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Abstract

Reducing the average memory access time is crucial for improving the perfor-
mance of applications executing on multi-core architectures. With workload
consolidation this becomes increasingly challenging due to shared resource
contention. Previous works has proposed techniques for partitioning of shared
resources (e.g. cache and bandwidth) and prefetch throttling with the goal of
mitigating contention and reducing or hiding average memory access time.

Cache partitioning in multi-core architectures is challenging due to the need
to determine cache allocations with low computational overhead and the need
to place the partitions in a locality-aware manner. The requirement for low
computational overhead is important in order to have the capability to scale
to large core counts. Previous work within multi-resource management has
proposed coordinately managing a subset of the techniques: cache partitioning,
bandwidth partitioning and prefetch throttling. However, coordinated manage-
ment of all three techniques opens up new possible trade-offs and interactions
which can be leveraged to gain better performance.

This thesis contributes with two different resource management techniques:
One resource manger for scalable cache partitioning and a multi-resource
management technique for coordinated management of cache partitioning,
bandwidth partitioning and prefetching. The scalable resource management
technique for cache partitioning uses a distributed and asynchronous cache
partitioning algorithm that works together with a flexible NUCA enforcement
mechanism in order to give locality-aware placement of data and support fine-
grained partitions. The algorithm adapts quickly to application phase changes.
The distributed nature of the algorithm together with the low computational
complexity, enables the solution to be implemented in hardware and scale to
large core counts. The multi-resource management technique for coordinated
management of cache partitioning bandwidth partitioning and prefetching is
designed using the results from our in-depth characterisation from the entire
SPEC CPU2006 suite. The solution consists of three local resource management
techniques that together with a coordination mechanism provides allocations
which takes the inter-resource interactions and trade-offs into account.

Our evaluation shows that the distributed cache partitioning solution per-
forms within 1% from the best known centralized solution, which cannot scale
to large core counts. The solution improves performance by 9% and 16%, on
average, on a 16 and 64-core multi-core architecture, respectively, compared to
a shared last-level cache. The multi-resource management technique gives a
performance increase of 11%, on average, over state-of-the-art and improves
performance by 50% compared to the baseline 16-core multi-core without cache
partitioning, bandwidth partitioning and prefetch throttling.
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Chapter 1

Introduction

1.1 Background

Single core performance growth plateaued in the early 2000s, necessitating a
shift towards multi-core processors [1]. This shift was mainly motivated by the
end of Dennard scaling which meant that it was no longer practical to gain
performance by increasing core frequency [2]. The emergence of processors
with an increasing number of cores increases the off-chip memory bandwidth
demand. Memory references are increasingly expensive and frequently limit
processor performance. The performance of the memory system becomes a key
determinant of overall system performance.

Modern multi-core processors have last level cache (LLC) banks distributed
across the chip, as shown in Figure 1.1. The on-chip distances increase with
additional cores, resulting in non-uniform access latencies to the cache banks.
The cache banks are shared among the cores in order to maximize utilization.
The off-chip memory bandwidth is also shared among the cores for the same
reason. Workload consolidation is a technique to improve resource efficiency of
multi-core systems by executing multiple workloads on the same physical server.
However, multiple co-running applications leads to shared resource contention.
Resource contention can lead to destructive interference and large performance
variations across workloads, detrimentally impacting average memory access
time.

In order to increase memory system performance a number of different
techniques have been proposed, that aim to mitigate contention within a
single shared resource. To mitigate contention, prior works have proposed
partitioning of shared resources, cache [3–9] and bandwidth [10–12], with the
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Figure 1.1: Overview of tile-based multi-core architecture.
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2 CHAPTER 1. INTRODUCTION

goal of reducing average memory access time and improving performance.
Prefetching [13], i.e. fetching data before it is requested to hide the memory
access time, is another technique to make the memory system more efficient.
However, inaccurate prefetches have been shown to increase contention [14].
Prefetch throttling [15,16], adaptively tuning when and what prefetcher settings
are used based on application characteristics, has been shown to overcome the
drawbacks of prefetching.

Multi-resource management is advantageous in order to avoid contention
bottlenecks and exploit trade-offs between resources. It also enables coverage of
more and wider range of applications compared to single resource management.
Recent works have proposed combining cache and bandwidth partitioning [17–
19], prefetching and cache partitioning [20,21] and bandwidth partitioning and
prefetching [22,23] to provide additional performance gains.

This thesis proposes adaptive techniques, in the sense of reacting to workload
changes, for resource management in the memory system with the goal of
increasing performance of multi-core architectures.

1.2 Problem Statements

Single resource management: Prior works [7–9] have shown that in multi-
core architectures locality-aware placement of data and fine-grained partitioning
are key to designing a well performing cache partitioning solution. Locality-
aware data placement reduces cache access times and fine-grained partitioning
enables better adaptation to workloads with varying characteristics. Previous
solutions have focused on solving this problem in a centralized manner which
have the drawback of introducing a too high overhead when considering frequent
reconfigurations for large core counts. I aim to address the following question:

Question 1: How can we design a scalable cache partitioning solution which
supports locality-aware and fine-grained partitioning?

Multi-resource management: Previous works [17–23] have proposed coor-
dinated management of only a subset of the techniques - cache partitioning,
bandwidth partitioning and prefetch throttling - with the key insight that
managing two instead of one is beneficial since additional trade-offs are enabled.
Coordinately managing cache partitioning, bandwidth partitioning and prefetch
throttling opens up new trade-offs and interactions, with significant impact on
performance, which are not available when considering only a subset of the
techniques. The challenge of managing multiple techniques is the increased
complexity of finding a good allocation while also considering interactions
among resources, which increases the computational complexity. In the context
of multi-resource management I aim to answer the following question:

Question 2: How to enable coordinated management of cache partitioning,
bandwidth partitioning and prefetch throttling, avoid the complexity of evalua-
tion all possible allocations, while exploiting the new interactions and trade-offs?
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1.3 Contributions

This thesis is based on two papers. In the context of single resource management
Paper I answers the first question and the main contribution is:

• A fully distributed and locality-aware cache-partitioning solution which
consists of a distributed allocation algorithm which asynchronously nego-
tiates cache allocation decisions together with a reconfigurable NUCA
enforcement mechanism. The distributed nature of the solution, coupled
with low computational overhead, enables a hardware-based implementa-
tion. This allows the scheme to scale to large core counts while permitting
frequent reconfigurations without invoking the operating system. The
enforcement mechanism allows locality-aware placement of data.

In Paper II we consider multi-resource management and answer the second
question. The main contributions of the paper are:

• An in-depth characterization of the performance impact of cache, band-
width and prefetching on the entire SPEC CPU2006 suite. Our character-
isation results provide several insights: i) a majority of the applications
(over 90%) are sensitive to one or multiple techniques, ii) managing cache,
bandwidth and prefetch opens up opportunities for exploiting more in-
teractions and improving performance for consolidated workloads, and
iii) managing cache, bandwidth and prefetch jointly has the potential to
outperform combinations of two of the techniques.

• A resource manger that dynamically manages cache partitioning, band-
width partitioning and prefetch throttling in coordination considering
the interactions between the three techniques. The solution works by
employing individual resource managers to determine appropriate settings
for each resource and a coordination mechanism to enable inter-resource
trade-offs.

1.4 Organization of the thesis

The rest of the thesis is organized as follows. In Chapter 2, a summary of each
paper is presented. Finally, Chapter 3 concludes the thesis, and discusses some
possible future research directions.
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Chapter 2

Summary of the Papers

2.1 Summary of Paper I

A cache partitioning solution consists of two parts: an allocation policy which
decides the size of the partitions for each application and an enforcement
mechanism to enforce them. Prior work have proposed allocation policies
[3, 7, 8, 24, 25], but the drawback is their reliance on a centralized algorithm to
determine allocations which limits how frequently this can be performed. Prior
work on enforcement mechanism has shown that fine-grained partitioning, i.e.
support many and varying partitions, is beneficial [5, 6, 9, 26–29] but the main
shortcoming is that they do not take locality into account. A few proposals [7,8]
have tried to address this but their solutions either require costly broadcasts
or rely heavily on software support. Furthermore, the allocation policies
in these proposals use a centralized algorithm which affects the overhead.
A high overhead presents two problems: Firstly, limiting the frequency of
reconfiguration which is important in order to adapt to application phase
changes, and secondly, introducing unpredictable jitter in application execution.

An ideal cache partitioning, in the context of multi-core systems, needs
to have a number of different characteristics. Firstly, it needs to be locality-
aware and place partitions in a way which minimizes the on-chip distance.
Secondly, it needs to support fine-grained partition sizes and to adapt quickly
to application-phase changes, in order to at each instance of time have the
most suitable allocation. Finally, it needs to have low enough overhead for
performing allocation decisions and cause minimal OS intervention in order to
be scalable.

In Paper I, we present DELTA, a scalable cache partitioning solution con-
sisting of a fully distributed allocation policy and a locality-aware enforcement
policy. In contrast to prior work, DELTA works with standard LRU-replacement
policy and is implementable in hardware. DELTA’s allocation policy consists
of two parts: one intra-bank and one inter-bank mechanism. The inter-bank
algorithm works by asynchronous exchanges of challenges among cores. The
challenges include the potential performance benefit of increased cache capacity,
and helps applications with larger performance benefit to gain more cache
capacity. The intra-bank algorithm redistributes the cache capacity within a
cache bank, giving a larger allocation to applications with a larger potential

5



6 CHAPTER 2. SUMMARY OF THE PAPERS

performance gain. DELTA’s enforcement mechanism combines bank- and way-
level partitioning to enable fine-grained and locality-aware partitions. In order
to locate data in the LLC a per-core Cache Bank Table (CBT) is used. The
CBT contains mappings between addresses and cache banks, and it is accessed
in parallel with the L2 cache in order to find the right LLC bank.

The distributed inter-bank allocation algorithm in DELTA uses two metrics,
pain and gain as part of the asynchronous negotiation. The pain estimates the
potential performance decrease with lost cache capacity while gain estimates
the potential performance increase with additional cache space. The challenge
message contains the potential gain that a given application would experience
with additional cache capacity. The challenged cache bank compares its own
pain with the gain of the challenging bank. If the gain is greater, a portion
of the cache capacity belonging to the challenged bank is remapped to the
challenger. The inter-bank allocation algorithm redistributes the cache capacity
from applications which have a lower performance decrease when giving up
cache capacity to applications which have a higher performance gain from
additional cache space.

In Paper I, the proposal is evaluated with detailed simulations on both a
16- and 64-core tiled CMP using the Sniper simulator [30]. The performance of
DELTA is compared against a private cache implementation, a shared NUCA
implementation and an idealized centralized solution. The ideal centralized
solution is used in order to evaluate the quality of the allocations performed by
DELTA and uses the best known cache partitioning algorithm, Lookahead [3].
It does not model the overhead of computing allocation decisions. In the
evaluation, an analysis of the overhead of calculating the allocations for DELTA
and the best centralized algorithms is shown for different core counts. The
analysis shows that the centralized algorithms overhead in time per invocation
makes them unusable for large core counts with frequent reconfigurations.

The evaluation on a 16-core CMP shows that DELTA improves performance
of on average 9% compared to an unpartitioned S-NUCA and by 6%, on average,
compared to private caches (i.e., equal partitioning). The performance of the
allocation using DELTA’s is 2% lower than the idealized centralized solution.
On a 64-core CMP, DELTA improves performance by on average 16% over an
unpartitioned S-NUCA and is within 1% of the idealized centralized solution.

The evaluation in Paper I demonstrates that the distributed partitioning
solution performs close to an ideal centralized solution. The distributed algo-
rithm has low computational overhead which permits it to be implemented
in hardware and allows for frequent reconfigurations while the enforcement
scheme enables locality-aware placement.
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2.2 Summary of Paper II

Multi-resource management combining either cache and bandwidth partition-
ing [17–19], or cache partitioning and prefetching [20, 21], or prefetch and
bandwidth partitioning [22, 23], has been shown to be beneficial in reducing
average memory access time and increasing performance. However, no study
so far has considered coordinated management of all three techniques. Coordi-
nately managing all three techniques provides several advantages. Firstly, it
enables improving performance in more applications and addressing a broader
range of application characteristics. Secondly, new trade-offs and interactions
are enabled which have significant impact on performance.

In Paper II, we show an in-depth performance characterization of the
applications in the SPEC CPU2006 suite. The results show that 90% of the
applications have performance sensitivity (over 10% change in IPC) to at least
one of the techniques, and 70% are also sensitive to multiple techniques. We
make several observations regarding the interactions and trade-offs between
the different techniques: i) the allocation of cache and bandwidth affects
the performance impact of prefetching, ii) larger bandwidth allocation can
compensate for inaccurate prefetches, iii) for an application sensitive to both
resources the same performance can be gained, by either increasing cache size
or enabling prefetching, or by either increasing bandwidth or cache allocation.
In Paper II we also show, using exhaustive search, that for above 400 random
workloads of four applications, coordinately managing three resources is better
than any combination of two resources.

In Paper II, we present CBP, a coordinated mechanism for adaptive man-
agement of cache partitioning, bandwidth partitioning and prefetch throttling.
The design is guided by observations and results from the performance charac-
terization. CBP consists of three local controllers, one for each technique, and a
coordination mechanism, see Figure 2.1. With CBP, the three local controllers
are dynamically tuned and guided by heuristics, to give a good allocation of
the resources, considering application characteristics and possible trade-offs
and interactions. Recalibrations are performed periodically. First, cache space
is allocated since altogether avoiding a memory access has higher impact than
reducing the latency. As a next step, bandwidth is allocated based on the
queuing latency of the memory requests and taking into consideration the cache
allocation. Finally, the prefetcher setting is determined based on the current
allocation of cache and bandwidth. The cache resource controller estimates

Cache resource  
controller

Coordination mechanism

Bandwidth resource  
controller

Prefetch throttling   
controller

Cache  
allocation per  
application

Bandwidth  
allocation per  
application

Prefetch  
setting per  
application

ATDs estimating  
misses for different  
cache sizes

Queuing delay per  
application

Sampled IPC  
with prefetch  
enabled/disabled  
per application

Figure 2.1: Overview of CBP resource manager.
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the number of misses using auxiliary tag directories (ATDs) and allocates the
capacity in a way that reduces the aggregate number of cache misses. The
bandwidth resource controller uses the queuing delay per application in order
to allocate the capacity, where the application experiencing the largest queuing
delay will get the largest allocation. The prefetcher setting is determined by
sampling, for a short time interval, the IPC with prefetching active/inactive
and enabling the prefetcher only if the speedup is large enough.

In Paper II, CBP is evaluated against nine different single- and multi-
resource managers. The baseline configuration represents an unpartitioned
shared cache with unpartitioned bandwidth and prefetching disabled. The
comparison points are CPpf [20] a state-of-the-art scheme combining cache
partitioning and prefetching, equal partitioning of cache and bandwidth, as
well as resource managers controlling only one resource or two of the three
resources.

