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Abstract

Baggage inspection is the principal safeguard against the transportation of prohibited

and potentially dangerous materials at airport security checkpoints. Although tradition-

ally performed by 2D X-ray based scanning, increasingly stringent security regulations

have led to a growing demand for more advanced imaging technologies. The role of X-ray

Computed Tomography is thus rapidly expanding beyond the traditional materials-based

detection of explosives. The development of computer vision and image processing tech-

niques for the automated understanding of 3D baggage-CT imagery is however, compli-

cated by poor image resolutions, image clutter and high levels of noise and artefacts.

We discuss the recent and most pertinent advancements and identify topics for future

research within the challenging automated image understanding for baggage security

screening CT.
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1 Introduction

Baggage screening plays a central role within the aviation security domain. From Septem-

ber 2014, all new installations of baggage screening systems in Europe will be required to

meet the European Civil Aviation Conference (ECAC) Standard 3 screening regulations

(the highest standard for European airports). Owing to these stringent regulations, 3D

X-ray Computed Tomography (CT), which has enjoyed much success in medical imag-

ing, has been introduced to the security-screening domain in an attempt to mitigate the

limitations of conventional 2D X-ray based scanners (e.g. occlusion, clutter and density

confusion) [116, 3]. This has, in turn, led to an increased interest in the development of

image-processing and computer-vision techniques to advance the automated analysis of

baggage imagery and ultimately change the manner in which baggage scanning is per-

formed by improving efficiency and reducing the frequency with which manual inspection

(by humans and/or sniffer dogs) is required.

The foremost application of CT within the security-screening domain has been the materials-

based detection of explosives [90]. Dual-Energy Computed Tomography (DECT) [48],

whereby objects are scanned at two distinct energies, has been shown to provide a more

effective means for performing materials-based discrimination based on effective atomic

numbers than do the conventional single-energy CT scanners [90, 93, 111]. Owing to this

primary explosives detection-based objective of imaging within the aviation-security do-

main, DECT machines are increasingly becoming the baggage-CT scanners of choice. The

primary, non-object recognition-based objective of typical dual-energy baggage-CT scan-

ners, however, coupled with the demand for high throughput, means that 3D baggage-CT

imagery typically presents with substantial noise, metal-streaking artefacts and poor voxel

resolution and is thus generally of a poorer quality than medical-CT imagery [90] (Fig.

3), which complicates the implementation of image processing and computer vision-based

solutions for automated baggage-CT image analysis.

The proprietary nature of deployed baggage-CT scanners makes it impossible to determine

exactly what is implemented in practice. Nonetheless, the current certification standards

(which do not provide clear regulations for automated image analysis systems beyond

explosives detection)1, the information available in published patents and literature and

the existence of ongoing government-funded initiatives such as the ALERT project [23,22],

1As defined by governmental organisations such as the Transport Security Administration (TSA), the
European Union (EU) and the Civil Aviation Administration of China (CAAC).
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suggest that automated baggage-CT image analysis techniques have yet to be widely

adopted within current baggage-scanning protocols and the topic remains an open and

active research area.

We present a review of the recent research addressing the challenges associated with image

processing and computer vision-based solutions for the automated analysis of baggage

security-CT imagery. Much of this work has been conducted based on the assumption

that the final pipeline will adhere to the traditional automated object recognition or image

classification pipeline adopted in the broader computer vision literature (Fig. 1) [94].

Image pre-processing typically involves some form of noise filtering or image enhancement

algorithms, designed to ease the implementation of subsequent operators. Segmentation

is performed to subdivide the input into meaningful parts or regions. From these regions

features may be extracted which essentially encode information characterising the contents

of the region which are subsequently passed to a classifier which assigns semantic labels to

the regions or the input as a whole. While this is a somewhat crude description of a typical

automated image understanding pipeline, it is sufficient for the purposes of contextualising

the literature discussed in this review. For a more comprehensive overview of general and

specific machine learning concepts in computer vision, the reader is referred to the broad

resource of related literature (e.g. [94]).

The individual studies presented here typically address only a single block in this pipeline

and the review thus focusses on the following key areas: 1) image quality improvement,

whereby denoising and artefact-reduction techniques are used to reduce the characteristi-

cally high levels of noise and artefacts in baggage-CT imagery (Section 3.2); 2) dual-energy

techniques, which are used to extract information related to the chemical characteristics

of the materials present in a scan (Section 4); 3) unsupervised segmentation of objects

in cluttered volumetric-CT imagery (Section 5); 4) 3D object classification for threat and

contraband detection (Section 6) and 5) Threat Image Projection (TIP), whereby artificial

threat items are automatically inserted into routine scans for online operator training and

performance monitoring (Section 7). Finally, given the early developmental stages of the

majority of these techniques, their integration into existing scanning protocol(s) is not

necessarily obvious and may be viewed as a separate problem, which is beyond the scope

of this review.
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2 3D Baggage CT Imagery

There exist several significant differences between typical medical-CT data and that en-

countered in the aviation-security domain. These differences mean that automated tech-

niques such as segmentation and classification, which have been successfully applied to

medical imagery, are not guaranteed to be met with the same degree of success when

applied to baggage-CT data. The most pertinent of these differences are discussed below.

Image quality: The nature of dual-energy baggage-CT scanners and the demands for

higher scan speeds in the aviation-security domain (compared to the medical domain), lead

to compromises in image quality in terms of noise and resolution [90]. While sub-millimetre

isotropic resolutions in all three dimensions are common in medical-CT scanners [2,1] (Fig.

2), typical volumetric baggage-CT data is characterised by comparatively low anisotropic

voxel resolutions (Fig. 3). Anisotropic voxel resolution and poor resolution in the axial

plane in particular are additionally known to compound the effects of image noise and

artefacts [53].

A priori information: In the medical domain, a priori knowledge related to the ge-

ometric properties, the X-ray attenuation characteristics and the spatial relations of the

anatomical structures being scanned exists. The exploitation of such a priori knowledge

allows for the development of algorithms designed or fine-tuned for particular tasks or

anatomical structures [53]. In contrast, the contents of baggage scans are unknown prior

to scanning and exhibit considerable variability in shape, size, material and spatial context

(Fig. 3), making the fine-tuning of algorithms significantly more challenging.

Image complexity: In addition to the availability of a priori knowledge, most medical

CT scans exhibit relatively low degrees of complexity and clutter (i.e. they are fairly

homogeneous). Checked baggage, on the other hand, is generally tightly packed and thus

extremely cluttered/complex (Fig. 3 (b)) with no a priori knowledge of the number of

objects in the bag. It is well documented that complexity and clutter negative impact

human and computer detection rates [90].

Poor-resolution, image complexity and a lack of prior knowledge thus sets baggage-CT

imagery apart from medical-CT data. Computer-vision and image-processing techniques

designed for baggage-CT applications are required to be independent of the number of

objects in an image as well as the composition of these objects, making their development

particularly challenging.
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3 Image Quality Improvement

Based on the suboptimal performance of early works in the presence of artefacts and

noise [34, 67], image denoising and artefact removal have conventionally been considered

mandatory precursors to automated image understanding tasks within baggage-CT screen-

ing and have demonstrated quantitative improvements in tasks such as 3D object segmen-

tation [42,72] and classification [71].

The origins, impact and removal of image noise and artefacts in baggage-CT imagery have

been discussed extensively in prior works [75–77,74]. An overview of the most important

observations made in these prior studies is presented here and summarised in Table 1.

3.1 Denoising

Although the topic of digital-image denoising has been studied extensively, the denoising

of complex volumetric baggage-CT imagery, has received comparatively little attention.

