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Abstract 

 

The Scale Invariant Feature Transform (SIFT) is one of the most popular matching 

algorithms in the field of computer vision. It has advantages over many other 

algorithms because features detected are fully invariant to image scaling and rotation, 

and are also shown to be robust to changes in 3D viewpoint, addition of noise, 

changes in illumination and a sustainable range of affine distortion. However, the 

computational complexity is high, which prevents it from achieving real-time 

performance. The aim of this project, therefore, is to develop a high-performance 

image matching system based on the optimised SIFT algorithm to perform real-time 

feature detection, description and matching. This thesis presents the stages of the 

development of the system.  

To reduce the computational complexity, an alternative to the grid layout of standard 

SIFT is proposed, which is termed as SRI-DAISY (Scale and Rotation Invariant 

DAISY). The SRI-DAISY achieves comparable performance with the standard SIFT 

descriptor, but is more efficient to be implemented using hardware, in terms of both 

computational complexity and memory usage. The design takes only 7.57 µs to 

generate a descriptor with a system frequency of 100 MHz, which is equivalent to 

approximately 132,100 descriptors per second and is of the highest throughput when 

compared with existing designs. Besides, a novel keypoint matching strategy is also 

presented in this thesis, which achieves higher precision than the widely applied 

distance ratio based matching and is computationally more efficient. All phases of 

the SIFT algorithm have been investigated, including feature detection, descriptor 

generation and descriptor matching. The characterisation of each individual part of 

the design is carried out and compared with the software simulation results.  

A fully stand-alone image matching system has been developed that consists of a 

CMOS camera front-end for image capture, a SIFT processing core embedded in a 

Field Programmable Logic Array (FPGA) device, and a USB back-end for data 

transfer. Experiments are conducted by using real-world images to verify the system 

performance. The system has been tested by integrating into two practical 
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applications. The resulting image matching system eliminates the bottlenecks that 

limit the overall throughput of the system, and hence allowing the system to process 

images in real-time without interruption. The design can be modified to adapt to the 

applications processing images with higher resolution and is still able to achieve real-

time.  
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1.1 Introduction 

Computer vision, which focuses on providing computers with the ability to mimic 

human perception, constitutes an important step in designing systems which can 

perform intelligent tasks.  

Object or scene recognition is one of the fundamental tasks in the field of computer 

vision. One of the frequently used contexts is to identify the presence of specific 

objects or a class of objects along with their locations in the scene. Recognition is 

also used in identification of a wide variety of patterns, such as fingerprints and faces 

just to name a few. Besides, it is an important part of applications such as image 

retrieval, where the objective is to find an image similar to a given query image.  

A common step in most recognition algorithms is to represent the image content in 

terms of features. A local feature, which is also known as an interest point, is an 

image pattern that is associated with a change of an image property neighbourhood, 

such as intensity, colour and texture. Local features can be points, edges and small 

image patches. In general, a good feature should have the following properties: 

 Repeatability: The repeatability represents the percentage of points that are 

simultaneously presented in the commonly visible part of two images that are 

taken under different viewing conditions. A high repeatability is expected. 

 Distinctiveness: The feature should show a lot of variations of the local 

intensity pattern underlying the feature, so that the features can survive large 

image transformations and hence can be correctly matched.  

 Locality: The regions identified by features of higher locality are less likely to 

be occluded or suffer from geometric and photometric transformations 

between two images taken under different viewing conditions. However, the 

disadvantage is that the detected regions contain less information and are less 

distinguished to survive large transformation. Therefore, the keypoints with 

high locality are less likely to be repeatedly detected and corrected matched, 

especially in existing of large transformation between images. 

 Quantity: The number of features should be sufficiently large to meet the 

requirement of different applications. Ideally, the features should densely 

cover the entire image. This property is especially useful in applications, such 
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as object or scene recognition, where it is vital to have features densely 

covering the entire object of interest. If too few features are detected, the 

image content is not reliably represented. 

 Accuracy: The features should be accurately localised in 2D image plane and 

also in scale space. This property is important for applications, such as wide-

base line matching and camera calibration, where accurate locations are 

needed. 

Of all the above mentioned expected properties from local features, repeatability is 

the most important one and has been widely used in the performance evaluation of 

detectors [1]. 

Image matching is an important aspect of computer vision and has been widely used 

in solving problems related to object or scene recognition [2] [3], robot localisation 

and mapping [4] [5], object tracking [6] [7], 3D vision [8] [9] and etc. It obtains the 

similarity of image pairs by identifying their relationship. In general, the image 

matching usually involves three important stages. 

Detection: The first one is the extraction of salient keypoints from images, where 

each keypoint is typically associated with information, such as the location in 2D 

image plane and scale space. 

Description: The second stage is to associate each keypoint with a distinctive 

descriptor based on the local region around the keypoint.  

Matching: The final stage is the matching of keypoints between images based on the 

descriptors. 

1.2 Motivation 

In the past few decades, a considerable amount of research has been made to explore 

effective algorithms to determine correspondence between images. SIFT (Scale 

Invariant Feature Transform) [10] has advantages over other algorithms because 

features detected are fully invariant to image scaling and rotation, and are partially 

invariant to changes in 3D viewpoint, addition of noise, and changes in illumination. 

