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Abstract

This master thesis addresses model-based state estimation and radius reg-
ulation for semiconductor crystals grown with the Czochralski process.
These crystals are cut into thin slices (wafers), used for the fabrication of
electronic micro devices. In industry currently radius control is achieved
with PID controllers, not very appropriate for the time-variant, nonlin-
ear Czochralski process. Thus more advanced regulation systems are re-
quired; for this purpose a nonlinear state space model, describing the hy-
dro mechanical part of the process, was derived. Based on this model a
linear-quadratic regulator (LQR) was designed. Furthermore for the esti-
mation of the hidden state variables two statistical algorithms were com-
pared, namely the Extended Kalman Filter and the Unscented Kalman Fil-
ter. These algorithms were found to yield equal statistical performance;
furthermore the LQR approach works fine in simulation. So far no experi-
mental closed loop tests were made.
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Introduction

This master thesis addresses the problem of model-based state estimation
and crystal radius regulation for semiconductor crystal growth processes,
more precisely for the Czochralski process. It was developed during a
practicum experience with MEMC Electronic Materials, an United States
manufacturer of silicon wafers for the semiconductor industry based in St.
Peters, Missouri. The practicum, supervised by Prof. Alessandro Beghi
from the University of Padua, was performed from August 2011 to March
2012 at the MEMC plant situated at Merano, Italy.
The Czochralski process is a method to grow high-purity, possibly doped
semiconductor crystals.1 The device used for crystal growth is the crys-
tal puller; an example is reported in Figure 1. Once the growth process is
completed, the semiconductor crystals are cut into thin slices, the so-called
wafers, which are used in electronics for the fabrication of integrated cir-
cuits and other microdevices [14]. As described in [14], the wafer is used
as the substrate for microelectronic devices built in and over the wafer and
undergoes many microfabrication process steps such as doping or ion im-
plantation, etching, deposition of various materials, and photolithographic
patterning. Furthermore solar cells and panels can be produced from semi-
conductor wafers.
A detailed description of the Czochralski process and its major difficulties
is given in Chapter 1. Only the growth of monocrystalline silicon crystals
for electronic wafers is considered, since these are the products fabricated
at the Merano plant. Briefly high-purity silicon is melted in a quartz cru-
cible, situated in the bottom part of the crystal puller. Normally a dopant
(amongst others arsenic, antimony, phosphorus and boron) is added to
the silicon melt. Then a monocrystalline silicon seed, attached to a rod,
is dipped into the melt; the apex melts and a small, liquid region forms
between the seed and the silicon melt contained in the crucible. This re-
gion is the so-called meniscus; its height is an important variable for radius
control. Then the (rotating) seed is slowly pulled upwards, according to a
pre-defined pull rate; in optimal conditions the silicon which solidifies at
the interface between the seed and the meniscus is monocrystalline. How-

1the dopant is used to change the electronical properties of the semiconductor
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ever at the moment of the contact between the seed and the melt a thermal
shock occurs, causing undesired imperfections in the crystal structure, such
as dislociations. In order to “grow them out“ initially a small-diameter (for
example 6 mm) portion is grown, the so-called neck. This part of the crystal
is one of the most critical phases of the growth process. All structure im-
perfections have to be eliminated during neck, otherwise the structure of
the whole crystal is compromised. Once the neck is completed, the crystal
diameter is enlarged to the desired value according to a pre-defined math-
ematical function (this part of the crystal is the shoulder); then the constant
radius part of the crystal, the body, is grown. The wafers are cut out only
from the body.
Examples of a silicon seed, Czochralski grown crystals and wafers are re-
ported in Figure 2.

Figure 1: Example of crystal puller [17] and schematic representation [18]

Figure 2: Monocrystalline silicon seed [15], crystals and wafers [16]
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Czochralski crystal growth is an extremely complex, highly nonlinear, time
variant batch2 process [3]; a myriad of variables have to be taken into ac-
count in order to grow a monocrystalline crystal with the desired electroni-
cal (such as dopant and oxygen concentration) and structural properties, at
the pre-defined diameter imposed by the wafer dimension. The low pres-
sure (typically less than 100 mbar) atmosphere in the puller is enriched with
argon; basically it is used to create an inert atmosphere to prevent oxidation
on the crystal surface and puller components. Other critical parameters for
crystal structure and impurity concentration are the strength of the mag-
netic field applied to the silicon melt and the crucible rotation speed [19]
(usually both the crucible and the rod rotate).
According to [3] the most important parameters are the crystal growth rate
(that is the solidification rate at the interface between crystal and meniscus)
and the crystal radius. The growth rate affects the structural and electron-
ical properties of the crystal, such as structure losses and dopant, oxygen
and impurity concentrations in the crystal. To be exact the variable of inter-
est is not just the growth rate, but the ratio of growth rate vg to temperature
gradient over the meniscus, Gm; this latter parameter depends on both the
melt temperature and the meniscus height. Furthermore a precise radius
regulation is required in order to reduce the material waste. Body portions
with a too small diameter have to be remelted, whereas for portions with
too large diameter material has to be cut off. Considering that the growth
of a crystal continues for up to 2 days an imprecise radius regulation causes
remarkable loss of time and material and thus it affects the production cost
heavily.
Among these two variables only the radius can be measured, whereas the
growth rate is a hidden variable. It is approximately equal to the pull rate
and therefore the rates are often equated deliberately, in order to simplify
the regulation; however this is not entirely correct. The radius is usually
measured with a camera pointing to the meniscus; however to be exact the
measurement refers to the bright ring which appears on the meniscus and
therefore not to the true radius [3]. Thus the measurement is not very pre-
cise and quite noisy.3 Usually the noise is filtered with a simple lowpass or
tracking filter.
Typically the desired growth rate profile (which is chosen according to the
electronical specifications for the crystal) is tracked acting on the power
applied to the heater positioned around the quartz crucible.4 One of the
major problems of the growth rate control loop is the fact that it is character-
ized by a large time delay. In the first approximation the relation between
the melt temperature, one of the variables which affect the growth rate, and

2that is, there exists no working point
3for a more detailed discussion refer to Chapter 1
4more precisely the crucible is contained in a graphite susceptor; the heater is positioned

outside of this susceptor
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the heater power is described by a first-order system with a time delay of
approximately 20 ÷ 30 minutes. Therefore this loop is very slow and the
power variations have to be applied very carefully. The radius (or diameter)
control loop is much faster; the radius is regulated with the pull rate. Varia-
tions of the pull rate are propagated almost instantaneously to the radius.
A detailed description of the state of the art for radius and growth rate
regulation is given in Chapter 2; typically simple PID controllers are used,
although some model-based approaches are proposed in literature.

This thesis, more precisely the MEMC project it is a part of, has arisen from
the necessity of more advanced, model-based control schemes for the ra-
tio

vg

Gm
and the radius r, since PID control is clearly not the optimal choice

for nonlinear batch systems as the Czochralski process [3]. The project is
managed by Markus Siegert from the St. Peters plant. His work, heavily
used and often cited in this thesis, is summarized in [1]; furthermore, de-
tails were discussed in private communications. From now on for these
discussions the reference [2] is used.
To make the first move he developed a model-based control system for ra-
dius regulation. For this purpose a simple, nonlinear state space model, the
so-called capillary model, was deduced; it relates the pull rate to the crys-
tal radius. The three state variables are given by the radius, the meniscus
height and the melt temperature; the output variable is the noisy radius
measurement, whereas the pull rate is used as input variable. This model
refers only to the geometrical part of the Czochralski process; the thermal
part was not modelled, since it is extremely difficult to capture the thermal
dynamics in the melt [3]. The thermal regulation, that is the growth rate
control with the heater power, was not addressed so far; it is still achieved
with standard PID control.
The meniscus height and the melt temperature are hidden, not measur-
able state variables, required by each kind of model-based state feedback
controller. Therefore, based on the capillary model, a statistical state esti-
mator, more precisely an Unscented Kalman Filter (UKF), was used in [1];
the state estimations computed by this filter are fed to an infinite-horizon
linear-quadratic regulator (LQR) which computes the required pull rate ac-
cording to the radius set point. The closed loop system was already tested
on an actual puller, with satisfying results [1]. It is worth mentioning that
so far only the neck phase was considered.
The collaboration with the University of Padua was started in order to solve
some problems related with this approach. In the context of this thesis a de-
tailed theoretical analysis of the work presented in [1] was performed: that
is the modelling procedure, the LQR and the UKF design and tuning. The
latter point is the principal reason for the collaboration with the University;
statistical, nonlinear state estimation is a complex argument and for a de-
tailed theoretical analysis and treatment highly specific skills are required.
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In fact one of the major problems of the approach of Siegert is the filter tun-
ing; as a matter of fact, he did not use any statistical methods for estimation
evaluation and filter tuning. Since state estimation is fundamental not only
for LQR but for each model-based control approach, the development of
estimation quality indices for filter tuning is absolutely essential. Note that
model-based control can not be performed without knowledge of the melt
temperature and the meniscus height, thus the usage of an estimator for
these hidden quantities is indispensable, since they can not be measured
with sufficient precision.
Based on [1] this thesis provides:

• a detailed analysis of the deduction of the original capillary model;

• the development of an improved version of this model, with remark-
able benefits in terms of robustness and linearity;

• analysis and simplification of the original LQR approach, reducing
the number of state variables in the (improved) LQR model; thus the
computational effort is reduced too;

• a detailed theoretical analysis of the nonlinear state estimation prob-
lem, based on the Bayesian approach. Besides the UKF, other esti-
mation algorithms are exposed: the Extended Kalman Filter (EKF)
and the Particle Filter (PF). These algorithms were implemented with
the improved capillary model and compared to the original UKF ap-
proach;

• the development of numerical indices for state estimation quality eval-
uation, based on whiteness tests on the output prediction error;

• the development of filter tuning procedures based on these indices.

Like in [1] also the considerations of this report are limited to the neck
phase; however they should be extendable, with some small adjustments,
to the body phase too. The control and filtering algorithms developed dur-
ing the practicum were implemented with Matlab, a numerical comput-
ing environment designed for complex matrix manipulations and statisti-
cal analysis, described more in detail in Chapter 7. Initially the algorithms
were tested on the simulated capillary model and subsequently the sim-
ulation results were validated on experimental data provided by Siegert.
This data was recorded during test runs on a puller at the St. Peters plant,
performed with the original UKF and LQR approach. Obviously only the
filtering algorithms were applied to this data, since state feedback control
such as LQR can be tested only on the actual puller. During the practicum
for lack of time it was not possible to execute such closed loop tests. The
next step would be to implement the algorithms on an actual puller and
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verify their impact on the real system.

Briefly, the following results were obtained:

• the improved model is more linear and more robust with respect to
model parameter variations, with benefits for both the state estima-
tion and the LQR;

• the reduced state space LQR is simpler than the original approach
and thus computationally more efficient. Furthermore some formal
problems related with the original LQR were solved;

• an alternative filter approach, the EKF, was deduced. This state esti-
mator is easier to handle than the UKF and yields approximately the
same performance. Therefore it is a valid alternative to the UKF;

• it was proved that the probability density function of the state vector
is almost Gaussian (this result was achieved with the Particle Filter).
Thus the usage of more complex estimators (or other sigma point sets
for the UKF) is quite senseless as long as the model is not complicated;

• a statistical index for state estimation evaluation was developed, which
permits a precise tuning of the UKF (and EKF).

The report is structured as follows. Chapter 1 contains a general descrip-
tion of the Czochralski process and a typical crystal puller. Furthermore
some basic definitions are given. Then in Chapter 2 a literature review on
actual radius and growth rate regulation approaches is given (with some
notes on state estimation).
Chapter 3 exposes the capillary model reported in [1], with a detailed de-
scription and deduction of the equations. Furthermore the model parame-
ters are discussed. Finally some modifications and improvements are pro-
posed, leading to the improved capillary model used heavily in the follow-
ing. At the end of the chapter a brief stability and controllability analysis
on the linearized improved model is performed.
Chapter 4 addresses the nonlinear estimation problem. After a general in-
troduction of the Bayesian estimation approach adopted for this project,
its recursive application to linear state estimation, the linear Kalman Filter,
is exposed. Then its extensions to nonlinear estimation, the EKF and the
UKF, are described in detail, together with a more advanced approach, the
Particle Filter. This latter filter was used only for some verifications on the
probability density function of the state space vector, useful for UKF and
EKF estimation.
Chapter 5 introduces a widely used statistical estimation quality test, the
so-called test for white noise. The illustration of the underlying principle is
followed by the definition of some basic functions (autocorrelation, Power
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Spectral Density and Power Spectrum, besides white noise) required for
this test, together with a parametric and a non-parametric approach to their
estimation. Finally two simple numerical quality indices are deduced.
In Chapter 6 some theoretical considerations on the LQR approach are re-
ported. The application to radius regulation as in [1] is discussed and after
that some improvements are proposed, leading to the reduced state space
LQR with feed forward. Finally some considerations on the penalty choices
are given.
Chapter 7 discusses the simulation results. Initially a brief description of
the implementation of the capillary model, the filtering and the control al-
gorithms in Matlab is given. Then the performance of the original UKF
used in [1] is compared to the UKF and EKF based on the improved cap-
illary model. The filter tunings and comparisons are based on the white
noise area index. Finally the analysis is completed with the Particle Filter.
The chapter is concluded with a brief robustness discussion and some con-
siderations on the improved LQR approach.
In Chapter 8 the state estimation algorithms (old and improved UKF and
EKF) are applied to experimental data, in order to verify the simulation re-
sults.
Finally in the last chapter the results are summarized and some conclusions
are drawn. Furthermore, some suggestions for future work are reported.

In the following some critical informations and results are omitted, since
their disclosure is prohibited by the confidentiality agreement with MEMC
Electronic Materials.
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Chapter 1

The Czochralski process

The Czochralski process is a method to grow high-purity, monocrystalline
semiconductor (and metal) crystals, which are then cut into thin wafers,
used in electronics for the fabrication of integrated circuits and further-
more for the production of solar cells and panels. Hereinafter the focus
is on monocrystalline silicon crystals for electronic wafers. The electrical
properties of the wafers depend on the crystallography, the impurity and
the dopant concentration in the crystal.
In this chapter initially a brief historical overview on Czochralski growth
is given. Then two big issues of the growth process are described and dis-
cussed: crystallographic defects and impurities. Finally the structure of
a modern puller is considered and the Czochralski pulling process is ex-
plained briefly.

Figure 1.1: Czochralski crystal puller plant [39]

1



2 1.1. HISTORICAL OVERVIEW

1.1 Historical overview

The following overview is based on [20].
The Czochralski process is named after Polish metallurgist Jan Czochralski.
In 1916 he accidentally discovered that dipping a monocrystalline tin seed
into molten tin it is possible to grow monocrystalline tin wires. Czochral-
ski used his discovery to measure the crystallization rate of metals. His
method was first used to grow semiconductor crystals, namely germanium
crystals, by Teal and Little from Bell Labs, in 1948; the first silicon crystal
was grown in 1950. They also equipped their puller with devices for dop-
ing. Initially the biggest problem was the low purity of the starting polysil-
icon melted in the crucible. Since the 1960s the purification and refining
of polysilicon is obtained transforming the raw silicon into a silane, more
precisely trichlorosilane, that is a colorless, toxic and extremely flammable
gas with chemical formula HCl3Si. The silane is purified by distillation
and adsorption and finally retransformed into elemental silicon by chemi-
cal vapor deposition. The polysilicon obtained this way is sufficiently pure
for Czochralski crystal pulling; that means that the total concentrations of
impurity elements (other than the electrically inactive oxygen and carbon,
which are allowed to occur in higher concentrations) are below 1 ppba.1

Another important step was the development of techniques for dislocation-
free crystal growth, first achieved in 1958. Dislocations are line defects in
the crystal structure. Furthermore over the years also the swirl-like mi-
crodefects and the number and size of voids in the crystal were reduced.
A brief introduction to these crystallographic defects is given below. For
electronic wafers perfectly monocrystalline, dislocation-free crystals are re-
quired; beside purity constraints this is the most important demand. In
the 1970s also the important role of oxygen in the silicon crystal was recog-
nized; basically it can be used to impede the movemement and multiplica-
tion of dislocations and to bond impurities.
The first crystals had a diameter of about 1 ÷ 2 cm and weighed less than
100 g. Today crystals up to a length of 2 m, a weight of hundreds of kilo-
grams and a diameter of 450 mm are grown. More than 95% of the single2

silicon crystals are grown with the Czochralski technique, whereas the rest
is grown by the float zone approach (that is a crucible-free method for crys-
tal growth, not considered in this work).

1.2 Crystallographic defects

In the following the most important crystallographic defects encountered
in Czochralski silicon crystal growth are described briefly. Crystalline solids

1parts per billion atomic
2that is, monocrystalline



1.2. CRYSTALLOGRAPHIC DEFECTS 3

such as silicon exhibit a regular crystal structure with a pre-defined orien-
tation. However the structure or lattice is not perfect since it is affected by
different types of defects, namely:

• Point defects [21]
Point defects are places where an atom is missing or irregularly placed
in the crystal lattice; they are always present. If an atom is missing in
the lattice the defect is called vacancy; irregularly placed atoms are
called interstitials. Basically two different types of interstitials can
appear: if the misplaced atom is a silicon atom it is referred to as a
self-interstitial defect; if it is of different type it is called an impurity
interstitial. Impurity interstitials are often introduced deliberately in
order to modify the properties of the crystal. Furthermore impurity
atoms can occupy a regular place in the lattice, forming a substitu-
tional defect (the impurity atom replaces a silicon atom).
Figure 1.2 shows a vacancy in the silicon lattice (the vacancy is repre-
sented with an empty circle). Both the vacancies and the interstitials
can move through the crystal; the speed of motion depends on the
temperature gradient. Point defects can form agglomerates; vacancy
agglomerates are often referred to as voids. Furthermore they can
disappear if an interstitial encounters and occupies a vacancy.
The motion of the vacancies and the interstitials is governed by the
ratio

vg

Gm
. Vacancies can be used to eliminate line defects [22].

• Line defects or dislocations
According to [21], linear defects are groups of atoms in irregular po-
sitions; usually they are called dislocations. Dislocations cause lattice
strain and distortion; basically plastic (that is permanent) deforma-
tion is caused by the motion of dislocations. Two different types can
be distinguished: edge and screw dislocations. Furthermore often
hybrid dislocations occur. An example of an edge dislocation is re-
ported in Figure 1.2; basically it is an extra half-plane of atoms in the
lattice. Screw dislocations are more difficult to represent; intuitively
they can be described as helical irregularities in the lattice. Disloca-
tions can move (or slip) because of cooling strains in the crystal; they
are generated due to thermal stress, which in the case of Czochralski
crystal growth is most pronounced at the moment of the contact be-
tween the single silicon seed and the melt.
According to [20], for most lattice orientations the dislocations are
lying oblique to the crystal growth direction and therefore it is pos-
sible to “grow them out“ to the lateral crystal surface; thus they are
left behind by the growth interface and eliminated from the crystal.
However they can slip and therefore follow the crystallization inter-
face. To prevent this undesired phenomenon usually Dash seeding
is used: that is, after the seed was dipped into the melt the growth



4 1.2. CRYSTALLOGRAPHIC DEFECTS

is started reducing the diameter, which is then kept constant for a
certain length (this portion of the crystal is the neck), at an increased
growth rate. For example, the seed could have a diameter of 10 mm
which is then reduced to 5 mm. Due to the small diameter the cool-
ing strains are reduced and therefore the dislocations are left behind.
Once this was achieved the diameter is enlarged (shoulder phase) to
the desired value for the wafers. In a dislocation-free crystal new
dislocations are introduced only if very high cooling strains appear;
however, if this happens, they are multiplied extremely fast. If not
all dislocations are eliminated during neck or new dislocations form
after this phase the structure of the whole crystal is compromised.
As stated above dislocation multiplication and movement can be re-
duced by adjusting the oxygen concentration in the crystal. Further-
more the larger the diameter of the crystal, the higher are the cool-
ing strains and therefore the risk of formation of new dislocations
increases. One possibility to overcome this problem is to stabilize the
thermal convection flows in the melt with magnetic fields [20].

• Swirl-like microdefects [20]
Swirl-like microdefects are concentric agglomerates of point defects
which occur only in dislocation-free crystals. They are caused by
growth rate fluctuations.

Furthermore plane and bulk defects can occur, however the discussion of
these defects is beyond the scope of this paper (refer to [21] for a detailed
description). Crystallographic defects affect the physical, chemical and
electronical properties of the crystal and therefore it is very important to
take them under control.

Figure 1.2: Vacancy in silicon lattice [40] and edge dislocation [41]



1.3. IMPURITIES 5

1.3 Impurities

As stated at the beginning of this chapter, one of the major concerns in
Czochralski crystal growth, besides the reduction and elimination of crys-
tallographic defects, is the purity of the silicon. According to [20] the im-
purity concentration has to be lower than 1 ppba. Only carbon and oxygen
are allowed to appear in higher concentrations. It is necessary to distin-
guish between undesired impurities and intentionally introduced impuri-
ties (such as dopants). Only the former ones are impurities in the proper
sense and therefore considered in this section.
With the introduction of new purification techniques for polysilicon (based
on trichlorosilane distillation and adsorption) the impurity problem was
partially solved. However impurities can be introduced also during the
pulling process, mainly from the crucible into the silicon melt. The cru-
cible, supported by a graphite susceptor, is usually made of quartz glass,
more precisely silica, with the chemical formula SiO2 (silicon dioxide). At
high temperatures it becomes soft and deforms, and furthermore it reacts
with the silicon melt [20]; thus the impurities contained in the crucible are
transmitted to the melt. For this reason it is important to use very pure
materials for the crucible; thus syntethic high-purity silica is utilized more
and more.
Besides the impurities the reaction with the silica crucible introduces also
oxygen into the melt [20]. Fortunately oxygen evaporates easily in the form
of silicon monoxide (SiO), thus preventing oxygen supersaturation of the
melt, which leads to dislocated and finally polycrystalline growth.3 With
any other crucible material4 this strong evaporation of the introduced im-
purities is not given, since they form no volatile compounds with silicon,
thus remaining in the melt and leading to supersaturation [20].
With silica crucibles more than 99% of the oxygen introduced in the melt
evaporates at the surface.5 However, if it is not removed from the puller
atmosphere, a slag of SiO, SiO2 and Si forms at the melt surface, thus
compromising the growth of the single silicon crystal. Therefore the at-
mosphere has to be purged; this is usually achieved with some noble gas,
typically argon [20].
Figure 1.3 reports an unused and an used silica crucible. Note that actually
two unused crucibles are shown: the smaller one is placed in the bigger one
(obviously only one crucible is placed in the puller). The used crucible con-
tains a residual of solidified silicon, not consumed during crystal growth.

3this happens for each kind of supersaturation, not just with oxygen
4such as silicon nitride or silicon carbide
5and, as stated previously, a small amount of oxygen in the silicon can be very useful to

treat dislocations and impurities



6 1.4. CRYSTAL PULLER AND PULLING PROCESS DESCRIPTION

Figure 1.3: Unused and used silica crucibles [42]

1.4 Crystal puller and pulling process description

Figure 1.4 reports the schematic of the lower chamber of a modern crystal
puller. The quartz crucible is charged with crushed high-purity polysilicon
and placed in the puller. The silicon is then melted with a graphite heater.
Since the quartz crucible deforms and becomes soft at the high tempera-
tures required for silicon melting, it is supported by a graphite susceptor
(or graphite crucible), placed on a rotatable shaft. The entire hot zone (that
is the lower part of the puller, used for heating) is insulated with thermal
shields. Furthermore, typically a radiation shield, not shown in the figure,
is used to shield the crystal from the melt. Its position is adjustable and rep-
resents a critical parameter for the temperature gradients in the hot zone.
Without such a reflector it is very difficult to grow large diameter crystals
[20].
As mentioned previously inside the puller a low-pressure inert gas atmo-
sphere is generated; normally a noble gas such as argon is used. For this
purpose the puller is equipped with an elaborated system of vacuum pumps
and valves.
The single silicon seed is mounted on the so-called seed holder connected
to a rotatable rod or cable; a spindle, positioned at the top of the puller,
is used to pull the crystal up. The upper chamber with the winch, not il-
lustrated in the figure, can be segregated from the lower chamber. As a
matter of fact, once the growth process is completed, the crystal is pulled
up, the valve between the chambers is closed and after the cooling proce-
dures the front door of the upper chamber is opened and the crystal can be
removed by the operator. Theoretically once the puller was charged, the
whole pulling process runs fully automatic until cooling of the grown crys-
tal is completed; therefore during growth the operator can easily supervise
several pullers.
Furthermore modern pullers are equipped with strong electromagnets, used
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Figure 1.4: Czochralski crystal puller schematic [43]

to create magnetic fields inside the crucible. The magnetic field can slow
the thermal convection flow in the melt; however it is primarily used to
stabilize it, that is to damp the fluctuations of the flow [2]. Different mag-
net field configurations are used for this purpose; furthermore often a sec-
ondary magnet is positioned besides the radiation shield. The magnets are
not shown in the schematic.
Moreover the lower chamber is assembled with a viewing port for the oper-
ator and an optical system for crystal radius measurement, typically one or
more cameras. The principle of the radius measurement is briefly explained
below. Furthermore usually at the top of the upper chamber a pyrometer,
pointing to the silicon melt, is mounted.

Finally a brief summary of the different phases of the Czochralski pulling
process is given. The main steps are schematized in Figure 1.6.
First the crucible is charged with crushed polysilicon and eventually some
dopant.6 Then the crucible is placed in the graphite susceptor and the lower
chamber is closed. After that the puller is sealed and the air is pumped out
with a vacuum pump, in order to generate a vacuum (the atmosphere is
in the following enriched with argon). Then the heater is turned on and

6such as boron, arsenic, antimony or phosphorus. Dopants are used to modify the elec-
trical properties, more precisely the final resistivity, of the crystal; furthermore modern
pullers are equipped with devices for redoping during the process, the so-called feeders
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Figure 1.5: Viewing port perspective during melting [44] and body growth
[45]
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polysilicon,

doping

Introduction 
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crystal
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the crystal

growth

Crystal 
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Formed crystal 

with a residue 
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Figure 1.6: Schematic representation of Czochralski process [46]

the silicon is melted at a temperature of approximately 1500 ◦C. During
the melting phase, as well as during the following phases, the crucible is
rotated; for melting the rotations are used in order to mix liquid and solid
silicon thoroughly.
Once melting is completed the temperature is stabilized at the desired value
for crystal growth; this is achieved by adjusting the heater power. Tem-
perature stabilization is followed by the dipping of the single silicon seed
into the melt. In order to eliminate the dislocations, generated by the ther-
mal shock at the moment of the contact, a neck is grown (according to the
technique of Dash, described previously). During neck as well as during
the following phases both the crucible and the crystal are rotated, usually
in opposite directions. According to [19] crucible rotation enhances the
thermal convection flows in the silicon melt, which are generated by non-
vertical temperature gradients. Basically the crucible rotations are used to
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homogenize the temperature distribution in the melt [2]. Furthermore the
crucible can be lifted in order to compensate for the melt level reduction,
which occurs due to the progressive solidification of the liquid silicon.
Once the neck is completed, the crystal diameter is enlarged to the desired
value according to a pre-defined mathematical function (shoulder); then
the constant radius body of the crystal is grown. As the body is completed
the pull rate is increased; thus the radius starts to decrease and the end
cone of the crystal is formed. The end cone is grown in order to avoid ther-
mal shocks at the moment of the extraction. Finally the crystal is placed in
the upper chamber and the cooling procedures are started; then the cooled
crystal is removed.

