of 𝑎*. Using this matrix

multiplication, we can rewrite a Hamilton product of 𝑎 and 𝑏 in the
following way

𝑎⊕ 𝑏 = D ·Q𝑎 ·D · 𝑏 , (5.3)

where Q𝑎 is as defined above and D = diag(1,−1,−1,−1). That is, the
Hamilton product can also be expressed as a matrix vector multiplication.
This result is more important for simplifying some of the proofs later rather
than for actual computation. Similarly, we can obtain the quaternion
inverse as

𝑎−1 = D · 𝑎
||𝑎||2

. (5.4)

5.3.2 Orientation Representation

Using unit quaternions for representing rotations and applying these
rotations to vectors in R3 is very popular because operations, such as
the subsequent application of rotations, can be easily implemented as a
sequence of quaternion multiplications. A quaternion is used to represent
a rotation with an angle 𝛼 around the axis 𝑥 ∈ R3 (with ||𝑥|| = 1) as
follows

cos
(︁𝛼

2

)︁
+ (𝑥1 𝑖 + 𝑥2 𝑗 + 𝑥3 𝑘) sin

(︁𝛼

2

)︁
.

From the ||𝑥|| = 1 condition, it follows that this choice results in a unit
quaternion. On the other hand, taking an arbitrary unit quaternion and
solving it for 𝑥 and 𝜃 gives the original rotation parameters. So far, we only
have a rotation. However, once a reference orientation is given, this rotation
representation can also be interpreted as an orientation representation.
Quaternion multiplication is used to apply a rotation represented by a
unit quaternion 𝑞 to some vector 𝑣 ∈ R3. This is done by interpreting 𝑣
as a quaternion 𝑣1 𝑖 + 𝑣2 𝑗 + 𝑣3 𝑘 and then obtaining the newly rotated
vector 𝑣 as follows ⎛⎜⎜⎝

0
𝑣1
𝑣2
𝑣3

⎞⎟⎟⎠ := 𝑞 ⊕

⎛⎜⎜⎝
0
𝑣1
𝑣2
𝑣3

⎞⎟⎟⎠⊕ 𝑞*
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Chapter 5. Unscented Orientation Estimation

It can be shown that the real part remains zero after these multiplications.
Thus, the notation used here assigning 0 to the real part of the quaternion
containing 𝑣 is well-justified. From this representation, it can also be seen
that the multiplicative inverse of a unit quaternion inverts the rotation
represented by this unit quaternion. Another consequence is the fact that
unit quaternions 𝑞 and −𝑞 represent the same orientation. Because of
this property, the group of unit dual quaternions is a so called double
cover of the group of orientations in R3. The former is known as special
unitary group of degree 2 (written as 𝑆𝑈(2)), whereas the latter is known
as special orthogonal group of dimension 3 (written as 𝑆𝑂(3)).

The properties discussed above give rise to two further arguments for using
quaternions for representing orientations. First, if for two quaternions
𝑞1 ̸= ±𝑞2 then 𝑞1 and 𝑞2 represent different orientations. Thus, quaternions
do not suffer from Gimbal lock, which happens for Euler angles. Second,
quaternions are easier to handle in the presence of numerical cut off
errors. These errors might lead to ||𝑞|| ≠ 1, which is easily resolved by
renormalization of 𝑞. When orthonormal matrices are used instead for
representing orientations, numerical cut off errors result in the need to
restore orthonormality. This in turn requires carrying out a much more
costly Gram-Schmidt orthonormalization procedure.

For using unit quaternions in dynamic state estimation, it is necessary to
define a probability distribution capable of representing uncertainty on the
unit ball 𝑆3 ∈ R4 accounting for the fact that 𝑞 and −𝑞 are two different
descriptions of the same orientation. Thus, we also require antipodal
symmetry, that is, for the density function 𝑓 the identity 𝑓(𝑞) = 𝑓(−𝑞)
must hold.

5.4 Bingham Distribution

The Bingham distribution [9] is an antipodally symmetric distribution
defined on the hypersphere 𝑆𝑛−1 ⊆ R𝑛 that arises naturally when con-
ditioning a zero-mean multivariate Gaussian distribution to unit length.
From this relationship, the density can be easily derived using Bayes’
theorem. Let 𝑥 ∼ 𝒩 (0, C), then we have

𝑓
(︀
𝑥
⃒⃒
||𝑥|| = 1

)︀
∝ 𝛿(1− ||𝑥||) · 𝑓(𝑥) .
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(b)
M =

(︁
0 1
1 0

)︁
,

Z = diag(−1, 0) .

(c)
M =

(︃
0 0 1
1 0 0
0 1 0

)︃
,

Z = diag(−20, −1, 0) .

(d)
M =

(︃
0 1 0
0 0 1
1 0 0

)︃
,

Z = diag(−20, −1, 0) .

Figure 5.1.: Bingham densities for the 2D and 3D case.

Thus, the density of a Bingham distribution is proportional to a Gaussian
and thus given by

𝑓(𝑥) = 1
𝑁(−C−1/2) exp

(︂
−1

2 𝑥⊤ C−1 𝑥

)︂
, 𝑥 ∈ 𝑆𝑛−1 .

Here 𝑁(−C−1/2) denotes the normalization constant ensuring the integral
of 𝑓 to be 1. Here and in what follows, integration on hyperspheres is
understood as described in appendix A.2. Usually, −C−1/2 is replaced
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where each column consists of normalized eigenvectors of −C−1/2 and Z is
a diagonal matrix consisting of the corresponding eigenvalues. According
to the transformation theorem and as a consequence of the fact that
|det(M)| = 1, the computation of the normalization constant can be
simplified in the following way

𝑁(M Z M⊤) =
∫︁

𝑆𝑛−1
exp

(︀
𝑥⊤ M Z M⊤ 𝑥

)︀
d𝑥

=
∫︁

𝑆𝑛−1
exp

(︀
𝑥⊤ Z 𝑥

)︀
d𝑥

=𝑁(Z) .

Thus, the following formulation of the density of a Bingham distribution
is justified

𝑓(𝑥) = 1
𝑁(Z) exp

(︀
𝑥⊤ M Z M⊤ 𝑥

)︀
, 𝑥 ∈ 𝑆𝑛−1 .

For a random variable 𝑥 distributed according to the Bingham distribution
with parameters M and Z, we will use the notation 𝑥 ∼ Bingham(M, Z).
For better interpretation, the entries in Z are usually given in an ascending
order. This is not a restriction on the choice of possible densities because
this ordering can easily be obtained by a corresponding resorting of columns
in M from every possible original combination of parameter matrices M
and Z. After reordering, the last column 𝑚𝑛 of M can be interpreted
as the mode of the Bingham distribution. This is easily seen from the
fact that 𝑚𝑛 is the eigenvector corresponding to the largest eigenvalue
of M Z M⊤ and thus exp

(︀
𝑥⊤ M Z M⊤ 𝑥

)︀
is maximized for 𝑥 = 𝑚𝑛. A

similar argument shows that the remaining columns of M describe the
directions of the main axes. The matrix Z does not need to be negative
definite. This is because the Bingham distribution is defined on a compact
domain and can also be seen from the following relationship. For all 𝑐 ∈ R,
it holds

𝑁(Z + 𝑐 I) =
∫︁

𝑆𝑛−1
exp

(︀
𝑥⊤ (Z + 𝑐 I) 𝑥

)︀
d𝑥

=
∫︁

𝑆𝑛−1
exp

(︀
𝑥⊤ Z 𝑥 + 𝑥⊤(𝑐 I) 𝑥

)︀
d𝑥
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5.4 Bingham Distribution

= exp(𝑐) ·
∫︁

𝑆𝑛−1
exp

(︀
𝑥⊤ Z 𝑥

)︀
d𝑥

= exp(𝑐) ·𝑁(Z) .

Several examples of the Bingham density are visualized in Figure 5.1.

In order to obtain a unique representation of the distribution, we will
usually expect the last entry of Z to be 0. Because of antipodal symmetry,
the first moment of a Bingham(M, Z) distributed random vector 𝑥 is given
by E(𝑥) = 0. The second moment is more complicated and was derived in
Binghams original work [9] as

E
(︀
𝑥 · 𝑥⊤)︀ = M · diag (𝑒1, . . . , 𝑒𝑛) ·M⊤ , (5.5)

with

𝑒𝑖 = 𝜕𝑁(A)
𝜕𝑎𝑖

⃒⃒⃒⃒
A=Z

·𝑁(Z)−1

and A = diag(𝑎1, ..., 𝑎𝑛). A useful property of the Bingham distribution
is the fact that it is the maximum entropy distribution on the hypersphere
given the second moment and E(𝑥) = 0, which is a hyperspherical analogue
to a similar property of the Gaussian. This result was originally derived
in [88] and extends an earlier result from [57]. Another property which
the Bingham distribution has in common with a Gaussian, is the fact
that the product of two Bingham densities is itself another (unnormalized)
Bingham density. The proof is carried out analogously to the proof of the
corresponding statement for Gaussian densities. Let 𝑓𝑖 be the density of
Bingham(M𝑖, Z𝑖) for 𝑖 = 1, 2. Then

𝑓1(𝑥) · 𝑓2(𝑥) ∝ exp
(︀
𝑥⊤ M1 Z1 M⊤

1 𝑥 + 𝑥⊤ M2 Z2 M⊤
2 𝑥
)︀

= exp
(︀
𝑥⊤ M Z M⊤ 𝑥

)︀
,

(5.6)

where M Z M⊤ is the eigendecomposition of M1 Z1 M⊤
1 + M2 Z2 M⊤

2 . As
will be seen later, this property is of particular use because it makes a
measurement update in closed form possible.

Example 5.1. Contrary to the Gaussian case, multiplication of two Bing-
ham densities and subsequent renormalization might result in a Bingham
density with higher uncertainty than one of the original densities. This
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Chapter 5. Unscented Orientation Estimation

is seen by considering two three-dimensional Bingham distributions. The
first is given by Z1 = diag(−10,−10, 0) and M1 = I and the second is
given by Z2 = diag(−50, 0, 0) and

M2 =

⎛⎝0 0 1
0 1 0
1 0 0

⎞⎠
Obviously, we have M1 Z1 M⊤

1 = Z1 and M2 Z2 M⊤
2 = diag(0, 0,−50).

Multiplying the respective densities as in (5.6) yields an unnormalized
Bingham density.

(a) Bingham(M1, Z1) density. (b) Bingham(M2, Z2) density.

(c) Renormalized product.

Figure 5.2.: Visualization of Example 5.1 showing that the renormalized product of two
Bingham densities may yield a Bingham density with higher uncertainty,
which is not possible for the product of two Gaussian densities.
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5.4 Bingham Distribution

The distribution parameters M and Z are obtained from M1 Z1 M⊤
1 +

M2 Z2 M⊤
2 = diag(−10,−10,−50). Performing an eigendecomposition

and reshifting the entries of Z such that its largest entry is zero yields
M = M2 and Z = diag(−40, 0, 0). The corresponding densities are
visualized in Figure 5.2.

This example has an important consequence for working with the Bingham
distribution. In the filtering application considered in this chapter, it might
happen that uncertainty increases after a measurement update. A simple
interpretation of this effect is that a better estimate is not necessarily one
with less uncertainty. However, this effect may also happen for nonlinear
filtering in linear state spaces.

5.4.1 Parameter Estimation

The proposed parameter estimation procedure is based on matching the
second moment (5.5). Thus, given a number of random samples 𝑠1, ..., 𝑠𝑚,
our goal is to find orthonormal M and diagonal Z such that for 𝑥 ∼
Bingham(M, Z) we have

E
(︀
𝑥 · 𝑥⊤)︀ = 1

𝑚

𝑚∑︁
𝑖=1

𝑠𝑖 · 𝑠⊤
𝑖⏟  ⏞  

:=Σ

. (5.7)

This is where our restriction 𝑧𝑛 = 0 and the ascending ordering of the 𝑧𝑖

become useful. Without both conditions, the above equation never has
a unique solution when solved for M and Z. For many operations, this
uniqueness is not necessary. However, it simplifies both, the interpretation
of the density and the actual computation. In Bingham’s original work, it
has been shown that this approach is not only the parameter estimation
procedure in the sense of the method of moments, but also provides the
maximum likelihood estimate of the distribution parameters.

The estimation itself is a numerical procedure that consists of two steps.
First, we obtain the estimate M̂ as the orthonormal matrix of eigenvec-
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tors of Σ. Second, we obtain the estimate Ẑ by solving the system of
equations

𝑐𝑖 = 𝜕𝑁(Z)
𝜕𝑧𝑖

⃒⃒⃒⃒
Z=Ẑ
·𝑁(Ẑ)−1 (5.8)

for 𝑧𝑖 with Ẑ = diag(𝑧1, . . . , 𝑧𝑛) under the condition that 𝑧𝑛 = 0. That is,
we actually have to solve only using 𝑛− 1 unknown variables. To avoid
numerical problems, it is necessary to ensure that 𝑧𝑖 ≤ 𝑧𝑖+1. The entire
procedure is shown in algorithm 5.1.

Algorithm 5.1 Bingham Parameter Estimation
1: procedure EstimateBingham(𝑠1, . . . , 𝑠𝑚)
2: C← 1

𝑚

∑︀𝑚
𝑖=1 𝑠𝑖 · 𝑠⊤

𝑖 ;
3: (𝑣1, . . . , 𝑣𝑛, 𝑐1, . . . , 𝑐𝑛)← Eigendecomposition(C);
4: (𝑧1, . . . , 𝑧𝑛−1)← Solve

(︀
(5.8) with Z̃ = diag(𝑧1, ..., 𝑧𝑛−1, 0)

)︀
;

5: 𝑧𝑛 ← 0;
6: (𝑖1, . . . , 𝑖𝑛)← GetOrderAsc(𝑧1, . . . , 𝑧𝑛); ◁ Correct order of entries

in Ẑ
7: Ẑ← diag(𝑧𝑖1 − 𝑧𝑖𝑛

, ..., 𝑧𝑖𝑛−1 − 𝑧𝑖𝑛
, 0); ◁ Construct Ẑ according to

this order.
8: M̂← (𝑣𝑖1

, . . . , 𝑣𝑖𝑛
); ◁ Construct M̂ according to this order.