However, the high computational complexity makes it not eligible to real-time 
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applications. In recent years, an impressive body of work has been done to improve 

both the efficiency and performance of the standard SIFT algorithm. Apart from 

developing variations to the standard SIFT algorithm, efforts have been made to 

explore pipelined hardware architecture while seeking for help from new hardware 

technologies. Related researches will be reviewed in Chapter 2, in terms of SIFT 

variations and efficient hardware implementations. 

1.3 Objectives and Contributions 

The research presented in this thesis aims at tackling the major drawback of the 

existing systems, which is the relatively low overall processing throughput with 

feature description incorporated, and hence providing a high frame rate and high 

accuracy image matching system.  

This research mainly consists of two parts: 

 The theoretical part, such as the improved spatial arrangement of descriptor, 

and the parameters that can be tuned to improve hardware efficiency while 

keeping relatively high performance.  

 The hardware part, such as the hardware architecture of the SIFT processing 

core, and the complete image matching system. 

The main objectives of this project are: 

 Appropriate system configuration and algorithm modification for an efficient 

hardware design. 

 High frame rate image processing system. The ultimate target for the frame 

rate is 60 fps for VGA images. 

 High accuracy processing core so that the matching performance is 

comparable with the high-precision software model. 

 Low resource usage so that the processing core can be integrated into a single 

chip, which means the whole system on a chip (SoC). 

The main contributions of this project are: 
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 The grid layout of the standard SIFT descriptor is optimised by using the log-

polar spatial arrangement, which is more efficient to compute without 

significant performance degradation. 

 A novel feature matching strategy is proposed, which provides higher 

matching accuracy when compared with existing widely applied matching 

methods.  

 A rotating buffer memory solution is proposed, with which the memory 

requirement remains constant with the increase of the parallelism level of the 

processing core and it contributes to the memory reduction of the design. 

 A fully stand-alone image matching system is developed, which achieves 

real-time performance for VGA images and is the first complete hardware 

design for the SIFT algorithm. 

1.4 Thesis Outline 

This thesis presents the research carried out to achieve a real-time image matching 

system of high frame rate and low hardware resource usage based on the optimised 

SIFT Algorithm. The remainder of the thesis is organised as follows. 

In Chapter 2, a review to the related researches is presented, in terms of both the 

image matching algorithms and the existing approaches that improve both the 

efficiency and performance of the standard SIFT algorithm. The drawbacks of the 

existing hardware systems developed for the SIFT algorithm are presented, which 

leads to the necessity of this research. 

Chapter 3 introduces the optimisations toward the standard 128-dimentional 

descriptor. Evaluation is performed to compare the performance of the standard SIFT 

and the spatial arrangement of the descriptor, named SRI-DAISY (Scale and 

Rotation Invariant DAISY). A novel image matching strategy is proposed in the 

same chapter, which achieves higher precision than distance ratio based matching 

from SIFT and is more efficient to implement on hardware devices. 

Chapter 4 presents a detailed analysis to the parameters that affect the performance 

and hardware efficiency of the SIFT processing core. Detailed evaluation is 
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performed to achieve an appropriate parameter setting for an efficient hardware 

design. 

In Chapter 5, FPGA based hardware architecture of the SIFT processing core is 

presented, which covers all phases of the optimised SIFT algorithm. Memory 

requirement is analysed and efficient memory solutions are provided. 

Chapter 6 presents the developed embedded system for the optimised SIFT algorithm. 

Tests and experiments are conducted for the performance evaluation of the system, in 

terms of robustness to geometric and photometric transformations. Besides, the 

matching performance is tested in two applications: object recognition and video 

stabilisation. 

Finally, Chapter 7 concludes the thesis and presents discussion and suggestions for 

further work. 
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2.1 Introduction 

This chapter mainly consists of three parts. Firstly, relevant research on the intensity 

based feature detection methods that led to the current state-of-the-art SIFT 

algorithm are reviewed. Secondly, variations to the SIFT are introduced, which are 

developed to improve either the efficiency or the performance of the standard SIFT 

algorithm. Finally, a review of related work to speed up the SIFT implementation is 

also presented with advantages and disadvantages that led to the necessity of the 

research reported in this thesis.  

 

2.2 Related Image Matching Algorithms 

In this section, relevant researches on the feature detectors are reviewed, and an 

emphasis is placed on the approaches proposed for extracting scale invariant features 

that are closely related to the SIFT algorithm.  

In this section, two major types of local features are reviewed: corner detector and 

blob-like structure detector. The corner detector detects corners and highly textured 

points, whereas the blob-like structure detector detects mainly blobs. A corner can be 

identified by a single point while a blob relies on the boundary of its neighbourhood. 

