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ABSTRACT 

APPLICATION OF COMPUTER VISION FOR ROLLER OPERATION MANAGEMENT 

Mohammad Hadi Niki Rashidi 

Compaction is the last and possibly the most important phase in construction of asphalt 

concrete (AC) pavements. Compaction densifies the loose (AC) mat, producing a stable surface 

with low permeability. The process strongly affects the AC performance properties. Too much 

compaction may cause aggregate degradation and low air void content facilitating bleeding and 

rutting. On the other hand too little compaction may result in higher air void content facilitating 

oxidation and water permeability issues, rutting due to further densification by traffic and 

reduced fatigue life. Therefore, compaction is a critical issue in AC pavement construction. 

The common practice for compacting a mat is to establish a roller pattern that determines the 

number of passes and coverages needed to achieve the desired density. Once the pattern is 

established, the roller’s operator must maintain the roller pattern uniformly over the entire mat.  

Despite the importance of uniform compaction to achieve the expected durability and 

performance of AC pavements, having the roller operator as the only mean to manage the 

operation can involve human errors.  

With the advancement of technology in recent years, the concept of intelligent compaction 

(IC) was developed to assist the roller operators and improve the construction quality. 

Commercial IC packages for construction rollers are available from different manufacturers. 

They can provide precise mapping of a roller’s location and provide the roller operator with 

feedback during the compaction process. 

Although, the IC packages are able to track the roller passes with impressive results, there are 

also major hindrances. The high cost of acquisition and potential negative impact on productivity 

has inhibited implementation of IC.   

This study applied computer vision technology to build a versatile and affordable system to 

count and map roller passes. An infrared camera is mounted on top of the roller to capture the 

operator view. Then, in a near real-time process, image features were extracted and tracked to 

estimate the incremental rotation and translation of the roller. Image featured are categorized into 

near and distant features based on the user defined horizon. The optical flow is estimated for near 

features located in the region below the horizon. The change in roller’s heading is constantly 

estimated from the distant features located in the sky region. Using the roller’s rotation angle, the 

incremental translation between two frames will be calculated from the optical flow. The roller’s 

incremental rotation and translation will put together to develop a tracking map.  

During system development, it was noted that in environments with thermal uniformity, the 

background of the IR images exhibit less featured as compared to images captured with optical 

cameras which are insensitive to temperature. This issue is more significant overnight, since 

nature elements are not able to reflect the heat energy from sun. Therefore to improve roller’s 

heading estimation where less features are available in the sky region a unique methodology that 



allows heading detection based on the asphalt mat edges was developed for this research. The 

heading measurements based on the slope of the asphalt hot edges will be added to the pool of 

the headings measured from sky region. The median of all heading measurements will be used as 

the incremental roller’s rotation for the tracking analysis.  

The record of tracking data is used for QC/QA purposes and verifying the proper 

implementation of the roller pattern throughout a job constructed under the roller pass 

specifications. 

The system developed during this research was successful in mapping roller location for few 

projects tested. However the system should be independently validated. 
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 INTRODUCTION 

 

1.1. COMPACTION SIGNIFICANCE 

Asphalt concrete (AC) is a mixture of aggregate and asphalt binder. The AC is the major 

material used in paving surface of roads, airfields and parking lots. AC pavements are required to 

be stable under the traffic loads, smooth, durable and impermeable unless designed otherwise. To 

achieve the expected properties and performance, the loose AC mixture placed by a paver must 

be compacted during the construction.  

Compaction is the process of reducing the volume of loose AC material under an external 

force applied by rollers. The compaction force squeezes loose asphalt-coated aggregates together 

providing increased aggregate interlock and stronger asphalt bonds for higher stability to endure 

traffic loads.  

In order to achieve the specified density uniformly all over the surface, a plan for compaction 

is required. This plan is called rolling pattern and should define the quantity of rollers, roller 

types, rolling sequences, speed, length of rolling zone and number of passes made by each roller. 

A “pass” is referred to the roller passing over a surface point once. The total passes required to 

cover the whole width of mat being paved is one “coverage”. Figure 1, illustrate a rolling pattern 

comprised of 8 passes and 2 coverages. 
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Figure 1 Roller Pass and Coverage (Source: BOMAG) 

1.2. INTELLIGENT COMPACTION 

The roller operator is in charge for maintaining the rolling pattern as consistent as possible. 

Remembering the rolling zone limits and keeping track of number of passes and coverages is 

tedious, but it is essential to achieve the target density and compaction uniformity. To assist 

roller operators and minimizing human errors intelligent compaction (IC) was developed. 

Currently commercial IC packages are available in the market from several manufacturers. 

Figure 2 describes the most comprehensive available package. This IC system is comprised of 

data acquisition sensors, automatic feedback control (AFC) and output devices such as a display 

screen and a printer. The data acquisition part includes an accelerometer for drum vibration 

measurement, infrared temperature detectors, and GPS. The AFC unit analyzes the acquired data 

and adjusts vibration accordingly. The operator screen also displays helpful information such as 

the mat temperature, estimated mat density, vibration frequency and amplitude, vibration mode, 

pass mapping and density map. 
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Not all the IC packages cover all the activities in Figure 2. The AFC unit can only be used on 

rollers with directional compaction technology, which are not very common. IC packages mostly 

focus on pass mapping, temperature records, and possibly density map for vibratory rollers. 
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Figure 2 Comprehensive IC Flowchart 

The current IC packages available use global positioning system (GPS) to map the roller 

location. Despite the satisfactory results, these systems have two disadvantages that make 

contractors reluctant to adopt this technology. First, because the functionality of these packages 

highly depends on the precision of the real time location information, a sophisticated GPS 

antenna is required.  This increases the price of typical new vibratory tandem asphalt roller by 

almost 20%-25% (based on the quotation for Trimble CSS Flex, dated August 2012). For most 
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of the contractors who already own a compaction fleet, the investment may be greater than the 

current value of their equipment.  

Moreover, the GPS device integrated into the IC require stationary support. Single or multiple 

reference stations on the job site are needed to constantly correct the satellite data acquired by 

the GPS mounted on the roller. To maintain the system functionality, it is essential to keep the 

radio line of sight between the antenna mounted on the roller and stationary GPS antennas clear. 

As the paving train moves forward the line of sight may be lost, especially in the terrain of West 

Virginia. When the line of sight is interrupted, the stationary antennas must be reset and the 

paving process is either stopped or operates without IC. 

1.3. PROBLEM STATEMENT 

Currently the industry is seeking a solution to improve AC construction quality and reduced 

labor effort for QC/QA through intelligent monitoring of AC compaction. As discussed earlier, 

the shortcomings of the existing solutions has kept the IC away from being widely accepted and 

becoming a standard practice. 

1.4. OBJECTIVE 

The objective of this research was to design and build an economical IC package that can be 

used on any asphalt compaction roller to produce roller pass mapping for assisting the operator 

during the operation and collect data that can be used for QC/QA.  

1.5. SCOPE AND LIMITATIONS 

The proposed configuration consisted of a long wave infrared (LWIR) camera, a triple suction 

cup camera mount, a 7in display screen and a data logger integrated with an accelerometer and a 
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GPS. LWIR Camera, is implemented to capture the operator’s vision. The LWIR technology 

detects the thermal radiation emitted from the surface, hence, it improves image processing 

efforts for distinguishing the hot mat from the surrounds.   

To address the objective of making the system as economical as practical, trade-offs were 

made between the capability of the equipment and costs.  The biggest trade-off was on the 

selection of the LWIR camera. Although more information could be captured with a color 

camera, a black and white camera was selected for the sake of economy.  

Different optical cameras were also tested in this study. This was done to verify if a sole 

optical camera could be used for roller tracking. The comparison of performance and 

applications was used to justify the need for an IR camera.  

OpenCV library was used to do real-time image processing inside C++ and C#. Finally, the 

processed information regarding the rolling operation including the pass map was plotted on the 

display screen. 

The goal of any compaction operation is to build a finished surface to the required density, 

uniformly. To achieve this goal various parameters including mixture properties (gradation, 

asphalt binder content, mix type, mix temperature), environmental effects, layer thickness, 

available time, subgrade or base condition and compaction energy are involved.  With regard to 

parameters involved in a successful compaction operation this study only addresses the roller 

operation. 
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The result of this research is only applicable to hot mix asphalt (HMA) and warm mix asphalt 

(WMA) paving. Compaction of granular courses and cold mix asphalt (CMA) are not part of the 

scope of this research. 

Depending on the size of the construction project, time available for compaction and rollers 

availability, a single or a group of rollers maybe used to perform the compaction. The current 

research is limited to the single roller operation. On projects where more than one roller is 

involved in a rolling zone, it is possible to use the product of this research on each roller 

individually. A multi-user version of the device is desirable but beyond the scope of this project.  

AC pavement constructions are performed both during the day and night. In fact, many of 

overlay projects are placed during the night to minimize traffic disturbance. Using the LWIR 

technology, the result of this research delivers satisfactory results both on day and night jobs. 

1.6. JUSTIFICATION 

In this study, GPS technology of commercial IC is replaced by computer vision technology to 

build an IC package for roller pass mapping. The new device offers a considerably lower price 

compared to the current commercial IC packages available in the market which promotes its 

practicality. In addition, the device performs as an independent unit without requiring any 

stationary/remote support which eliminates part of the current IC limitations. 
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 LITERATURE REVIEW 

 

2.1. INTRODUCTION 

Due to the wide variety of the topics discussed in this chapter, the materials are organized in 

three sections. Section 2.2 briefly discusses major parameters affecting asphalt concrete (AC) 

compaction. Section 2.3 introduces the intelligent compaction and its state of practice. 

Section 2.4 covers the computer vision application and focuses on methods of perceiving the 

environment, image processing and simultaneous localization and mapping.  

2.2. ASPHALT CONCRETE COMPACTION 

Compaction is the process through which a mass of material loses volume or in other words 

densifies. For AC, compaction locks the aggregate particles together, providing stability, 

resistance to deformation and improved longevity by reducing permeability. To achieve the 

target density at field, it is essential to study the affecting factors. These factors can be 

categorized in mixture properties, environmental conditions, lift thickness and the condition of 

underlying structure [1].  

 Mixture Properties 

Mixture properties such as aggregate size and gradation, binder content and type, mix design 

and mat temperature can greatly affect the mixture workability and resistance to the roller 

compaction. Therefore, a successful compaction starts with the proper choice of ingredients, 

mixture preparation and handling [1]. 
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 Mixture workability and compactibility 

Cabrera [2] refer to workability as “the property which allows the production, handling, 

placing and compaction of a mix with minimum application of energy”. Compactibility is a 

component of workability which determines the ability of a material to be compressed into a 

compact mass. The workability is influenced by aggregate type, shape and gradation, asphalt 

binder percentage and grade, and mix temperature.  

 Aggregate 

Angularity, shape, surface texture, gradation and filler properties can alter the mixture 

workability. Usually coarse mixtures tend to have less workability and requires more compaction 

effort for packing [1].  

 Mix Design 

Mix designs normally fall in either dense graded, gap graded or stone mastic asphalt (SMA) 

categories. Each of these mix types behave differently in respond to compaction. Mix design is 

performed to find the right gradation and percent binder for the mixture of interest. Gradation 

defines the configuration of aggregate structure in the mix and can highly affect the mixture 

compactibility. Binder serves as lubricant helping aggregate displacement during compaction 

and generally mixtures with higher binder content are easier to compact [1]. 
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 Temperature 

 Asphalt Binder 

Asphalt binder is a viscoelastic material, consequently, its behavior changes with the 

temperature. Asphalt binder viscosity decreases with temperature increase. McLeod [3] showed a 

10,000-fold increase asphalt viscosity with temperature drop from 135 ºC to 57 ºC (275º-135ºF). 

This shows temperature can be used to adjust the mixture workability. The rate of asphalt 

reaction to the temperature change depends on the binder grade. At 121º-149 ºC (250º-300ºF) 

asphalt behaves as a liquid and the viscosity is sufficiently low for coating aggregate and mixture 

production. Construction at this temperature range allows aggregate pass each other under the 

roller drum easily, without any resistance from the asphalt binder; it actually serves as lubricant. 