CBP is evaluated with multi-programmed workloads on a 16-core CMP
using the Sniper simulator [30]. CBP improves performance by 11% on average
compared to CPpf and by 50% on average compared to the baseline. We use the
user-oriented fairness metric Average Normalized Turnaround Time (ANTT)
in order to show that CBP does not increase performance at the cost of fairness.
CBP increases fairness by 8% compared to CPpf and by 27% compared to
baseline. According to the experimental results, the proposed multi-resource
manager provides an effective solution for the main research problem. The
evaluation shows that coordinately managing cache partitioning, bandwidth
partitioning and prefetch throttling is better than any pair-wise technique and
improves upon state-of-the-art.



Chapter 3

Concluding Remarks

Contention in shared resources, such as cache and bandwidth, can lead to
destructive interference and large performance variations across workloads,
detrimentally impacting average memory access time.

This licentiate thesis proposes adaptive resource management techniques
to improve performance of multi-core architectures. Two different resource
management techniques are presented. Paper I concerns resource management
of the cache, where a distributed cache partitioning solution is proposed to
avoid high computational overhead when determining allocations. The results
show that it is possible to design a distributed solution for cache partitioning,
which performs close to an idealized centralized solution. Paper II concerns
multi-resource management and proposes a coordinated scheme with cache
partitioning, bandwidth partitioning and prefetch throttling. Furthermore, the
results for the coordinated multi-resource management scheme outperform any
resource manager for two resources and improves upon state-of-the-art.

There are several interesting directions for future work. Firstly, one di-
rection would be to target fairness or Quality of Service (QoS), instead of
performance, as is currently done in both papers. Secondly, in the context
of multi-resource management it would be interesting to study the scalability
further. A possibility to further decrease the computational overhead would be
to adapt the proposed single resource algorithms and make them distributed
instead of relying on a centralized algorithm per resource. Thirdly, another
future research direction would be to extend the multi-resource manager and
also perform coordinated resource management for more resources such as
core frequency, memory capacity and disk bandwidth, in order to increase
performance further. The challenge with adding additional resources would be
how to take the additional interactions and trade-offs into consideration with-
out reaching a too high overhead for resource management. Finally, another
interesting direction would be to explore and extend the resource management
to the domain of multi-socket NUMA systems. Here, multiple multi-core ar-
chitectures are connected by off-chip interconnects and memory is distributed
across the systems. Being able to use underutilized cache/memory resources
across sockets could give large performance impact. However, it is a challenging
problem since bandwidth between sockets is limited and both on-chip and
across-chip distances need to be taken into consideration.

9
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Abstract—Cache partitioning in tile-based CMP architectures
is a challenging problem because of i) the need to determine
capacity allocations with low computational overhead and ii)
the need to place allocations close to where they are used,
in order to reduce access latency. Although, previous solutions
have addressed the problem of reducing the computational
overhead and incorporating locality-awareness, they suffer from
the overheads of centrally determining allocations.

In this paper, we propose DELTA, a novel distributed and
locality-aware cache partitioning solution which works by ex-
changing asynchronous challenges among cores. The distributed
nature of the algorithm coupled with the low computational
complexity allows for frequent reconfigurations at negligible cost
and for the scheme to be implemented directly in hardware. The
allocation algorithm is supported by an enforcement mechanism
which enables locality-aware placement of data. We evaluate
DELTA on 16- and 64-core tiled CMPs with multi-programmed
workloads. Our evaluation shows that DELTA improves perfor-
mance by 9% and 16%, respectively, on average, compared to
an unpartitioned shared last-level cache.

Index Terms—cache partitioning, multicore architectures, per-
formance isolation

I. INTRODUCTION

Efficient use of cache resources on chip multiprocessors
(CMPs) is necessary in order to bridge the speed gap between
processor and main memory. The last-level cache (LLC) is
usually shared among all cores to maximize utilization. Uncon-
strained sharing, however, can result in destructive interference
between workloads and lead to large performance variation,
degrade throughput and violate per-application Quality of
Service (QoS) requirements. Cache partitioning can mitigate
destructive interference by isolating cache space between
cores/applications.

A partitioning solution typically comprises two components:
an allocation policy, to decide the size of the partitions
for each application, and an enforcement mechanism to en-
force the partitions. With regard to the allocation policy,
known approaches target different objectives, e.g. to maximize
throughput or improve fairness [1]–[3]. Utility-based cache
partitioning (UCP) [1] aims to maximize throughput by assign-
ing cache ways to applications that benefit most from the cache
capacity. To do so, UCP leverages the Lookahead algorithm.
The algorithm determines dynamic cache allocation based on
marginal utility and partitions ways in a monolithic cache
between applications but it has a high computational com-

plexity. Approaches to determine cache allocations with lower
computational overhead have been proposed [4]. However, as
our evaluation of the overheads (described in Section IV)
shows, the scalability of these proposals remains limited
by their reliance on a centralized allocation algorithm. This
reliance presents two problems. First, the execution time of the
allocation algorithm limits the frequency of reconfiguration,
especially as we scale to large core counts. And second, the
invocation of the algorithm introduces unpredictable jitter in
application execution. OS noise (jitter) has been identified as
a major cause of both execution time unpredictability and
untimely synchronization [5], [6]. This is particularly bad
for multithreaded applications that rely on bulk synchronous
parallelism (BSP) [6], [7]. As a consequence, centralized
allocation approaches cannot be utilized when scaling to large
core counts and requiring frequent reconfigurations.

Different enforcement mechanisms for cache partitioning
have been proposed. Way and set partitioning are proposed
in the context of monolithic caches with few cores [1], [2],
[8], [9]. These schemes have the drawback of only supporting
a limited number of coarse-grained partitions. Solutions have
been proposed to enable fine-grained partitioning [10]–[17].
The main shortcoming of these techniques is that they do
not take locality into account when partitioning LLCs in tiled
CMPs. A few proposals have tried to address this limitation
by enabling locality-aware placement [4], [18]. However, the
allocation policies used in these proposals rely on a centralized
allocation component and inherit its shortcomings.

An ideal cache partitioning solution should be fine-grained
to support many and varying partitions, be locality-aware to
place data close to where it is used, and adapt quickly to
changes in application-phase behavior while still ensuring that
allocation operations can be performed in a scalable manner,
with low overhead and minimal OS intervention. We propose
DELTA, a novel scalable cache partitioning solution for tile-
based CMPs, that utilizes a distributed allocation policy and
a locality-aware enforcement mechanism. In contrast to prior
work, our solution uses a completely distributed and asyn-
chronous allocation algorithm, works with a standard LRU-
replacement policy, does locality-aware enforcement and is
virtually transparent to the full software stack.

DELTA’s Allocation Policy: DELTA’s allocation algorithm
comprises an inter-bank and an intra-bank component. The
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inter-bank algorithm determines capacity allocations by asyn-
chronously exchanging challenges among cores. A challenge
represents the performance benefit of obtaining increased
cache capacity and helps an application with larger perfor-
mance potential to gain more cache capacity. The algorithm
uses coarse-grained shadow-tags to collect reuse-distance in-
formation with minimal overhead, which is used as the basis
for computing a challenge. The intra-bank algorithm peri-
odically redistributes the cache capacity within a bank by
giving more space to the application that has a larger potential
performance gain. The distributed nature of the algorithm
enables quick and incremental adaptation to program phase
changes without requiring a central entity to determine and
perform chip-wide reallocation of cache capacity for the
different applications.

DELTA’s Enforcement Mechanism: DELTA combines way
partitioning and bank-level partitioning to achieve a locality-
aware and fine-grained partition-enforcement mechanism. The
partitioning solution uses per-core Cache Bank Tables (CBTs),
where mappings between addresses and banks are recorded.
When a request needs to access the LLC, the CBT is used to
identify the cache bank that the address is mapped to. Inside
each bank, way partitioning is used to divide the capacity. The
flexibility of the enforcement mechanism makes it possible to
keep data close to where it is used.

In summary, we make the following contributions:
(a) We propose DELTA, a fully distributed and locality-

aware cache-partitioning solution. The distributed allocation
algorithm asynchronously negotiates and makes effective
cache allocation decisions. The flexibility of the enforcement
mechanism enables locality-aware mappings. The distributed
nature of the solution, coupled with low computational over-
head, enables a hardware-based implementation. This allows
the scheme to scale to large core counts while permitting fre-
quent reconfigurations without invoking the operating system.

(b) We describe a novel allocation policy consisting of
a coarse-grained and a fine-grained component which are
responsible for carrying out inter- and intra-bank allocations,
respectively. The inter-bank algorithm uses challenges to
expand into multiple banks, while the intra-bank algorithm
allows the allocation to grow within a bank.

(c) We present a reconfigurable NUCA enforcement mech-
anism that enables locality-aware mapping. The two-level
mechanism combines coarse-grained, bank-level partitioning
with fine-grained way partitioning. The CBT enforces flexible
mapping of addresses to cache banks, which enables placing
data close to where it is used.

We evaluate our solution on 16- and 64-core tiled CMPs.
With multi-programmed workloads on a 16-core CMP we
obtain speed-ups of up to 16% (geom. mean 9%) compared
to an unpartitioned S-NUCA and up to 11% (geom. mean
6%) compared to private caches (equal partitioning). On the
64-core CMP DELTA improves performance by up to 28%
(geom. mean 16%) over an unpartitioned S-NUCA.

The rest of the paper is organized as follows: Section II
describes our proposed solution in detail. Section III discusses

the methodology and Section IV presents the evaluation of the
proposal. We provide an overview of related work in Section
V and conclude in Section VI.

II. DELTA CACHE PARTITIONING

Section II-A provides an overview of DELTA, followed by
a detailed presentation of the algorithms and mechanisms in
subsequent sections.

A. Overview

Both the allocation policy and the enforcement mechanism
have an inter-bank and an intra-bank component. The inter-
bank component takes care of the allocation and enforcement
across cache banks, and the intra-bank part handles the allo-
cation and enforcement within the banks.

DELTA allocation policy: Figure 1 provides an overview of
the distributed allocation algorithm. The inter-bank allocation
algorithm works by tiles periodically sending out challenge
messages, as shown in Figure 1 (Step #1). The mechanism
relies on two metrics called pain and gain (see Table I). A
challenge message contains the potential gain that a given
application would experience if it were to get additional cache
capacity. The challenged tile compares its own pain, owing
to predicted decrease in performance because of lost cache
space, with the gain (Step #2), (see Section II-B2 for details
about pain and gain). If the gain is greater, the challenged tile
gives up space in the cache bank and informs the challenger
tile with a response message (Step #3). A portion of the
addresses ([Ak−Al] in Figure 1) belonging to the application
running in the challenger tile is remapped to the cache bank
in the challenged tile (Step #4). The addresses that have
been remapped to a different bank are then invalidated in
their previous location. The inter-bank allocation policy helps
applications acquire additional cache capacity by mapping data
to cache banks in other tiles.

The second part of the allocation algorithm, the intra-
bank algorithm, governs changes within a bank. The intra-
bank algorithm is invoked periodically in every cache bank.
In each interval some ways are transferred to the partition
with most gain from the partition with the least. This way,
reassignment has little overhead since it does not affect the
mapping of addresses to banks, and therefore does not lead to
invalidations. While the inter-bank allocation algorithm helps
an application to expand its working set into other tiles and get
a fixed capacity, the intra-bank algorithm helps in fine-tuning
the capacity in banks that an application has already expanded

Before

Application X Application Y CBT

After

painY vs gainX

gainX

1. Challenge 2. Comparison

3. Response

LLC bank 0 LLC bank 1

Challenger tile Challenged tile

4. Remapping

Core & L1 & L2Core & L1 & L2

LLC bank 1

Core & L1 & L2

LLC bank 0

Core & L1 & L2

[Ak-Al]    bank 0

[Ak-Am]    bank 0
[Am-Al]     bank 1

[Ak-Al]    bank 1

[Ak-Al]    bank 1

Fig. 1: Overview of steps in DELTA allocation.
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Gain Predicted performance increase due to increased cache space
Pain Predicted performance decrease due to lost cache space

TABLE I: Terminology

into. The intra-bank algorithm reports information about ways
that an application wins/loses in a cache bank outside the tile
and this acts as a feedback to guide inter-bank expansion. The
details about the DELTA allocation algorithm are discussed in
Section II-B.

DELTA enforcement mechanism: The inter-bank mecha-
nism uses a mapping table as shown in Figure 1, the CBT, to
map addresses to cache banks (see Section II-C for details).
On a private cache miss the CBT provides the mapping of each
address to the LLC bank where it resides. The mappings in
the CBT are changed when reconfigurations are triggered by
the allocation algorithm. The flexible mapping enabled by the
CBT is in contrast to S-NUCA which maps addresses to cache
banks statically. The intra-bank mechanism relies on hardware
support for way partitioning (discussed in Section II-C) similar
to that available in some commodity systems [19].

B. DELTA Allocation
1) Allocation Algorithm: Inter-bank allocation: The

pseudo-code for the inter-bank allocation algorithm is shown
in Algorithm 1. Each tile (Challenger) starts by comput-
ing the pain and gain at the beginning of every inter-bank
reconfiguration interval (iinter), which is set to 1ms. An
analysis motivating this interval is presented in Section IV-D.
A challenge message is only sent if the calculated gain is
above a threshold and the size of the allocation is larger than
the minimum limit (line 4). The requirement to be above the
minimum allocation limit is to avoid placing data far away
instead of expanding in the home bank. The choice of which
tile to challenge (Challenged) is based on the distance to the
tile. Each tile will start by challenging the closest neighbouring
tiles, with a hop distance of one, before choosing tiles further
away (line 5). A single challenge is issued by every tile in each
(iinter) interval if it satisfies the preconditions. The algorithm
will only pick a particular tile for a second challenge after
it has exhausted other candidates, regardless of whether the
previous attempt was successful.

When a challenge is received, the gain from the challenger
tile is compared to the pain of the challenged tile. The
algorithm uses pain, instead of gain, for comparison in order to
accommodate the potentially high impact on performance for
the application running on the challenged tile. Furthermore,
it also acts as a deterrent to prevent one tile from easily
invading and taking over the capacity of neighbouring tiles.
In case an application running on tile A is sharing its cache
bank with another running on tile B and receives a challenge
from a different application running on tile C, the algorithm
will compare the PainA, GainB and GainC to determine if
the challenge is successful (line 10). In case the challenge
is successful, a fixed capacity (number of ways) is allocated
in the challenged tile and a response is sent to the challenger
tile as a notification (line 12-13). On receiving a successful

Algorithm 1: Inter-bank allocation pseudo-code
Input: mlp, allocationForChallanger, interDeltaWays

1 In tile Challanger at time period iinter ;
2 pain = calculatePain(mlp, allocationForChallanger);
3 rawGain = calculateRawGain(mlp,

allocationForChallanger);
4 if rawGain >gainThreshold AND allocationForChallanger

>minWays then
5 challenged = getClosestNeighbour();
6 gain = rawGain / distanceTo(challenged);
7 challenge(challenged, challenger, gain);
8 end
9 In tile Challenged on receiving a challenge;

10 partition = partitionWithSmallestGainOrPainInChallenged(
challengedPain, challengerGain,
gainChallengedPartitions);

11 if partition then
12 updateWayPartition(challenger, partition,

interDeltaWays);
13 respondWithNewPartition(challenged, challenger,

true);
14 else
15 respondWithNewPartition(challenged, challenger,

false);
16 end
17 On response;
18 if success then
19 updateCacheBankTableWithNewPartitionIn(challenged);
20 invalidateAddressesWithChangedBankPlacement();
21 end
22 markAsChallenged(challenged);

response the CBT is updated and invalidations are triggered if
required (line 18-20). The intra-bank algorithm, described later
in this section, discusses how the allocation for the challenger
tile can grow to encompass the entire cache bank gradually
over time. If the challenged tile does not use its home cache
bank (i.e. the core is idle), the algorithm will allocate the
whole cache bank to the challenger tile immediately instead
of gradually. This is done to make it easier for applications
that are running alone to increase their allocation quickly as
the cache banks will otherwise remain underutilized.