Corners are typically better localised in the image plane, and hence are suitable for 

applications where localisation accuracy is of great concern, such as camera 

calibration and estimation of epipolar geometry for wide-baseline matching. The 

blob-like structures are less accurately localised in the 2D image than corners, 

because the second derivatives give small response in the point where the signal 

change is most significant. Therefore, blob-like structure detectors are less suited for 

applications where precise correspondences are needed. However, since blob-like 

structure detector gives a good estimation of the size thus the scale of the blob, it is 

better suited to applications where a precision localisation is not necessary, such as 

object or scene recognition. In practice, the blob detector is complementary to corner 

detector, and hence are often used together [11] [12] [13]. 
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2.2.1 Corner Detector 

In the traditional sense, the corner refers to a point in the 2D image that has large 

curvature in both directions. Freeman [14] defined corners as discontinuity of an 

average curve slope and the mean curvature to either side of it can be considered to 

be uniform and free of discontinuities. It was then noticed that the so-called corners 

can also be detected from image locations that have large gradients in all directions, 

such as a small dark spot on a bright background. Nowadays, the term “corner” is 

used for both senses. 

The development of image matching by using a set of local interest points can be 

traced back to the work of Moravec [15] on stereo matching using a corner detector, 

which functions by considering a local window in the image. A corner is detected if 

the average changes of image intensity resulting from a small amount of window 

shift are large in all directions. As shown in Figure 2-1, the red square represents the 

image window ݓሺ ǡ  ሻ. The leftmost image shows that the image intensity within the 

window is approximated constant and window shifts in all directions will result in a 

small change. The middle image shows an edge, where the window shifts along the 

edge will result in a small amount of change, while the shifts perpendicular to the 

edge will result in a large change. The rightmost image shows an actual corner, and 

the window shifts will result in large changes in all possible directions. 

 

 

 

Figure 2-1: Moravec’s corner detector. 
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The similarity between image windows before and after the movement in a certain 

direction is determined by calculating the sum of squared difference (SSD), as 

defined in Equation (2.1).  

ሺ ǡܧ   ሻ ൌ ෍ݓሺ ǡ  ሻȁܫሺ ൅  ǡ  ൅  ሻ െ ሺ ǡܫ  ሻȁଶ୶ǡ୷  (2.1) 

where ݓሺ ǡ  ሻ  specifies the image window and it is unity within a specified 

rectangular region and zeros elsewhere. ܫሺ ǡ  ሻ and ܫሺ ൅  ǡ  ൅  ሻ are the original 

and shifted pixel intensity, respectively. 

Smaller SSD indicates higher similarity and the Moravec’s corner detector is actually 

searching for the minimum ܧሺ ǡ  ሻ in all directions that is above a certain threshold.  

The three major drawbacks of the Moravec’s corner detector are listed below, which 

are later improved by the Harris corner detector [16]. 

1. Shifts in only eight discrete directions are considered, and hence the response 

is anisotropic. 

2. The response is sensitive to noise due to use of binary and rectangular image 

window. 

3. Because it takes into account only the minimum of ܧሺ ǡ  ሻ , the detector 

responds too readily to edges. 

One of the intensively used pixel based matching algorithms is developed by Harris 

and Stephen [16], which is improved upon Moravec’s work and is known today as 

the Harris detector. It concerns not only corners but also any image location that has 

large gradients in all directions at a predetermined scale. The Harris corner detector 

is based on the second moment matrix, which is also known as auto-correlation 

matrix that summarises the gradient distribution in a specified neighbourhood of a 

point:  

ܯ  ൌ ݃ሺߪூሻ כ ቈ ǡܠ௫ଶሺܫ ஽ሻߪ ǡܠ௬ሺܫ௫ܫ ǡܠ௬ሺܫ௫ܫ஽ሻߪ ஽ሻߪ ǡܠ௬ଶሺܫ ஽ሻߪ ቉ (2.2) 

with 
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݃ሺߪூሻ ൌ ͳʹߪߨூଶ ݁ିೣమశ೤మమ഑಺మ  

ǡܠ௫ሺܫ ஽ሻߪ ൌ ݔ߲߲ ݃ሺߪ஽ሻ כ  ሻܠሺܫ
ǡܠ௬ሺܫ ஽ሻߪ ൌ ݕ߲߲ ݃ሺߪ஽ሻ כ  ሻܠሺܫ

where ߪ஽ is the differential scale with which the first-order local image derivatives 

௫ǡܫ)  ூ is the integration scale of the Gaussian kernel that is appliedߪ .௬) are computedܫ

to the neighbourhood of the pixel to smooth the local image derivatives.  

A corner typically has large principal curvature in all directions and can be obtained 

by analysing the principal curvature in 2D images. Because the eigenvalues of the 

second moment matrix ܯ are proportional to the amount of the principal curvatures 

of ܫሺܠǡ ஽ሻ, a pixel is labelled a corner ifߪ  the eigenvalues of the corresponding matrix 

are both large.  

By considering the differential of the corner score with respect to the directions 

directly instead of using shifted patches, the Harris corner detector removes the 

anisotropic response limitation of the Moravec’s method. The noisy response of 

Moravec’s detector is addressed by using a Gaussian window instead of the square 

and binary one, which uses a circular window with more weights put on the pixels 

closer to the centre instead of simple sum in Moravec’s method. Finally, the 

sensitivity to edges is eliminated by analysing the principal curvatures of the local 

2D images. An example of detection comparison is shown in Figure 2-2. The left 

image shows the corners detected with Moravec’s method, and the right image shows 

the corners detected using Harris detector. 
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Figure 2-2: An example of detection comparison of Moravec’s corner detector and 

Harris detector.  

