668 research outputs found

    Adaptive memory hierarchies for next generation tiled microarchitectures

    Get PDF
    Les últimes dècades el rendiment dels processadors i de les memòries ha millorat a diferent ritme, limitant el rendiment dels processadors i creant el conegut memory gap. Sol·lucionar aquesta diferència de rendiment és un camp d'investigació d'actualitat i que requereix de noves sol·lucions. Una sol·lució a aquest problema són les memòries “cache”, que permeten reduïr l'impacte d'unes latències de memòria creixents i que conformen la jerarquia de memòria. La majoria de d'organitzacions de les “caches” estan dissenyades per a uniprocessadors o multiprcessadors tradicionals. Avui en dia, però, el creixent nombre de transistors disponible per xip ha permès l'aparició de xips multiprocessador (CMPs). Aquests xips tenen diferents propietats i limitacions i per tant requereixen de jerarquies de memòria específiques per tal de gestionar eficientment els recursos disponibles. En aquesta tesi ens hem centrat en millorar el rendiment i la eficiència energètica de la jerarquia de memòria per CMPs, des de les “caches” fins als controladors de memòria. A la primera part d'aquesta tesi, s'han estudiat organitzacions tradicionals per les “caches” com les privades o compartides i s'ha pogut constatar que, tot i que funcionen bé per a algunes aplicacions, un sistema que s'ajustés dinàmicament seria més eficient. Tècniques com el Cooperative Caching (CC) combinen els avantatges de les dues tècniques però requereixen un mecanisme centralitzat de coherència que té un consum energètic molt elevat. És per això que en aquesta tesi es proposa el Distributed Cooperative Caching (DCC), un mecanisme que proporciona coherència en CMPs i aplica el concepte del cooperative caching de forma distribuïda. Mitjançant l'ús de directoris distribuïts s'obté una sol·lució més escalable i que, a més, disposa d'un mecanisme de marcatge més flexible i eficient energèticament. A la segona part, es demostra que les aplicacions fan diferents usos de la “cache” i que si es realitza una distribució de recursos eficient es poden aprofitar els que estan infrautilitzats. Es proposa l'Elastic Cooperative Caching (ElasticCC), una organització capaç de redistribuïr la memòria “cache” dinàmicament segons els requeriments de cada aplicació. Una de les contribucions més importants d'aquesta tècnica és que la reconfiguració es decideix completament a través del maquinari i que tots els mecanismes utilitzats es basen en estructures distribuïdes, permetent una millor escalabilitat. ElasticCC no només és capaç de reparticionar les “caches” segons els requeriments de cada aplicació, sinó que, a més a més, és capaç d'adaptar-se a les diferents fases d'execució de cada una d'elles. La nostra avaluació també demostra que la reconfiguració dinàmica de l'ElasticCC és tant eficient que gairebé proporciona la mateixa taxa de fallades que una configuració amb el doble de memòria.Finalment, la tesi es centra en l'estudi del comportament de les memòries DRAM i els seus controladors en els CMPs. Es demostra que, tot i que els controladors tradicionals funcionen eficientment per uniprocessadors, en CMPs els diferents patrons d'accés obliguen a repensar com estan dissenyats aquests sistemes. S'han presentat múltiples sol·lucions per CMPs però totes elles es veuen limitades per un compromís entre el rendiment global i l'equitat en l'assignació de recursos. En aquesta tesi es proposen els Thread Row Buffers (TRBs), una zona d'emmagatenament extra a les memòries DRAM que permetria guardar files de dades específiques per a cada aplicació. Aquest mecanisme permet proporcionar un accés equitatiu a la memòria sense perjudicar el seu rendiment global. En resum, en aquesta tesi es presenten noves organitzacions per la jerarquia de memòria dels CMPs centrades en la escalabilitat i adaptativitat als requeriments de les aplicacions. Els resultats presentats demostren que les tècniques proposades proporcionen un millor rendiment i eficiència energètica que les millors tècniques existents fins a l'actualitat.Processor performance and memory performance have improved at different rates during the last decades, limiting processor performance and creating the well known "memory gap". Solving this performance difference is an important research field and new solutions must be proposed in order to have better processors in the future. Several solutions exist, such as caches, that reduce the impact of longer memory accesses and conform the system memory hierarchy. However, most of the existing memory hierarchy organizations were designed for single processors or traditional multiprocessors. Nowadays, the increasing number of available transistors has allowed the apparition of chip multiprocessors, which have different constraints and require new ad-hoc memory systems able to efficiently manage memory resources. Therefore, in this thesis we have focused on improving the performance and energy efficiency of the memory hierarchy of chip multiprocessors, ranging from caches to DRAM memories. In the first part of this thesis we have studied traditional cache organizations such as shared or private caches and we have seen that they behave well only for some applications and that an adaptive system would be desirable. State-of-the-art techniques such as Cooperative Caching (CC) take advantage of the benefits of both worlds. This technique, however, requires the usage of a centralized coherence structure and has a high energy consumption. Therefore we propose the Distributed Cooperative Caching (DCC), a mechanism to provide coherence to chip multiprocessors and apply the concept of cooperative caching in a distributed way. Through the usage of distributed directories we obtain a more scalable solution and, in addition, has a more flexible and energy-efficient tag allocation method. We also show that applications make different uses of cache and that an efficient allocation can take advantage of unused resources. We propose Elastic Cooperative Caching (ElasticCC), an adaptive cache organization able to redistribute cache resources dynamically depending on application requirements. One of the most important contributions of this technique is that adaptivity is fully managed by hardware and that all repartitioning mechanisms are based on distributed structures, allowing a better scalability. ElasticCC not only is able to repartition cache sizes to application requirements, but also is able to dynamically adapt to the different execution phases of each thread. Our experimental evaluation also has shown that the cache partitioning provided by ElasticCC is efficient and is almost able to match the off-chip miss rate of a configuration that doubles the cache space. Finally, we focus in the behavior of DRAM memories and memory controllers in chip multiprocessors. Although traditional memory schedulers work well for uniprocessors, we show that new access patterns advocate for a redesign of some parts of DRAM memories. Several organizations exist for multiprocessor DRAM schedulers, however, all of them must trade-off between memory throughput and fairness. We propose Thread Row Buffers, an extended storage area in DRAM memories able to store a data row for each thread. This mechanism enables a fair memory access scheduling without hurting memory throughput. Overall, in this thesis we present new organizations for the memory hierarchy of chip multiprocessors which focus on the scalability and of the proposed structures and adaptivity to application behavior. Results show that the presented techniques provide a better performance and energy-efficiency than existing state-of-the-art solutions