As the mat temperature drops, the asphalt binder viscosity increase and provides resistance to the 

compaction. Mixture resistance to compaction increases to almost 10-fold as temperature drops 

from 135 ºC to 63 ºC (275º-145ºF) [3]. In practice for HMA at temperatures below 80 ºC (175ºF) 

very little, if any, increase in density can be achieved by rolling [1]. 

 Mix Temperature 

For HMA, the mixture production temperature must be enough to enable asphalt binder coat 

aggregate particles thoroughly and uniformly. Higher production temperature also provides 

longer time period for effective rolling and compaction at the field. Generally, the asphalt 

temperature should not exceed 170 ºC (338ºF) during the production process [1]. 
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Mix temperature at the time of compaction is a function of production temperature, thermal 

properties of the mix, paving process, HMA mat thickness and environmental conditions 

including air temperature, base temperature, wind velocity and solar flux [4]. 

Monitoring mat temperature is particularly crucial in cold weather. McLeod [3] showed 

excessive premature distresses in such conditions. He also demonstrated that mixtures compacted 

to 95 percent of their laboratory compacted density showed 77 percent lower Marshall stability 

compared to those compacted to 100 percent. Cabrera [2] also detected reduced tensile strength 

and resilient moduli of asphalt concrete for mixes compacted at lower temperatures.  

Due to the significant effect of temperature on compaction of HMA, it is important to plan the 

compaction strategy based on the time availability. This requires an understanding of heat 

transfer in the HMA mat during the paving operation in order to develop a model that can predict 

the time available for compaction. Chadboum et al [4], developed the “PaveCool” software for 

the Minnesota Department of Transportation. PaveCool predicts the HMA mat cooling rate 

based on a model and numerical solution presented by Luoma, et al [5]. 

With WMA, production normally takes place at temperatures 15 ºC  to  35 ºC (30 °F to 70 °F) 

lower than HMA and remain lower during hauling, placement and compaction. Due to the use of 

chemical additives or foaming technology which allow mixing asphalt binder with aggregates at 

lower temperature, it is easier to manipulate and compact the WMA at lower temperatures [6].  
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 Environmental Effects 

Environmental condition of the construction site can affect the time available for compaction. 

Time available for compaction is the period of time that compaction can be achieved before the 

temperature drops below80 ºC 175ºF, for HMA [1].  

Environmental condition includes the air and underlying surface temperatures, wind speed 

and solar flux. Solar flux is the amount of radiant energy received from the sun and is a factor of 

various variables such as altitude, cloud density, haze level and position of the sun relative to the 

horizon which itself is a variable of the time of the day and year [7].  

 Lift Thickness 

Compaction of thicker HMA lifts is easier in general. Thicker asphalt mats tend to preserve 

the mat temperature for a longer period of time providing longer time for compaction [1].  

 Underlying Structure Condition 

Underlying surface condition can affect the compaction results in different ways. Wet or cool 

surfaces absorb the heat from the AC lift being paved and reduce the time available for 

compaction. Uneven surfaces lead to non-uniform lift thicknesses and non-uniform compaction 

results consequently. Instability in the underlying structure can result in lack of bottom 

confinement required to achieve the density [1]. 

 Rolling operation 

In general, using rollers to compact the AC layer on the field takes place in 3 steps “break -

down”, “intermediate” and “finish”. The break-down roller gets the initial and the majority of the 

density, the target density is supposed to be achieved with the intermediate rolling and finally the 
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finish roller removes the marks and surface defects. Single or multiple rollers can be assigned to 

the tasks depending on the time available for compaction and the paving rate [7]. 

The rolling pattern is unique for each project, since the mixture type and properties, lift 

thickness, environment, underlying surface density and rollers availability vary. To establish a 

rolling pattern, a test strip needs to be built at the beginning of each project to simulate the 

rolling operation using the actual material, thickness, environmental and underlying surface 

conditions. Then the non-destructive density gauges are used to measure the in-place density 

after each pass. The data collected helps to find the optimum number of passes for each 

participating roller to establish the rolling pattern and approximate rolling zone [1].  

 Roller Types 

To perform the compaction task in the field several different roller types have been developed 

to raise the process efficiency. Generally, the asphalt compaction rollers are categorized as: 

 Tandem steel rollers, static and dynamic 

 Pneumatic rollers 

 Combination of steel drum and tires  

Furthermore, construction rollers can be classified into static and vibratory rollers, based on 

the state of energy applied to the surface. 
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Figure 3 Drum Action [8]. 

 Static Tandem Roller 

The static tandem steel rollers use their gross weight and possibly add-on loads to press down 

the mat in order to get the density. The term static indicates the compaction force is due to the 

static weight of roller. As shown in Figure 4-(a) the exerted compaction force for this type of 

rollers is expressed in terms of static linear load, which is a factor of roller gross weight, and the 

width and diameter of the drums. The drum contact area is a narrow band which contracts in 

length as the loose mat become densified with the subsequent roller passes, see Figure 4-(b) for 

illustration. As the contact area reduces, the contact pressure on the surface increases [7]. 
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 Initial Pass Conequent Passes 

(a) Linear Load (b) Drum Contact Length 

Figure 4 Static Tandem Roller [9] 

 Dynamic rollers 

Traditional dynamic rollers have either one or two drums with a system of eccentric weights 

spinning around the center shaft. The centrifugal force created by the spinning eccentric 

weight(s) causes vertical displacement of the drum. In fact, drum in vibratory mode not only 

rolls over the mat but it also beats the surface. Dynamic compaction can greatly improve the 

compaction results. The vibration helps the aggregate to relocate and reorient in the mat, 

allowing achievement of a denser configuration. Moreover, because of the impact action due to 

drum vertical displacement the compaction force increases considerably. 

Figure 5-(a) shows the mechanism used in traditional dynamic rollers. These type rollers 

normally come with a single circular exciter at the center of the drum. Spinning the exciter at 

high speed induces vibration in the drum. The vibration frequency or in other words the number 

of drum’s impacts within a unit time period, can be controlled by changing the exciter spinning 

speed. Counter weights shown in Figure 5-(b) might be used to adjust the magnitude of the 

impacts. 

Drum Width 
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(a) The Exciter Full Cycle (b) The Counter Weight Action 

Figure 5 Traditional Vibratory Rollers [10] 

The later generation of vibratory rollers takes the advantage of a new vibration mechanism 

often known as directed vibration. Figure 6, displays the directed vibration mechanism. Such 

systems use two counter-rotating eccentric weights. The magnitude of the centrifugal force 

reaches its maximum peak when the two weights spin in the same direction. They can also 

partially balance each other out, if rotated in opposite direction. Directional systems are also 

capable of adjusting the vibration magnitude, by changing the orientation of the whole vibration 

system. As the system orientation deviates from the vertical axis, the produced centrifugal force 

disintegrates into horizontal and vertical vectors reducing the magnitude of the vertical impact. 

The horizontal vibration improves the surface finish [9].  

Despite all the benefits associated with vibration, it comes with two problems. First, the drum 

loses contact with the surface between consecutive impacts. Second, the surface marks created 

by drum impacts, especially when operated in high amplitude mode. To solve these issues 

oscillatory rollers were introduced.  
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Figure 6 Directed Vibration [9] 

Figure 7, compare oscillation and vibration mechanisms. Oscillation only induces horizontal 

displacements, thus, it maintains the drum in permanent contact with the surface. Compared to 

the vibratory rollers, oscillatory rollers can greatly improve the surface finish but their 

compaction influence depth is shallower [9].  

  

(a) Vibration Mechanism (b) Oscillation Mechanism 

Figure 7 Comparison of Vibration and Oscillation [10] 

All dynamic steel wheel rollers can also be operated in static mode, therefore they can be used 

for all phases of compaction process. 

 Pneumatic Tire Roller 

The pneumatic rollers, in Figure 8-(a), generally serve as the intermediate roller operating 

behind the break down roller. The rear tires are shifted to cover the areas not compacted by the 

front wheels, see Figure 8-(b) for illustration.  
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(a) Pneumatic Roller (b) Tires Formation (c) Tires on Uneven Surfaces 

Figure 8 Pneumatic Tire Roller Illustration [9] 

The compaction force of the pneumatic rollers is applied by tires. The compaction energy is a 

factor of roller gross weight, tire pressure and tire design. As displayed in Figure 8-(c), unlike the 

steel drum rollers where the solid cylinder will bridge over hollow areas, the tires act 

independently, allowing compaction of the mat on uneven surfaces. Pneumatic rollers produce 

higher uniformity in density, improved surface sealing and superior aggregate orientation [1]. 

The spaces in between wheels provide room for the aggregate to move and reach a stable 

orientation. 

2.3. INTELIGENT COMPACTION (IC) 

In mid-1980s a compaction documentation system (CDS) was introduced in Sweden. CDS 

task was to keep track of rolling operation. There was no sensor used in CDS and all of the 

records including lane change, direction change and number of passes, beginning and the end of 

rolling zone were to be entered into the system by the operator [11]. Currently, according to the 

Federal Highway Administration (FHWA), IC is a technology which acquires real-time 

kinematic global positioning system (GPS), continuous compaction control (CCC) device and 

onboard real-time display of IC parameters to improve the compaction uniformity. IC records 

compaction measurements including number of roller passes, intelligent compaction 



18 

 

 

measurement value (ICMV), GPS location of the roller, roller vibration parameters and surface 

temperature profile. Based on the information provided by the IC on the display screen, the 

operator can either manually, or let the IC automatically, adjust the roller operation for optimum 

performance. Roller pass mapping on the operator screen allows the operator to match the rolling 

pattern accurately and assure the compaction uniformity [12].  

ICMV is the roller parameter measured to estimate the surface density. This parameter may 

differ for soil and asphalt and also among different manufacturers [13]. 

 Monitoring Roller Location 

Operating roller back and forth for hours, while at the same time keeping track of the number 

passes, coverages and the rolling zone limits is challenging and prone to human error. This leads 

to non-uniform compaction and finally causing non-uniformity in the density of the surface 

being compacted. To solve the issue, GPS was integrated into the IC in order to provide the 

operator with a real-time mapping of the roller passes on the mat. Using the map, operator can 

assure conformity with the roller pattern [14].  

 Introduction to GPS application 

A global positioning system (GPS) is a system comprised of three segments: space, control 

and user. The space segment is a constellation with a minimum of 24 operational satellites. At 

least 4 operational satellites are placed in each of the 6 orbital planes. This arrangement allows 4 

to 10 satellites being accessible from any place on the earth. Each satellite transmits a unique 

identifying signal containing its location coordinates as a function of time generated by a high 

precision atomic clock. The control segment of the GPS includes one master control station 
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(MCS) located at Schriever Air Force Base at Colorado, USA and also operational control 

segments (OCS) around the world. OCS units are distributed around the world in a way that each 

satellite can be monitored from at least two OCS simultaneously. Each satellite passes over an 

OCS twice a day. The OCS units monitor the satellite location and compare it with the 

information received from the satellite. MCS collects this information from the OCS units 

around the world and update the atomic clock on the satellite accordingly. Finally, the user is 

anyone or any object that uses a GPS antenna and a GPS receiver to find its location [15]. 

Once a GPS antenna is connected to at least three satellites, the receiver analyzes signals from 

each satellite to measure the satellite distance from the antenna location, Figure 9. Knowing the 

satellite locations and the distances of the desired point to each of the satellites, it is possible to 

find the location using the resection concept. The resection concept is a geometrical method 

commonly used in surveying to find a position on a map based on the grid azimuths of two or 

more well-defined locations. 

 

Figure 9 the Basic Idea of GPS Positioning [15] 

GPS devices fall into four categories based on their precession. The “Autonomous” type 

includes devices with a horizontal precession tolerance around 10 to 15 meters. “DGPS” devices 
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present a relatively higher accuracy with an error tolerance ranging from 0.5 to 4 meters. “Float” 

devices’ error is less than a meter. The highest level of accuracy is gained by “Fixed” type which 

has an error range of 1 to 3 centimeters [12].  

Point positioning or autonomous positioning involves a GPS device which simultaneously 

tracks four or more GPS satellites to find its location, Figure 10. 

 

Figure 10 Autonomous Positioning [15] 

Relative positioning or differential positioning is the technique used by the fixed type GPS. It 

involves two or more GPS receivers simultaneously tracking the same satellites to find their 

relative coordinates. One of the receivers serves as stationary reference fixed at a location with 

precisely known coordinates. The location of the other receiver known as the rover or remote 

receiver, is desired. The rover coordinates are determined relative to the stationary reference 

using measurements recorded simultaneously at the two receivers [15].  

