220 research outputs found

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    A high-performance hardware architecture of an image matching system based on the optimised SIFT algorithm

    Get PDF
    The Scale Invariant Feature Transform (SIFT) is one of the most popular matching algorithms in the field of computer vision. It takes over many other algorithms because features detected are fully invariant to image scaling and rotation, and are also shown to be robust to changes in 3D viewpoint, addition of noise, changes in illumination and a sustainable range of affine distortion. However, the computational complexity is high, which prevents it from achieving real-time. The aim of this project, therefore, is to develop a high-performance image matching system based on the optimised SIFT algorithm to perform real-time feature detection, description and matching. This thesis presents the stages of the development of the system. To reduce the computational complexity, an alternative to the grid layout of standard SIFT is proposed, which is termed as SRI-DASIY (Scale and Rotation Invariant DAISY). The SRI-DAISY achieves comparable performance with the standard SIFT descriptor, but is more efficient to be implemented using hardware, in terms of both computational complexity and memory usage. The design takes only 7.57 µs to generate a descriptor with a system frequency of 100 MHz, which is equivalent to approximately 132,100 descriptors per second and is of the highest throughput when compared with existing designs. Besides, a novel keypoint matching strategy is also presented in this thesis, which achieves higher precision than the widely applied distance ratio based matching and is computationally more efficient. All phases of the SIFT algorithm have been investigated, including feature detection, descriptor generation and descriptor matching. The characterisation of each individual part of the design is carried out and compared with the software simulation results. A fully stand-alone image matching system has been developed that consists of a CMOS camera front-end for image capture, a SIFT processing core embedded in a Field Programmable Logic Array (FPGA) device, and a USB back-end for data transfer. Experiments are conducted by using real-world images to verify the system performance. The system has been tested by integrating into two practical applications. The resulting image matching system eliminates the bottlenecks that limit the overall throughput of the system, and hence allowing the system to process images in real-time without interruption. The design can be modified to adapt to the applications processing images with higher resolution and is still able to achieve real-time

    A high-performance hardware architecture of an image matching system based on the optimised SIFT algorithm

    Get PDF
    The Scale Invariant Feature Transform (SIFT) is one of the most popular matching algorithms in the field of computer vision. It takes over many other algorithms because features detected are fully invariant to image scaling and rotation, and are also shown to be robust to changes in 3D viewpoint, addition of noise, changes in illumination and a sustainable range of affine distortion. However, the computational complexity is high, which prevents it from achieving real-time. The aim of this project, therefore, is to develop a high-performance image matching system based on the optimised SIFT algorithm to perform real-time feature detection, description and matching. This thesis presents the stages of the development of the system. To reduce the computational complexity, an alternative to the grid layout of standard SIFT is proposed, which is termed as SRI-DASIY (Scale and Rotation Invariant DAISY). The SRI-DAISY achieves comparable performance with the standard SIFT descriptor, but is more efficient to be implemented using hardware, in terms of both computational complexity and memory usage. The design takes only 7.57 µs to generate a descriptor with a system frequency of 100 MHz, which is equivalent to approximately 132,100 descriptors per second and is of the highest throughput when compared with existing designs. Besides, a novel keypoint matching strategy is also presented in this thesis, which achieves higher precision than the widely applied distance ratio based matching and is computationally more efficient. All phases of the SIFT algorithm have been investigated, including feature detection, descriptor generation and descriptor matching. The characterisation of each individual part of the design is carried out and compared with the software simulation results. A fully stand-alone image matching system has been developed that consists of a CMOS camera front-end for image capture, a SIFT processing core embedded in a Field Programmable Logic Array (FPGA) device, and a USB back-end for data transfer. Experiments are conducted by using real-world images to verify the system performance. The system has been tested by integrating into two practical applications. The resulting image matching system eliminates the bottlenecks that limit the overall throughput of the system, and hence allowing the system to process images in real-time without interruption. The design can be modified to adapt to the applications processing images with higher resolution and is still able to achieve real-time