The chapter is concluded with the discussion of a very important point of
the pulling process and the definition of some useful terms and variables.
As mentioned in the introduction, when the seed is withdrawn from the
melt, a small amount of molten silicon rises with it, pulled upward by sur-
face tension; this phenomenon is well known as capillarity. The shape and
especially the height of this small region of liquid silicon between the crys-
tallization interface and the melt, usually referred to as meniscus, are of
crucial importance for radius control ([2], [3]). This will become clear in
Chapter 3, where the capillary model derived in [1] is described. The term
“capillary“ is used because the model describes the geometrical aspects of
the meniscus, generated by capillary actions, as pointed out above.
The interface between the (liquid) meniscus and the solid crystal is the
so-called crystallization or growth interface. Its shape is controlled by the
temperature gradients in the hot zone; however usually for modelling pur-
poses it is assumed to be perfectly flat (a condition which in practice is
never satisfied). The rim of the interface is the so-called trijunction line: it
is the intersecting line between solid and liquid silicon and the puller at-
mosphere. The crystal growth rate (or crystallization or solidification rate) is
usually considered at this line and is defined as:

vg =
dl

dt
.

l is the length of the crystal; thus the growth rate is the time derivative
of the crystal length. Its value depends on the considered point of the tri-
junction line; however usually this dependence is neglected in Czochralski
process modelling. The pull rate v is the speed at which the crystal is pulled
out from the melt and its dynamic does not equal the dynamic of the growth
rate; this point will be considered more in detail in Chapter 3. However
the average pull rate must equal the average growth rate, since otherwise the
meniscus height would diverge, thus impeding the growth of the crystal at
the desired, constant radius [2].
The growth rate is one of the most important parameters in Czochralski
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crystal growth and affects almost all the chemical and structural proper-
ties of the crystal. Thus, once the optimal profile was chosen, it has to be
tracked carefully. The growth rate depends on the temperature gradients in
the meniscus and in the crystal and therefore it is governed by the thermal
properties of the process; typically it is regulated by adjusting the heater
power.
Finally the actual crystal radius is defined as the radius of the crystalliza-
tion interface (it was tacitly assumed to be of perfectly cylindrical shape,
another simplification which is not necessary verified). However the cam-
era measurement of the crystal radius is based on the bright ring resulting
from the reflections of hotter locations in the hot zone by the meniscus [3],
and therefore it does not necessary refer to the true radius. Amongst other
problems it is difficult to establish whether the measurement refers to the
top of the meniscus, as it should, or not.

Summarizing Czochralski crystal growth is an extremely complex, highly
nonlinear, time variant batch process. The structural, chemical and elec-
tronical properties of the crystal are affected by hundreds of variables. Here
only some selected properties and parameters were considered, since the
goal of the project is model-based estimation and regulation for radius
tracking and for this purpose a detailed analysis of the chemical and phys-
ical properties is not required. For a detailed, complete treatment of the
properties and difficulties of Czochralski crystal growth refer, for instance,
to [19].



Chapter 2

State of the art: radius and
growth rate control approaches

This chapter reports a brief literature review on crystal radius and growth
rate regulation approaches for the Czochralski growth process. Although
this project addresses only radius control, also growth rate regulation was
reviewed, since the two variables are mostly considered together. Fur-
thermore some considerations on state variables estimation, required for
model-based control, are listed.
At present, the standard for radius and growth rate regulation in industrial
pullers consists in a double (or sometimes cascaded) PID feedback loop
[49], as reported in Figure 2.1. r denotes the radius, vg the growth rate,
v the pull rate and P the heater power. This control method is typically
adopted without any kind of model of the process dynamics; therefore the
PID tuning is highly empirical and basically obtained by a trial-and-error
procedure.

PID

PIDvg,set

rset +

+
-

-

Czochralski
process

r
v

P
vg

Figure 2.1: Standard industrial PID control of crystal radius r and growth
rate vg
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The radius is regulated acting on the pull rate, whereas the growth rate is
controlled through the heater power. Note that the second control loop is
characterized by a large time delay, as discussed previously; more generally
the dynamics of the growth rate control loop, that is the thermal dynamics
of the process, are much slower than the dynamics of the radius control
loop and therefore it operates usually on a larger time scale. The figure is
just a schematic representation; obviously in a real control scheme the mea-
sured variables, usually the radius, have to be filtered, whereas the hidden
variables, such as the growth rate, are estimated by some estimator or ob-
server. Often the scheme is further simplified, that is the second loop refers
to the pull rate and not to the growth rate. With this approach the loops
work in cascade and no estimator for the growth rate is required. However
this is not entirely correct since v 6= vg. The scheme is often combined with
feed forward terms for both the pull rate and the heater power (deduced
from previous runs or according to some other criterion).
However PID regulators are linear controllers and therefore clearly not the
optimal choice for a nonlinear, time variant batch process such as Czochral-
ski crystal growth [3]. For such processes the tuning of the PID controllers
is very tricky and basically obtained by trial-and-error, especially if no
model of the system dynamics is available; thus the performance of such
an approach is limited. Model-based control is preferable in this context;
however modelling of the overall Czochralski process is very difficult, due
to its complicated heat transfer mechanisms (such as the convection flows
in the silicon melt), and requires a distributed parameter approach [3].
Gevelber et al. [47] made the first steps towards model-based control with
conventional PID controllers, deriving a conduction-based lumped param-
eter model of the overall process. However no experimental results are
available for his approach; anyway it can be stated, as pointed out in [3],
that such a lumped parameter model of the overall process would not be
robust enough for feedback control. Therefore most of the model-based
control approaches proposed in literature consider a lumped parameter
model only of the geometrical-hydromechanical properties of the menis-
cus, which can be used for the radius control loop;1 usually the thermal dy-
namics of the process, which are extremely complicated, are not modelled,
and growth rate control is achieved with conventional PID regulators. In
the following some selected approaches are described.

An interesting approach was proposed by Mutti and Voronkov [48]. It is
based on a cascaded radius and growth rate control scheme and uses the
pull rate respectively the heater power as control variables, as usual. For
this purpose they derived a simple model which describes the geometri-
cal aspects of the meniscus, relating the measured crystal radius y(t) to the

1such as the capillary model in [1]
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true radius, the meniscus height and the growth rate.
According to [48] the radius measurement variations are recorded for a
pre-defined interval of time, the so-called observation interval; during this
interval the controller does not act on the system, that is the measure-
ments are recorded in the open loop system. At the end of the interval the
recorded radius function yexp(t) is compared to the function y(t), parame-
terized with the true radius, meniscus height and growth rate; thus the cur-
rent values of these parameters are deduced with a best fit routine applied
to y(t) and yexp(t). Based on these values a height response coefficient Ah

and a power response coefficient AP are determined; these parameters are
then used for the computation of the required pull rate respectively heater
power variations, in order to track the desired crystal radius and growth
rate trajectories. This approach is an elegant compromise of model-based
and empirical control (used for the power adjustments, since no thermal
model was derived). However no experimental results are available.

A more advanced approach was proposed by Winkler et al. [3]. As well as
Mutti and Voronkov they do not consider a complex mathematical model
of the overall process, which would not be exact and robust enough for
feedback control. Only the hydromechanical-geometrical part of the pro-
cess is modelled, deriving a nonlinear state space model parameterized in
crystal length instead of time; basically it describes the geometrical prop-
erties of the meniscus. The state variables are the crystal radius and the
crystal slope angle (this variable will be defined in the following chapter);
as control variable they define the so-called lift ratio, which takes into ac-
count the pull rate, the growth rate and the crucible translation rate. It
is worth mentioning that the model was derived with the assumptions of
cylindrical symmetry of the growth system and flatness of the growth in-
terface.
Starting from this model Winkler designed a nonlinear model-based con-
troller, based on flatness considerations;2 this controller is used, in combi-
nation with PID controllers and feed forward actions, to regulate the radius.
The thermal part of the process, that is the growth rate, is still regulated
with conventional PID control acting on the heater power, since no thermal
model was derived.
Moreover [3] addresses also the problem of hidden state variable estima-
tion, namely of the crystal slope angle and the radius; furthermore also the
growth rate is computed from the estimation of these variables. For this
purpose the force acting on a load cell mounted at the top of the pulling
rod is considered; from the first time derivative of this signal Winkler de-
duces, with a nonlinear model-based estimator, the values of the hidden

2as a matter of fact, their nonlinear model is flat; intuitively flatness is the extension of
the controllability property of linear systems to nonlinear systems
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variables. It is worthwhile to stress once more that also the radius is con-
sidered as a hidden, not directly measured variable.
The usefulness of the approach, theoretically applicable to all phases of
the growth process (neck, shoulder and body), was proved with several
experimental results obtained from the growth of gallium-arsenide and
indium-phosphide crystals; however it was not yet applied to silicon crys-
tal growth.

The approach of Winkler is very similar to the approach proposed in [1]
and used for this project, that is LQR control of the radius, combined with
UKF estimation of the hidden state variables. Both methods model only the
geometrical part of the process and regulate the growth rate with a conven-
tional PID loop. Furthermore the geometrical models are similar, besides
the choice of different state variables. However, the model in [1] is param-
eterized in time and not in crystal length, and the measured variable is the
radius and not the force acting on the load cell. Moreover LQR is a linear
control approach whereas Winkler considers an ad hoc-designed, flatness
based nonlinear controller, and finally his state estimation approach is de-
terministic and not statistical as the UKF method. Summarizing it can be
stated that Winkler proposes a more complex approach, which can not be
applied in absence of a load cell. On the other hand the strategy described
in [1] requires only the radius measurement, certainly available on modern
pullers for Czochralski crystal growth.

Finally an even more advanced approach was described by Irizarry-Rivera
and Seider in [49] and [50]. They use nonlinear model-predictive con-
trollers (MPC), operating on different time scales, for both the radius reg-
ulation and the growth rate regulation. The control variables are the pull
rate respectively the heater power, as usual. However to be precise actu-
ally the second loop refers to the pull rate and not to the growth rate; thus
the two rates are equated deliberately, as often done in crystal pulling. For
the radius MPC loop (denoted as capillary loop) a geometrical state space
model for the meniscus is derived, just as in [1] and [3]; however also the
possibility of a non-flat crystallization interface is taken into account (by
piecewise linearization). The state variables are the (true) crystal radius
and the meniscus height, which are computed indirectly from the growth
rate estimation; the measured signal is the crystal radius. Moreover the
MPC law includes constraints on the pull rate and its variations.
Furthermore a thermal model for the growth rate loop (denoted as bulk
loop) is considered. This model was obtained by discretization, using the
boundary-element method for order reduction, of a distributed-parameter
model which describes the heat transfer in the melt and the crystal. In [49]
this thermal model is derived considering only the heat transfer by con-
duction; in [50] it was extended to the convection flows in the silicon melt.
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Moreover also the thermal MPC law includes a set of constraints, basically
on the control variables and on the heat flow variations (in order to reduce
thermal stresses). The parameters of the thermal model are adjusted online,
based on temperature measurements in certain critical points of the growth
system, for instance in the crucible. However even with modern technol-
ogy it is not possible to make temperature measurements in the silicon melt:
in their simulations Irizarry-Rivera and Seider replaced the measurements
with simulated values.
For this approach only simulated results are available. The principle of a
coupled model-predictive control of both the radius and the growth rate
is certainly interesting; however no experimental results are available, and
furthermore the simulations refer to unrealistic conditions for industrial
crystal pulling: Seider and Irizarry-Rivera consider a crucible with a diam-
eter of 16 cm! Finally the reduced-order convection model for the growth
rate control loop requires temperature measurements which are not avail-
able as matters stand. Therefore this approach, interesting from a theoreti-
cal point of view, has to be revisited.
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Chapter 3

Deduction of the capillary
model in state space form

3.1 Generalities

As pointed out previously, this project aims to the model-based regulation1

of the crystal radius, acting on the pull rate. This part of the control scheme
is called the radius control loop. Further on, as discussed in the previous
chapters, the growth rate has to be regulated; this can be achieved by act-
ing on the heater power of the puller. This second loop, the so-called growth
rate control loop, is not investigated in this work. For the purposes of this
project it is sufficient to use the simple, already implemented PID controller
for the growth rate regulation.
In order to achieve an improved, model-based control of the radius, a model
which relates pull rate v to crystal radius r is required. For this purpose, the
so-called capillary model, described in [1], was used as a starting point (it
was derived for neck conditions, but most probably it applies to body con-
ditions too, with some small adjustments; however this was not yet inves-
tigated). In the following sections this model is presented and explained,
with a detailed description of the modelling procedure. After that, some
improvements are added, in order to obtain a simpler, more robust model.
In order to distinguish it from the original model reported in [1] it is referred
to as the improved model.

1and estimation of the required variables
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3.2 The original capillary model

[1] proposes a simple, discrete time model in state space form, which relates
the crystal radius to the pull rate. The state update equations, reported be-
low in compact form, refer to Figure 3.1; the meaning of the variables and
parameters is summarized in Table 3.1. In order to facilitate the readabil-
ity, the time argument n∆t, where ∆t is the sample time, was replaced by
n. Anyway, in the following the sample time is always assumed to be 1
second.







x1(n + 1) = f1(x(n), u(n))

x2(n + 1) = f2(x(n), u(n)) ,

x3(n + 1) = f3(x(n), u(n))

(3.1)

where:

x(n) =





r(n)
h(n)

Tm(n)



 , u(n) = v(n).

T = Tm

T = TC

q

h

Gs

Gm
r

qC

b
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MENISCUS

CRYSTAL

z-axis

Figure 3.1: Reference scheme for the capillary model
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Parameter / variable Symbol [unit]

Crystal radius at the trijunction line* r [m]

Meniscus height at the trijunction line* h [m]

Melt temperature under the meniscus* Tm [K]

Pull rate* v [m
s ]

Growth rate at the trijunction line* vg [
m
s ]

Meniscus slope angle θ [rad]

Sample time ∆t [s]

Melting point temperature of silicon Tc [K]

Thermal conductivity of solid silicon λs [
W
mK ]

Thermal conductivity of liquid silicon λL [ W
mK ]

Density of solid silicon at Tc ρs [
kg
m3 ]

Density of liquid silicon at Tc ρm [ kg
m3 ]

Specific latent heat of fusion ∆H f [
J

kg ]

Capillary or Laplace constant a [m]

Equilibrium growth angle θC [rad]

Crystal slope angle* β = θ − θC [rad]

Temperature gradient over the crystal Gs [
K
m ]

Temperature gradient over the meniscus* Gm [ K
m ]

Table 3.1: Model variables (denoted by *) and parameters

Briefly, the crystal radius r at time step n + 1 is obtained from its previous
value by adding a term which depends on the pull rate v and the tangent of
the so-called crystal slope angle β = θ − θc; as can be seen from Figure 3.1,
β is the angle between the vertical and the tangent to the crystal surface at
the trijunction line. The equilibrium growth angle θC is a material property,
however the meniscus slope angle θ (the angle between the vertical and the
tangent to the meniscus surface at the trijunction line) is a function of r and
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the meniscus height h.
Furthermore, the second state variable h depends on its previous value and
an additional term determined by the difference between the pull rate and
the crystal growth rate vg; the pull rate is considered as the (only) input
variable, whereas the growth rate at the trijunction line is a function of h and
Tm:

vg = vg(h(n), Tm(n)) (3.2)

As will be discussed later, almost all of the parameters which appear in this
formula are difficult to determine and therefore affected by huge uncertain-
ties.
The third state equation models the melt temperature as a random walk;2

this is achieved resorting to an additive, Gaussian distributed white noise
process with zero mean. If the power applied to the heater is constant,
also the melt temperature is approximately constant and therefore no white
noise term is necessary; anyway, as mentioned earlier, beside the radius
control loop there is also the growth rate loop acting on the puller, which
adjusts the heater power in order the achieve the desired growth rate. The
consequent melt temperature evolution can be qualitatively obtained by
simply adjusting the variance of the noise term.

Finally, the output equation of the state space model is:

y(n) = r(n) + wy(n).

As a matter of fact, the only measured variable is the first state variable, i.e.
the crystal radius.3 Obviously this measurement is affected by measure-
ment noise, represented by wy(·). This noise term is assumed to have the
same properties as the one acting on the third state variable.

3.2.1 Deduction of the model equations

This subsection contains a detailed analysis of the original capillary model,
with a step by step deduction of the state update equations. The model
is based on two fundamental assumptions, which are supposed to hold
throughout the whole paper, namely:

i) Cylindrical symmetry of the whole system. More precisely, all prop-
erties of the system are supposed to be invariant with respect to rota-
tions around the z-axis in Figure 3.1.

ii) Perfectly planar interface between the meniscus and the crystal, i.e.
between the molten and the solid silicon. From a theoretical point of

2this strategy is adopted only for simulation
3measured by the camera
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view this is equivalent to consider the radial temperature gradient on
the crystallization interface equal to zero.

These two simplifications are quite standard in the context of capillary crys-
tal growth [3]. With reference to Figure 3.1, lets consider the crystal radius
update equation.

Crystal radius update equation

The first state update equation is based on the following fundamental re-
lation between the radius derivative ṙ, the growth rate vg at the trijunction
line and the crystal slope angle β:

d r

d t
= ṙ = vg tan(β) = vg tan(θ − θc).

This equation is of common use in capillary modelling (see [3] and [6]); in
[7] a formal proof is given. Briefly, the proof is based on the assumption
of thermodynamic equilibrium on the trijunction line; as a matter of fact,
only under this condition the equilibrium growth angle θC can be consid-
ered constant. Note that the meniscus slope angle θ depends on r and h, as
mentioned earlier.
In order to obtain the expression for the radius its derivative is approxi-
mated with the incremental ratio.

Growth rate vg

Formula (3.2) for the crystal growth rate vg on the trijunction line is based
on the heat flow balance on the interface between the meniscus and the
crystal; considering only the heat flows due to thermal conduction, neglect-
ing the radiative heat transfer, yields [3]:

Ai λs Gs
︸ ︷︷ ︸

Q̇i→crystal

= Ai λL Gm
︸ ︷︷ ︸

Q̇men→i

+ Ai ρs ∆H f vg
︸ ︷︷ ︸

Q̇ f usion

. (3.3)

The heat flow Q̇i→crystal from the interface into the crystal equals to the

sum of the heat flow Q̇men→i from the meniscus into the interface and the
heat of fusion released Q̇ f usion. Ai is the cross section area of the interface,
Gs and Gm are the temperature gradients along the crystal respectively the
meniscus, λs and λL the thermal conductivities of solid respectively liquid
silicon. Finally, ∆H f is the specific latent heat of fusion and ρs the density of

solid silicon. The expressions for the heat flows and for Q̇ f usion are derived
in Section 3.2.2.
Finally equation (3.3) is solved for vg.
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Meniscus slope angle θ

The computation of the meniscus slope angle θ as a function of r and h, or,
inverting the problem, of the meniscus height h as a function of r and θ,
requires a detailed analysis of the meniscus surface curvature.
As stated in [8], the curvature of a non-planar contact surface between two
fluids of different type (in the case of interest, the meniscus surface between
molten silicon and the atmosphere in the puller) depends on the surface
tension σ between these fluids and the capillary pressure ∆p; given a point
P on the surface, in this point the variables are related by the equation of
Young-Laplace, which is a nonlinear partial differential equation (PDE):

∆p = σ

(
1

R1
+

1

R2

)

.

The capillary pressure is the pressure variation which is encountered travers-
ing the contact surface in P, and R1 and R2 are the local, principal radii of
the curvature of the surface. Therefore, the two principal radii as well as

the mean curvature, defined as 1
2

(
1

R1
+ 1

R2

)

, are subjected to a complex de-

pendence from the pressure and the surface tension, in every point P of the
contact surface.
For the PDE of Young-Laplace no exact closed-form solution is available;
the only way to compute the meniscus curvature is therefore by numerical
analysis. In the case of cylindrical symmetry, which is the case of interest,
cylindrical coordinates can be introduced in the Young-Laplace equation,
leading to a remarkably simplified expression, the so-called Euler-Laplace
equation. Unfortunately, even in this latter case no exact closed-form solu-
tion can be derived. Chapter 8 of [8] provides a detailed analysis of these
equations.
Anyway, in the case of interest it is sufficient to dispose of an expression
which relates the meniscus height h to the meniscus slope angle θ and the
crystal radius r. For this purpose, several closed-form approximations of
the Euler-Laplace equation solution were proposed in literature over the
last decades (see, for example, [3], [12] and [13]). The most popular ap-
proximations are:

• The Tsivinskii formula used in [1] for the original capillary model:

h = a

√

1 − sinθ +
a2 cos2θ

16 r2
− a2 cosθ

4r
.

• The Boucher formula:

h = a

√

1 − sin(θ)

1 + a√
2 r

.
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• The Johansen-Boucher formula, which is an improved version of the
Boucher formula, proposed by T. H. Johansen in [13]:

h = a

√

1 − sin(θ)

1 + 0.6915
(

a
r

)1.1
.

It is worth mentioning that, strictly speaking, the validity of these approxi-
mations is limited to the case r ≫ a;4 therefore, since the capillary constant
for silicon is approximately 8 mm, the approximations hold only for the
Body phase, where the crystal radius is of the order of hundreds of mil-
limeters. However, as will be discussed below, it turns out that the formu-
lae can be used also for the Neck phase.
From the comparison of the meniscus height computed by the three ap-
proximation formulae, reported in Figure 3.2 for a small radius (2.5 mm,
i.e. Neck conditions) and in Figure 3.3 for a large radius (100 mm, i.e. Body
conditions), it emerges that for small radii there is a remarkable difference
between the formulae, whereas for large radii it is negligible. The circles
in the figures identify the desired working point for crystal pulling with
constant radius (θ = θC ≈ 11◦).
[12] reports a comparison of the Tsivinskii and the Boucher approximation
with the exact numerical solution of the Euler-Laplace PDE, [13] compares
the Boucher and the improved Boucher formula to the numerical solution
(for small radii). From these considerations it is clear that the Tsivinskii for-
mula offers the worst approximation, whereas the other formulae are close
to the exact solution; as a matter of fact, the best approximation is yielded
by the Johansen-Boucher formula.
Furthermore, from the comparisons reported by Johansen in [12] and [13],
relating to small radii, it turns out that the formulae work fine also in this
case, apart from the Tsivinskii approximation, which should therefore not
be used for the Neck phase. In conclusion, the best result is given by using
the Johansen-Boucher instead of the Tsivinskii formula applied in [1].

4as in [5], whereas the Young-Laplace and the Euler-Laplace equations are of general
validity
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Figure 3.2: Comparison of the approximation formulae for r = 2.5 mm
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Meniscus height update equation

According to [3] the crystal growth rate vg is related to the pull rate v by
the following equation:

vg = v − ḣ − vcruc − ḣmelt. (3.4)

Here vcruc is the vertical (i.e., along the z-axis) translation speed of the cru-
cible and ḣmelt the variation of the height of the melt with respect to the
crucible bottom. Obviously, ḣ is the meniscus height derivative.
Therefore, as anticipated above, the dynamic of the growth rate does not
equal the dynamic of pull rate,5 since usually also the crucible is moving
and, furthermore, the meniscus height and the melt level vary with time.

For neck pulling the melt level variations can be neglected, i.e. ḣmelt ≈ 0,
and therefore vcruc is set to zero; for the body phase the crucible lift rate is
imposed to follow the level variation. For this purpose, ḣmelt can be com-
puted explicitly by performing a mass balance at the interface. The overall
mass of silicon contained in the puller, mtot, is given by the sum of the over-
all mass of solid silicon contained in the crystal, mtot, and the overall mass
of liquid silicon; neglecting the mass contained in the meniscus, it is given
by the mass of the melt, mmelt. Performing the derivative, keeping in mind
that the overall mass mtotal is constant, yields:

mtotal = mcrystal + mmelt =⇒ ṁcrystal = −ṁmelt.

The crystal and melt masses are, in a first approximation, assuming crystal
and crucible of perfectly cylindrical shape, given by:

mcrystal = Ai ρs l,

mmelt = Acruc ρm hmelt.

Here Ai = π r2 is the cross section area of the interface and Acruc = π R2
cruc

the area of the base of the crucible; l is the length of the crystal. Further-
more, ρs and ρm are the densities of solid respectively liquid silicon. Deriv-
ing these equations with respect to time yields the mass variations:

ṁcrystal = Ai ρs
d l

d t
= π r2 ρs vg,

ṁmelt = Acruc ρm
d hm

d t
= π R2

cruc ρmḣm.

In fact, vg is defined as the derivative of the crystal length. As mentioned
above, for this mass balance the meniscus mass was neglected; therefore,
for the balance, and only for the balance, the meniscus height variation ḣ can

5only the average values are equal, as stated previously
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be neglected too. For this reason in the equation for ṁcrystal the growth
rate vg can be approximated with the pull rate v. It is worthwhile to stress
once more that this approximation can be used only in this particular case,
whereas generally it does not hold, as discussed above.
Finally, substituting the mass variation formulae in the mass balance equa-
tion, solving it for ḣm and setting vcruc = −ḣm, the crucible lift rate set point
is:

vcruc = −ḣm ≈ ρs r2

ρm R2
cruc

v.

Melt temperature update equation

As explained at the beginning of this chapter, in absence of heater power
variations the melt temperature, to be exact the melt temperature under the
meniscus, is approximately constant. Actually, this temperature depends
also on the crucible rotations and the magnetic field applied to the puller;
anyway, in the conditions of interest (i.e. the Neck phase) these two param-
eters are kept constant and therefore the only significant dependence is the
one from the heater power.
Therefore Tm should be modelled as follows:

Tm(n + 1) = Tm(n) + c(P[0, n]).

c(·) is a corrective function which is computed from the heater power ap-
plied in the past, P[0, n]. However, it is impossible to establish a simple
relation between temperature variations and heater power variations; for
this reason, the effect of the heater power variations, always present since a
second control loop is varying the power in order to adjust the growth rate,
is mimicked with a random walk:

Tm(n + 1) = Tm(n) + wTm(n).

wTm is a random process, more precisely a white noise process with zero
mean and Gaussian probability distribution function.