For the purpose of mapping roller passes on the mat surface, both high level of data 

precession and real-time positioning are required. The solution to these requirements is Real-

Time Kinematic (RTK) GPS [12]. RTK is a mode of relative positioning where remote station is 
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traveling. The positioning measurements are done in real-time, instead of gathering satellite 

signals for post processing in order to produce maps. Shorter signal reception time for a traveling 

remote station, compared to a static one, reduces the data accuracy from millimeters to few 

centimeters [15]. The RTK GPS operation is demonstrated in Figure 12. 

 

Figure 11 Relative Positioning [15] 

   

Figure 12 RTK Demonstration (HAMM), [15] 

It is essential for the remote station to stay within 2 miles of the base station. Moreover, the 

line of the sight between the two stations must be almost obstacle free. If the connection between 

the two stations is lost, then the GPS configuration simply demotes to “Autonomous” mode [12]. 



22 

 

 

 Intelligent compaction for quality control 

According to the US congress, in 2010 the US federal government, states and local agencies 

were spending about $160 billion annually on building, operation, and maintenance of roads 

[16]. To optimize the investments in roadways, agencies must follow their quality assurance 

(QA) plans. QA is referred to all of the plans and systematic actions required to assure that a 

material or facility will accomplish the design expectations in service. QC includes those QA 

tasks and considerations required to be implemented in the process of production and 

construction to achieve a level of quality or match specifications in the end product. The task of 

measuring the degree of conformity of the material or the end product with the specification is 

called inspection [17].  

Compaction QC/QA procedures that are currently in practice, require extraction of roadway 

cores from the finished pavement. The major drawbacks associated with these methods include 

limited inspection samples (typically 1:1,000,000) and time consumption which may delay the 

construction. In the end, the results are the indication of the density at the test location, (not 

necessarily an accurate indicator of the density over the entire mat).  

Horan et al, [18] studied the improvement in implementation of roller pattern by operators as 

a part of FHWA intelligent compaction pooled fund (ICPF) project. The roller pass mapping 

device was installed on a roller. The operator was not allowed to look at the screen in the initial 

phase. In the second phase, the operator was trained to use the information from the screen. 

Figure 13, compares the rolling map from the phase one and two.  
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Figure 13 Improvement Observed in Implementing Roller Pattern by an Operator after Using IC [19] 

The result shows considerable improvement in both uniformity and compliance with the roller 

pattern.  

2.4. COMPUTER VISION 

Developing a cost effective, accurate and self-sufficient solution for roller path mapping is 

analogues to research in the field of robotics and autonomous vehicles. The literature presented 

here discusses the science and technology used in robotics for mapping. 

 Perceiving the environment 

Perception and localization often rely on each other. Building a map is constructing a 

presentation of the environment. Once the environment is perceived, the robot can match the 

information with the preset map for localization. There are also situations where the robot 

constructs the map and localize itself at the same time. It is called simultaneous localization and 

mapping (SLAM) [20]. The first step in mapping is perceiving or sensing the environment. 

Sensors in robotics are classified as proprioceptive and exteroceptive. Proprioceptive sensors 

provide information about internal state of the machine such as the position of the wheels. The 
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exteroceptive sensors acquire information from the surrounding environment such as the spatial 

information or the colors [21]. In the following, some of the most popular sensors used in 

robotics are briefly discussed: 

 Machine Control Sensors 

The machine control sensors are proprioceptive sensors that are commercially available and 

provide a wide range of data such as machine drive parameters, distance traveled, speed and 

orientation. A combination of this information can be used to track the equipment [22].  

 Dead Reckoning Sensors 

Dead reckoning (DR) is the process that uses parameters such as estimated speed, elapsed 

time and direction to calculate the current location of an object based on a previously known 

position. These type of sensors are generally classified as proprioceptive sensors. DR is 

susceptible to accumulated error. Odometers and inertial navigation systems are instances of DR. 

Odometer is a device that measures the distance traveled by a moving object. In a common 

means of odometry, the distance is measured based on the number of axle’s revolutions and 

known diameter of wheels [23]. Inertial navigation systems (INS) use gyroscope to measure 

angular rate data and accelerometer for velocity rate information. INS is a self-contained, non-

radiating, non-jammable, dead reckoning navigation system which provides dynamic tracking 

information through direct measurements. The problem associated with INS is time and distance 

accumulated error. One solution to this issue is to frequently reset the INS error by tying its 

measurements to some known locations [24]. Ultimately the major application of INS is in the 

areas where other absolute positioning systems such as GPS signal reception maybe lost for a 
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short period of time. Barshan and Whyte (1995) used an INS system comprised of a gyroscope, 

an accelerometer and two tilt sensors in a radar navigated cargo truck. The results showed INS 

positioning is accurately reliable for about 10 minutes. In addition to accuracy degradation with 

time and distance, the system is highly susceptible to vibration and its reliability duration time 

may drop to few seconds if the system is on vibration [24]. This shortcoming makes INS totally 

improper for using on vibrating rollers. 

In general dead reckoning methods have many advantages including simplicity, low cost and 

most importantly they do not rely on an external source for functionality. However their biggest 

issue is the accumulated error. Therefore, they are commonly used as the backup navigation 

mechanism. 

 Time of Flight Based Sensors  

Time of flight (ToF) based measurement sensors such as LiDAR (light radar), SONAR 

(sound navigation and ranging) and radar have also been used in robotics for both mapping and 

navigating. ToF includes a variety of methods that calculate the travel time of an object, wave, 

light, particle or electromagnetic radiations trough a medium. LiDAR is a laser range finder that 

measures distance by illuminating at a target object with a laser and analyzing the reflected light. 

SONAR is a sound propagation range sensing that was initially developed for submarine 

applications. SONAR systems vary based on the sonic wave frequency from infrasonic to 

ultrasonic. SONAR is also available for airborne applications which are called SODAR (Sonic 

Detection and Ranging). By nature, SODAR is similar to RADAR (Radio Detection and 

Ranging) system but use sonic waves instead of radio waves for detection.  
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 Global Positioning System 

GPS is perhaps the most popular methods for mapping. GPS has been discussed in this 

chapter, earlier.  

 Ultra-Wideband Sensors 

UWB is a radio based positioning technology which can detect and track objects in limited 

areas. The system consists of a network of UWB receivers, UWB tags and a data processing unit. 

The tag(s) on the moving object transmits low energy radio waves. These signals are then 

received by UWB receivers and being analyzed to find the location of the tag(s). Each signal 

contains four pieces of information having two of them will be enough to locate the tag [22]. 

This technology offers reliable spatiotemporal data in tracking resources on construction site 

[25]. However the biggest shortcoming of this technology is the requirement of a wired network 

of sensors installed all around the site. This requirement makes UWB application impractical for 

temporary and linear projects such as highway construction [22]. 

 Radio Frequency Identification (RFID) 

RFID is a wireless system that identifies and tracks a tag through radio frequency 

electromagnetic fields. The system consists of a tag which is an electronic chip containing 

identification information and a reader that reads the information stored on the tag and transfer 

them to a host computer.  The biggest advantage of RFID is that it does not require a direct line 

of site for communication. Moreover RFID tags are very durable and can be encapsulated. 
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RFID has been used in for a variety of purposes in construction projects such as monitoring 

loading, hauling and delivery times for trucks. The RFID reader identifies and checks in an 

object carrying a tag while entering to the loading station. Another reader installed at the exit 

gate identifies and checks out the same objects. This is how the system measures loading time 

for each truck. Likewise, truck travel times, onsite delays and so on can be measured [26]. As it 

can be inferred from the example above a tag can be detected only if it is placed in the reader 

vicinity. Therefore this technology can be used for tracking objects at stations and not for 

continuous tracking of an object. 

 Vision Based Methods 

Images are detailed, accurate and compact sources for automated data collection [27]. 

Development of cheap digital cameras and high capacity storage devices has made images and 

videos great means for progress measurement, claim reports, safety and training on construction 

sites [22]. Computer vision (CV) is defined as the field of techniques for acquiring, processing, 

analyzing, and understanding images and, in general, high-dimensional data from the real world 

in order to produce numerical or symbolic information. A general idea in development of this 

area has been to mimic the ability of human vision by electronically perceiving and 

understanding of a scene [28]. In terms of application in construction field, CV has become quite 

popular as it provides the opportunity to collect a vast amount of data from site videos and 

images. For instance, CV has been used in construction progress monitoring, defect detection, 

automated image retrieval and productivity measurements [22]. Some other instances of using 

CV in civil engineering includes pavement distress surveying [29], health monitoring of 

http://en.wikipedia.org/wiki/Digital_image_processing
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structures [30], strain measurement of loaded samples [31], structural assessment of underground 

pipes [32], movement of sediment particles [33] and many more. 

With regards to vision perception, currently three major categories including monocular, 

omnidirectional and stereo vision systems are available. Both monocular and omnidirectional 

vision systems have a single camera whereas the stereo vision systems use two cameras. The 

omnidirectional and monocular systems can only generate 2D information. In monocular systems 

the camera is placed horizontally which results in a view field less than 180 degrees. In 

omnidirectional vision systems, to achieve a 360 degree field of view, the camera is mounted 

vertically pointed upward at a convex mirror [34]. Compared to monocular images, the retrieved 

images by omnidirectional cameras have lower resolution. On the other hand, the stereo vision 

systems are inspired by human vision and use a pair of images from two specially mounted 

cameras to perceive the world in 3D [35]. 

Monocular vision is mainly used for landmark recognition. Landmarks are environmental 

features that are familiar to the machine and will be used as navigational aids. Once a land mark 

is detected the machine will be able to approximate its current location. This approach is called 

selective visual attention landmark recognition (SVALR) and is frequently used in vision based 

autonomous robots [36]. Vision based robots’ architecture consists of five essential components: 

 Maps: The system needs some internal knowledge of the surrounding environment in 

order to perform tasks. A sequence of images can be used to automatically generate a 

2D CAD geometric representation of the machine path. 

 Data Acquisition: The system captures the surrounding environment using a camera. 
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 Feature extraction: Significant features such as edges, texture and colors can 

extracted from images. 

 Land mark recognition: The system looks for matches between the extracted features 

and the expected landmarks based on the predefined criteria. 

 Self-localization: The self-localization algorithm calculates the robot’s current 

position relative to the detected land mark and its earlier position in real time. 

 Image processing 

Image processing which normally refers to digital image processing is the process of 

analyzing digital images or video frames using a computer to produce either manipulated images 

or extracting a set of desired characteristics or parameters. Image processing can be used 

wherever visual information are needed. Examples of image processing applications are in 

quality control for counting particles and measuring the size distribution, in many medical 

diagnosing such as tomography, exploring dynamic processes such as plant growth in botany, in 

climatology to study the cloud patterns and so on [37]. In CV, image processing is used for 

feature extraction. Some of the popular techniques and tools used in image processing for feature 

extraction are discussed in the following: 

 Edge Detection 

In processing images, an edge is a collection of points where an abrupt change in pixels’ 

intensity occurs. Therefore, edges can be detected by taking partial derivatives from an image 

function with regard to x and y axes. In other words, a change in the image function can be 

described by a gradient that points toward the largest growth. To detect an edge, the behavior of 
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the image function is investigated within the neighborhood of the target pixel. An edge is a 

vector variable with magnitude and direction components. 

Various different operators including: Roberts, Laplace, Prewitt, Sobel, Robinson and Kirsch 

have been used for edge detection. The Roberts operator is very simple and easy since it only 

investigate a 2x2 pixel neighborhood for edge. The Laplace operator is very popular and uses 

second derivative. Therefore, it is only based on magnitude and not direction. Prewitt operator 

uses the first derivative and estimates the gradient in different directions to find the greatest 

magnitude. Sobel operator is often used to estimates edges in horizontal and vertical directions 

[38].  

Canny [39] introduced a computational approach to edge detection, Figure 14. The algorithm 

is optimal for step edges. The performance of the detector depends on detection criterion, 

localization criterion and one response criterion. Detection criterion determine which edges are 

important. Localization criterion minimizes the distance between the actual and the detected 

edge. Lastly, the one response criterion determines a unique response to the detected edge. 