    Introducing a Data Sliding Mechanism for Cooperative Caching in Manycore Architectures

    Get PDF
    International audienceIn this paper, we propose a new cooperative caching method improving the cache miss rate for manycore micro- architec- tures. The work is motivated by some limitations of recent adaptive cooperative caching proposals. Elastic Cooperative caching (ECC), is a dynamic memory partitioning mechanism that allows sharing cache across cooperative nodes according to the application behavior. However, it is mainly limited with cache eviction rate in case of highly stressed neighbor- hood. Another system, the adaptive Set-Granular Cooperative Caching (ASCC), is based on finer set-based mechanisms for a better adaptability. However, heavy localized cache loads are not efficiently managed. In such a context, we propose a cooperative caching strategy that consists in sliding data through closer neighbors. When a cache receives a storing request of a neighbor's private block, it spills the least recently used private data to a close neighbor. Thus, solicited saturated nodes slide local blocks to their respective neighbors to always provide free cache space. We also propose a new Priority- based Data Replacement policy to decide efficiently which blocks should be spilled, and a new mechanism to choose host destination called Best Neighbor selector. The first analytic performance evaluation shows that the proposed cache management policies reduce by half the average global communication rate. As frequent accesses are focused in the neighboring zones, it efficiently improves on-Chip traffic. Finally, our evaluation shows that cache miss rate is en- hanced: each tile keeps the most frequently accessed data 1- Hop close to it, instead of ejecting them Off-Chip. Proposed techniques notably reduce the cache miss rate in case of high solicitation of the cooperative zone, as it is shown in the performed experiments