3.2.2 Discussion of the model parameters

In this section some of the model parameters of Table 3.1 are discussed.
Unfortunately, as will be pointed out below, most of these parameters are
affected by huge uncertainties and therefore any equation which depends
on one or more of them is fairly unreliable.
In the following, a brief description of the parameters is given:
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- Melting point temperature of silicon Tc

The melting point temperature of silicon depends, like for almost any
other element, on the pressure. Usually a value referring to the stan-
dard atmospheric pressure, which is 1013.25 mbar, is used. However,
the pressure of the atmosphere inside the puller is normally much
lower, typically 50 ÷ 100 mbar. The variation of Tc with respect to
a certain pressure variation can be computed from the equation of
Clausius-Clapeyron; as stated in [9], the temperature variation corre-
sponding to a pressure variation of 1013.25 mbar amounts to 0.0034 K
and is therefore negligible.

- Thermal conductivity of solid (λs) and liquid silicon (λL)
The thermal conductivity λ is defined as the heat flow Q̇ through a
plate of area A subjected to the temperature gradient G [10]. It is the
property of a material’s ability to conduct heat; the lower λ, the better
it insulates. From its definition

λ =
Q̇

A G
,

expression Q̇ = λ A G follows for the heat flow, justifying the expres-
sions used in the heat flow balance (3.3), required for the derivation
of vg.

- Density of solid (ρs) and liquid silicon (ρm) at temperature Tc

Whereas the solid silicon density is known with quite good approxi-
mation, the value of the liquid silicon density is much more difficult
to evaluate, and therefore many different values are proposed.

- Specific latent heat of fusion ∆H f

The latent heat Q associated with a thermodynamic transformation is
the amount of energy released or absorbed by a body during a phase
transition, without change of temperature (in the case of interest, fu-
sion/freezing). Then, the specific latent heat ∆H is the ratio between
Q and the transformed mass m:

∆H =
Q

m
.

From the definition of the specific latent heat it follows that the spe-
cific heat is given by

Q = m ∆H = ρ V ∆H,

where V is the volume and ρ the density of the transformed quantity.
Now, lets consider the solidification of the liquid silicon on the in-
terface between the meniscus and the crystal; from an energetically
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point of view, the latent heat assiocated with the solidification, Qs,
can equivalently be seen as (latent) heat of fusion Q f . If the solidifi-
cated portion of the crystal is of perfectly cylindrical shape, the trans-
formed volume is given by V = Ai l, where l is the length of the
solidificated part and Ai the interface cross section area; finally, de-
riving with respect to time, the heat released by fusion, used in the
heat flow balance (3.3), is obtained:

Q̇ f =
d Q f

d t
=

d (ρs Ai l ∆H f )

d t
= ρs Ai ∆H f

d l

d t
= ρs Ai ∆H f vg.

Note that the definition of growth rate, vg = dl
dt , was used in the last

step.

- Capillary constant a
The capillary constant for the Czochralski crystal growth process is
defined as [3]

a =

√

2 σ

ρm g
,

where σ denotes the surface tension between the silicon melt and the
atmosphere inside the puller and depends on the composition of the
melt; g is the gravitational acceleration on Earth. It is worth men-
tioning that actually a is varying during the crystal pulling process,
however in a first approximation it can be considered constant.

- Equilibrium growth angle θc

The equilibrium growth angle is given by the difference between the
meniscus slope angle θ and the crystal slope angle β; if the trijunction
line is in thermodynamic equilibrium, θc is a material constant. Usu-
ally for silicon its value is situated between 11 and 12 degrees.
Note that for θ = θc the crystal slope angle is zero and therefore
the crystal grows with a perfectly constant radius; this is the desired
working condition in the Neck phase as well as in the Body phase.

- Temperature gradient over the crystal Gs

The temperature gradient along the crystal is difficult to evaluate
since it depends on many different parameters, especially on the con-
figuration of the hot zone; for instance, the position of the reflector
with respect to the melt surface and the dimensions of the graphite
susceptor and the crucible are of importance. Furthermore, it varies
with the pull rate, the actual crystal radius and the temperature on
the surface of the crystal Ta; for a fixed hotzone it can be described as
[4]:

Gs = [h1(v) + h2(r)] (Tc − Ta).
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Anyway, it is impossible to derive a sufficiently accurate closed-form
expression for functions h1 and h2; typically the value of Gs is approx-
imated with thermal simulations. For small variations of the crystal
radius around a certain mean value Gs is approximately constant; this
situation is typically verified in the Neck phase as well as in the Body
phase.

From the parameter discussion it turns out that almost all model parame-
ters, especially the gradient Gs, are affected by huge uncertainties. For this
reason an improved version of the capillary model was developed, elim-
inating most of these parameters from the equations, as will be shown in
the next section.
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3.3 Description of the improved capillary state space
model

As pointed out in the previous section, the original capillary model pro-
posed in [1] suffers from some problems, namely:

- the use of the Tsivinskii formula for the meniscus slope angle com-
putation; in the neck phase, where the crystal radius r is of the same
order as the capillary constant a, this approximation of the numerical
solution is not very precise;

- the expression used for vg depends on many parameters affected by
huge uncertainties and therefore the expression itself is unreliable.

Thus in the improved model the meniscus slope angle is computed invert-
ing the Johansen-Boucher formula.
Regarding the second point, it can be stated that the modelling approach
of [1] is that of disregarding the thermal model. This is reasonable, since it
is extremely difficult to model the thermal behaviour of the crystal growth
system with the required precision [3]; for this purpose, it would be neces-
sary to resort to a spatially distributed model, which is far beyond the scope
of this project. The only junction of the capillary model with the thermal
part of the system is represented by the crystal growth rate; in fact, in its ex-
pression the melt temperature appears. However, from a geometrical point
of view (the capillary model is a geometrical model) it is completely indif-
ferent whether the thermal junction is observed through the growth rate or
through the melt temperature; since the relation between the growth rate
and the melt temperature is very unreliable, it would be far better to choose
vg for this purpose.
This approach yields a remarkable improvement of model robustness, since
the number of model parameters is drastically reduced. Furthermore, the
modified model is “more linear“ than the original model; as a matter of
fact, now also the second state variable h is computed as a perfectly linear
function of the other states and the input variable u = v. The nonlinearity
in the model is reduced to the first state equation. This is another important
advantage, since the control approach (LQR) is a linear one.

3.4 Considerations on the linearized model

In this section a brief analysis of the linearized improved capillary model is
performed. This analysis is indispensable for the design of the LQR law,
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described in Chapter 6. Linearizing in the operating point (x̄, ū) yields:6

[x(n + 1)− f (x̄, ū)] = F [x(n)− x̄] + G [u(n)− ū],

y(n) = H [x(n)− x̄].

The Jacobian matrices, evaluated in the operating point, are given by:

F =
∂ f (x, u)

∂ x

∣
∣
∣
∣
(x,u)=(x̄, ū)

,

G =
∂ f (x, u)

∂ u

∣
∣
∣
∣
(x,u)=(x̄, ū)

,

H =
∂ h(x, u)

∂ x

∣
∣
∣
∣
(x,u)=(x̄, ū)

.

The system matrix F is:

F =









∂ f1

∂r
∂ f1

∂h
∂ f1

∂vg

∂ f2

∂r
∂ f2

∂h
∂ f2

∂vg

∂ f3

∂r
∂ f3

∂h
∂ f3

∂vg









=









f11(r, h) f12(r, h) f13(r, h)

0 1 −∆t

0 0 1









.

The exact expressions of the entries in the first row are not important; a
brief, qualitative discussion of f11(r, h) is performed below.
Furthermore, matrix G is given by the simple expression:

G =









∂ f1

∂v

∂ f2

∂v

∂ f3

∂v









=









0

∆t

0









.

Finally, for the already linear output equation H is conserved:

H = [1 0 0].

From the system matrices it can be seen that only the system matrix F de-
pends on the operating point, whereas G and H are constant. Furthermore,
F is always an upper triangular matrix and therefore its eigenvalues are given
by its diagonal entries:

( f11(r, h), 1, 1).

6 f (·) is defined as [ f1(·) f2(·) f3(·)]T
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Since the state variables are always non-negative (as well as the parameters
∆t and a), f11(r, h) is always of the form:

f11(r, h) = 1 + ǫ, ǫ ≥ 0.

However in the operating conditions of interest ǫ > 0; that is, the linear sys-
tem, as well as the nonlinear system, is unstable in the equilibrium points
of interest (that is, constant radius pulling, with non-zero pull rate). It is
worth mentioning that the same properties hold for the original capillary
model.

Furthermore, for the LQR development the concepts of controllability and
stabilizability of the linearized system are of interest (this will be pointed
out in more detail in the LQR chapter). In order to verify the controllability,
the controllability matrix is considered:

C =

[

G F G F2 G

]

=









0 ∗ ∗

∗ ∗ ∗

0 0 0









.

The asterisks denote the non-zero entries; due to the particular upper tri-
angular structure of F, the controllability matrix is always of this form, for
each choice of the operating point. Since all entries of the third row are
zero, the rank of C can not exceed 2, thus the linearized system is not con-
trollable. Since the absolute value of all the eigenvalues is ≥ 1, furthermore
there appears at least one non-stabilizable eigenvalue (more precisely, the
third one) and therefore the system is not even stabilizable. Intuitively, this
was obvious from the form of the state update equations: only r and h can
be driven by the pullrate v, whereas it is not possible to act on vg. Therefore,
this state variable is not controllable, and the corresponding eigenvalue is
not stabilizable. Again, this statement holds for the old capillary model too
(however the non-controllable variable is Tm in that case).
As will be pointed out in the LQR chapter, the LQR law can not be applied
to non-stabilizable systems; therefore an alternative system has to be con-
sidered in order to make things work out for the LQR design. This problem
is addressed in Chapter 6.



Chapter 4

Statistical Filtering Approaches

4.1 Introduction

In almost any real system only a few variables of interest1 are directly
measurable. The remaining variables, the so-called inner state variables,
can not be directly accessed. In the case of the capillary model, the only
measured variable is the crystal radius, whereas the meniscus height and
the growth rate are hidden variables, which can not be evaluated directly.
The state estimation problem aims to the reconstruction of these inner state
variables from the available measurements, relying on some kind of model
which describes the relation among them. Furthermore, the estimator has
to take into account the fact that the measurement is affected by measure-
ment noise. This noise derives from the measurement device, in our case
the camera.
The standard approach to the estimation problem is a statistical one; once
a process model was developed, preferably in state space form, uncertain-
ties and approximations introduced during modelling are described with
zero mean white process noise, with an appropriately chosen covariance
matrix. Also, measurement noise is introduced on the observation or mea-
surement equation. Typically noises are considered to have Gaussian prob-
ability density function.2

In our case, the process model is given by the improved version of (3.1),
discussed in Section 3.3.
The output (or measurement) equation is given by y(n) = r(n) + wy(n);
wy is the measurement noise (y(n) is the measured radius, r(n) the true ra-
dius). Furthermore process noise is added to the first and the second state
equation, obtaining the model for the statistical filter/estimator.

1in our case, the variables of interest are the variables required for the LQR control
2anyway, the probability density function could be of any type

33
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The process noise is defined as:

wx =









wx,1

wx,2

wx,3









.

For this work, noises are modelled as Gaussian, wide-sense stationary white
processes with zero mean:

wx ∼ N (0, Q), wy ∼ N (0, R).

Summarizing, we are in the case of a discrete-time nonlinear dynamic sys-
tem, i.e. a system of the following form:

x(n + 1) = f (x(n), u(n), wx(n)), (4.1)

y(n) = h(x(n), wy(n)).

x is the state vector of dimension n, u the input vector with dimension m (in
our case m = 1, since the only input is the pull rate v) and y the output vec-
tor of dimension p. wx has dimension nx, wy dimension ny. In the following
sections an overview on statistical filtering theory and the approaches used
for this project is given, based on the above model. It is worth mentioning
once more that the problem consists in the estimation of the state vector x,
based on the measurement y and the process model. Note that no addi-
tivity assumption has been made for process and measurement noises, in
order to describe the most general case.
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4.2 The Bayesian estimation problem

Lets consider two random vectors, X ∼ pX(X) of dimension n and Y ∼
pY(Y) of dimension m, related by the equation Y = h(X, w). h(·) is an ar-
bitrary, not necessary linear function, Y is the measured variable (by some
measurement device), affected by measurement noise w ∼ pw(w) (typi-
cally Gaussian distributed), whereas X is not accessible and has to be esti-
mated from the observations Y of Y.3

From a practical point of view, this probabilistic representation is abso-
lutely reasonable, since the measurements delivered by a sensor are always
affected by some degree of uncertainty. In absence of systematic measure-
ment errors, the measurement noise will have zero mean.
In this paper the Bayesian approach to the estimation problem was adopted;
the concepts described in this section are based on the treatment reported
in [23]. Bayesian estimation is the best choice if some kind of probabilistic
information, usually called “prior information“, is available on the random
vector X. For most practical problems this is the case: for example, the
nominal value of X could be known, together with the dispersion of its real
values around the nominal value (the concepts of nominal value and dis-
persion can be readily translated in probabilistic concepts, i.e. mean and
variance of a random vector). From a statistical point of view, the com-
plete prior information is given by the pdf pX(·); usually it is known only
partially, like in the example, where only the mean and the variance are
available.
The aim of the Bayesian estimation approach is to compute the conditional
pdf pX(X|Y), i.e. the pdf of X given a sample of Y. pY(Y|X) is always
available from the (known) relation between Y and X; therefore, if pX(X)
is completely known,4 pYX(Y, X) can be computed and, using the Bayesian
rule, also pX(X|Y):

pX(X|Y) =
pYX(Y, X)

pY(Y)
. (4.2)

pX(X) is called the prior pdf, pX(X|Y) the posterior pdf of X. The posterior
pdf represents the complete solution to the Bayesian estimation problem.
Anyway, in most cases it is not possible to compute a closed-form descrip-
tion of the posterior pdf, and therefore typically only its first and second
moment are estimated, i.e. its mean and covariance:

(mX|Y, PX|Y).

3 p denotes the probability density function, briefly pdf, of the random vector; further-
more, in this section the bold font is used to denote the random vector, whereas the normal
font denotes an observation, or sample, of the random vector

4which usually is not the case
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If the posterior pdf is Gaussian, the knowledge of the mean (denoted also
with E[X|Y], where E is the expectation) and the covariance is equivalent
to the knowledge of the complete pdf, given by

pX(X|Y) =
1

(2π)n/2
√

det(PX|Y)
exp

(

−1

2
(X − mX|Y)

T P−1
X|Y (X − mX|Y)

)

,

where n is the dimension of X, det is the determinant of a square matrix and
the superscript T denotes the transpose.

Returning to the inital problem of the estimation of X, an estimator X̂ of
X based on observations Y can be seen as a function g(Y). In order to find
the best estimation g(Y) of X, it is necessary to define a criterion or cost
function which evaluates the quality of the estimation. In the context of
Bayesian estimation, this criterion is the expected value of the square of
the Euclidean distance between X and g(Y); recalling the definition of the
Euclidean distance,

d(X, g(Y)) = ||X − g(Y)||Q =
√

(X − g(Y))T Q (X − g(Y)),

where Q is a positive-definite square matrix of appropriate dimension, the
cost function to minimize is:

c(X − g(Y)) = E
[
||X − g(Y)||2Q

]
. (4.3)

In these conditions, the following fundamental result holds [23]:

Theorem 1. The conditional mean E[X|Y] is, amongst all functions g : R
m →

R
n of the observation Y, the one which minimizes the quadratic cost function (4.3),

i.e.
E[X|Y] = Arg min

g(·)
E
[||X − g(Y)||2Q

]
,

for each positive-definite matrix Q ∈ R
n×n.�

Since for the conditional mean it holds that E[E[X|Y]] = E[X], it is an un-
biased estimator5 of X, i.e. the estimation error X − E[X|Y] has zero mean;
therefore, choosing Q = I (the identity matrix) the cost function for the
conditional mean becomes the scalar variance of the estimation error:

E

[

(X − E[X|Y])T(X − E[X|Y])
]

.

Therefore, from the theorem reported above it follows that the conditional
mean minimizes the scalar estimation error variance! Summarizing, X̂ =
E[X|Y] is, amongst all unbiased estimators, the one with minimum estima-
tion error variance; it is commonly known as minimum-variance unbiased

5an estimator X̂ of random variable X is said to be unbiased if E[X̂] = E[X]
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estimator (MVUE).6

Unfortunately, in most practical cases the explicit computation of the con-
ditional mean is not possible since it is a complex nonlinear function of
the measurement. Anyway, there exists an important exception: when the
vectors X and Y are jointly Gaussian distributed, the conditional mean be-
comes a linear function of the measurements [23]:

E[X|Y] = mX + PXY P−1
Y (Y − mY),

Var[X − E[X|Y]] = PX − PXY P−1
Y PYX.

The second expression gives the covariance matrix of the estimation error.
PX/PY is the covariance matrix of X respectively Y, PXY the cross covariance
matrix between X and Y (furthermore, PYX = PT

XY); m denotes the means.

Anyway, as mentioned above, generally this is not the case. Since typi-
cally estimation problems have to be solved in real time, it is preferable to
deal with linear or affine expressions; therefore, the class of admissible esti-
mators is usually restricted to estimators which are linear/affine functions
of Y. Then, the MVUE amongst these linear estimators is used. Obviously,
in the Gaussian case the linear MVUE coincides with the MVUE in the gen-
eral, nonlinear sense, as reported above.
Reporting only the result (its derivation is based on the Projection Theorem,
for a detailed proof refer to [23]), the linear MVUE is given by:

X̂(Y) = mX + PXY P−1
Y (Y − mY), (4.4)

Var[X − X̂(Y)] = PX − PXY P−1
Y PYX. (4.5)

These are exactly the same expressions as for the MVUE in the jointly Gaus-
sian case. As will be shown in the next section, the Kalman Filter is just an
efficient recursive algorithm which computes the quantities (4.4) and (4.5)
in the case of a stochastic process described by a state space model.

This section is concluded with an important result, proved in [23], which
will turn out to be useful in the following. Considering the linear MVUE
defined by equations (4.4) and (4.5), the components of the measurement
vector

Y =









Y1

...

Ym









.

can be considered as the observations relative to successive time steps, i.e.
Y1 is the observation made at time step 1, Y2 the observation made at time

6or optimal estimator in the mean-square sense or optimal minimum-variance estimator
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step 2 and so on. From this point of view, the estimator7 Ŷt(Yt−1) of com-
ponent Yt, based on the observation of the vector

Yt−1 =









Y1

...

Yt−1









,

can be interpreted as the one step ahead prediction of the measurements.
Defining the measurement or output prediction error as

et = Yt − Ŷt(Yt−1), t = 1, 2, . . . , m, (4.6)

the following results holds:

Theorem 2. The output prediction errors e1, e2, . . . em, defined by (4.6), are
statistically orthogonal or uncorrelated, i.e.:

E[et eT
s ] = M δ(t − s), t, s = 1, 2, . . . , m.

Here, M = Mt = E[et eT
t ] is the statistical power and δ the Kronecker delta

function.�

Therefore the sequence of prediction errors, the so-called innovation, defines
a white noise process (a formal definition of whiteness is given in Chapter
5).

4.3 The Kalman Filter for linear state space models

Lets return to the problem of state estimation in a state space model. If
the model is linear, the standard, time-variant Kalman filter represents the
linear MVUE derived in the previous section. In order to understand the
principle of the Kalman filter extensions to the nonlinear case of our inter-
est, it is worthwhile to take a look at the linear case. From now on, random
variables and processes are represented with normal font too, in order to
facilitate the readibility. Lets consider the linear equivalent to model (4.1),

x(n + 1) = F x(n) + G u(n) + wx(n), x0 = x(n0), (4.7)

y(n) = H x(n) + wy(n),

with the following properties:8

7obtained setting X = Yt and Y = Yt−1 in the linear MVUE equations
8here the typical case of zero mean, Gaussian distributed noises, Gaussian initial condi-

tions and time-invariant matrices is presented; however, these assumptions can be relaxed.
Kalman deduced the equations without any assumption on the probability distributions,
furthermore the equations can be easily adjusted for noises with non-zero mean and for
time-variant system matrices. However, the white noise assumption is vital and can not be
relaxed.
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• wx is white Gaussian noise with:

E[wx(n)] = 0, Var[wx(n)] = Q, ∀n.

• wy is white Gaussian noise with positive-definite covariance :

E[wy(n)] = 0, Var[wy(n)] = R > 0, ∀n.

• E[wx(n)wy(m)T] = S δ(n − m).

• x0 is a random vector which is uncorrelated with the process and
measurement noises; its mean and variance are considered to be known:

m0 = E[x0], P0 = Var[x0].

The assumption R > 0 can be removed; if it does not hold, the pseudoin-
verse of R has to be considered in the filter equations instead of R−1.

The Kalman filter is a recursive algorithm which solves the linear MVUE
problem in this particular case; at every time step n, it computes the es-
timation of x(n), based on the observations Yn = {y(n0 + 1), . . . , y(n)},
by using a particular two-step structure: first, the filter computes the time
update, i.e. the one step ahead prediction of x(n) based on Yn−1, and then
the estimation is obtained from the prediction, corrected with the new mea-
surement y(n) (measurement update).
As a matter of fact, the Kalman filter is derived as the linear MVUE of the
previous section, putting X = x(n) and

Y =









y(n)

...

y(n0 + 1)









.

A detailed deduction of the equations can be found, for example, in [23];
summarizing, the Kalman algorithm is structured as follows:

1. Definition of initial conditions for state prediction and state predic-
tion error covariance as:

x̂(n0|n0 − 1) = m0, P(n0|n0 − 1) = P0.

2. Computation of state prediction (time update), n > n0:

x̂(n|n − 1) = (F − S R−1 H) x̂(n − 1|n − 1) + S R−1 y(n − 1) + G u(n − 1),

P(n|n − 1) = (F − S R−1 H) P(n − 1|n − 1) (F − S R−1 H)T + (Q − S R−1 ST).



40 4.3. THE KALMAN FILTER FOR LINEAR STATE SPACE MODELS

3. Computation of state estimation (measurement update):

x̂(n|n) = x̂(n|n − 1) + L(n) e(n),

P(n|n) = P(n|n − 1)− P(n|n − 1) HT Λ(n)−1 H P(n|n − 1).

The meaning of the variables is:

• x̂(n|n − 1) is the prediction of state x(n) based on measurements
Yn−1;

• x̂(n|n) is the estimation of state x(n) based on measurements Yn; it
is computed from the prediction x̂(n|n − 1) by a correction factor de-
pending on the current measurement y(n);

• e(n) = y(n)− H x̂(n|n − 1) is the output prediction error or innova-
tion; it is defined as the difference between the current measurement
y(n) and its prediction based on the observations Yn−1 and represents
the core of the correction factor mentioned at the previous point;

• P(n|n − 1) is the covariance matrix of the state prediction error, de-
fined as x(n)− x̂(n|n − 1);

• P(n|n) is the covariance matrix of the state estimation error, defined
as x(n)− x̂(n|n);

• Λ(n) is the covariance matrix of the innovation process e(n), given
by:

Λ(n) = H P(n|n − 1) HT + R.

• L(n) is the filter gain and is defined as:

L(n) = P(n|n − 1) HT Λ(n)−1.

In most cases measurement noise is uncorrelated with process noise (i.e.,
S = 0) and therefore the equations simplify. Furthermore, they can be reor-
ganized in order to improve numerical stability (for example, the Kalman
filter in information form). Beside the time-variant filter there exists also
a time-invariant version of the Kalman filter with constant filter gain, the
so-called Steady-state Kalman Filter [23].
Finally, the Kalman Filter is asymptotically stable if and only if the pair
(F − S R−1 H, H) is detectable and the pair (F − S R−1 H, C) is stabiliz-
able, where C is a matrix square root of Q − SR−1ST.
Since the Kalman filter is the linear MVUE in the state space context, its
properties are the same; if the distributions of process noise, measurement
noise and initial state are Gaussian, the state vector and the measurement



4.4. THE ESTIMATION PROBLEM FOR NONLINEAR SYSTEMS 41

vector are jointly Gaussian and the Kalman estimation, in the generic case
of non-Gaussian distributions only the linear MVUE, becomes the MVUE
amongst the nonlinear estimators too.
Furthermore, the innovation process e(n) plays the role of the innovation
introduced at the end of the previous section; later on it will be shown that
the whiteness condition is vital for the filter tuning, i.e. the adjustment of
the covariances of the measurement and process noises.

4.4 The estimation problem for nonlinear systems

Returning to the nonlinear case, there exist two important extensions of
the Kalman filter: the Extended Kalman Filter (EKF) and the Unscented
Kalman Filter (UKF). Although the EKF represents the standard for non-
linear estimation problems, generally the UKF is known to yield better per-
formance in most cases [24]. Like the Kalman filter, these two filters focus
on the estimation of the conditional mean and its error covariance. Fur-
thermore, a third approach is commonly used for nonlinear estimation: the
Particle Filter (PF). It is a Monte Carlo approach to the filter problem and
aims to the reconstruction of the entire conditional pdf pX(X|Y) and not
only its first and second moment. This method is really powerful, however
its computational cost is by far higher. Therefore, it should be used only if
EKF or UKF are not able to yield satisfying results or the entire posterior
pdf is required.
Considering nonlinear system (4.1), where noises are not necessary Gaus-
sian, the EKF approach approximates the pdf of the noises and the state
vector with a Gaussian one, and operates, at each time n, a linearization
of functions f (·) and h(·). As it is well known, a Gaussian random vec-
tor propagated through a linear transform preserves the Gaussianity (with
modified mean and covariance). Based on this concept, the EKF applies
the ordinary Kalman equations after linearization. However, this approach
can introduce large errors in the transformed mean and covariance, and in
the worst case this can lead to divergence of the filter [24].
The UKF approach approximates distributions instead of functions, using
a deterministic sampling approach. Again, the state pdf is approximated
with a Gaussian pdf, however the representation changes with respect to
the EKF. Basically the UKF captures the true covariance and the true mean
of the state distribution with a set of carefully chosen sigma point. These
points are then propagated through the true nonlinear system dynamics,
and the posterior distribution described by the transformed sigma points
is again approximated with a Gaussian pdf. This operation is called Un-
scented Transformation and yields, in some cases, better performance than
the EKF approach.
Finally, also the Particle Filter samples the prior pdf and propagates the
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samples through the nonlinear system dynamics. However, it is not a de-
terministic sampling as in the UT; the samples, or particles, are drawn from
the pdf with a random approach. Therefore, a large number Np of particles
must be used. This increases the computational effort, but on the other
hand for Np → ∞ the particles yield an exact representation of the poste-
rior pdf, which is the most exhaustive solution to the Bayesian estimation
problem, as explained previously; from this information, all moments of
the pdf can be computed. Furthermore, the PF requires no assumptions on
the involved pdfs; therefore, it can be applied to every type of nonlinearity
and for multimodal pdfs.