 

Harris corner detector is considered as one of the most reliable interest point 

detectors and is stable in arbitrary lighting conditions. However, it is very susceptible 

to changes in image scale, therefore fails to provide satisfying matching performance 

when dealing with images of scales changes, which always occurs in images. To 

tackle this problem, researches have been done to extract scale invariant features, 

including improving the detectors to be scale adapted and exploring features that are 

detected in the scale invariant manner.  

A variation of Harris detector is proposed in [17], which is referred to as Harris-

Laplace. The Harris-Laplace detector is a combination of Harris detector and Laplace 

operator proposed by Lindeberg [18]. It starts with the multi-scale point selection 

using scale adapted Harris corner detector, followed by iterative scale selection using 

Laplace operator, which works together to detect scale invariant features. The idea of 

using the Laplace operator is to select the characteristic scale at which the similarity 

between the detector operator and the local image structure achieves maximum, 

which can be explained as finding the circular shape of the Laplacian kernel that is 

adapted to a local image structure. The characteristic scale is an estimation of the 

characteristic length of the corresponding image structure, and is related to the 

structure and not to the resolution at which the structure is represented [17]. As 

shown in Figure 2-3, the top row shows the images of different scales, where the 

yellow circles represent the corresponding circle of Laplacian kernel. The bottom 
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row shows the Laplacian responses over scale, and the characteristic scale are 10.1 

and 3.89 for the left and right images, respectively [1]. The Laplacian response 

achieves a maximum when the size of the Laplace operator matches that of the blob-

like structure. 

 

 

Figure 2-3: An example of characteristic scale selection using Laplace operator [17].  

 

Beaudet [19] proposed a rotation invariant Hessian-based detector termed DET, 

which is derived from the second-order Taylor expansion of the intensity surface, 

and especially the Hessian matrix that describes the local curvature. Beaudet defined 

an operator called DET: 

    ൌ ௬௬ܫ௫௫ܫ െ ௫௬ଶܫ  (2.3) 

Operator DET is related to the local curvature, and the features correspond to points 

where DET achieves local extrema.  
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2.2.2 Blob Detector 

Another most intuitive local feature is the blob, which is a region in an image that is 

either brighter or darker than the surrounding. In this section, three most widely 

applied blob detectors are reviewed: Laplacian-of-Gaussian (LoG), Determinant-of-

Hessian (DoH), and Difference-of-Gaussian (DoG). 

 

a. Laplacian-of-Gaussian 

One of the first and most common blob detectors is proposed by Lindeberg [20], 

which is based on the Laplacian-of-Gaussian (LoG). It searches for extrema from the 

scale space [21] using the scale normalised LoG operator in Equation (2.4). 

 ȁ   ሺܠǡ ௡ሻȁߪ ൌ ǡܠ௫௫ሺܮ௡ଶหߪ ௡ሻߪ ൅ ǡܠ௬௬ሺܮ  ௡ሻห (2.4)ߪ

where ܮ௫௫ and ܮ௬௬ are the second order derivatives computed using Gaussian kernel 

of standard deviation ߪ௡. 

 

 

Figure 2-4: Spatial responses to the Laplacian operator computed at different scale 

levels [20]. 

 

Figure 2-4 shows how the spatial responses vary with the Laplacian operator 

computed at different scale levels. The scale space is generated by successive 

smoothing of the high resolution image with Gaussian based kernels of different 

sizes. Koenderink [22] and Lindeberg [23] have shown that Gaussian function is the 

only possible scale-space kernel. 
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(a) LoG operator with ߪ௡ ൌ ʹǤͲ. 

 

(b) LoG responses to different signals. Left: signals, Right: LoG responses. 

Figure 2-5: LoG operator applied to several different signals. 
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The LoG detector is able to deal with significant scale changes, but the main 

drawback is that local maxima are detected from both blob-like structures and the 

neighbourhood of contours and edges. As shown in Figure 2-5, the Laplacian 

operator in Figure 2-5(a) responses to edges in the first two examples in Figure 

2-5(b), and responses to the blob like structure in the last example. Therefore, to 

detect a blob, the response of the Laplacian operator should achieve the extrema at 

the centre of the blob, where a maximum response and minimum response 

corresponds to a dark blob on light background and light blob on dark background, 

respectively. 

 

b. Determinant-of-Hessian 

A Hessian-based blob-like structure detector is proposed by Mikolajczyk [1], which 

employs both the trace and determinant of the Hessian matrix (DoH) for feature 

detection. 

