3,288 research outputs found

    High-precision grasping and placing for mobile robots

    Get PDF
    This work presents a manipulation system for multiple labware in life science laboratories using the H20 mobile robots. The H20 robot is equipped with the Kinect V2 sensor to identify and estimate the position of the required labware on the workbench. The local features recognition based on SURF algorithm is used. The recognition process is performed for the labware to be grasped and for the workbench holder. Different grippers and labware containers are designed to manipulate different weights of labware and to realize a safe transportation

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Stereo Visual SLAM for Mobile Robots Navigation

    Get PDF
    Esta tesis está enfocada a la combinación de los campos de la robótica móvil y la visión por computador, con el objetivo de desarrollar métodos que permitan a un robot móvil localizarse dentro de su entorno mientras construye un mapa del mismo, utilizando como única entrada un conjunto de imágenes. Este problema se denomina SLAM visual (por las siglas en inglés de "Simultaneous Localization And Mapping") y es un tema que aún continúa abierto a pesar del gran esfuerzo investigador realizado en los últimos años. En concreto, en esta tesis utilizamos cámaras estéreo para capturar, simultáneamente, dos imágenes desde posiciones ligeramente diferentes, proporcionando así información 3D de forma directa. De entre los problemas de localización de robots, en esta tesis abordamos dos de ellos: el seguimiento de robots y la localización y mapeado simultáneo (o SLAM). El primero de ellos no tiene en cuenta el mapa del entorno sino que calcula la trayectoria del robot mediante la composición incremental de las estimaciones de su movimiento entre instantes de tiempo consecutivos. Cuando se usan imágenes para calcular esta trayectoria, el problema toma el nombre de "odometría visual", y su resolución es más sencilla que la del SLAM visual. De hecho, a menudo se integra como parte de un sistema de SLAM completo. Esta tesis contribuye con la propuesta de dos sistemas de odometría visual. Uno de ellos está basado en un solución cerrada y eficiente mientras que el otro está basado en un proceso de optimización no-lineal que implementa un nuevo método de detección y eliminación rápida de espurios. Los métodos de SLAM, por su parte, también abordan la construcción de un mapa del entorno con el objetivo de mejorar sensiblemente la localización del robot, evitando de esta forma la acumulación de error en la que incurre la odometría visual. Además, el mapa construido puede ser empleado para hacer frente a situaciones exigentes como la recuperación de la localización tras la pérdida del robot o realizar localización global. En esta tesis se presentan dos sistemas completos de SLAM visual. Uno de ellos se ha implementado dentro del marco de los filtros probabilísticos no parámetricos, mientras que el otro está basado en un método nuevo de "bundle adjustment" relativo que ha sido integrado con algunas técnicas recientes de visión por computador. Otra contribución de esta tesis es la publicación de dos colecciones de datos que contienen imágenes estéreo capturadas en entornos urbanos sin modificar, así como una estimación del camino real del robot basada en GPS (denominada "ground truth"). Estas colecciones sirven como banco de pruebas para validar métodos de odometría y SLAM visual

    Low cost inertial-based localization system for a service robot

    Get PDF
    Dissertation presented at Faculty of Sciences and Technology of the New University of Lisbon to attain the Master degree in Electrical and Computer Science EngineeringThe knowledge of a robot’s location it’s fundamental for most part of service robots. The success of tasks such as mapping and planning depend on a good robot’s position knowledge. The main goal of this dissertation is to present a solution that provides a estimation of the robot’s location. This is, a tracking system that can run either inside buildings or outside them, not taking into account just structured environments. Therefore, the localization system takes into account only measurements relative. In the presented solution is used an AHRS device and digital encoders placed on wheels to make a estimation of robot’s position. It also relies on the use of Kalman Filter to integrate sensorial information and deal with estimate errors. The developed system was testes in real environments through its integration on real robot. The results revealed that is not possible to attain a good position estimation using only low-cost inertial sensors. Thus, is required the integration of more sensorial information, through absolute or relative measurements technologies, to provide a more accurate position estimation

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Application of computer vision for roller operation management