Zhou et al. [117] use image enhancement to remove background noise and improve the

resolution of 2D (cross-sectional) baggage-CT imagery. Initial noise removal is performed

by thresholding. A second threshold is used to subdivide the denoised image into an upper

and lower image, containing brighter and darker regions respectively. The two intensity

thresholds are computed as scalar multiples of the mean intensity of the input images

(termed Alpha-Weighted Mean (AWM) thresholds) and are chosen empirically. The upper

and lower sub-images are enhanced by intensity clipping and Histogram Equalisation (HE)

[94] respectively. The final, enhanced CT image is computed as the summation of the

enhanced sub-images. Performance analysis in the study focusses on the improvement in

image contrast and little mention is made regarding the effectiveness of the denoising stage

of the technique (particularly from a quantitative perspective). Furthermore, the images

used in the study are largely free of streaking artefacts and the efficacy of the method in

the presence of metal artefacts is thus unclear.

There is evidence in the medical literature that simple denoising operations can signifi-

cantly improve the quality of CT images [45, 87]. Mouton et al. [76] have thus evaluated

the efficacy of several popular denoising techniques when applied to low-quality, baggage-

CT imagery. In particular, the denoising performance of the aforementioned baggage-CT

approach of Zhou et al. [117,116] is compared to anisotropic diffusion [81]; Total Variation

(TV) denoising [84]; bilateral filtering [114]; translation invariant wavelet shrinkage [21]

and Non-Local Means (NLM) filtering [17]. Extensive qualitative and quantitative anal-
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yses indicate that wavelet thresholding and NLM filtering produce the best results. The

benefits of simple denoising as a pre-processing step for 3D object classification in baggage-

CT imagery are demonstrated further in a recently developed end-to-end classification

pipeline (see Table 4), where NLM filtering produces comparable classification results to

more complex artefact reduction techniques [74] at significantly lower processing times.

3.2 Metal Artefact Reduction (MAR)

The most widely implemented CT-reconstruction technique is the analytical Filtered Back

Projection (FBP) algorithm, where transformations between the sinogram (projection)

and image domains are performed using the forward and inverse Radon transforms re-

spectively [28]. FBP yields fast and accurate reconstructions of the attenuation function

for ideal (or near ideal) projections which contain a sufficient number of projection samples

and low degrees of noise, beam hardening and any other imperfections [45]. When the pro-

jections are incomplete for a certain range of arguments, however, the FBP reconstructions

may become corrupted by artefacts. In reality, projections are only approximations of the

ideal case. While FBP generally produces satisfactory reconstructions when these approx-

imations are small (as is often the case), when the errors become large the reconstructions

become corrupted by artefacts [9].

Metal objects in particular cause significant artefacts in CT images. In an extensive

simulation study, De Man et al. [60] cite beam hardening (the preferential attenuation of

low-energy photons in a polychromatic X-ray beam), scattered radiation, Poisson noise

(resulting from the quantum nature of X-ray photons) and the exponential edge-gradient

effect (trans-axial non-linear partial volume effect) as the predominant causes of metal-

streaking artefacts in high resolution 2D fan-beam CT images.

The problem of Metal Artefact Reduction (MAR) in CT has been widely studied with

over 100 publications in the last 10 years. The vast majority of MAR-based CT literature

is found in the medical domain and techniques typically fall into one of three categories:

1) sinogram (or projection) completion methods, whereby artefact correction is performed

by replacing corrupted projection data prior to CT reconstruction [50,69,115,74]; 2) iter-

ative methods, whereby iterative reconstruction techniques are used to generate superior

quality reconstructions [107,39,92] and 3) hybrid methods, using combinations of (1) and

(2) [58,13,61]. While many of these published techniques claim substantial improvements

to previous methods, these claims are often based on limited comparisons. The develop-

6



ment of novel MAR techniques or the evaluation of existing, medical MAR techniques on

baggage-CT imagery are limited [75,74,77,52].

Mouton et al. [77] present a review of state-of-the-art MAR techniques, drawn predom-

inantly from the medical-CT literature. The review is supported by an experimental

comparison of 12 techniques using a software generated medical phantom, clinical CT

data and for the first time baggage-CT imagery. Two important observations regarding

the efficacy of the state-of-the-art medical MAR techniques when applied to baggage-CT

imagery are highlighted: 1) medical MAR techniques relying on prior information suffer

a decline in performance due to the increased difficulty in generating accurate priors and

2) the widely implemented sinogram-completion-based approaches are sensitive to input

parameters, require manual tuning and result in a characteristic blurring of the regions

surrounding high-density objects.

Mouton et al. [74] present an extension to their earlier intensity-limiting sinogram completion-

based MAR algorithm [75] developed specifically for baggage-CT images containing mul-

tiple metal objects. A novel weighting scheme is proposed, whereby the intensities of the

MAR-corrected pixels are modified based on their spatial locations relative to the metal

objects. Pixels falling within straight-line regions connecting multiple metal objects are

subjected to less intensive intensity-limiting, thereby compensating for the characteristic

dark bands occurring in these regions [77]. The study demonstrates an improvement (rel-

ative to [75]) in the restoration of the underestimated intensities occurring in the regions

connecting multiple metal objects in both medical and baggage-CT data but still suffers

from the aforementioned characteristic blurring.

Karimi et al. [52] present a dedicated baggage-CT MAR technique which is the first to

successfully incorporate prior images in the security-screening domain. Prior-images are

constructed as solutions to constrained numerical optimisation problems. Particularly, a

regularised Weighted Least Squares (WLS) error is minimised, where the regularisation

is performed via the TV norm. Artefact reduction is predominantly achieved via the

weighting scheme (which is chosen as to de-emphasises metal) and the chosen constraint

(which exploits the fact low-frequency metal artefacts are caused by beam hardening and

scattered radiation). To reduce computational overhead, the size of the convex problem

is decreased by solving for a smaller image (reduced in size by a factor of four in each

dimension). The sinograms are thus filtered and downsampled by a factor of four in views

and samples. The employment of this so-called ‘miniature image’ is shown to lead to a
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reduction in reconstruction time by a factor of 163. Once the miniature image has been

constructed, a second miniature image is constructed in a similar manner but ignoring

the aforementioned weights and constraints. This second image represents the original,

artefact corrupted image in the same coordinate space as the first miniature image. An

artefact-only miniature image is then computed as the difference between the two minia-

ture images and upsampled to the original dimensions, yielding the so-called prior image.

The sinogram of this prior image is computed and used to guide the replacement of the

metal trace in the original corrupted sinogram (using a standard interpolation-based ap-

proach). The technique is shown to outperform the linear-interpolation-based approach of

Kalender et al. [49] as well as a more recent iterative projection replacement method [102]

- particularly in terms of preservation of image details. As with all interpolation-based

approaches, some degree of blurring is observed. It is also worth noting that experiments

were performed using medical-grade imagery which is not representative of that encoun-

tered in the aviation security domain. Nonetheless, this study represents the current

state-of-the-art in sinogram-completion based MAR in the baggage-CT domain.

Iterative reconstruction techniques [107] are known to produce CT images with fewer

artefacts [77]. Despite the development of optimised approaches such as Ordered Subset

Expectation Maximisation (OSEM) [46], the Row-Action Maximum Likelihood Algorithm

(RAMLA) [16], Model-Based Iterative Reconstruction (MBIR) approaches [113], Iterative

Coordinate Descent (ICD) optimisation [14,95], Block-Iterative (BI) modifications [18] and

numerous hybrid methods [58, 13, 61], high computational cost remains the major factor

preventing the universal implementation of such techniques in commercial CT machines

(even in the medical domain where the demand for high throughput are not paramount).

Nonetheless, the Awareness and Localization of Explosives-Related Threats (ALERT)

initiative (tasked with promoting academic and third party research in security-screening)

[22], has investigated the role of non-iterative and iterative reconstruction techniques in

explosives detection in baggage-CT imagery.

In particular, nine independent medical research groups were tasked with developing to-

mographic reconstruction algorithms to improve image quality and explosives detection

in baggage-CT imagery. Of these nine groups, eight used raw projection data to directly

develop reconstruction techniques, while the ninth group was tasked with developing sim-

ulation tools to mitigate the computational expense of complex reconstruction techniques.