Canny algorithm uses Laplace operator which is based magnitude and not direction. 
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Figure 14 Canny Edge Detection at Two Different Scales [38] 

 Harris Corner Detector 

Typical features in an image usually include edges, corners (intersect points) and blobs 

(region of interest). Corners have specific characteristic that makes them easy to detect in an 

image. A corner is the intersection of two edges where the gradient of the image changes in two 

directions at that point. Therefore, corners are typically used as features in CV. In 1988, Harris 

and Stephens proposed an algorithm to detect corners in an image based on the property 

described in the above [40]. The so called Harris corner detector sweeps a window W(x,y) (with 

displacements u in the x direction and υ in the Y direction) within the grayscale image “I” and 

will calculate the variation of intensity from Equation 1: 

𝐸(𝑢, 𝑣) =∑𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2

𝑥,𝑦

 Equation 1 

Where 

W(x,y) is the window at position (x,y) 

I(x,y) is the intensity at (x,y) 
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I(x+u,y+v) is the intensity at the moved window (x+u,y+v) 

Since the goal is to find the windows with large variation in intensity. Thus, the following 

term in Equation 1 has to be maximized: 

∑[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2

𝑥,𝑦

 

Using Tylor expansion: 

𝐸(𝑢, 𝑣) ≈∑[𝐼(𝑥, 𝑦) + 𝑢𝐼𝑥 + 𝑣𝐼𝑦 − 𝐼(𝑥, 𝑦)]
2

𝑥,𝑦

≈∑𝑢2𝐼𝑥
2 + 𝑣2𝐼𝑦

2 + 2𝑢𝑣𝐼𝑥𝐼𝑦
𝑥,𝑦

 

Which could be expressed in matrix form: 

𝐸(𝑢, 𝑣) ≈ [𝑢 𝑣] (∑𝑤(𝑥, 𝑦) [
𝐼𝑥
2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]

𝑥,𝑦

) [
𝑢
𝑣
] 

If  

𝑀 =∑𝑤(𝑥, 𝑦) [
𝐼𝑥
2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]

𝑥,𝑦

 

Then 

𝐸(𝑢, 𝑣) = [𝑢 𝑣]𝑀 [
𝑢
𝑣
] 

The chance of an edge occurring within a window is evaluated with R, where: 

𝑅 = det(𝑀) − 𝑘(𝑡𝑟𝑎𝑐𝑒(𝑀))2 
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If R is greater than a threshold then the window contains a corner. 

 Line Detection 

Once an edge is detected, it represents a series of points. Many times, further information 

such as a particular shape or an equation that determines the edge is desirable. There are different 

algorithms that try to find a particular shape or patterns in an image. The simplest and most 

common ones are used for straight line detection. To find a straight lane in an image, there are 

different techniques including: 

 Least Square Fit: It is a mathematical procedure that finds the best-fitting line to a 

given set of points by minimizing the sum of the squares of the offsets ("the 

residuals") of the points from the fitted line. 

 Random Sample Consensus (RANSAC): It is an iterative method to estimate the slope 

and intercept from a set of observed data which contains outliers. The algorithm finds 

the line parameters that maximize the inliers and minimize the outliers. 

 Hough Transform: It is both a segmentation and line fitting tool that can be used to 

find objects including straight lines in a scene [39]. To avoid the problem of dealing 

with vertical lines where the slope approaches infinity, the Hough transformation uses 

polar coordinate system. In general, for each point (x0,y0) in Cartesian coordinate the 

polar coordinate transformation is described by  

rθ = x0 cosθ + y0 sinθ Equation 2 
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Where “r” and “θ” represent each line that passes through (x0, y0). If for a given (x0, 

y0), “r” is plotted versus “θ” for the family of the lines passing through (x0, y0), the 

result will be a sinusoid shape. If such plots are created for a series of points, the “r” 

and “θ” designated by the point where the sinusoid plots cross, describes a line that 

passes through the points whose plot crossed, see Figure 15. 

 

Figure 15 Illustration of Hough Transform 

 Segmentation 

Segmentation divides an image into regions where there are a strong correlation with the 

objects or areas of the real world captured in the image. There are complete and partial 

segmentation. In complete segmentation, the problem is looking for contrasted objects plotted on 

a uniform background. In partial segmentation, the image is divided into separate homogeneous 

regions based on a sectioning criterion such as brightness, color, reflectivity, texture, etc [38].  

 Region of Interest 

Region of interest (ROI) is a technique that saves time and increases the productivity of the 

computation process by only analyzing that part of image that contain useful information [38]. 
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 Image Registration 

Image registration is the method of aligning a series of images of the same scene. The method 

involves defining one image as the reference and finding the geometric transformations that 

allow aligning other images with the reference. For the one-dimensional case shown in Figure 

16: 

𝐺(𝑥) = 𝐹(𝑥 + ℎ) 

Since  

𝐹′(𝑥) =
𝐹(𝑥 + ℎ) − 𝐹(𝑥)

ℎ
=
𝐺(𝑥) − 𝐹(𝑥)

ℎ
 

Therefore:  

ℎ =
𝐺(𝑥) − 𝐹(𝑥)

𝐹′(𝑥)
 

Lucas and Kanade 1981, optimized and generalized the above transformation function and 

found Equation 3 [41]: 

ℎ ≈ [∑ (
𝜕𝑓𝐹

𝜕𝑥
)
𝑇

[𝐺(𝑥) − 𝐹(𝑥)]
𝑥

] [∑ (
𝜕𝑓𝐹

𝜕𝑥
)
𝑇

(
𝜕𝑓𝐹

𝜕𝑥
)

𝑥
]

−1

 Equation 3 

 

For two-dimensional cases such translation would be calculated along both x, y directions. 
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Figure 16 one-dimensional translation for image registration 

 Simultaneous localization and mapping 

Simultaneous localization and mapping (SLAM), is the method used by mobile robots placed 

in an unknown environment to incrementally construct a consistent map of this environment and 

simultaneously marking its location on the map being developed [42]. SLAM consists of 

multiple parts; Landmark extraction, data association, state estimation, state update and landmark 

update. The formulation of the SLAM problem and the solution are discussed in the following: 

 SLAM problem 

Figure 17 shows a mobile device moving through an environment and taking relative 

observations of a number of unknown landmarks using a sensor attached to the device.  
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Figure 17 SLAM Problem [42] 

In Figure 17: 

xk : The state vector describing the location and orientation of the mobile device 

uk : The transit vector, applied at time k − 1 to transfer the mobile device to a state xk at time k. 

mi : Vector describing the location of the ith landmark whose true location is assumed time 

invariant 

zik : An observation of the location of the ith landmark, taken from the mobile device at time k. If 

there are multiple landmark observations at any one time or when the specific landmark is 

not relevant to the discussion, the observation will be written simply as zk 

The history of data is also recorded in form of series: 

X0:k = {x0, x1, · · · , xk} = {X0:k−1, xk} 

U0:k = {u1, u2, · · · , uk} = {U0:k−1, uk} 
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m = {m1,m2, · · · ,mn} 

Z0:k = {z1, z2, · · · , zk} = {Z0:k−1, zk} 

 

 Probabilistic SLAM 

In the probabilistic form of SLAM, the probability distribution of P(xk,m|Z0:k,U0:k, x0) must be 

computed for all times k. The process can start with an estimate for the distribution of  

 P(xk-1,m|Z0:k-1,U0:k-1) at time k-1, the joint posterior and the next system state uk and 

observation zk are computed using the Bayes’ theorem. To perform the analysis, a state transition 

model and an observation model are defined. The observation or the measurement model P(zk|xk, 

m) describes the probability of making an observation zk with known location of the mobile 

device and the landmark. The motion or the transition model P(xk|xk-1, uk) describes the change 

in the system state [42]. 

The formulated probabilistic SLAM problem is a standard two-step recursive (sequential) 

estimation (time-update) presented in Equation 4 and correction (measurement-update) by 

Equation 5. 

System state based on time-update 

𝑃(𝒙𝑘,𝒎|𝒁0:𝑘−1, 𝑼0:𝑘, 𝒙0)

= ∫𝑃(𝒙𝑘|𝒙𝑘−1, 𝑼𝑘) × 𝑃(𝒙𝑘−1,𝒎|𝒁0:𝑘−1, 𝑼0:𝑘−1, 𝒙0)𝑑𝑥𝑘−1 
Equation 4 

Measurement update 
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𝑃(𝒙𝑘,𝒎|𝒁0:𝑘, 𝑼0:𝑘, 𝒙0) =
𝑃(𝑧𝑘|𝑥𝑘, 𝑚)𝑃(𝒙𝑘,𝒎|𝒁0:𝑘−1, 𝑼0:𝑘, 𝒙0)

𝑃(𝒛𝑘|𝒁0:𝑘−1, 𝑼0:𝑘)
 

Equation 5 

 Solutions to the SLAM Problem 

Solutions to the SLAM problem must provide appropriate presentation for both observation 

and motion models, efficient computation of prior and posterior distributions. So far the best 

solution is provided by extended Kalman filter (EKF). The extended Kalman filter (EKF) is the 

heart of SLAM process [42]. 

Kalman filter (KF) is an optimal linear estimator. KF consists of an algorithm for recursively 

estimating the state of a dynamic system from noisy measurements. The filter combines all 

available measured data, plus any prior knowledge about the system and the measuring devices 

to make an estimate of the variable of interest with minimized statistical error [20]. To illustrate 

the KF algorithm, assume a measurement describing the system state partially or entirely is 

available at least on an intermittent basis. The current and the last system state or measurements 

are denoted with time tk and tk-1. x and z are system state and measurement. For a linear system: 

{
�̂�𝑘+1 = 𝜑𝑘�̂�𝑘 + 𝐺𝑘𝑤𝑘
𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 

 
Equation 6 

Where: 

�̂�𝑘= State vector estimate at time tk 

Φk = Transition matrix (relates 𝑥𝑘 to 𝑥𝑘+1) 

Gk = Process noise distribution matrix (transforms the 𝑤𝑘 vector into the coordinates of 𝑥𝑘) 

𝑤𝑘= Disturbance sequence or process noise sequence 
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zk = Measurement at the time tk 

Hk= Measurement matrix or observation matrix (relates 𝑥𝑘 to 𝑧𝑘in the absence of 

measurement noise) 

𝑣𝑘= Measurement noise sequence 

Kalman filter equations for a linear system are as follows: 

𝑆𝑦𝑠𝑡𝑒𝑚 𝑀𝑜𝑑𝑒𝑙 {
�̂�𝑘+1 = 𝜑𝑘�̂�𝑘                         𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑆𝑡𝑎𝑡𝑒

𝑃𝑘+1 = 𝛷𝑘𝑃𝑘 𝛷𝐾
𝑇 + 𝐺𝑘𝑄𝑘𝐺𝑘

𝑇       𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 

Equation 7 

𝐾𝑎𝑙𝑚𝑎𝑛 𝐹𝑖𝑙𝑡𝑒𝑟 {

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇[𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘]
−1        𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝐾𝑎𝑙𝑚𝑎𝑛 𝑔𝑎𝑖𝑛𝑠

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘[𝑧𝑘 − 𝐻𝑘�̂�𝑘
−]              𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑃𝑘
+ = [1 − 𝐾𝑘𝐻𝑘]𝑃𝑘

−                          𝑢𝑝𝑑𝑎𝑡𝑒 𝑖𝑡𝑠 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

 
Equation 8 

Where Qk is the matrix describing the uncertainty in the system, whereas the Rk matrix models 

the uncertainty associated with measurements. The developer must develop these matrices based 

on knowledge of the system and sensors. 

Figure 18, displays the KF algorithm. The linear model is split into two groups, the system 

model and the KF. The system model and KF do not run at the same time. The system model 

runs at high frequency to report the system state with time. The system model proceeds solely 

based on time measurements. On the other hand the KF runs when measurements are a both 

available and acceptable. In that case KF runs after the state has been predicted by the system for 

that cycle [20]. 
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Figure 18 KF Algorithm  

Extended Kalman filter (EKF) deals with non-linear motion and observation models [42]. 

Equation 9 shows the general model for non-linear system state and observation. 

{
�̇� = 𝑓(𝑥, 𝑡) + 𝑔(𝑤, 𝑡)

𝑧 = ℎ(𝑥, 𝑡) + 𝑣(𝑡)
 

Equation 9 

Where: 

f, g and h are vector valued non-linear functions 

w and v are noises 

Equation 9 is used to develop the EKF form the KF presented in Equation 7 and Equation 8. 