    Get PDF
    Compaction is the last and possibly the most important phase in construction of asphalt concrete (AC) pavements. Compaction densifies the loose (AC) mat, producing a stable surface with low permeability. The process strongly affects the AC performance properties. Too much compaction may cause aggregate degradation and low air void content facilitating bleeding and rutting. On the other hand too little compaction may result in higher air void content facilitating oxidation and water permeability issues, rutting due to further densification by traffic and reduced fatigue life. Therefore, compaction is a critical issue in AC pavement construction.;The common practice for compacting a mat is to establish a roller pattern that determines the number of passes and coverages needed to achieve the desired density. Once the pattern is established, the roller\u27s operator must maintain the roller pattern uniformly over the entire mat.;Despite the importance of uniform compaction to achieve the expected durability and performance of AC pavements, having the roller operator as the only mean to manage the operation can involve human errors.;With the advancement of technology in recent years, the concept of intelligent compaction (IC) was developed to assist the roller operators and improve the construction quality. Commercial IC packages for construction rollers are available from different manufacturers. They can provide precise mapping of a roller\u27s location and provide the roller operator with feedback during the compaction process.;Although, the IC packages are able to track the roller passes with impressive results, there are also major hindrances. The high cost of acquisition and potential negative impact on productivity has inhibited implementation of IC.;This study applied computer vision technology to build a versatile and affordable system to count and map roller passes. An infrared camera is mounted on top of the roller to capture the operator view. Then, in a near real-time process, image features were extracted and tracked to estimate the incremental rotation and translation of the roller. Image featured are categorized into near and distant features based on the user defined horizon. The optical flow is estimated for near features located in the region below the horizon. The change in roller\u27s heading is constantly estimated from the distant features located in the sky region. Using the roller\u27s rotation angle, the incremental translation between two frames will be calculated from the optical flow. The roller\u27s incremental rotation and translation will put together to develop a tracking map.;During system development, it was noted that in environments with thermal uniformity, the background of the IR images exhibit less featured as compared to images captured with optical cameras which are insensitive to temperature. This issue is more significant overnight, since nature elements are not able to reflect the heat energy from sun. Therefore to improve roller\u27s heading estimation where less features are available in the sky region a unique methodology that allows heading detection based on the asphalt mat edges was developed for this research. The heading measurements based on the slope of the asphalt hot edges will be added to the pool of the headings measured from sky region. The median of all heading measurements will be used as the incremental roller\u27s rotation for the tracking analysis.;The record of tracking data is used for QC/QA purposes and verifying the proper implementation of the roller pattern throughout a job constructed under the roller pass specifications.;The system developed during this research was successful in mapping roller location for few projects tested. However the system should be independently validated

    Uncertainty Minimization in Robotic 3D Mapping Systems Operating in Dynamic Large-Scale Environments

    Get PDF
    This dissertation research is motivated by the potential and promise of 3D sensing technologies in safety and security applications. With specific focus on unmanned robotic mapping to aid clean-up of hazardous environments, under-vehicle inspection, automatic runway/pavement inspection and modeling of urban environments, we develop modular, multi-sensor, multi-modality robotic 3D imaging prototypes using localization/navigation hardware, laser range scanners and video cameras. While deploying our multi-modality complementary approach to pose and structure recovery in dynamic real-world operating conditions, we observe several data fusion issues that state-of-the-art methodologies are not able to handle. Different bounds on the noise model of heterogeneous sensors, the dynamism of the operating conditions and the interaction of the sensing mechanisms with the environment introduce situations where sensors can intermittently degenerate to accuracy levels lower than their design specification. This observation necessitates the derivation of methods to integrate multi-sensor data considering sensor conflict, performance degradation and potential failure during operation. Our work in this dissertation contributes the derivation of a fault-diagnosis framework inspired by information complexity theory to the data fusion literature. We implement the framework as opportunistic sensing intelligence that is able to evolve a belief policy on the sensors within the multi-agent 3D mapping systems to survive and counter concerns of failure in challenging operating conditions. The implementation of the information-theoretic framework, in addition to eliminating failed/non-functional sensors and avoiding catastrophic fusion, is able to minimize uncertainty during autonomous operation by adaptively deciding to fuse or choose believable sensors. We demonstrate our framework through experiments in multi-sensor robot state localization in large scale dynamic environments and vision-based 3D inference. Our modular hardware and software design of robotic imaging prototypes along with the opportunistic sensing intelligence provides significant improvements towards autonomous accurate photo-realistic 3D mapping and remote visualization of scenes for the motivating applications

    Sensor Fusion and Obstacle Avoidance for an Unmanned Ground Vehicle

    Get PDF
    In recent years, the capabilities and potential value of unmanned autonomous systems (UAS) to perform an extensive variety of missions have significantly increased. It is well comprehended that there are various challenges associated with the realization of autonomous operations in complex urban environments. These difficulties include the requirement for precision guidance and control in conceivably GPS-denied conditions as well as the need to sense and avoid stationary and moving obstructions within the scene. The small size of some of these vehicles restricts the size, weight and power consumption of the sensor payload and onboard computational processing that can accommodated by UAS. This thesis analyzes the development and implementation of terrain mapping, path planning and control algorithms on an unmanned ground vehicle. Data from GPS, IMU and LIDAR sensors are fused in order to compute and update a dense 3D point cloud that is used by an implicit terrain algorithm to provide detailed mathematical representations of complex 3D structures generally found in urban environments. A receding horizon path planning algorithm is employed to adaptively produce a kinematically-feasible path for the unmanned ground vehicle. This path planning algorithm incorporates obstacle avoidance constraints and provides a set of waypoints to be followed by the unmanned ground vehicle. A waypoint controller is designed and implemented to enable the vehicle to follow the waypoints from the path planner. Open-loop experiments are provided with an unmanned ground vehicle in order to demonstrate terrain generation with real sensor data. Closed-loop results are then presented for a simulated ground vehicle in order to demonstrate the performance of the receding horizon path planning and control algorithms using the terrain map generated from the open-loop experiments
    corecore