The initiative has led to the development of several novel/modified reconstruction algo-
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rithms based on iterative-reconstruction techniques, sinogram pre-processing, modifica-

tions to the FBP process and dual-energy decomposition techniques. These techniques

(which employ both single-energy and dual-energy techniques) are shown to offer varying

degrees of improvements in image quality (in terms of metal artefact reduction and con-

trast enhancement). The degree of quality improvement is, however, shown to correlate

with the complexity of the reconstruction technique (i.e. better image quality comes at

an increased computational expense). The reconstruction techniques are further shown to

improve subsequent explosive detection rates. This is largely attributed to the associated

reduction in streaking artefacts and the improvements in image contrast. Similarly to the

MAR study of Karimi et al. [52], the initiative employed medical-grade CT imagery.

3.3 Summary

The overwhelming consensus in the literature is that iterative-reconstruction techniques

provide superior image quality to conventional FBP reconstruction, particularly in terms

of artefact reduction. Furthermore, despite the broad range of existing medical MAR

techniques, these perform comparatively poorly in the security-screening domain. This

indicates that future baggage-CT systems will benefit from improved CT reconstruction

as opposed to the development of further sinogram completion-based MAR techniques.

In terms of baggage-CT image quality, the following areas are outlined as directions for

future work:

• The development of iterative-reconstruction techniques, with a particular focus on

minimising processing times.

• An exhaustive optimisation of the MAR parameter space and/or the development

of techniques to automatically determine optimal MAR algorithmic parameters to

aid the generation of accurate prior images.

• The evaluation of the state-of-the-art prior-based techniques of Karimi et al. [52] on

CT data that is representative of that encountered in the security-screening domain

(as opposed to medical-grade CT data).

4 Dual-Energy Computed Tomography (DECT)

Explosive Detection Systems (EDS) [90] are currently the only commercially approved ap-

plication of CT within the aviation security infrastructure. Here, we review various appli-
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cations of DECT (including, but not limited to EDS) within the aviation security-screening

domain. The most prominent recent contributions in this domain are summarised in Table

2. The reader is referred to the work of Singh [90] and Smith et al. [93] for more extensive

reviews of the particular role of EDS within the baggage security screening context.

Single-energy CT systems produce reconstructions representative of the Linear Attenua-

tion Coefficients (LAC) of the object under investigation. That is to say, the greyscale

intensities (i.e. CT numbers, in Hounsfield Units (HU)) in the CT image are dependent

on the LAC of the scanned object. Consequently, it is challenging to distinguish between

materials with similar LACs. In contrast, Dual-Energy CT (DECT) techniques, whereby

attenuation data is captured using two distinct X-ray spectra, offer a means for character-

ising the chemical composition (e.g. atomic number and/or density) of the material under

investigation based on its response under these different spectral conditions. DECT tech-

niques typically fall into one of three categories [47]: 1) post-reconstruction techniques; 2)

pre-reconstruction techniques and 3) iterative-reconstruction techniques.

4.1 Post-Reconstruction Techniques

Post-reconstruction (or image-based) DECT techniques, although the most straightfor-

ward and widely used techniques in medical imaging [43, 48], have traditionally not been

considered in the baggage-CT domain. This is most likely due to their susceptibility to

artefacts in the reconstructed images [88]. Only very recently has the Dual-Energy Index

(DEI) [48] (a post-reconstruction DECT metric that offers a crude estimate of the effective

atomic number of a material) been used for the segmentation of 3D baggage-CT imagery

(see Tables 3 and 4).

4.2 Pre-Reconstruction Techniques

Alvarez and Macovski [5] modelled the total attenuation of X-rays is modelled as a linear

combination of the photoelectric absorption and Compton scattering coefficients [26] using

a non-linear polynomial approximation of the polychromatic measurement models. This

early work has formed the basis for a broad range of techniques known as basis material

decomposition methods [20,51,78,111].

DECT imaging relies on the energy dependence of the interaction of X-ray photons with

matter. Within a photon energy range of approximately 30 keV to 200 keV, these interac-

tions are known to be dominated by the photoelectric effect and Compton scattering [5].
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The dual-energy decomposition problem is to determine the Compton scatter and the pho-

toelectric absorption coefficients of the material from the measured high and low-energy

projections. Alternatively, the attenuation coefficients for any material may be expressed

as a linear combination of the coefficients of two basis materials, provided that the two

chosen materials are sufficiently different in their atomic numbers (and hence in their

Compton and photoelectric coefficients) [51]. The decomposed dual-energy data may then

be used to compute the effective atomic numbers and electron densities of the materials

present in a scan [111] (this is the basis for traditional explosives detection systems in

aviation security-screening [90]).

While basis material decomposition may be solved by direct approximation [33, 15], the

more popular approach is to approximate the relationship between the high and low-

energy projections and a set of decomposed projections as polynomial functions. While

various techniques have been presented to achieve these approximations, those based on

Look-Up Table (LUT) procedures [20, 51] have been shown to be faster, less sensitive to

the numerical procedure and less susceptible to noise than the original Newton-Raphson

approximation method of Alvarez and Macovski [5]. The main drawbacks of the majority

of pre-reconstruction DECT techniques are their dependence on an intensive calibration

procedure and a tendency to produce large approximation errors [78].

Although the majority of dual-energy decomposition algorithms have been motivated by

medical applications, there has been a growing interest in the application of similar tech-

niques for explosives detection in baggage-screening systems [111,78,88]. The fundamental

objectives of dual-energy decomposition in the medical and security-screening domains dif-

fer. In the medical domain, the primary goal is to generate high-quality images to facilitate

the diagnostic procedure, while in the security-screening domain, the main objective is the

determination of the atomic properties of the objects in a scan to allow for materials-based

explosives detection.

Traditional dual-energy decomposition using basis materials requires relatively accurate

estimates of the combinations of basis material thicknesses to use in the calibration pro-

cedures. This complicates its implementation in the security-screening domain, where the

range of possible materials encountered is much broader and more unpredictable than those

encountered in medical scans (Section 2). Ying et al. [111] have further highlighted several

limitations of traditional medical dual-energy decomposition methods (e.g. [5,51,20]) when

used for explosives detection. These limitations include: high polynomial approximation
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errors (> 200% for [5]), caused by the large dynamic range of the photoelectric coefficients

(resulting from the broad spectrum of materials encountered in baggage scans); a lack of

boundary constraints in dual energy decomposition; image artefacts and X-ray spectral

drifts.

Despite these fundamentally differing objectives and the increased complexity of bag-

gage data, the dual-energy techniques designed specifically for baggage screening have

been fairly similar to their medical counterparts [111, 78]. Naidu et al. [78], present a

dual-energy decomposition approach using a multi-step fitting procedure and the iso-

transmission method of [20]. In contrast to prior medical studies [20], the required cal-

ibration data is generated using simulated low and high-energy spectra (as opposed to

the measured spectra). The literature indicates that this is a more commonly adopted

approach in the security-screening domain [78, 111, 112]. Note, however, that although

simulated spectra are used, CT images of known materials, obtained on the CT scanner

under investigation, are generally used to calibrate the simulated spectra [111].

Ying et al. [111] propose a pre-reconstruction basis material decomposition method, whereby

the photoelectric and Compton-equivalent sinograms are obtained by solving a constrained

least squares minimisation problem. Additionally, techniques for adaptive scatter correc-

tion [38], destreaking by nonlinear filtering and real-time image-based correction for X-ray

spectral drifts are incorporated into the proposed framework. The so-called Constrained

Decomposition Method (CDM) is evaluated on simulated and real baggage-CT data (con-

taining known explosive and non-explosive materials). CDM is shown to yield numerically

stable and physically meaningful solutions for the photoelectric and Compton-equivalent

line integrals and a significant reduction in the approximation and boundary constraint

errors common to earlier methods [5, 20].