9: return (M̂, Ẑ);
10: end procedure

This algorithm can also be formulated in a way where each sample is
assigned a weight. This might be of interest when using the Bingham
distribution in the context of particle filtering. Furthermore, we will use
the notation EstimateBingham(C) whenever the second moment matrix
is already given. In that case the algorithm stays the same, except for the
first step (where C is computed), which can be left out.

5.4.2 Computation of the Normalization Constant
and its Derivatives

In the entire estimation procedure and, as will be seen, in our filtering
algorithm, computation of the normalization constant plays a crucial role.
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5.4 Bingham Distribution

This is also true for computation of its derivatives. A naïve numerical
integration approach for computing the normalization constant would
result in the need for multidimensional integration. This seems infeasible
in most applications with real-time requirements. Thus, we need a more
thorough investigation of the challenge of computing the normalization
constant.

First, we observe that the normalization constant can be expressed in
terms of a hypergeometric function of matrix argument

𝑁(Z) = |𝑆𝑛−1| · 1𝐹1

(︂
1
2 ; 𝑛

2 ; Z
)︂

,

where |𝑆𝑛−1| denotes the surface area of the hypersphere, i.e.,

|𝑆𝑛−1| = 𝑛 𝜋𝑛/2

Γ
(︀

𝑛
2 + 1

)︀ .

A formal definition and a discussion of hypergeometric functions of matrix
argument 𝑝𝐹𝑞 can be found in [66], [94], [45]. However, there is currently
no general method for computing hypergeometric functions of matrix
argument with sufficient precision at feasible computational cost. So far,
the best general algorithm seems to be [66].

Thus, we use an approach based on saddlepoint approximations [22], [40].
These were used to approximate the Bingham normalization constant
in [77], which we also use in what follows. The third order saddlepoint
approximation is of particular interest, because it outperforms the other
proposed approximations in terms of precision. It is given by

𝑁̃(Z) :=

√︃
2 𝜋(𝑛−1)

𝐾(2)(𝑡, Z)
·

(︃
𝑛∏︁

𝑖=0

(︀√
−𝑧𝑖 − 𝑡

)︀−1/2
)︃
· exp(−𝑡 + 𝑇 ) ,

where

𝑇 :=𝜌4(𝑡, Z)
8 − 5 𝜌3(𝑡, Z)

24 ,

𝜌𝑗(𝑡, Z) := 𝐾(𝑗)(𝑡, Z)
𝐾(2)(𝑡, Z)𝑗/2 ,
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𝐾(𝑗)(𝑡, Z) :=
𝑛∑︁

𝑖=1

(︂
(𝑗 − 1)!

2 · 1
(
√
−𝑧𝑖 − 𝑡)𝑗

)︂
.

Furthermore, 𝑡 is obtained by solving 𝐾(1)(𝑡, Z) = 1 for 𝑡 on (−∞, 𝑧*),
where 𝑧* = min𝑖(

√
−𝑧𝑖). The following proposition guarantees an efficient

computation of 𝑁̃(Z) by establishing that solving 𝐾(1)(𝑡, Z) = 1 can be
done efficiently.

Proposition 5.2. The function 𝐾(1)(𝑡, Z) is convex w.r.t. 𝑡 on (−∞, 𝑧*).

Proof. This is easily seen from the second derivative of 𝐾(1), which is
given by

𝜕2𝐾(1)(𝑡, Z)
𝜕𝑡2 =

𝑛∑︁
𝑖=1

1
(
√
−𝑧𝑖 − 𝑡)3

Each term is positive on the considered interval, and thus, the convexity
follows from the positivity of the entire second derivative.

Now, Newton’s method can be used efficiently for solving 𝐾(1)(𝑡, Z) = 1 for
𝑡. The presented approximations can also be used to obtain approximated
derivatives. The obvious way to do this would be the use of finite-differences.
Here, we take an approach based on a result proposed in [76]. This result
establishes a relation between the derivatives of the Bingham Normalization
constant and a normalization constant for a higher dimensional Bingham
distribution.

Corollary 5.3. The derivative of the Bingham normalization constant
with respect to 𝑧𝑖 is given by

𝜕𝑁(Z)
𝜕𝑧𝑖

= 1
2𝜋

𝑁(diag(𝑧1, 𝑧2, . . . , 𝑧𝑖−1, 𝑧𝑖, 𝑧𝑖, 𝑧𝑖, 𝑧𝑖+1, 𝑧𝑖+2, . . . , 𝑧𝑛)) .

Proof. This is an immediate consequence of Proposition 1 from [76].
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5.4.3 Representation of Uncertain Orientations

So far, it is easily seen that the four dimensional Bingham distribution
can be used for describing uncertainty on the domain of orientations by
interpreting it as a probability distribution over the quaternion unit sphere.
Its antipodal symmetry ensures a correct consideration of the fact that 𝑎
and −𝑎 represent the same orientation.

The mode of the Bingham distribution can be thought of as the orienta-
tional mean. It also corresponds to the hyperspherical mean estimator
based on the eigendecomposition of a scatter matrix. Thus, a Bingham
distribution with a certain desired mean can be constructed by deliber-
ately choosing the last column of M. A Bingham distribution where the
last entry of M equals to (1, 0, 0, 0)⊤ can be thought of as a zero mean
equivalent for uncertain orientations. The remaining columns need to be
chosen in a way ensuring M to be orthonormal, e.g.,

M =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠
However, the choice of the remaining columns of M is not only restricted
by the need for orthonormality. These columns also have a probabilistic
interpretation, because they represent the principal axes of the uncertainty
of the Bingham distribution, and thus, have an impact on which orien-
tations are more likely than others. This involves the representation of
a uniform distribution by choosing Z = diag(0, 0, 0, 0) (in that case the
choice of M is obviously arbitrary) or distributions with circular symmetry
(that is, the p.d.f. has a constant value on an entire axis), e.g., by choosing
Z = diag(−10,−10, 0, 0)

5.5 A Deterministic Sampling Scheme

The deterministic sampling method proposed in this section works for
arbitrary hyperspherical and antipodally symmetric probability densities.
For approximating the second moment of a distribution (or samples) on
𝑆𝑛−1, it places 4𝑛 − 2 samples such that these have the same second
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moment. Thus, it can be thought of as a deterministic sampling method
for placing antipodally symmetric samples on the unit sphere in a way such
that a predefined second moment matrix is satisfied. The only assumption
we make is that this second moment matrix stems from samples of a
distribution defined on the hypersphere.

The proposed method is subdivided into two steps. First, we derive the
sampling scheme for the case of diagonal 𝐸(𝑥 𝑥⊤) = diag(𝑐1, . . . , 𝑐𝑛) with
non-decreasing entries, i.e. 𝑐𝑖 ≤ 𝑐𝑖+1. Second, we generalize this to
arbitrary second moment matrices using their respective eigendecomposi-
tions.

Let C = diag(𝑐1, ..., 𝑐𝑛) be the diagonal matrix representing the second
moment that needs to be approximated. We also assume that our first
goal is obtaining a discrete distribution defined on the hypersphere with
E(𝑥 𝑥⊤) = C. Due to the fact that C is positive definite, all of its diagonal
entries are positive or 0. Furthermore, it can be observed that all diagonal
entries of C sum up to 1. The latter is seen using the fact that the trace
operator only performs linear operations and thus

tr(C) = tr(E(𝑥 𝑥⊤)) = E(tr(𝑥 𝑥⊤)) = E(1) = 1 .

We place our initial sample 𝑥1 at the pole (0, . . . , 0, 1)⊤. The next samples
are placed by choosing main axes on the hypersphere around that pole.
Usually, 𝑛− 1 scalar values are needed in order to describe the position
of a point on an 𝑛-dimensional hypersphere. Thus, 2𝑛 − 2 samples are
placed on the hypersphere around the pole in the style of the UKF. The
samples 𝑥(2) to 𝑥(2𝑛−1) are generated in the following manner. The 𝑖-th
entry of the Samples 2𝑖 and 2𝑖 + 1 is given by

𝑥
(𝑖)
2𝑖 = sin(𝛼𝑖) ,

𝑥
(𝑖)
2𝑖+1 =− sin(𝛼𝑖)

with a suitably chosen 𝛼𝑖. This choice is discussed below. The last entry
of both samples is given by

𝑥
(𝑛)
2𝑖 = 𝑥

(𝑛)
2𝑖+1 = cos(𝛼𝑖) .
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Z = diag(−10, 1) .
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(b)
M =

(︁
0 1
1 0

)︁
,

Z = diag(−1, 0) .

(c)
M =

(︃
0 0 1
1 0 0
0 1 0

)︃
,

Z = diag(−20, −1, 0) .

(d)
M =

(︃
0 1 0
0 0 1
1 0 0

)︃
,

Z = diag(−20, −1, 0) .

Figure 5.3.: Examples for Bingham densities with deterministic sampling using sam-
pling parameter 𝜆 = 0.5.

All other entries are set to zero. The first samples generated in this manner
are

𝑥2 = (sin(𝛼1), 0, . . . , 0, cos(𝛼1))⊤ ,

𝑥3 = (− sin(𝛼1), 0 . . . , 0, cos(𝛼1))⊤ ,

𝑥4 = (0, sin(𝛼2), 0 . . . , 0, cos(𝛼2))⊤ ,

𝑥5 = (0,− sin(𝛼2), 0 . . . , 0, cos(𝛼2))⊤ ,

...
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So far, 2𝑛 − 1 samples have been generated. In order to account for
antipodal symmetry, a second pole needs to be considered. This is done
by negation of the existing 2𝑛− 1 samples

𝑥2𝑛 = −𝑥1, · · · 𝑥4𝑛−2 = −𝑥2𝑛−1 .

A probability needs to be assigned to each sample for generating a
discrete probability distribution. For each of the poles, this probabil-
ity shall be denoted by 𝑝1 = 𝑝2𝑛 = 𝑚𝑛/2. Each of the samples 𝑥2𝑖,
𝑥2𝑖+1, 𝑥2(𝑛+𝑖)−1, and 𝑥2(𝑛+𝑖) shall have probability mass denoted by
𝑝2𝑖 = 𝑝2𝑖+1 = 𝑝2(𝑛+𝑖)−1 = 𝑚𝑖/4 (for 𝑖 = 1, . . . , 𝑛− 1). This introduces the
conditions 𝑚𝑖 ≥ 0 and

𝑛∑︁
𝑖=1

𝑚𝑖 = 1 . (5.9)

In the next step, the actual moment matching procedure is carried out.
That is, angles 𝛼𝑖 and weights 𝑚𝑖 need to be found so that the resulting
deterministic sampling set matches the predefined second moment.

C = diag(𝑐1, ..., 𝑐𝑛) != E
(︀
𝑥 · 𝑥⊤)︀

=
4𝑛−2∑︁
𝑖=1

𝑝𝑖 · 𝑥(𝑖) (𝑥(𝑖))𝑇

= 2 ·
2𝑛−1∑︁
𝑖=1

𝑝𝑖 · 𝑥(𝑖) (𝑥(𝑖))𝑇

= diag
(︂

𝑚1 sin(𝛼1)2, . . . , 𝑚𝑛−1 sin(𝛼𝑛−1)2,

𝑚𝑛 +
𝑛−1∑︁
𝑖=1

𝑚𝑖 cos(𝛼𝑖)2
)︂

.

This is matched with the predefined second moment, i.e., the covariance
matrix in the case of our Bingham distribution. Matching the second
moment with the Bingham covariance matrix is justified, because for all
antipodally symmetric distributions the mean is 0, and thus, the covariance
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matrix corresponds to the second moment. Solving the above equation for
the angles 𝛼𝑖 gives

𝛼𝑖 = arcsin
(︁√︀

𝑐𝑖/𝑚𝑖

)︁
.

We choose 𝑚𝑛 = 𝜆·𝑐𝑛 and 𝑚𝑖 = 𝑐𝑖 +(1−𝜆)𝑐𝑛/(𝑛−1) for all 𝑖 = 1, . . . , 𝑛−1
and with 𝜆 ∈ [0, 1). Using the fact that tr(C) = 1, it can be shown that
(5.9) is satisfied, because

𝑛∑︁
𝑖=1

𝑚𝑖 = 𝜆 · 𝑐𝑛 +
𝑛−1∑︁
𝑖=1

(︂
𝑐𝑖 + (1− 𝜆) 𝑐𝑛

𝑛− 1

)︂
= 𝑐𝑛 +

𝑛−1∑︁
𝑖=1

𝑐𝑖 = 1 .

The restriction of 𝜆 to [0, 1) is used in order to ensure 0 ≤ 𝑝𝑖.