Intra-bank allocation: The pseudo-code for the intra-bank
algorithm is shown in Algorithm 2. This is triggered in each
tile at every intra-bank reconfiguration interval (iintra) which
is set to 0.1ms. The algorithm works by comparing the gain
for each partition that shares the cache bank (line 2-3) and
reassigns some ways (intraDeltaWays) from the partition
that has the least gain to the one that has the most (line
5). Here, unlike the inter-bank allocation, the comparison
only considers the gain of every application to determine the
winner, for two reasons. Firstly, the application running on the
tile must have already demonstrated a significant gain, more
than the home bank’s pain, to have been allowed to expand
into a different tile. Secondly, intra-bank changes in allocation
are lightweight and do not introduce any invalidation-related
overheads (except when leaving a tile). In case an application
running on tile A is sharing its own cache bank with two others
running on tile B and C, a comparison will happen between
GainA, GainB and GainC, to determine which contending
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Algorithm 2: Intra-bank allocation pseudo-code
Input: intraDeltaWays

1 In each tile at time period iintra;
2 partitionSmallest =

partitionWithSmallestGain(gainsOfPartitionsInBank,
minWays);

3 partitionLargest =
partitionWithLargestGain(gainsOfPartitionsInBank);

4 if partitionWithLargestGain !=
partitionSmallestGain then

5 updateWayPartitioning(partitionLargest,
partitionSmallest, intraDeltaWays);

6 reportNewAllocation(partitionSmallest,
partitionLargest);

7 end

application will win/lose cache ways.
After reassignment the information about the number of

ways are sent back to the respective contending home tiles
(line 6). This acts as a feedback mechanism between the intra-
and inter-bank algorithm since the current allocation is an
important factor in determining the pain and gain, as will
be described in the next section. The inter- and intra-bank
algorithms are invoked periodically after an initial state where
cache capacity is equally partitioned among all tiles.

2) Computing Gain and Pain: The measure of pain and
gain is based on simple heuristics that lead to effective
allocation decisions. We use gain to predict how an application
will react to an increase in cache capacity (gainWays) by
expanding in/to other tiles. In order to compute gain we take
into consideration information about the number of misses pro-
vided by the shadow tags, memory-level parallelism (MLP),
current capacity allocation outside the home tile and the hop
distance. The potential gain for an application running on tile
i and expanding into tile j is calculated using the following
formula:

Gaini,j,gainWays =
againWays ∗ (k + 1)−1

m ∗ (l + 1)
(1)

where a is the number of misses that potentially can be
avoided with gainWays additional ways, k is the number of
ways outside of the home tile, m is the MLP of the application
running on tile i and l is the hop distance from tile i to j.

The rationale behind factoring in the aforementioned at-
tributes in the gain expression is as follows. Firstly, factoring
in the number of avoidable misses provides an estimate of
reduction in the number of long-latency memory accesses
which influences performance. This value can be read directly
from the shadow tags in the monitoring hardware for a given
core. MLP is factored in because this coupled with the number
of misses helps to get a better estimate of the performance
impact of cache allocation decisions. The MLP estimate is
obtained through performance counters. Lastly, we factor in
the current allocation in remote tiles and the hop distance
to introduce fairness and ensure that no single application
expands its allocation too aggressively.

We use pain as a heuristic measure to predict how an
application will react to losing available cache capacity
(painWays) on the home tile where it is running. The pain

value is never communicated to other cache banks. In order to
compute pain we only take information about misses provided
by the shadow tags and MLP into account. Unlike the formula
for gain, we do not take information about allocations outside
home bank and the distance into account because the goal here
is to protect the capacity allocation in the home tile where the
application is running. Since the pain is not scaled it will grow
faster, if there are more misses, which will enable the home
bank application to protect its allocation. The pain of losing
painWays for the application running on tile j is calculated
using the following formula:

Painj,painWays =
apainWays

m
(2)

where a is the number of misses that will be incurred if the
allocation is decreased with painWays and m is the MLP. Our
evaluation in Section IV shows that the pain/gain heuristics
leads to good cache allocation decisions. We leave further
optimization of the pain and gain measures used in this study
for future work.

3) Monitoring hardware: We adopt Qureshi’s UMON sam-
pled tag array [1] in this work. The original UMON mech-
anism can predict the number of cache misses under all
possible cache allocations (at a single way granularity) based
on the access pattern the application has exhibited before.
The coarse-grained UMONs, that we use, work by tracking
the number of accesses to a shadow tag at coarse-granularity
(corresponding to 4 ways). The number of tags required will
still be the same but the associated way-hit counter overheads
are reduced. The solution also uses dynamic set sampling to
decrease the overhead of the monitoring hardware, like the
original proposal.

4) Hardware-based implementation: The inter-bank and
intra-bank algorithms are implemented in hardware owing to
its low computational complexity (see Section IV-E for de-
tails). To implement the algorithms each LLC bank controller
is provisioned with an ALU capable of computing the pain and
the gain and for comparing the values. The inter-bank scheme
requires, for each bank, a register array with N+2 entries, with
log2(N) bits per entry, to store the pain values of other banks.
In addition, each bank also includes a register array with N+1
entries, with log2(N) bits per entry, to store the id of other
tiles in increasing order of distance to determine the next tile
to send the challenges to. The intra-bank algorithm leverages
the state used by the inter-bank algorithm for establishing
allocations.

C. DELTA Enforcement

DELTA’s enforcement mechanism has two components.
The inter-bank enforcement mechanism utilizes a CBT (the
detailed design is presented later in this section) which con-
tains the mapping between address ranges and cache banks.
The CBT permits the allocations to span multiple banks by
mapping portions of the address space to different banks. The
CBT is accessed in parallel with the L2 cache to determine
in which LLC bank a certain address is mapped to. The
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intra-bank enforcement mechanism comprises a standard way-
partitioning (WP) unit that keeps track of which ways in the
cache bank each core is allowed to insert lines into.

1) Bank partitioning: Each core has a CBT which is
organized as a small fully-associative range table that holds
the information of address range to bank translation. The CBT
works with physical block addresses. We use a simplified
version of the range based organization proposed by Gandhi
et al. [20]. The total amount of storage required for each CBT
is log2(N) × N bits, where N is the maximum number of
distinct ranges, which is equal to the number of cores/banks.
The number of used entries (i.e. ranges) in the CBT is equal
to the number of LLC banks allocated by the local core. Only
in the rare scenario in which a a single core is active, can a
core’s CBT grow to map the majority of the chip resources.
Therefore, in practice this value is much smaller than the total
number of banks and the cost of the associative look-up is
negligible.

The CBT is updated when the allocated capacity for a tile
expands to/retreats from another tile. When the CBT is updated
there is a remapping of address ranges to cache banks. The
size of the address range mapped to a bank is proportional
to the size of the allocation in that cache bank. Examples
illustrating when and how the CBT is updated as allocations
expand/retreat are presented in Section II-D.

There are two important design choices for the CBT: (i)
how many bits to use, and (ii) which bits to use, i.e. how
to map addresses to cache banks. We evaluated different
options and found that by using just 8 bits following the
set index, as shown in Figure 2, it is possible to effectively
distribute the footprint of the application across the different
banks. We reverse the bits before we index into the CBT to
obtain the bank mapping. The reversing operation turns the
least significant bits with the highest entropy to the most
significant, which proves to be a reasonable solution for
mapping addresses uniformly for the applications we consider.

061663

10010111

11101001

151 1

CBT

Reverse

Bits used

Tag

Physical address

Set index
Block 
offset

Fig. 2: Bits from physical address used for bank selection.

2) Way partitioning: During insertion, the WP unit uses a
bitmask to indicate which cores can insert into a given way in
a cache bank. All cores can however access data irrespective
of which way it resides. Way-partitioning enforced using
bitmasks is practical and has been implemented in commodity
systems [19]. The total amount of storage required for each
WP unit is N ×W bits, where N is the number of cores and
W is the number of LLC ways. DELTA can also work with
other fine-grained intra-bank partitioning schemes proposed in
literature [14], [15], [21].

3) Invalidation support: A common strategy to handle
change in the mapping of an address to a LLC location is

to invalidate the line in the cache bank where it currently
resides. This invalidation is done by flushing the cache line.
Several commodity systems provide ISA level support for this
[22]. This is widely used by page coloring mechanisms [23].
However when remapping a large range there is increased
overhead due to additional instructions needed for invalidating
each address. We therefore rely on hardware support for
performing bulk invalidation efficiently. The bulk invalidation
unit works by checking the tags to identify addresses that fall
in the specified range and invalidates them. This approach does
not incur the instruction overhead of cache flushes.

D. Putting it all together

We clarify how the partitioning solution works with the help
of two examples that illustrate the different use cases.

Example 1, Inter-bank expansion. The capacity allocation
expands to a different tile when a challenge is successful.
In Figure 3 we show the process of expansion into a new
tile, as well as the state of the CBT and WP before/after
the change. We assume that tile 4 has capacity allocated in
cache banks in tile 4 and 0, as indicated in the CBT for tile
4. Since, the core in tile 4 sees a considerable gain from
expanding its allocation it issues a challenge to tile 5 (#1).
Tile 5 compares the gain coming from tile 4 with its own
pain of losing cache capacity (#2). Since the gain for tile 4 is
considerably larger, tile 5 decides to assign interDeltaWays
of ways from its allocation to tile 4 and updates its WP unit
(#3). In this case, ways 12-15 are assigned to tile 4 and a
response message is sent to tile 4. On receiving the message
the tile updates its CBT to also include tile 5 (#4). This is
followed by remapping addresses in range 192-255 from tile
4 to tile 5, and invalidating them where they were previously
located (#5). Note that expansion process does not require
invalidations in tile 5.

CBT (Tile 4) Before
Adress range Bank id
0-64 0
64-255 4

L1

L2

L3

NoC Router

Way-partitioning HW

L1

L2

L3

Tile 5

NoC Router

Way-partitioning HW

4.
2.

3.

Tile 4

CBT (Tile 4) After
Adress range Bank id
0-64 0
64-192 4
192-255 5

WP (Tile 5) Before
Way Core id
0-3 6
4-15 5

WP (Tile 5) After
Way Core id
0-3 6
4-11 5
12-15 4

5.

CBTCBT

C4 C5

1.

Fig. 3: Example of expansion.

Example 2, Intra-bank algorithm and retreat. The intra-
bank algorithm determines whether allocations within a bank
expand or shrink. The decision on which partition expands or
shrinks is based on the gain of the different applications that
share the cache bank. Whenever a partition expands or shrinks
the WP unit is updated to reflect the new allocation for the
partitions. A shrink will result in a retreat if a partition loses
all the ways it was assigned in the cache bank. This scenario is
shown in Figure 4. After the intra-bank algorithm is triggered
in tile 5 the algorithm decides that tile 4 must give up the entire
capacity in the cache bank since it has the least gain among
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Adress range Bank id
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3.

CBT

5C 51

L3

WP 

CBT

Fig. 4: Example of retreat.

those sharing the cache bank (#1). As a consequence, the WP
unit is changed to show the new configuration where ways
14-15 are reassigned to tile 5. The change triggers a message
back to tile 4 informing about the retreat. The CBT in tile 4
will now be updated (#2). The addresses previously mapped
to tile 5 are remapped, in this example addresses in range 224
to 255 are now remapped back to tile 4. All addresses in the
range will consequently be invalidated in tile 5 (#3).

The detailed evaluation of DELTA is presented in Section
IV. We show in Section IV-E that the overheads introduced
by DELTA are marginal.

E. Support for multithreading

When running multi-threaded workloads containing shared
data, accesses to the same line from two different tiles will end
up inserting the blocks in two different LLC banks, breaking
coherence. To address this, we propose to distinguish between
private and shared data at a page granularity and handle them
differently. Detection of shared pages including cross-process
sharing is performed by the TLB. We adopt a classification
scheme, proposed in R-NUCA [24] and used in other NUCA
schemes [4], to dynamically classify pages as private or as
shared incrementally and lazily. Lines belonging to shared
pages are mapped to the cache banks using a fixed S-NUCA
strategy whereas lines belonging to private pages are mapped
to banks based on the mappings available in the CBT. When
a page is first classified as shared all the lines belonging to
the page are invalidated.

The allocation algorithm also needs a minor change. On
receiving a challenge, the processIDs of the different threads
are compared, and the challenge will only be successful if
they are different. The rationale is to not let threads from the
same application (homogeneous multi-threaded) compete for
capacity since it can adversely impact application progress. We
expect the performance of this extension with multi-threaded
application to be similar to R-NUCA since private data and
most of shared data are dealt with in a similar way. Multi-
threaded workloads are analyzed in Section IV-C.

III. EXPERIMENTAL METHODOLOGY

A. Simulated Architecture

We evaluate our proposal on a 16/64 core tiled CMP
architecture modeled using the Sniper Simulator [25]. Details
about the baseline architecture are shown in Table II. Each tile
has an out-of-order (OOO) core with a private L1 data and
instruction cache, a unified private L2 cache and a LLC bank

of 512KB. The cache latencies assumed have been modelled
using CACTI 6.5 [26].

Cores 16 / 64 cores, x86-64 ISA, 4GHz, OOO,
Nehalem-like, 128 ROB entries, dispatch width 4

L1 caches 32KB, 8-way set-associative, split D/I,
1-cycle latency

L2 caches 128KB private per-core, 8-way set-associative,
inclusive, 6-cycle data and 2-cycle tag latency

LLC 512KB per-tile, 16-way set-associative, inclusive,
9-cycle data and 2-cycle tag latency, LRU

Coherence protocol MESIF-protocol, 64 B lines, in-cache directory
Global NoC 4x4 / 8x8 mesh, 4-cycles hop latency

(3-cycle pipelined routers, 1-cycle links)
Memory controllers 4 / 8 MCUs, 1 channel/MCU, latency 80 ns,

12.6GB/s per channel
DELTA parameters reconfiguration interval iinter=1ms iintra=0.1ms,

gainThreshold=0.5, minWays=4,
interDeltaWays=4, intraDeltaWays=1,
gainWays=4, painWays=4

TABLE II: Configuration of the simulated 16- and 64-core
tiled CMP.