4.3 Iterative-Reconstruction Techniques

Semerci and Miller [88] present a polychromatic DECT algorithm, tailored particularly

for the detection of objects in cluttered baggage-CT images. The availability of a priori

information regarding the Compton scatter and photoelectric absorption coefficients of

the objects of interest is assumed. This prior information is incorporated (as a series of

constraints) into a variational framework, using the Levenberg-Marquardt algorithm [62]

for minimisation. The photoelectric and Compton scattering parameters are modelled

as the superposition of a parametrically defined object of interest and a non-parametric
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background. The object model contains a geometric component (equal in the photoelec-

tric and Compton images) and a contrast component (specific to the photoelectric and

Compton images) and is based on a parametric level-set representation of the character-

istic function of the object. The proposed approach provides simultaneous solutions to

the problems of object detection and background reconstruction. Tested on simulated

data only, the algorithm is shown to successfully detect, locate and determine the ge-

ometric characteristics of objects of interest, while simultaneously producing reasonable

background reconstructions.

4.4 Computation of the Effective Atomic Number

In the baggage-screening context, the predominant application of DECT has been the de-

termination of effective atomic numbers Zeff and electron densities to be used for materials-

based detection of explosives [90]. The detection of explosives in baggage scans is essen-

tially based on two assumptions [83]: 1) the majority of explosives may be characterised as

organic substances with effective atomic numbers of approximately Zeff = 8 and densities

of 1.15 ≤ ρ ≤ 1.85 g/cm3 and 2) the majority of (non-metallic) innocuous items (e.g.

clothing, toiletries, books etc.) have densities of ρ < 1.0 g/cm3. Fig. 4 illustrates Zeff as a

function of density for common substances (and several illicit materials) found in packed

luggage [32]. Innocuous materials include organic substances (e.g. books, sausages, alco-

hol, leather, cotton etc.); inorganic substances (e.g. salt, PVC, plastic) and metals (e.g.

iron, copper). The illicit narcotics plotted are heroine and cocaine, while the explosives

include C4, TNT, Semtex and Detasheet [32]. Such plots have traditionally been used

by the US Federal Aviation Association (FAA) to evaluate the detection capabilities of

a given scanner. Most importantly, the plot demonstrates that typical explosive materi-

als (as well as illegal narcotics) are easily clustered and hence distinguished from other

innocuous organic and/or inorganic materials. Based on these observations, it is theoreti-

cally possible to distinguish between illicit and innocuous items by computing the effective

atomic numbers and densities of the materials in a scan [83]. Traditionally, this has been

achieved via a simple calibration and interpolation procedure [93] (Fig. 5).

A set of reference materials, whose effective atomic numbers and densities span the ex-

pected range of the materials of interest, are chosen. The low and high-energy Linear

Attenuation Coefficients (LACs) for each of the reference materials are then measured on

the scanner under investigation and the relationship between the known Zeff and the mea-
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sured LAC ratio (µH/µL) is approximated by an interpolating polynomial. Zeff for any

unknown material may be interpolated from the measured LAC ratio and the approxima-

tion polynomial (Fig. 5). This approach assumes a perfect measurement and observation

of the constituents of the illicit and innocuous substances [59]. Such ideal conditions are

rarely encountered in reality. Furthermore, various innocuous substances that have similar

chemical properties to common explosives (e.g. honey and chocolate), are typically not

included in the evaluation of the detection capabilities of a system (as they would fall

within very similar regions as the explosives in Zeff vs. density plots) [59, 32]. Therefore,

even under the assumption of ideal conditions, the discrimination of explosives by the

interpolation of the Zeff vs. density curve is at best a crude approximation.

Several more robust DECT-based techniques exist for computing the effective atomic

number [111,93,88]. The majority of these rely on the decomposition of the low and high-

energy data into equivalent Compton scatter and photoelectric absorption coefficients

using the methods described in Section 4.2. Given the Compton scatter coefficient ac and

the photoelectric absorption coefficient ap, the most common approach for computing Zeff

is given by:

Zeff = K ′
(
ap
ac

) 1
n

(1)

where K ′ and n are constants [5]. This approach requires two separate reconstructions to

obtain the photoelectric and Compton images. Ying et al. [111] present a faster approxi-

mation of Zeff by eliminating the computation of the Compton reconstruction image:

Zeff = K

(
ap
ahct

) 1
n

(2)

where K and n are constants and ahct is the CT number of the scanned materials (obtained

from the high-energy CT image). The division of the photoelectric image by the high-

energy CT image is also shown to reduce the partial volume effect in the Zeff image.

Eger et al. [31, 30] demonstrate superior explosives detection using machine learning and

Multi-Energy Computed Tomography (MECT) techniques. MECT is claimed to provide

superior characterisation of the chemical composition of the materials in a scan relative
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to conventional DECT. As discussed, the traditionally the photoelectric and Compton

scatter coefficients of a material are estimated via linear projections of the material atten-

uation curve onto two fixed energy-dependent curves associated with the photoelectric and

Compton scattering processes. Eger et al. [31, 30] propose a linear decomposition of the

material attenuation using a different set of basis functions (i.e. not the photoelectric and

Compton models). The resulting projection coefficients are used as features within a Sup-

port Vector Machine (SVM) [101] classification framework used for explosives detection.

and shown to outperform the traditional photoelectric and Compton coefficients (partic-

ularly when more than two features are used). The studies suggest improved detection

performance relative to conventional dual-energy X-ray systems.

4.5 Summary

For the most part, DECT techniques may be grouped into one of three categories: post-

reconstruction techniques; pre-reconstruction techniques and iterative-reconstruction tech-

niques. Post-reconstruction techniques operate directly on the low and high-energy scans

and are the most straightforward and computationally efficient approaches. The literature

does however, indicate that the effectiveness of post-reconstruction techniques are limited

by artefacts and noise and provide comparatively little discriminative power (compared

to more advanced techniques). Pre-reconstruction DECT techniques are the most widely

implemented in the security-screening domain. In particular, DECT decomposition allows

for the computation of effective atomic numbers which are then used for materials-based

explosives detection [83,90,93,111,78]. Pre-reconstruction techniques are limited by their

susceptibility to artefacts and the high computational cost associated with DECT decom-

position (two FBP reconstructions required per image).

Similarly to single-energy CT, DECT using iterative-reconstruction techniques results in

superior quality images in terms of artefacts. Improved performance, however, comes at

an increase in computational demand. Nonetheless, iterative reconstruction is gaining

popularity with the ever increasing computational power of modern hardware. Recent

studies [31, 30] indicate superior materials-based discrimination using Multi-Energy CT

(MECT), although further studies are limited. Iterative reconstruction and MECT tech-

niques are most likely to be fruitful avenues for future work.
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5 Segmentation

Image segmentation is a core problem in computer vision and has been the source of

an extensive resource of literature. In the context of baggage screening, the objective of

segmentation is typically pragmatic - that is to say, its implementation is intended to aid

the subsequent detection of threats. Despite its importance, prior work addressing the

automated segmentation of unknown 3D objects from low-resolution, cluttered baggage-

CT imagery is limited. An overview of existing studies is presented in Table 3.

The differences in the quality and nature of security-screening imagery compared to

medical imagery have limited the success of medical-segmentation techniques in this do-

main [64]. Furthermore, the dependence of the majority of the state-of-the-art medical-

segmentation techniques on a priori information in particular, detracts from their suit-

ability to the security-screening imagery, where the segmentation of multiple, unknown

objects is required. This hypothesis has been verified by Megherbi et al. [64], who investi-

gated the effectiveness of classical medical-segmentation techniques when applied directly

to low-quality baggage-CT scans. Four methods were evaluated on the task of segmenting

bottles and handguns from baggage-CT imagery: 1) confidence connected region grow-

ing [82]; 2) fuzzy connectedness [98]; 3) the watershed transform [103] and 4) fast march-

ing [89]. Successful segmentation is shown to be dependent on careful per-case parameter

tuning. Furthermore, even after parameter optimisation, the effects of image noise (de-

spite pre-filtering), clutter and the lack of prior knowledge result in significantly poorer

segmentations than those observed in the medical domain.