ܪ  ൌ ቈܫ௫௫ሺܠǡ ஽ሻߪ ǡܠ௫௬ሺܫ ǡܠ௫௬ሺܫ஽ሻߪ ஽ሻߪ ǡܠ௬௬ሺܫ  ஽ሻ቉ (2.5)ߪ

with 

ǡܠ௫௫ሺܫ ஽ሻߪ ൌ ߲ଶ߲ݔଶ ݃ሺߪ஽ሻ כ  ሻܠሺܫ
where ܫ௫௫ሺܠǡ ஽ሻߪ  is the convolution of the Gaussian second order derivative డమడ௫మ ݃ሺߪ஽ሻ with the image ܫ at point ܠ, and similarly for ܫ௬௬ሺܠǡ ǡܠ௫௬ሺܫ ஽ሻ andߪ  ஽ߪ .஽ሻߪ

is the scale at which the second-order local image derivatives are computed. 

The trace of the Hessian matrix is often referred to as Laplacian, which has a strong 

response to both blob like structures and edges, as has been illustrated in Figure 2-5. 

A local maximum of DoH indicates the presence of a feature point with large local 

curvatures. A feature is selected when the trace and DoH simultaneously achieves 

local extrema, so as to overcome the drawback of the Laplacian which has strong 

response to edges. As shown in Figure 2-6, the left image shows the detection results 
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using trace (Laplacian). The right image shows the detection result using both trace 

and DoH (ߪ஽ ൌ Ͷ). 

 

 

Figure 2-6: Detection results.  

 

To make Hessian detector to be invariant to scale changes, Hessian-Laplace [17] is 

developed which are similar to Harris-Laplace, but the features are detected using 

DoH. According to the comparisons in [11] [18], the Hessian-based detector is more 

stable and repeatable than Harris-based detectors. 

 

c. Difference-of-Gaussian 

The Difference-of-Gaussian (DoG) has been widely used for feature detection [3] [10] 

[24] [25] [26], which is a close approximation to the Laplacian-of-Gaussian (LoG) 

and detects blob-like structures. The DoG represented by the dashed line in the right 

image of Figure 2-7(b) is generated by applying subtractions to the two Gaussian 

functions with different standard deviations (ߪଵǡ  ଶ) shown in the left image of Figureߪ

2-7(a). The 2D example of DoG and LoG is given in Figure 2-7(b). The DoG is 

computationally more efficient than LoG, because the second-order derivatives 

௫௫ǡܮ) ௬௬ܮ ) with respect to scale of LoG are approximated by the difference of 

Gaussian blurred images, as shown in Figure 2-7(c). 

features detected with trace features detected with both trace and determinant
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(a) 1D example for DoG and LoG. 

 

(b) 2D example for LoG and DoG. 

 

(c) Comparison between DoG response and LoG response 

Figure 2-7: Comparison between LoG and DoG. 
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Lowe [10] extended the DoG operator to deal with scale changes for the SIFT 

algorithm, which is especially designed for image scaling. In the rest of this section, 

detailed description of the standard SIFT algorithm is given. The SIFT algorithm 

mainly consists of two parts: feature detection and descriptor generation. Feature 

detection module extracts the image features that are further transformed to 

descriptor vectors in descriptor generation module. 

Feature Detection 

The feature detection module mainly consists of three stages: 1) Gaussian scale space 

and DoG space construction. 2) Keypoint detection with stability checking. 3) 

Gradient Magnitude and Orientation (GMO) calculation.  

To achieve invariance to scale change of the image, stable features are searched 

across all possible scales by using a continuous function of scale known as scale 

space. The Gaussian scale space is built up by repeatedly convolving the input image ܫ  with Gaussian kernel ܩ  of different sizes, thereby leading to the scale space 

composed of a series of smoothed images ܮ of the same resolution at discrete values 

of ߪ, as shown in Equation (2.6).  

  ሺݔǡ ǡݕ ሻߪ ൌ  ሺݔǡ ǡݕ ሻߪ כ  ሺݔǡ  ሻ (2.6)ݕ

where * is the convolution operator, ı decides the size of Gaussian kernel given in 

Equation (2.7). 

  ሺݔǡ ǡݕ ሻߪ ൌ ͳʹߪߨଶ  ିሺ௫మା௬మሻ ଶఙమΤ  (2.7) 

The scale of a scale space image is equal to the standard deviation of Gaussian kernel 

used to generate that image. Figure 2-8 illustrates the Gaussian scale space and DoG 

space construction by showing an example of six scales per octave. Scale space 

images with the same resolution compose an octave. The input image to a new 

octave is generated by sub-sampling image from the previous octave spatially by a 

factor of two. The DoG given in Equation (2.8) is generated by applying subtraction 

operation to adjacent scale space images, which are separated by a constant 

multiplicative factor k. 
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  ሺݔǡ ǡݕ ሻߪ ൌ  ሺݔǡ ǡݕ ሻߪ݇ െ  ሺݔǡ ǡݕ  ሻ (2.8)ߪ

A pixel is defined as a keypoint when it is larger or smaller than its 26 neighbours in 

the DoG space, with eight pixels in the same scale and nine in the scales above and 

below, respectively. As shown in Figure 2-8, each square represents a pixel in the 

DoG space, and the pixels in shadow correspond to the pixels to be compared with 

their neighbouring pixels.  

 

Figure 2-8: Block diagram representing the Gaussian scale space and DoG space 

construction by using a set of six Gaussian smoothed images. 