In Section IV-E we demonstrate that state-of-the-art allo-
cation algorithms, Lookahead or Peekahead, cannot compute
locality-aware allocations in a scalable manner. This is because
the time needed to compute allocations and locality-aware
placement far exceeds the 1 ms reconfiguration interval that we
target in this study especially as we scale to larger core counts.
In order to fairly compare our distributed solution against the
centralized solutions, we model an ideal centralized solution
that calculates both allocations and locality-aware placement in
zero time (no overhead). The ideal solution represents an upper
bound on dynamic allocation decisions using the best known
centralized algorithm, Lookahead. We use Lookahead as a
reference since Peekahead too computes the same allocations
as Lookahead albeit with lower overhead. The ideal centralized
scheme uses the DELTA enforcement mechanism to support
locality-aware mapping in banked LLCs. UMONs are used in
each core to measure misses for all possible cache capacity
allocations for each application. The cost of invalidations that
occur due to remapping of addresses to banks (invalidation+re-
fetch) are modelled in detail for both DELTA and the ideal
centralized scheme. In addition, we also evaluate an unpar-
titioned, static NUCA implementation with line-interleaved
LLC addresses (unpartitioned S-NUCA), and private LLC,
with equal static partitioning of capacity per core (private)
for comparison.

DELTA dynamically considers allocations in increments of
32KB from a cache size of 128KB up to 6MB (per application)
for the 16-core configuration and 128KB to 24MB for the
64-core case. Each core reserves a minimum of 128KB (see
Table II) in the LLC to avoid potential back-invalidations due
to the inclusive cache hierarchy.

B. Workloads
We use the entire SPEC CPU2006 suite in our evalua-

tion. The applications are in the format of whole program
pinballs [27]. Workload mixes are constructed by classifying
applications in one of the four categories - cache-insensitive,
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cache-sensitive low, cache-sensitive low medium and thrash-
ing, depending on sensitivity to different cache sizes. The
classification is performed by running each application for 1B
instructions (after fast-forwarding for 1B instructions) with
cache sizes of 128KB, 512KB and 8MB. The applications
that show improvement in IPC of over 10%, as the cache size
increases, are classified as sensitive for a particular cache-
size region. Sensitive applications that show improvement in
the 128KB to 512KB region are classified as cache-sensitive
low and those that also show improvement in the 512KB
to 8MB are classified as cache-sensitive low medium. The
detailed classification is presented in Table III. Lastly, cache
insensitive and thrashing applications experience less than
10% improvement in the 128KB to 8MB range. Among these,
we classify applications with a number of Misses-Per-Kilo-
Instruction (MPKI) above five as thrashing and the rest as
cache insensitive.

Insensitive (I) povray(po),sjeng(sj),namd(na),
zeusmp(ze),GemsFDTD(Ge)

Thrashing (T) bwaves(bw),libquantum(li),milc(mi)
Cache-sensitive low (L) h264ref(h2),gromacs(gr),astar(as),

gamess(ga),lbm(lb),tonto(to),
wrf(wr),leslie3d(le),hmmer(hm)

Cache-sensitive low medium (LM) dealII(de),omnetpp(om),xalancbmk(xa),
gobmk(go),bzip2(bz),gcc(gc),mcf(mc),
soplex(so),perlbench(pe),sphinx3(sp),
calculix(ca),cactusADM(cac)

TABLE III: Classification of SPEC CPU2006 benchmarks.

Name Composition Benchmarks
w1 LM de,om(2),pe,ca,bz,go(2),ca,hm,le,go,bz,gc,so,mc
w2 L+LM bw,sj,na,ze,li,mi,ca,sp,de,om,go,go,bz,gc,mc,pe
w3 T+L to(2),bw(3),lb(2),li(3),h2,mi,gr,as,ga,mi
w4 T+LM delII,bw(3),so,li(2),hm,pe,mi(3),go,om,bz,go
w5 I+L+LM gc,po,Ge,as,pe,wr,ga,cac,to,hm,sj,h2,bz,ze,gr,so
w6 I+T+L+LM na,de,li,gr,wr,so,mi,as,mi,to,ze,om,bw,h2,Ge,hm
w7 I+T+LM sj,bw(2),bz,wr,li(2),gc,mi,de,na,om,ze,mi,go,Ge
w8 I+T+L po,bw(2),h2,sj,li(2),gr,na,mi,as,Ge,ga,wr,lb,mi
w9 I+LM po,om,sj(2),go,na(2),le,ze,go,Ge,bz,wr,ca,sp,gc
w10 I+L po,to,sj,h2(2),na,lb(2),ze(2),gr,Ge,as,wr,ga,po
w11 T+L+LM sp,bw,h2,om,li,gr,go,mi(2),as,hm,bw,ga,le,lb,calulix
w12 random go,lb,ca,sp,bw,go,li(2),ga,h2,ze,to,so,gr,mi,pe
w13 random lb,to,pe,go,gc,mi,li(2),na,h2,cac,ze(2),ca,so,as
w14 random de,bw,mc,li,pe,mi,ca,wr,go,po,hm,na,go,ze,so,Ge
w15 random to(2),po,lb,li,mi,lb,wr,h2,sj,gr,na,as,ze,ga,Ge

TABLE IV: Workload mixes.

We construct a total of 15 workload mixes by combining the
applications from the categories described above. Applications
from each category are picked randomly while not allowing
duplicates unless all applications in a category have already
been picked. Details about workload mixes are presented in
Table IV. We construct workload mixes for 64 cores by
replicating the 16-core workload four times. The applications
in a workload mix are mapped to cores randomly.

C. Methodology

We fast-forward for 8B/2B instructions for the 16/64 core
simulations. Detailed simulations are carried out until all
benchmarks have completed at least 500M/125M instructions
and statistics are reported based on the first 500M/125M
instructions for each application. We simulate fewer instruction
in fast-forward and detailed mode for 64-core CMP to reduce

simulation time. The methodology is in line with earlier works
[4], [14], [15].

D. Metrics

We use IPC as a measure of performance. We report the
geometric mean of IPCs of the applications in a workload,
as a performance metric for the workload. We also report the
following fairness and throughput metrics: average normalized
turnaround time (ANTT) and system throughput (STP) [28].
ANTT is given by 1

N

∑N
i=1

CPIi
CPIi,private

and STP is given by
∑N

i=1
CPIi,private

CPIi
ANTT and STP are commonly used for

performance evaluation of multi-programmed workloads.

IV. EVALUATION

We first compare DELTA against alternative cache organi-
zations and allocation algorithms (described in Section III-A).
Next, we show results for multithreaded applications followed
by the impact of reconfiguration frequency. Finally, we provide
an analysis of DELTA’s overheads.

A. Multi-programmed mixes on 16-core CMP

Figure 5 shows the performance for multi-programmed
mixes normalized to the unpartitioned S-NUCA. On average,
DELTA improves performance by 9% (up to 16%) over
S-NUCA whereas the ideal centralized solution shows an
average improvement of 12% (up to 22%). In comparison, the
private scheme shows an average improvement of 3% over S-
NUCA. The results for comparing the fairness and throughput
of DELTA and the ideal centralized scheme are shown in
Figure 6. On average, DELTA is 2% behind in terms of ANTT
and 5% behind in terms of STP, than the ideal centralized
scheme. Note that a lower value signifies greater fairness with
ANTT while a higher value is equivalent to larger throughput
with STP.

Fig. 5: Performance of workload mixes normalized to unpar-
titioned S-NUCA on a 16-core CMP.

As can be seen in Figure 5, the ideal centralized scheme
is better than DELTA in 11 out of 15 mixes. In four cases
DELTA performs on par or better. In order to understand the
performance gap between the ideal centralized scheme and
DELTA we investigate a single workload in detail. Figure 7
shows the performance of different applications in a single
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Fig. 6: Fairness comparison between ideal centralized and
DELTA.

workload using the ideal centralized scheme, normalized to
DELTA (in gray). In addition, it also shows the performance
of the private scheme normalized to DELTA (in blue). As
can be seen in the figure, most of the applications perform
almost identically with the exception of xalancbmk and soplex.
For these two applications, the ideal centralized solution
performs considerably better than DELTA, by 45% and 35%,
respectively. Note that DELTA performs better than the private
scheme for these two applications by 12% and 36%.

Fig. 7: Normalized performance for applications in w2 on a
16-core CMP.

To understand the trend for xalancbmk and soplex, we
compare the allocations of cache capacity, in terms of number
of ways, made by the ideal centralized scheme and DELTA,
for the different applications in the workload. The ideal cen-
tralized algorithm gives a larger allocation of 42 respectively
50 ways on average to xalancbmk and soplex in comparison
to DELTA which gives 26 and 20 ways. This behaviour can
be attributed to the farsighted nature of the ideal centralized
scheme i.e. it uses information about the entire miss curves for
all applications to determine allocations. DELTA, in contrast,
is nearsighted, i.e. uses a limited window of the miss-rate
curves to determine the pain/gain which influences allocations.
As xalancbmk and soplex do not see a considerable improve-
ment in the limited window, DELTA does not allocate as much
cache capacity as the ideal centralized scheme. The difference
in the size of allocations impacts the performance because

these applications are sensitive to additional cache capacity.
In Figure 8 we show the performance of individual applica-

tions in one of the workloads where DELTA is on par with the
ideal centralized scheme. We see that individual applications
mostly perform as well as or better than the centralized scheme
even though DELTA is nearsighted. The same trend holds also
for the other workloads (w3,w8,w10,w15).

Fig. 8: Normalized performance for applications in w3 on a
16-core CMP.

B. Multi-programmed mixes on 64-core CMP

To investigate how our proposal scales to larger core counts
we evaluate a 64-core CMP. Figure 9 shows the performance
for the individual multi-programmed workload mixes. DELTA,
on average, improves performance by 16% (up to 28%) over
S-NUCA, while the ideal centralized scheme improves per-
formance by 17% (up to 35%). The private scheme performs
better for 64-cores than for 16-cores, but is generally regarded
as an inefficient solution since it cannot handle underutilized
scenarios. The results for comparing fairness and throughput
between ideal centralized and DELTA indicate that the differ-
ence between the two schemes is 1% for STP and less than 1%
for ANTT (not shown). The results also indicate that DELTA
makes good allocation decisions, on par with an ideal scheme,
in spite of the distributed nature of the algorithm that increases
the number of re-configurations (steps) required to span across
all the banks in a CMP.

Fig. 9: Performance of workload mixes normalized to unpar-
titioned S-NUCA on a 64-core CMP.
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Fig. 10: Normalized performance for applications in w2 on a
64-core CMP.

The performance gap between DELTA and the ideal cen-
tralized scheme has diminished on average, compared to the
results for a 16-core CMP. For seven workloads (w3, w5,
w10, w11, w12, w13, w14) DELTA is on par or better than
ideal centralized. For workload w2, as shown in Figure 10, we
observe that DELTA falls behind the ideal centralized scheme
in the 64-core CMP experiments, similar to the trend seen
with the 16-core CMP. For many applications in this workload
DELTA is still better than the ideal centralized scheme but
in the few cases where the reverse is true, the difference in
performance is comparatively larger. For applications such as
xalancbmk and soplex the ideal centralized scheme surpasses
DELTA by giving a larger allocation, because it is farsighted.

We investigate one of the workloads (w13) where DELTA
performs better than the ideal centralized scheme, as shown in
Figure 11. The farsightedness of the ideal centralized scheme
results in it allocating over 250 ways to applications such as
lbm and libquantum. Moreover, the centralized scheme does
not consistently detect the benefit of giving these applications
a large allocation, and switches the cache capacity allocation
between a large and small allocation. In general, giving larger
allocation to a few applications puts severe constrains on the
allocations for the other applications and degrades the overall
performance. DELTA does not suffer from making these un-
advantageous allocations and performs better for the mixes
containing applications like lbm and libquantum.

In summary, the evaluation shows that DELTA performs
almost as well as the ideal centralized scheme as we scale to
64 cores. Furthermore, this demonstrates that a dynamic dis-
tributed scheme can give good allocations, without incurring
the overheads associated with computing allocations centrally.

C. Multi-threaded applications

We estimate the performance of DELTA using SPLASH2
suite in order to understand how the scheme performs with
multithreaded applications. Figure 12 shows the speed-up
obtained by DELTA over the S-NUCA implementation and
compares it to the private cache configuration. We execute
each application on the 16-core CMP and using large input
sets (from Sniper) to obtain performance data for the baselines.
We use number of cycles for the longest running thread within

Fig. 11: Normalized performance for applications in w13 on
a 64-core CMP.

the parallel region, which we identify as the region of interest
(ROI), as a measure of performance.

We follow a two step process to estimate the performance of
DELTA. Firstly, we measure the ratio of private/shared pages
and cache blocks. These results are shown in Table V. For this
we develop a pintool [29] that instruments all loads and stores
in the region of interest to measure inter-thread sharing at
page and cache block granularity. Next, we estimate the perfor-
mance of DELTA by performing a piece-wise reconstruction of
the execution in which private accesses are modeled according
to private LLC baseline’s performance, and shared accesses
are modeled according to the S-NUCA baseline performance.
To simplify, we assume that the LLC accesses are uniformly
distributed across pages. Private pages are reclassified at most
once, and the S-NUCA mapping is never reverted. Hence,
for long running applications this overhead is negligible. We
expect the estimation to be accurate since DELTA maps lines
from private-pages to the private bank and utilizes S-NUCA
mapping for lines from the shared pages.

By design (see Section II-E), the performance of DELTA is
usually between the performance of the S-NUCA and private
baselines, depending on the amount of private/shared pages.
Over the entire SPLASH2 suite, the average performance of
DELTA compared to both the private LLC configuration and
S-NUCA configuration is within 1% for both cases. The actual

Fig. 12: Normalized performance for splash2 on a 16-core
CMP.
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App. barnes cholesky fft fmm lu.cont lu.ncont ocean.cont
Page 8.2 62 33 73 0.5 0.5 38
Block 9.3 66 34 65 0.3 0.3 98.6
App. water.sp radiosity radix raytrace volrend water.nsq ocean.ncont
Page 10 3 5.2 17 5.7 99.8 1.1
Block 70 4.6 10 24 21 91 99

TABLE V: Percentage of private pages and blocks.

performance for each benchmark depends considerably on
the amount of sharing, with variations of up to 20%. For
example, in lu.ncont, which has high ratio of sharing
(>99%), DELTA’s performance is almost equal to the S-
NUCA performance, while the private LLC configuration
suffers performance loss of approx. 10%. On the other hand,
in water.nsq, where almost all pages are private, DELTA’s
performance is equivalent to that of the private LLC configu-
ration, achieving a speed-up of 6% over S-NUCA.