The bulk of the prior literature addressing baggage-CT segmentation in particular has

its origins in a recent collaborative initiative between the US Department for Home-

land Security (DHS) and the Awareness and Localization of Explosives-Related Threats

(ALERT) Center of Excellence [23]. The initiative (tasked with promoting academic and

third party research in security-screening) led to the development of the following five

baggage-CT-segmentation algorithms (two of which have appeared in peer-reviewed pub-

lications [109,42]).

Wiley et al. [109] present a 3D region-growing method based on the Stratovan Tumbler

medical-segmentation technology [108]. The technique is composed of five stages: 1) defini-

tion of a 3D kernel; 2) determination of the kernel movement criteria; 3) seed initialisation;

4) flood-fill and 5) splitting and merging. Optimal results are obtained using a spherical

kernel, provided the size of the kernel (determined automatically, based on the amount
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of local clutter) is smaller than the object being segmented and larger than any expected

holes in its boundary. The movement criteria for a given kernel are determined auto-

matically using a training procedure, whereby an initial criteria are matured by manually

improving errant segmentations and adding each improvement to a central training file.

A polynomial is fitted to the training points and used to determine the future movement

criteria at any voxel. Seed-points are determined according to a voxel ordering method

which ensures that large kernel sizes, high intensity voxels and voxels in the centres of ob-

jects are considered first. The 3D kernel traverses a volume in a flood-fill manner provided

the traversed voxels satisfy the movement criteria. Composite objects are represented by

hierarchical tree-like models. In particular, objects are initially segmented into multiple

parts and pairs of segmented parts are merged if their degree of overlap exceeds a thresh-

old. The study demonstrates high-quality segmentations for homogeneous objects and

results in good separation of touching objects. Performance deteriorates for low-contrast

objects, thin objects and in the presence of artefacts. It is also indicated that high-quality

segmentations rely on near isotropic voxel resolutions in all three dimensions.

Song et al. (TeleSecurity Sciences, Inc.) [23] present a sequential approach composed of

three stages: 1) pre-processing (by 2D bilateral filtering [96]; 2) object segmentation and 3)

post-processing. Object segmentation is achieved using a sequential ‘Segment-and-Carve’

(SC) approach, operating on the principal that easy objects should be segmented first. The

objects segmented in each stage are carved out of the image before proceeding to the next

stage. Segmentation is performed using the Symmetric Region-Growing (SymRG) [106]

technique - a seedless (i.e. unsupervised) region-growing technique based on a symmetric

function and which is invariant to starting conditions. In total, five SC stages are pro-

posed, each targeting objects with different characteristics: 1) homogeneous, bulk objects;

2) homogeneous, medium thickness objects; 3) homogeneous, sheet-like objects; 4) homo-

geneous, metal objects and 5) heterogeneous objects. Each stage is composed of five steps:

1) binary mask generation by thresholding; 2) mask pre-processing; 3) segmentation by

SymRG; 4) boundary correction and 5) object carving. The five steps each require param-

eter tuning, with parameters differing for each SC stage. On completion of the five-stage

sequential SC procedure, the segmented objects from each stage are subjected to exten-

sive post-processing operations to correct for over and under-segmentations. Particularly,

object-splitting is performed in four stages: 1) splitting by histogram analysis; 2) splitting

by RANSAC; 3) splitting by recursive k-means clustering and 4) splitting by morphologi-
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cal opening. Object-merging is performed based on three thresholds: 1) spatial proximity;

2) mean intensity and 3) object type. While the study demonstrates high-quality seg-

mentations for selected objects, the results for complete scans are not presented. The

approach is extremely convoluted (with a large parameter set) and optimal performance

requires careful parameter tuning.

Grady et al. [42] present a graph-based segmentation technique composed of three stages:

1) foreground identification; 2) candidate splitting and 3) candidate refinement. Fore-

ground identification is performed by applying a Mumford-Shah functional [41] to artefact-

reduced volumes (obtained by linear interpolation-based MAR [97]), producing labelled

volumes (voxels labelled as foreground or background). Connected component analysis

is applied to the labelled volumes. Each of the connected components in the foreground

are recursively partitioned into candidate segments using the Isoperimetric Distance-Tree

(IDT) algorithm [40]. Recursions are driven by a novel Automated QUality Assessment

(AQUA) metric, which automatically computes the quality of a segmentation without a

priori knowledge of the object being segmented. Computational expense is optimised by

performing coarse-to-fine segmentation (i.e. the segmentation from the previous level is

used as the initial mask for further splitting). High-quality segmentations are demon-

strated for challenging cases. Manageable run-times of approximately four minutes per

volume (on an Intel Core 2 Duo 2.8 GHz CPU) are presented. Low-density and sheet-like

objects present the greatest challenges and it is suggested that superior MAR would be

beneficial.

Harvey et al. (University of East Anglia) [23], present a technique based on the multi-scale

sieves class of algorithms [7, 8]. Sieves function by filtering input signals to remove the

intensity extrema at specific scales. In the context of image segmentation, semantically

meaningful objects are removed at specific (typically higher) scales. The proposed ap-

proach is composed of four steps: 1) sieve the input volume to four logarithmically-spaced

scales; 2) compute four channel volumes; 3) label the channel volumes using Sedgewick’s

connected component analysis [86] and 4) merge the labelled channel volumes into a sin-

gle labelled volume. Merging is performed by determining the similarities between the

density histograms for each labelled object in each channel volume using the Kolmogorov-

Smirnov (K-S) test [55], which computes the probability that the histograms have been

drawn from the same distribution. The specific strengths and weaknesses of the approach

are not addressed in any great detail [23]. An interesting observation is that due to sieves
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segmenting all objects at all scales, at least one channel will always contain a segmentation

of an object. Harvey et al. [23] thus propose that a more suitable approach (compared

to the merging of channels), would be to pass the channel volumes directly into some

artificial intelligence system (e.g. a classifier, object detector or salient region detector).

The decision to merge the channels was dictated by the specifications of the ALERT ini-

tiative [23]. The computational complexity of sieves is approximately N log p, where p is

image dependent and is proportional to the number of flat-zones (the largest connected

components where the signal is constant) in the image.

Feng et al. (Marquette University) [23] present a true 3D (as opposed to per-slice) tech-

nique which, although not explicitly specified, draws significantly from the automatic

segmentation and merging technique of Ugarriza et al. [99]. The approach is composed of

three stages: 1) seed map generation; 2) adaptive region-growing and 3) merging. Seed

maps are generated by locating sufficiently large homogeneous regions in the input vol-

ume. Homogeneous regions are determined by thresholding of the Sobel gradient map of

the volume [94], while region size is determined by connected component analysis. Seed

regions are grown by dynamic region-growing [99], where the region-growing threshold is

not constant. To compensate for the variation of intensities within objects (due to CT

artefacts), the region-growing threshold is modelled as a non-linear function of the mean

intensity of the region. On completion of the region growing, pairs of touching objects

(i.e. those sharing a common edge) are merged based on their similarity in a 2D feature

space (characterising mean texture and intensity). This merging heuristic is applied re-

cursively. The technique is shown to be sensitive to parameter tuning and susceptible to

under-segmentations (occurring in approximately 15% of cases).

Each of the five aforementioned baggage-CT segmentation techniques were developed and

evaluated using a fully labelled volumetric baggage-CT data set captured on a single-

energy medical-CT scanner with a resolution of 0.98 × 0.98 × 1.29 mm. This data is

not representative of the current benchmark in baggage screening, where data is typi-

cally captured on dual-energy scanners and are characterised by considerably poorer voxel

resolutions. The development of segmentation algorithms for such data has not been

considered previously.

Mouton and Breckon [72] have recently presented a materials-based technique for the

segmentation of unknown 3D objects from low-resolution, cluttered baggage-CT imagery.