In the EKF, the trajectory error estimates are used to update the reference trajectory with time. 

Equation 10 and Equation 11 describe the EKF [20]. 

𝑆𝑦𝑠𝑡𝑒𝑚 𝑀𝑜𝑑𝑒𝑙 {
�̂�𝑘+1 = 𝜑𝑘�̂�𝑘                         𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑆𝑡𝑎𝑡𝑒

𝑃𝑘+1 = 𝛷𝑘𝑃𝑘 𝛷𝐾
𝑇 + 𝐺𝑘𝑄𝑘𝐺𝑘

𝑇       𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 

Equation 10 
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𝐾𝑎𝑙𝑚𝑎𝑛 𝐹𝑖𝑙𝑡𝑒𝑟 {

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇[𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘]
−1        𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝐾𝑎𝑙𝑚𝑎𝑛 𝑔𝑎𝑖𝑛𝑠

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘[𝑧𝑘 − ℎ(�̂�𝑘
−)]              𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑃𝑘
+ = [1 − 𝐾𝑘𝐻𝑘]𝑃𝑘

−                          𝑢𝑝𝑑𝑎𝑡𝑒 𝑖𝑡𝑠 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

 
Equation 11 

 VSLAM 

In the past, SONAR and laser rangefinders have widely and successfully been utilized for 

simultaneous localization and mapping [43], [44], [45]. In recent years with the development of 

image sensors and cheap cameras which are compact, accurate and non-invasive, vision has 

become more popular for SLAM. Research studies in the field of visual SLAM (VSLAM) can be 

categorized by stereovision, monocular vision, off-line SLAM and real-time SLAM.  

Structure from Motion (SfM) builds the 3D structure of a scene and the camera parameters 

from a bundle of images from that scene, taken from different view point. SfM in nature is an 

offline method which requires analyzing a complete image sequence to create a reconstruction of 

the camera trajectory and scene structure. Hence, SfM cannot be used for real-time SLAM [45]. 

McLauchlan and Murray [46] worked on Variable State-Dimension Filter (VSDF) for 

simultaneous structure and motion recovery from a moving camera by utilizing a sparse 

information filter framework. VSDF is not accurate for long term tracking and fails loop closing 

[45]. The major part of published literature on VSLAM focuses on stereo vision application. 

Despite the considerable uncertainty in the depth information provided by the stereo vision and 

the complexity involved in the calibration, yet it has demonstrated the most accurate results in 

long run, compared to the other visual configurations [47]. The most complicated problem in 

VSLAM is real-time 3D application using monocular vision or single camera. Single camera is 
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easy to use but have the problem of scale ambiguity. Davison [48] tackled this problem and 

developed a solution called MonoSLAM which is a real time single camera SLAM with the 

emphasis on the localization [45].   

 Visual Odometry 

Visual odometry or egomotion is the estimation of camera motion. Egomotion is usually the 

base for recovering the motion and structure in monocular setting. Generally, there are two 

approaches toward egomotion, feature matching between consecutive frames and tracking 

features over stack of frames. The earlier method suffers from higher drift rates since it is based 

on the data from only two images. The feature track over a sequence of frames results in higher 

accuracy but requires higher computational capacity. To solve this issue a bundle adjustment 

algorithm that optimize the analysis over a limited number of images is applied. Some other 

algorithms also use GPS or INS data to reduce the drift [49]. For on road applications with a 

single camera pointed downward, a planer vision is analyzed which results in reduced degrees of 

freedom for camera motion estimation and provides improved results. Kitt et al, [49]  proposed 

an algorithm for egomotion estimation solely from monocular image stack. The algorithm 

reduces the degrees of freedom with the assumption of planarity for the road surface and fixed 

camera hight. The results shows no significant drift from the true path. Lovegrove et al, [50] 

used a rear parking camera for visual odometry and demonstrated results close to the ground 

truth path. He also improved the system accuracy by fusing the visual odometry with GPS.  
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 Camera Calibration 

The calibration process is required to determine intrinsic and/or extrinsic parameters of a 

camera. Intrinsic parameters are specific to a camera. It includes information such as focal length 

(fx,fy), optical centers (cx,cy), scaling factors for row and column pixels, Skew factor, Lens 

distortion (pin-cushion effect) parameters. Given a set of images taken using the camera, there 

are mathematical solutions available that allow obtaining the camera parameters [51].   

 Mathematical Solution 

The configuration of a camera matrix is described in Equation 12. To find the calibration 

coefficients, Equation 13 and Equation 14 must be solved. 

𝐶𝑎𝑚𝑒𝑟𝑎 𝑀𝑎𝑡𝑟𝑖𝑥 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] Equation 12 

{
𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝑥(1 + 𝑘1𝑟

2 + 𝑘2𝑟
4 + 𝑘3𝑟

6)

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6)

 Equation 13 

{
𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟

2 + 2𝑥2)]

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦 + [𝑝1(𝑟
2 + 2𝑦2) + 2𝑝2𝑥𝑦]

 
Equation 14 

Where 

k1, k2, k3 are radial distortion coefficients 

p1 and p2 are tangential distortion coefficients 

Calculation of these parameters is done through basic geometrical equations. The equations 

used depend on the chosen calibrating objects. Checkerboard is the most common calibration 

pattern. Calibration pattern provides a series of real word points with known relative coordinates 
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to solve the above equations. As shown in Figure 19, the key points on a chessboard are easily 

detectable using corner detection algorithms.  

 

Figure 19 Keypoints Detection for a Chessboard Pattern 

Once the key points are detected, their coordinates in the image system can be recovered. 

Knowing the size of the squares and the number of rows and columns on the board, the relative 

coordinate of each key point can be calculated. In theory, calibration can be done with as few as 

two proper captures of the pattern. However, for proper results the OpenCV manual recommends 

a minimum of 10 shots of a pattern from different angles, as illustrated in Figure 20. To evaluate 

the calibration process, a re-projection error is calculated to provide a qualitative measure of 

accuracy of the results. The re-projection error is the distance between the pattern key points 

detected in a calibration image, and the corresponding real world points projected into the same 

image. Therefore, a smaller re-projection error describes more accurate results. However, many 

camera calibration tutorials such as the one provided in Practical OpenCV book [52]  

recommend values less than 0.5 for satisfactory results. Zhang provided the mathematical 
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solution of calibration [51] and the calculation of re-projection is described by R. Hartley and A. 

Zisserman in [53]. 

 

Figure 20 Using Checker Board for Calibration [54] 

Extrinsic parameters corresponds to rotation and translation vectors which transforms a 

coordinates of a 3D point in real world to the camera coordinate system, see Figure 21.  

 

Figure 21 Transformation using extrinsic camera parameters 

The extrinsic camera parameters explain the relation between the coordinates of a point P in 

world (Pw) and camera (Pc ) coordinates.  The transformation using the extrinsic camera 

parameters is described in Equation 15. 

𝑃𝑐 = 𝑅(𝑃𝑤 − 𝑇) 
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Where: 𝑅 = [
𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] is the rotation matrix and 𝑇 = [

𝑇𝑥
𝑇𝑦
𝑇𝑧

] is the translation matrix 

If 𝑃𝑐 = [
𝑋𝑐
𝑌𝑐
𝑍𝑐

] and 𝑃𝑤 = [
𝑋𝑤
𝑌𝑤
𝑍𝑤

], then: 

[
𝑋𝑐
𝑌𝑐
𝑍𝑐

] = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] [
𝑋𝑤 −
𝑌𝑤 −
𝑍𝑤 −

𝑇𝑥
𝑇𝑦
𝑇𝑧

] Equation 15 

 IR Camera Calibration 

Due to the physical characteristics of the IR acquisition process, accurate localization of the 

calibration features is generally not as easy as the optical process, subsequently causing 

unsatisfying calibration results. Review of the literature in this area indicates that using a heated 

chessboard pattern alone, and the same calibration algorithm as used for optical cameras will 

result in projection error greater than 1 [55]. 

To improve the calibration quality for IR cameras, innovative methods were found in the 

literature including using additional sensors such as a laser range finder [56], or using an ellipse 

algorithm [55] which claim to be able to reduce the re-projection error IR cameras close to 0.5 or 

less which are typically recommended for calibration with optical cameras.  

Ellmauthaler et al. [55] method for calibration of IR camera, included developing a calibration 

pattern similar to conventional checkerboard consisting of miniature light-bulbs. Their algorithm 

fits an ellipse to the heat radiation from each light bulb and calculates the center of mass of the 
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extracted ellipsoidal region as the starting calibration point. The center of mass pattern is later 

refined iteratively by modifying mappings to and from an undistorted grid model. The result of 

such processing chain significantly reduces the projection error when compared to the result of 

typical calibration algorithms used for optical cameras.   
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 RESEARCH METHODOLOGY 

 

3.1. INTRODUCTION 

Despite the importance of roller pass mapping, this tool has not become popular among the 

contractors, yet. Part of the contractors’ reticence to implement the technology is related to the 

high cost of acquisition and the requirement for setting up a base station on the site. Therefore to 

overcome those issues, in this study, a self-contained device that is capable of producing roller 

pass maps with acceptable accuracy and affordability was developed. In this chapter the 

hardware selection, the mathematical approach and software development are individually 

discussed. 

3.2. RESEARCH APPROACH 

A roller pass mapping system is not a control system, the system only monitors the operation 

and provides information to assist the operator. Thus, a solution based on three main steps 

including: 

1. Sensing the environment 

2. Interpreting the collected data to find the roller’s relative location 

3. Updating the tracking map 

In development of the new roller pass mapping device, different technologies were studied. 

The candidate methods were rated based on practicality, simplicity and cost effectiveness in 

achieving the objectives of this research. Figure 22 describes the overall approach used in this 

study.  
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Figure 22 Research approach diagram 

The highlighted part in Figure 22, describes the approach that produced better results for the 

purpose of this study. 

 Sensing the Environment 

Based on the literature review, different technologies including machine control sensors, GPS, 

ultra-wideband (UWB), radio frequency identification (RFID) and computer vision based 

techniques have been used for automated data collection during construction. Table 1, 

summarizes the advantages and disadvantages of such methods.  
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Table 1 Comparison of Tracking Technologies 

 Major Advantage Major Disadvantage 

Machine Control 

Sensors 

Low cost, do not rely on external 

sources 

Provide limited information of the 

surrounding environment 

Dead Reckoning 

Sensors 

Low cost, do not rely on external 

sources 

Accuracy drops with time and 

distance, Susceptibility to vibration  

Time of Flight 

Based Sensors 
Accurate range measurement Incapable of spectral measurements 

Global Positioning 

System 
Accuracy 

Expensive for high precision 

applications, 

Ultra-Wideband Reliable tracking data 
Requires a network around the 

construction site 

Radio Frequency 

Identification 
Low cost Low range 

Computer Vision Low cost, Spectral measurement Accumulated error for tracking 

The comparison based on Table 1 led to choose computer vision for this research. An inertial 

sensor could be used as a backup system. 

 Hardware Selection 

In the early stages of the experimental work, it became clear that data collection using an 

optical camera will not be effective for works performed during night. Therefore, it was decided 

to use an IR camera for data collection. The reasoning behind this decision relies in the nature of 

asphalt concrete paving jobs. The temperature of both hot and warm mix asphalt are significantly 

higher than the surrounding environment. Therefore, the hot mat should be easily identifiable in 

IR images.  
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Since one of the objectives of this project was to deliver a low cost solution, therefore after 

studying the IR cameras available in the market, we chose the FLIR PathFindIR (black and 

white) as the cheapest camera that met the project’s requirements. The main criteria for camera 

selection were minimum frame rate of 15fps and an industrial design which allows using the 

camera in harsh environments. The specification for FLIR® PathFindIR (black and white) is 

listed below: 

 Frame Rate: 15fps 

 Sensor Type: 320x240 uncooled, 38 micron pitch, 8-14 micron LWIR 

 Field of view: 36º H x 27º V 

 Video output: Standard NTSC, or PAL 

 Hermetically sealed and rated to IP67 for handling harsh environments 

Additional equipment used in the experimental setup include: 

 1 x triple suction cup camera mount with adjustments around 3 axis 

 1 x mobile data logger used for video recording, integrated with GPS and accelerometer  

 1 x 7” display screen that displays the real time IR view and system status 

 1 x laptop with 8 Gigs of memory and Intel Core i5 CPU used for data processing 

*The GoPro camera was only used for documenting the data collection and was not part of the development rig. 