Our method, as derived so far, is capable of approximating arbitrary
antipodally symmetric distributions which have diagonal second moment
matrices with increasing entries. A simple application of the eigendecom-
position generalizes this to arbitrary second moment matrices C with
tr(C) = 1. First, let V ·diag(𝑐1, ..., 𝑐𝑛) ·V⊤ denote the eigendecomposition
of C. Here, the 𝑐𝑖 denote the eigenvalues of C and, once again, we can
assume them to be given in a non-decreasing order, i.e., 𝑐𝑖 ≤ 𝑐𝑖+1. Then,
the procedure outlined above yields a sample set consisting of samples 𝑥𝑖

and weights 𝑝𝑖 with second moment diag(𝑐1, . . . , 𝑐𝑛). In order to obtain
a sample set with the desired second moment matrix, we simply replace
sample 𝑥𝑖 by V · 𝑥𝑖. This gives us the desired result

E
(︀
V𝑥(V𝑥)⊤)︀ =

4𝑛−2∑︁
𝑖=1

𝑝𝑖 · (V · 𝑥𝑖) · (V · 𝑥𝑖)
⊤

= V ·
(︃4𝑛−2∑︁

𝑖=1
𝑝𝑖 · 𝑥𝑖 · 𝑥⊤

𝑖

)︃
·V⊤

= V · diag(𝑐1, . . . , 𝑐𝑛) ·V⊤ = C

The entire resulting algorithm is shown in Algorithm 5.2. Further research
is needed for an optimal choice of 𝜆.
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Algorithm 5.2 Deterministic Sampling
1: procedure DeterministicSampling(C, 𝜆)
2: (𝑣1, . . . , 𝑣𝑛, 𝑐1, . . . , 𝑐𝑛)← Eigendecomposition(C); ◁ Assumes

𝑐𝑖 < 𝑐𝑖+1.
3: V← (𝑣1, ..., 𝑣𝑛);
4: 𝑥1 ← V · (1, . . . , 0)⊤;
5: 𝑥2𝑛 ← −𝑥1;
6: 𝑝1, 𝑝2𝑛 ← 𝜆 · 𝑐𝑛;
7: 𝑥1, . . . , 𝑥2𝑛−1 ← (0, . . . , 0)⊤; ◁ Initialization
8: for 𝑖 ∈ {1, ..., 𝑛− 1} do
9: 𝑝2𝑖, 𝑝2𝑖+1, 𝑝2(𝑖+𝑛)−1, 𝑝2(𝑖+𝑛) ← 1

4

(︁
𝑐𝑖 + (1− 𝜆) 𝑐𝑛

𝑛−1

)︁
;

10: 𝛼𝑖 ← arcsin
(︁√︀

4 · 𝑐𝑖/𝑤2𝑖

)︁
;

11: 𝑥
(1)
2𝑖 , 𝑥

(1)
2𝑖+1 ← cos(𝛼𝑖);

12: 𝑥
(𝑖+1)
2𝑖 ← sin(𝛼𝑖);

13: 𝑥
(𝑖+1)
2𝑖+1 ← − sin(𝛼𝑖);

14: 𝑥2𝑖 ← V · 𝑥2𝑖;
15: 𝑥2𝑖+1 ← V · 𝑥2𝑖+1;
16: 𝑥2(𝑖+𝑛)−1 ← −𝑥2𝑖;
17: 𝑥2(𝑖+𝑛) ← −𝑥2𝑖+1;
18: end for
19: return (𝑝1, 𝑥1), ..., (𝑝4𝑛−2, 𝑥4𝑛−2);
20: end procedure

5.6 The Unscented Bingham Filter

In the Bingham filters presented in [149], [36], the proposed filtering
schemes were capable of handling system models given by

𝑥𝑡+1 = 𝑥𝑡 ⊕ 𝑎𝑡 ⊕ 𝑤𝑡 , (5.10)

where 𝑥𝑡 ∈ 𝑆3 (or alternatively 𝑆1) is an uncertain system state, 𝑎𝑡 is a
control input, and 𝑤𝑡 is system noise, that is also assumed to be distributed
according to a Bingham(M𝑤

𝑡 , Z𝑤
𝑡 ) distribution. This control input can

also be removed from this notation leaving 𝑥𝑡 ⊕ 𝑤𝑡 as consideration of
control inputs is possible by a suitable choice of M𝑤

𝑡 making use of the fact
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5.6 The Unscented Bingham Filter

that for arbitrary (but fixed) unit quaternions 𝑎 and Bingham distributed
random vectors 𝑤, the quantity 𝑎 ⊕ 𝑤 is again a Bingham distributed
random vector. The same is true for 𝑤 ⊕ 𝑎.

In this work, we generalize (5.10) and make consideration of more compli-
cated system functions possible. That is, the system dynamics are assumed
to be described by

𝑥𝑡+1 = 𝑔(𝑥𝑡)⊕ 𝑤𝑡 , (5.11)

with state 𝑥𝑡, system noise 𝑤𝑡 ∼ Bingham(M𝑤
𝑡 , Z𝑤

𝑡 ), and a control input
𝑎𝑡. The system function 𝑔 : 𝑆3 → 𝑆3 is assumed to respect antipodal
symmetry in the sense that 𝑔(−𝑥) = −𝑔(𝑥). Thus, 𝑔 can also be seen as a
mapping on 𝑆𝑂(3).

The conditions imposed on 𝑔 could be weakened. First, the entire filter
could also be adapted to work in scenarios where 𝑔 does not respect
antipodal symmetry. Second, more general system models, such as 𝑥𝑡+1 =
𝑔(𝑥𝑡, 𝑤𝑡) could also be considered in a very similar manner. However, for
the particular case of orientation estimation, the imposed restrictions seem
meaningful.

As a measurement model, we consider noisy direct measurements resulting
in

𝑧𝑡 = 𝑥𝑡 ⊕ 𝑣𝑡 (5.12)

with 𝑣𝑡 ∼ Bingham(M𝑣
𝑡 , Z𝑣

𝑡 ). Once again, this can account for measure-
ment models of the type 𝑥𝑡 ⊕ 𝑎𝑡 ⊕ 𝑣𝑡 for some unit quaternion 𝑎𝑡.

As usual, the proposed filter is subdivided in a prediction step and a
measurement update. It gives the estimates of the true system state in
terms of a Bingham distribution density, that is in terms of its parameters
M𝑒

𝑡 , Z𝑒
𝑡 .

5.6.1 Prediction Step

The prediction step starts off with an estimate of 𝑥𝑡 in terms of its
Bingham distribution parameters. Unfortunately, 𝑔(𝑥𝑒

𝑡 )⊕ 𝑤𝑡 is not again
a Bingham distributed quantity even in the case where 𝑔 is the identity
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mapping. Thus, the basic idea of our prediction step is approximating the
true distribution of 𝑔(𝑥𝑒

𝑡 )⊕ 𝑤𝑡 by a Bingham distribution that matches
C𝑝

𝑡+1 := E((𝑔(𝑥𝑒
𝑡 )⊕ 𝑤𝑡) · (𝑔(𝑥𝑒

𝑡 )⊕ 𝑤𝑡)⊤).

However, computation of this covariance matrix is in general not possible
in closed form. Thus, it would require a numerical integration procedure
involving multi dimensional integrals. This is not feasible for many applica-
tions with limited computation time. Thus, we approximately compute the
desired moments with the help of deterministic sampling. Consequently,
the entire procedure involves two approximations. First, it approximates
the second moment matrix of 𝑔(𝑥𝑝

𝑡 )⊕𝑤𝑡. Second, it approximates the true
distribution after prediction by a Bingham distribution with the second
moment obtained from the first approximation.

For obtaining C𝑝
𝑡+1, we sample Bingham(M𝑒

𝑡 , Z𝑒
𝑡 ) deterministically and

compute the covariance C𝑤
𝑡 . Then, the resulting samples 𝑠𝑖 (and their

respective weights 𝑝𝑖) are used together with (5.2) and (5.3) to obtain

C𝑝
𝑡+1 = E((𝑔(𝑥𝑒

𝑡 )⊕ 𝑤𝑡) · (𝑔(𝑥𝑝
𝑡 )⊕ 𝑤𝑡)⊤)

≈ E

(︃4𝑛−2∑︁
𝑖=1

𝑝𝑖

(︀
(𝑔(𝑠𝑖)⊕ 𝑤𝑡) · (𝑔(𝑠𝑖)⊕ 𝑤𝑡)⊤)︀)︃

=
4𝑛−2∑︁
𝑖=1

𝑝𝑖 E
(︀
(𝑔(𝑠𝑖)⊕ 𝑤𝑡) · (𝑔(𝑠𝑖)⊕ 𝑤𝑡)⊤)︀

=
4𝑛−2∑︁
𝑖=1

𝑝𝑖 E
(︀
(D ·Q𝑖 ·D⏟  ⏞  

:=M

·𝑤𝑡) · (D ·Q𝑖 ·D · 𝑤𝑡)⊤)︀

=
4𝑛−2∑︁
𝑖=1

𝑝𝑖 ·M · E
(︀
𝑤𝑡 · 𝑤⊤

𝑡

)︀
·M⊤

=
4𝑛−2∑︁
𝑖=1

𝑝𝑖 ·M ·C𝑤
𝑡 ·M⊤

Here, Q𝑖 is the matrix representation of the quaternion 𝑔(𝑠𝑖) and, again,
D = diag(1,−1,−1,−1). Finally, the desired Bingham distribution pa-
rameters are obtained from C𝑝

𝑖+1. This entire procedure is given in Algo-
rithm 5.3 and visualized in Figure 5.4.
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Moment
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Figure 5.4.: Prediction step of Bingham filter using deterministic sampling.

If the estimate needs to be expressed in terms of a point on the hypersphere,
then this point is obtained as one of the modes of the Bingham(M𝑒

𝑡 , Z𝑒
𝑡 )

distribution. However, care needs to be taken in the case where not
only 𝑧𝑛, but also 𝑧𝑛−1, equal to zero because the resulting Bingham
distribution exhibits circular symmetry. Thus, there is an infinite number
of orientations being equally likely.

The derivation presented here serves the purpose of a better understanding
of the algorithm. A more efficient way to compute C𝑝

𝑡+1 is computing
the covariance of 𝑤𝑡 and the sample covariance C𝑔 and then making use
of the fact that the covariance of a product 𝑎 ⊕ 𝑏 can be obtained in
closed form from the covariances of 𝑎 and 𝑏. Furthermore, in a practical
implementation the performance can be also optimized by considering
antipodal symmetry and thus reducing the number of for-loop iterations.
That is, it is sufficient to use 2𝑛− 1 samples rather than 4𝑛− 2.

It is also important to note that, in fact, the algorithm does not use of
any properties of a Bingham distribution. In fact, the proposed proce-
dure can be thought of as purely moment based because the proposed
algorithm only uses the covariance matrices (in terms of their respective
eigendecompositions) of 𝑔(𝑥𝑒

𝑡 ) and 𝑤𝑡.
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Algorithm 5.3 Unscented Bingham Filter Prediction
1: procedure Prediction(M𝑒

𝑡 , Z𝑒
𝑡 , M𝑤

𝑡 , Z𝑤
𝑡 , 𝜆, 𝑔(·))

2: for 𝑖 ∈ {1, ..., 𝑛} do

3: 𝑐𝑥
𝑖 ←

𝜕𝑁(Z)
𝜕𝑧𝑖

⃒⃒⃒⃒
Z=Z𝑒

𝑡

·𝑁(Z𝑒
𝑡 )−1;

4: 𝑐𝑤
𝑖 ←

𝜕𝑁(Z)
𝜕𝑧𝑖

⃒⃒⃒⃒
Z=Z𝑤

𝑡

·𝑁(Z𝑤
𝑡 )−1;

5: end for
6: C𝑒

𝑡 ←M𝑒
𝑡 · diag(𝑐𝑥

1 , . . . , 𝑐𝑥
𝑛) · (M𝑒

𝑡 )⊤;
7: C𝑤

𝑡 ←M𝑤
𝑡 · diag(𝑐𝑤

1 , . . . , 𝑐𝑤
𝑛 ) · (M𝑤

𝑡 )⊤;
8: (𝑝1, 𝑠1), . . . , (𝑝4𝑛−2, 𝑠4𝑛−2)← DeterministicSampling(C𝑒

𝑡 , 𝜆);
9: C𝑝

𝑡+1 ← 0; ◁ Initilization
10: D← diag(1,−1,−1,−1); ◁ As in (5.3)
11: for 𝑖 ∈ {1, ..., 4𝑛− 2} do ◁ Second moment of 𝑔(𝑠𝑖)⊕ 𝑤𝑡

12: Q← MatrixRepresentation(𝑔(𝑠𝑖)); ◁ Using (5.2)
13: M← D ·Q ·D;
14: C𝑝

𝑡+1 ← C𝑝
𝑡+1 + 𝑝𝑖 ·M ·C𝑤

𝑡 ·M⊤;
15: end for
16: (M𝑝

𝑡+1, Z𝑝
𝑡+1)← EstimateBingham(C𝑝

𝑡+1);
17: return (M𝑝

𝑡+1, Z𝑝
𝑡+1);

18: end procedure

5.6.2 Measurement Update

The Bingham parameters computed in the prediction step, will be used
for the measurement update step. The moment matching procedure was
computationally burdensome but it is a necessary burden because there is
currently no way to perform a Bingham measurement update based on
using the covariance matrix directly. To derive the measurement update,
it is necessary to take a look at the inverse of uncertain quaternions which
follow a Bingham(M, Z) distribution on 𝑆3.

Lemma 5.4. The quaternion inverse of a Bingham(M, Z) distributed ran-
dom vector is itself a Bingham distributed random vector with dispersion pa-
rameter Z, location parameter M := D ·M, and D = diag(1, −1, −1, −1).
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Proof. The quaternion inverse 𝑞−1 of a unit quaternion 𝑞 is simply given
by its conjugated quaternion 𝑞*. Thus, we have

𝑓((𝑥1, 𝑥2, 𝑥3, 𝑥4)⊤; M, Z) =𝑓(D · (𝑥1, 𝑥2, 𝑥3, 𝑥4)⊤; M, Z)
=𝑓((𝑥1,−𝑥2,−𝑥3,−𝑥4)⊤; M, Z) .

Now, the measurement equation (5.12) can be reformulated as

𝑥−1
𝑡 ⊕ 𝑧𝑡 = 𝑣𝑡 .

This yields

𝑓(𝑥𝑡|𝑧𝑡) ∝ 𝑓𝑣(𝑥−1
𝑡 ⊕ 𝑧𝑡) · 𝑓(𝑥𝑡) .

The following Lemma characterizes 𝑓𝑣(𝑥−1
𝑡 ⊕ 𝑧𝑡).

Lemma 5.5. Let 𝑣 ∼ Bingham(M𝑣, Z𝑣) with density 𝑓𝑣. Furthermore,
let 𝑧 ∈ R4 with ||𝑧|| = 1. Then 𝑓(𝑥) = 𝑓𝑣(𝑥−1 ⊕ 𝑧) is the density of
a Bingham(𝑧 ⊕M𝑣, Z𝑣) distribution, where 𝑧𝑡 ⊕M𝑣 is understood as a
matrix where the 𝑖-th column is the Hamilton product of 𝑧 and the 𝑖-th
column of M.

Proof. First, we use (5.3) and (5.4) to rewrite 𝑥−1 ⊕ 𝑧 as

𝑥−1 ⊕ 𝑧 = D (𝑧−1 ⊕ 𝑥) = D D Q𝑧−1 D 𝑥 .