 

Once a keypoint has been detected, it will be passed onto the stability checking 

process to eliminate those that are likely to be unstable, either because they are near 

an edge rather than a blob-like structure, or because they are found to be with low 

contrast. Firstly, the location of the keypoint is improved to sub-pixel accuracy by 

using a second-order Taylor expansion at its original location ݑሺݔǡ ǡݕ ሻߪ . The 

correction offset w from u with respect to coordinates ሺݔǡ  is defined inߪ ሻ and scaleݕ

Equation (2.9). 
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ݓ  ൌ െቆ߲ଶݑ߲ܦଶቇିଵ ݑ߲ܦ߲  (2.9) 

If ݓ is larger than 0.5 in any one of the three dimensions ሺݔǡ ǡݕ  ሻ, the keypointߪ

actually lies closer to another pixel, as shown in Figure 2-9. Then the correction 

offset will be added to ݑ to produce the new location. This process repeats until ݓ is 

smaller than 0.5 in all dimensions.  

 

Figure 2-9: Keypoint localisation under sub-pixel accuracy. 

 

Secondly, keypoint with contract c defined in Equation (2.10) lower than the pre-

defined threshold is rejected to improve the stability of the system. 

 ܿ ൌ ܦ ൅ ͳʹ ݑ்߲ܦ߲  (2.10) ݓ

The final step of stability checking process is the principal curvature analysis. 

Because the DoG responses to both blob-like structures and edges, the principal 

curvature analysis step is necessary so as to remove local extrema that are located 

along edges. This step is achieved by evaluating the eigenvalues of the corresponding 

Hessian matrix. A local extrema is accepted if: 

 
  ሺ۶ሻଶ   ሺ۶ሻ ൌ ሺܦ௫௫ ൅ ௬௬ܦ௫௫ܦ௬௬ሻଶܦ െ ௫௬ܦ௫௬ܦ ൏  (2.11) ݈݀݋݄ݏ݁ݎ݄ܶ

where ۶ ൌ ൤ܦ௫௫ ௫௬ܦ௫௬ܦ  .௬௬൨ܦ
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Local extrema that have passed through all these steps can be identified as keypoints 

with high confidence.  

Descriptor Generation 

The next step is to associate each keypoint with a descriptor, which is actually a 3D 

representation of the gradient distribution of the local region centred on the keypoint. 

The descriptor is highly distinctive and is robust to the remaining variations, such as 

changes in 3D viewpoint and illumination. The gradient-orientation histogram is 

used to describe a keypoint, which is generated from the gradient information of all 

pixels within the local region. Given a pixel, the gradient magnitude ݉ሺݔǡ  ሻ andݕ

orientation ߠሺݔǡ   .ሻ are computed from Equation (2.12) and (2.13), respectivelyݕ

 ݉ሺݔǡ ሻݕ ൌ ටܩ௫ଶ ൅  ௬ଶ (2.12)ܩ

ǡݔሺߠ  ሻݕ ൌ    ିଵሺܩ௬ܩ௫ሻ (2.13) 

where ܩ௫ and ܩ௬ given below are the difference of smoothed pixel values in ݔ and ݕ directions, respectively. 

௫ܩ  ൌ ݔሺܮ ൅ ͳǡ ሻݕ െ ݔሺܮ െ ͳǡ  ሻ (2.14)ݕ

௬ܩ  ൌ ǡݔሺܮ ݕ ൅ ͳሻ െ ǡݔሺܮ ݕ െ ͳሻ (2.15) 

As shown on the left of Figure 2-10, the length and direction of a particular arrow 

represents the gradient magnitude and orientation of each pixel, respectively.  

 

Figure 2-10: Descriptor generation for an 8ൈ8 set of pixels. 
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To generate a descriptor, each local region around a keypoint is segmented into 

several square sub-regions, with each characterised by an 8-bin histogram. Figure 

2-10 shows an example of a 2×2 descriptor vector computed from the local image 

patch of size 8×8 pixels, whereas 4×4 square sub-regions are used in the standard 

SIFT algorithm. Firstly, the image gradient and orientation are sampled around the 

keypoint, which are accumulated to generate a histogram summarising the contents 

of the entire local region. The orientation that corresponds to the bin with the largest 

magnitude in the histogram is the dominant direction of the local gradient 

distribution and is assigned to the keypoint, which is named as the principal 

orientation (ߠ௣௢). Secondly, the local region of size 16×16 pixels is segmented into 

4×4 square sub-regions with each of size 4×4 pixels, and pixels within the local 

region are rotated with respect to ߠ௣௢  for rotation invariance. Thirdly, each sub-

region is characterised by an 8-bin histogram with each bin covering 45°. As shown 

on the right of Figure 2-10, each sub-region is described using an 8-bin histogram 

with the orientation of each bin representing 45°, and the length of the arrow 

represents the accumulated gradient magnitude of all pixels within the sub-region for 

each of the eight orientations. Finally, histograms of all sub-regions are linked 

together, leading to a final descriptor of 128 dimensions, as shown in Figure 2-11. 