Figure 23Figure 23 describes the setup used on rollers to capture the operator field of view. 
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FLIR PathFindIR 

 

*GoPro HERO3 

   
Laptop for Near Real-

Time Video Processing 

Safety Vision DVR Model SVR 4100 and 7” 

Display Screen 
Triple Suction Cup Camera Mount 

*The GoPro camera was only used for documenting the data collection and was not part of the development rig. 

Figure 23 Camera Setup on the Roller 

 Camera Calibration 

In order to make any measurement based on an image, the camera has to be calibrated first. 

The camera matrix calculated through calibration process, only depends on the camera intrinsic 

properties. Therefore, once calculated, it can be stored for existing and future applications.  

Infrared camera calibration 

Originally a checkerboard similar to the typical pattern described in chapter 2, which are used 

for calibration of optical cameras was used for in this study. To make the pattern visible in LWIR 

spectrum range, magnet squares were placed on the black squares. The whole pattern was 

uniformly heated with a heat lamp. As it is shown in Figure 24 Chessboard Heated Pattern-b, the 
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square edges and corners in the image taken by the IR camera are fuzzy (the image is inverted). 

This is due to the fact that heat disseminates into the air from the heated magnets. Thus, key 

point extraction for heated chessboard pattern using IR camera is less precise compared to 

calibration process for optical cameras. Review of the literature in this area indicated that using a 

heated chessboard pattern alone, and the same calibration algorithm as used for optical cameras 

will result in projection error greater than 1 [55]. In this study re-projection error for FLIR 

PathFindIR infra-red camera using a heated chessboard was found to be between 1.2-1.5 after 

multiple repetitions.  

To reduce the re-projection error, innovative methods were found in the literature. In this 

study, the method recommended by Ellmauthaler et al. [55] was selected to reduce the re-

projection error. The methodology includes using a symmetrical circular pattern with an ellipse 

detection feature, since circles look like ellipses if the calibration pattern is not parallel to the 

camera plane.  

In the calibration module of the software developed in this study, there is an option for ellipse 

correction which refers to this method. Ellmauthaler et al. also proposed an iterative solution for 

calibration process. However, based on the limited information available in their paper, 

reproduction of their program was not possible. Therefore, for calibration of the IR camera, a 

special symmetric circular pattern, displayed in Figure 25, was developed and the data were 

processed by Zhang [51] algorithm. Using the circular pattern the re-projection error decreased 

to approximately 1. The custom design of the pattern include a slot that allowed inserting a 

heated plate inside the pattern, which makes it visible to the IR camera.  



55 

 

 

  

a) Optical Image of a Chessboard Pattern b) IR Image of a Heated Chessboard Pattern 

Figure 24 Chessboard Heated Pattern 

  
a) Optical Image of a Symmetrical 

Circular Pattern 

b) IR Image of a Symmetrical Circular 

Pattern 

Figure 25 Symmetrical Circular Pattern 

 Visual Odometry  

Based on the literature review, a methodology proposed by Campbell et al. [57] for visual 

odometry was chosen for this study. However, since the Campbell et al. method was developed 

for using with optical cameras, some modifications were made to improve the results. In the 

following, the original methodology proposed by Campbell et al. is discussed. Then it is 
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explained why such method could not be as accurate for using in IR vision and finally the 

modifications that are made to the algorithm will be discussed. 

The original visual odometry method by Campbell et al., is based on monocular vision rather 

than stereo vision which helps developing a simpler, and more cost effective device but is 

restricted to planar surfaces. Surface planarity is the primary assumption of the solution. The 

assumption of planer surface is valid for paving projects to a great extent. The method includes 

the following steps: 

1. Mapping Camera Coordinates to the Ground Plane 

In this step, the required transformation between the camera plane/image coordinates (u,v) 

of a tracked feature and its corresponding point (x,y) on the ground plane is calculated. 

The origin of the image coordinate system is placed on the upper left corner of the image. 

The schematic of the system is presented in Figure 26. “H” is a user input and denotes the 

height of the camera from the ground, D is the distance from the roller to the intersection 

of the principal ray with the ground plane. Thus, the camera tilt, “α” can be calculated 

from Equation 16: 

𝛼 = tan−1(
𝐻

𝐷
) Equation 16 
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Figure 26 Mapping Camera Coordinates to the Ground Plane [57] 

From trigonometry, one can show: 

𝑣 −
𝑉
2

𝐿
=
𝑓

𝑧
 

Where 𝐿 = 𝑧 tan(𝛽) and 𝑓 =
𝑉

2 tan(
𝑉𝐹𝑂𝑉

2
)
 

The vertical angle between focal point and the observed point is recovered from Equation 17 

[57]1: 

tan(𝛽) =
(2𝜗 − 𝑉)

𝑉
tan (

𝑉𝐹𝑂𝑉

2
) Equation 17 

Where 

                                                 

 

1 The original equation in [55] is: tan(𝛽) = (2𝜗 − 𝑉)tan (
𝑉𝐹𝑂𝑉

2
). After verifying the math, it was found that  

tan(𝛽) =
(2𝜗 − 𝑉)

𝑉
tan (

𝑉𝐹𝑂𝑉

2
) 
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“V” is the image height, 

“z” is defined as the depth of the observed point from the camera , 

“f” is the focal distance’ 

And “VFOV” is the vertical field of view of the camera 

 

Once α and β are known the distance from the roller is given by Equation 18: 

𝑦 =
𝐻

tan(𝛼 + 𝛽)
 Equation 18 

“z” can be recovered from Equation 19: 

𝑧 =
𝐻𝑐𝑜𝑠(𝛽)

sin(𝛼 + 𝛽)
 Equation 19 

2. Estimating Roller Rotation and Translation 

Over a short interval, the roller’s movement on the ground plane can be decomposed into 

a change in heading (rotation about a vertical axis) and a displacement (translation). To 

recover the roller’s heading and translation from a series of successive images, the 

concept of optical flow must be introduced first. Optical flow is the pattern or 2D 

projection of the physical movement of objects, surfaces, and edges in a visual scene 

caused by the relative motion between an observer (an eye or a camera) and the scene. 

Optical flow concept was developed based on the Lucas and Kanande [41] work on image 

registration which was discussed in chapter 2. The assumption is that the appearance of 

https://en.wikipedia.org/wiki/Human_eye
https://en.wikipedia.org/wiki/Camera
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the image i.e. brightness constancy remains the same over small regions in the image. 

Thus: 

),,()1,,( tyxItvyuxI   Equation 20 

 

Where: 

I is the image density 

t is the time 

(u,v) is the displacement vector 

(x,y) is the feature coordinate 

From constancy in brightness, we can drive Equation 21: 

0
)(
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 Equation 21 

 

If we denote 𝐼𝑥 =
𝜕𝐼

𝜕𝑥
 , 𝐼𝑡 =

𝜕𝐼

𝜕𝑡
  

x

t

I

I
v 

 

Equation 22 

Where v describes the one dimensional velocity vector, as illustrated in Figure 27.  



60 

 

 

 

Figure 27 1D Optical Flow Estimation 

 

For 2D tracking we have: 
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Equation 24 

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0 Equation 25 

∇𝐼𝑇𝑢 = −𝐼𝑡 Equation 26 

Where 𝑢 = [
𝑢
𝑣
] , ∇𝐼 = [

𝐼𝑥
𝐼𝑦
] 

A sequence of ordered images could be used to estimate motion as either instantaneous 

image velocities or discrete image displacements. An example of optical flow 

representation is presented in Figure 28. This image is simply provided as an example of 

changes in the optical flow based on the near features and distant features. As it can be 

seen in the image, distant features from the camera exhibit very small amounts of 

parallax-induced optical flow.  
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Figure 28 Optical Flow Estimation [57] 

Generally, the optical flow vectors below the horizon corresponds to the points that are 

close to the roller and are good for translation estimation. The vectors above the horizon 

mostly refers to the distant features that are not suitable for translation estimation but still 

could be used for rotation estimation. The area close to the horizon must be excluded from 

path estimation, as it can cause error in the calculation. Therefore, each image is divided 

into three regions denoted as sky (above the horizon), dead zone (around the horizon), and 

ground (below the horizon). Sky and ground regions are used for rotation and translation 

calculations, respectively. Although roller rotation affects the optical flow of both near 

and distant features with the same change in heading, but since the distant features are 

relatively insensitive to the optical flow induced by translation, thus distant features are 

selected for rotation analysis. Figure 29 illustrates the translation effect on heading 

measurement. If we assume that the two features in Figure 29 are fixed and the roller is 

following a straight path without any change in the heading, the measure of heading still 
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will be affected by the translation (a'≠a and b'≠b). However, the effect is less significant 

for measurements based on distant features (ǀb-b'ǀ<<ǀa-a'ǀ). 

 

Figure 29 Effect of translation on heading measurement 

 

To justify why it is safe to ignore the translation effect on the change of heading 

measured from distant objects, the magnitude of translation between two frames must be 

considered. Based on the recommended rolling speeds provided in Table 2 [58], the 

maximum rolling speed is about 12 km/hr or 3.3 m/s (~11 ft/s). The cameras used in this 

study can capture 15 frames per second. It means the maximum expected translation 

between two subsequent frames is about 22 cm (~9 in). Therefore, for such a small 

translation per frame, we can ignore the translation effect on the optical flow of distant 

features. 

Table 2 Recommended rolling speeds 

Speed (km/hr) Task 

4-6 Breakdown compaction (static rolling with tandem rollers) 

3-5 Intermediate compaction (static rolling with tandem rollers) 

3-5 Intermediate compaction (Vibration) 

4-12 Intermediate compaction (Pneumatic tired roller) 

6-8 Finish rolling (static rolling with tandem rollers) 
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To measure the heading, flow vectors in the sky region are back projected into a 

vertical cylindrical coordinate system, centered on the camera. Roller displacement 

between two consecutive frames can be decomposed into a change in heading (rotation 

about a vertical axis) and a displacement (translation). The heading is recovered from 

Equation 27.  

𝐻𝑒𝑎𝑑𝑖𝑛𝑔 = tan−1(
𝑢 − 𝐶𝑢
𝑓𝑦

)   Equation 27 

Where  

C(u,υ) is the center of image in image coordinate system 

“u” is the lateral coordinate of the detected feature 

fy is the focal point coordinate along the y access of the camera 

 

 The Issue for Implementation in IR Vision 

Due to the thermal uniformity of the background (mostly the area designated as the sky 

region) in IR vision, especially during the night, less features could be detected for analysis of 

roller’s heading. To compensate for the loss of features in the sky region, which only affects the 

heading analysis, the following modification was done to the original method by Campbell et al. 

developed for optical cameras. 

 Modification for IR Implementation 

To increase the system reliability, the possibility of adding other features for rotation analysis 

were studied. Since, the mat width is generally fixed and the hot edges are distinctive features in 
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IR images, thus they could be selected for rotation analysis. As illustrated in Figure 30, due to 

the perspective effect the parallel edges of the mat are sloped in the images. The slopes should be 

symmetric only if the camera on the roller is parallel to the edges. In other words, if the image 

plane is not perpendicular to the road edges, the slopes will appear unsymmetrical in the image. 

The slope(s) of the edges is/are independent of roller lateral location on the map, for illustration 

compare state 1 vs 2 in Figure 30. The slope(s) of the edges will not change as long as the roller 

is following a straight path. As illustrated in state 3 of Figure 30, once the roller’s heading 

changes, the slope(s) of the edges will change too. The change in roller’s heading, described by α 

is the difference between the angles of the edge slopes in two successive images denoted by β 

and γ. Either of the edges could be used for rotation analysis, however depending on the roller’s 

lateral location, camera’s shooting angle or field of view, there might be cases where only one 

edge is visible in the image. 