4.5 The Extended Kalman Filter (EKF)

The following considerations are based on [23].
Consider a random vector y obtained by applying an affine transformation
to a Gaussian distributed random vector ξ ∼ N (mξ , Pξ):

9

y = A + B ξ.

It is well known that y is still a Gaussian distributed random vector, more
precisely:

y ∼ N (A + B mξ , B Pξ BT). (4.8)

However, for a generic nonlinear transformation y = g(ξ) this is no longer
true; generally, no assumptions can be made on the pdf of y; it could be
even multimodal.
This is why the EKF linearizes the transformation locally; the algorithm
is based on the following two steps (with ξ not necessarily Gaussian dis-
tributed):

1. Approximation of the true distribution pξ with a Gaussian pdf, char-
acterized by the true mean and covariance:

p̃ξ(·) = N (mξ , Pξ).

2. Propagation of ξ through the linearized version of function g(·); more
precisely, set ỹ = G ξ, where G is the Jacobian Matrix of g, evaluated
in mξ :

G =
∂ g(ξ)

∂ ξ

∣
∣
∣
∣
ξ=mξ

.

9 A and B are constant matrices of appropriate dimensions
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Then, the pdf of approximation ỹ is, according to (4.8):

ỹ ∼ pỹ(·) = N (G mξ , G Pξ GT).

Obviously pỹ(·) is only an approximation of the true pdf py(·); generally,
even the true mean and covariance of y differ from the values used in the
approximation. If the nonlinearity is quite regular and the true pdfs are
nearly Gaussian or at least unimodal, this principle yields good results.
However, usually it is difficult to establish a priori whether these proper-
ties are satisfied or not. If the pdfs are multimodal (Figure 4.1 reports an
unimodal and a multimodal pdf; obviously, the Gaussian pdf is unimodal),
the EKF approach is completely unappropriate.

p(x)

x

Figure 4.1: Unimodal pdf (black) vs. multimodal pdf (red)

The EKF applies the “Gaussian“ linearization idea to the equations of the
nonlinear state space model (4.1):

x(n + 1) = f (x(n), u(n), wx(n)),

y(n) = h(x(n), wy(n)).

Then the standard Kalman filter equations reported previously are applied
to the linearized system.
More precisely, at each time n the state function f is linearized around the
best estimation of the vector

(x(n − 1), u(n − 1), wx(n − 1)),

which in this context is represented by the means:10

p f = (x̂(n − 1|n − 1), u(n − 1), 0).

x̂(n − 1|n − 1), the estimation computed by the EKF at the previous step, is
the best available estimation of the mean of x(n − 1).

10as for the Kalman equations, noises are supposed to have zero mean
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Furthermore, the output function h is linearized around the best estimation
of the mean of:

(x(n), wy(n)).

Since the estimation x̂(n|n) is not yet available, the prediction x̂(n|n − 1) is
used. Therefore:

ph = (x̂(n|n − 1), 0).

Linearizing model (4.1) this way yields:

x(n) = f (p f ) + Fn−1|n−1 [x(n − 1)− x̂(n − 1|n − 1)] + . . .

. . . +Gn−1|n−1 u(n − 1) + Mn−1|n−1 wx(n − 1),

y(n) = h(ph) + Hn|n−1 [x(n)− x̂(n|n − 1)] + Nn|n−1 wy(n).

The Jacobian matrices are evaluated in p f respectively ph (note that F, G
and H are the matrices defined in Section 3.4):

Fn−1|n−1 =
∂ f (x, u, wx)

∂ x

∣
∣
∣
∣

p f

,

Gn−1|n−1 =
∂ f (x, u, wx)

∂ u

∣
∣
∣
∣

p f

,

Mn−1|n−1 =
∂ f (x, u, wx)

∂ wx

∣
∣
∣
∣

p f

,

Hn|n−1 =
∂ h(x, wy)

∂ x

∣
∣
∣
∣

ph

,

Nn|n−1 =
∂ h(x, wy)

∂ wy

∣
∣
∣
∣

ph

.

The linearized model is of the same form as the linear system (4.7) and
therefore the equations of the standard Kalman filter can be applied to it,
with some small adjustments. The final EKF algorithm is reported below
for the typical case of S = 0 (i.e., process noise and measurement noise are
uncorrelated):

1. Initial conditions for state prediction and state prediction error vari-
ance:

x̂(n0|n0 − 1) = m0, P(n0|n0 − 1) = P0.

2. State prediction (time update), n > n0:

x̂(n|n − 1) = f (x̂(n − 1|n − 1), u(n − 1), 0),

P(n|n − 1) = Fn−1|n−1 P(n − 1|n − 1) FT
n−1|n−1 + Mn−1|n−1 Q MT

n−1|n−1.
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3. State estimation (measurement update):

x̂(n|n) = x̂(n|n − 1) + L(n) [y(n)− h(x̂(n|n − 1), 0)],

P(n|n) = P(n|n − 1)− P(n|n − 1) HT
n|n−1 Λ(n)−1 Hn|n−1 P(n|n − 1).

With:

• Approximated covariance matrix of the pseudo-innovation e(n) = y(n)−
h(x̂(n|n − 1), 0):

Λ(n) = Hn|n−1 P(n|n − 1) HT
n|n−1 + Nn|n−1 R NT

n|n−1.

In the nonlinear context it is not appropriate to call e(n) innovation,
since it is no longer rigorously white noise; therefore, the term “pseudo“
is used [23].

• Filter gain:

L(n) = P(n|n − 1) HT
n|n−1 Λ(n)−1.

With respect to the linear case, the following modifications were applied:

- The variances of process and measurement noise are changed:

Q −→ Mn−1|n−1 Q MT
n−1|n−1 ,

R −→ Nn−1|n−1 R NT
n−1|n−1 .

This is due to the fact that in the linearized system the process and
measurement noises are given by M wx respectively N wy.

- The predictions x̂(n|n− 1) and ŷ(n|n− 1) are calculated on the initial,
nonlinear system, in order to reduce the approximation errors due to
the linearization. The linearization is used only for the computation
of the covariance matrices and for the filter gain. With this intelligent
linearization approach the linearization noise can be kept typically at
an acceptable level [23].

As stated in [23], the EKF presents some disadvantages with respect to the
linear case. In particular, since for the prediction calculation the nonlin-
ear equations are used, the EKF predictor as well as the EKF estimator are
nonlinear functions of the measured variables and therefore of difficult sta-
tistical interpretation: nothing can be said, a priori, about the probability
distributions.
Furthermore, the EKF has a remarkable computational cost with respect to
the standard Kalman filter, since at every step the Jacobian matrices have
to be calculated; for state estimation, it is of the order of O(n3), where n is
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the state vector dimension [35]. Anyway, for low order models as in our
case, this is not relevant.

As stated at the beginning of this section, generally it is difficult to estab-
lish a priori whether the EKF can yield reasonable results or not, given a
particular problem. Its performance depends heavily on the form of the
nonlinearities and on the true state (and noise) pdfs, which usually are un-
known. In any case, the EKF estimation is neither unbiased nor consistent;
as a matter of fact it typically underestimates the estimation error covari-
ances [23]. Furthermore, it is very sensible to the initial conditions (often, a
wrong choice leads to divergence).
The Unscented Kalman Filter, introduced in the next section and already
implemented in [1] with the original capillary model, can yield a better
performance from certain points of view; however it is limited to unimodal
pdfs too.

4.6 The Unscented Kalman Filter (UKF)

4.6.1 The Unscented Transformation (UT)

The Unscented Transformation is based on the so-called sigma points. Many
different choices for these points are proposed in literature ([24], [25]): typ-
ically 2N + 1 sigma points are used, where N is the dimension of the aug-
mented state space (introduced in the next section). The set implemented
for this project is described in the following; for now, the principles of the
Unscented Transformation are pointed out without any specific considera-
tions on sigma points and weights. The treatment is based on [27].

Reconsider the random vector ξ, with true mean mξ and true covariance
matrix Pξ , and the nonlinear transformed vector y = g(ξ) of the previous
section. Like for the EKF, the true pdf of ξ is approximated with a Gaussian:

p̃ξ(·) = N (mξ , Pξ). (4.9)

The Unscented Transformation approximates the density p̃ξ(·) with a set of
carefully chosen sigma points, maps them through the nonlinear function
g, and approximates the transformed sigma points again with a Gaussian
pdf. The sigma points have to be chosen in order to capture mξ and Pξ ex-
actly; furthermore, they should capture, as good as possible, the true mean
and covariance of y.

For the random vector ξ ∈ R
N (with positive-definite covariance matrix)

the set Σ = {x ∈ R
N | (x − mξ)

T P−1
ξ (x − mξ) = 1} defines an ellipse

of dimension N centered in mξ . Its axes are given by the eigenvectors of
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Pξ , and the length over these axes by the square root of the corresponding
eigenvalue [26]. More precisely, consider the Eigenvalue Decomposition
Pξ = Uξ Σξ UT

ξ of the covariance matrix (that is, a particular case of the
Singular Value Decomposition, briefly SVD):

Pξ =

[

u1,ξ u2,ξ . . . uN,ξ

]













λ1,ξ 0 . . . 0

0 λ2,ξ . . . 0

...
. . .

...

0 0 . . . λN,ξ

























uT
1,ξ

uT
2,ξ

...

uT
N,ξ













. (4.10)

λi,ξ are the eigenvalues and ui,ξ the corresponding eigenvectors; then the
axes of the ellipse are given by ui,ξ and the corresponding length by

√
λi,ξ .

Therefore, every (positive-definite) covariance matrix can be represented
graphically with the associated ellipse, as shown in Figure 4.2 for N = 2.

λ u2,x 2,x

S

x

λ u
1,x 1,x

m

Figure 4.2: Ellipse Σ associated to covariance matrix Pξ for N = 2

The UKF approach approximates this geometrical representation of the
variance with a set of L = 2N + 1 carefully chosen points distributed
around mξ ; more precisely:11

P0 = mξ ,

P1/2 = mξ ± ασ1,

...

P2N−1/2N = mξ ± ασN .

α is used as a scaling factor in order to determine the spread of the sigma
points around the mean, and the vectors σi, i = 1, . . . N, are the columns

11the following considerations refer to a standard set of 2N + 1 points; however, there
exist also different choices
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of a square root of the covariance matrix, i.e.:

Pξ =

[

σ1 σ2 . . . σN

]













σT
1

σT
2

...

σT
N













=
N

∑
i=1

σi σT
i .

From a comparison with the Eigenvalue Decomposition (4.10) it is obvious
that one possible choice is:

σi =
√

λi ui,ξ , i = 1, . . . , N.

Another possibility is to use the columns of the Cholesky factorization of
the covariance matrix [35].
These points are then used to approximate the probability density (4.9) with
the discrete pdf

p̃ξ(ξ) =
2N

∑
i=0

wi δ(ξ −Pi) ≈ pξ(ξ),

i.e. with the sum of 2N + 1 sigma points centered in Pi and weighted with
wi, i = 0, . . . , 2N. Since we are approximating a pdf, the weights have to
be normalized, that is ∑

2N
i=0 wi = 1. For the rest, the only constraint is to

choose them in order to have

E p̃ξ
[ξ] = mξ ,

Var p̃ξ
[ξ] = Pξ ,

i.e. in order to capture the true mean and the true covariance of ξ.

Now, since we are interested in the pdf of the output variable y = g(ξ),
the points Pi are mapped through the nonlinear function g, obtaining the
transformed sigma points:

Y0 = g(P0), Y1 = g(P1), . . . , Y2N = g(P2N).

The situation is represented in Figure 4.3, for N = 2 (and α = 1). Note that
my is the true mean of y and Σy the ellipse associated to the true covariance
matrix of y, i.e Py.
The transformed points are then used to approximate the true pdf of y:

p̃y(y) =
2N

∑
i=0

wi δ(y −Yi) ≈ py(y).
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Figure 4.3: Unscented Transformation for N = 2 (α = 1)

This choice yields for the mean and covariance (see [27] for the simple
proof):

m̃y = E p̃y [y] =
2N

∑
i=0

wi Yi , (4.11)

P̃y = Var p̃y [y] =
2N

∑
i=0

wi (Yi − m̃y) (Yi − m̃y)
T. (4.12)

Finally, the probability density of y is approximated with a Gaussian one,
with mean and covariance matrix as given from the sigma point distribu-
tion:

˜̃py(·) = N (m̃y, P̃y) ≈ p̃y(·) ≈ py(·).

The quality of the approximation ˜̃py(·) ≈ py(·) depends heavily on the
choice of the sigma point set. Anyway, as will be pointed out in the next
section, only the mean and the covariance are of interest; therefore, it is
sufficient to design the points in order to capture, as good as possible, these
two moments of the pdf.

4.6.2 Application of the UT to the system equations

Reconsider the nonlinear state space model (4.1):

x(n + 1) = f (x(n), u(n), wx(n)),

y(n) = h(x(n), wy(n)),

with x ∈ R
n, wx ∈ R

nx and wy ∈ R
ny .

The following discussion, based again on [27], can be simplified in the par-
ticular case of purely additive noises (as in the capillary model), more pre-
cisely it is not necessary to augment the state vector. However, here the
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augmented state approach is presented, since it is more general and, for
additive noises, equivalent to the non-augmented state space formulation.

In order to derive the Unscented Kalman Filter equations it is necessary
to apply the Unscented Transformation to the system (4.1); the UKF struc-
ture is still recursive, that is the following operations have to be applied at
each time n. Lets consider the augmented state vector:

xa =









x

wx

wy









∈ R
N, N = n + nx + ny.

Therefore at each time n, with reference to the previous section, xa(n − 1)
is the random vector ξ, the functions f (·) and h(·) play the role of g(·), and
finally x(n) and y(n) play the role of the output random variable y.
The nonlinear system in terms of the augmented state can be rewritten as:

x(n + 1) = f (xa(n), u(n)),

y(n) = h(xa(n)).

f (·) and h(·) are still the same functions, this is just a different way to write
the equations.
Now, according to the theory of the Unscented Transformation the - not
necessary Gaussian - noise probability densities are first approximated as:12

pwx(n) ≈ N (0, Q),

pwy(n) ≈ N (0, R).

Furthermore, the pdf of the random vector x(n) is approximated as Gaus-
sian too:

px(n) ≈ N (x̂(n|n), P(n|n)).

Clearly, since the true mean and covariance matrix of x(n) are not known,
an approximation is used for these two parameters: like for the standard
Kalman filter x̂(n|n) is the state estimation and P(n|n) the state estimation
error covariance at time n. Finally, state vector, process noise and measure-
ment noise are supposed to be mutually uncorrelated:

x(n) ⊥ wx(n) ⊥ wy(n).

12again, noises are supposed to have zero mean; Q and R are the true covariance matrices
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In these conditions, the pdf of the augmented state vector xa(n) is approx-
imated as:

xa(n) =









x(n)

wx(n)

wy(n)









=⇒ p̃xa(n)(·) = N

















x̂(n|n)

0

0









,









P(n|n) 0 0

0 Q 0

0 0 R

















.

Now the sigma point set is generated, as shown in the previous section,
with respect to the probability density p̃xa(n)(·), i.e. with respect to its mean
and covariance matrix, denoted with x̂a(n|n) and Pa(n|n) from now on.
Note that these sigma points are N-dimensional and not n-dimensional, in
fact

X a
i =








Xi

WX ,i

WY ,i







∈ R

N, with Xi ∈ R
n, WX ,i ∈ R

nx , WY ,i ∈ R
ny ,

for i = 0, . . . , 2N. In the following the notations Xi(n − 1), WX ,i(n − 1))
and WY ,i(n − 1)) are used for the sigma points computed from the aug-
mented state x̂a(n − 1|n − 1) and Pa(n − 1|n − 1).

Summarizing, the UKF algorithm is structured as follows [24]:

1. The UKF is initialized with reference to the estimation:13

x̂a(n0|n0) =









m0

0

0









, P(n0|n0) =









P0 0 0

0 Q 0

0 0 R









.

Then, for n > n0, the following steps are repeated.

2. The sigma pointsXi(n− 1), WX ,i(n− 1) and WY ,i(n− 1), i = 0, . . . , 2N,
are computed from x̂a(n − 1|n − 1) and Pa(n − 1|n − 1).

13whereas KF and EKF are initialized with respect to the prediction
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3. State prediction (time update):

Xi(n|n − 1) = f (Xi(n − 1), u(n − 1), WX ,i(n − 1)), i = 0, . . . , 2N,

x̂(n|n − 1) =
2N

∑
i=0

wi Xi(n|n − 1),

P(n|n − 1) =
2N

∑
i=0

wi [Xi(n|n − 1)− x̂(n|n − 1)] [Xi(n|n − 1)− x̂(n|n − 1)]T .

The time update refers to the sigma points, i.e. the nonlinear state
equation is applied to the sigma points derived from the previous
state estimation, according to the principle of the UT.
x̂(n|n − 1) is defined as the conditional mean E[xn|Yn−1]; the mean
is computed with respect to the discrete pdf described by the sigma
points, and therefore it is given by expression (4.11), whereas the state
prediction error covariance P(n|n − 1) is given by (4.12).
Output prediction ŷ(n|n− 1) and pseudo-innovation14 covariance Λ(n)
are computed as follows:

Yi(n|n − 1) = h(Xi(n|n − 1), WY ,i(n − 1)), i = 0, . . . , 2N,

ŷ(n|n − 1) =
2N

∑
i=0

wi Yi(n|n − 1),

Λ(n) =
2N

∑
i=0

wi [Yi(n|n − 1)− ŷ(n|n − 1)] [Yi(n|n − 1)− ŷ(n|n − 1)]T .

Cross covariance between state prediction and pseudo-innovation:

Pxe(n|n − 1) =
2N

∑
i=0

wi [Xi(n|n − 1)− x̂(n|n − 1)] [Yi(n|n − 1)− ŷ(n|n − 1)]T.

4. State estimation (measurement update):

x̂(n|n) = x̂(n|n − 1) + Pxe(n|n − 1) Λ(n)−1 [y(n)− ŷ(n|n − 1)],

P(n|n) = P(n|n − 1)− Pxe(n|n − 1) Λ(n)−1 Pxe(n|n − 1)T.

Therefore, the UKF preserves the typical time update-measurement update
structure of the standard Kalman filter. The meaning of the the variables is
analogue to the KF and the EKF.
The UKF discussion is concluded with the important point of the choice of
the sigma point set.

14as for the EKF, it is no longer appropriate to call the output prediction error innovation
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4.6.3 The sigma point set

For this project the set implemented for the UKF in [1] was used; it is re-
ported, for instance, in [24]. From a literature review (amongst others, pa-
pers [24], [25] and [35] were considered) it results that this set is one of
the most complete sets developed so far; many other sets with a reduced
number of sigma points are proposed, anyway they are interesting only
from the point of view of the computational cost. Furthermore, during the
analysis of the capillary system it turned out (this will be discussed further
on) that the involved state variables have unimodal, almost Gaussian dis-
tribution; for this reason, no other sets were tested, since in this case it is
not possible to significantly improve the filter performance with a different
choice of sigma points.
The set used in [1] consists of the following (2N + 1) sigma points centered
in the current (augmented) state estimation x̂a(n|n) (the time dependency
was omitted in order to simplify the notation):15

X a
0 = x̂a,

X a
i = x̂a ± α

√
N + k σi, i = 1, . . . , N,

where σi, i = 1, . . . N, are the columns of the Cholesky factorization of
Pa, that is the covariance matrix of the current augmented state estimation
error:

Pa = QcholQ
T
chol = [σ1 . . . σN ]









σT
1

...

σT
N









.

As a matter of fact, typically the Cholesky factorization is used, since its
computational cost is lower with respect to the Eigenvalue Decomposition.
Finally, the weights of the sigma points are:

Wm
0 =

N(α2 − 1) + α2 k

α2 (N + k)
,

Wc
0 =

N(α2 − 1) + α2 k

α2 (N + k)
+ 1 − α2 + β,

Wm
i = Wc

i =
1

2

1

α2 (N + k)
, i = 1, . . . , 2N.

The superscript “m“ indicates the weights used in the state prediction cal-
culation for the time update of the filter and the superscript “c“ the weights
used for the covariance calculations in the time and measurement update

15 N is the dimension of the augmented state
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equations. These weights differ only for i = 0.
According to [24], α determines the spread of the sigma points around x̂a;
typically it is set to a small positive value like 10−3. In some cases chang-
ing α yields no significant effect on the filter performance; typically, this
happens when the nonlinearities are quite regular, as in our case. k is a sec-
ondary scaling parameter usually set to 0 and β is used to take into account
prior knowledge on the involved pdfs; for almost Gaussian distributions,
as in our case, it is set to 2. Obviously, in the case of the UKF the filter tun-
ing consists not only in the tuning of the measurement and process noise
covariances, but also in the choice of these sigma point parameters.

4.7 EKF vs. UKF: a comparison

Before proceeding to the Particle Filter exposition, a brief comparison be-
tween the EKF and the UKF approach is given. Lets consider again the
nonlinear relation y = g(ξ), introduced previously; according to [36] the
central moments of the pdf of y are functions of the central moments of the
pdf of ξ. More precisely, considering only the mean and the covariance of
y, it holds that:

my = g1(mξ = E[ξ], Pξ = E[(ξ − mξ) (ξ − mξ)
T], . . .),

Py = g2(mξ , Pξ , . . .).

For the following qualitative considerations, the exact expressions of g1(·)
and g2(·) are not required; for a detailed analysis refer to [25]. It can be
stated that [36]:

• obviously, according to its definition, the EKF catches mξ and Pξ ex-
actly; the same holds for the UKF, if a normalized set of weights is
considered. The following points refer to this condition;

• the EKF approximation of my is correct up to the first order16 in terms
of the central moments of ξ, whereas the UKF approximation is cor-
rect up to the second order;

• both the EKF and UKF approximations of Py are correct up to the
second order in terms of the central moments of ξ;

• in the case of the sigma point set considered in the previous section,
adjusting α and β it is possible to improve the approximation with
respect to the third and fourth order moments of ξ;

• if the true pdf of ξ is symmetric, then the UKF approximations of my

and Py are correct up to the third order (since the third order central
moment of a symmetric pdf is zero);

16here, the formulation “up to the nth order“ includes the nth order
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• the computational cost is O(n3) for both filters, where n is the state
space dimension (if the augmented UKF is considered, then n → N).

From these considerations it turns out that in certain cases the UKF approx-
imation of my and Py is more precise then the approximation yielded by the
EKF. However, in many practical cases, namely when the pdfs are almost
Gaussian, since the nonlinearities are quite smooth, these improvements
introduced by the UKF are not significant. As will be shown later, this is
the case for the capillary model. Furthermore, the UKF tuning is less im-
mediate than the EKF tuning, since also the sigma point parameters have
to be adjusted.
Finally, both filters yield reasonable results only in the case of unimodal
pdfs. This problem is addressed by the Particle Filter, which can be applied
to every type of nonlinearity and pdf, and furthermore yields the exact and
complete solution to the Bayesian estimation problem, for a large number of
particles. However, its computational cost is by far higher. In this project it
was considered only in order to verify the Gaussian pdf hypothesis on the
state variables of the capillary model.

4.8 The Particle Filter (PF)

The exposition of this section follows paper [29], if not otherwise specified.
As mentioned previously, the Particle Filter aims to the reconstruction of
the entire posterior pdf pX(X|Y), which in the context of recursive state
estimation becomes p(x(n)|Yn). The underlying algorithm is known as Se-
quential Importance Sampling (SIS) and is a Monte Carlo method which
represents the core of most sequential Monte Carlo filters (SMC); the Parti-
cle Filter is such a SMC filter.
The Particle Filter represents the posterior pdf p(x(n)|Yn) with a set of NP

random samples, or particles, with associated weights; using the notation
Xi(n) for sample i at time n, and wi(n) for the corresponding weight, analo-
gously to the notation adopted for the UKF, the set of particles and weights
at time n is given by:

{Xi(n), wi(n)}Np

i=1 .

Like for the UKF, the weights are normalized, i.e. ∑
Np

i=1 wi(n) = 1. Using
these weighted particles, the posterior pdf is approximated by the follow-
ing discrete pdf:

p̃NP
(x(n)|Yn) =

Np

∑
i=1

wi(n) δ(x(n)−Xi(n)) ≈ p(x(n)|Yn). (4.13)

At first appearance this approach seems to be really similar to the UKF ap-
proach; anyway, there is a fundamental difference between the particles of
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the PF and the sigma points of the UKF. The particles are randomly chosen,
whereas the sigma points are designed carefully, according to a determinis-
tic procedure. Therefore, if the number of particles is the same as the num-
ber of sigma points, UKF will yield better performance, since its points are
chosen systematically. On the other hand, for the PF it can be proved that
for a large number of particles the posterior pdf is matched exactly, i.e.:

lim
NP→∞

p̃NP
(x(n)|Yn) = p(x(n)|Yn).

Returning to the sampling problem, unfortunately in most cases it is not
possible to sample from the desired pdf p(·) (in our case, the true poste-
rior pdf): for this reason the principle of importance sampling (IS) is in-
troduced. More precisely, a so-called importance or proposal pdf q(·) is

chosen, which is easy to sample; the particles {Xi}Np

i=1 are then drawn from
this pdf. It must satisfy certain properties listed in [29]; the most important
constraint concerns the support. As a matter of fact, the support of q(·)
must contain the one of p(·) [34]. For the rest, the importance pdf can be
chosen almost arbitrarily; in this paper, two particular choices will be con-
sidered.
Adopting the importance sampling approach, the weights in the discrete
approximation of p(·),

p̃NP
(x) =

Np

∑
i=1

wi δ(x −Xi),

are chosen as follows:

wi ∝
p(Xi)

q(Xi)
, i = 1, 2, . . . , NP. (4.14)

Here the proportionality symbol was used, since the weights have to be
normalized. Note that the pdfs in this equation are evaluated in the points
defined by the random samples.

Returning to the case of interest of recursive state estimation, more pre-
cisely of filtered state estimation at each time n, the importance sampling
becomes sequential (SIS), and the desired and the importance pdf respec-
tively:

p(·) → p(x(n)|Yn),

q(·) → q(x(n)|x(n − 1), y(n)).