    Adaptive Resource Management Techniques for High Performance Multi-Core Architectures

    Get PDF
    Reducing the average memory access time is crucial for improving the performance of applications executing on multi-core architectures. With workload consolidation this becomes increasingly challenging due to shared resource contention. Previous works has proposed techniques for partitioning of shared resources (e.g. cache and bandwidth) and prefetch throttling with the goal of mitigating contention and reducing or hiding average memory access time.Cache partitioning in multi-core architectures is challenging due to the need to determine cache allocations with low computational overhead and the need to place the partitions in a locality-aware manner. The requirement for low computational overhead is important in order to have the capability to scale to large core counts. Previous work within multi-resource management has proposed coordinately managing a subset of the techniques: cache partitioning, bandwidth partitioning and prefetch throttling. However, coordinated management of all three techniques opens up new possible trade-offs and interactions which can be leveraged to gain better performance. This thesis contributes with two different resource management techniques: One resource manger for scalable cache partitioning and a multi-resource management technique for coordinated management of cache partitioning, bandwidth partitioning and prefetching. The scalable resource management technique for cache partitioning uses a distributed and asynchronous cache partitioning algorithm that works together with a flexible NUCA enforcement mechanism in order to give locality-aware placement of data and support fine-grained partitions. The algorithm adapts quickly to application phase changes. The distributed nature of the algorithm together with the low computational complexity, enables the solution to be implemented in hardware and scale to large core counts. The multi-resource management technique for coordinated management of cache partitioning bandwidth partitioning and prefetching is designed using the results from our in-depth characterisation from the entire SPEC CPU2006 suite. The solution consists of three local resource management techniques that together with a coordination mechanism provides allocations which takes the inter-resource interactions and trade-offs into account.Our evaluation shows that the distributed cache partitioning solution performs within 1% from the best known centralized solution, which cannot scale to large core counts. The solution improves performance by 9% and 16%, on average, on a 16 and 64-core multi-core architecture, respectively, compared to a shared last-level cache. The multi-resource management technique gives a performance increase of 11%, on average, over state-of-the-art and improves performance by 50% compared to the baseline 16-core multi-core without cache partitioning, bandwidth partitioning and prefetch throttling

    Jigsaw: Scalable software-defined caches

    Get PDF
    Shared last-level caches, widely used in chip-multi-processors (CMPs), face two fundamental limitations. First, the latency and energy of shared caches degrade as the system scales up. Second, when multiple workloads share the CMP, they suffer from interference in shared cache accesses. Unfortunately, prior research addressing one issue either ignores or worsens the other: NUCA techniques reduce access latency but are prone to hotspots and interference, and cache partitioning techniques only provide isolation but do not reduce access latency.United States. Defense Advanced Research Projects Agency (DARPA PERFECT contract HR0011-13-2-0005)Quanta Computer (Firm

    A Hardware Approach to Fairly Balance the Inter-Thread Interference in Shared Caches

    Full text link
    [EN] Shared caches have become the common design choice in the vast majority of modern multi-core and many-core processors, since cache sharing improves throughput for a given silicon area. Sharing the cache, however, has a downside: the requests from multiple applications compete among them for cache resources, so the execution time of each application increases over isolated execution. The degree in which the performance of each application is affected by the interference becomes unpredictable yielding the system to unfairness situations. This paper proposes Fair-Progress Cache Partitioning (FPCP), a low-overhead hardware-based cache partitioning approach that addresses system fairness. FPCP reduces the interference by allocating to each application a cache partition and adjusting the partition sizes at runtime. To adjust partitions, our approach estimates during multicore execution the time each application would have taken in isolation, which is challenging. The proposed approach has two main differences over existing approaches. First, FPCP distributes cache ways incrementally, which makes the proposal less prone to estimation errors. Second, the proposed algorithm is much less costly than the state-of-the-art ASM-Cache approach. Experimental results show that, compared to ASM-Cache, FPCP reduces unfairness by 48 percent in four-application workloads and by 28 percent in eight-application workloads, without harming the performance.This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and Plan E funds, under grants TIN2014-62246-EXP and TIN2015-66972-C5-1-R.Selfa-Oliver, V.; Sahuquillo Borrás, J.; Petit Martí, SV.; Gómez Requena, ME. (2017). A Hardware Approach to Fairly Balance the Inter-Thread Interference in Shared Caches. IEEE Transactions on Parallel and Distributed Systems. 28(11):3021-3032. https://doi.org/10.1109/TPDS.2017.2713778S30213032281