The issue with using edge slope is that it could be influenced by road curvature. However, the 

curve affects the slope when it is observed in the distance while the edges near to the roller the 

edges are straight. Therefore the edge selection will be only performed in the ground region of 

the image.  
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Figure 30 Illustration of geometric approach to estimate the change in roller’s heading 

Canny edge detector discussed in chapter two was used to detect the mat edges. Canny returns 

a series of points along the mat edges. The next step is to fit a line through the edge points that is 

as close as possible to the mat edges. In each image captured by the IR camera placed on the 

roller, there could be as many as two edges visible.  As discussed in chapter 2, there are different 

techniques available to construct a straight line based on the points from edge detection. Hough 

transform was selected in this research because it performs segmentation and line detection 

simultaneously. Therefore, it is possible to detect both edges at the same time. There are two 

functions in OpenCV that implement Hough transformation, a simple Hough transform and a 

probabilistic Hough transform. The first function outputs an array of (θ, rθ) which includes all 

detected lines in polar coordinates. The probabilistic function provides a more efficient 

implementation of Hough transform by allowing the user to input the minimum number of points 
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required to form a line, the line angle, thickness and the maximum gap allowed between two 

points that could be considered on the same line. The function outputs an array that includes the 

beginning and the end of each line detected. The probabilistic Hough transform was used in this 

study, because it allows filtering out small lines due to roller marks, the slopes close to horizontal 

line and joining shorter edge segments to construct longer lines along the edge. Using the 

beginning and end point of each detected line by Hough transform, the slope of each line was 

calculated. Due to the perspective effect, the slope of the lines fitted to the right edge will be 

positive and the slope of the lines fitted to the left edge will be negative. The measured slopes 

will be grouped based on their sign and the median of each group will be assigned to the 

respective edge as the representative slope. The angle constructed between the extension of each 

edge of the mat and the centerline of the image displayed in Figure 30 will be recovered from 

Equation 28 and Equation 29. 

β = tan−1(
𝑚𝑒𝑑𝑔𝑒 −𝑚𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒

1 +𝑚𝑒𝑑𝑔𝑒𝑚𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒
) = tan−1(𝑚𝑒𝑑𝑔𝑒) Equation 28 

γ = tan−1(
𝑚𝑒𝑑𝑔𝑒
′ −𝑚𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒

′

1 +𝑚𝑒𝑑𝑔𝑒
′ 𝑚𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒

′ ) = tan−1(𝑚𝑒𝑑𝑔𝑒
′ ) Equation 29 

Where 𝑚𝑒𝑑𝑔𝑒 and 𝑚𝑒𝑑𝑔𝑒
′  correspond to ith and i-1th frames respectively.  

𝛼 = 𝛾 − 𝛽 Equation 30 
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 Homography Matrix Calculation 

To measure the translation, first the rotational flow field must be subtracted based on the 

estimated heading. Then to calculate the pure translation, the flow vectors must be back-

projected on to the ground plane. For such a transformation that provides the top-down (bird’s 

eye) view and is essential to remove the perspective effect, a homography matrix has to be 

calculated.  

Homography is a 3 by 3 matrix that relates the pixel coordinates between two images. Once a 

homography matrix is applied to an image, it will remap every pixel in the image to create a new 

image from the original image, see Figure 31 for illustration. To estimate a homography matrix, 

one may start with knowing that X2 ∼ HX1, where X1, X2 are unique coordinates in the original 

image and transformed image, respectively and H is the homography matrix. Thus in 

homogenous coordinates: 

 

[

𝑥2
𝑦2
𝑧2
] = [

𝐻11 𝐻12 𝐻13
𝐻21 𝐻22 𝐻23
𝐻31 𝐻32 𝐻33

] [

𝑥1
𝑦1
𝑧1
] ⇔ 𝑋2 = 𝐻𝑋1 Equation 31 

 

In in-homogenous coordinates (𝑥2
′ =

𝑥2

𝑧2
 and 𝑦2

′ =
𝑦2

𝑧2
),  

𝑥2
′ =

𝐻11𝑥1 + 𝐻12𝑦1 +𝐻13𝑧1
𝐻31𝑥1 + 𝐻32𝑦1 + 𝐻33𝑧1

 Equation 32 
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𝑦2
′ =

𝐻21𝑥1 + 𝐻22𝑦1 + 𝐻23𝑧1
𝐻31𝑥1 + 𝐻32𝑦1 + 𝐻33𝑧1

 Equation 33 

Without loss of generality, set z1 = 1 and rearrange: 

𝑥2
′  (𝐻31𝑥1  +  𝐻32𝑦1  +  𝐻33)  =  𝐻11𝑥1  +  𝐻12𝑦 1 + 𝐻13 Equation 34 

𝑦2
′  (𝐻31𝑥1  +  𝐻32𝑦1  +  𝐻33)  =  𝐻21𝑥1  +  𝐻22𝑦 1 + 𝐻23 Equation 35 

Although these inhomogeneous equations involve the coordinates nonlinearly, the coefficients of 

H appear linearly. Thus, Equation 34 and Equation 35 were rewritten as: 

𝑎𝑥
𝑇ℎ = 0 Equation 36 

𝑎𝑦
𝑇ℎ = 0 Equation 37 

Where: 

ℎ = (𝐻11, 𝐻12, 𝐻13, 𝐻21, 𝐻22, 𝐻23, 𝐻31, 𝐻32, 𝐻33)
𝑇 

𝑎𝑥 = (−𝑥1, − 𝑦1, −1,0,0,0, 𝑥2
′𝑥1, 𝑥2

′𝑦1, 𝑥2
′ )𝑇 

𝑎𝑦 = (0,0,0, −𝑥1, − 𝑦1, −1, 𝑦2
′𝑥1, 𝑦2

′𝑦1, 𝑦2
′)𝑇 

Using a set of corresponding points, the following linear system of equation are solved: 

𝐴ℎ = 0 Equation 38 

Where 
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𝐴 =

(

 
 
 
 

𝑎𝑥1
𝑇

𝑎𝑦1
𝑇

.

..
𝑎𝑥𝑁
𝑇

𝑎𝑦𝑁
𝑇
)

 
 
 
 

 

 

 

Figure 31 Plane Transfer Homography 

 Estimating Global Motion 

The incremental deviations in the roller pose are linked frame-by-frame to derive the global 

estimate of the roller’s position. 

 Software Development 

Once a sequence of images is available from the camera, it is time to process the images and 

produce as much as helpful information as possible in near real-time. There are a variety 

different platforms and software available for image processing. The most common platforms 

include MATLAB and Open source computer vision library (OpenCV), the latter is a C++ 

library. OpenCV is an open source library for both computer vision and machine learning. It was 

built to facilitate a common infrastructure for CV applications and it is free for both academic 

and commercial use. In addition, OpenCV design was based on computational efficiency with a 
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strong emphasis on real-time applications. Perhaps the most useful part of OpenCV is its 

architecture and memory management. It provides users with a framework in which one can 

work with images and videos using OpenCV’s algorithms or user developed algorithms, without 

worrying about allocating and de-allocating memory for images. OpenCV has C++, C, Python, 

Java and MATLAB interfaces and supports Windows, Linux, Android and Macintosh operating 

systems [59]. Based on the project requirements and the advantage of being open source, 

OpenCV was chosen for software development in this study. 

A user friendly interface can always promote software application, therefore one of the 

objectives of the software development in this project was to develop a friendly graphical user 

interface (GUI). C# is one of the programming languages that provide developers with the tools 

required for developing windows based GUIs. Fortunately, there is a C# wrapper for OpenCV 

library which is called EmguCV. Using EmguCV, one can use the majority of OpenCV functions 

in C# as well as benefiting from C# GUI development toolbox. Eventually, C# and EmguCV 

were used for software development. 

 Software Demonstration 

The software has a modular design. The startup page, shown in Figure 32, allows the user to 

start choosing between calibrating the camera, roller tracking and viewing logged projects and 

help. 
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Figure 32 Startup Page 

 Camera Calibration Form 

Camera calibration is necessary whenever a new camera is being used. Once the camera 

parameters are retrieved, the parameters will be saved in a text file under 

“…Project Directory\RollerPath\CalibrationFiles\Calibration_Output.txt” 

The camera calibration module displayed in Figure 33, allows calibration of both regular and 

infrared cameras. The infrared calibration is done only for the purpose of finding the camera 

matrix. This module, allow calibration using checkerboard, symmetric and asymmetric circular 

patterns for calibration of IIR camera. However, using a heated checkerboard pattern generally 

result in re-projection errors larger than one.  

The functionality and the purposes of buttons and options available in the camera calibration 

module are described in the following: 

Start: The start button allows access to the camera video stream and displays the video in the 

top-left box. If histogram equalization is checked, the intensity of the input stream is adjusted to 

enhance contrast before being displayed or grabbed for processing. The user can adjust the 
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equalization level and visually examine the results. If the “Infra-Red Camera” box is checked, 

the input image will be inverted for better visualization of heat sources.  

 

Figure 33 Camera Calibration Module 

Grab Frame: Once the user finds the appropriate view of the calibrating pattern in the top-left 

window, pressing the “Grab Frame” will pick the frame for calibration. 

Process: The process button collects all the user input parameters, including: the number of 

images used for calibration, the pattern size (width, height), aspect ratio, pattern type 

(Chessboard, Circular, and Asymmetrical Circular), and the size of features in the pattern.  

Calibrate: The calibrate button uses the calibration algorithm available in OpenCV for 

calibration. Once the calibration process is done, calibration parameters are displayed in the text 

box. The calibrated images are also be displayed for visual examination of the results. If the re-

projection error is more than 1.0, the program will recommend recalibration using a new set of 

image. 
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 Homography Transformation Form 

To calculate roller translation based on images, the perspective effect must be corrected. An 

image is only free of perspective, if taken perpendicular to the plane containing the object. In this 

case, top-down (bird’s eye) view of the paving lane is required for processing. To calculate the 

birds eye view, at least four pairs of corresponding points are required. For this project, the 

camera is placed on the top a roller and faced toward the paving lane. Due to the perspective 

effect, the width of paving lane decreases with the distance from the roller, however, in reality 

the lane edges are parallel. This feature was used for back calculation of the homography matrix. 

As described in  

Figure 34, the user can grab an image from a camera/recorded video or load a saved image. 

Then, user has to pick four points (p1, p2, p3, p4) such that they create a rectangle along the edges 

of the paving lane.  

The markers on the side of the display window can help easier selection of the points. The 

actual coordinates of the selected points relative to the camera center are calculated from user 

inputs including paving width, roller distance to the rectangle, and rectangle height. A visual 

guide for users to enter the relative geometry of the selected points is provided at the bottom of 

the form. 

Homography: The homography button calculates the homograhy matrix from comparing the 

coordinates of the selected points with their actual coordinates relative to the camera center. 

Since the actual coordinates are not affected by perspective, the homography matrix is calculated 
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such that will remove the perspective from the image. Once the calculation process is over, the 

software displays the top down view image for visual inspection of the results and the calculated 

matrix will be saved under: 

“…Project Directory\RollerPath\CalibrationFiles\homo_calc.txt” 

 

 

Figure 34 Estimation of Homography Matrix 

 Roller Tracking Form 

The “Roller Tracking” module displayed in Figure 35 is where the feature detection occurs. 

This window also provide general information such as frame rate, number of features detected, 

User guide to input requested parameters: d1= Roller’s Distance from the edge 

d2= The roller’s distance from near side of the rectangle 

d3= The rectangle dimension along the road centerline  

P1, P2, P3, P4= 4 corners of a virtual rectangle built on the pavement edges 
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distance traveled and also allows the user to choose the unit system. Every frame from the 

camera is corrected by the calibration matrix calculated using the camera calibration module, 

before being displayed in this module. The user has to define the horizon lines to separate the sky 

and ground regions. These are the horizontal red lines in Figure 35. This is done at the beginning 

of each compaction job and because of the planar surface assumption the horizon line is not 

expected to change throughout the project.  

  

Figure 35 Roller Tracking Module  

Inputting the limits of the sky and ground 
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Hough Transform Parameters 
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The program also uses a “Harris” corner detector for feature selection. The red dots in Figure 

35 are the features originally detected by the Harris corner algorithm. However, in reality not all 

of the detected features are fixed. Tracking based on moving features introduces error in the 

calculation. Therefore, to assure that the detected features are reliable for tracking, historical 

information on the feature behavior are required. The red features are tracked in 5 consecutive 

frames after detection. If a feature is stable for 3 frames, its color will turn into yellow and finally 

will change to green if its historical record reaches 5 frame. Only green features are qualified for 

roller path calculation. The user has to pick a block/window size for Harris corner detection 

algorithm. This parameter usually depends on the image resolution, computation capacity, type 

of processing (real-time vs post processing), and image scene uniformity. Therefore, it could be 

different from job to job and if the hardware is changed. Other parameters such “Quality Level”, 

and “Min Distance” will help to filter out the outliers. The “Max Feature Count” sets a limit for 

the maximum number of features detected in a frame and avoids overwhelming the system 

processing capacity. In chapter 4, three sets of input parameters are used to evaluate the system 

performance. 