Lets consider the set of weighted particles, drawn at time n − 1,

{Xi(n − 1), wi(n − 1)}Np

i=1 ,
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which approximates the true posterior pdf p(x(n − 1)|Yn−1) at time n − 1.
Then Np new samples are drawn from q(x(n)|x(n − 1), y(n)), and the
weights are updated according to the following rule (for a detailed treat-
ment refer to [29]; basically, the Bayesian rule is performed):

wi(n) ∝ wi(n − 1)
p(y(n)|Xi(n)) p(Xi(n)|Xi(n − 1))

q(Xi(n)|Xi(n − 1), y(n))
, i = 1, 2, . . . , NP.

Finally, the new weights are normalized and the posterior pdf at time n is
approximated according to equation (4.13). The computation of its first two
moments, i.e. estimation x̂(n|n) and estimation error covariance P(n|n), is
straightforward:

x̂(n|n) =
NP

∑
i=1

wi(n) Xi(n),

P(n|n) =
NP

∑
i=1

wi(n) (Xi(n)− x̂(n|n)) (Xi(n)− x̂(n|n))T.

These steps are repeated at each iteration. The algorithm is summarized
at the end of the section, for a particular choice of importance density and
with resampling. Finally, it is worthwile to mention that the measurement
update in the case of the PF is performed by the weight update. The time
update, i.e. the prediction, is obtained performing the pdf

p(Xi(n)|Xi(n − 1)),

which appears in the weight update equation; more precisely, the pre-

dicted particles {Xi(n|n − 1)}NP
i=1 are obtained by applying the particles

{Xi(n − 1)}NP
i=1 to the state update equation:

Xi(n|n − 1) = f (Xi(n − 1), u(n − 1),WX ,i(n − 1)) i = 1, . . . , NP.(4.15)

Here WX ,i(n − 1) are the random samples drawn from the process noise
pdf, N (0, Q) in our case. Then state prediction and prediction error co-
variance are computed using the old weights:

x̂(n|n − 1) =
NP

∑
i=1

wi(n − 1) Xi(n|n − 1),

P(n|n − 1) =
NP

∑
i=1

wi(n − 1) (Xi(n|n − 1)− x̂(n|n − 1)) (Xi(n|n − 1)− x̂(n|n − 1))T .

Therefore, Particle Filtering relies on the same time update - measurement
update structure as Kalman filtering. Furthermore, the PF requires no as-
sumptions on state and noise pdfs; that is, it can be applied to every type
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of densities and nonlinear model dynamics. It is not restricted to Gaussian
or unimodal pdfs, and furthermore it approaches, for NP → ∞, the true
posterior pdf and therefore the true mean and covariance (it follows from
the Law of large numbers [34]). However, it is difficult to handle and compu-
tationally expensive; the computational cost increases with the number of
particles.

4.8.1 Degeneracy problem and resampling

The SIS algorithm as presented above suffers from the so-called degeneracy
problem: that is, after a few iterations almost all particles have negligible
weight, and typically there is only one particle left with significant weight
(close to 1). Intuitively, this is due to the variance of the weights, which can
only increase over time [29]; renouncing on a detailed description, which
can be found in [30], it can be stated that the variance would be zero if the
particles were drawn from the desired posterior pdf, and it increases as the
importance density approximation of the desired density worsens. There-
fore, an intelligent choice of the importance pdf is fundamental. Beside a
good choice of q(·), resampling is introduced to reduce the variance incre-
ment.
Obviously, the situation described above is undesired since a large compu-
tation effort is spent to propagate many particles with low contribution (i.e.,
small weights) to the discrete pdf; practically, they are almost useless. The
effective number of samples which contribute to the discrete pdf is defined
as:

Ne f f =
Np

1 + Var[w∗
i (n)]

.

The asterisked weights are the true weights defined by equation (4.14); if
q(·) = p(·) they are all equal to 1 ( 1

NP
after the normalization) and therefore

the variance would be zero, leading to Ne f f = NP. However, usually this
is not the case and furthermore the equation can not be evaluated exactly;
therefore an approximation is adopted [30]:

Ne f f ≈
1

∑
NP
i=1(wi(n))2

.

Again, if all the weights have the same value, 1
NP

, then Ne f f = Np; in
the opposite case, when all the weights except one have values close to
zero, then Ne f f = 1, since the only significant particle will have weight
1, as mentioned above. Therefore, the effective sample size lies between 1
(worst case) and NP (best case). Usually a threshold NT is defined, and if
Ne f f ≤ NT , the particles are resampled.
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The resampling is based on the following idea: it is better to eliminate par-
ticles with small weights and to replicate particles with large weights. To

achieve this the degenerated particle set {Xi(n)}NP
i=1 is replaced with the

new set17
{X ∗

k (n)
}NP

k=1
, obtained by (re-)sampling NP times from the dis-

crete distribution (4.13)

p̃(x(n)|Yn) =
Np

∑
i=1

wi(n) δ(x(n)−Xi(n)),

used to approach the true posterior pdf. Note that a particle Xi from the
degenerated set can be picked more than once (and will, if it has a large
weight), i.e. the sampling is executed with replacement. The whole proce-
dure is characterized by the probability:

P(X ∗
k (n) = Xi(n)) = p̃(Xi(n)|Yn) = wi(n).

From this expression it is clear that particles with large weights will be sam-
pled more often than particles with small weigths. The resampled set is an
indipendent, identically distributed (i.i.d.) sample from the discrete pdf
and therefore every particle X ∗

k (n) is assigned the same weight w∗
k = 1

NP
.

Many different resampling algorithms have been developed in the last years:
amongst others, the best known are Multinomial resampling, Stratified resam-
pling, Systematic resampling and Residual resampling. A detailed comparison
of these algorithms is proposed in [31], where Systematic resampling is
considered the best approach with respect to resampling quality and com-
putational efficiency. Therefore, here only this method was considered.

Systematic Resampling

Lets consider a finite discrete pdf like (4.13), denoted as:

px(x) =
N

∑
i=1

wi δ(x −Xi). (4.16)

Its cumulative distribution function (CDF) is defined as:

Fx(x) = Px(x ≤ x).

That is, Fx(x) is the probability that x is less or equal then x; in the case of
interest of a discrete pdf it becomes:

Fx(x) = ∑
i:Xi≤x

px(Xi) = ∑
i:Xi≤x

wi.

17the index was changed from i to k to improve the readibility of the following consider-
ations
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Now, a (pseudo-)random sample can be drawn from px(x) according to the
following, well known inverse transform method for finite discrete distributions
[32]:

1. A random sample u is generated from the standard (continuous) uni-
form distribution U [0, 1] in the interval [0, 1].

2. The value X ∗ ∈ {Xi}N
i=1 is computed, such that

Fx(Xi−1) ≤ u < Fx(Xi),

or, equivalently, such that:

i−1

∑
s=1

ws ≤ u <

i

∑
s=1

ws.

That is, from a formal point of view, X ∗ is obtained by performing
the generalized inverse of Fx in u.

It can be proved that the sample X ∗ generated by this algorithm is a ran-
dom sample drawn from the discrete pdf (4.16); obviously, from the expres-
sion of px(x) it holds that:

Px(X ∗ = Xi) = px(Xi) = wi.

Systematic sampling uses this approach in order to obtain a random sam-
ple from the distribution (4.13); it is repeated NP times, in order to generate
NP random samples. However, only at the first iteration a uniformly dis-
tributed number, lets call it u1, is generated; for the successive iterations,
the (no longer uniformly distributed) numbers are generated as follows:

uk =
(k − 1) + u1

NP
, k = 2, 3, . . . , NP. (4.17)

This yields an ordered sequence (u1, u2, . . . uNP
); on the contrary, in the

Multinomial resampling algorithm each element of the sequence is uni-
formly distributed; this is the fundamental difference between the two ap-
proaches.
This subsection is concluded with a summary of the Systematic Resam-
pling algorithm, implemented for this project. Given the degenerated set

{Xi(n), wi(n)}NP
i=1, the resampled set

{
X ∗

k (n), w∗
k(n)

}NP

k=1
is obtained as fol-

lows:

1. The ordered sequence (u1, u2, . . . uNP
) is generated, where u1 is drawn

from the standard uniform distribution and the other elements are
generated according to (4.17).
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2. For k = 1, 2, . . . , NP, X ∗
k (n) is chosen as follows:

X ∗
k (n) = Xi(n), with i such that uk ∈

[
i−1

∑
s=1

ws(n),
i

∑
s=1

ws(n)

)

.

3. The weights w∗
k (n) of the resampled particles are all set to 1

NP
.

Hence, the degenerated posterior pdf approximation

p̃NP
(x(n)|Yn) =

Np

∑
i=1

wi(n) δ(x(n)−Xi(n)),

is replaced by [31]:

p̃∗NP
(x(n)|Yn) =

Np

∑
k=1

w∗
k (n) δ(x(n)−X ∗

k (n)) =
Np

∑
i=1

ni

NP
δ(x(n)−Xi(n)).

Here, ni is the number of copies of particle Xi from the degenerated set
contained in the resampled set. Finally, it is worthwhile to mention that
this resampling procedure is equivalent to sample ni from a multinomial
distribution described by the probability [33]:

Px(x = Xi) = wi.

Details on the multinomial distribution can be found in each probability
textbook.

Unfortunately, resampling has also an undesired side effect; since the par-
ticles with large weights are picked more often, and particles with small
weights are discarded, it reduces the number of distinct particles. This
phenomenon is known as loss of diversity or sample impoverishment and there
exist several improvements of the Particle Filter algorithm which counter-
act this effect. For this project the loss of diversity problem was neglected;
anyway, it is treated in [29].

4.8.2 Choice of the importance density

As mentioned earlier, the choice of the importance density is the crucial
point of the Particle Filter design. A myriad of importance densities can be
found in literature; a common, intuitive choice is the prior density [29]

q(x(n)|x(n − 1), y(n)) = p(x(n)|x(n − 1)),
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i.e. the pdf of x(n) given x(n − 1). Sampling from this pdf is straightfor-
ward, according to equation (4.15).
With this choice for the importance pdf the weight update equation

wi(n) ∝ wi(n − 1)
p(y(n)|Xi(n)) p(Xi(n)|Xi(n − 1))

q(Xi(n)|Xi(n − 1), y(n))
, i = 1, 2, . . . , NP,

simplifies to:

wi(n) ∝ wi(n − 1) p(y(n)|Xi(n)), i = 1, 2, . . . , NP.

The pdf p(y(n)|Xi(n)) is easy to evaluate in the case of purely additive,
Gaussian distributed measurement noise. For our capillary model, the
measurement equation is y(n) = H x(n) + wy(n), with H = [0 0 1], and
therefore:18

py(y(n)|Xi(n)) = pwy(wy(n)) = pwy(y(n)− H Xi(n)).

Since pwy(·) = N (0, R), the pdf results (remember that wy is a scalar ran-
dom variable):

py(y(n)|Xi(n)) =
1√

2 π R
exp

(

−1

2

(y(n)− H Xi(n))
2

R

)

.

Therefore, this choice of importance density is intuitive and simple to im-
plement. However, it might not be a good choice in certain cases.

From a theoretical point of view, the optimal importance density function
is the one which reduces the variance of the particle weights and thus max-
imizes Ne f f [29]. This optimal density is:

qopt(x(n)|x(n − 1), y(n)) = p(x(n)|x(n − 1), y(n)).

However, usually it is not possible to sample from this pdf. Anyway, there
exists an important exception, namely when it is Gaussian and therefore
sampling is straightforward. This happens when the measurement equa-
tion of the filter model is linear and the process and measurement noises
are Gaussian distributed and mutually indipendent, which is exactly the
situation of our capillary model. In this case the optimal importance den-
sity is given by [29]:

qopt(x(n)|x(n − 1), y(n)) = N (m, P).

The involved mean and covariance matrix are given by:

P = (Q−1 + HT R−1 H)−1, (4.18)

m = P (Q−1 f (x(n − 1)) + HT R−1 y(n)). (4.19)

18as it is well known, if wy ∼ pwy (wy) and y = h(wy), then y ∼ | d
dy (h

−1(y))| pwy (h
−1(y));

in this case, h(·) is the linear measurement function
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Furthermore, the weight update equation becomes

wi(n) ∝ wi(n − 1) p(y(n)|Xi(n − 1)), i = 1, 2, . . . , NP,

where the involved pdf is given by:

p(y(n)|x(n − 1)) = N (m̄, P̄),

with:

m̄ = H f (x(n − 1)), (4.20)

P̄ = R + H Q HT. (4.21)

This is the choice adopted for this project. The Particle Filter designed with
the optimal density function is known as Gaussian Particle Filter, since it re-
lies on a partially Gaussian state space representation.

4.8.3 Summary of the Gaussian Particle Filter algorithm

Summarizing, the Gaussian Partice Filter with resampling is structured as
follows:

1. If m0 and P0 are the initial mean and covariance matrix, like for the
Kalman filter, then the initial particle set {Xi(n0), wi(n0)}NP

i=1 is cho-
sen as follows:

wi(n0) =
1

NP
, i = 1, 2, . . . , NP,

Xi(n0) ∼ N (m0, P0), i = 1, 2, . . . , NP.

2. For n > n0, the new particles {Xi(n)}NP
i=1 are sampled as follows:

Xi(n) ∼ N (m, P), i = 1, 2, . . . , NP.

m and P are defined by (4.19) and (4.18).

3. Then, the weights are updated, according to:

w̄i(n) = wi(n − 1) N (m̄, P̄), i = 1, 2, . . . , NP.

m̄ and P̄ are defined by (4.20) and (4.21).
Finally, the weights are normalized:

wi(n) =
w̄i(n)

∑
NP
i=1 w̄i(n)

, i = 1, 2, . . . , NP.
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4. The effective sample size is computed from the (normalized) updated
weights:

Ne f f =
1

∑
NP
i=1(wi(n))2

.

If Ne f f ≤ NT , where NT ≤ NP is the pre-defined threshold, the previ-
ously explained Systematic resampling algorithm is applied in order
to compute the resampled set

{X ∗
k (n), w∗

k (n)}NP

k=1 ,

from the degenerated set:

{Xi(n), wi(n)}NP
i=1 .

5. Finally, the discrete approximation of the true posterior pdf is given
by:19

p̃∗NP
(x(n)|Yn) =

Np

∑
i=1

ni

NP
δ(x(n)−Xi(n)).

From the posterior pdf approximation of point 5 all required moments can
be computed (usually mean and estimation error covariance).

19if resampling was executed; otherwise, standard expression (4.13) is used



Chapter 5

Estimation quality evaluation:
whiteness tests

5.1 The principle of whiteness tests

In the previous chapter the Bayesian estimation problem was discussed,
and several state estimation approaches were proposed. However, a fun-
damental question was not yet adressed: how to evaluate the estimation
quality? Some kind of quality index is required in order to tune the filters
correctly.
Obviously for estimations on a simulated model the “true“ state evolutions
can be compared to the estimated ones; however for real systems the state
variables are not accessible and therefore this kind of comparison is not
possible. As a matter of fact, in any practical estimation problem the only
available information is the measured output variable of the considered
system, together with the estimations and predictions computed by the fil-
ter.
Based on this set of informations, the standard approach to estimation qual-
ity evaluation is the so-called test for white noise on the output prediction
error process [23], defined as:

e(n) = y(n)− ŷ(n|n − 1), n ≥ n0.

That is, the difference between the measured output y of the system (the
radius measurement in our case) and the output prediction ŷ(n|n − 1) cal-
culated by the filter. As mentioned in the previous chapter, for linear esti-
mation problems the prediction error computed by the linear MVUE (such
as the Kalman filter) is called innovation; if the estimator is tuned correctly,
the innovation forms a white noise process. A formal definition of white-
ness is given in the next section; basically it means that ∀n ∈ Z the auto-
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correlation function is of the form:

r(τ) = E[e(n + τ) e(n)] =







M for τ = 0

0 for τ 6= 0
.

M is the statistical power of the innovation, defined as r(0). Obviously
τ ∈ Z too, since we are dealing with discrete-time processes.
According to [23], where a formal proof is given, the Kalman filter is tuned
correctly, that is its noise covariances are chosen appropriately, if and only
if the innovation process e(·) is white noise. In the context of nonlinear es-
timation, here attempted with the EKF, the UKF and the PF, the prediction
error is only approximately white; therefore, it is no longer called innova-
tion. However, the test for white noise remains the standard method for
estimation quality evaluation also in this case. Whereas in the linear case
the optimal tuning yields perfectly white noise, in the nonlinear case this
objective can be achieved only approximately.
There exist several methods in order to evaluate the whiteness of the pre-
diction error e(·). They rely on the estimation of the autocorrelation func-
tion, the Power Spectral Density and/or the Power Spectrum. A formal
definition of these functions is given in the next section. After that, two
estimation approaches are presented and finally two whiteness indices are
developed.

5.2 Formal definition of white noise

For the discrete-time stochastic processes considered throughout this project,
the following properties were tacitly assumed to be satisfied:

• Real valued with finite variance

• Wide-sense stationary

• Unitary sampling time

The following definitions, based on [37], refer to the scalar output predic-
tion error process e(·), which is supposed to satisfy these properties. Details
on the basic properties of stochastic processes, such as stationarity, can be
found in each probability textbook. Again, random variables and processes
are denoted with normal font.

Lets consider the autocorrelation function r(·) and the autocovariance func-
tion σ(·) of e(·) (m denotes the mean, as usual):

r(τ) = E[e(n + τ) e(n)], n, τ ∈ Z,

σ(τ) = E[(e(n + τ)− m) (e(n)− m)], n, τ ∈ Z.
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Alternatively, the process e(·) can be described in the frequency domain,
more precisely with its Power Spectral Density (PSD) and Power Spectrum
(PS), defined as follows.

Definition 1. (Power Spectral Density)
The Power Spectral Density S(ejω) of process e(·) is given by the Discrete-
Time Fourier Transform (DTFT) of its autocorrelation function:

S(ejω) =
∞

∑
τ=−∞

r(τ) e−jωτ, ω ∈ [−π, π].

�

Thus, the Power Spectral Density is the probabilistic counterpart of the de-
terministic Fourier Transform.

Definition 2. (Power Spectrum)
The Power Spectrum M(ω) of process e(·) is given by the integral of its
PSD:

M(ω) =
1

2π

∫ ω

−π
S(ejξ) dξ, ω ∈ [−π, π].

�

The following properties hold for these quantities:

• the autocorrelation r(τ) is a real valued, even function of τ;

• the PSD S(ejω) is a real valued, even and non negative function of ω;

• the PS M(ω) is a real valued, monotonically non-decreasing and lim-
ited function of ω; furthermore:

M(−π) = 0, and M(π) = r(0) = M.

M is the statistical (time-indipendent) power of process e(·). There-
fore, the integral of the PSD over [−π, π], normalized with factor 2π,
yields the statistical power of the process.

Based on these quantities the definition of (weak-sense) white noise is given.
Let e(·) be a process with zero mean.

Definition 3. (White noise)
A zero-mean process e(·) is said to be white noise if its variables are uncor-
related, that is:

r(τ) = σ(τ) = M δ(τ), τ ∈ Z.

Note that for zero-mean processes no distinction between autocorrelation
and autocovariance (and between statistical power and variance) is made.
�
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From Definition 1 it follows that the PSD of a white noise process is con-
stant over the whole frequency range; more precisely, ∀ω ∈ [−π, π], it is
given by the statistical power M, since r(0) = M. Finally, the PS is given by
a straight line which connects the points (−π, 0) and (π, M). The situation
is summarized by Figures 5.1, 5.2 and 5.3, which refer to Matlab generated,
Gaussian white noise with unitary statistical power. Note that the Figures
report the sample functions, that is the functions computed with respect
to a finite-length sequence of the process; therefore the theoretical proper-
ties of white noise are only approximately matched. Furthermore Figure
5.1 was generated automatically with the Matlab instruction autocorr(); it
shows only the values for τ > 0, since the function is even.
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Sample r(τ) of Matlab generated, gaussian white noise

Figure 5.1: Sample autocorrelation function of Matlab generated, Gaussian
white noise
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Figure 5.2: Sample PSD of Matlab generated, Gaussian white noise
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Figure 5.3: Sample PS of Matlab generated, Gaussian white noise
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5.3 Autocorrelation, PSD and PS estimation

In order to evaluate the whiteness of a stochastic process, its autocorrela-
tion function, Power Spectral Density or Power Spectrum are compared to
the ones of white noise. In this section two approaches to PSD and PS es-
timation are presented: the first one of non-parametric, the second one of
parametric nature. The considerations are loosely based on [28]. For the
proper filter tuning only the parametric approach was considered, since it
is known to yield better results.
The main problem in the computation of the functions of interest is that
for any real problem the only available information on the stochastic pro-
cess we want to test is given by a finite-length observation. Its probability
density function generally is not (entirely) known, and therefore the the-
oretical autocorrelation function (ACF), PSD and PS can not be evaluated.
Thus, the only way to compute these quantities is to estimate them from the
observed sequence.
Lets consider an observed sequence, or realization, of the output prediction
error process e(·), with length N:

e(0), e(1), . . . , e(N − 1).

Non-parametric estimation

Typically, the so-called sample autocorrelation function r̂N(·) is considered for
the estimation of the true autocorrelation of e(·). It is defined as follows
[28]:

r̂N(τ) =







1
N

N−1−τ

∑
n=0

e(n + τ) e(n), τ = 0, 1, . . . N − 1

r̂N(−τ) τ = −(N − 1), . . . − 1

. (5.1)

However, the sample autocorrelation function is a biased1 estimator of r(·).
Furthermore, since the PSD is defined as the Discrete Time Fourier Trans-
form of the ACF, it is reasonable to define the PSD estimation analogously,
except considering the sample ACF:

ŜN(e
jω) =

N−1

∑
τ=−(N−1)

r̂N(τ) e−jωτ , ω =
2π

N
k, (5.2)

with k = 0, 1, . . . N − 1.
Note that the Discrete Fourier Transform (DFT) instead of the Discrete Time

1an estimator X̂ of random variable X is said to be unbiased if E[X̂] = E[X]. Unbiased-
ness is one of the most important properties for an estimator
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Fourier Transform (DTFT) was considered in this definition, that is a dis-
crete frequency domain is assumed, unlike for the theoretical definition of
the PSD. This is reasonable since the estimation is calculated on a computer,
which can not deal with continuous valued time or frequency domains.
Finally, using expression (5.1) in (5.2) yields

ŜN(e
jω) =

1

N

∣
∣
∣
∣
∣

N−1

∑
n=0

e(n) e−jωn

∣
∣
∣
∣
∣

2

=
1

N

∣
∣
∣EN(e

iω)
∣
∣
∣

2
, (5.3)

where EN(e
iω) is the DFT of the observed sequence e(0), . . . e(N − 1); that

is, ŜN(e
jω) is computed as the square Euclidean norm of the DFT of the se-

quence.
The PSD estimator defined by equation (5.3) is the so-called Periodogram.
Intuitively, the larger is N (that is, the longer is the observed sequence), the
better is the estimation of the true prediction error PSD S(ejω). Further-
more, for N → ∞ one expects the Periodogram to match the true function
exactly. However, this is not the case; as a matter of fact, the statistical
properties of this estimator are quite poor [28], more precisely:

• It is biased:

E[ŜN(e
jω)] 6= E[S(ejω)].

Furthermore, it is asymptotically unbiased, that is:

lim
N→∞

E[ŜN(e
jω)] = E[S(ejω)].

However this property is not of practical significancy.

• It is not consistent:2

lim
N→∞

ŜN(e
jω) 6= S(ejω).

More precisely the Periodogram has the following asymptotic properties:

• Asymptotical variance:

lim
N→∞

Var[ŜN(e
jω)] =







2 S2(ejω) for ω = 0, ±π

S2(ejω) for 0 < |ω| < π
.

• Asymptotical autocorrelation equal to zero for every ω1 6= ω2.

2for a more formal definition of consistency refer to [28]; consistency is one of the most
important properties for an estimator
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That is, asymptotically the Periodogram behaves like a white noise in the
frequency domain, with a standard deviation of the order of the true PSD!
Obviously an estimator with such a poor performance is, from a practical
point of view, useless.
There exist several methods to improve the statistical properties of the Peri-
odogram, that is to reduce its variance. A standard approach is the Bartlett
method; it splits the N observations in L subsequent intervals of M samples
and computes the Periodogram Ŝi,M(ejω) on each interval, i = 1, 2, . . . , L.
Finally, the average of the L Periodograms is computed, that is:

ŜB(e
jω) =

1

L

L

∑
i=1

Ŝi,M(ejω).

ŜB(e
jω) is the so-called Bartlett PSD estimator. Its bias is L times the bias of

the Periodogram, but its variance is reduced by the same factor. Therefore,
the number of intervals L has to be chosen carefully in order to get a rea-
sonable tradeoff between bias and variance.3

By adopting this approach the oscillations in the PSD estimation are re-
duced. Finally the Power Spectrum is obtained from the PSD estimation by
numerical integration; thus, on the PS estimation the oscillations are once
again reduced. However, it is far better to rely on parametric estimation
methods.

Parametric estimation

The simpliest parametric approach to PSD and PS estimation is to identify
an autoregressive model of order k for the output prediction error e(·):4

e(n) + a1 e(n − 1) + . . . + ak e(n − k) = ǫ(n). (5.4)

ǫ(·) is a white noise process with variance/power σ2. If

a1 = . . . = ak = 0, (5.5)

it holds that e(·) = ǫ(·) is white noise too.
Applying the Z-transform to model (5.4), it results:5

e(n) + a1 z−1 e(n) + . . . + ak z−k e(n) = ǫ(n),

e(n) [1 + a1 z−1 + . . . + ak z−k] = ǫ(n).

3furthermore, there exist several more sophisticated windowing approaches, reported
in [28]

4that is, a parametric model; hence the denomination parametric estimation
5the following notation is symbolic; as a matter of fact, it mixes up the Z-domain with

the time domain
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Defining the polynomial

A(z) = 1 + a1 z−1 + . . . + ak z−k,

the output prediction error can be expressed as follows:

e(n) =
1

A(z)
ǫ(n).

As it is well known from the properties of the Z-transform, setting z = ejω

equals to switch from the Z-domain to the frequency domain. In our case
this switch yields:

e(n) =
1

A(ejω)
ǫ(n).