The results in Table V indicate that several benchmarks have
a low amount of private pages as opposed to private blocks.
On reason for this is the existence of shared data, such as
boundary elements in structured grid simulations, in pages that
are mostly private. In general, this will lead to less locality-
optimized cache access for these benchmarks. Due to the
additional costs associated with distant memory accesses (both
in DRAM and in caches), modern HPC software development
encourages programming styles that result in higher number
of private pages. This is designed to ensure threads operate
on local memory thereby reducing the amount of shared
pages [30]. Moreover, an important trend in algorithm design
are Communication-avoiding Algorithms (CAA) [31] which,
attempt to reduce sharing. Hence, we expect the architecture of
DELTA to achieve even better performance on modern multi-
threaded workloads with a considerable amount of private data
in comparison to S-NUCA. Detailed modeling and optimiza-
tion of DELTA for emerging multithreaded workloads is left
for future research.

D. Frequency of reconfiguration

In order to understand the impact of the frequency by which
cache allocations are computed, we simulate a cache partition-
ing solution that uses an ideal implementation of Lookahead
for computing allocations with zero overheads (see Section
III-A for details about the ideal centralized implementation)
at two cache allocation frequencies (1 ms and 100 ms), on

Fig. 13: Impact of frequency of reconfigurations on a 16-core
CMP.

the baseline system. Figure 13 shows the impact of allocation
frequency on performance of five different workload mixes
each comprising 16 SPEC CPU2006 benchmarks (see Table
IV). The results demonstrate that while frequent allocations do
not benefit all workloads, they do provide the opportunity to
improve performance for several of the workloads considered,
because of better adaptation to phase changes.

E. Overheads

We analyze the different sources of overheads in the cen-
tralized scheme and DELTA.

1) Computational overheads: The worst-case time com-
plexity of the Lookahead algorithm is O(N×W 2) where N is
number of cores and W is number of ways. We can consider
the algorithm to have cubic complexity, since the number of
ways needs to be at least as many as the number of cores (for
way-partitioning). The best case complexity is O(N×W ), i.e.
quadratic. Peekahead, which considers only the points of the
miss rate on a convex hull, has a complexity of O(N×W ), in
the best/average case and O(N ×W 2) in the worst-case. The
time to compute cache allocations for different core counts
using Lookahead and Peekahead, with 16 ways per core, is
presented in Table VI.

The Lookahead algorithm takes 5.32 ms on average to
compute allocations for a CMP with 16 cores (16-tile CMP
with each bank containing 16 ways). Peekahead takes 0.89
ms on average for the same scenario. For larger core counts
the overhead is even larger. Note that the data presented in
the table do not take into account the additional computations
needed to perform locality-aware data placement, which for
large core counts has been shown to exceed capacity allocation
overheads [32].

For DELTA the complexity can be attributed to the inter-
and intra-bank allocation algorithm. The pain and gain com-
putation step takes constant time, i.e. O(1) complexity. The
inter/intra bank allocation algorithm requires finding the core
with the MIN and MAX gain/pain values. This operation is
similar to finding the min. and max. in an unsorted array. The
simplicity of the DELTA reconfiguration algorithms enables a
hardware implementation with low overheads. Even if the al-
gorithms were to be implemented in software, the overhead of
DELTA’s inter- and intra-bank allocation algorithms assuming
a 64-core CMP would be 0.015 ms and 0.007 ms, three orders
of magnitude lower than state-of-the-art.

2) Message overheads: We calculate the number of addi-
tional messages sent in the worst-case at each reconfiguration
interval (assuming iinter = 1ms and iintra = 0.1ms) in a
16-core CMP. For the centralized scheme the total number
of messages is 2 × N , where N is the number of cores
in the system, and this results in 16 × 2 = 32 additional

Cores 2 4 8 16 32 64
Lookahead 0.02 0.05 0.46 5.32 73.07 1230
Peekahead 0.03 0.07 0.23 0.89 3.34 13.12

TABLE VI: Overhead for Lookahead and Peekahead in ms
per invocation.
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messages. DELTA however needs 2 × N messages for intra-
bank allocation and N×10×2 for inter-bank allocation which
results in a total of 352 messages. However, the number of
messages on the NoC pertaining to L2 misses alone, during
the same interval, is 320K on average. This indicates that
the overhead in terms of additional messages for DELTA is
marginal (∼0.1%), even in the worst-case.

3) Invalidation overheads: Invalidations are needed when
remapping addresses to LLC locations regardless of whether
the allocation algorithm is centralized or distributed. Invalida-
tion overheads can be primarily attributed to two causes: the
overheads of performing the invalidations and how often/much
data need to be invalidated. We address the first by performing
bulk invalidations (see Section II-C). We mitigate the second
by only requiring invalidations for inter-bank reconfigurations.
Intra-bank reconfigurations do not lead to invalidations except
when a retreat is triggered in rare cases (see Section II-D).

V. RELATED WORK

Cache Partitioning: Several solutions have been proposed
in literature for cache resource partitioning. Way partitioning is
the most popular and it is implemented in commodity systems
[2], [19], [33], [34]. It is a simple technique that works by lim-
iting which ways a core can insert into. The major limitation
is that it requires cache associativity to scale with the number
of cores, which is not easily done [35]. Set partitioning is
another approach, which can be implemented with hardware or
software support [8], [9], [23], [36]. Hardware based schemes
require flexible indexing of the cache. Software schemes use
page coloring and rely on OS support for partitioning. Page
coloring, however, cannot support superpages and incurs high
overhead for reconfiguration. The aforementioned solutions
also have the drawback of only supporting a limited number
of coarse-grained partitions.

Fine-grained partitioning solutions can be broadly classified
in three categories, i) hybrid techniques [10], ii) clustering
techniques [11], [12] and iii) replacement-based techniques
[13]–[16]. Hybrid techniques like SWAP, combine set and way
partitioning in order to get more fine-grained partitions. Clus-
tering techniques like KPart, group applications into clusters
and then assigns clusters to way partitions, to emulate fine-
grained partitioning. The replacement-based techniques adapt
the cache replacement policy to enable fine-grained partitions
with different sizes. However, in the context of tile-based
CMPs, these approaches leave room for further improvement
since they do not take locality into account.

A few proposals performs locality-aware placement for tiled
CMPs [4], [18]. CloudCache [18] uses virtual private cache
partitions that span across banks and performs locality-aware
placement of the partitions. The drawback of this proposal is
that it uses N-chance spilling [37] on evictions and requires
costly broadcasts. Jigsaw [4] lets software define shares and
then maps data to them by assigning a share id to every page
in the application. Allocation and enforcement is done at share
granularity instead of application/core granularity as in prior
proposals. The proposal relies heavily on software support.

Furthermore, in the aforementioned solutions the allocation
decision is made by a central hardware or software component
which limits scalability.

To lower the overhead of a central component, XChange
[38] uses a market-based approach where some of the com-
putations for multi-resource management are done in each
core/bank. However when used for partitioning a single re-
source, XChange will result in an equal partitioning. Moreover
the scheme is based on a shared L2 cache structure and thus
does not enable locality-aware placement, unlike DELTA.

Non-Uniform Cache Access (NUCA): Efficient usage of
NUCA caches has been an extensively researched topic [24],
[39]–[45]. The simplest approach, Static NUCA (S-NUCA),
spreads the data over all cache banks with a fixed mapping
and exposes variable access latencies.

D-NUCA schemes try to combine the best from private and
shared cache designs, where private designs have isolation
but suffers from under-utilization and shared designs have
dynamic utilization but suffers from long on-chip latencies
and interference.

A few proposals, like DELTA, try to minimize long on-
chip distance. They mostly focus on multi-threaded applica-
tions and achieve this by replication and placement, where
frequently used lines are copied and placed in the nearest
cache bank [42]–[44]. Spilling has been proposed as a way
to overcome the problem of underutilized private caches. It
works by inserting a copy of a line in another cache bank
before it is evicting from the cache hierarchy [37], [46].

Both spilling and replication have two problems. Firstly,
both operations decrease the capacity of the cache, where
a tradeoff is made between latency and capacity. Secondly,
costly directory lookups are needed in order to find data. In
our proposal, we avoid both these drawbacks since we place
data in a locality-aware way without replicating and do not
need a directory to find the data.

Some D-NUCA proposals implement a different partitioning
strategy, where separation is done between shared and private
regions instead of applications [47]–[50]. Elastic Cooperative
Caching (ECC) [50] uses a distributed approach to divide the
cache bank between shared/private using way partitioning. The
scheme also uses spilling to extend capacity to other banks and
therefore inherits the drawbacks of spilling. In contrast to this
work we enforce strict per application partitions that can span
multiple banks.

R-NUCA [24] classifies accesses into three categories (in-
structions, private data, shared data) and uses static rules
for placement and replication for each type. The drawbacks
of the scheme is that it uses a static placement scheme
for the different classes not taking dynamic nor application
specific behaviour into account, which DELTA does. Note that,
compared to DELTA, none of the aforementioned techniques
give strict interference protection for data.

Coherence framework: CDR [51] reduces the scope of cache
coherence from global to VM-, application-, or page-level to
enable shared memory between servers or to minimize on-
chip distances in a manycore. Unlike DELTA it does not
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provide strict cache partitioning. Furthermore, creation of
sharer domains does not take the cache requirements of each
application into account but instead allows the different threads
of the same application to form a domain.

To the best of our knowledge, DELTA is the first distributed
solution for fine-grained and locality-aware cache partitioning
which permits permits hardware implementation and scales to
many-core architectures.

VI. CONCLUSIONS

We present DELTA, a fully distributed and locality-aware
partitioning solution for tile-based CMPs. The solution is scal-
able through its novel challenge-based allocation algorithm,
which allocates cache capacity in a distributed way based on
the performance gain of each application.

We show that the distributed algorithm has low computa-
tional overhead which permits hardware implementation and
enables frequent reconfiguration. The allocation algorithm is
supported by a flexible enforcement mechanism that enables
locality-aware placement. Our evaluation demonstrates that the
distributed partitioning solution performs close to an ideal
centralized solution and scales to large core counts.
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ABSTRACT
Reducing the average memory access time is crucial for improv-
ing the performance of applications running on multi-core archi-
tectures. With workload consolidation this becomes increasingly
challenging due to shared resource contention. Techniques for parti-
tioning of shared resources - cache and bandwidth - and prefetching
throttling have been proposed to mitigate contention and reduce
the average memory access time. However, existing proposals only
employ a single or a subset of these techniques and are therefore
not able to exploit the full potential of coordinated management
of cache, bandwidth and prefetching. Our characterization results
show that application performance, in several cases, is sensitive
to prefetching, cache and bandwidth allocation. Furthermore, the
results show that managing these together provides higher perfor-
mance potential during workload consolidation as it enables more
resource trade-offs. In this paper, we propose CBP a coordination
mechanism for dynamically managing prefetching throttling, cache
and bandwidth partitioning, in order to reduce average memory
access time and improve performance. CBP works by employing
individual resource managers to determine the appropriate setting
for each resource and a coordinating mechanism in order to enable
inter-resource trade-offs. Our evaluation on a 16-core CMP shows
that CBP, on average, improves performance by 11% compared to
the state-of-the-art technique that manages cache partitioning and
prefetching and by 50% compared to the baseline without cache
partitioning, bandwidth partitioning and prefetch throttling.

1 INTRODUCTION
Memory access time has a significant impact on application per-
formance. Effective utilization of the memory system is therefore
necessary. Typically, resources in thememory system (e.g., last-level
cache (LLC) and off-chip memory bandwidth) are shared among
multiple cores as they help in improving resource utilization during
workload consolidation. However, sharing can detrimentally im-
pact average memory access time and performance due to resource
contention. Prior works have proposed partitioning of shared re-
sources – cache [10, 15, 19, 26, 28] and bandwidth [13, 17, 24] – and
prefetching [11] to mitigate contention, reduce or hide memory
access time and improve performance.

Recent works have proposed combining cache and bandwidth
partitioning [4, 23, 27], prefetching and cache partitioning [31, 33]
and bandwidth partitioning and prefetching [8, 18] to provide addi-
tional performance gains. The key insight from these papers is that
coordinated management of two techniques is more advantageous
than considering each in isolation because of the trade-offs that are

made possible. However, no study so far has considered combining
all three techniques. The goal of this paper is to do so.

Coordinated management of cache partitioning, bandwidth par-
titioning and prefetch throttling provides the following advantages.
Firstly, it makes it possible to address more applications and cover
a broader range of workloads, as shown in our in-depth perfor-
mance characterization (see Section 2). The results show that 90%
of the applications in the SPEC CPU2006 suite have performance
sensitivity (over 10% change in IPC) to at least one of the tech-
niques, and 70% are also sensitive to multiple techniques. Secondly,
managing these techniques jointly opens up the opportunity to
new and improved trade-offs. There are synergistic interactions
between the techniques and these cannot be realized if cache par-
titioning, bandwidth partitioning and prefetch throttling are not
jointly managed.

As an example, consider the simple case of a workload compris-
ing of two applications. The first application, lbm, is sensitive to
bandwidth and prefetching while the second, xalancbmk, is sensi-
tive to cache size and has lower performance when prefetching is
enabled. The best solution when managing all three techniques is to
give xalancbmk a large cache allocation, small bandwidth allocation
and disable the prefetcher, while giving lbm a large bandwidth allo-
cation, small cache allocation while keeping the prefetcher active.
Figure 1 shows the performance from coordinated management
of all three techniques (cache+bw+pref ) compared to managing a
subset of the techniques. The results show that the solution that
manages all three techniques is better than others that manage
two of the techniques, and leads to an additional performance gain
of 15%. The main challenge of coordinately managing all three
techniques is the complexity of evaluating all possible allocations

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

N
o
rm

a
liz

e
d
 t

o
 b

a
se

lin
e

only bw

only pref

only cache

bw+pref

bw+cache

cache+pref

cache+bw+pref

Figure 1: Workload with lbm and xalancbmk. Total band-
width 16GB/s, total cache size 2MB. Executing applications
for 1B instructions, more details in Section 4. Settings: lbm-
prefething active, 12GB/s, xalancbmk- prefetcher inactive,
4GB/s, determined from characterization (Section 2). Cache
partition sizes are decided dynamically.

1



Nadja Ramhöj Holtryd, Madhavan Manivannan, Per Stenström, Miquel Pericàs

dynamically and determining the best possible allocation while
exploiting the large number of possible trade-offs.

Guided by our characterization results, we propose CBP, a co-
ordinated mechanism for dynamically managing cache partitioning,
bandwidth partitioning and prefetch throttling formulti-programmed
workloads. CBP consists of three local controllers, one for each re-
source that together with a coordination mechanism manages and
allocates the resources. With CBP, the three techniques are dynam-
ically tuned in an iterative fashion. First, cache space is allocated
since avoiding a memory access altogether is better than reduc-
ing their latency. As a next step, bandwidth is allocated taking
into consideration the impact due to cache allocation. Lastly, the
prefetch setting is determined by testing the impact of prefetch-
ing on performance for the current allocation of bandwidth and
cache. The prefetcher performance influences the next reallocation
of cache space and bandwidth. The feedback mechanism between
the different techniques dynamically adapts the allocations in order
to reach a good configuration depending on the characteristics of
the individual applications in the workload. Our approach of com-
bining local controllers with a feedback mechanism reduces the
complexity.