Once reliable features are available on the ground, both roller’s translation and heading can be 

determined. The heading change, calculated based on edge detection is also added to the pool of 

headings measured from sky features. The median of the pool will be selected for heading 

analysis. To estimate the roller’s translation, the perspective effect has to be removed from the 

image. Therefore a perpendicular/top-down view of the surface is required.  The homography 

matrix calculated using the homography module is used to estimate the top-down view as 
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displayed in Figure 36. The translation calculation in the top-down view is only performed on the 

ground portion of the frame. The features in the sky portion and edge slopes in the ground 

portion are analyzed for “Heading” measurement. The median of the headings calculated for 

each stabilized feature is used as the true angle of rotation for motion estimation. 

 

Figure 36 Top-Down View 

 Roller Pass Tracking View 

The roller track points are periodically repopulated and the tracking map displayed in Figure 

37 is updated. Before start rolling, operator has to input the roller width and the required number 

of passes to accomplish the compaction in the map view window. As the roller moves over the 

surface the overlaps of the roller width will be painted with a new color. The color is selected 

from the RGB color system from red to green. Color selection is a function of number of 
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accomplished passes to the total number of required passes. The first pass is always displayed in 

red and once it turns green the required number of passes is achieved. The white regions refer to 

those areas where roller has not been operated. The produced color coded map assists the roller 

operator to uniformly compact the entire surface with the required number of passes. 

 

Figure 37 Roller Path Tracking (Color is a function of number of accomplished passes to the required 

passes, ranging from red to green) 
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 RESULTS 

4.1. INTRODUCTION 

The methodology and the software developed in this study was used in the field for 

performance evaluation. In the following, the methodology performance using the different types 

of cameras are discussed. 

4.2. PERFORMANCE EVALUATION 

Two evaluate the performance of a tracking system based on visual odometry generally two 

modes are considered: 

 Open loop: passive observation of the roller’s motion 

 Closed loop: integrated with the roller’s machine control sensors such as the odometer 

Closed-loop evaluation is more beneficial and commonly used practice, but open loop testing 

is also important and informative for evaluating a tracking system based on visual odometry. 

This is because, when conducting a closed loop test, in certain modes (e.g., when moving straight 

along one axis), a variety of test parameters may yield satisfactory performance. By contrast, 

open loop evaluation spotlights bias errors in translational and angular motion estimation that 

that contribute to cumulative error. 

The system evaluation provided in this chapter is based on post processing of IR videos 

collected from 4 different job sites listed in Table 3. The table also include information about 

roadway system and whether the data has been collected during the day or night. These 

information is important for system performance evaluation, as in IR vision, on freeways due to 

the wider right of way, there are less features in the background compared to county roads, for 
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illustration compare Figure 38-a vs Figure 38-b. Moreover, since the different materials in nature 

have different capacity to reflect/absorb heat, thus in IR vision, there are more features in the 

background during the day compared to night, when temperature is more uniform, for illustration 

compare Figure 38-a and Figure 38-b vs Figure 38-c.  

Table 3 Summary of the test sites used system evaluation 

No. Test Location System Test Date Day/Night 

1 I-79S close to Shinnston, WV Freeway 09/05/2013 Day 

2 I-68E MP 24 Freeway 09/10/2013 Day 

3 Saltwell Rd., Shinnston, WV  County Rd. 10/08/2013 Day 

4 US 50W, Outside Clarksburg, WV Freeway 10/14/2013 Night 
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a) I-68E MP 24 

  

b) Saltwell Rd., Shinnston, WV 

  

c) US 50W, Outside Clarksburg, WV 

Figure 38 Compares IR view of different landscapes during day and night 

Since the developed system acts as an independent unit that only relies on the roller for power 

supply, no data from the roller control unit including the odometer was integrated in data 
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collection. Therefore, the evaluations provided here are classified as open loop. The following 

three types of position estimation error were studied: 

a) Incremental translational error for each roller pass:  

The length of each path was estimated from GPS coordinates or local mile posts. The 

distance traveled during each pass was measured by the device and then divided by the 

reference length to estimate the error.  

b) Incremental rotational error: 

Since no independent device was available to record roller’s rotations, this test was 

defined as a Pass/Fail criteria, determining the number of system successes/failures to 

detect roller’s rotations. 

c) Cumulative translational error: 

The cumulative distance traveled by the roller to complete a coverage was measured by 

the system and the results were divided by the reference length to estimate the system 

error. 

In addition system performance during day vs night and freeway vs county road were 

evaluated.  

4.3. TEST SCHEME 

Since the system inputs for Harris corner detection, Canny, and Hough transform algorithms 

affect the system performance, three sets of system inputs based on low, medium and high level 

of computation efforts were defined and are described in the following: 

1. Level of computation effort: Low 
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Harris Corner Parameters: 

Max Feature Count: 50 

Block size: 20 

Quality Level: 0.1 

Hough Transform: 

Distance: 10 

Max Line Detected: 10 

Max Gap: 40 

Min Line Thickness: 5  

 

2. Level of computation effort: Medium 

Harris Corner Parameters: 

Max Feature Count: 100 

Block size: 10 

Quality Level: 0.01 

Hough Transform: 

Distance: 5 

Max Line Detected: 20 

Max Gap: 40 

Min Line Thickness: 10  

 

3. Level of computation effort: High 

Harris Corner Parameters: 

Max Feature Count: 200 

Block size: 5 

Quality Level: 0.001 

Hough Transform: 

Distance: 1 

Max Line Detected: 40 

Max Gap: 40 

Min Line Thickness: 15  
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4.4. TEST RESULTS 

The test scheme was used to conduct post processing on the data collected from the four sites 

described in Table 3. The results are provided in Table 4:  

Table 4 Post Processing results 

S
ite N

o
. 

T
est S

ch
em

e 

Incremental Translation Incremental rotation Cumulative translational 

Ref. 

Dist(m) 

Average 

System 

Measurement 

(m) 

C
O

V
 

E
rro

r 

Success 

(per coverage) 

Failure 

(per coverage) 

Ref. 

Distance(m) 

Average 

System 

Measurement 

(m) 

Est. 

Error 

1 

1 

63 

Complete 

Failure 
--- --- 

Complete 

Failure 
--- 

631.5 

Complete 

Failure 
--- 

2 56.57 0.07 11% 14 0 561.63 11.2% 

3 53.16 0.02 1.2% 14 0 644.48 2% 

2 

1 

88 

Complete 

Failure 
--- --- 

Complete 

Failure 
--- 

968 

Complete 

Failure 
--- 

2 80.17 0.05 9.7% 16 0 1070.5 10.6% 

3 84.19 0.04 4.4% 16 0 1024.22 5.7% 

3 

1 

140 

Complete 

Failure 
--- --- 

Complete 

Failure 
--- 

699 

Complete 

Failure 
--- 

2 148.4 0.08 5.9% 13 0 733.42 7.8% 

3 144.86 0.06 5.6% 13 0 647.87 7.3% 

4 

1 

198 

Complete 

Failure 
--- --- 

Complete 

Failure 
--- 

1779 

Complete 

Failure 
--- 

2 187.45 0.08 5.2% 11 0 1904.67 7% 

3 191.76 0.06 3.0% 11 0 1877.3 5.4% 

 

Studying the results presented in Table 4, indicates that the system performance highly 

depends on the input settings. Generally by decreasing the block size which explores the image 

for features, increasing the maximum number of allowable features and reducing the quality 
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criteria for feature detection the overall error decreases significantly. This effect is less 

significant for site number 3, which had more features in the background.  

Based on Table 4, in short distances the error is almost less than 5% while as expected, the 

cumulative error is generally higher. As mentioned earlier, the reference measurements were 

made based on the GPS coordinates or roadway mileposts which may contribute to the calculated 

error. Therefore, the coefficient of variation was calculated to evaluate the system consistency 

and repeatability. The low COV values are very promising, and perhaps a more extensive field 

evaluation may reveal less error. 
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 DISCUSSION  

 

As mentioned in the Chapter 3, the methodology used in this study is based on the planarity 

assumption. During the development and tests, it was found that the system results achieve 

higher reliability on freeways compared to some local roads. As the design specification for 

freeways require a lower longitudinal slope compared to local roads. 

System performance also highly depends on angle of shooting, vibration, calibration and user 

input parameters for Harris corner detection. The significance of each of these parameters are 

briefly discussed in the following. 

5.1. SURFACE SLOPE 

Surface planarity is the primary assumption of the solution proposed in this study. Figure 39 

illustrates that if the surface plane changes without updating the homography matrix, then the 

top-down view will not return the true translation.  

 

Figure 39 Planarity Assumption 
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5.2. ANGLE OF SHOOTING 

During the tests, it was found that angle of shooting can have significant effect on the 

accuracy of tracking results. Camera must be mounted at an angle that increases the chance to 

detect both edges while the roller body should entirely stays out of the camera field of view. A 

general role of thumb is that to select the shooting angle such that the horizon line would be 

placed about one third (1/3) of the image height from the top of the image. 

5.3. VIBRATION  

Vibration can drastically reduce the quality of the results, since vibration is captured as 

motion between frames. Therefore, using anti-vibration mounts are recommended but were not 

tested in this study. 

5.4. CALIBRATION  

Camera matrix is the major output of the calibration process. All the heading calculations are 

based on the image center and focal point that is recovered from the calibration process. Thus, 

calibration make a significant contribution to the result accuracy and projection errors greater 

than 1 are not recommended. 

5.5. USER INPUT PARAMETERS  

Depending on the image distribution, it was found that the size of window/block and quality 

level for Harris corner detector, Canny threshold, and Hough transform parameters including: the 

distance and max gap between lines can significantly affect the result. For images with more 

uniform distribution, larger window/block sizes can improve the results. 
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 CONCLUSIONS AND RECOMMENDATIONS 

 

6.1. CONCLUSIONS 

A new device and the accompanying software was developed in this study. The technology 

used for roller pass mapping is radically different from the common practice and in some ways is 

superior. Upon proper training, the information provided by this technology to the operator can 

improve the construction quality and durability of asphalt concrete pavements. Highway 

agencies and contractors both will benefit from this device through from omitting or reducing the 

labor effort for quality control. In addition highway agencies will save even more by the 

increased life of their pavements and reduced maintenance costs.  

From the technology stand point, computer vision is a great tool that can be used to assist 

roller operators and improve the compaction quality. However like any other technology it has 

limitations. The biggest shortcoming of this solution is the cumulative error in distance 

measurement. To avoid this issue the operator has to reset the measurements, once a new rolling 

zone is started.  

Using infra-red camera in this research was a novel approach to overcome some of the 

limitations of optical vision. This expanded the application of the solution to both day a night 

jobs.  

6.2. RECOMMENDATIONS FOR FURTHER RESEARCH 

Vibration is an essential characteristic of rollers used for asphalt compaction. Such vibration 

induce false motion in the vision and thus adversely affect the results. The vibration was not 
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directly addressed in this research and many of the videos used in this study were recorded while 

the roller was operated in static mode. For future research, it is recommended considering use of 

vibration dampeners for the camera setup, as well as investigation of noise reduction with post 

processing of video streams.  

The main part of this research was involved in investigation of the available technologies to 

replace GPS tracking and software development. Although some field testing was done to 

evaluate the system performance after development but further testing and evaluation on 

different types of jobs and comparing the results with GPS based roller pass mapping system can 

help recognizing the system shortcomings and improving of the performance. Having enough 

field data tied to the local coordinates, the sensitivity of system performance to the user input 

parameters must be evaluated. 

The IR camera calibration could be further developed. As mentioned in chapter 4, the ellipse 

correction method by Ellmauthaler et al. [55], is partially incorporated into the software and 

requires further development for full functionality. 

For improved accuracy, the system could be integrated with dead reckoning sensors such as 

IMUs. 
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