Finally, according to the Wiener-Khinchin theorem [37], the PSD of e(·) can
be obtained from the PSD of ǫ(·), given by Sǫ(ejω) = σ2, as follows:

Ŝ(ejω) =
1

A(ejω) A∗(ejω)
σ2 =

σ2

|A(ejω)|2 . (5.6)

The asterisk denotes the complex conjugate of A(ejω); the last equality
holds only for the scalar case. If whiteness condition (5.5) holds, then
Ŝ(ejω) = σ2 and therefore it is perfectly constant, as it should be. Note
that the PSD computed this way is again only an estimation, since the pa-
rameters a1, . . . , ak are estimated by the identification procedure.
The identification of the autoregressive model (5.4) for e(·) can be obtained
with the Matlab instruction ar(); furthermore the instruction arfit() com-
putes the order k of the model for which the best data fit is obtained.
The parametric PSD estimation (5.6) is known to yield better statistical per-
formance as the non-parametric estimation [28]; therefore, in this project
the parametric approach was adopted. Again, the PS estimation is obtained
from (5.6) by numerical integration. Finally, note that also for parametric
estimation a discrete frequency domain is assumed.

5.4 Whiteness indices

Once the functions of interest were estimated for the prediction error e(·),
they are compared to the ideal ones, that is the white noise functions. For
instance, Figures 5.4, 5.5 and 5.6 report such a graphical comparison for
the normalized ACF, PS and PSD (the estimations were computed with the
parametric approach). The normalization factor is the statistical power M
of e(·). From the Figures it is obvious that e(·) is not white noise; however,
a quantification of its whiteness/non-whiteness is required.
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A straightforward approach to white noise testing is the correlogram, that
is the graphical representation of the normalized sample ACF, as in Figure
5.4. If all the values, except the first one obviously, are situated in the confi-
dence interval defined by the blue lines, the signal is white. The confidence
interval is defined by a statistical hypothesis test on the normalized sample
ACF. The discussion of these tests is beyond the scope of this project; for
details, see [28]. However, with this approach it can be stated whether the
considered signal is white noise or not, but it yields no quantification of
whiteness in case of negative answer.
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Figure 5.4: Example: Normalized sample autocorrelation function of e(·)

Such a quantification can be obtained from Figure 5.6. As a matter of fact,
the whiter the prediction error is, the smaller is the area delimited by the
ideal PS and the real PS. Therefore, evaluating this area, for ω ∈ [0, π], the
whiteness can be quantified. Thus, for this project the following whiteness
indices were adopted:

• Area index
It is defined as the area delimited by the ideal and the real PS, in
the interval [0, π] (this area equals the area computed in the interval
[−π, 0], due to the symmetry of the PSD).

• Maximum deviation index
It is defined as the maximum deviation of the real PS from the ideal
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PS, again on the interval [0, π].

The closer this indices are to zero, the whiter is the prediction error. Note
that they are computed on the normalized PS. Especially the area index was
heavily used for filter tuning, as shown in the next chapters.
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Figure 5.5: Ex.: Normalized parametric PSD of e(·) vs. white noise PSD
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Chapter 6

The infinite-horizon
linear-quadratic regulator
(LQR)

The classical approach to state feedback control consists in the pole or eigen-
value allocation of the controlled (linear) system. Typically, they are allo-
cated in order to match pre-defined specifications on the system output
with respect to the tracking of canonical input signals. Typical examples
are specifications on the rise and the settling time of the output signal with
respect to a Heaviside step input signal. However, with this approach it is
difficult to make considerations on the energy spent by the controller. The
typical situation is reported in Figure 6.1; as usual, u denotes the input vari-
able, y the measured variable affected by measurement noise wy (assumed
to be additive), x is the not entirely accessible state vector, estimated by a
state estimator (for instance, one of the filters proposed previously). Here
the feedback is assumed to be linear. Finally, an external disturbance d
could act on the controlled plant.
The infinite-horizon linear-quadratic regulator,1 briefly LQR, represents a
model-based approach to state feedback control. This technique permits
to achieve the given specifications, that is, usually, tracking of a reference
signal with a desired precision and velocity, by computing the so-called
optimal control signal. More precisely, the LQR law computes, amongst all
admissible input or control signals, the most energy-saving one. Consider a
linear, time-invariant, discrete time system (such as the linearized capillary
model):

x(n + 1) = F x(n) + G u(n),

y(n) = H x(n).
(6.1)

1alternatively, also the finite-horizon LQR regulator can be considered

77
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Figure 6.1: Linear state feedback control with state estimator

Let x(n0) = x0 be the initial condition.
Then, the optimal control signal is computed by minimizing the following,
quadratic cost index:

J(u, x) =
∞

∑
n=n0

[x(n)T QLQR x(n) + u(n)T RLQR u(n)]. (6.2)

Here, the matrices QLQR ∈ R
n×n and RLQR ∈ R

m×m (n is the state space
dimension, m the input dimension) are the penalty matrices for the state
vector respectively the input vector (which is a scalar in our case). These
matrices are the core parameters of the LQR law and will be discussed in
the following.
If certain hypothesis are satisfied, the optimal control signal uopt is obtained
from a constant, linear feedback of the system state vector. In the next sec-
tion a brief overview over the LQR theory is given.

6.1 LQR theory review

Based on [38], the basic properties of the infinite-horizon LQR are summa-
rized.
First, it is necessary to understand when does a sequence of inputs u(n0),
u(n0 + 1), . . . exists which yields a finite cost index (6.2). This is a rele-
vant question, since the index is given by the sum of an infinite number
of elements. It can be proved that such sequences exist if and only if the
controlled system (6.1) is stabilizable, that is all the uncontrollable eigenval-
ues of system matrix F are stable (i.e., their absolute value is < 1). If this
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fundamental property is not satisfied, it is not possible to design a LQR
controller. As pointed out at the end of Chapter 3, the capillary system is
not stabilizable and therefore it has to be modified, as will be shown further
on.
If the stabilizability condition is satisfied, then the cost index is minimized
by the feedback law

uopt(n) = −Kopt x(n), ∀n ≥ n0,

where the feedback matrix is given by:

Kopt = (RLQR + GT M G)−1 GT M F.

M is a positive-semidefinite solution of the so-called Discrete-time Algebraic
Riccati Equation, briefly DARE, defined as:2

M = QLQR + FT M F − FT M G [RLQR + GT M G]−1 GT M F.

Generally the DARE has more than one positive-semidefinite solution;3

however, for typical LQR problems it is unique, as pointed out below.
Before addressing this problem, it is worth mentioning that for any feed-
back law of practical use the system matrix of the feedbacked system,

F − G Kopt,

has to be stable. As a matter of fact, the optimal feedback law would be
worthless if it was not stabilizing. However, it yields a stable system if the
conditions summarized by the following theorem are satisfied:4

Theorem 3. Consider a stabilizable, linear system (6.1). If the pair (F, D) is
observable, where D is a matrix square root of QLQR such that QLQR = DT D,
then:

• The DARE has only one positive-semidefinite solution M, and it is not only
positive-semidefinite, but also positive-definite.

• For this positive-definite solution the feedback control law described by Kopt

is not only optimal, but also stabilizing.

�

2in Matlab, the solution of the DARE as well as Kopt are computed with the instruction
dare(F, G, QLQR, RLQR)

3the discussion of which one is the solution to use for the computation of Kopt is beyond
the scope of this work

4if pair (F, D) is not observable, but only detectable, which is a weaker property, then the
theorem still holds, but the only positive-semidefinite solution of the DARE is not positive-
definite
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Therefore, if the considered system is stabilizable and QLQR is chosen in or-
der to satisfy the observability, or at least the detectability condition, then
the optimal control law yields a stable system and therefore the LQR can
be applied.

Finally, it is worth mentioning that the goal of the standard, finite-horizon
LQR is to regulate the state variable/vector to zero, as can be seen from
the cost index (6.2); as a matter of fact, only in this case the index can as-
sume a finite value. However, typically the desired state value is not 0, but
a non-zero set point xset, which usually is a non-zero equilibrium point of
the system, such that:5

xset = F xset.

This can be easily achieved by applying a rigid translation to the state space
of system (6.1). Lets define the translated state vector:

x̄ = x − xset.

Then the original model (6.1) can be rewritten in the following form (since
xset = F xset):

[x(n + 1)− xset] = F [x(n)− xset] + G u(n),

ȳ(n) = H [x(n)− xset].

That is the original system, but with translated state vector x̄ = x − xset.
Applying the LQR to this system x̄ is regulated to zero, and therefore x is
regulated to xset, as desired. The modified feedback law is

uopt(n) = −Kopt [x(n)− xset],

where, pay attention, Kopt is computed with respect to the original system
matrices.
The same approach was adopted for the non-linear capillary model.

6.2 Choice of the penalty matrices

The penalty matrices QLQR and RLQR are chosen in order to obtain a trade-
off between the regulation precision/promptness of the controller and the
control energy expense. The two objectives of promptness and control en-
ergy saving are always in contrast: the faster the response is, the larger is
the applied control signal, and viceversa.

5for simplicity, it is supposed to be an equilibrium point with respect to u = 0
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Considering for the moment both the penalties to be scalar, it can be stated
that:6

• If rLQR ≫ qLQR, in the cost index the input signal is penalized more
than the state variable. That is, for the minimization of the cost index
it is more important to keep the input signal small, whereas devia-
tions of the state variable from the set point are less significant. There-
fore the LQR law avoids large control signals, saving on the “control
energy“. Thus, the control promptness is reduced.

• If qLQR ≫ rLQR, we are in the opposite situation; that is, the controller
is very prompt, spending much energy.

At this point it is worth recalling that for capillary control the control vari-
able is given by the pull rate v (and the (reduced) state vector by [r h]T).
Although a higher pull rate is reflected in a small increase on the energy ex-
pense, it is absolutely negligible in the context of crystal pulling. Therefore,
the concept of energy is not very appropriate in this case. Nevertheless,
also for capillary control it is important to reduce the control signal, that is
the pull rate variation; as a matter of fact, whilst the mean value of the pull
rate is not that critical for crystal structure and quality, huge instantaneous
variations can have a fatal impact. Therefore the principle of two contrast-
ing objectives - pull rate variation reduction vs. prompt radius and height
adjustments - still holds.
Now, lets consider the case of matrix penalties; more precisely, the case
of interest, where only QLQR is a matrix. The following considerations are
based loosely on [38]. In most cases the state penalty is chosen as a diagonal
matrix:

QLQR = α






qr 0

0 qh




 .

Here qr is the penalty on r and qh the penalty on h. The parameter α is used
to scale the state penalty with respect to the control signal penalty RLQR.
With this choice of QLQR the cost index becomes:

J(u, x) =
∞

∑
n=n0

(

(xr(n)− xr,set)
T QLQR (xr(n)− xr,set) + u(n)T RLQR u(n)

)

=
∞

∑
n=n0




[r(n)− rset h(n)− hset] α






qr 0

0 qh











r(n)− rset

h(n)− hset




+ ∆v(n)T RLQR ∆v(n)






J(u, x) =
∞

∑
n=n0

(

α (qr (r(n)− rset)
2 + qh (h(n)− hset)

2) + RLQR (∆v(n))2
)

.

6note that the concepts of small and large refer to the absolute value of the input and
state variables; the sign does not matter, since the square of the variables is considered in
the cost index
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From this expression it is clear that qr acts only on r and qh only on h,
whereas α affects both state variables.
Now the tradeoff between “control energy“ and control promptness, ex-
plained above for the scalar case, is obtained varying the ratio:

α

RLQR
.

The higher the value of the ratio, the more the LQR focuses on the state
evolution, that is, the control promptness and precision improves, toler-
ating large control signals. If the ratio is kept low, the LQR reduces the
control signal, tolerating a “bad“ state evolution.
Fixed this ratio, the second ratio,

qr

qh
,

is considered. Usually a high ratio means that the LQR focuses on the evo-
lution of the first state variable, neglecting the second, and viceversa. How-
ever, in the particular case of the capillary model this is not the case; as will
be shown in the next chapter, the radius regulation improves (or worsens)
together with the meniscus height regulation. It is not possible to improve
the radius regulation and at the same time to worsen the height regulation.
This unexpected phenomenon is explained by the particular nonlinear re-
lation between r and h, described, for instance, by the Johansen-Boucher
formula:7

h = a

√

1 − sin(θ)

1 + 0.6915
(

a
r

)1.1
.

In order to achieve constant radius growth it must hold that θ = θC; as a
matter of fact, the set points of r and h are chosen in order to satisfy this
condition. From the formula it is clear that for an increasing radius the
condition can be maintained only if the meniscus height increases too, and
viceversa. Therefore, if |r − rset| increases/decreases, the LQR has to in-
crease/decrease the difference |h − hset| too, in order to maintain θ = θC.
Thus, if one of the two variables diverges from its set point because it is as-
signed a low penalty, the other one must diverge too, indipendently from
its penalty; this means that it is not possible to regulate r and h indipen-
dently.

This discussion is concluded recalling Bryson’s rule for the initial choice
of the penalties. With the diagonal structure introduced above, this rule

7however it can be observed also with the Tsivinskii and the Boucher formula
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suggests to use the following penalties:

QLQR =






1
(∆rmax)2 0

0 1
(∆hmax)2




 , RLQR =

1

(∆vmax)2
.

∆rmax, ∆hmax and ∆vmax are the maximum acceptable values of radius,
height and pull rate variations (the variations are intended with respect
to the set point, for the state variables).
Usually Bryson’s rule is used as the starting point for the penalty choice;
then the penalties are retuned according to the considerations reported
above, in order to obtain the desired results.
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Chapter 7

Simulation results

Based on the theory exposed in the previous chapters, the capillary model,
the filtering and the control algorithms were implemented. In this chapter
the simulation results are shown and discussed: they are based on simu-
lated data, that is on artificial data generated with the capillary model. For
results on experimental data from St. Peters refer to the next chapter.
As mentioned in the introduction, the algorithms were implemented with
Matlab,1 a commercial software developed by Mathworks. Matlab is a nu-
merical computing environment designed for complex matrix manipula-
tions and statistical analysis. From Matlab interfacing with programs writ-
ten in other languages such as C, C++ and Java is straightforward. Fur-
thermore Mathworks provides a tool which automatically converts Matlab
code into C code.
Matlab is widely used in academic and research institutions, as well as in-
dustrial enterprises, especially in the engineering branch, for instance for
control theory and digital signal processing. It is provided with an addi-
tional package, Simulink, a (graphical) tool for modeling, simulating and
analyzing dynamic systems. For this project some of the tests on the closed
loop system2 were performed with Simulink; however, the functions called
by Simulink are written in Matlab.
In this chapter first some notes on the code implementation are reported,
together with the Simulink scheme used for the closed loop simulations,
followed by a detailed description of the generated data. After that a de-
tailed comparison between the different filter approaches is reported, to-
gether with a step-by-step description of an exemplary tuning procedure.
Furthermore a basic robustness analysis was performed. The filter consid-
erations refer to fixed LQR penalties; they are varied in Section 7.3, where
some considerations on LQR tuning are exposed.

1briefly for Matrix laboratory; version 7.8.0.347 (R2009a) was used
2that is the capillary model feed backed with the LQR
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7.1 Notes on the implementation in Matlab/Simulink

This section reports a brief summary of the implemented algorithms.

Data generation model and filter model

The data generation model is an intermediate version between the original
capillary model of [1], given by equations (3.1), and the improved model
discussed in Section 3.3. More precisely, it is the original model, but using
vg instead of v in the first state update equation and the Johansen-Boucher
formula for θ computation, as proposed in Section 3.3. However, the third
state variable is still Tm, that is the random walk is generated with respect
to the temperature and not for vg as in the improved model. This approach
was adopted in order to rely on (approximately) the same data as in [1].
On the other hand the filtering algorithms rely on the improved model, in
order to verify whether the usage of vg for state estimation is admissible
or not. Therefore for filter purposes vg is considered as the third state vari-
able. Furthermore the filter model includes process noise also on the radius
and height update equation: the complete system is described by equations
(4.1). Finally also the reduced state space model for LQR purposes is based
on the improved model.
Returning to the data generation model, and postponing the discussion of
the variance choices for measurement noise and temperature noise to the
next section (note that no additional process noise was implemented for
the radius and the meniscus height update equation), it is worthwile to
describe how the random walk for Tm was implemented. It is generated
according to the technique used in [1] and discussed in [2], the so-called
Softclipping. Basically it bounds the temperature to an interval [Tmin, Tmax];
if Tm approaches one of the limits it is moved away according to an expo-
nential function, described by the following law:

• If Tm < Tmin + d, set

Tm = Tmin + d exp

(
Tm − Tmin

d
− 1

)

.

• If Tm > Tmax − d, set

Tm = Tmax − d exp

(
Tmax − Tm

d
− 1

)

.

It is reasonable to assume that the temperature is not free to diverge since
on the actual puller there is also the second control loop which adjusts the
heater power in order to obtain the desired growth rate. Therefore indi-
rectly also the temperature is under control.
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For the following simulations, denoting the initial melt temperature with
Tm,0, the function was parameterized as follows:

Tmin = Tm,0 − 5 K, Tmax = Tm,0 + 5 K, d = 1 K.

The bounded random walk obtained with this function is, according to [2],
a quite good representation of the effect of the growth rate control loop.

Filter and LQR implementation

The EKF was implemented according to the algorithm reported in Section
4.5. As stated previously it relies on the same linearization procedure as the
LQR algorithm. Furthermore, for the UKF the algorithm of Section 4.6.2
was used, with the sigma point set described in Section 4.6.3. The UKF
function is based on the Matlab function written by Yi Cao which can be
downloaded from the Mathworks web page [51]. Only some small adjust-
ments where performed, amongst others it was extended to the augmented
state space formulation. As a matter of fact, the UKF was implemented
with augmented state space.
Finally the Particle Filter was implemented in its Gaussian version, that is
the algorithm of Section 4.8.3. Resampling is performed at every iteration,
in fact the threshold NT was set to the total number of particles NP. The
Particle Filter was not tested in the closed loop system (that is “online“,
where online refers to the simulation obviously) because it is quite expen-
sive from a computational point of view; this is okay since the PF was not
implemented for usage in the control system but only for some verifica-
tions on the probability density functions of the state vector, in order to
verify the EKF and UKF results. Of course for filtering purposes it is indif-
ferent whether state estimation is performed online or offline (on the data
generated previously).
Furthermore for estimation quality evaluation only the parametric white
noise test was considered, as mentioned in Chapter 5, where also the key
instructions were reported.
Figure 7.1 reports the Simulink scheme used for data generation and closed
loop simulations. Note that each block of the Simulink scheme calls one or
more Matlab functions. The set points are internally fed to the block “LQR“.
Furthermore the Upsample and Downsample blocks are used for sample
time conversion between the model and the feedback branch; however, for
the following simulation results they were not used, since the whole loop is
characterized by the same sample time, namely 1 second. Finally the scope
blocks are used to display the trajectories.
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7.2 Filtering simulations

The filtering tests were performed for fixed LQR penalties, chosen accord-
ing to Bryson’s rule (the exact expressions are not important). Furthermore,
the set point






rset

hset






in this section is assumed to coincide with the initial model conditions. Fi-
nally the pull rate variation is limited to ±0.3 mm

min .
All the filtering comparisons were performed on exactly the same data; as
a matter of fact, the state trajectories were generated only once, using the
improved UKF approach for state estimation in the closed loop Simulink
scheme.3 Then the different filter algorithms were applied offline to this
data. For statistical estimation performance evaluation this is absolutely
legitimate.
The generated reference trajectories are reported in Figures 7.2 - 7.6. Note
that the true and not the estimated trajectories are shown; furthermore the
measured radius is not reported, since it is almost unreadable due to the
presence of measurement noise. In the Figures the units typically adopted
for crystal pulling are used (mm for radius and height, ◦C for the melt tem-
perature, mm

min for the growth rate and deg for the meniscus slope angle),
which differ from the SI units.

3the filter parameters for data generation were chosen in order to obtain an acceptable
estimation quality; the exact values are not of importance
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Figure 7.2: Crystal radius r - reference trajectory
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Figure 7.3: Meniscus height h - reference trajectory
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Figure 7.4: Melt temperature Tm - reference trajectory
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Figure 7.6: Meniscus slope angle θ - reference trajectory

7.2.1 Filter tuning procedure

In the following the typical filter tuning procedure is illustrated. The exam-
ple refers to the improved UKF, however all filters were tuned according to
this procedure which is based on the area index for white noise and of gen-
eral validity.

Initially, the sigma point parameters are fixed to the standard values:

α = 10−3, k = 0, β = 2.

Furthermore the noise variances of the filter,

Q =









qr 0 0

0 qh 0

0 0 qvg









, R,

are initialized appropriately. The diagonal entries of Q are the process noise
variances for r, h and vg; R is the measurement noise variance. Note that qr

and qh are set to a very small value in order to obtain a good matching with
the data generation model, for which these variances were set to 0; however
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0 is not admissible for the UKF model since Q has to be a positive-definite
matrix. Furthermore qvg was computed, with the growth rate formula (3.2),
from the melt temperature variance assumed for data generation.
The filter is initialized with the true initial conditions of the capillary model,
that is x̂(0|0) = x(0); this approach was adopted for all the simulations
discussed in this chapter. Furthermore the initial covariance P(0|0) was
chosen appropriately. However for the white noise test the initial part of
the prediction error e(n) is not used, since these tests should not depend on
the initial conditions. More precisely, the first 1200 samples (that is, the first
20 minutes) were not used. Therefore the initial conditions are not critical
for the filter tuning.
Now for the noise variance tuning it is convenient to factorize Q as follows:

Q = q









q̄r 0 0

0 q̄h 0

0 0 q̄vg









.

Based on this representation, the first step consists in the optimization of
the ratio:

q

R
= 10m1 .

That is, the measurement noise variance is adjusted with respect to q. The
optimal choice is the one which minimizes the area index. In the following
IA denotes the value of the area index, multiplied with factor 1000 (this con-
vention was adopted because it is more comfortable to deal with numbers
which are greater than unity). Lets assign the following values to R:

{

10−6, 10−7, 10−8, 10−9, 10−10, 10−11, 10−12, 10−13
}

.

Now the UKF is applied to the data for each of these configurations; the
corresponding values of IA are reported in Figure 7.7. Note that m1 is com-
puted as:

m1 = log10 q − log10 R.

IA is minimized for m1 = −4, that is for R = 10−10; therefore the best choice
for R lies next to this value, as expected, since it is the value used for data
generation. In this case IA ≈ 9. Further investigation, refining the partition
on the interval [10−9, 10−11], yields that the best choice is:

R = 2.5 · 10−10, for which IA < 1.

Now R is fixed to this optimal value, and the ratio
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Figure 7.7: IA for different choices of m1

qh

qvg

= 10m2 , with m2 = log10 qh − log10 qvg ,

is considered. Figure 7.8 was obtained with the following values for qvg :

{

10−11, 10−12, 10−13, 10−14, 10−15, 10−16, 10−17
}

.

The minimum is obtained for m = −16, that is for qvg = 10−14; this is
confirmed by a refined minimum search around this value. Therefore the
initial choice of qvg was appropriate, and the minimum index is still the
same.
The next step considers the ratio:

qr

qh
= 10m3 , with m3 = log10 qr − log10 qh.

Figure 7.9 was obtained assigning the following values to qh:

{

10−12, 10−13, . . . , 10−30
}

.

From the Figure it is clear that the minimum is obtained for m3 = −17; for
this value IA < 0.1.
Finally qr is tuned. Omitting the graphical representation and the interme-
diate steps, it can be affirmed that for qr ≤ 10−19 the index value does not
change, whereas it increases slightly for higher values.
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The optimal measurement noise variance is slightly higher then the vari-
ance used for data generation; this is most probably due to the fact that the
filter and the data model are not exactly the same (different choice for the
third state variable). Furthermore it is worthwhile to stress that the most
important ratio is

q
R ; as a matter of fact from Figure 7.7 it can be seen that

an improper choice of the measurement noise can increase IA by factors of
the order of 100, whereas the ratios between the process noise variances,
especially the ratio

qr

qh
, are not that critical. Therefore the initial step is al-

ways to adjust
q
R . Finally it can be stated that the tuning of the process

noise variance ratios was not even necessary, since for values close to unity
the output prediction error can be already considered to be perfectly white;
more generally, even for values of IA of the order of 20 − 30 the prediction
error can be considered as quasi-white noise.
The ACF and the PS for the optimal UKF tuning are reported in Figures 7.10
and 7.11; it is clear that the white noise hypothesis is satisfied. The ACF lies
within the bounds, and the PS is indiscernible from the ideal white noise
PS.
The sigma point parameters where not yet considered; however, no signifi-
cant gain is obtained from their variation. This is not surprising, since with
the standard choice we are already in white noise conditions. Once this sit-
uation is achieved, the filter has extracted all the useful information of the
data and it is not possible to further improve its performance.
The procedure explained in this section was used for filter tuning through-
out the whole project. However, as will be shown in the next chapter, for
experimental data it is not possible to obtain such good results.
The estimated trajectories are reported in the next section, where the old
UKF approach is compared to the improved UKF approach.
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7.2.2 Comparison between old UKF and improved UKF

The optimal tuning for the old and the improved UKF, obtained according
to the procedure described in the previous section, yields approximately
the same value for IA (which is close to 0). The old UKF is the one used
in [1], based on the original capillary model. The tuning was verified to be
optimal considering the average over 10 random generated trajectories.
For both filters the standard sigma point parameters were used, since an
adjustment of these values yields no significant improvement. IA is slightly
smaller for the improved UKF, however the difference is absolutely in-
significant and the output prediction error is perfectly white in both cases.
As will be pointed out later on, the principal advantage of the improved
UKF is its major robustness with respect to variations of the model param-
eters.
Figures 7.12, 7.13, 7.14 and 7.15 report the comparison of the estimated crys-
tal radius, meniscus height, growth rate and melt temperature. Note that
the old UKF estimates the melt temperature, however its growth rate esti-
mation can be computed readily applying formula (3.2) (and viceversa for
the improved UKF; in this case the inverse of (3.2) is used).
It results that the radius estimation is approximately the same for both fil-
ters, whereas the difference is slightly more significant for the other vari-
ables. It turns out that for both the old and the improved UKF the best
estimation of the radius and the meniscus height is quite irregular with re-
spect to the true trajectories. This effect is even more pronounced for the
experimental data, as will be shown in the next chapter.
Generally the estimation of the hidden state variables seems, at first ap-
pearance, quite poor. However this is nothing else than the proof of the
fact that the filters have to be tuned according to a statistical quality index,
i.e. the test for white noise, and not looking at the trajectories (moreover in
the case of experimental data the true trajectories are not available, there-
fore this consideration becomes obsolete). As a matter of fact, we know
that the chosen noise variances are optimal, whereas looking just at the tra-
jectories they seem to be suboptimal.
It is worth mentioning that the considered filter tuning is optimal for state
estimation, however this does not mean that it is optimal for control pur-
poses too. As a matter of fact it could be that the estimations are too ir-
regular for the LQR, causing undesired effects, such as oscillations, in the
closed loop system. Such effects were observed by Siegert during his ex-
periments on the real puller. Therefore it could happen that for the closed
loop system the filter must be retuned in order to yield satisfying regula-
tion results, at the expense of a no longer optimal state estimation. Some
of these aspects will be considered in Section 7.3; however for meaningful
conclusions on this problem the only way is to test the control system on a
real puller, which was not possible so far.
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Figure 7.12: Radius estimation - old UKF vs. improved UKF
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Figure 7.13: Height estimation - old UKF vs. improved UKF
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Growth rate estimation − old UKF vs. improved UKF
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Figure 7.14: Growth rate estimation - old UKF vs. improved UKF
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Figure 7.15: Melt temperature estimation - old UKF vs. improved UKF
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Returning to the state estimation problem, the growth rate (and melt tem-
perature) estimation shows an interesting phenomenon: there appears some
kind of delay between the true trajectory and the estimated one, of the or-
der of some seconds up to half a minute, for both the old and the improved
UKF. This behaviour can be explained looking at the evolution of the out-
put prediction error e(n) = y(n) − ŷ(n|n − 1). As it is well known, the
Kalman Filter and its nonlinear extensions compute the state estimation
from the state prediction, correcting it with a factor proportional to e(n).
However, if e(n) is of the same order as the standard deviation of the mea-
surement noise, that is

|e(n)| ∼=
√

R,

the filter attributes the error in the output prediction to the measurement
noise; that is, it “believes“ that the prediction was not wrong, and therefore
it will not correct it. The estimation is adjusted only when the output pre-
diction error exceeds the interval defined by the standard deviation of the
measurement noise. This is proved by Figures 7.16 and 7.17. These Figures
report, for the case of the improved UKF (however for the old UKF the prin-
ciple remains the same), the first 30 seconds of the output prediction error
and of the growth rate estimation. The red, dashdotted line corresponds to
the interval defined by the standard deviation; at second 8 the prediction
error abandons the interval for the first time, and from Figure 7.17 it can be
seen that at the same instant of time the first (very small) adjustment on the
growth rate estimation is made.4 This behaviour is preserved throughout
the entire duration of the simulation, explaining the time delay between
true evolution and estimation. Depending on how fast e(n) exceeds the
bounds, the delay can become smaller or larger. From this qualitative dis-
cussion it turns out that reducing the measurement noise variance reduces
the delay too. However by doing so the overall quality of the state estima-
tion gets worse.
Finally, as stated at the beginning of this section, the variation of the sigma
point parameters has no significant effect on the estimation performance.
This suggests that the nonlinearities of the capillary model are not that
“bad“, that is they cause only a slight, negligible distortion of the state
vector pdf. Obviously the unimodality of the state vector pdf is implied
by the fact that the UKF works fine (as a matter of fact, for most cases of
multimodal distributions it is not applicable). Furthermore the new insight
on the sigma points leads to the hypothesis that most probably it is not too
far away from a Gaussian distribution. This hypothesis is further encour-
aged by the comparison between the improved UKF and the EKF, reported
in the next section. Finally it will be proved with the Particle Filter.