 

 

Figure 2-11: Final descriptor of 128 dimensions for standard SIFT algorithm. 
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2.3 SIFT Variations 

Although the feature detection and description are often designed together, the 

solutions to these two problems are independently explored [1] [27]. In this section, 

an introduction is given to the algorithms that are explored as alternatives to SIFT 

with respect to detection and description, respectively. 

2.3.1 PCA-SIFT 

The PCA-SIFT [ 28 ] applied Principal Component Analysis (PCA) [ 29 ] to the 

standard SIFT algorithm for dimensionality reduction. Rather than using the 

orientation histogram to represent the gradient distribution within the local region, 

the PCA-SIFT applied PCA to the normalised gradient image patch centred on the 

keypoint. The inputs to the PCA-SIFT are identical to the standard SIFT, which are 

the keypoint location, scale, and principal orientation.  

To generate a PCA-SIFT descriptor, a square patch is selected around a keypoint 

with size proportional to its scale value and the patch is then rotated relative to the 

principal orientation for rotation invariance. The gradient values in the patch are 

sampled such that for every keypoint the final patch is of size 41x41.By 

concatenating both the horizontal and vertical gradient maps for the 41x41 image 

patch, an input vector of size 39x39x2=3042 elements is created, which is 

normalised to reduce the effect of illumination changes. The final descriptor is of 

size n=20, which is generated by projecting the input vector into the feature space 

with dimensionality of n=20 using PCA. 

The descriptor generation process takes comparable time for both PCA-SIFT and 

standard SIFT. The PCA-SIFT is more compact, leading to faster matching speed. 

However, according to the comparative study by Mikolajczyk [27], the PCA-SIFT is 

less distinctive than standard SIFT. Besides, the standard SIFT is better suited to 

handle errors introduced by orientation assignment and scale estimation [28]. 



36 

 

2.3.2 Speeded Up Robust Features 

Viola and Jones [30] proposed to use the integral image, which is also known as 

summed-area tables [31], in the context of real-time face detection. The entry of an 

integral image at location ܠ  is the sum of all pixels in the input image of a 

rectangular region formed by the origin and ܠ. Given an integral image, it takes only 

four simple arithmetic operations to calculate the area of any sized rectangular region, 

as shown in Figure 2-12.  

 

Figure 2-12: σ ൌ ሻܦஊሺܫ െ ሻܥஊሺܫ െ ሻܤஊሺܫ ൅  .ሻܣஊሺܫ
 

H. Bay [32] [33] extended this idea further and proposed the Speeded-Up Robust 

Features (SURF), which makes use of the integral images that allows for box-type 

filters to approximate the determinant of Hessian matrix for fast feature detection. 

The idea of using box-type filter instead of Gaussian filter is that the Gaussian filter 

has to be quantised and cropped, and the approximation is pushed even further with 

box filters [33], as shown in Figure 2-13. The first two images are the quantised and 

cropped Gaussian second-order derivatives in ݕ -direction (ܩ௬௬ ) and ݕݔ -direction 

( ௫௬ܩ ), respectively. The last two images are the box-filters (ܦ௬௬ ௫௬ܦ, ) that 

approximates the Gaussian second-order derivatives in the first two images, 

respectively [33]. The Hessian matrix can be computed very fast using integral image 

and box-type filters, independent of the filter size. Interest points are localised by 

applying non-maximum suppression in a 3x3x3 neighbourhood, which are then 

refined in scale and image space using quadratic interpolation.  
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Figure 2-13: Box-filters. 

 

The SURF descriptor is a histogram of the local distribution of Haar-wavelet [34] 

responses within the neighbourhood of the keypoint. Again, by exploiting the 

integral image, the Haar-wavelet response (݀ݔ ݕ݀, ) in ݔ  or ݕ  direction can be 

computed within six operations at any scale. The local neighbourhood is split into 

4x4 square sub-regions with each described by a four-dimensional descriptor vector ܞ ൌ ሺȭ݀௫ǡ ȭ݀௬ǡ ȭȁ݀௫ȁǡ ȭȁ݀௬ȁሻfor its underlying intensity structure, leading to a final 

descriptor of 64 dimensions. The sum of Haar-wavelet response in ݔ and ݕ direction 

can be split up according to the sign of ݀௫ and ݀௬, respectively, thereby leading to a 

more distinctive representation of 128 dimensions. The SURF descriptor is 

computationally effective with respect to computing the descriptor’s value at every 

pixel, but all gradients contribute equally to their respective bins, which results in 

damaging artifacts when used for dense computation [35]. 

2.3.3 Gradient Location and Orientation Histogram 

GLOH [27], which is acronym of Gradient Location and Orientation Histogram, is 

considered as an extension to SIFT by using log-polar location grid. As shown in 

Figure 2-14, the local region is arranged with eight sub-regions in the angular 

direction and three sub-regions in the radial direction, resulting in 17 sub-regions. 

Mikolajczyk computes SIFT descriptor for each of the 17 sub-regions. With the 

gradient orientation quantised into 16 bins, the resulting histogram is of 272 bins, 

which is further reduced to 128 by applying PCA. 
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Figure 2-14: Spatial arrangement for GLOH descriptor with 17 sub-regions. 