Next, we observe that det |D D Q𝑧−1 D| = 1 and thus, as a consequence
of the transformation theorem for probability densities, 𝑓(𝑥) is an actual
probability density. Finally, we make use of D = D⊤ and Q𝑧−1 = Q⊤

𝑧 .
This yields

(𝑥−1 ⊕ 𝑧)⊤M = (D D Q𝑧−1 D 𝑥)⊤M
= 𝑥⊤D Q⊤

𝑧 D D M⏟  ⏞  
M

= 𝑥⊤(𝑧 ⊕M)

and completes the proof.
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The Lemma above can be used for computing 𝑓(𝑧𝑡|𝑥𝑡). This yields a
Bingham distribution with parameters M𝑒

𝑡 and Z𝑒
𝑡 obtained from a eigen-

decomposition of

(𝑧𝑡 ⊕M𝑣)Z𝑣(𝑧𝑡 ⊕M𝑣)𝑇 + M𝑝
𝑡 Z𝑝

𝑡 (M𝑝
𝑡 )𝑇

with (M𝑣 ⊕ 𝑧𝑡) denoting the matrix created by multiplying the first three
lines of M𝑣 with −1 and then computing the Hamilton product of 𝑧 with
each column.

Algorithm 5.4 Bingham Filter Update
1: procedure MeasurementUpdate(𝑠1, . . . , 𝑠𝑚)
2: M← 𝑧𝑡 ⊕M𝑣;
3: C←MZ𝑣M⊤ + M𝑝

𝑡 Z𝑝
𝑡 (M𝑝

𝑡 )⊤;
4: (𝑣1, . . . , 𝑣𝑛, 𝑧1, . . . , 𝑧𝑛)← Eigendecomposition(C); ◁ Assuming

𝑧𝑖 ≤ 𝑧𝑖+1;
5: M𝑒

𝑡 ← (𝑣1, . . . , 𝑣𝑛);
6: Z𝑒

𝑡 ← diag(𝑧1 − 𝑧𝑛, . . . 𝑧𝑛−1 − 𝑧𝑛, 0);
7: return (M𝑒

𝑡 , Z𝑒
𝑡 );

8: end procedure

5.7 Evaluation

The methods discussed in this chapter are evaluated in three ways. First, we
evaluate the computation of the normalization constant and the resulting
parameter estimation procedure because these are the driving factors
behind the computational cost of the Bingham filter. Second, we evaluate
the quality of propagation using the proposed deterministic sampling
scheme. Finally, we compare the entire resulting filter with the UKF and
a particle filter.

5.7.1 Normalization Constant and Parameter Estimation

Our evaluation of the computation of the normalization constant was
carried out for the Bingham distribution on 𝑆3 because this case is of par-
ticular interest in our work. We evaluated the normalization constant 𝑁(Z)
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for different values of Z. This evaluation was subdivided into three cases
involving a different number of entries in Z significantly different from zero.
These cases were Z = diag(−𝑎,−𝑎,−𝑎, 0), Z = diag(−𝑎,−𝑎, 0.1, 0), and
Z = diag(−𝑎, 0.1, 0.1, 0). This distinction accounts for the fact that com-
putational performance of certain methods is dependent on the structure
of Z. The use of 0.1 is due to the fact that the original implementation of
some comparison methods are incapable of handling multiple zero entries.
Ground truth was obtained using numerical integration. In particular,
Matlab’s integral3 function was used to compute the triple integral.

For comparing the computation of the normalization constant, we used
the series expansion (which was also used to generate the precomputed
lookup tables in libbingham) from [34], the approach based on holonomic
gradient descent [95], and the algorithm proposed by Koev [66]. Results of
this comparison in terms of accuracy and computation time are shown in
Figure 5.5. The method by Koev was called using mhg(100,2,0.5,2,Z).

For evaluating parameter estimation, the same matrices were used as in
the evaluation of the normalization constant. Three different methods
were compared. The first approach used a Gauss-Newton method imple-
mented in Matlab. The second approach used a Gauss-Newton method
implemented in C. Finally, the third approach was based on the fsolve
function in Matlab, which uses a trust-region algorithm. Deterministic
sampling was used to generate samples corresponding to the desired ground
truth parameters. That is, the second moment of the generated sample set
corresponds to the desired second moments of the Bingham distribution.
The saddlepoint-approximation-based method was used for computing the
Bingham normalization constant and its derivatives in all three methods.
The results are shown in Figure 5.6. Even though the approach based on
fsolve is much more precise, use of the computationally less burdensome
Gauss-Newton approximation seems sufficient for most applications involv-
ing high noise levels as the relative error introduced by the choice of the
optimization procedure is below 1%, and thus, negligible compared to the
uncertainty of the estimate.
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(a) Z = −diag(𝑎, 𝑎, 𝑎, 0).

a
0 100 200 300 400

R
e

l.
 E

rr
o

r 
in

 %

10
-10

10
-5

10
0

10
5

a
0 100 200 300 400

T
im

e
 i
n

 s

10
-6

10
-4

10
-2

10
0

10
2

(b) Z = −diag(𝑎, 𝑎, 0.1, 0).
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(c) Z = −diag(𝑎, 0.1, 0.1, 0).

Figure 5.5.: Accuracy (left column) and computation time (right column) for com-
puting the Bingham normalizing constant 𝑁(Z) using the saddlepoint
approximations based approach (blue), the algorithm proposed by Koev
(orange), the series expansion used by Glover (red), and holonomic gradi-
ent descent (green).
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(a) Z = −diag(𝑎, 𝑎, 𝑎, 0).
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(b) Z = −diag(𝑎, 𝑎, 0.1, 0).
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(c) Z = −diag(𝑎, 0.1, 0.1, 0).

Figure 5.6.: Accuracy (left column) and computation time (right column) for com-
puting the Bingham MLE using a Gauss-Newton algorithm implemented
in C (red) and MATLAB (blue), and an alternative based on fsolve
(green). The accuracy of the Gauss-Newton method is equal for both
implementations, and thus, the curves are indistinguishable.
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5.7.2 Propagation

For evaluating the propagation based on the deterministic sampling scheme
proposed in this chapter, it is of particular interest to use a system
function that does not preserve the Bingham distribution. Thus, quaternion
spherical linear interpolation (SLERP) [109] was used for this comparison.
It is defined by

𝑔(𝑥) = 𝑥𝑏 ⊕ 𝑞(1−𝑏) ,

where 𝑥𝑏 denotes quaternion exponentiation and 𝑎 ∈ (0, 1). This mapping
is usually used to interpolate orientations. Here, it was implemented in
a slightly modified way respecting antipodal symmetry. The goal of the
evaluation procedure is the computation of Ĉ = E(𝑔(𝑥) · 𝑔(𝑥)⊤) where 𝑥
is a Bingham(I, Z) distributed random vector (using different values in
Z). In the system function, 𝑞 was chosen as (0.5, 0.5, 0.5, 0.5)⊤. Ground
truth was generated by using random sampling with 106 samples. The
eigenvector of Ĉ corresponding to the largest eigenvalue was used as the
estimate of the mean. The results were compared using the angle of the
Rodrigues’ rotation formula. For two orientations 𝑎 to 𝑏, this angle is
given by

𝑟(𝑎, 𝑏) := 2 ·min(acos(𝑎⊤𝑏), 𝜋 − acos(𝑎⊤𝑏)) .

It can be thought of as the angle between these two orientations. The
results that show the angular mean error are visualized in Figure 5.7.
For these scenarios, the error usually stays below 0.1∘. However, it may
become even larger when Z approaches the zero matrix.

5.7.3 Filter

Finally, the entire proposed filter was compared against a modified UKF
and a particle filter. Once again, SLERP was used as the system function,
where 𝑞 was chosen as in the propagation evaluation and 𝑎 = 0.1. This
was corrupted by some quaternion noise which resulted in the model

𝑥𝑡+1 = 𝑔(𝑥𝑡)⊕
𝑤𝑡

||𝑤𝑡||
.
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(b) Deterministic sampling parameter 𝜆 = 0.5.
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(c) Deterministic sampling parameter 𝜆 = 0.9.

Figure 5.7.: Mean angular error (MAE) in degrees when propagating a Bingham un-
certainty through the SLERP system function with parameter 𝑎. The con-
sidered Bingham distribution is given by M = I and Z = −diag(𝑎, 𝑎, 𝑎, 0)
with 𝑎 = 25 (black), 𝑎 = 50 (blue), 𝑎 = 100 (dark blue).
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(a) A typical run and the corresponding measurements.
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Figure 5.8.: Evaluation of the filter for scenarios involving low measurement noise
(left column) and high measurement noise (right column).

The measurement model considers noisy direct measurements, i.e., it is
given by

𝑧𝑡 = 𝑥𝑡 ⊕
𝑣𝑡

||𝑣𝑡||
.

To avoid giving the Bingham filter an advantage, the Gaussian distribution
was used for generating system and measurement noise1, and thus 𝑤𝑡

was replaced by 𝑤𝑡 · ||𝑤𝑡||
−1 and 𝑣𝑡 was replaced by 𝑣𝑡 · ||𝑣𝑡||

−1. These
replacements are necessary in order to ensure the noise to be defined
on the manifold. The modification of the UKF was twofold. First, an
intelligent repositioning of measurements was introduced ensuring them
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to be on the same side of the hypersphere as the current estimate. That
is, 𝑧𝑡 was replaced by −𝑧𝑡 if ||𝑧𝑡 − 𝑥𝑒

𝑡 || > ||−𝑧𝑡 − 𝑥𝑒
𝑡 ||. Second, after

the measurement update step, a projection was performed (dividing the
obtained estimate by its norm) ensuring the finally resulting quaternion to
have unit length. An approximation was used to compute the likelihood
of the particle filter by assuming 𝑝(𝑧𝑡|𝑥𝑡) ≈ 𝑓𝑣((𝑥𝑝

𝑡 )−1 ⊕ 𝑧𝑡), where 𝑓𝑣 is
the Gaussian pdf of 𝑣𝑡 rather than the pdf of 𝑣𝑡 · ||𝑣𝑡||

−1.

The evaluation consisted of 100 runs with 100 time steps per run. Pa-
rameters for generating the initial position and the noise had mean
𝜇0 = 𝜇

𝑤
= 𝜇

𝑣
= (1, 0, 0, 0), which corresponds to the vector representation

of the quaternion 1, i.e., zero mean in the orientation sense. The covari-
ances corresponded to an expected angular deviation (computed using the
angular measure from the propagation simulation) of 18.2∘ for the initial
position and 5.8∘ for the system noise. This was achieved by choosing
C0 = 0.01 · I and C𝑤 = 0.001 · I. Two scenarios were considered for the
measurement noise. For the high noise scenario, C𝑣 = 0.3 · I was chosen
(corresponding to an expected angular deviation of 85.8∘) and, analogously,
C𝑣 = 0.003 · I was used for the low noise scenario (corresponding to an
expected angular deviation of 10.0∘).

The initial estimates for the filters were given by a Gaussian with param-
eters 𝜇 = (0, 0, 0, 1)⊤ and C𝑣 = I. Corresponding Bingham distribution
parameters for the proposed filter were obtained by random sampling from
the Gaussian distributions involved. Renormalization to unit length and a
subsequent matching of Bingham distribution parameters. Three variants
of the particle filter were used, which differed in the number of particles
(30, 300, and 10.000). The entire results of the evaluation are visualized
in Figure 5.8. As expected, in the case of small noise, the filters making
a wrong Gaussian assumption perform similarly to the Bingham filter.
However, as the noise becomes larger, the Bingham filter significantly
outperforms the UKF and the particle filter with 30 particles. Similar
results are achieved when increasing the number of particles to 300. A
further increase seems to have no significant effect on the quality of the
results.
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Figure 5.9.: Mean angular error of the high noise scenario.

5.8 Summary and Discussion

In this chapter a novel method for orientation estimation from noisy mea-
surements is proposed. Its main theoretical contribution is a deterministic
sampling scheme for antipodally symmetric distributions defined on the
hypersphere. The proposed method is based on moment matching, and
thus, can be thought of as a hyperspherical equivalent of the UKF. This
deterministic sampling scheme is used as the basis for a novel stochastic
filter based on the Bingham distribution, which is an antipodally symmet-
ric distribution defined on the hypersphere. In case of the 4d unit sphere,
this distribution can be used to represent uncertain orientations based
on unit quaternions. The resulting filtering technique is also capable of
a closed-form measurement update in case of noisy direct measurements.
The involved moment matching procedures require multiple evaluations of
the Bingham normalization constant, thus we make use of saddlepoint ap-
proximations to speed up this procedure. We also show that the resulting
optimization problem is convex. In the simulations, it is shown that the
proposed filtering scheme outperforms approaches that implicitly assume
linearity.
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6.1 Introduction

In the preceding chapters, we considered either uncertain quantities de-
fined on a linear space or uncertain quantities defined on the hypersphere.
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Chapter 6. Estimation of Planar Rigid-Body Motions

This chapter discusses simultaneous consideration of linear and directional
quantities. Particularly, we focus on the estimation of position and orien-
tation in the plane, which can also be understood as estimation of planar
rigid-body motions.

Estimating these quantities is of particular interest for several technical
applications in fields such as robotic perception or mixed and augmented
reality. Applications include (but are not limited to) pose estimation,
sensor calibration, and handling of weak features in vision systems. Use of
combined models for simultaneous consideration of position and orientation
is necessary when these two quantities cannot be assumed to be independent
from each other. Once again, as long as all arising uncertainties are
small, the entire (partially nonlinear state space) can be approximated
by a linear space making use of local linearity of the underlying domain.
However, this approach might yield suboptimal or even entirely wrong
results whenever high uncertainties are involved. Thus, we propose an
approach that systematically accounts for dependencies between position
and orientation.

The first contribution of this chapter is a novel probability distribution
belonging to the exponential family of distributions, which naturally arises
when conditioning a sub-vector of a zero-mean Gaussian random vector
to unit length. The novel distribution can be used for representation of
rigid-body motions in the plane. Additionally, we derive a deterministic
sampling scheme that differs from both approaches presented in previous
chapters while making use of them in special cases. The deterministic
sampling approach in Chapter 4 was based on approximating the shape of
a continuous density, and thus, was distribution dependent, whereas the
approach in the preceding chapter was purely based on a moment matching
procedure, and thus, can be thought of as independent of the underlying
distribution. The work presented in this chapter is hybrid in the sense
that it considers the actual distribution structure but may involve moment
matching or arbitrary other discrete approximation procedures. All of
this is used to propose a filter that truly considers the structure of the
manifold of rigid-body motions.