4actually, there appears an infinitesimal adjustment also on second 7; however approxi-
mately the consideration holds
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Concluding Figure 7.18 reports the pdf of the output prediction error e(n)
for the case of the improved UKF (for the old UKF it is almost the same).
The green graph shows the Gaussian pdf characterized by the sample mean
and covariance of e(n). From the graphical comparison it turns out that
e(n) is almost Gaussian distributed. Note that the histogram was com-
puted, just like the white noise test, only on the portion of e(n) with n ≥
1200, that is with a quite small number of samples; for this reason the pdfs
look somewhat edgy.
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Figure 7.16: Zoom on the output prediction error e(n) of the improved UKF
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Figure 7.17: Zoom on the growth rate estimation of the improved UKF
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Figure 7.18: Output prediction error pdf pe(·) for the improved UKF
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7.2.3 Comparison between UKF and EKF

In the following the performance of the improved UKF is compared to the
one of the EKF. The optimal tuning for these two filters yields approxi-
mately the same value for IA (which furthermore is very small). A compar-
ison of the radius and meniscus height estimation trajectories is illustrated
in Figure 7.19 respectively 7.20. The optimal estimations of the improved
UKF and the EKF are exactly the same, except for some small deviations on
the meniscus height.5 The same happens for vg and Tm; for this reason the
corresponding figures were omitted.
The optimal value of IA for the EKF is slightly smaller than the one for the
UKF, however the difference is, again, absolutely insignificant.
Therefore it turns out that the EKF performance is identical to the perfor-
mance of the improved UKF; this is, at first appearance, quite surprising.
As a matter of fact in Chapter 4 it was pointed out that usually the UKF
yields a better performance. However, actually it is not that uncommon
that the EKF behaviour is as good as the UKF behaviour; in fact often the
nonlinear behaviour of the considered system is not that dramatic from the
point of view of the state vector pdf distortion. As mentioned in the pre-
vious section, the capillary model seems to belong to this class of systems.
This hypothesis is proved in the next section, applying the Particle Filter.
Obviously, since the EKF principle is simpler than the UKF principle, for
equal performance it could be preferable to use the first one. Furthermore
in the case of interest the EKF linearization relies one the same procedure
as the linearization required for the LQR, and therefore the use of the EKF
does not introduce any additional computation effort.
The distribution of the EKF output prediction error is very similar to the
one of the improved UKF reported in Figure 7.18; for this reason it was
omitted.
Finally it will be shown in the next chapter that the EKF performance is ap-
proximately equal to the UKF performance also in the case of experimental
data.

5in fact the blue graph is covered by the red one
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Radius estimation − improved UKF vs. EKF
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Figure 7.19: Radius estimation - improved UKF vs. EKF
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h

 

 
true evolution

Figure 7.20: Height estimation - improved UKF vs. EKF



106 7.2. FILTERING SIMULATIONS

7.2.4 State vector pdf estimation with the Particle Filter

As explained in the previous sections, the behaviour of the EKF and the old
and improved UKF leads to the conclusion that, despite the nonlinear dy-
namics of the capillary model, the state variables are almost Gaussian. In
order to verify this hypothesis the Gaussian Particle Filter was applied to
the simulated data. As stated in Chapter 4, for a large number of particles
the PF approaches the true probability density function of the state vector.
The Particle Filter was initialized with the same x̂(0|0) and P(0|0) as the
other filters; furthermore it was parameterized with the optimal process
noise covariance matrix and measurement noise variance of the improved
UKF. For this choice the output prediction error computed by the PF is
white and therefore its estimation is reliable. For the simulation NP = 1000
particles were used, since with a larger number the computation becomes
very expensive.
With respect to the time instant n = 5000 of the simulation, Figures 7.21,
7.22 and 7.23 report a comparison between the pdf estimation of the im-
proved UKF and the Particle Filter. Furthermore, the Gaussian pdf char-
acterized by the covariance and mean estimation of the PF is drawn as a
reference. As explained in Chapter 4, the UKF approach approximates the
true state vector pdf with a Gaussian one, characterized, at each time n,
by the state estimation x̂(n|n) and the estimated covariance P(n|n). Omit-
ting the time dependence, and denoting the diagonal entries of P(n|n) with
p11, p22 and p33, whereas x̂1, x̂2 and x̂3 are the three elements of x̂(n|n), that
is for the three state variables:

pr(r) =
1

√
2π p11

exp

(

−1

2

(r − x̂1)
2

p11

)

,

ph(h) =
1

√
2π p22

exp

(

−1

2

(h − x̂2)2

p22

)

,

pvg(vg) =
1

√
2π p33

exp

(

−1

2

(vg − x̂3)2

p33

)

.

The red histograms were computed the same way, but using the PF esti-
mation of the mean and the covariance (which are slightly different from
the UKF estimation) for the parameterization of the Gaussian pdf. Like for
the Particle Filter also the histograms for the Gaussian pdfs were computed
on only 1000 samples, in order to get a meaningful comparison. Since the
number of samples is quite reduced, the histograms have a very edged as-
pect.
The true pdfs are given by the Particle filter pdf estimations, that is the
green graphs; from the Figures it is clear that they are almost Gaussian,
since the are quite similar to the Gaussian pdfs computed with the Particle
Filter mean and covariance. Therefore the UKF (and EKF) approach to pdf
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approximation is very appropriate and precise. The histogram for the EKF
is not reported since it is nearly identical to the one of the UKF.
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Figure 7.21: Estimation of radius pdf pr(·) for n = 5000 and 103 samples
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Figure 7.22: Estimation of height pdf ph(·) for n = 5000 and 103 samples



108 7.2. FILTERING SIMULATIONS

2.7 2.75 2.8 2.85 2.9 2.95 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Estimation of growth rate pdf p

vg
(⋅) for n = 5000 and 10

3
 samples

v
g
 [mm/min]

p
v
g
(⋅

)

 

 
improved UKF

Particle Filter

gaussian pdf from PF

Figure 7.23: Estimation of growth rate pdf pvg(·) for n = 5000, 103 samples

The hypothesis of Gaussianity is therefore confirmed by the Particle Filter;
however the pdfs were computed with a small number of samples, and
therefore the representation is not that precise. In order to proof the Gaus-
sian hypothesis, finally a one-shot prediction of the state variable pdfs is
performed, with Np = 105. For such a large number of samples the pdf
representation is much more precise. It is sufficient to consider the predic-
tion since this is the step which applies the nonlinear state update function;
if the predicted pdfs are still Gaussian, as expected from the raw approxi-
mation described above, then our assumption is formally proved.
For the one-shot prediction the following x̂(n|n) and P(n|n) were consid-
ered as the current state and state covariance estimation:6

x̂(n|n) =









3.150 · 10−3

3.947 · 10−3

6.832 · 10−5









,

P(n|n) = P(0|0).

Furthermore for the current input u(n) = 4.20 mm
min was assumed.7 Based

on these current estimates, the one step ahead prediction of the state vector,

6they refer to the SI units; the exact numerical values are not important and were chosen
randomly

7again, a randomly chosen value
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x̂(n + 1|n), and the covariance, P(n + 1|n), were performed with the EKF,
the improved UKF and the PF respectively (obviously the PF computes the
prediction of the entire pdf and not only of these two moments). As stated
above, 105 samples were used for the histogram computations. Obviously
the samples for the EKF and the UKF pdf prediction were drawn from the
Gaussian pdfs reported above, parameterized with the predictions instead
of the estimations. The predicted pdfs are reported in Figures 7.24, 7.25
and 7.26; note that the PF prediction was computed without resampling
(and obviously without weight updating, since we are considering the pre-
diction and not the corrected estimation). From the Figures it is crystal clear
that the Gaussianity assumption made by the EKF and the UKF is justified
for all three state variables; it is stunning how close the true pdfs computed
by the PF are to the Gaussian pdfs assumed by the other filters.
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Figure 7.24: One-shot prediction of radius pdf pr(·) with 105 samples

The exact numerical value of the prediction x̂(n + 1|n) is not important
in this context; however it is interesting to compare the predicted covari-
ances P(n + 1|n) for the three cases. For a state space of dimension n = 2
the graphical comparison of the covariances is straightforward, since the el-
lipse representation described in Section 4.6.1 is two-dimensional. Unfortu-
nately in our case the state space has dimension n = 3, yielding the ellipse
representation of the covariances matrices 3-dimensional and therefore of
difficult graphical interpretation. However the “distance“ between the co-
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Figure 7.25: One-shot prediction of height pdf ph(·) with 105 samples
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Figure 7.26: One-shot prediction of growth rate pdf pvg(·) with 105 samples
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variance predictions made by the different filters can be quantified numer-
ically resorting to the so-called Frobenius norm. Consider two positive-
definite covariance matrices P and P̄ contained in R

3×3; as described in
Section 4.6.1, the Eigenvalue Decomposition yields:

P = U Σ UT =

[

u1 u2 u3

]









λ1 0 0

0 λ2 0

0 0 λ3

















uT
1

uT
2

uT
3









,

P̄ = Ū Σ̄ ŪT =

[

ū1 ū2 ū3

]









λ̄1 0 0

0 λ̄2 0

0 0 λ̄3

















ūT
1

ūT
2

ūT
3









.

The eigenvectors u1/ū1 define the orientation of the “x-axis“, u2/ū2 the
orientation of the “y-axis“ and u3/ū3 the orientation of the “z-axis“ of the
3-dimensional ellipse associated with the matrices.8 On the other hand the
square roots of the corresponding eigenvalues λi/λ̄i, i = 1, 2, 3, define the
length of the ellipse along these axes. The matrices U and Ū are orthonor-
mal; that is:

UTU = ŪTŪ = I.

I is the identity matrix. If the orientation of the axes associated with P and
P̄ is exactly the same it holds that

UTŪ = I

too. The deviation between the axes orientation of P and P̄ can be quanti-
fied with the Frobenius norm || · ||F . For a matrix M it is defined as:9

||M||F =
√

Tr(MMT) ∈ R.

The operator Tr(·) denotes the trace of the matrix, that is the sum of its
diagonal entries. Applying this norm to the matrix I −UTŪ the orientation
deviation between the axes of P and P̄ is quantified; furthermore, applying
it to Σ − Σ̄, the difference between the length over these axes is computed.
More precisely, the following quantities are considered:

||I − UTŪ||F =
√

Tr((I − UTŪ)(I − UTŪ)T),

||Σ − Σ̄||F =
√

Tr((Σ − Σ̄)(Σ − Σ̄)T).

8the terms x-axis, y-axis and z-axis are not entirely correct and were adopted only for
illustrative reasons

9in Matlab, the Frobenius norm of M is computed with the instruction norm(M, ’fro’)
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Lets now consider the covariance matrices predicted by the EKF, the im-
proved UKF and the PF; in the case of interest, and reporting only the di-
agonal entries, they are given by:

PEKF(n + 1|n) =









2.025 · 10−9 ∗ ∗

∗ 2.000 · 10−9 ∗

∗ ∗ 2.000 · 10−14









,

PUKF(n + 1|n) =









2.025 · 10−9 ∗ ∗

∗ 2.000 · 10−9 ∗

∗ ∗ 2.000 · 10−14









,

PPF(n + 1|n) =









2.041 · 10−9 ∗ ∗

∗ 2.006 · 10−9 ∗

∗ ∗ 2.000 · 10−14









.

The diagonal entries of the EKF and UKF covariances differ only after the
tenth decimal place ca. Furthermore these entries, which are the scalar vari-
ances of the radius, the meniscus height and the growth rate respectively,
confirm the theoretical considerations exposed in Chapter 4: typically EKF
and UKF tend to underestimate the state estimation/prediction error vari-
ances. In fact their predictions are smaller than the true variances given by
the PF (except for vg).
Finally the “deviations“ between the covariance ellipses are computed with
the Frobenius norm, first between the EKF and the UKF ellipse, and then
between the UKF and the true PF ellipse:10

• Deviation between the axes orientation for EKF and UKF:

||I − UT
EKF UUKF||F = 5.482 · 10−7.

Deviation between the axes length for EKF and UKF:

||ΣEKF − ΣUKF||F = 3.893 · 10−17.

• Deviation between the axes orientation for UKF and PF:

||I − UT
UKF UPF||F = 7.356 · 10−2.

10for EKF-PF the values are almost the same as for the UKF-PF comparison, they differ
only on insignificant decimal places
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Deviation between the axes length for UKF and PF:

||ΣUKF − ΣPF||F = 1.690 · 10−11.

Although the interpretation of these values is difficult, they confirm that
the ellipses computed by the EKF and UKF are nearly identical, whereas
the deviation with respect to the PF ellipse is more significant. Anyway
the deviation is not dramatic and therefore the covariance estimations and
predictions of the EKF and UKF are reliable.

7.2.5 Filtering robustness discussion

As pointed out previously, the old UKF yields approximately the same es-
timation performance as the improved UKF and the EKF, if tuned correctly.
However this does not mean that the application of the improved capillary
model for state estimation (and radius regulation) is useless. As a matter
of fact a delicate point was not yet discussed, that is the robustness of the
estimation (and of the regulation) with respect to model parameter varia-
tions. From this point of view the new approach is by far superior. The
model parameters were discussed in Section 3.2.2 and are recalled below;
the bold parameters are the ones which compare also in the improved cap-
illary model.

Model parameter Symbol

Melting point temperature of silicon Tc

Thermal conductivity of solid silicon λs

Thermal conductivity of liquid silicon λL

Density of solid silicon at Tc ρs

Density of liquid silicon at Tc ρm

Specific latent heat of fusion ∆H f

Capillary constant a

Equilibrium growth angle θC

Temperature gradient over the crystal Gs

Table 7.1: Model parameters
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In Section 3.2.2 it was pointed out that most of the parameters are affected
by huge uncertainties. With the approach adopted in [1] the estimation,
as well as the regulation (LQR), depends on each of these parameters, and
therefore it is very sensitive to the chosen values. A wrong choice (that is,
for simulation, a mismatch between the values used for the filter and the
data generation model) can have critical effects on the estimation quality.
Furthermore an inappropriate choice of most of these parameters affects
only the estimation of the hidden state variables, especially the melt tem-
perature, whereas the radius estimation is typically deviated only in the
initial, transitory phase. After the transitory the radius estimation returns
to the “correct“ value, as well as the radius prediction. This means that an
inappropriate choice of one or more model parameters has not a big impact
on the white noise index, which is based on the radius prediction. Working
on simulated data this is not that problematic, since we can compare the
estimated trajectories to the true ones and state whether they are (approx-
imately) correct or not; but on experimental data there is no way to make
such evaluation, since the true evolution of the hidden state variables is un-
known in this case. In order to understand whether the parameters were
chosen appropriately or not the only way is to test the closed loop system
on the real puller; if the control loop yields poor results, they have to be ad-
justed with a trial-and-error procedure, starting from the nominal values.
This can be very tricky.
In order to illustrate the situation (for the old UKF), the effect of a 10%
perturbation of the temperature gradient Gs, which is one of the most un-
certain parameters,11 is reported in Figures 7.27, 7.28, 7.29 and 7.30. As
stated above, apart from the initial transitory, practically nothing changes
for the radius estimation (as well as for the radius prediction, not shown
in the Figures). Furthermore the area index has changed only slightly; this
is not surprising, since it does not take into account the initial part of the
prediction error. However from the Figures it is clear that the melt tem-
perature estimation is wrong; there appears a constant offset of about 2 ◦C.
Basically the filter adjusts the melt temperature estimation in order to ob-
tain a correct radius (and meniscus height) estimation. As can be seen from
Figure 7.30, the growth rate estimation, which is not computed directly by
the old UKF approach, assumes the correct value after the transitory, and
therefore the radius and the meniscus height estimation too. However this
is not entirely correct since the estimated variable used by the original LQR
(for the computation of the Jacobian matrices) is the melt temperature and
not the growth rate, and therefore the regulator relies on wrong state vector
estimations.

11the mismatching was achieved varying the parameter in the filter model and not in the
data generation model, in order to rely on the same reference data as before
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Figure 7.27: Radius estimation variation for Gs perturbation - old UKF
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Figure 7.28: Meniscus height estimation variation for Gs perturbation - old
UKF
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Figure 7.29: Melt temperature estimation variation for Gs perturbation - old
UKF
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Figure 7.30: Growth rate estimation variation for Gs perturbation - old UKF
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Analogous considerations hold for the other parameters; for this reason a
detailed analysis was omitted. It is worth mentioning that the only two
parameters that heavily affect also the meniscus height estimation (causing
a constant offset not only on Tm, but also on h) are the capillary constant
a and the equilibrium growth angle θC. This is consistent with the equa-
tions of the original capillary model, since these are the only values which
affect the relation between the radius and the meniscus height (through the
meniscus height approximation formula). Therefore, in order to maintain
the radius estimation correct, the filter has to adjust the meniscus height
estimation too. The other parameters are involved only in the growth rate
computation and therefore also the height estimation can be kept at the cor-
rect value by simply shifting the melt temperature estimation.

Using the improved capillary model for both the state estimation (as done
for the improved UKF, the EKF and the PF) and the LQR, the total quan-
tity of model parameters is drastically reduced. As a matter of fact, only
the capillary constant a and the equilibrium growth angle θC are left in the
improved model, since all the other parameters are involved only in the
growth rate formula which is no longer used. This is a huge advantage,
since a lot of uncertainty is eliminated this way and therefore the robust-
ness is increased significantly. Furthermore a and θC are known with quite
good approximation, which further improves the robustness.

Anyway, robustness considerations should refer to the interconnection be-
tween the state estimator and the controller, that is to the closed loop sys-
tem. Furthermore in order to obtain an idea of the robustness of the de-
signed system it has to be applied to the real puller, which would be the
next step in order to continue the work started with this project. It is there
where it turns out how sensitive the system is to the model parameter val-
ues.
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7.3 LQR simulations

The discussion of the simulation results is concluded with some consid-
erations on the reduced state space LQR approach. For this purpose the
optimally tuned UKF based on the improved capillary model was consid-
ered for state estimation. However the results are perfectly compatible with
EKF state estimation since its performance is almost the same, as discussed
earlier. The simulations were performed with the closed-loop Simulink
scheme reported in Figure 7.1.
In the following the radius and meniscus height evolutions reported in the
figures refer to the estimated trajectories and not to the true ones (gener-
ated by the model). This convention was adopted for compatibility with
the experimental case, where these are the only available values.

First the effects of Bryson’s rule are shown. Considering the set point12

xset =






rset

hset




 =






3 mm

4.025 mm




 ,

where hset was computed in order to obtain θ = θC and therefore constant
radius growth, two different penalty sets based on Bryson’s rule were used:

• First choice
Bryson’s penalties designed for a maximum allowed radius and menis-
cus height deviation of 0.03 mm and a maximum allowed pull rate
variation of 0.3 mm

min , that is:

QLQR =






1.1̇ 0

0 1.1̇




 , RLQR = 40, ∆vmax = −∆vmin = 0.3

mm

min
.

• Second choice
Bryson’s penalties designed for a maximum allowed radius and menis-
cus height deviation of 0.02 mm and a maximum allowed pull rate
variation of 0.5 mm

min , that is:

QLQR =






2.5 0

0 2.5




 , RLQR = 14.4, ∆vmax = −∆vmin = 0.5

mm

min
.

Figures 7.31 and 7.32 report the comparisons of the radius and the height
evolutions, whereas Figures 7.33 and 7.34 show the pull rate variations for

12and using x0 = [xT
set 1419◦C]T for the capillary state space model
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the two cases. Note that only the first 10 minutes of the simulation are dis-
played, in order to improve the readability.
From the radius evolutions it turns out that the limits used for the penalty
computation are satisfied; in both cases the difference r − rset does not ex-
ceed the pre-defined boundaries (±0.03 mm respectively ±0.02 mm around
the set point). Furthermore in the first case this difference is allowed to as-
sume slightly larger values than in the second case, as expected.
The effect is not that significant for the meniscus height; however, also in
this case it can be observed that the distance from the set point is reduced
for the second choice. Anyway for the latter choice of the penalties the
specifications on h − hset are not satisfied. This is not that surprising since
our system is nonlinear and furthermore the LQR relies on the estimated
and not the true values of the state variables; thus the LQR approach yields
only suboptimal performance.
Finally, the specifications on the pull rate variation are matched very well,
as can be seen from Figures 7.33 and 7.34.
Therefore Bryson’s rule is a valuable approach to penalty design also for
our nonlinear case, since we are able to approximately satisfy the desired
specifications with this method. Obviously on the real puller the perfor-
mance will be not that good; it might be that for the experimental case the
limits are not respected. This has to be figured out testing the LQR on the
puller.
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Figure 7.31: Radius regulation - comparison based on Bryson’s rule
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Figure 7.32: Height regulation - comparison based on Bryson’s rule
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Figure 7.34: Pull rate variation ∆v for the second choice of Bryson’s penal-
ties

The next step consists in the verification of the considerations reported in
Section 6.2. For this purpose the state penalty matrix is factorized as fol-
lows:13

QLQR = α






qr 0

0 qh




 .

Initially qr and qh are set to 1 and only the ratio

α

RLQR

is considered. For the following comparisons the saturation on the pull rate
variation was set to ± 0.5 mm

min .
Figures 7.35 and 7.36 report the comparison of the radius and meniscus
height regulation for different choices of RLQR, keeping α = 1. The shown
time interval (from minute 78 to minute 83) was chosen in order to pick tra-
jectory parts for which the effect of the ratio variation is conspicuous. The
set point is represented in green, as usual.