In summary, we make the following contributions:
(a) We present an in-depth characterization of the performance

impact of cache, bandwidth and prefetching on the entire SPEC
CPU2006 suite. Our characterisation results provide several in-
sights: i) a majority of the applications (over 90%) are sensitive to
one or multiple techniques, ii) managing cache, bandwidth and
prefetch, opens up opportunities for exploiting more trade-offs and
improving performance for consolidated workloads, and iii) man-
aging cache, bandwidth and prefetch jointly has the potential to
outperform combinations of two of the techniques.

(b) We propose CBP, a mechanism to dynamically manage the
three resources in coordination. The solution is based on simple
heuristics in order to sidestep the complexity associated with eval-
uating all possible configurations and choosing the most efficient
configuration. CBP works by employing individual resource man-
agers to determine the appropriate setting for each resource and a
coordinating mechanism to enable inter-resource trade-offs.

(c) We evaluate our solution with multi-programmed workloads
on a 16-core tiled CMP. CBP improves performance by up to 36%
(geom. mean 11%) compared to the state-of-the-art technique that
manages cache partitioning and prefetching in a coordinated man-
ner and by up to 86% (geom. mean 50%) compared to an unparti-
tioned S-NUCA without cache partitioning, bandwidth partitioning
and prefetching.

The rest of the paper is organized as follows. Section 2 motivates
the need for a coordinated approach using cache partitioning, band-
width partitioning and prefetch throttling. Section 3 describes our
proposed solution in detail. We then discuss the methodology in
Section 4 and Section 5 presents the evaluation of the proposal. We
provide an overview of related work in Section 6 and conclude in
Section 7.

2 CHARACTERIZATION
In order to motivate the need for coordinated management of cache
partitioning, bandwidth partitioning and prefetch throttling, we
perform a detailed characterization study of applications in the

SPEC2006 CPU suite. The aim of this study is to: i) characterize
applications to determine the extent to which they are performance
sensitive to cache, bandwidth and prefetch settings, ii) understand
the different resource interactions, their impact on performance and
the inter-resource trade-offs that are possible, and iii) demonstrate
the performance potential of coordinated management of all three
resources over a subset of resources.

2.1 Sensitivity to cache, bandwidth and
prefetch settings

To understand the sensitivity of applications to cache, bandwidth
and prefetch settings we model a system consisting of one out-of-
order core with a 3-level cache hierarchy using the Sniper simulator
[5]. Details about the methodology are provided in Section 4. For
this experiment, the baseline LLC and bandwidth allocation is 512kB
and 4GB/s, respectively. We run the application in steady-state for
1B instructions and use IPC as a measure of performance.

Figure 2 shows the performance impact of changing the cache al-
location, bandwidth allocation and enabling prefetching normalized
to the baseline allocation without prefetching. Note that we only
change the setting for one resource at a time. In Figure 2a, C-L and
B-L represent low allocation settings where the cache allocation
is decreased to 128kB and the bandwidth allocation is decreased
to 1GB/s, respectively, while prefetching is disabled. Similarly, in
Figure 2b, C-H and B-H represent high allocation settings where
the cache allocation is increased to 2MB and the bandwidth alloca-
tion is increased to 16GB/s, while prefetching is disabled. Finally,
P-B represents the setting where prefetching is enabled with the
baseline cache and bandwidth allocation. We classify applications
as performance sensitive to a specific resource if the modified allo-
cation results in a 10% deviation from the baseline IPC. We refer
to applications that are performance sensitive to change in cache
allocation as cache sensitive (CS), sensitive to change in bandwidth
allocation as bandwidth sensitive (BS) and sensitive to prefetch
throttling as prefetch sensitive (PS).

The sensitivity results for cache size show that nearly 60% of the
applications (17 out of 29) are sensitive to changes in cache alloca-
tion. The extent to which applications are performance sensitive
varies greatly with a performance increase of up to 4x in some cases.
Furthermore, a larger number of applications are sensitive in the
low allocation setting in comparison to high allocation setting (17
compared to 11). The sensitivity results for bandwidth allocation
also shows a similar trend, as more applications are sensitive in
the low allocation setting (23 compared to 15). Also, the extent of
performance sensitivity varies greatly with an increase of up to 3x.
The sensitivity results for prefetch throttling indicate that nearly
38% of the applications (11 out of 29) are sensitive to prefetching
and experience a speedup. However, there are some applications
that experience a slowdown due to prefetching. In summary, we
make the following observation:
OBSERVATION 1. In SPEC CPU2006 suite 90% of the applications
are sensitive to one resource, while 70% are sensitive to multiple re-
sources and the extent of sensitivity varies greatly.
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(a) Slowdownwhen decreasing the cache size to 128kB (C-L), and slow-
down when decreasing the bandwidth allocation to 1GB/s (B-L) in
comparison to the baseline allocation, with prefetching disabled.
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(b) Performance improvement from increasing cache allocation to
2MB (C-H), and increasing bandwidth allocation to 16GB/s (B-H) in
comparison to the baseline allocation, with prefetching disabled. Per-
formance improvement from enabling prefetching for the baseline
allocation (P-B)

Figure 2: Performance impact of changing cache size, bandwidth allocation and prefetcher setting. There are 6 CS-BS-PS ap-
plications, 8 CS-BS, 6 BS-PS, 3 CS, 3 BS and 3 applications are insensitive (I) to all three techniques.

2.2 Inter-resource interactions and trade-offs
Next, we investigate inter-resource interactions and trade-offs that
are enabled when jointly managing cache, bandwidth and prefetch-
ing. We focus on intra-application resource interaction initially.
There are four possible types of interactions within an application:
cache-bandwidth-prefetch, bandwidth - prefetch, cache - prefetch
and cache - bandwidth.

Regarding the cache-bandwidth-prefetch trade-off, we want to
find out how the performance impact from prefetching varies with
the allocation of cache and bandwidth. Figure 3 shows the perfor-
mance impact of prefetching for three different cache/bandwidth
settings normalized to the respective baseline settingwithout prefetch-
ing. The cache and bandwidth setting for an application in a low
allocation scenario (P-L) is 128kB and 1GB/s, the baseline allocation
scenario (P-B) setting is 512kB and 4GB/s while the high allocation
scenario (P-H) setting is 2MB and 16GB/s.
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Figure 3: Performance impact of enabling prefetching rela-
tive to allocation of cache and bandwidth, for allocation set-
tings; L:128kB,1GB/s B:512kB,4GB/s H:2MB,16GB/s

For some applications, lower bandwidth and cache allocation
leads to higher sensitivity for prefetching as seen in hmmer. This is
because avoiding a miss altogether, as a consequence of accurate
prefetching, can have a larger impact in low allocation settings
where the bandwidth is scarce and the memory queuing delays
tend to be longer. Also, there are applications like gcc which experi-
ence higher prefetch sensitivity with a larger cache and bandwidth

allocation. The results indicate that applications tend to be prefetch
sensitive in some settings and prefetch insensitive in others. We
make the following observation:
OBSERVATION 2. Allocation of cache and bandwidth influences
prefetch sensitivity. Furthermore, applications tend to be prefetch
sensitive in some settings and prefetch insensitive in others.

In the interest of space we use leslie3d as a representative ex-
ample to illustrate the other pairwise resource interactions and
trade-offs, since it is sensitive to all three techniques. Note that
the baseline setting will be used for the resources unless specified
otherwise. The bandwidth - prefetch interaction manifests in two
different ways. Firstly, prefetching typically increases the number
of memory accesses and this in turn increases the bandwidth pres-
sure. In the case of leslie3d prefetching results in a 15% increase in
the number of memory requests in comparison to the baseline. Note
that prefetch misses, i.e. prefetched blocks that are evicted before
use, can result in a further increase in pressure on the memory
bandwidth. Secondly, the performance improvement from prefetch-
ing can be influenced by the bandwidth allocation. The results in
Figure 4a show the performance for different bandwidth allocation
with and without prefetching. We make the following observation:
OBSERVATION 3. A larger bandwidth allocation can compensate
for increased bandwidth demands, due to inaccurate prefetches, lead-
ing to increased performance with prefetching.

The cache - prefetch interaction also manifests in two main ways.
Firstly, the performance loss from reduced cache allocation can be
offset if prefetching is effective. Figure 4c shows the IPC for dif-
ferent cache allocations with and without prefetching. The results
show that the performance of 128kB allocation with prefetching is
better than 512kB allocation without prefetching. Secondly, larger
cache sizes (if it is used efficiently) can lead to higher speedup from
prefetching. Figure 4b shows the performance improvement from
prefetching with different cache allocation normalised to the re-
spective cache allocation without prefetching. The results show
that prefetching is effective with lower cache allocation and that
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Figure 4: leslie3d - example of interactions and its impact on performance within a single application.

its effectiveness can increase with additional allocation. The rea-
son for this behaviour is that a larger cache reduces the number
of memory accesses which has the same effect as increasing the
available bandwidth, i.e. a lower queuing delay, which is more for-
giving when there is an increase in memory accesses caused by
inaccurate prefetches (in leslie3d there is a 15% increase in dram
accesses caused by prefetching). These results lead to the following
observation:
OBSERVATION 4. A trade-off can be made between either increas-
ing cache size or enabling prefetching, leading to the same perfor-
mance, for applications which are performance sensitive to both cache
and prefetching.

As for the cache - bandwidth interaction, a lower bandwidth
allocation can result in a larger sensitivity to cache size. Figure 4d
shows the performance improvement from increasing the cache
allocation from 512kB to 2MB with different bandwidth allocation
settings. The results show that performance improvement from
additional cache allocation is much higher in low bandwidth al-
location settings (see the result for 1GB/s bandwidth allocation).
This is because the average cost of a miss is much higher in the
case of lower bandwidth allocation. The results also show that a
large cache allocation can reduce the performance sensitivity to
bandwidth allocation (see the result for 16GB bandwidth allocation).
These results lead to the following observation:
OBSERVATION 5. A trade-off can be made between either increased
cache space or increased bandwidth allocation, for applications which
are performance sensitive to both cache and bandwidth.

Wenow describe how the observed intra-application interactions
and trade-offs can be leveraged in the inter-application setting
for multi-programmed workloads. Let us revisit the example of
running a simple workload comprising two application (lbm and
xalancbmk) on a dual-core system with 2MB LLC capacity and
16GB/s bandwidth, discussed in Figure 1. For achieving the best
aggregate performance we expect xalancbmk to get the majority
of the cache (nearly 1.75MB), while lbm is given a smaller cache
allocation of 256KB. For bandwidth, we would expect lbm to have a
large allocation (12GB/s) of the available bandwidth and xalancbmk
to get a smaller allocation (4GB/s). This is reflected in Observation 5

about the trade-off between cache and bandwidth where we would
prioritize the application that shows the highest sensitivity for
the resource. Furthermore, as reflected in Observation 2, we expect
prefetching to bemore effective for lbm since it has a large allocation
of bandwidth. In the case of xalancbmk, prefetching leads to lower
performance regardless of the allocation of cache and bandwidth.

2.3 Potential for coordinated management
In order to show the potential for coordinatedmanagement of cache,
bandwidth and prefetch we run 640 randomly generated workloads
each comprising 4 SPEC 2006 CPU applications. We compare the
performance of jointly managing all the three resources to other
resource managers that only manage a subset of these resources. For
this experiment the baseline allocation of cache and bandwidth for
each application is 512kB and 4GB/s. We use an exhaustive search
algorithm to find the best static configuration (over 1B instructions)
for the different resources when running each workload. Figure
5a shows average (geometric mean) performance with different
resource managers normalized to the baseline settings without
prefetching. equal on, depicts the performance when prefetching is
enabled for all applications and improves performance by 6% while
only pref, depicts the performance when prefetching is selectively
activated and improves performance by 9%. cache+bw+pref results
show that coordinately managing cache partitioning, bandwidth
partitioning and prefetch throttling improves performance by 5%
compared to the best combination of two techniques (22% compared
to 17%).

Figure 5b shows the number of workloads (among the 640 work-
loads considered) that experience a performance gain of at least
10% using the different resource managers discussed previously.
The results show that 90% (597) of the workloads are sensitive to
the resource manager that jointly manages all three techniques. A
smaller fraction of the workloads are sensitive to resource man-
agers that manage a subset of these techniques (77% are sensitive to
cache+pref resource manager and 69% are sensitive to the cache+bw
resource manager).

In summary, the results from the characterization study demon-
strate that around 90% of applications in the SPEC 2006 CPU suite
are sensitive to different resources and that coordinately manag-
ing them opens up new possibilities for improving performance
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Figure 5: Potential for coordinated management measured
using 640 random workloads of 4 SPEC CPU2006 applica-
tions. Performance is obtained using an exhaustive search
algorithm that evaluates bandwidth settings (2GB/s, 4GB/s,
6GB/s), cache settings (256kB, 512kB, 1024kB) and prefetch-
ing settings (active/inactive), in conjunction, to determine
the resource allocation for each application in the workload
that maximizes aggregate performance.

by trading resource allocations. Furthermore, jointly managing
these resources has the potential to cover a broader range of work-
loads and outperform resource managers that manage a subset of
resources. In the next section we will discuss how the proposed
resource manager, CBP, determines cache, bandwidth and prefetch
settings for different applications in a workload.

3 CBP RESOURCE MANAGER
Section 3.1 provides an overview of the CBP resource manager.
Section 3.2 discusses the individual resource controllers while Sec-
tion 3.3 describes how the coordination mechanism ties the local
resource controllers together. Finally, the implementation and over-
head of the proposed mechanism is discussed in Section 3.4.

3.1 Overview
CBP is a coordinated mechanism for dynamically managing cache
partitioning, bandwidth partitioning and prefetch throttling. The
design consists of one local controller for each of the three tech-
niques, and a coordination mechanism, as shown in Figure 6.

Cache resource  
controller

Coordination mechanism

Bandwidth resource  
controller

Prefetch throttling   
controller

Cache  
allocation per  
application

Bandwidth  
allocation per  
application

Prefetch  
setting per  
application

ATDs estimating  
misses for different  
cache sizes

Queuing delay per  
application

Sampled IPC  
with prefetch  
enabled/disabled  
per application

Figure 6: Overview of CBP resource manager.

The cache allocation controller estimates the number of misses
for different cache sizes using auxiliary tag directories (ATDs) [26]
and uses this as input for determining cache allocation. The cache
allocation per application is determined such that it reduces the ag-
gregate number of cache misses for the entire workload. The band-
width allocation controller uses memory request queuing delay
experienced by the applications as input and allocates the available
bandwidth in proportion to the delay. The bandwidth allocation
controller, assigns a larger allocation of the available bandwidth to
applications that experience longer queuing delay, and a compar-
atively lower allocation to those that experience shorter queuing
delays. Lastly, the prefetch controller samples IPC with and with-
out prefetching to determine whether the prefetcher should be
enabled/disabled for each application.

The three techniques are dynamically tuned using the coordina-
tion mechanism in an iterative manner such that the local controller
takes into consideration the decisions taken by the other controllers.