Initial coarse segmentations are generated from metal artefact reduced [74] images using
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the Dual-Energy Index (DEI) [48] (Section 4.1), thresholding and connected component

analysis. The quality of the individual components of the coarse segmentations are de-

termined using a novel random-forest-based evaluation metric (the Random Forest Score

(RFS)), trained to recognise high-quality, single-object segments. Low-quality individ-

ual object segments are subjected to an object-partitioning procedure which splits fused

objects at automatically-detected regions using morphological operations and connected

component analysis. In a comparative evaluation, the technique is shown to produce seg-

mentations comparable to the state-of-the-art [40] at a significant reduction in processing

time. A lack of ground-truth information is highlighted as a limitation in the performance

evaluation of the study.

5.1 Segmentation Summary

The dependence of medical-segmentation techniques on a priori knowledge detracts from

their suitability in security screening where unsupervised segmentation of multiple, un-

known objects is required [64].

The ALERT segmentation initiative [23] has resulted in the bulk of the baggage-CT seg-

mentation literature. Although leading to five dedicated baggage-CT segmentation tech-

niques, evaluations are performed on medical-grade CT data which is not representative

of that encountered in the security-screening infrastructure. Thin sheet-like objects, low-

density objects and metal streaking artefacts are shown to negatively impact the perfor-

mance of each of the techniques. The development of dedicated techniques for handling

these objects is thus suggested as an area for future work. Furthermore, due to the sig-

nificant differences in the quality of medical and baggage-CT imagery (Section 2), it is

important that future work considers security-grade CT imagery.

Mouton and Breckon present a dual-energy materials-based 3D baggage-CT segmentation

technique, which is the first to consider low-resolution, cluttered data obtained on a true

baggage-CT scanner (see Table 3). Although the computational efficiency of the technique

makes it well-suited to the security-screening domain, it is based on a crude material

representation offered by the DEI. Future work is likely to benefit from a more accurate

materials characterisation using pre-reconstruction and iterative reconstruction DECT

techniques (Section 4).

Finally, we emphasise the importance of ground-truth data for reliable performance eval-

uation and suggest a meticulous approach to future data-gathering procedures, ensuring
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accurate and detailed documentation of the contents and properties of scans.

6 Classification

In this section we review the literature specifically addressing the automated classifica-

tion of 3D objects in baggage-CT data using machine learning techniques. We do not

consider the detection of explosives, as this is traditionally performed using dual-energy

techniques and has been addressed in Section 4. Table 4 presents an overview of the

proposed classification methodologies.

While the algorithmic details of deployed baggage-CT scanners fall under vendor propri-

etary and are thus not publicly available, the literature addressing the automatic clas-

sification of objects within this domain is surprisingly limited. Chen et al. [11] address

the classification of pistols in Dual-Energy CT (DECT) imagery. DECT decomposition

is performed using High-Low (HL) energy curves and look-up tables constructed from 28

calibration elements. In this way the effective atomic numbers and electron densities of

the scans are determined. The problem is reduced to 2D by considering only the central,

cross-sectional slice of the volume in classification. Classification is performed by boosting

2D Haar-like features [104]. The study considers simplified (unrealistic) data containing

only handguns with no background clutter, noise or artefacts and does not present any

experimental results. Further work by the same author [12] proposes a methodology for

the detection of planar materials within CT-baggage imagery using a 3D extension to the

Hough transform [6].

Megherbi et al. [66, 67] present a comparison of classifier-based approaches using volu-

metric shape characteristics for the classification of pre-segmented 3D objects in clut-

tered baggage-CT imagery. Various combinations of three shaped-based descriptors (3D

Zernike descriptors [79]; Histogram-of-Shape Index (HSI) [29] and a combination of the

two) and five classifiers (Support Vector Machines (SVM) [10]; neural networks [105]; deci-

sion trees [85]; boosted decision trees [25] and random forests [25]) are compared. Correct

classification rates in excess of 98.0% are achieved on a limited dataset using the HSI

descriptor with an SVM or random-forest classifier. The reduction of image noise and/or

artefacts are not considered.

Flitton et al. [35] compare the classification performance of four 3D interest-point descrip-

tors of varying complexities (Density Histograms (DH) [35]; Density Gradient Histograms

(DGH) [35]; 3D SIFT [34] and 3D RIFT [56,57]) sampled at 3D SIFT interest points [34].
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It is shown that the simpler density statistics-based descriptors (DH and DGH) outper-

form the more complex 3D descriptors (SIFT and RIFT) in the classification of known

rigid objects within realistic baggage-CT imagery. The comparatively poor performance

of the SIFT and RIFT descriptors are attributed to the low, anisotropic voxel resolution

and high level of noise and artefacts characteristic to this type of imagery.

Extending upon their earlier work [35], Flitton et al. [37] investigate the suitability of

the visual codebooks [91] for the detection of 3D threat objects in volumetric baggage-

CT imagery. Combinations of four 3D descriptors (DH, DGH, SIFT and RIFT) and

three codebook assignment methodologies (hard, kernel and uncertainty) are compared

within a 3D sliding-window classification framework. Optimal correct classification rates

(∼ 89% for bottles; ∼ 97% for handguns) are obtained using an uncertainty assignment

protocol [100] in conjunction DH descriptors [35] sampled at 3D SIFT interest points [34].

The impact of the classifier type, the clustering method and the interest point detection

protocol are not considered. Poor resolution, image noise and metal-streaking artefacts

are shown to negatively impact the efficacy of the 3D descriptors, leading to a decline in

classification performance. Explicit image denoising and artefact reduction are, however,

not considered.

A 3D extension to the hierarchical visual cortex model for object classification has demon-

strated success in 3D object classification in baggage-CT imagery [36]. The approach

outperforms a traditional codebook approach with correct classification rates in excess of

95% and low false-positive rates. Performance is hindered by image noise, streaking arte-

facts and background clutter. Denoising and artefact reduction are again not considered.

Furthermore, an extremely high computational cost is associated with the construction of

the cortex model and the adoption of a sliding-window-like approach to classification (as

pre-segmentation is not performed).

Mouton [73] demonstrates an improvement over the 3D visual cortex model in terms of

classification accuracy and processing time using a codebook approach based on Extremely

Randomised Clustering (ERC) forests [70], a dense feature sampling strategy [80] and

an SVM classifier [101]. In particular, correct classification rates in excess of 98% and

false positive rates of less than 1%, in conjunction with a reduction of several orders of

magnitude in processing time are demonstrated for the 3D object classification in manually

segmented data. Similarly to related studies [34–36, 67, 37], evaluation is limited to two

object classes. It is suggested that the true benefits of random-forest-based classification
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[24] are thus not exploited and it is likely that such techniques will be of increased value

in multiclass problems.

Each of the aforementioned techniques perform classification in a 3D sliding-window fash-

ion or rely on manual pre-segmentations and do not consider techniques for the reduction

of image noise and/or artefacts. Mouton [71] addresses these limitations by combining

various methodologies for noise and artefact reduction, unsupervised segmentation and

classification. More particularly, noise and metal streaking artefacts are reduced by NLM

filtering and distance-driven MAR [17, 74]; 3D segmentation of the data is performed

via materials-based dual-energy techniques [72] and the segmented data is classified using

ERC-forest codebooks [73]. Correct classification rates in excess of 97% with false-positive

rates of less than 2% are obtained at low computational costs for the classification of two

object classes (handguns and bottles) in realistic baggage-CT imagery (Section 2). Per-

haps the most significant observation is the negligible performance gains (in terms of

classification accuracy) offered by the computationally expensive MAR over simple NLM

filtering.