The remainder of this chapter, which is based on and extends our work
in [138], is structured as follows. In the next section, we discuss some
related approaches which involve the use of directional statistics or dual
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quaternions for estimation of rigid-body motions. Sec. 6.3 contains an
introduction to dual quaternions and a derivation of a multiplicative
subgroup for representing planar rigid-body motions. The new probability
distribution is introduced in Sec. 6.4 by discussing marginal and conditional
distributions, describing a parameter estimation procedure, and discussing
its application to representation of uncertain planar rigid-body motions. A
deterministic sampling scheme is proposed in Sec. 6.5. It makes use of the
structure of the proposed distribution, and we show how it can be derived
from sampling schemes of the Bingham and the Gaussian distribution.
These results are brought together for the derivation of a novel filter in
Sec. 6.6, which is evaluated in Sec. 6.7. The proposed methodology is
summarized in Sec. 6.8.

6.2 Related Approaches

The use of dual quaternions for representing the group of rigid-body
motions has been considered in many works on computational perception
and kinematics. An introduction from the viewpoint of matrix algebra
is given in [117]. An extrinsic calibration procedure was proposed in [11]
where the relative pose of two sensors is estimated. Skinning with dual
quaternions is discussed in [61] and [62]. A linearization based approach
of dynamic state estimation using dual quaternions has been taken in [38],
which uses an EKF for state estimation. An optimization based estimation
approach has been proposed in [121]. Using dual quaternions in Gaussian
process regression has been proposed in [79].

Unfortunately, there is only a very limited amount of work discussing
probability distributions simultaneously considering periodic and non-
periodic quantities. A matrix based equivalent to the distribution proposed
in this work was originally presented in [75]. Another approach is wrapping
of certain dimensions of a normal distributed random vector. This can
be thought as a generalization of both, the Gaussian distribution and a
multivariate wrapped normal distribution (the special case of a bivariate
wrapped normal is addressed in [102]). The resulting partially wrapped
normal distribution was discussed in [147]. This is a generalization of
a first work considering a normal distributed random vector with one
wrapped dimension [51].
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So far, there has been only one approach combining dual quaternion
representation with directional statistics in [27], [80], [28]. It is based
on making use of a projected Gaussian distribution in the sense that it
uses a Gaussian defined on the tangent space of a point on the manifold
of rigid-body motions and then projects the probability mass from this
tangent space to other points on the manifold. It is important to note,
that this terminology is somewhat ambiguous, because the terminology
"Projected Gaussian" sometimes refers to the distribution of 𝑣 · ||𝑣||−1,
where 𝑣 is a Gaussian distributed random vector.

6.3 Dual Quaternions for Representing
Rigid-Body Motions in the Plane

Dual quaternions generalize both quaternions and dual numbers. They
are of our interest because of their capability of representing rigid-body
motions systematically. Thus, we will give a brief introduction to dual
quaternions and then discuss their application to representing rigid-body
motions and the special case considered here, planar rigid-body motions.

6.3.1 Fundamental Properties

As quaternions have been introduced in the previous chapter, we only
introduce the concept of dual numbers before laying out how both concepts
are combined in order to obtain dual quaternion numbers.

Dual Numbers

The concept of dual numbers was developed by Clifford in [20]. A dual
number can be seen as a modification of complex numbers replacing the
complex unit 𝑖 by the dual unit 𝜀, which is characterized by the nilpotency
property, that is 𝜀2 = 0. Thus, a dual number can be written as

𝑎1 + 𝑎2 𝜀 .
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The sum of two dual numbers is simply given as the componentwise sum.
Multiplication follows from the nilpotency property as

(𝑎1 + 𝑎2𝜀) · (𝑏1 + 𝑏2𝜀) = 𝑎1𝑏1 + (𝑎1𝑏2 + 𝑎2𝑏1)𝜀 .

A matrix representation of a dual number 𝑎1 + 𝑎2𝜀 is given as(︂
𝑎1 0
𝑎2 𝑎1

)︂
. (6.1)

With this representation, matrix multiplication can be used to multiply
two dual numbers. Furthermore, we can define a dual conjugation by
changing the sign before the dual part. However, it is easily seen that a
dual number does not necessarily have a multiplicative inverse. Whenever
the real part is zero, a dual number is not invertible.

Dual Quaternions

A dual quaternion can be thought of as a dual number where both entries
are replaced by quaternions or equivalently as a quaternion where all
entries are replaced by dual numbers. That is, a dual quaternion is given
by an 8-tuple of real values

(𝑎1 + 𝑎2𝑖 + 𝑎3𝑗 + 𝑎4𝑘) + 𝜀(𝑎5 + 𝑎6𝑖 + 𝑎7𝑗 + 𝑎8𝑘) . (6.2)

Moreover, the dual unit 𝜀 commutes with 𝑖, 𝑗, 𝑘, e.g., it holds 𝑖𝜀 = 𝜀𝑖.
One could also define dual quaternions in a different way, where the
relationship between the quaternion units and the dual unit anticommutes,
i.e. 𝜀𝑖 = −𝑖𝜀. This variant is often used in the special case of defining
dual complex numbers for applying them to the representation of planar
rigid-body motions. However, in this work, dual quaternions are chosen
rather than dual complex numbers for better consistency with future
generalizations to rigid-body motions in R3.

Multiplication of dual quaternions is obtained directly from multiplication
of dual numbers and multiplication of quaternions. Let 𝑎, 𝑏 ∈ R8 denote
dual quaternions (expressed as vectors). These vectors can be split up into
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sub-vectors representing quaternions 𝑎𝑞, 𝑎𝑑, 𝑏𝑞, 𝑏𝑑 ∈ R4. Then, the dual
quaternion product (denoted by �) can be expressed as

𝑎 � 𝑏 =
(︂

𝑎𝑞

𝑎𝑑

)︂
�

(︂
𝑏𝑞

𝑏𝑑

)︂
=
(︂

𝑎𝑞 ⊕ 𝑏𝑞

𝑎𝑞 ⊕ 𝑏𝑑 + 𝑎𝑑 ⊕ 𝑏𝑞

)︂

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1𝑏1 − 𝑎2𝑏2 − 𝑎3𝑏3 − 𝑎4𝑏4
𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎3𝑏4 − 𝑎4𝑏3
𝑎1𝑏3 − 𝑎2𝑏4 + 𝑎3𝑏1 + 𝑎4𝑏2
𝑎1𝑏4 + 𝑎2𝑏3 − 𝑎3𝑏2 + 𝑎4𝑏1

𝑎1𝑏5 − 𝑎2𝑏6 − 𝑎3𝑏7 − 𝑎4𝑏8 + 𝑎1𝑏1 − 𝑎2𝑏2 − 𝑎3𝑏3 − 𝑎4𝑏4
𝑎1𝑏6 + 𝑎2𝑏5 + 𝑎3𝑏8 − 𝑎4𝑏7 + 𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎3𝑏4 − 𝑎4𝑏3
𝑎1𝑏7 − 𝑎2𝑏8 + 𝑎3𝑏5 + 𝑎4𝑏6 + 𝑎1𝑏3 − 𝑎2𝑏4 + 𝑎3𝑏1 + 𝑎4𝑏2
𝑎1𝑏8 + 𝑎2𝑏7 − 𝑎3𝑏6 + 𝑎4𝑏5 + 𝑎1𝑏4 + 𝑎2𝑏3 − 𝑎3𝑏2 + 𝑎4𝑏1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

There are several ways to define the conjugation of dual quaternions. First,
it is possible to conjugate the units 𝑖, 𝑗, 𝑘 resulting in

((𝑎1 + 𝑎2𝑖 + 𝑎3𝑗 + 𝑎4𝑘) + 𝜀(𝑎5 + 𝑎6𝑖 + 𝑎7𝑗 + 𝑎8𝑘))‡

:= (𝑎1 + 𝑎2𝑖 + 𝑎3𝑗 + 𝑎4𝑘)* + 𝜀(𝑎5 + 𝑎6𝑖 + 𝑎7𝑗 + 𝑎8𝑘)*

= (𝑎1 − 𝑎2𝑖− 𝑎3𝑗 − 𝑎4𝑘) + 𝜀(𝑎5 − 𝑎6𝑖− 𝑎7𝑗 − 𝑎8𝑘) ,

where * denotes the quaternion conjugation. As will be seen, this definition
is of particular importance when using dual quaternions in context of
representing rigid-body motions. Second, dual conjugation can also be
applied changing the sign in front of the dual unit

((𝑎1 + 𝑎2𝑖 + 𝑎3𝑗 + 𝑎4𝑘) + 𝜀(𝑎5 + 𝑎6𝑖 + 𝑎7𝑗 + 𝑎8𝑘))†

:= ((𝑎1 + 𝑎2𝑖 + 𝑎3𝑗 + 𝑎4𝑘)− 𝜀(𝑎5 + 𝑎6𝑖 + 𝑎7𝑗 + 𝑎8𝑘)) .

Finally, both conjugations can be applied simultaneously

((𝑎1 + 𝑎2𝑖 + 𝑎3𝑗 + 𝑎4𝑘) + 𝜀(𝑎5 + 𝑎6𝑖 + 𝑎7𝑗 + 𝑎8𝑘))‡†

:= ((𝑎1 − 𝑎2𝑖− 𝑎3𝑗 − 𝑎4𝑘)− 𝜀(𝑎5 − 𝑎6𝑖− 𝑎7𝑗 − 𝑎8𝑘)) .

The inverse of a dual quaternion 𝑎 + 𝑏𝜀 (where 𝑎, 𝑏 ∈ R4) is obtained by
using the inverse of quaternions as

𝑎−1(1− 𝜀𝑏𝑎−1) .
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6.3 Dual Quaternions for Representing Rigid-Body Motions in the Plane

As already mentioned in the above discussion of dual numbers, it can now
easily be seen that the inverse does not necessarily exist. A necessary (and
sufficient) condition is 𝑎 ̸= 0. The norm of a dual quaternion 𝑎 is usually
defined as 𝑎 � 𝑎‡. If this norm is equal to 1, then 𝑎 is called a unit dual
quaternion. However, contrary to the quaternion case, it is important to
note that this norm is not necessarily a real number, as is shown in the
following example.

Example 6.1. Consider the dual quaternion 𝑎 = (1, 0, 0, 0, 1, 0, 0, 0)⊤.
Then the norm is obtained as

𝑎 � 𝑎‡ = (1, 0, 0, 0, 2, 0, 0, 0)⊤ .

Thus, with this norm mapping, the vectorspace of dual quaternions cannot
be considered a Banachspace. However, due to its relation to norms on
quaternions and complex numbers this mapping is usually still called a
norm. It will play an important role when dual complex numbers are
applied to representation of uncertain rigid-body motions in the plane.

Using the typical matrix representation of a quaternion (5.2) and (6.1),
we can obtain a matrix representation of the dual complex number given
in (6.2) as

Q𝑎 =
(︂

Q𝑎,𝑞 0
Q𝑎,𝑑 Q𝑎,𝑞

)︂

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1 𝑎2 𝑎3 𝑎4 0 0 0 0
−𝑎2 𝑎1 −𝑎4 𝑎3 0 0 0 0
−𝑎3 𝑎4 𝑎1 −𝑎2 0 0 0 0
−𝑎4 −𝑎3 𝑎2 𝑎1 0 0 0 0
𝑎5 𝑎6 𝑎7 𝑎8 𝑎1 𝑎2 𝑎3 𝑎4
−𝑎6 𝑎5 −𝑎8 𝑎7 −𝑎2 𝑎1 −𝑎4 𝑎3
−𝑎7 𝑎8 𝑎5 −𝑎6 −𝑎3 𝑎4 𝑎1 −𝑎2
−𝑎8 −𝑎7 𝑎6 𝑎5 −𝑎4 −𝑎3 𝑎2 𝑎1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.3)

Where Q𝑎,𝑞 is the matrix representation of the quaternion (𝑎1, 𝑎2, 𝑎3, 𝑎4)⊤

and Q𝑎,𝑑 is the matrix representation of the quaternion (𝑎5, 𝑎6, 𝑎7, 𝑎8)⊤
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Chapter 6. Estimation of Planar Rigid-Body Motions

6.3.2 Representing Rigid-Body Motions

The application of unit dual quaternions to representing rigid-body motions
is straightforward. A rotation with angle 𝜃 around the (normalized) axes
(𝑣𝑥, 𝑣𝑦, 𝑣𝑧)⊤ is represented in the same way as in orientation representation
with pure quaternions. That is, it is given by the

cos
(︂

𝜃

2

)︂
+ (𝑣𝑥 𝑖 + 𝑣𝑦 𝑗 + 𝑣𝑧 𝑘) sin

(︂
𝜃

2

)︂
.

Translations (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) can be represented using

1 + 𝜀

2(𝑡𝑥 𝑖 + 𝑡𝑦 𝑗 + 𝑡𝑧 𝑘) .

The entire rigid-body motion is represented as a product of these two
types of dual quaternions. Applying a rigid-body motion represented by
𝑣 ∈ R8 to a vector 𝑤 = (𝑤𝑥, 𝑤𝑦, 𝑤𝑧) starts of by representing this vector
as a dual quaternion

1 + 𝜀(𝑤𝑥 𝑖 + 𝑤𝑦 𝑗 + 𝑤𝑧 𝑘)

and then computing 𝑣 � 𝑤̂ � 𝑣‡, where 𝑤̂ ∈ R8 is the vector representation
of the dual-quaternion representing 𝑤. The result is then given in the
imaginary entries of the dual part. From this, it is also seen why the dual
quaternions 𝑣 and −𝑣 represent the same rigid-body motion. This change
of signs cancels out during computation. Besides that, the representation
is unique. Thus, unit dual quaternions are a double cover of 𝑆𝐸(3).

Restricting the representation to representing purely planar body motions
yields some simplifications. We use the dual quaternion framework and
consider the 𝑥–𝑦–plane. In this setting, a rotation (around the origin)
with angle 𝜃 can be thought of as a rotation around (0, 0, 1)⊤. This is
represented by the dual quaternion

cos
(︂

𝜃

2

)︂
+ sin

(︂
𝜃

2

)︂
𝑘 .