3.2 Local resource allocation controllers
A partitioning solution for shared resources like cache and band-
width typically comprises two components: allocation policy, that
determines how a resource is divided among multiple co-running
applications, and an enforcement mechanism, that enforces the
partitioning decision. Similarly, prefetch throttling involves a pol-
icy to determine the best prefetch setting to use and a mechanism
implemented in hardware to enforce the setting. In the context
of CBP, the policy component is of particular interest because it
enables inter-resource trade-offs. We discuss the allocation policy
in this section and defer the details of the enforcement mechanism
to Section 3.4.
3.2.1 Cache partitioning. The cache allocation controller uses the
Lookahead algorithm [26], to determine cache allocation. In a nut-
shell, the algorithm computes the utility for each application where
utility is the measure of howmany additional misses can be reduced
with allocation of cache ways. It then computes the number of ways
that maximizes the utility for each application (while ensuring this
is less than the total number of ways available for allocation). Fi-
nally, it compares the utility values for the different applications,
determines the application that has the highest utility and assigns
the pre-computed number of ways that maximizes the utility for
that application. The process repeats, with recomputation of utility
for each application and reassignment of available cache ways to the
application that has the largest utility, until the rest of the available
capacity is distributed. The allocation controller relies on sampled
ATDs to estimate, based on past behaviour, the number of misses
that can be avoided with additional allocation of cache ways for
each application. In order to adapt to an inclusive cache hierarchy,
we assign a minimum allocation of cache space (min_ways) to all
the applications before distributing the remaining capacity.
3.2.2 Bandwidth partitioning. We propose a bandwidth allocation
algorithm, that partitions bandwidth proportional to the memory
queuing delay experienced by each application. The pseudo-code
for the proposed bandwidth allocation controller is outlined in Al-
gorithm 1. The controller assigns a minimum bandwidth allocation
(min_bandwidth_allocation) for each application in order to avoid
unfairly giving a very low allocation to applications with a small
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Algorithm 1: Bandwidth allocation controller pseudo-code
Input :A list 𝑞𝑢𝑒𝑢𝑖𝑛𝑔𝐷𝑒𝑙𝑎𝑦𝑃𝑒𝑟𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
Output :A list 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

1 At time period 𝑟𝑒𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ;
2 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = (𝑡𝑜𝑡𝑎𝑙𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ-

𝑚𝑖𝑛_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ_𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛*𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑜𝑟𝑒𝑠
𝑡𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑎𝑦 = 0;

3 for 𝑖 ← 0 to 𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑜𝑟𝑒𝑠−1 do
4 𝑡𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑎𝑦 += 𝑞𝑢𝑒𝑢𝑖𝑛𝑔𝐷𝑒𝑙𝑎𝑦𝑃𝑒𝑟𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛[i];
5 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛[i] =

𝑚𝑖𝑛_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ_𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛;
6 end
7 for 𝑖 ← 0 to 𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑜𝑟𝑒𝑠−1 do
8 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛[i] +=

(𝑞𝑢𝑒𝑢𝑖𝑛𝑔𝐷𝑒𝑙𝑎𝑦𝑃𝑒𝑟𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛[i]/𝑡𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑎𝑦) *
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ;

9 end

queuing delay. The remaining bandwidth is set for distribution
among the applications (see line 2). The algorithm computes the
total queuing delay by summing up the individual queuing delays
experienced by each application (line 4) while assigning the mini-
mum allocation to each application (line 5). As the next step, the
remaining bandwidth is allocated proportionally to the queuing
delay experienced by the application (line 7-9). The queuing delay
for each application is obtained by measuring the memory access
time for requests from each application.

3.2.3 Prefetch throttling. The prefetch throttling policy determines
the best prefetcher settings for each application. The pseudo-code
for prefetch throttling controller is outlined in Algorithm 2. The
algorithm considers two possible settings – prefetcher enabled and
prefetcher disabled – but can easily be extended to support other
aggressiveness settings as well. The algorithm uses the sampled
IPC values, for each application obtained, with different prefetcher
setting over a sample period (prefetch_sampling_period) as input.
The algorithm first computes the speedup from prefetching for each
application using the sampled IPC values. If the speedup is below a
threshold (speedup_threshold) the prefetcher is deactivated for the
next prefetch interval (prefetch_interval) (line 3-4). If the speedup
is above the threshold prefetching is activated for the next prefetch
interval (line 6). The prefetch throttling controller is generic enough
to support any type of prefetcher.
Algorithm 2: Prefetch throttling controller pseudo-code
Input :Two lists 𝑖𝑝𝑐𝑊 𝑖𝑡ℎ𝑃𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑣𝑒 ,

𝑖𝑝𝑐𝑊 𝑖𝑡ℎ𝑃𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑖𝑛𝑔𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒
Output :A list 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑃𝑒𝑟𝐶𝑜𝑟𝑒

1 At time period 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ;
2 for 𝑖 ← 0 to 𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑜𝑟𝑒𝑠−1 do
3 if

(𝑖𝑝𝑐𝑊 𝑖𝑡ℎ𝑃𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑣𝑒[i]/𝑖𝑝𝑐𝑊 𝑖𝑡ℎ𝑃𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑖𝑛𝑔𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒[i])
> 𝑠𝑝𝑒𝑒𝑑𝑢𝑝_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

4 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑃𝑒𝑟𝐶𝑜𝑟𝑒[i] = 0;
5 else
6 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑃𝑒𝑟𝐶𝑜𝑟𝑒[i] = 1;
7 end
8 end

3.3 Coordination Mechanism
The goal of the coordination mechanism is to ensure that each
local controller takes into account the decisions taken by other
controllers. This is necessary to exploit the trade-offs outlined ear-
lier in Section 2. There are two essential tasks carried out in order
to establish this: i) controller prioritization and ii) inter-controller
interaction.

Controller prioritization: Since the decision taken by one con-
troller has the potential to influence those taken by others it is
important to establish priority among the different local controllers
since that determines the order in which local controllers make al-
location decisions. In CBP, the highest priority is given to the cache
allocation controller, which first makes the allocation decision. The
rationale is that avoiding a memory access is typically more effec-
tive, for reducing average memory access time, than lowering the
memory access penalty. Next, priority is given to the bandwidth
allocation controller since our characterization results show that
applications are comparatively more sensitive to bandwidth than
to prefetching. The least priority, is given to the prefetch throttling
controller. This is because it is important that the prefetcher setting
is determined based on the current allocation, of cache and band-
width, since prefetching can have a negative impact on performance
if the bandwidth allocation is insufficient.

Inter-controller interaction: Figure 7 provides an overview
of the interactions that happens between the different resource
allocation controllers. Firstly, we describe how the bandwidth allo-
cation controller decisions takes into account the decisions made
by the cache and the prefetch controller. The bandwidth allocation
controller, makes decisions based on the queuing delay of each ap-
plication which is affected by the number of memory accesses. The
cache allocation controller through a larger cache allocation can re-
duce the number ofmemory accesses (Interaction #1). This leads to a
lower bandwidth allocation for applications that can efficiently use
the cache. The prefetch throttling controller, influences bandwidth
allocation decision mainly through prefetch misses (prefetched data
that is not used) (Interaction #2). This is because prefetch misses
lead to more memory requests and potentially a higher queuing
delay.

Next, we describe how the prefetch throttling controller takes
into account the decisions made by the other controllers. The
prefetch throttling controller, makes decisions by sampling the
IPC with different prefetcher setting over a specific interval. The
sampled IPC values, used to determine the prefetcher setting, re-
flects the effect of cache and bandwidth allocation decisions made
by the respective resource controllers (Interaction #3-4). Finally,
we describe how the cache allocation controller is affected by the
prefetch throttling controller (Interaction #5). If an application ben-
efits from prefetching this reflects on the hit and miss count values

Cache  
allocation

Prefetch  
allocation

Bandwidth  
allocation

4. Allocation affects prefetch sensitivity

2. Prefetch  
misses affects  
bandwidth  
demand

5. Prefetch affects ATDs and  
subsequent allocations

1. Cache hits 
affects queuing 
time

3. Allocation affects  
prefetch sensitivity

Figure 7: Interactions among the different resource alloca-
tion controllers in CBP .
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monitored in the ATDs. Since the cache allocation, is computed
based on the counter values observed in the ATD, this end up affect-
ing the subsequent cache allocation decision, resulting in a smaller
cache allocation for prefetch sensitive applications.

Putting it all together:We discuss the timeline showing when
the different resource allocation controllers are invoked and how
they interact with each other, in an iterative manner, using an ex-
ample illustrated in Figure 8. The three resource controllers, are
invoked after a specific interval that we refer to as the reconfigura-
tion_interval in the sequence shown in the figure. First cache and
bandwidth are equally partitioned among all applications at time 0,
since information about misses and queuing delay is initially un-
available, as shown in Step 0. This is followed by sampling the IPC
of applications with different prefetch settings for a specific interval
(twice the prefetch_sampling_period) as shown in Step 1. Based on
the sampled IPCs the prefetch throttling controller determines the
appropriate prefetcher setting for each prefetcher for the current re-
configuration_interval. Cache and bandwidth allocation controllers
are again invoked after the reconfiguration_interval, as shown in
Step 2. A cache allocation decision, for the next interval is influ-
enced by the number of hits and misses observed in the previous
interval. The ATD values will be halved after each reconfiguration,
in order to be sensitive to changes in the last time interval while the
per application queuing delays are accumulated with those from
the previous interval. The bandwidth allocation decision shown
in Step3, is influenced both by the cache allocation and prefetcher
setting in the previous interval as discussed previously. Finally, the
prefetcher throttling controller shown in Step 4 is influenced by the
new cache and bandwidth allocation. The interactions among the
different resource allocation controllers, take place over multiple
iterations, and is the key to finding an effective solution.

Prefetch  
active/inactive:

0.Initial cache  
and  
bandwidth  
allocation.

1.Prefetch  
throttling  
decision  
influenced  
by 0.

2.New cache  
allocation, influenced  
by 1. 
3.New bandwidth  
allocation, influenced  
by 0,1.

4.New prefetch  
throttling  
decision  
influenced by  
2,3.

prefetch_sampling_period  = a,  reconfiguration_interval  = b

ON OFF ON OFF

ba
Timeba

Figure 8: Timing and interactions of CBP resource manager.

3.4 Implementation
The computational overhead of CBP resource management is low
since the design uses heuristics to guide the allocation decisions
instead of exhaustively evaluating the different possible allocations.

The cache allocation controller needs hardware support in order
to estimate the number of misses with different cache sizes. We
use sampled ATDs [26] as discussed previously to compute the
effect of different cache allocations on the misses. When enforcing
cache partitioning there is an overhead associated with invalida-
tions due to reconfiguration decisions. This is modelled faithfully
by invalidating the addresses and re-fetching them when accessed,
this includes the latency and impact on bandwidth from accessing

memory. We have used the enforcement mechanism proposed by
Holtryd et al. [12] since it is suitable for a modern tile-based CMP
and is both fine-grained and locality aware. The enforcement mech-
anism uses per-core Cache Bank Tables (CBTs), where mappings
between addresses and banks are recorded.When a request needs to
access the LLC, the CBT is used to identify the cache bank that the
address is mapped to. Inside each bank, way partitioning hardware
divides the capacity. The enforcement results in a partition granu-
larity of 32kB on our system, see Section 4. We incur hardware cost
for implementing ATDs and cache partition enforcement [12, 26].

The bandwidth partition enforcement is done in likeness with
Intel Memory Bandwidth Allocation (MBA) technology [1, 2] which
is commercially available. The solution uses delays as a way to
allocate the bandwidth. An application with a high delay has a
low allocation, and experiences a longer queuing delay for each
memory access. In our solution the additional delay is added after
the LLC, instead of after the L2, as in the original proposal.

The overhead of prefetch-throttling comes from sampling an
application with different prefetcher settings. This is because de-
activating prefetching for an application can be detrimental for its
performance, especially when prefetching is effective. Likewise, it
is detrimental to turn it on prefetching (for a sample period) for an
application whose performance is hurt by prefetching.

4 EXPERIMENTAL METHODOLOGY
4.1 Simulated Architecture
We evaluate our proposal on a 16-core tiled CMP architecture mod-
eled using the Sniper Simulator [5]. Each tile has an out-of-order
(OOO) core with a private L1 data and instruction cache, a unified
private L2 cache and an LLC bank of 512KB. The cache latencies
assumed have been modelled using CACTI 6.5 [20]. Details about
the baseline architecture are shown in Table 1. A sensitivity study
is provided for the CBP parameters in Section 5.2.

Cores 16 cores, x86-64 ISA, 4GHz, OOO,
Nehalem-like, 128 ROB entries, dispatch width 4

L1 caches 32KB, 8-way set-associative, split D/I,
1-cycle latency

L2 caches 128KB private per-core, 8-way set-associative,
inclusive, 6-cycle data and 2-cycle tag latency

LLC 512KB per-tile, 16-way set-associative, inclusive,
9-cycle data and 2-cycle tag latency, LRU

Coherence protocol MESIF-protocol, 64 B lines, in-cache directory
Global NoC 4x4 mesh, 4-cycles hop latency

(3-cycle pipelined routers, 1-cycle links)
Memory controllers 4 MCUs, 1 channel/MCU, latency 80 ns,

16GB/s per channel
Prefetcher stride-based, located in L2, 4 prefetches

stop at page boundary, 8 flows/core
CBP parameters reconfiguration_interval=10ms

prefetch_sampling_period=0.5ms,
speedup_threshold = 1.05,
prefetch_interval=10ms,
min_bandwidth_allocation=1, min_ways=4

Table 1: Configuration of the simulated 16-core tiled CMP.