Finally, Chermark et al. [19] present a method for liquid detection within 3D baggage-CT

imagery as a precursor for image-based explosives detection. The proposed approach is

based on two stages of geometric fitting which exploit the geometric properties of liquids

within 3D space. Firstly, a 3D plane is fitted to the horizontally-orientated surface of the

liquid based on the self-levelling property of contained liquids. A least squares elliptical

fitting procedure is then performed to emphasise the shape of the liquid surface at a

given level within the container. The proposed approach exploits the fact that, given the

cluttered nature of baggage-CT imagery, the occurrence of perfectly aligned horizontal

planes are statistically unlikely and are thus indicative of liquid presence. The proposed

methodology, which is based purely on the geometric properties of liquids and robust

geometrical shape detection and thus does not require supervised training, demonstrates

a correct liquid detection rate of 8598%.

6.1 Classification Summary

Despite the limited work addressing the problem of 3D object classification in low-resolution

baggage-CT imagery, numerous studies have demonstrated encouraging results using tra-

ditional feature-based discriminative classification models.

A common limitation of each of the studies reviewed here is data related. Particularly,
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evaluations are typically limited to one or two object classes and the particular target

objects considered (usually handguns and/or bottles) are relatively easy to classify. In

order for a baggage-CT classification tool to be of value in industry, a broad (and ultimately

universal) range of materials must be detectable. Despite the likely challenges in data

gathering arising due to the sensitivity of security-screening data, the most important

direction for future work is thus an extension to multiclass problems.

7 Threat-Image Projection (TIP)

Threat Image Projection or TIP is a software tool which allows for the automated insertion

of realistic threat items into routine baggage imagery with the objective of assessing and

monitoring the performance of screening personnel [90,44,27]. TIP techniques typically fall

into one of two categories: 1) Fictional Threat Image (FTI) projection and 2) Combined

Threat Image (CTI) projection [27]. The former inserts an image of a threat (obtained

from a ‘threat image database’ for example) into a real passenger bag, while the latter

inserts an entire threat-containing bag into the screening pipeline. CTI is only feasible in

scenarios where the screeners are unaware of the actual bags being scanned and is thus

of limited practical use. In this review, we focus on recent developments in FTI-based

projection.

The use of TIP technology is currently limited to 2D X-ray baggage-screening systems

[90, 44, 27]. 2D TIP is relatively straightforward, requiring only a simple superimposition

of the threat item onto the existing image. 3D TIP is considerably more challenging, as

image clutter complicates the task of determining a viable insertion location that does

not violate the existing contents of the bag (see Table 5 for an overview of techniques).

Furthermore, in order for the insertion to appear realistic, metal streaking artefacts need

to be incorporated [63].

Megherbi et al. [63,65] present a fully-automated three-stage approach for realistic threat

image projection in cluttered 3D baggage-CT imagery: 1) void determination; 2) threat

insertion location determination and 3) Metal Artefact Generation (MAG).

Void determination is performed via intensity thresholding as low-density objects are

usually not visible to human operators due to the high dynamic range of baggage-CT

imagery [117]. The optimal insertion location is found by examining the cubic neighbour-

hoods of every voxel in the volume and selecting that with the highest ratio of void to

non-void voxels (provided this ratio is larger than a predefined threshold). A novel Metal
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Artefact Generation (MAG) approach [63,65], based on the inverse task of Metal Artefact

Reduction (MAR) [77], is presented to incorporate streaking artefacts into the insertion.

Drawing from sinogram completion-based MAR [77], artefacts are generate by corrupting

the metal trace in sinogram space using an empirically designed function. The corrupted

sinograms are back-projected (via Filtered Back-Projection (FBP) [28]) yielding the final

TIP image. The study demonstrates more realistic 3D TIP than prior works, where metal

artefact generation was not considered [110,27]. Two main limitations are highlighted: 1)

high computational cost and 2) frequent violation of low-density objects by the inserted

threats due to the thresholding-based void determination. It is thus suggested that future

work focusses on computational optimisation and improved void determination (e.g. using

geometric constraints and/or 3D spatial reasoning) [63].

8 Conclusions

The introduction of 3D X-ray CT to the aviation security-screening domain has led to

an increased interest in the development of automated techniques for the analysis of low-

resolution baggage-CT imagery. We have presented a review of this literature focussing on

the five most prominent areas: image quality improvement; dual-energy techniques; seg-

mentation; classification and Threat-Image Projection (TIP). Despite the relative novelty

of 3D X-ray CT in security-screening, a broad range of techniques have demonstrated clear

potential. The development of techniques for artefact reduction [74, 52], dual-energy de-

composition [111] and segmentation [109,42] have allowed for successful detection of explo-

sives and threats [90,36] and online operator performance monitoring via fully-automated

3D threat-image projection [63].

Despite these promising results, the majority of existing studies utilise limited and/or unre-

alistic (e.g. medical-grade or uncluttered) data. Due to the sensitivity of security-screening

data, datasets containing images which are truly representative of those encountered in the

security-screening domain are limited - both in terms of size as well as variability. These

limitations, in addition to low scan speeds and high costs, have meant that baggage-CT

scanners and related technologies still fall short of the demands laid out by the aviation

security domain. There thus remains a substantial gap between the published literature

and commercialisation.

We have highlighted several important areas for future work. The poor quality of baggage-

CT data remains one of the foremost factors limiting the successful implementation of
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computer-vision and image-processing techniques in this domain. Future work is likely

to benefit from the development of computationally-efficient iterative reconstruction tech-

niques. Since explosives detection remains a crucial component of baggage inspection, the

recent multi-energy CT and feature-based classification techniques (which have demon-

strated improved detections) [31,30] are worth pursuing. Existing 3D object segmentation

techniques have used single-energy medical-grade data [109,42,23]. Future work in this re-

gard is likely to benefit from exploiting dual-energy information. Although several studies

have demonstrated high threat classification rates [35,36], these are limited to two object

classes - an extension to multi-class threat detection is thus necessary. Perhaps the most

important direction for future work is the construction of a representative and variable

dataset, which would likely benefit all facets of future work.
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Tables

Table 1: Overview of denoising and MAR within baggage-CT. For each study, the study
objective, the methodology, the type of data, the evaluation domain, the Quantitative
Evaluation (QE) measures used and the main conclusions are provided.

Study Aim Method(s) Data QE Notes

Zhou
et al.
[116]

Contrast en-
hancement

Alpha-weighted
separation;
histogram
equalisation

2D & 3D
(source
unknown)

Second-
derivative-like
measure of
enhancement

Contrast improved
but images have
few artefacts and
noise

Mouton
et al.
[76]

Denoising Comparison of 6
techniques

2D & 3D;
DECT
baggage
scanner

3D SIFT
measure

NLM filtering [17]
and wavelet
shrinkage [21]
quantitative and
qualitative
improvements

Mouton
et al.
[77]

MAR Comparison of
12 techniques

2D; DECT
baggage
scanner;
medical
phantom [60];
medical-CT
scanner

NRMSE;
Reference-free
measure [54];
combined
error-time
measure

techniques require
priors; sensitive to
parameters;
perform poorly on
baggage data

Mouton
et al.
[74]

MAR NLM filtering;
sinogram
completion;
distance-
weighted
correction

2D; DECT
baggage
scanner;
medical
phantom [60];
medical-CT
scanner

NRMSE;
Reference-free
measure [54];
Bland-Altman
plots [4]

Improved removal
of shading
artefacts; blurring

Karimi
et al.
[52]

MAR Constrained
optimisation to
construct prior;
miniaturisation;
sinogram
completion

2D;
single-energy
medical CT
scanner

None First to employ
prior;
computationally
efficient;
non-representative
data

ALERT
[22]

Reconstruction FBP; iterative
reconstruction;
DECT

2D & 3D;
DECT medical
scanner

Various Iterative
reconstruction
superior but
computationally
expensive;
non-representative
data

38



Table 2: Overview of DECT decomposition within baggage-CT. For each study, the study
objective, the basic methodology, the type and source of data and the main conclusions
are provided. Only studies since 2003 are included.