Similarly, a translation (𝑡𝑥, 𝑡𝑦)⊤ in the plane is represented by the dual
quaternion representing the translation (𝑡𝑥, 𝑡𝑦, 0)⊤. That is,

1 + 𝜀

2(𝑡𝑥 𝑖 + 𝑡𝑦 𝑗) .
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6.3 Dual Quaternions for Representing Rigid-Body Motions in the Plane

We can combine rotation and translation, represented by dual quaternions
𝑟 and 𝑡 respectively as

𝑡 · 𝑟 =
(︁

1 + 𝜀

2(𝑡𝑥 𝑖 + 𝑡𝑦 𝑗)
)︁
·
(︂

cos
(︂

𝜃

2

)︂
+ sin

(︂
𝜃

2

)︂
𝑘

)︂
= cos

(︂
𝜃

2

)︂
+ sin

(︂
𝜃

2

)︂
𝑘

+ 𝜀

2

[︂(︂
cos
(︂

𝜃

2

)︂
𝑡𝑥 + sin

(︂
𝜃

2

)︂
𝑡𝑦

)︂
𝑖

+
(︂
− sin

(︂
𝜃

2

)︂
𝑡𝑥 + cos

(︂
𝜃

2

)︂
𝑡𝑦

)︂
𝑗

]︂
,

which assumes the rotation to be carried out first. Furthermore, every
planar rigid-body motion can be represented as a rotation with a subsequent
translation. Thus, all dual quaternions used for representing planar rigid-
body motions only have four non-zero entries. Furthermore, there is no
constraint on the non-zero entries in the dual part, whereas the non-dual
part needs to be a unit quaternion.

Consequently, our representation of the dual quaternion

(𝑎1 + 𝑎2 𝑘) + 𝜀(𝑎3 𝑖 + 𝑎4 𝑗)

can be simplified to using a vector in 𝑆1 ×R2 ⊂ R4. The matrix represen-
tation (6.3) can also be simplified to

Q𝑎 =

⎛⎜⎜⎝
𝑎1 𝑎2 0 0
−𝑎2 𝑎1 0 0
−𝑎3 𝑎4 𝑎1 −𝑎2
−𝑎4 −𝑎3 𝑎2 𝑎1

⎞⎟⎟⎠
This matrix representation respects the multiplicative subgroup of unit
dual quaternions restricted to planar motions. It corresponds to the usual
matrix representation of dual complex numbers. And thus, unit dual
complex numbers are a representation of this subgroup. Their application
to representing planar rigid-body motions is discussed in [92].
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Chapter 6. Estimation of Planar Rigid-Body Motions

For our reduced vector notation, we will continue to use � to denote the
dual quaternion product. That is,⎛⎜⎜⎝

𝑎1
𝑎2
𝑎3
𝑎4

⎞⎟⎟⎠�

⎛⎜⎜⎝
𝑏1
𝑏2
𝑏3
𝑏4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑎1𝑏1 − 𝑎2𝑏2
𝑎1𝑏2 + 𝑎2𝑏1

𝑎1𝑏3 − 𝑎2𝑏4 + 𝑎3𝑏1 + 𝑎4𝑏2
𝑎1𝑏4 + 𝑎2𝑏3 − 𝑎3𝑏2 + 𝑎4𝑏1

⎞⎟⎟⎠ .

Similar to the previous chapter, we can rewrite some operations as matrix
vector multiplications. The multiplication can be rewritten as

𝑎 � 𝑏 = D Q𝑎 D 𝑏 , (6.4)

where once again D = diag(1,−1,−1,−1). The same can be done for
inversion, because this comes down to a conjugation in the case considered
here. Thus, the inverse of 𝑎 is given as

𝑎−1 = 𝑎‡ = D 𝑎 . (6.5)

6.4 A New Probability Distribution

In order to be capable of representing uncertain planar rigid-body motions,
we propose a novel probability distribution that represents uncertainty
over the multiplicative subgroup of unit dual quaternions as derived above.
That is, we define a probability distribution on Ω = 𝑆1 × R2. When
interpreting the circular part as a unit vector in R2, we have Ω ⊂ R4.

The basic idea of the proposed distribution defined on Ω is similar to the
Bingham distribution. That is, it is basically a conditioned multivariate
Gaussian. In case of the Bingham distribution, the entire random vector is
conditioned to unit length. The proposed distribution is slightly different
as only a sub-vector is conditioned to unit length. In the considered
case, this condition is imposed on the sub-vector consisting of the first
two entries of 𝑥. Thus, the probability density of the newly proposed
distribution is given as

𝑓(𝑥) = 𝐾(P)−1 exp
(︀
𝑥⊤ P 𝑥

)︀
(6.6)

with 𝑥 ∈ Ω, a parameter matrix P, and a normalization constant 𝐾(P). So
far, it is seen that the newly proposed density is, similarly to the Bingham

124



6.4 A New Probability Distribution

case, antipodally-symmetric. Thus, E(𝑥) = 0 holds independently of the
choice of P.

We can rewrite 𝑥 as (𝑥⊤
𝑠 , 𝑥⊤

𝑡 )⊤ with 𝑥𝑠 ∈ 𝑆1, 𝑥𝑡 ∈ R2. This notation will
be useful in the following discussion of the proposed distribution. A direct
numerical integration for computing the normalization constant 𝑁(P) is as
complicated as in the Bingham case, because it requires the computation
of the triple integral

𝐾(P) =
∫︁

𝑆1

∫︁
R2

exp
(︀
(𝑥⊤

𝑠 , 𝑥⊤
𝑡 )P(𝑥⊤

𝑠 , 𝑥⊤
𝑡 )⊤)︀ d𝑥𝑡 d𝑥𝑠 .

However, later it will be shown how this computation can be simplified to
the special case of computing a Bingham normalization constant. Another
problem of the current formulation is the fact, that it is not obvious which
conditions need to be satisfied by P in order to ensure that the proposed
density is a well defined probability distribution. In what follows, P is
assumed to be symmetric. Obviously, it is sufficient that P is negative-
definite. But it is not clear whether negative-definiteness of P is also a
necessary condition.

The first step for better understanding the proposed distribution is rewrit-
ing the parameter matrix P as

P =
(︂

P1 P⊤
2

P2 P3

)︂
. (6.7)

With this notation, we can obtain a more convenient formulation of the
considered density (6.6).

Proposition 6.2. The density (6.6) can be formulated as

𝑓(𝑥𝑠, 𝑥𝑡) = 1
𝐾(P) exp

(︀
𝑥⊤

𝑠 S 𝑥𝑠 + (𝑥𝑡 −A𝑥𝑠)⊤P3(𝑥𝑡 −A𝑥𝑠)
)︀

, (6.8)

where P𝑖 are as in (6.7), S = P1 −P⊤
2 P−1

3 P2 is the Schur complement
of P3 in P, and A = −P−1

3 P2.
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Chapter 6. Estimation of Planar Rigid-Body Motions

Proof. We make use of the fact that 𝑥⊤
𝑠 P⊤

2 𝑥𝑡 = 𝑥⊤
𝑡 P2 𝑥𝑠 and obtain

𝑓(𝑥𝑠, 𝑥𝑡) = 1
𝐾(P) exp

(︀
(𝑥⊤

𝑠 , 𝑥⊤
𝑡 )P(𝑥⊤

𝑠 , 𝑥⊤
𝑡 )⊤)︀

= 1
𝐾(P) exp

(︀
𝑥𝑠 P1 𝑥𝑠 + 2 𝑥⊤

𝑠 P⊤
2 𝑥𝑡 + 𝑥𝑡 P3 𝑥𝑡

)︀
Completing the square using 𝑥𝑠P⊤

2 P−1
3 P2𝑥𝑠 yields the desired result.

With this representation, we obtain necessary and sufficient conditions
on the matrix P in order to have a well-defined probability distribution.
Thus, P1 needs to be symmetric, P2 may be arbitrary and P3 needs to
be symmetric positive definite.

The formulation (6.8) immediately yields two further relationships with the
Bingham distribution and the Gaussian distribution respectively. First,the
Bingham distribution is the marginal distribution of 𝑥𝑠, because marginal-
ization yields

𝑓(𝑥𝑠) =
∫︁
R2

𝑓(𝑥𝑠, 𝑥𝑡) d𝑥𝑡

∝ exp(𝑥⊤
𝑠 S 𝑥𝑠) .

(6.9)

The second relationship is the fact that the density of 𝑥𝑡 conditioned on a
fixed 𝑥𝑠 is Gaussian. This is easily seen from

𝑓(𝑥𝑡 |𝑥𝑠) = 𝑓(𝑥𝑡, 𝑥𝑠)
𝑓(𝑥𝑠)

∝ exp
(︀
(𝑥𝑡 −A𝑥𝑠)⊤P3(𝑥𝑡 −A𝑥𝑠)

)︀
.

Here∝ refers to proportionality with respect to 𝑥𝑡. From P−1
3 = − 1

2 (− 1
2 P3)−1,

we have 𝑥𝑡|𝑥𝑠 ∼ 𝒩 (A𝑥𝑠,− 1
2 P−1

3 ).

These two relationships can be used to reduce the computation of a
normalization constant of the new distribution to the computation of the
normalization constant of the Bingham distribution.

Proposition 6.3. The normalization constant 𝐾(P) is given by

𝐾(P) = 2𝜋

√︃
det
(︂
−1

2P−1
3

)︂
·𝑁(P1 −P⊤

2 P−1
3 P2)−1 ,
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6.4 A New Probability Distribution

where 𝑁(·) is the normalization constant of the Bingham distribution.

Proof. First, consider the integral over the unnormalized Gaussian

∫︁
R2

exp
(︀
(𝑥𝑡 −A𝑥𝑠)⊤P3(𝑥𝑡 −A𝑥𝑠)

)︀
d𝑥𝑠 = 2𝜋

√︃
det
(︂
−1

2P−1
3

)︂
. (6.10)

From the fact, that 𝑥𝑠 follows a Bingham distribution, we know its normal-
ization constant to be given by 𝑁(P1 −P⊤

2 P−1
3 P2). Furthermore, from

(6.9), we know that this Bingham normalization constant is a product of
the Gaussian normalization constant given in (6.10) and 𝐾(P)−1. Solving
for 𝐾(P) yields the desired result.

Furthermore, a random sampling procedure can be derived from these two
relationships. It is based on a two step approach. First, a random sample
𝑥𝑠 is generated from a two dimensional Bingham distribution. Second,
a Gaussian sample 𝑥𝑡 is generated from 𝒩 (A𝑥𝑠,− 1

2 P−1
3 ). Consequently,

the entire resulting sample is then obtained as (𝑥⊤
𝑠 , 𝑥⊤

𝑡 )⊤.

The representation in Proposition 6.2 is also useful for obtaining the modes
of the proposed distribution. For the circular part 𝑥𝑠, the modes are given
by ±𝑚, where 𝑚 is the eigenvector corresponding to the largest eigenvalue
of S. Using the fact, that the proposed density conditioned on the circular
part is Gaussian with mean A𝑚, we can obtain the modes of the entire
density as ±(𝑚⊤, (A𝑚)⊤)⊤.

6.4.1 Parameter Estimation

The relationships discussed so far are not only useful for the computation
of the normalization constant. They also play a key role in parameter
estimation, which is carried out similarly to the approach in [75]. The
main idea behind the parameter estimation procedure is estimating the
Bingham distribution parameters from the first two entries of all provided
samples in order to obtain S and then using multivariate linear regression
[3] to obtain A (as defined in Proposition 6.2) and P3. This is sufficient
to finally obtain an estimate of the entire parameter matrix P.
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Chapter 6. Estimation of Planar Rigid-Body Motions

Algorithm 6.1 𝑆𝐸(2) Distribution Parameter Estimation
1: procedure EstimateSE2(𝑠1, . . . , 𝑠𝑚)
2: (M̂, Ẑ)← EstimateBingham((𝑠(1)

1 , 𝑠
(2)
1 )⊤, . . . , (𝑠(1)

𝑚 , 𝑠
(2)
𝑚 )⊤);

3: Ŝ← M̂ Ẑ M̂⊤;
4: C1 ←

∑︀𝑚
𝑖=1(𝑠(3)

𝑖 , 𝑠
(4)
𝑖 )⊤ · (𝑠(1)

𝑖 , 𝑠
(2)
𝑖 );

5: C2 ←
∑︀𝑚

𝑖=1(𝑠(1)
𝑖 , 𝑠

(2)
𝑖 )⊤ · (𝑠(1)

𝑖 , 𝑠
(2)
𝑖 );

6: B̂← C1C−1
2 ;

7: P̂3 ←

(︃
2
𝑚

𝑚∑︁
𝑖=1

(︂(︂
𝑠

(3)
𝑖

𝑠
(4)
𝑖

)︂
− B̂

(︂
𝑠

(1)
𝑖

𝑠
(2)
𝑖

)︂)︂
·
(︂(︂

𝑠
(3)
𝑖

𝑠
(4)
𝑖

)︂
− B̂

(︂
𝑠

(1)
𝑖

𝑠
(2)
𝑖

)︂)︂⊤
)︃−1

8: P̂2 ← P̂3 B̂;
9: P̂1 ← Ŝ− P̂⊤

2 P̂−1
3 P̂2;

10: P̂←
(︂

P̂1 P̂⊤
2

P̂2 −P̂3

)︂
;

11: return P̂;
12: end procedure

The procedure is shown in Algorithm 6.1. It produces an estimate of the
distribution parameters from samples 𝑠1, . . . , 𝑠𝑚 ∈ Ω which are assumed
to be given in a form in which the first two entries 𝑠

(1)
𝑖 , 𝑠

(2)
𝑖 denote the

circular part and the second two entries 𝑠
(3)
𝑖 , 𝑠

(4)
𝑖 denote the unconditioned

part. Estimation of the Bingham part can be performed as proposed in
Algorithm 5.1. Multivariate linear regression is carried out as described in
[3, Theorem 8.2.1], that is

B̂ = C1C−1
2 ,

where

C1 :=
𝑚∑︁

𝑖=1
(𝑠(3)

𝑖 , 𝑠
(4)
𝑖 )⊤ · (𝑠(1)

𝑖 , 𝑠
(2)
𝑖 ) , C2 :=

𝑚∑︁
𝑖=1

(𝑠(1)
𝑖 , 𝑠

(2)
𝑖 )⊤ · (𝑠(1)

𝑖 , 𝑠
(2)
𝑖 ) .