    GDP : using dataflow properties to accurately estimate interference-free performance at runtime

    Get PDF
    Multi-core memory systems commonly share resources between processors. Resource sharing improves utilization at the cost of increased inter-application interference which may lead to priority inversion, missed deadlines and unpredictable interactive performance. A key component to effectively manage multi-core resources is performance accounting which aims to accurately estimate interference-free application performance. Previously proposed accounting systems are either invasive or transparent. Invasive accounting systems can be accurate, but slow down latency-sensitive processes. Transparent accounting systems do not affect performance, but tend to provide less accurate performance estimates. We propose a novel class of performance accounting systems that achieve both performance-transparency and superior accuracy. We call the approach dataflow accounting, and the key idea is to track dynamic dataflow properties and use these to estimate interference-free performance. Our main contribution is Graph-based Dynamic Performance (GDP) accounting. GDP dynamically builds a dataflow graph of load requests and periods where the processor commits instructions. This graph concisely represents the relationship between memory loads and forward progress in program execution. More specifically, GDP estimates interference-free stall cycles by multiplying the critical path length of the dataflow graph with the estimated interference-free memory latency. GDP is very accurate with mean IPC estimation errors of 3.4% and 9.8% for our 4- and 8-core processors, respectively. When GDP is used in a cache partitioning policy, we observe average system throughput improvements of 11.9% and 20.8% compared to partitioning using the state-of-the-art Application Slowdown Model

    Hardware-Oriented Cache Management for Large-Scale Chip Multiprocessors

    Get PDF
    One of the key requirements to obtaining high performance from chip multiprocessors (CMPs) is to effectively manage the limited on-chip cache resources shared among co-scheduled threads/processes. This thesis proposes new hardware-oriented solutions for distributed CMP caches. Computer architects are faced with growing challenges when designing cache systems for CMPs. These challenges result from non-uniform access latencies, interference misses, the bandwidth wall problem, and diverse workload characteristics. Our exploration of the CMP cache management problem suggests a CMP caching framework (CC-FR) that defines three main approaches to solve the problem: (1) data placement, (2) data retention, and (3) data relocation. We effectively implement CC-FR's components by proposing and evaluating multiple cache management mechanisms.Pressure and Distance Aware Placement (PDA) decouples the physical locations of cache blocks from their addresses for the sake of reducing misses caused by destructive interferences. Flexible Set Balancing (FSB), on the other hand, reduces interference misses via extending the life time of cache lines through retaining some fraction of the working set at underutilized local sets to satisfy far-flung reuses. PDA implements CC-FR's data placement and relocation components and FSB applies CC-FR's retention approach.To alleviate non-uniform access latencies and adapt to phase changes in programs, Adaptive Controlled Migration (ACM) dynamically and periodically promotes cache blocks towards L2 banks close to requesting cores. ACM lies under CC-FR's data relocation category. Dynamic Cache Clustering (DCC), on the other hand, addresses diverse workload characteristics and growing non-uniform access latencies challenges via constructing a cache cluster for each core and expands/contracts all clusters synergistically to match each core's cache demand. DCC implements CC-FR's data placement and relocation approaches. Lastly, Dynamic Pressure and Distance Aware Placement (DPDA) combines PDA and ACM to cooperatively mitigate interference misses and non-uniform access latencies. Dynamic Cache Clustering and Balancing (DCCB), on the other hand, combines DCC and FSB to employ all CC-FR's categories and achieve higher system performance. Simulation results demonstrate the effectiveness of the proposed mechanisms and show that they compare favorably with related cache designs
    corecore