4.2 Methodology
We use the entire SPEC CPU2006 suite in our evaluation. The appli-
cations are in the format of whole program pinballs [29]. We create
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w# Types Benchmarks
w1 4CS-BS-PS,5CS-BS,3BS-PS,3CS,1BS xalancbmk(xa),gromacs(gr),libquantum(li)(2)

h264ref(h2),zeusmp(ze),tonto(to),soplex(so),
lbm(lb),perlbench(pe),calculix(ca),milc(mi)
sphinx3(sp),bwaves(bw),gobmk(go),gamess(ga)

w2 3CS-BS-PS,5CS-BS, lb,to,pe,go,gcc(gc),mi,li(2),namd(na),
5BS-PS,2CS,1BS h2,cactusADM(cac),ze(2),ca,so,astar(as)

w3 6BS-PS,CS,5BS,4I bw(2),povray(po)(2),sjeng(2),sp(2),na(2),ze,
GemsFDTD(Ge),cac,li,mi,wrf(wr)

w4 CS-BS-PS,2CS-BS,5BS-PS,3CS,2BS,3I po,bw(2),h2,sjeng(sj),li(2),gr,na,mi(2),as,Ge,
ga,wr,lb

w5 5CS-BS-PS,10CS-BS,BS-PS dealII(de),omnetpp(om)(2),go(2),hmmer(hm),xa
leslie3d(le),bzip2(bz)(2),gc,so,mcf(mc),pe,ca(2)

w6 3CS-BS-PS,5CS-BS,4BS-PS,2CS,2BS sp,bw(2),h2,om,li,gr,go,mi(2),as,hm,ga,le,lb,ca
w7 2CS-BS-PS,2CS-BS,3BS-PS,5CS,4I po(2),to,sj,h2(2),na,lb(2),ze(2),gr,Ge,as,wr,ga
w8 4CS-BS-PS,4CS-BS,2CS-PS,3BS-PS de,bw(3),xa,mi(3),om,li(2),bz,go,so,hm,pe

3BS
w9 2CS-BS-PS,5CS-BS,2BS-PS,3CS,BS,2I gc,po,to,hm,sj,h2,bz,ze,gr,so,Ge,as,pe,wr,ga,cac
w10 2CS-BS-PS,3CS-BS,6BS-PS,CS,2BS,2I sj,bw(2),de,na,li(2),om,ze,mi(2),xa,Ge,bz,wr,gc
w11 2CS-BS-PS,4CS-BS,4BS-PS,CS,2BS,3I po,om,sj,go,na(2),le,ze,xa,Ge,bz,wr,ca,sj,sp,gc
w12 6CS-BS-PS,8CS-BS,2CS de,to,go,h2(2),hm,gr,xa,as(2),bz,ga,gc,lb,so,ca
w13 3CS-BS-PS,2CS-BS,4BS-PS,4CS,3I to,po,h2,sj,gr,na,as,ze,ga,Ge,lb(2),li,to,mi,wr
w14 5CS-BS-PS,2CS-BS,5BS-PS,CS,BS,2I de,bw,go,po,hm,na,xa,ze,so,Ge,mc,li,

pe,mi,ca,wr

Table 2: 16-core workload.

14 workload mixes (each comprising 16 applications) by randomly
selecting applications from the entire SPEC CPU2006 suite. Details
about workload mixes are presented in Table 2.

We fast-forward for 16B instructions (in total) and then carry out
detailed simulation until all benchmarks have completed at least
500M instructions. Statistics are reported based on the detailed
simulation of 500M instructions. After this period the applications
continue to run and compete for resources to avoid having a lighter
load on long running applications. The methodology is in line with
earlier works [3, 19, 28].

4.3 Metrics
We report normalized weighted speedup over baseline for each
workload. This is computed by 1

𝑁

∑𝑁
𝑖=1

𝐼𝑃𝐶𝑖,𝑅𝑀

𝐼𝑃𝐶𝑖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
, in order to

evaluate system performance for multi-programmed workloads.
RM refers to the system with a resource manager that manages
cache, bandwidth and prefetcher settings and the baseline refers
to a system with unpartitioned cache and bandwidth and without
prefetching.

We also report average normalized turnaround time (ANTT) for
each workload since this is a user-oriented performance metric
which shows fairness. ANTT is given by 1

𝑁

∑𝑁
𝑖=1

𝐶𝑃𝐼𝑖,𝑅𝑀
𝐶𝑃𝐼𝑖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

4.4 Comparison
Table 3 shows the resource managers we evaluate, in addition
to CBP, and the corresponding settings they use for cache, band-
width and prefetching. The baseline configuration represents a sys-
tem with unpartitioned cache, unpartitioned bandwidth and with
prefetching disabled. equal off configuration represents a system
where cache and bandwidth are equally partitioned and prefetching
is disabled. only cache represents the configuration where cache is
partitioned as described in Section 3.2.1, while bandwidth is unpar-
titioned and with prefetching disabled. Likewise, only bw represents
the configuration where bandwidth is partitioned as described in
Section 3.2.2 while the cache is unpartitioned and with prefetch-
ing disabled. As for only pref, prefetch throttling is performed as

RM cache setting bandwidth setting prefetch setting
baseline unpartitioned unpartitioned disabled
equal off equal equal disabled
only cache dynamic (see 3.2.1) unpartitioned disabled
only bw unpartitioned dynamic (see 3.2.2) disabled
only pref unpartitioned unpartitioned dynamic (see 3.2.3)
bw+pref unpartitioned dynamic dynamic
bw+cache dynamic dynamic disabled
cache+pref dynamic unpartitioned dynamic
CPpf dynamic unpartitioned enabled
CBP dynamic dynamic dynamic

Table 3: Configurations evaluated

described in Section 3.2.3 while cache and bandwidth remains un-
partitioned. The resource managers that jointly manage two out
of the three resources (bw+perf, bw+cache, cache+perf ) in a coordi-
nated manner can leverage a subset of the interactions described in
Section 3.3. We also compare against CPpf [33], a recently proposed
technique for jointly managing prefetching and cache partitioning.
In CPpf, prefetch friendly applications are allocated small partition
sizes (because the benefit from prefetching can offset the perfor-
mance drop from small allocation) while the rest of the cache is
allocated to the non prefetch friendly applications. In our imple-
mentation, we give minimum allocation to the prefetch friendly
applications and use UCP (see Section 3.2.1), to partition the re-
maining capacity among the non prefetch friendly applications. We
use UCP and per application partitioning, in order to not put CPpf
at a disadvantage in comparison to other schemes. Finally, CBP
jointly manages all the three techniques dynamically.

5 EVALUATION
We first compare CBP to other resource managers that manage
a subset of resources. Next, we carry out sensitivity analysis for
the different design parameters, to understand its impact on the
performance of CBP.

5.1 CBP Performance Analysis
Figure 9 shows normalized weighted speedup for each of the 14
workloads with the bars representing the different resource man-
agers. We use normalized weighted speedup as a measure of perfor-
mance for the entire workload.equal off improves performance in
12 of the mixes and improves performance by 10% on average over
the baseline. only bw improves performance in 7 of the mixes and
on average by 4% over the baseline. only pref improves performance
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Figure 9: Performance results, shows normalized weighted
speedup over baseline.
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Figure 10: Fairness results, shows average normalized turn-
around time (ANTT) over baseline, where lower is better.
for 12 workloads and provides an average improvement of 9%. only
cache improves performance for all the workloads and provides an
average improvement of around 28%.

Coordinatedmanagement of bandwidth partitioning and prefetch
throttling (bw+pref ) leads to higher performance in comparison to
the baseline in 12 workloads and an average overall improvement
of 10%. Coordinated management of bandwidth and cache parti-
tioning (cache+bw) improves performance across all workloads and
provides an average performance improvement of 37% (up to 64%).
Coordinated cache partitioning and prefetch throttling (cache+pref )
improves performance across all workloads on average by 39% (up
to 57%). CPpf, cache partitioning influenced by prefetching, im-
proves performance by 39% (up to 63%).

Among the resource managers that performs coordinated man-
agement of two resources, cache+pref and CPpf achieve the best
performance. The results also show that the improvement achieved
with coordinated management of two techniques, is larger than
summing the improvements from individual techniques. This shows
that coordinated management helps exploit synergistic interactions
among the different techniques, which cannot otherwise be lever-
aged. Finally, CBP turns out to be the best performing coordinated
resource manager in 14 of the 15 workloads and provides an average
improvement of 50% (up to 86%). CBP improves performance by
an additional 11% in comparison to the best performing resource
manager that does coordinated management of two techniques, as
well as state-of-the-art. In one workload, w3, CBP achieves slightly
lower performance (2%) in comparison to cache+pref. This is be-
cause bandwidth partitioning is not very effective for this specific
workload.

Figure 10 shows the average normalized turnaround time which
shows the fairness of the different resource managers. Note that a
lower value signifies greater fairness. On average, CBP shows 27%
better fairness than the baseline and 4% better fairness than the
best combination of two techniques, cache+pref. cache+pref has 4%
better fairness than CPpf.

Case study:We investigate the performance of a single work-
load in detail to understand how CBP improves performance in
comparison to resource managers that manage a subset of the tech-
niques. Figure 11 shows the IPC for individual applications in a
specific workload (w2) normalized to the baseline IPC. We have
classified the applications in this workload into two groups. Group 1
comprises applications, from lbm to gcc (in the figure), for which the
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Figure 11: Results for workload 2.
cache+pref resource manager performs better than the bw+cache
resource manager. Group 2 comprises the rest of the applications in
the workload, from soplex to namd, where the bw+cache resource
manager performs better than the cache+pref resource manager.
cache+pref resource manager provides the best performance for
applications in group 1 because the applications are comparatively
more memory intensive and get a larger share of the available band-
width using this resource manager. Applications in group 2 benefit
from bandwidth partitioning since they then get a fair bandwidth
share, and in addition are not sensitive to prefetching. When we per-
form coordinated management of all the three resources, we would
ideally prefer to have allocation decisions made by cache+pref re-
source manager for applications in group 1 and bw+cache resource
manager for applications in group 2. With CBP, some applications
in group 1 end up with a lower allocation of bandwidth (compared
to cache+pref ) which hurts their performance (see lbm, perlbench,
cactusADM) while the rest of the applications in the group see a
performance improvement from getting the right amount of the
allocation. For the applications in group 2, CBP manages to match
the performance of bw+cache resource manager. In summary, CBP
enables better trade-offs resulting in a solution that improves over-
all performance for the workload and outperforms other resource
managers that only manage a subset of the techniques.
5.2 Sensitivity analysis
We investigate the sensitivity of CBP to different design parameters
in this section.
5.2.1 Impact of reconfiguration interval. The reconfiguration in-
terval, determines how frequently the different resource allocation
controllers are invoked when running a workload. We investigate
the sensitivity of CBP to different reconfiguration interval values,
in order to determine an appropriate interval. Figure 12a shows
the average (geo. mean) performance when using three different
reconfiguration intervals - 1ms, 10ms and 100ms. A shorter recon-
figuration period has the potential to adapt faster to phase change
behaviour. However, it also incurs a higher overhead because a
larger fraction of the interval would be used up for IPC sampling
(required for prefetch throttling). Overall, the results show that
using a 10ms period provides a good trade-off between quick adap-
tation and the overhead incurred for IPC sampling.
5.2.2 Impact of cache size. The results thus far assume that each
tile has a baseline cache allocation of 512kb. The total LLC capacity
assuming a 16-core tiled CMP would be 8MB. We next study the
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Figure 12: Sensitivity analysis.
impact of changing the cache capacity available for a single tile to
1MB. Figure 12b shows the average performance achieved using
CBP with different per-tile capacity normalized to the baseline con-
figuration with the same capacity. The results show that increasing
the available LLC capacity leads to a 5% drop in aggregate perfor-
mance with CBP. This performance drop can be attributed to an
increase in cache access time for the larger cache.
5.2.3 Impact of changing bandwidth partitioning parameters. We in-
vestigate the sensitivity to the minimum bandwidth allocation, used
in the bandwidth allocation algorithm presented in Section 3.2.2.
Figure 12c shows the difference in performance with a minimum
bandwidth allocation of 0.5GB/s and 1GB/s, normalized to the base-
line. There were small variations among the different workloads
and some experience a slight improvement while others workloads
experience a small drop in performance. Overall, reducing the min-
imum bandwidth allocation did not have a considerable impact on
the performance of CBP as long as it is sufficient for workloads
which experience very little queuing delay.
5.2.4 Impact of changing prefetch sampling interval. We finally
investigate the impact of changing the prefetch_sampling_period
used in the prefetch throttling controller 3.2.3. Figure 12d shows the
impact of changing the sampling period on performance normalised
to the baseline. The intervals we use for evaluation are 0.25ms,
0.5ms and 1ms. The advantage of using a shorter sampling period
is that it carries a lower overhead, while the drawback is the risk of
over/under estimating the performance benefit from prefetching.
The results indicate the sampling interval of 0.5ms achieves the
best performance.

6 RELATEDWORK
Isolated Management: Several techniques have been proposed
in the literature that focus specifically on cache partitioning, band-
width partitioning and prefetch throttling. Cache partitioning tech-
niques [10, 15, 19, 26, 28] help improve performance and achieve
better utilization of available cache resources, by avoiding inter-
ference among co-running applications and reducing the number
of accesses to memory. Bandwidth partitioning techniques [13, 17,
24, 32], reduce average memory access penalty, by dynamically
determining how bandwidth must be shared among the co-running
applications. Prefetching can hide memory access latency by fetch-
ing the data before it is requested [6, 7, 14, 16, 21, 22]. However, in-
accurate prefetches can impact application performance since it can

increase the number and cost of demand misses [9]. Prefetch throt-
tling [6, 30], involves adaptively tuning when and what prefetcher
settings are used dynamically based on application characteristics
and has been shown to provide better performance and address
drawbacks of prefetching. The aforementioned works, consider
each of the techniques in isolation and leaves room for improve-
ment, as shown in this work, since they do not take the interaction
between cache partitioning, bandwidth partitioning and prefetch
throttling into account.

CoordinatedManagement: Several works have proposed com-
bining two of the techniques in order to exploit the benefits from
coordination. These works can be broadly classified into the follow-
ing groups: i) coordinated cache and bandwidth partitioning [23, 27],
ii) coordinated prefetching and cache partitioning [31, 33], and iii)
coordinated bandwidth partitioning and prefetching [18]. Sahu et
al. propose [27] a method for cache and bandwidth partitioning,
using a CPI model for bandwidth and set partitioning for the cache.
CoPart [23] combines bandwidth and cache partitioning using a
user-level run-time. Unlike CBP, their goal is to improve fairness. Re-
cently, CPpf [33] and Sun et.al [31] propose a coordinated approach
for cache partitioning and prefetch where prefetch friendly appli-
cations where given a smaller cache allocation. Unlike CBP which
maintains per-application partitions, cache partitioning in these
two proposals is performed for groups of applications. Ebrahimi et
al. [8] propose general mechanisms to make memory scheduling
techniques prefetch aware. However, these works cannot use the
additional interactions and trade-offs which are available when
coordinately managing all three resources, which we have shown
is important for performance.

Some works have also proposed coordinated management of
multiple resources. For instance, CLITE [25] uses bayesian opti-
mization to provide theoretically-grounded resource partitioning to
meet QoS targets of multiple resources (e.g., cores, caches, memory
bandwidth, memory capacity, disk bandwidth etc.) among multiple
co-located jobs. Bitirgen et al. [4] use machine learning to manage
power, cache and bandwidth in a coordinated way to anticipate
system-level performance impact of allocation decisions. However,
in neither of these works is prefetch throttling considered, which
we have shown is important in order to realise the full potential of
coordinated resource management. To the best of our knowledge,
CBP is the first coordinated resourcemanager for cache partitioning,
bandwidth partitioning and prefetch throttling.

7 CONCLUSIONS
We present CBP, a mechanism for coordinated management of
cache partitioning, bandwidth partitioning and prefetch throttling.
The design is motivated by our in-depth characterisation of the
performance impact of cache, bandwidth and prefetch allocation
and their interactions. CBP combines local resource allocation con-
trollers with a coordination mechanism that dynamically manages
and allocates the resources, in a way which considers both inter-
and intra-application interactions. Our evaluation, on a tiled 16-
core CMP, demonstrates that CBP improves performance by up to
86% (geo. mean 50%) compared to a system without partitioning
and prefetching and by up to 36% (geo. mean 11%) over the state-of-
the-art technique that manages cache partitioning and prefetching
in a coordinated manner.
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