Study Aim Method(s) Data Notes

Naidu et
al. [78]

DECT
decomposition

Multi-step fitting;
iso-transmission
lines [20]

Unknown Patented method;
requires calibration

Ying et
al. [111]

Explosives
detection

DECT decomposition
by constrained least
squares minimisation;
adaptive scatter
correction; destreaking
by nonlinear filtering;
spectral drift correction

Simulated;
DECT
baggage
scanner

Improved Zeff images
(w.r.t. mean atomic
number, cupping effect,
SNR); faster computation
of Zeff using high-energy
data [112]; requires
calibration

Smith et
al. [93]

Zeff

computation
Physical model of
compound reference
materials

DECT
baggage
scanner

Qualitative and
quantitative
improvements in Zeff for
reference materials
scanned on commercial
scanner; requires
calibration

Semerci and
Miller [88]

Reconstruction
for object
detection

Polychromatic DECT
iterative reconstruction
using parametric
level-sets

2D
simulations

Successful object
detection, object shape
and location
determination,
background
reconstruction; not tested
on real data; requires
calibration

Eger et
al. [31, 30]

Explosives
detection

MECT techniques;
projection coefficient
features; SVM classifier

Database of
explosive
and non-
explosive
LACs
(source
unknown)

Improved classification
performance over
Compton and
photoelectric coefficients
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Table 3: Overview of 3D object segmentation within baggage-CT. For each study, the
core methodology, the type and source of data, the Quantitative Evaluation (QE) measures
and the main conclusions are provided.

Study Method(s) Data QE Notes

Wiley et
al. [109]

3D flood-fill region
growing; merging by
overlap

Single-
energy
medical-
CT [23]

None Kernel movement inferred
from training data;
performance deteriorates
for low-density and
sheet-like objects;
non-representative data

Song et
al. [23]

Bilateral filtering;
sequential symmetric
region growing [106];
4-stage object splitting;
3-stage object merging

Single-
energy
medical-
CT [23]

Wholeness
and
exclusiveness
(comparison
to ground
truth) [23]

Large parameter space;
sensitive to parameter
tuning; performs poorly
on low-density and
sheet-like objects;
non-representative data

Grady et
al. [42]

MAR [97]; Mumford-Shah
functional [41]; recursive
IDT partitioning [40] -
driven by AQUA measure

Single-
energy
medical-
CT [23]

% Overlap
with ground
truth

Segmentation of cluttered
bags in < 4 minutes;
performance deteriorates
on low-density and
sheet-like objects;
non-representative data

Harvey et
al. [23]

Multi-scale sieves [7];
object merging by
Kolmogorov-Smirnov
histogram analysis [55]

Single-
energy
medical-
CT [23]

None Computationally efficient;
can use intermediate
results directly in
classification system; fails
on iso-density touching
objects; non-representative
data

Feng et
al. [23]

Gradient-based seed map
generation; adaptive
region growing [99];
feature-based merging

Single-
energy
medical-
CT [23]

Comparison
to ground
truth (size;
mean
intensity
etc.)

Sensitive to parameter
tuning; prone to
under-segmentations;
performs poorly in
presence of streaking
artefacts;
non-representative data

Megherbi
et al. [64]

Comparison of existing
techniques [82,98,103,89]

Dual-energy
baggage-CT

None Sensitive to parameter
tuning; performance
limited by lack of a priori
information, image noise,
artefacts and clutter

Mouton
[72]

MAR [74]; DEI
materials-based coarse
segmentation; refinement
guided by random forest
score

Dual-energy
baggage-CT

Random
forest-based
performance
measure

Computationally efficient;
realistic data; performs
poorly on thin sheet-like
objects
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Table 4: Overview of 3D object classification within baggage-CT. For each study, the
target objects, the core methodology, the type and source of data, the Quantitative Evalu-
ation (QE) measures and the main conclusions and approximate performance are provided.

Study Target Method(s) Data QE Notes

Chen
et
al. [11]

Pistols DECT
decomposition by
HL curves and
LUTs; boosted 2D
Haar features

Isolated
pistols
(source
unknown)

None Classification reduced
to 2D; oversimplified
data; no experimental
results

Megherbi
et al.
[66, 67]

Bottles Histogram-of-shape
index; SVM
classifier

Manually
segmented
baggage-CT

Accuracy;
preci-
sion;
TNR;
recall

Requires manual
segmentation; limited
dataset; classification
accuracy > 98%

Flitton
et
al. [35]

Handguns &
bottles

Density Histograms
(DH) descriptors;
k-means encoding;
SVM classifier

Manually
segmented
baggage-CT

ROC
curves;
mean
corre-
spon-
dence

DH descriptors
outperform 3D
SIFT [34] and
RIFT [56]; requires
manual segmentation;
performance limited in
presence of streaking
artefacts

Flitton
et al.
[36, 37]

Handguns &
bottles

Dense Gabor
features [68]; 3D
visual cortex model;
SVM classifier

Manually
segmented
baggage-CT

TPR;
FPR;
preci-
sion;
recall

Outperforms BoW
model using 3D SIFT
and SVM; TPR∼ 96%;
FPR∼ 1%;
computationally
expensive; requires
manual segmentation;
performance limited in
presence of streaking
artefacts

Mouton
[73]

Handguns &
bottles

Dense DH
descriptors [35];
random forest
feature
encoding [70]; SVM
classifier

Manually
segmented
baggage-CT

TPR;
FPR;
preci-
sion;
time

Outperforms visual
cortex [36];
TPR∼ 99%; FPR
< 1%; computationally
efficient; robust to
noise; requires manual
segmentation

Mouton
[71]

Handguns &
bottles

MAR/denoising
[74,17]; DEI
materials-based
segmentation; dense
DH descriptors [35];
random forest
encoding [70]; SVM
classifier

Dual-energy
baggage-CT

TPR;
FPR; ac-
curacy;
preci-
sion;
time

First end-to-end
classification pipeline;
TPR> 97%;
FPR< 2%; NLM gives
similar results to MAR
at massive reduction
in computational cost

Chermark
et
al. [19]

Liquids Thresholding and
slice differencing; 3D
planar fitting; 2D
elliptical fitting

Dual-energy
baggage-CT

Accuracy,
preci-
sion,
recall

TPR> 85%; no
training required.

41



Table 5: Overview of 3D Threat Image Projection (TIP). For each study, the core
methodology, the type and source of data, the evaluation techniques and the main con-
clusions are provided.

Study Method(s) Data Evaluation Notes

Yildiz et
al. [110]

Manual void
determination; direct
threat insertion (with
original artefacts)

Source
unknown

None Algorithmic details
limited; no results
presented

Megherbi
et al. [63]

Void determination;
threat insertion location
determination;
sinogram-space metal
artefact generation [65]

Cluttered
baggage-CT

TIP and
non-TIP
images
examined and
classified by 3
expert
screeners

Realistic threat
insertion; experts unable
to distinguish TIP from
non-TIP; limited void
determination;
computationally
expensive

42



Figure Captions

Fig. 1: Conventional classification pipeline.

Fig. 2: Medical-grade CT scans with sub-millimetre isotropic resolution [2, 1].

Fig. 3: Baggage-CT scans illustrating poor image quality, low resolution (1.56 × 1.61 ×

5mm), artefacts and clutter (obtained on Reveal CT80-DR dual-energy baggage scanner).

Fig. 4: Zeff as a function of density for common materials found in packed luggage [32].

Fig. 5: Determination of Zeff by interpolation of approximating polynomial [93].
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Figures
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Fig. 1: Conventional classification pipeline.
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Fig. 2: Medical-grade CT scans with sub-millimetre isotropic resolution [2, 1].
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Fig. 3: Baggage-CT scans illustrating poor image quality, low resolution (1.56 × 1.61 ×
5mm), artefacts and clutter (obtained on Reveal CT80-DR dual-energy baggage scanner).
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Fig. 4: Zeff as a function of density for common materials found in packed luggage [32].
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Fig. 5: Determination of Zeff by interpolation of approximating polynomial [93].
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