    Feature Encoding Strategies for Multi-View Image Classification

    Get PDF
    Machine vision systems can vary greatly in size and complexity depending on the task at hand. However, the purpose of inspection, quality and reliability remains the same. This work sets out to bridge the gap between traditional machine vision and computer vision. By applying powerful computer vision techniques, we are able to achieve more robust solutions in manufacturing settings. This thesis presents a framework for applying powerful new image classification techniques used for image retrieval in the Bag of Words (BoW) framework. In addition, an exhaustive evaluation of commonly used feature pooling approaches is conducted with results showing that spatial augmentation can outperform mean and max descriptor pooling on an in-house dataset and the CalTech 3D dataset. The results for the experiments contained within, details a framework that performs classification using multiple view points. The results show that the feature encoding method known as Triangulation Embedding outperforms the Vector of Locally Aggregated Descriptors (VLAD) and the standard BoW framework with an accuracy of 99.28%. This improvement is also seen on the public Caltech 3D dataset where the improvement over VLAD and BoW was 5.64% and 12.23% respectively. This proposed multiple view classification system is also robust enough to handle the real world problem of camera failure and still classify with a high reliability. A missing camera input was simulated and showed that using the Triangulation Embedding method, the system could perform classification with a very minor reduction in accuracy at 98.89%, compared to the BoW baseline at 96.60% using the same techniques. The presented solution tackles the traditional machine vision problem of object identification and also allows for the training of a machine vision system that can be done without any expert level knowledge

    Design and Development of an FPGA-based Hardware Accelerator for Corner Feature Extraction and Genetic Algorithm-based SLAM System

    Get PDF
    Simultaneous Localization and Mapping (SLAM) systems are crucial parts of mobile robots. These systems require a large number of computing units, have significant real-time requirements and are also a vital factor which can determine the stability, operability and power consumption of robots. This thesis aims to improve the calculation speed of a lidar-based SLAM system in domestic scenes, reduce the power consumption of the SLAM algorithm, and reduce the overall cost of the whole platform. Lightweight, low-power and parallel optimization of SLAM algorithms are researched. In the thesis, two SLAM systems are designed and developed with a focus on energy-efficient and fast hardware-level design: a geometric method based on corner extraction and a genetic algorithm-based approach. Finally, an FPGA-based hardware accelerated SLAM is implemented and realized, and compared to a software-based system. As for the front-end SLAM system, a method of using a Corner Feature Extraction (CFE) algorithm on FPGA platforms is first proposed to improve the speed of the feature extraction. Considering building a back-end SLAM system with low power consumption, a SLAM system based on genetic algorithm combined with algorithms such as Extended Kalman Filter (EKF) and FastSLAM to reduce the amount of calculation in the SLAM system is also proposed. Finally, the thesis also proposes and implements an adaptive feature map which can replace a grid point map to reduce the amount of calculation and utilization of hardware resources. In this thesis, the lidar SLAM system with front-end and back-end parts mentioned above is implemented on the Xilinx PYNQ Z2 Platform. The implementation is operated on a mobile robot prototype and evaluated in real scenes. Compared with the implementation on the Raspberry Pi 3B+, the implementation in this thesis can save 86.25% of power consumption. The lidar SLAM system only takes 20 ms for location calculation in each scan which is 5.31 times faster compared with the software implementation with EKF

    A Review of Automated Image Understanding within 3D Baggage Computed Tomography Security Screening

    Get PDF
    Baggage inspection is the principal safeguard against the transportation of prohibited and potentially dangerous materials at airport security checkpoints. Although traditionally performed by 2D X-ray based scanning, increasingly stringent security regulations have led to a growing demand for more advanced imaging technologies. The role of X-ray Computed Tomography is thus rapidly expanding beyond the traditional materials-based detection of explosives. The development of computer vision and image processing techniques for the automated understanding of 3D baggage-CT imagery is however, complicated by poor image resolutions, image clutter and high levels of noise and artefacts. We discuss the recent and most pertinent advancements and identify topics for future research within the challenging domain of automated image understanding for baggage security screening CT
    corecore