And for the covariance

−1
2 P̂−1

3 = 1
𝑚

𝑚∑︁
𝑖=1

(︃(︃
𝑠

(3)
𝑖

𝑠
(4)
𝑖

)︃
− B̂

(︃
𝑠

(1)
𝑖

𝑠
(2)
𝑖

)︃)︃
·

(︃(︃
𝑠

(3)
𝑖

𝑠
(4)
𝑖

)︃
− B̂

(︃
𝑠

(1)
𝑖

𝑠
(2)
𝑖

)︃)︃⊤

.
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The entire estimation procedure can also be formulated in a more general
way EstimateBingham((𝑝1, 𝑠1), . . . , (𝑝𝑚, 𝑠𝑚)) where 𝑝𝑖 denote probability
weights in order to make consideration of weighted samples possible. This
requires including the weights in the computation of C1, C2 and P̂3.
Besides that, the estimation procedure remains unchanged.

6.4.2 Representation of Uncertain Rigid-Body Motions

The newly derived distribution can be used to represent planar rigid-body
motions. Its mode can be interpreted as a manifold equivalent of a mean
rigid-body motion (a similar interpretation is also made in [75]). Thus, a
suitable matrix needs to be chosen for obtaining a density with a certain
predefined mean. This is done in the following way. Assume P is the
parameter matrix of the newly proposed distribution with corresponding
mode (1, 0, 0, 0). Then, a distribution with desired mode 𝑎 can be obtained
as follows. Let Q𝑎 denote the matrix representation of 𝑎−1. Using (6.4),
it can be seen that

𝑓(𝑥) ∝ exp((D Q𝑎 D 𝑥)⊤ P (D Q𝑎 D 𝑥))
= exp(𝑥⊤ D Q⊤

𝑎 D P D Q𝑎 D 𝑥) ,

with D = diag(1,−1,−1,−1) and thus D⊤ = D. An analogous argu-
ment using (6.5) establishes that if 𝑥 follows the proposed distribution
with parameter matrix P, then 𝑥−1 is also distributed according to this
distribution with parameter matrix D P D.

6.5 Deterministic Sampling

In this section, a deterministic sampling method is proposed, which serves
as a discrete approximation of the distribution presented above. The
following approach differs on a principal level from the sampling approaches
discussed in both preceding chapters. First, it differs from the sampling of
the Bingham distribution, which is a purely moment-based approach and
thus could in theory be reasonably applied to every antipodally symmetric
distribution on the hypersphere. Second, the proposed sampling is not a
shape approximation as discussed in chapter 4.
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Chapter 6. Estimation of Planar Rigid-Body Motions

Algorithm 6.2 𝑆𝐸(2) Distribution Deterministic Sampling
1: procedure DeterministicSampling(P1, P2, P3)
2: S← P1 −P⊤

2 P−1
3 P2;

3: A← −P−1
3 P2;

4: (𝑣1, 𝑣2, 𝜆1, 𝜆2)← Eigendecomposition(S) ◁ Assuming 𝜆𝑖 ≤ 𝜆𝑖+1
5: M← (𝑣1, 𝑣2);
6: Z← diag(𝜆1 − 𝜆2, 0);
7: (𝑎1, . . . , 𝑎𝑁 , 𝑤𝑠,1, . . . , 𝑤𝑠,𝑁 )← SampleBingham(M,Z)
8: (𝑏1, . . . , 𝑏𝑀 , 𝑤𝑡,1, . . . , 𝑤𝑡,𝑀 )← SampleGaussian(0,− 1

2 P3)
9: 𝑘 ← 1;

10: for 𝑖 ∈ {1, ..., 𝑁} do
11: for 𝑗 ∈ {1, ..., 𝑀} do

12: 𝑥𝑘 ←
(︂

𝑎𝑖

𝑏𝑗 + A · 𝑎𝑖

)︂
;

13: 𝑝𝑘 ← 𝑤𝑠,𝑖 · 𝑤𝑡,𝑗 ;
14: 𝑘 ← 𝑘 + 1;
15: end for
16: end for
17: return (𝑝1, 𝑥1), . . . , (𝑝𝑁 ·𝑀 , 𝑥𝑁 ·𝑀 );
18: end procedure

The deterministic sampling scheme proposed here can be seen as a hybrid
approach, which can be more generally seen as an entire class of sampling
approaches. The key idea is once again to make use of the fact that the
marginal distribution of the circular part is Bingham and conditioning the
non-restricted part on a given circular part yields a Gaussian. First, we
use a deterministic sampling scheme to obtain the approximation of the
Bingham distribution. This yields 𝑚𝑠 samples 𝑚1, . . . , 𝑚𝑚𝑠

. Second, for
each of these samples 𝑚𝑖 we obtain a deterministic sample set approxi-
mating a 𝒩 (A𝑚𝑖,− 1

2 P3) distribution using 𝑚𝑡 samples. This is brought
together in a resulting sample set consisting of 𝑚 = 𝑚𝑠 ·𝑚𝑡 samples.

Thus, the deterministic sampling procedure is similar to random sampling.
It is hybrid in the sense that, both involved sampling procedures can be
purely moment based. However, the entire procedure still makes use of the
particular structure of the distribution and is thus not easily generalized
to other probability distributions on 𝑆𝐸(2).
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6.6 A Filter for Rigid-Body Motions in the Plane

It does not matter which deterministic sampling procedure is used for
approximating the Gaussian density and the Bingham density respectively.
Furthermore, it suffices to sample only one Gaussian with covariance
− 1

2 P3. A suitable repositioning operation is then used to obtain the
desired mean.

The entire sampling scheme is shown in Algorithm 6.2. The methods
SampleBingham, and SampleGaussian refer to a deterministic sampling
of the Bingham and the Gaussian distributions respectively.

6.6

We consider a general system model, where an uncertain system state
is represented by a dual-quaternion. Moreover, all arising noise is also
modeled using the newly proposed distribution. That is, our system model
is given by

𝑥𝑡+1 = 𝑎(𝑥𝑡, 𝑤𝑡) ,

where 𝑥𝑡 is characterized using the proposed distribution with parameter
matrix P𝑒

𝑡+1 and 𝑤𝑡 is assumed to be distributed according to the proposed
distribution with parameter matrix P𝑤. Furthermore, we require the
system function 𝑎(·, ·) to respect antipodal symmetry in both parameters.
That is

𝑎(−𝑥, 𝑤) = −𝑎(𝑥, 𝑤) , 𝑎(𝑥,−𝑤) = −𝑎(𝑥, 𝑤) .

In our measurement model, we consider noisy direct measurements, i.e.,
the model is given by

𝑧𝑡 = 𝑥𝑡 � 𝑣𝑡 , (6.11)

where 𝑣𝑡 is following the proposed distribution with parameter matrix P𝑣.
This model not only accounts for a manifold equivalent of zero-mean noise,
but also makes considerations of biased measurement models possible as
long as the bias is independent from the current system state, and thus,
can be modeled as a suitably chosen mode of the noise distribution, i.e., a
suitably chosen P𝑣.
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Chapter 6. Estimation of Planar Rigid-Body Motions

6.6.1 Prediction

The prediction is entirely based on a twofold deterministic sampling proce-
dure and requires three approximations. First, 𝑔(𝑥𝑡, 𝑤𝑡) is in general not
distributed according to the proposed distribution. This is also true for the
special case 𝑥𝑡�𝑤𝑡. Thus, we will approximate the distribution of 𝑔(𝑥𝑡, 𝑤𝑡)
by the proposed distribution. A first approach would be using the method
of moments. From the fact that 𝑔 respects antipodal symmetry, it follows
that 𝐸(𝑔(𝑥, 𝑤)) = 0. Thus, we could match the second moment, as in the
Bingham case. This would require the computation of E(𝑔(𝑥, 𝑤) ·𝑔(𝑥, 𝑤)⊤),
which is computationally burdensome. The reason for this is the fact,
that currently the only way to carry out this computation would be direct
numerical integration involving a triple integral. Two further approxima-
tions are introduced to avoid this computational burden. These are the
deterministically obtained sample based approximations (according to the
method proposed in the previous section) of the densities of the current
estimate 𝑥𝑒

𝑡 (denoted as 𝑠𝑥,𝑖 with weights 𝑝𝑥,𝑖 and 𝑖 ∈ {1, . . . 𝑚}) and the
system noise 𝑤𝑡 (denoted as 𝑠𝑤,𝑖 with weights 𝑝𝑤,𝑖 and 𝑖 ∈ {1, . . . 𝑚}).
These approximations are used to compute

𝑠𝑚·(𝑖−1)+𝑗 = 𝑎(𝑠𝑖, 𝑤𝑗) ,

𝑝𝑚·(𝑖−1)+𝑗 = 𝑝𝑥,𝑖 · 𝑝𝑤,𝑗 .

Finally, the parameter estimation procedure proposed above is used to
obtain the parameters P̂𝑝

𝑡+1 for the predicted density. The entire prediction
step is shown in Algorithm 6.3 and visualized in Figure 6.1. The point
estimate 𝑥̂𝑝

𝑡+1 is obtained as the mode of the distribution computed in this
prediction.

6.6.2 Measurement Update

The proposed filtering procedure makes a closed-form measurement update
possible. It starts off with the predicted estimate given as the parameter
matrix P𝑝

𝑡 . First, we reformulate the measurement model (6.11) as

𝑥−1
𝑡 � 𝑧𝑡 = 𝑣𝑡 .
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Figure 6.1.: Prediction step of SE(2) filter using deterministic sampling.

Using Bayes theorem, we obtain

𝑓(𝑥𝑡|𝑧𝑡) ∝ 𝑓𝑣(𝑥−1
𝑡 � 𝑧𝑡) · 𝑓(𝑥𝑡) .

The prior 𝑓(𝑥𝑡) is known, and thus, the main challenge is expressing the
likelihood in terms of 𝑥𝑡. This is carried out by making use of (6.5) and
(6.4), and thus obtaining

𝑓𝑣(𝑥−1
𝑡 � 𝑧𝑡)

(6.5)= 𝑓𝑣(D(𝑧−1
𝑡 � 𝑥𝑡))

(6.4)= 𝑓𝑣(D D Z D 𝑥) ,

where D = diag(1,−1,−1,−1) and Z is the matrix representation of the
dual quaternion 𝑧−1. As a consequence of DD = I, the above identity
simplifies to

𝑓𝑣(𝑥−1
𝑡 � 𝑧𝑡) = 𝑓(Z D 𝑥) .

Finally, we obtain the entire resulting posterior density as

𝑓(𝑥𝑡|𝑧𝑡) ∝ exp
(︀
𝑥⊤ (︀D Z⊤ P𝑣 Z D + P𝑝

𝑡

)︀
𝑥
)︀

.

The entire resulting algorithm is shown in Algorithm 6.4. There, the
function MatrixRepresentation(𝑧) denotes the matrix representation of
the dual quaternion 𝑧.
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Algorithm 6.3 SE(2) Filter Prediction Step
1: procedure SE2Predict(P𝑒

𝑡 , P𝑤)
2: (𝑝𝑥,1, 𝑠𝑥,1), . . . , (𝑝𝑥,𝑚, 𝑠𝑥,𝑚)← SE2DeterministicSampling(P𝑒

𝑡 )
3: (𝑝𝑤,1, 𝑠𝑤,1), . . . , (𝑝𝑤,𝑚, 𝑠𝑤,𝑚)← SE2DeterministicSampling(P𝑤)
4: 𝑘 ← 1;
5: for 𝑖 ∈ {1, . . . , 𝑚} do
6: for 𝑗 ∈ {1, . . . , 𝑚} do
7: 𝑝𝑘 ← 𝑝𝑥,𝑖 · 𝑝𝑤,𝑗 ;
8: 𝑠𝑘 ← 𝑎(𝑠𝑥,𝑖, 𝑠𝑤,𝑗);
9: 𝑘 ← 𝑘 + 1;

10: end for
11: end for
12: P𝑝

𝑡+1 ← EstimateSE2((𝑝1, 𝑠1), . . . , (𝑝𝑚, 𝑠𝑚))
13: return P𝑝

𝑡+1;
14: end procedure

Algorithm 6.4 SE(2) Filter Update
1: procedure MeasurementUpdate(P𝑝

𝑡 , P𝑣, 𝑧)
2: Z← MatrixRepresentation(𝑧−1);
3: D← diag(1,−1,−1,−1);
4: P𝑒

𝑡 ← D Z⊤ P𝑣 Z D + P𝑝
𝑡 ;

5: return P𝑒
𝑡 ;

6: end procedure

6.7 Evaluations

All evaluations were carried out using Matlab 2014b. The deterministic
sampling was implemented using the algorithm from the previous chapter
for sampling the circular part (with 𝜆 = 0.5) and a naïve implementation
of the UKF sampling with equal weights for the Gaussian part. The
correct covariance of the Gaussian samples was obtained by multiplying
the samples of a standard Gaussian with the Cholesky decomposition of
the desired covariance matrix.
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Figure 6.2.: A low noise (let column) and a high noise (right column) simulation run
showing the true system evolution (blue lines), its estimate (green lines),
the UKF estimate (orange), and the measurements (red circles).
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For our simulation run, we assumed a noisy identity model

𝑥𝑡+1 = 𝑥𝑡 � 𝑤𝑡

and a direct measurement model

𝑦
𝑡

= 𝑥𝑡 � 𝑣𝑡

This model can also account for control inputs by choosing a suitable
parameter matrix for the distribution of 𝑤𝑡. Furthermore, it is also
possible to compute the second moment of 𝑥𝑡+1 from the second moments
of 𝑥𝑡 and 𝑤𝑡 using moment matching. However, for our simulation we are
interested in the approach based on the proposed deterministic sampling
scheme.