13here the notation qr/qh is used for the radius/height penalties; it is the same notation
adopted for the noise variances. Since in this section only the LQR is discussed, this should
not create confusion, and therefore the subscript “LQR“ was omitted, in order to simplify
the notation. Finally RLQR is the penalty on the pull rate variation



122 7.3. LQR SIMULATIONS

Figures 7.37, 7.38 and 7.39 show the pull rate variations for decreasing ra-
tios. The trajectories are reported in different figures since they are difficult
to distinguish when overlapped.
The Figures confirm the considerations reported in Section 6.2; increasing
RLQR with respect to α the pull rate variation becomes more expensive (or,
equivalently, the state vector deviation from the set point becomes cheaper)
and therefore the LQR tends to reduce the control signal, at the expense of
a worse state regulation. This turns out for both the crystal radius and the
meniscus height, as expected. However, even for a very large input penalty
the deviation remains small for both the radius and the meniscus height,
which is a quite good result. Anyway these simulation results are ideal
and the oscillations of the regulated state variables around the set point
will be by far higher on the puller.
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Figure 7.36: Height regulation comparison for different choices of α
RLQR
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Figure 7.37: Pull rate variation ∆v for first ratio α
RLQR
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Figure 7.38: Pull rate variation ∆v for second ratio α
RLQR

78 79 80 81 82 83

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Pull rate variation ∆v for third ratio α/R
LQR

t [min]

∆
v

 [
m

m
/m

in
]

 

 
∆v

saturation

Figure 7.39: Pull rate variation ∆v for third ratio α
RLQR
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Finally different choices for the ratio

qr

qh

are considered. Figures 7.40 and 7.41 report the comparisons of the ra-
dius and the meniscus height regulation for 4 different choices of the ratio.
Again, only a small part of the overall trajectories is shown, in order to
improve the readability; furthermore the set points are given by the green
lines. Considering first Figure 7.41, which compares the meniscus height
trajectories, it turns out that with increasing penalty on h the deviation
from the set point becomes smaller, as it should be. However the results
shown in Figure 7.40, regarding the radius, are quite surprising; also the
radius regulation improves as qh is increased with respect to qr (that is,
equivalently, qr is reduced with respect to qh, since we are considering the
ratio), whereas we expect it to worsen. This phenomenon was already pre-
dicted in Section 6.2, where the penalty choices were discussed. Now it
is confirmed by the simulation results; due to the particular nonlinear re-
lation between the crystal radius and the meniscus height, defined by the
Johansen-Boucher formula (or the Boucher or the Tsivinskii formula), gen-
erally the state variables can not be regulated indipendently; if one of the
variables is regulated closer to the set point, also the other one is regulated
better, and vice versa.
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Figure 7.40: Radius regulation comparison for different choices of
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Figure 7.41: Height regulation comparison for different choices of
qr

qh

Finally it is worth mentioning that the “oscillations“ of the radius and of
the meniscus height around the set point are caused by the growth rate,
which acts as an external disturbance and is only approximately known
to the LQR, since it has to rely on the estimation provided by the state es-
timator (the improved UKF for the simulations described in this section).
This is confirmed by Figures 7.42 and 7.43, which compare the radius and
height trajectory shape to the shape of the growth rate; it turns out that
they are very similar. If the radius, meniscus height and growth rate trajec-
tories were known exactly to the LQR, the radius and the meniscus height
regulation would be perfect, that is r and h would exactly coincide with
the set points (since we considered the system to be initially in equilib-
rium conditions). However on a real system this can not be achieved since
we always have to rely on estimations. Therefore the filter tuning, for the
tests of the closed loop system on an actual puller, has to be considered
together with the LQR performance since it is conditioned by the quality
of the estimations. It might be that the best statistical choice for the filter
parameters (that is, its noise covariances) causes inacceptable regulation
behaviour. Anyway such considerations can be made only on the real sys-
tem; the simulation results are practically worthless for this purpose.
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Figure 7.42: Comparison of radius and growth rate evolution

0 2 4 6 8 10
3.98

4

4.02

4.04

4.06

t [min]

h
 [

m
m

]

Height evolution (estimation)

0 2 4 6 8 10
3.2

3.25

3.3

3.35

3.4

Growth rate evolution (estimation)

t [min]

v
g
 [

m
m

/m
in

]

Figure 7.43: Comparison of height and growth rate evolution
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Finally Figure 7.44 reports an example for radius tracking as it is required
for necking. As a matter of fact usually the initial radius is larger than the
desired neck radius and therefore the crystal has to be tapered, according
to a pre-defined mathematical function. In the Figure tapering is obtained
tracking just an inclined line; on the actual system typically a parabolic
function is used. The reduced state space LQR works fine also for such
tracking problems, as shown in the Figure (the set point is given by the
blue line).
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Figure 7.44: Example of radius tracking



Chapter 8

Filtering of experimental data

In this chapter the filtering algorithms - more precisely the old UKF, the im-
proved UKF and the EKF - are applied to experimental data.1 The data was
provided by Siegert from MEMC St. Peters; it was recorded during his ex-
periments with the closed loop system, composed by the original LQR and
UKF, on a test puller in St. Peters. The results reported in this chapter refer
to a particular data set, namely the first hour of the trajectories of the logfile
cplqr-20100311T******.log, characterized by a sample time of 1 second, like
in simulation; however, they are of general validity, in the sense that anal-
ogous results were obtained considering other data sets (eventually with
small adjustments of the noise variances). Note that all filters were tuned
according to the procedure described in the previous chapter.
The tests described in [1] were performed on a puller assembled with a
dual camera system for radius measurement.
The results exposed in this chapter are obviously restricted to filtering,
since only state estimation can be applied offline; the data series required
for this purpose are the noisy radius measurement and the pull rate applied
to the puller, which are certainly available from the data provided from St.
Peters. On the other hand experimental testing of the LQR is possible only
in the closed loop system and therefore online; for this project such tests
were not performed, this would be the next step. For these reasons in the
following only state estimation is considered, and therefore the LQR pa-
rameterization adopted for the tests presented in [1] is not discussed.
The state estimation results obtained in simulation and shown in the pre-
vious chapter are very satisfying; for all filter approaches - old UKF, im-
proved UKF and EKF, besides the Particle Filter - it is possible to tune the
noise variances in order to obtain a perfectly white output prediction er-

1for lack of time the Particle Filter was not applied; however the considerations made on
the state vector pdf based on simulated data, together with the behaviour of the other filters,
presented in the following, are sufficient to affirm that Gaussianity holds approximately for
the experimental case too
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ror, and thus optimal estimation performance. However, although the data
generation model and the filter model used in simulation are not exactly
equal, they are quite similar and therefore the considered case is almost
ideal. Thus the performance of the filters has to be verified on experimen-
tal data, “generated“ by the puller itself, that is by the true process. The
capillary model (the original model for the old UKF, the improved model
for the improved UKF and EKF) is only an approximate description of this
true process and therefore we expect the experimental performance to be
somehow poorer.
Figures 8.1 and 8.2 report the original radius and height estimations per-
formed on the puller during the test run of Siegert, together with the set
points defined for the LQR (which are reported only for orientation pur-
poses). Furthermore Figure 8.1 contains also the measured radius. Figure
8.3 reports the pull rate applied to the puller. As mentioned above, the con-
sidered data set was taken from the logfile cplqr-20100311T******.log; since
this file does not contain the melt temperature estimation, its evolution is
not shown. The parameterization of the (old) UKF used for this test is dis-
cussed in the next section, where also its estimation is reconstructed.

Original experimental radius estimation vs. measured radius
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set point

Figure 8.1: Original experimental radius estimation vs. measured radius
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Original experimental height estimation
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set point

Figure 8.2: Original experimental height estimation

Original experimental pull rate
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Figure 8.3: Original experimental pull rate
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8.1 Standard tuning and retuning of old UKF

Initially the performance of the old UKF used for the closed loop test is
considered. The following results refer to offline filtering, based on the
measured radius and the pull rate of Figures 8.1 respectively 8.3. Three
different noise variance sets are compared in the following, namely:

• Set 1
The specific set of process and measurement noise variances adopted
for the considered test run on the puller. This is the choice for which
the estimations of Figures 8.1 and 8.2 were obtained (beside the initial
conditions).

• Set 2
The set of process and measurement noise variances declared as stan-
dard in [2], based on several simulation and experimental test runs.

• Optimal set
The set deduced by the author retuning the old UKF according to the
test for white noise (that is minimizing IA). This is the optimal choice
from the statistical point of view.

The results refer to the standard sigma point set parameters, that is α =
10−3, k = 0 and β = 2, and to the Tsivinskii formula for meniscus height
approximation, since this is the original configuration adopted in [1]. Fur-
thermore the nominal model parameter values were adopted in the filter
model.
The initial estimation of the filter was chosen as follows (P(0|0) was chosen
appropriately, the exact numerical values are not important):

x̂(0|0) =









y(0)

h(0)

Tm(0)









.

Here y(0) is the initial radius measurement and h(0) was computed from
this value with the Tsivinskii formula (for θ = θC). Furthermore, like for
simulation, the output prediction error was considered only after the initial
transitory (more precisely, the first 20 minutes are excluded for the white
noise test) and therefore the impact of the initial conditions on the value
of IA is reduced. Anyway the problem of the initial conditions will be
adressed more in detail in Section 8.3.
It is worth emphasizing once more that the noise variance choices of [2]
were made considering not only the estimation, but also the LQR perfor-
mance. Therefore it is not an optimal tuning from the point of view of state
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estimation, but from the point of view of the behaviour of the closed loop
system. Anyway, no statistical instruments were adopted for filter tuning
and therefore it is highly empirical.
Figures 8.4, 8.6 and 8.7 report the comparison of the radius, meniscus height
and melt temperature estimations for the three variance sets. Furthermore
Figures 8.8 and 8.9 show the corresponding PSD and PS of the output pre-
diction error e(n). Finally Figure 8.5 reports the comparison between the
measured radius and the radius estimation computed with the optimal set
of noise variances.

Radius estimation − comparison of different tunings for old UKF
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Figure 8.4: Radius estimation - comparison of different tunings for old UKF

From Figure 8.4 it turns out that the radius estimations are quite differ-
ent. With the choices discussed in [2] (set 1 and set 2) the radius estimation
is rather regular, that is the measured signal is filtered heavily (more pre-
cisely, it is a low pass filtering; the high frequency components of the radius
measurement are eliminated). On the other hand, the best estimation from
the statistical point of view (optimal set) yields a very irregular signal; as
a matter of fact the radius measurement filtering is very weak. In fact for
the sets 1 and 2 R ≫ qr/h, whereas for the optimal choice R ≪ qr/h. In
the first case the high frequency variations/oscillations on the measured
radius are attributed to the measurement noise, whereas in the latter case
it is assumed that the oscillations are caused by the process itself; therefore
they are not filtered out. This is confirmed by Figure 8.5, which compares
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Optimal radius estimation old UKF vs. measured radius
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Figure 8.5: Optimal radius estimation old UKF vs. measured radius

Height estimation − comparison of different tunings for old UKF
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Figure 8.6: Height estimation - comparison of different tunings for old UKF
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Melt temperature estimation − comparison of different tunings for old UKF
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Figure 8.7: Melt temperature estimation - comparison of different tunings
for old UKF

the optimal radius estimation to the measured radius; it turns out that they
are identic! This is a quite surprising result; the best estimation quality is
therefore obtained imposing a very weak (actually, a non-existent) filtering
of the measured signal. Looking at Figures 8.8 and 8.9 there is no doubt
that this is the optimal choice. The sets 1 and 2 yield a prediction error
which is absolutely not white, and therefore from a statistical point of view
they are not acceptable, whereas the optimal set prediction error is approx-
imately white. Therefore for the state estimator it is “better“ to consider
the measurement very reliable; this means that probably the oscillations in
the measured signal are caused by the process and not just by the measure-
ment noise, as assumed by the filter tuning in [1]. However, as pointed
out previously, it might be that this optimal choice is not applicable in the
closed loop system since it could cause oscillations; therefore it has to be
tested experimentally. The variance sets 1 and 2 yield quite poor statisti-
cal results, however they were tested in the experimental closed loop and
therefore their compatibility with the LQR is already guaranteed.

Compared to the optimal tuning obtained in simulation, the output predic-
tion error computed on experimental data is less white. As a matter of fact,
in simulation for all filters it was possible to obtain IA < 1, whereas in the
experimental case the best choice yields IA

∼= 20 ÷ 30. Therefore on exper-
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Normalized PSD of e(n) − comparison of different tunings for old UKF
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Figure 8.8: Normalized PSD of e(n) - comparison of different tunings for
old UKF

Normalized PS of e(n) − comparison of different tunings for old UKF
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Figure 8.9: Normalized PS of e(n) - comparison of different tunings for old
UKF
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imental data it is not possible to obtain perfectly white output prediction
error; anyway, as can be seen from Figure 8.9, the optimal PS is quite close
to the ideal one and therefore the whiteness condition is approximately sat-
isfied. Actually, considering that the experimental data was generated by
the puller and not by some kind of ideal model as for simulation purposes,
it can be stated that the whiteness of e(n) is more than satisfying.

The meniscus height and melt temperature estimations, reported in Fig-
ures 8.6 and 8.7 respectively, are rather different for the three noise vari-
ance choices. Since no information on the true evolution of these variables
is available, looking just at the figures it is not possible to establish which
estimation is the best one; but from the statistical white noise test we know
that the most reliable, in terms of radius estimation, is the one given by the
optimal set.

8.2 Comparison of optimal tunings for UKF and EKF

In the following the optimal tuning for the old UKF, described in the previ-
ous section, is compared to the optimal tunings for the improved UKF and
the EKF; the values of IA are, again, approximately the same for the differ-
ent filters. All filters were initialized with the conditions reported above,
beside the one on the third state variable: obviously for the improved UKF
and the EKF this condition refers to the growth rate and no longer to the
melt temperature. The initial growth rate estimation was computed, with
formula (3.2), from the meniscus height and melt temperature conditions
imposed for the old UKF. Finally for the model and sigma point set param-
eters the nominal values were considered, and the improved UKF and EKF
rely on the Johansen-Boucher formula for meniscus height approximation.

Figures 8.10 - 8.13 report the comparisons of the radius and state variable
estimations, whereas Figures 8.14 and 8.15 compare the normalized PSD
and PS respectively.
Also for the improved UKF and the EKF the optimal tuning yields R ≪
qr/h; therefore also for these approaches the radius measurement is prac-
tically not filtered, as shown in Figure 8.10. As a matter of fact the radius
estimation is identic for all approaches and indiscernible from the radius
measurement; the graphs are perfectly overlapped. This does not hold for
the meniscus height, growth rate and melt temperature estimations; these
inner state variable evolution estimations are very different from case to case, es-
pecially in the initial, transitory phase. However, again, there is no possibility
to establish which estimation of the hidden state variables is the best one;
this can be figured out only on the actual puller, monitoring the closed loop
behaviour.
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Furthermore it is worth mentioning that the EKF approach exhibits an in-
teresting common feature with the LQR; it relies on the same linearized
model. It might be that for this reason its hidden state variables estima-
tions are somehow more compatible with the LQR than the estimations
computed by the UKF. However this is just a speculation, there is no guar-
antee that this is true; anyway this point is worth to be considered and
eventually tested on the actual puller.

The discussed optimal tunings refer to a particular data set and therefore
to a particular test run, characterized by specific pulling conditions, which
change slightly from run to run (as a matter of fact, they are never exactly
the same for two successive runs, even if the same puller and recipe is
considered). However, as stated at the beginning of this chapter, the dis-
cussed tuning is of general validity. Several tests made on different data
sets yielded that sometimes a small adjustment of the process noise vari-
ances, especially of the variance qTm /qvg , is necessary. However the differ-
ences are not dramatic, that is using the tuning presented in this section the
output prediction error is always approximately white. Anyway it is illu-
sory to search for the absolute minimum of IA for each run, which is the-
oretically necessary since the pulling conditions are not perfectly constant
over time. The choice discussed in this section, which is perfectly optimal
for the considered run, is approximately optimal in general, and therefore it
is a good starting point. If it should turn out that, contrary to expectations,
the tuning is completely wrong, a small adjustment of qTm/qvg is sufficient
to return to the optimal conditions, as experienced by considering different
data sets. However, once the system is implemented on the puller, such
adjustments should be necessary only periodically, as long as the process
and the hardware configuration of the hot zone of the puller do not vary.
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Radius estimation − comparison of optimal tunings for UKF and EKF
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Figure 8.10: Radius estimation - comparison of optimal tunings for UKF
and EKF

Height estimation − comparison of optimal tunings for UKF and EKF
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Figure 8.11: Height estimation - comparison of optimal tunings for UKF
and EKF
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Growth rate estimation − comparison of optimal tunings for UKF and EKF
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Figure 8.12: Growth rate estimation - comparison of optimal tunings for
UKF and EKF

Melt temperature estimation − comparison of optimal tunings for UKF and EKF
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Figure 8.13: Melt temperature estimation - comparison of optimal tunings
for UKF and EKF
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Normalized PSD of e(n) − comparison of optimal tunings for UKF and EKF
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Figure 8.14: Normalized PSD of e(n) - comparison of optimal tunings for
UKF and EKF

Normalized PS of e(n) − comparison of optimal tunings for UKF and EKF
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Figure 8.15: Normalized PS of e(n) - comparison of optimal tunings for
UKF and EKF
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8.3 Filter initialization

The exposition of the state estimation results on experimental data is con-
cluded with a brief discussion of the filter initialization, not yet considered
in detail. Up to this point, limiting the attention to the improved UKF and
the EKF, the state estimation was initialized as follows:2

• The radius estimation was initialized with the initial radius measure-
ment, that is y(0).

• The initial condition for the meniscus height estimation was com-
puted with the Johansen-Boucher formula from y(0), setting θ = θC.

• The initial condition for the growth rate was computed, with formula
(3.2), from the initial conditions for h and Tm.

This initialization approach is justified by the following points:

• According to the tuning results, the radius measurement is quite re-
liable. Therefore it is rather logical to use it for radius estimation ini-
tialization.

• The meniscus height is a completely hidden variable and therefore
we have no information about it. Thus a straightforward choice is
to compute its initial value from the radius measurement, using the
Johansen-Boucher formula. This formula requires the initial value of
θ which is unknown too. The choice θ = θC is a reasonable one.

• Also the growth rate is a hidden variable3 and therefore computing
the initial estimation with formula (3.2) is legitimate, since it is the
only available information. The disadvantage of this equation is that
it depends on all model parameters and not just on a and θC. There-
fore the formula and thus the initial condition on the growth rate is
affected by remarkable uncertainties.

The choice of the initial condition for the growth rate estimation is worth
to be investigated more in detail. Formula (3.2) requires the initial value
of the melt temperature Tm. On the puller, as long as state estimation
starts when the seed is dipped into the melt, this value is (approximately)
available from the measurement of the pyrometer. However, if the filter is
(re)initialized at some point during the run, this approach is problematic,

2in the following the term “estimation initialization“ is used for both the UKF and the
EKF. However, to be exact, the initial conditions for the EKF refer to the prediction and not
to the estimation, as pointed out in Section 4.5. Furthermore the considerations reported in
this section hold for the old UKF too, considering Tm instead of vg

3to be precise, it is approximately known since its evolution is similar to the pull rate
evolution
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since the temperature measurement is reliable only as long as the crystal is
not in contact with the melt.4

Furthermore the melt temperature measurement is always affected by re-
markable uncertainties, and therefore it has to be used very carefully. A
straightforward approach to solve the problem associated with the temper-
ature measurement is to use the current pull rate for the initialization of the
growth rate estimation. We know that v 6= vg, however usually the differ-
ence is not that large, and therefore as a first approximation this choice is
admissible. With this approach the temperature measurement is no longer
required.

Beside the choice of x̂(0|0) also the initial estimation error covariance P(0|0)
has to be considered.5 Up to this point it was simply chosen as a diag-
onal matrix (denoted with the symbol P from now on), with appropriate
numerical choices of the diagonal entries pr = ph and pvg , since for the
white noise test it is not a critical parameter. However this is clearly not
the optimal choice from the point of view of the initial conditions, since
in the discussion made above it was pointed out that the initial conditions
on the meniscus height and the growth rate are affected by larger uncer-
tainties than the one on the radius. Thus they should be described by a
larger variance, whereas P assumes the same variance for the initial radius
and meniscus height estimation (furthermore also the variance for vg is too
small with respect to the variance for r). Typically at the beginning such a
simplified choice is made and the filter noise variances are tuned accord-
ing to some statistical criterion which does not take into account the effect
of the initialization (in our case the white noise test). Once the tuning is
completed, the “steady-state“ expression of the estimation error covariance
P(n|n), denoted in the following with Pf inal, is used for initialization, that

is P(0|0) = Pf inal.
6 Although the EKF and the UKF tend to underestimate

the estimation error covariance, this choice is normally by far more appro-
priate than standard choices like P. For instance, for the optimally tuned
improved UKF Pf inal is given by a non-diagonal matrix:

4as a matter of fact, once the seed was dipped into the melt, the pyrometer points to the
crystal and therefore it measures no longer the melt temperature

5for the EKF the initial conditions refer to x̂(0| − 1) and P(0| − 1)
6the term “steady-state“ is not entirely correct since for nonlinear state estimation actu-

ally P(n|n) becomes never completely constant. However after a certain time its variations
become negligible in the case of interest, and therefore the steady-state condition is approx-
imately achieved. Here Pf inal denotes the expression of P(n|n) at the end of the estimation.
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Pf inal =









p̄r ∗ ∗

∗ p̄h ∗

∗ ∗ p̄vg









.

The values of the diagonal entries are the most important ones. As a mat-
ter of fact these entries describe the scalar variances of the state estimation
errors on r, h and vg. The ratios between these variances differ significantly
from the ratios described by the initial choice P. More precisely, the estima-
tion error variances for h and vg are increased significantly with respect to
the variance for r, as expected from the uncertainty discussion made above.
Furthermore the latter variance is given by the measurement noise variance
R, another predictable result: we already know that basically the optimal
radius estimation follows the radius measurement and therefore it is char-
acterized by the same degree of uncertainty, that is by the variance of the
measurement noise.
Figures 8.16, 8.17 and 8.18 show how the estimations of the improved UKF
change if the estimation error covariance is initialized with Pf inal instead of
P. No significant effect is obtained for the radius estimation (and neither
for the radius prediction); furthermore, also IA does not change signifi-
cantly (it increases of an amount less than 1), as expected, since the initial
20 minutes of the trajectories are not used for the white noise test. On the
other hand the transitory evolution of the height and growth rate estima-
tion trajectories is deviated remarkably. After the transitory the estimations
for P(0|0) = Pf inal collapse with the estimations for P(0|0) = P; thus the
“steady-state“ phase, which is not affected by the initialization, begins.
These results confirm that filter initialization has to be considered apart
from noise variance tuning. For the latter problem the white noise test on
the output prediction error e(n) is used, which does not take into account
the transitory part of the output prediction error, that is the impact of the
initial conditions is not considered. For the results exposed in this work
only the portion of e(n) with n ≥ 1200 was considered, that is the first 20
minutes were excluded. However at least for the trajectories considered in
this chapter the impact on IA is not that dramatic since the radius estima-
tion (and also the prediction) does not change significantly varying P(0|0),
as can be seen from Figure 8.16.
The considerations on P(0|0), exposed for the improved UKF, are perfectly
valid also for the old UKF and the EKF, with some small, obvious adjust-
ments.
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Radius estimation improved UKF for different choices of P(0|0)
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Figure 8.16: Radius estimation improved UKF for different choices of
P(0|0)

Meniscus height estimation improved UKF for different choices of P(0|0)
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Figure 8.17: Meniscus height estimation improved UKF for different
choices of P(0|0)
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Growth rate estimation improved UKF for different choices of P(0|0)
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Figure 8.18: Growth rate estimation improved UKF for different choices of
P(0|0)



Chapter 9

Conclusions and future work

The work exposed in this thesis is basically an extension and improvement
of the model-based approach to radius regulation and state estimation de-
veloped by Siegert. In the first place a detailed theoretical analysis of his
original capillary model, UKF and LQR design was performed; then the
capillary model was corrected and refined, furthermore the LQR was sim-
plified. The principal part of the thesis consisted in the detailed analysis of
the nonlinear Bayesian state estimation problem. Besides the discussion of
the original UKF used in [1] two more filter algorithms were exposed and
explained, that is the EKF and the Particle Filter. These latter filters, as well
as the new version of the UKF, are based on the improved capillary model.
Finally a statistical method for filter performance evaluation was devel-
oped, namely the numerical area index based on the test for white noise
on the output prediction error. This method allows a systematical tuning
and comparison of the different filter approaches, on both simulated and
experimental data.
As mentioned in the introduction, all the work done so far refers to the neck
phase and was implemented in Matlab. By now it was not possible to test
these improved methods on an actual puller.

Results and conclusions

The modifications applied to the capillary model led to a reduction of the
nonlinearities and to an improvement of the robustness with respect to
model parameter variations. As pointed out in Chapter 3 in the improved
model only two parameters are left, namely the capillary constant a and
the equilibrium growth angle θC, known with quite good approximation.
Thus the dependence on highly uncertain parameters like the temperature
gradient in the crystal was eliminated. This is a remarkable advantage,
since both the LQR and the state estimator performance is highly depen-
dent from the model accuracy. Thus the overall closed loop system robust-
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ness was improved.
Regarding the LQR some formal problems related with the original ap-
proach were solved, more precisely the intentional simplification which led
to the usage of the input variable, the pull rate, as third state variable. More
generally the usage of the improved capillary model led to a simplified, for-
mally more correct, compact and computationally more efficient regulator.
In simulation this approach works fine; however in order to understand
what can be gained for real applications it has to be applied on the actual
puller. Only there it will turn out how significant the benefits are.
The core of this thesis is the treatment of the nonlinear Bayesian estimation
problem. The detailed analysis of the theoretical framework was one of the
major concerns of the collaboration between MEMC Electronic Materials
and the University of Padua, since it is indispensable for the understanding
and handling of statistical state estimators like the UKF. Besides the impor-
tance of this analysis taken by itself, it generated some interesting insights.
First of all a simpler filter algorithm, the EKF, was proved to yield the same
performance as the UKF. Therefore a valid alternative to this latter estima-
tor was found. Apart from the satisfying estimation performance the EKF
relies on the same linearization procedure as the LQR and therefore it does
not introduce any significant additional computation effort. Furthermore it
could turn out that its hidden state variable estimations are somehow more
compatible with the regulator than the ones of the UKF; this has to be veri-
fied on the actual puller.
Moreover the almost equal estimation performance of the old UKF,1 the im-
proved UKF and the EKF led to the conclusion that, despite the nonlinear
dynamics of the capillary system, the conditions are almost ideal for state
estimation, that is the state vector probability density function is almost
Gaussian. This insight, formally proved with the application of the Particle
Filter, should not be undervalued; as a matter of fact it demonstrates that
for now investigating on more complex filter approaches or different sigma
points sets for the UKF is not necessary, since in the conditions of interest
nothing would be gained. Obviously for future modifications on the model
this statement has to be revisited.
Another very important result of this thesis is the introduction of the area
index for state estimation evaluation. Without such statistical evaluation
methods the tuning and comparison of the filter approaches is very diffi-
cult and limited to empirical trial-and-error procedures. The simple index
allows a systematic noise variance tuning; the optimal tuning is obtained
by minimizing the index.
The analysis of the filter performances based on this index yielded some
surprising results. As already mentioned the EKF and UKF performances

1however the old UKF is inferior from the point of view of the robustness with respect
to model parameter variations
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are almost the same. This is a quite unexpected result since the EKF re-
lies on a rather simple linearization procedure; therefore generally the UKF
works better. Another interesting result turned out applying the filter al-
gorithms to experimental data from St. Peters: from a statistical point of
view the best choice is to impose a very weak, almost non-existent filtering
of the radius measurement! That is, for state estimation the best results are
obtained considering the radius measurement y to be very reliable; thus the
oscillations on y are probably caused by the process itself and not just by
measurement noise. However this does not mean that the LQR has to deal
with an unfiltered measurement signal. The closed loop system could (and
will, most probably) work better with a suboptimal state estimation charac-
terized by a stronger filtering of the radius measurement; alternatively the
optimal noise variance configuration could be used, applying some kind
of subsequent lowpass filtering to y. This has to be decided on the actual
puller; furthermore only there it will turn out which filter algorithm com-
putes the “best“ estimation of the hidden state variables.

Suggestions for future work

Finally, based on the results exposed in this thesis, some suggestions for
future work are given:

• The EKF and the improved UKF and LQR algorithms should be im-
plemented and tested on an actual puller. All the results obtained so
far have to be validated in the real closed loop system.

• Based on these experiments the filter and LQR tuning has to be revis-
ited.

• The EKF and UKF performance should be compared in the real closed
loop system too. It could turn out that the EKF is somehow more
compatible with LQR control than UKF, since it relies on the same
linearization procedure.
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