A manifold variant of the UKF was used as comparison, which was also
based on dual quaternions for representing quantities on the 𝑆𝐸(2). There-
fore, its implementation required some adoptions in order to make it work
for the considered estimation problem. First, we project the predicted
state and the updated estimate back to the manifold in order to obtain
a feasible result. Second, an intelligent repositioning of measurements is
introduced in order to account for antipodal symmetry. This is done by
comparing the obtained measurement 𝑧𝑡 with the expected measurement
𝑧𝑡 (in case of the manifold equivalent of zero noise, this corresponds to
the current estimate) and multiplying the current estimate with −1 if the
resulting value is closer to the expected measurement.

The proposed distribution was used in order to generate the ground
truth. In order to adapt the UKF to this uncertainty, a manifold aware
moment matching procedure was performed. That is, random sampling
was used to compute the covariance of all noise terms involved. For this
procedure, it is infeasible to simply compute Cov(𝑤𝑡), because this would
not consider the intelligent repositioning of the measurements. Thus, it
is necessary to compute the covariance matrix of 𝑟(𝑤𝑡), where 𝑟(·) is a
function repositioning 𝑤 on the same side as one of its modes.

Two typical filter runs with different noise levels were carried out. For the
first run, the initial value 𝑥0 was generated using the proposed distribution
with parameter matrix P0 = diag(−10, 0, 1, 1). The system noise was
modeled as P𝑤 = diag(0 − 55 − 100 − 100) and the measurement noise
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as P𝑣 = diag(0,−30,−10,−10). Higher noise levels and dependency
between the angular and the linear quantities were introduced in the
second run. This was achieved by using the following parameter matrices
P0 = diag(−10, 0,−1,−1), P𝑤 = diag(0,−3,−1,−1), and

P𝑣 =

⎛⎜⎜⎝
0 0 0 1
0 −15 0 0
0 0 −10 0
1 0 0 −10

⎞⎟⎟⎠ .

The results of both simulation runs are visualized in Figure 6.2. In order
to provide some intuition, this visualization is based on reconstructing
the original rigid-body motions from the dual quaternion representation.
That is, it shows the rotation and subsequent translations as represented
by the underlying dual quaternions. The results look similar to other
directional estimation problems and are in line with our expectation, that
small uncertainties can be handled by filters assuming linear underlying
state spaces. As the uncertainty grows, these filters (in the particular
example here, the UKF) fail to capture the geometric structure of the
underlying manifold.

The evaluation was performed using 100 runs in the low noise scenario. Its
results are visualized in Figure 6.3. The proposed filter is slightly better in
terms of angular error in this scenario. This part is similar to the Bingham
filter. However, the angular error has a considerable impact on the error
of the accuracy of the estimated position. This is due to the fact that the
dual-quaternion representation of a rigid-body motion links the angular
part with the translational part. That is, an error in the angular part has
also some effect in the estimated position. Due to a correct consideration
of the manifold structure within our distribution, this relationship is taken
into account. Thus, the newly proposed method outperforms filters based
on assuming a Gaussian distribution.

6.8 Summary and Discussion

This chapter proposed a novel filter for the representation of uncertain
rigid-body motions in the plane. It is based on two contributions. First, a
novel distribution from the exponential family of probability distributions
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Figure 6.3.: Mean error after 100 runs in the low noise scenario showing the proposed
approach (blue) and the adapted UKF (green).

was presented, making the representation of planar uncertain rigid-body
motions easily possible by using a multiplicative subgroup of unit dual
quaternions. This distribution makes a closed-form Bayes update possible
and is directly related to the Bingham distribution.

Consequently, a number of problems of typical approaches in dynamic state
estimation on nonlinear domains is avoided. These problems are typically a
result of wrongly assuming linearity of the underlying state-space (as done
when using some variant of nonlinear Kalman filters) or by performing
approximations in order to ensure that prior and posterior distribution
are of the same type (as done in approaches based on densities defined on
the tangent space, e.g., [27]).

The second contribution is a novel deterministic sampling scheme, which
is based on a hybrid approach that decomposes the problem of determin-
istically sampling the newly proposed distribution into the problems of
deterministically sampling Bingham and Gaussian distributions. This ap-
proach is highly adaptable, because arbitrary underlying sampling schemes
for the Bingham and the Gaussian may be used. However, its drawback
is that it requires a fairly high number of samples. On the other hand,
this property might be desirable when large nonlinearities are involved.
Both contributions give rise to a novel filtering scheme truly respecting the
structure of the underlying manifold and thus outperforming approaches
based on assuming linearity.
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CHAPTER
7

Conclusions and Outlook

Problems in dynamic state estimation involve describing system and mea-
surement models, quantifying and understanding the nature of the uncer-
tainties, deriving stochastic estimators, and implementing these estimators
in a computationally tractable way. Typically, some sort of approximation
has to be made in order to overcome each of these challenges. These approx-
imations might involve time-discretization, use of an approximate model,
or simplifying assumptions about uncertainty of the system. The goal of
these approximations is to provide computationally feasible algorithms
while maintaining sufficiently robust and accurate results. This thesis
focused on deterministic approximation of uncertainties and consideration
of two important nonlinear domains, namely the domain of orientations
and the domain of planar rigid-body motions.

7.1 Key Contributions

A Metric for Probability Distributions
In this thesis, a 𝐿2 distance was used for comparing probability distribu-
tions. It is capable of simultaneously considering continuous and discrete
probability distributions. This is made possible by using localized cumu-
lative distributions (LCDs), a representation of local probability mass
around a given point. The contribution to the further development of
this measure was twofold. First, we have discussed the setup in which
this measure is an actual metric and considered the special case based
on Gaussian kernels. Second, we have shown that the transform used
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to obtain an LCD representation (when using Gaussian-RBF kernels) is
directly related to the Weierstrass transform. Thus, results from the theory
on Weierstrass transforms are applicable to the LCD representation.

Deterministic Sampling of the Gaussian Distribution
The LCD-based metric was used to derive a shape approximation of
Gaussian densities (and more generally of Gaussian mixture densities).
This approximation requires a numerical procedure that places the samples
in a way minimizing the distance measure. The burden of both, numerically
evaluating the distance measure and performing numerical opimization
based on this measure, was addressed by deriving a computationally more
efficient representation for the case of approximating even-dimensional
Gaussians. Furthermore, for use in real-time filtering applications, we
discussed the application of a scheme based on using a precomputed
approximation of the standard normal distribution. We have also shown
that, when applying the distance measure in a scenario with equal means,
it is not necessary to choose a maximum kernel width. That is, in this
case, the measure can be evaluated in a way that considers every possible
kernel size. Finally, our evaluations have shown that the use of proposed
approximation for propagation of uncertainties outperforms state-of-the-
art approximate integration approaches, either in terms of computational
complexity or in terms of accuracy.

Sample-based Filters on Nonlinear Domains
This work considers filtering on nonlinear domains by providing filtering
techniques based on probability distributions which are truly defined on
these domains and thus reflect their geometric structure. The domains
particularly considered are the hypersphere and the cartesian product
of a circle and the Euclidean plane. The hypersphere is of our interest,
because the four dimensional special case can be used to represent uncertain
orientation. Whereas, the cartesian product of the circle and the Euclidean
space is of particular interest for representing rigid-body motions on the
plane. On the hypersphere, we make use of the Bingham distribution. Its
antipodal symmetry comes as a useful property that accounts for the fact
that unit quaternions are a double cover of the group of orientations. As
there was no counterpart for planar rigid-body motions, we proposed a
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new Bingham-like distribution for representing uncertainty on that group.
In the proposed setting, unit dual quaternions were used as representation
of elements of 𝑆𝐸(2). Similarly, to the case of uncertain orientations, unit
quaternions are a double cover of the 𝑆𝐸(2). Both distributions were used
to derive sample-based stochastic filters. These filters can be thought of
as the manifold-equivalent to the linear regression Kalman filter.

Deterministic Sampling on Nonlinear Domains
In order to avoid the use of possibly costly random sampling for our filter-
ing techniques on nonlinear domains, we propose deterministic sampling
techniques on these domains. In the hyperspherical case, our sampling
technique is based on moment matching. Thus, it has a very general
application, because it is not limited to approximating the Bingham distri-
bution, but can be used to approximate arbitrary antipodally symmetric
distributions on arbitrary-dimensional hyperspheres. In that sense, the
proposed sampling technique is an antipodally symmetric hyperspherical
analogue of the unscented transform. A distribution-dependent approach
was taken for a sample-based approximation of the newly proposed distri-
bution for the representation of planar rigid-body motions. The proposed
approach considers the probabilistic structure within the distribution. In
particular, we make use of the fact that the marginal distribution of the
circular part is a (circular) Bingham distribution whereas the distribution
of the non-circular part conditioned on a given value of the circular part
is Gaussian. This gives rise to a hybrid sampling approach, which uses
deterministic sampling of both, sampling a Bingham and a Gaussian dis-
tribution. In a practical implementation, arbitrary sampling procedures
may be used. It is even possible to replace one of the procedures by a
random sampling technique while keeping the other deterministic.

7.2 Relevance

State-of-the-art sample-based filters used either a fixed number of samples,
a very fast (usually at least quadratically in the dimension) growing num-
ber of samples, or involved random sampling, and thus, potentially suffered
from low flexibility, high computational burden, or quality loss. Further-
more, the alternative of using adaptive numerical integration techniques
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also suffers from a high computational demand that makes it unsuitable for
many real-time dynamic state estimation scenarios. This thesis overcomes
these limitations by proposing a highly adaptable sampling scheme of the
Gaussian distribution. Even though offlien precomputation imposes some
suboptimality, the resulting density approximation can be chosen in a
way ensuring a desired quality level for the propagation task. Thus, this
methodology combines the advantages of deterministic computations with
the flexibility of choosing an arbitrary number of samples without the use
of randomized methods. Furthermore, the systematically correct consider-
ation of nonlinear domains in nonlinear filtering facilitates simultaneous
use of good and poor sensor data within the same application. That is,
the proposed algorithms avoid throwing away measurements on nonlinear
domains, and thus, improve the efficiency of technical sensor systems.

7.3 Future Research

Dependencies Between Quantities on Nonlinear Domains
The consideration of dependencies is already a challenging task on linear
state spaces. Due to the nature of filters that make a Gaussian assumption,
it is usually assumed that dependencies arise as a linear relationship
that can be adequately described by the covariance. However, this is
not necessarily the case. E.g., when a nonlinear measurement model is
employed, the dependency structure between the uncertain state and its
measurement might be highly nonlinear. Assuming a linear relationship
might be still a sufficient approximation in many cases. In adapted
form, these considerations also hold for nonlinear domains. However,
there is additionally another basic challenge for these domains. There
is no canonical measure of dependency on nonlinear domains, and thus,
even for the circular case there are several measures proposing some
circular adaption of the covariance. A first approach for the circular case,
considering the dependency between two circular quantities, was presented
in [142]. A future challenge is the generalization of this approach to a
higher number of dependent circular quantities, and dependencies on other
nonlinear domains.
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Distributed Filtering on Nonlinear Domains
So far, our filtering algorithms have assumed a very centralized setting. The
presented algorithms were suitable for fusing estimates and measurements
as long as no common process noise was involved. In the linear case, there
has been a great body of research considering the problem of common
process noise, e.g., [100], [99], [16], [84]. There has also been some research
on this problem involving nonlinear system dynamics. However, to the best
of the authors knowledge there is no systematic consideration of nonlinear
domains for decentralized filtering.

Further Applications
This thesis mostly focused on deriving results contributing to the theory
of stochastic filtering. As already mentioned, these contributions were
motivated by real-world problems and the algorithms proposed within this
work can be directly used as a replacement for existing nonlinear propa-
gation algorithms or estimation methods. However, it is of considerable
interest to investigate the applicability of the proposed results beyond
the framework of dynamic state estimation, e.g., in the broader field of
computational perception. This may involve object detection or stochastic
control involving directional quantities.
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APPENDIX
A

Auxiliary Results

A.1 Exponential Integral

The exponential integral is defined as

Ei(𝑥) =
∫︁ 𝑥

−∞

e𝑦

𝑦
d𝑦 . (A.1)

The integral is understood in the sense of a Cauchy principal value for
𝑥 > 0 due to divergence of the integrand at 𝑦 = 0. A useful expansion of
this integral is given by

Ei(𝑥) = 𝛾 + ln |𝑥|+
∞∑︁

𝑘=1

𝑥𝑘

𝑘! 𝑘
, (A.2)

where 𝛾 ≈ 0.5772 is the Euler-Mascheroni constant. It is a simple conse-
quence of equations 6.2.7 and 6.6.4 in [96].

A.2 Integration on 𝑆𝑛

The goal of this section is to explain how the notation we use in this thesis
for integration on the hypersphere is understood.

For integration over the surface of unit hyperspheres, we use the notation∫︁
𝑆𝑛−1

𝑓(𝑥) d𝑥 . (A.3)
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In order to explain this notation, we introduce hyperspherical coordinates
(with fixed radius 1). That is, we introduce variables 𝜙1, . . . , 𝜙𝑛−1 with
𝜙1, . . . , 𝜙𝑛−2 ∈ [0, 𝜋] and 𝜙𝑛−1 ∈ [0, 2𝜋). This is used in order to perform
the following substitution

𝑥(1) = cos(𝜙1) ,

𝑥(2) = sin(𝜙1) · cos(𝜙2) ,

...
𝑥(𝑛) = sin(𝜙1) · . . . · sin(𝜙𝑛−2) · cos(𝜙𝑛−1)

This is used to define 𝑥(𝜙1, . . . , 𝜙𝑛−1). Now, the integral in (A.3) can be
rewritten as follows∫︁

𝑆𝑛−1
𝑓(𝑥) d𝑥

=
∫︁ 2𝜋

0

∫︁ 𝜋

0
· · ·

∫︁ 𝜋

0⏟  ⏞  
𝑛−2 times

𝑓(𝑥(𝜙1, ..., 𝜙𝑛−1))

×

(︃
𝑛−2∏︁
𝑖=1

sin(𝜙𝑖)𝑛−1−𝑖

)︃
d𝜙1 . . . d𝜙𝑛−1

The additional sin(𝜙𝑖) terms are a consequence of the transformation
theorem. This choice ensures that our notation follows the intuition, that
the integral of 1 over 𝑆𝑛−1 yields the surface area of 𝑆𝑛−1.
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