 

According to the performance comparison of different descriptors by Mikolajczyk 

[27], the GLOH descriptor obtains better results than SIFT in the presence of real 

geometric and photometric transformations. However, GLOH is more expensive to 

compute than SIFT. 

2.3.4 DAISY 

Inspired by the developments of SIFT and SURF, Tola [35] takes advantage of the 

log-polar grid with Gaussian weights from [36] and speeds up computation by 

applying Gaussian convolutions to orientation maps. The descriptor is named DAISY 

due to the flower like arrangement of the local region, as shown in Figure 2-15. The 

radius of each sub-region is proportional to the Gaussian kernels and the ‘+’ sign 

represents the centre of each sub-region [35]. DAISY is a novel descriptor initially 

proposed for dense wide-baseline matching across stereo image pairs. It retains the 

robustness of SIFT and GLOH to perspective and lighting changes and can be 

computed quickly at every pixel. Unlike SURF, the DAISY descriptor can be 

computed efficiently at every pixel and does not introduce any artifacts that degrade 

the matching performance [35]. 
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Figure 2-15: The DAISY descriptor with three rings of sub-regions in the log-polar 

spatial arrangement around the centre.  

 

Figure 2-16 shows the construction process for Gaussian smoothed orientation maps 

with four discrete directions as an example. Four discrete orientations with each 

smoothed by three Gaussian kernels are used as an example to demonstrate the 

construction process. In practice, the DAISY descriptor quantises the gradient 

orientation to eight directions, resulting in eight gradient maps (ܩ௢೔) with one for 

each orientation representing 45o [35]. Each orientate map is then smoothed with 

Gaussian mask ȭ௞, which results in a set of Gaussian smoothed orientation maps for 

each direction. The magnitude of the Gaussian smoothed orientation maps are the 

entries to the final descriptor. The DAISY descriptor is fast to compute in that the 

Gaussian smoothed orientation maps are computed instead of calculating the 

weighted sum as in SIFT, with which the descriptor generation process becomes 

simple indexing operation that uses the centre of each sub-regions as an index to the 

Gaussian smoothed orientation maps. 
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Figure 2-16: Construction of Gaussian smoothed orientation map for DAISY.  

 

2.4 Hardware Designs 

The existing researches aiming at accelerating SIFT using hardware is divided into 

three different categories: 1) optimising parallel algorithms based on multi-core 

processors [37] [38], 2) using state-of-art Graphics Processing Unites (GPUs) [39] 

[40] [41] to improve the processing efficiency, and 3) implementing SIFT using 

FPGA (Field Programmable Logic Array) by exploring the inherent parallel 

processing property of FPGA devices.  

Numerous studies [42] [43] have compared the performance of FPGAs, GPUs and 

CPUs. Bodily [ 44 ] suggested that GPUs are not suitable for many embedded 

applications, such as intelligent robots with limited power supply, mainly because the 
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power consumption of GPUs is significant when compared to FPGA devices. In a 

most recent evaluation research [45], the performance and energy comparison of 

FPGAs, GPUs and multicores is conducted on a sliding-window applications due to 

their frequent usage in digital signal processing, such as sum of absolute distance and 

2D convolution. They concluded that FPGA is generally faster than GPUs and 

multicores, and uses orders of magnitude less energy than other devices in many 

situations, providing the only realistic embedded system implementation for high-

definition video. This section mainly focuses on the related FPGA designs for the 

SIFT algorithm, highlighting their advantages and disadvantages. The architecture 

proposed in each of them is analysed, as they are the most relevant publications to 

this project. 

2.4.1 Hardware Design for Feature Detection 

Se [46] implemented the SIFT detection on a Virtex II Xilinx FPGA to support a 

stereo vision system for robotic navigation. It takes 60 ms to extract SIFT features 

from VGA image and has achieved the performance improvement of 10 times in 

relation to a Pentium III 700 MHz processor. This is the first work reported in the 

literature in the field of SIFT extraction based on FPGAs, and marked the first 

attempt to accelerate SIFT using hardware. However, no architecture specifications 

have been provided. In [47], a partial implementation of the SIFT algorithm on 

FPGA is proposed to determine the translation and rotation between cameras for 

stereo vision. Only the Gaussian pyramid construction and keypoint detection is 

implemented in FPGA. The system is able to determine the verge angle between the 

two cameras with an accuracy of less than one degree with the system operating at 60 

frames per second (fps) for input image of 640x240 pixels, which clearly shows the 

advantage of using FPGAs for solving intensive computer vision related tasks. 

A hardware-software co-design is developed in [48], which partially implemented 

the SIFT algorithm on a Xilinx XUP-Virtex II Pro board. It takes only 0.8 ms to 

detect features from QVGA images with a clock frequency of 100 MHz. However, 

little information on the design architecture and FPGA resource usage has been 

provided. Bonato [5] proposed a detailed hardware architecture for vision 

Simultaneous Localisation And Mapping (SLAM) [49], which is able to detect 

features at up to 30 fps for QVGA images. As shown in Figure 2-17, the Gaussian 
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pyramid construction is divided by octave and Gaussian blurred images within each 

of the three octaves are computed in series, resulting in 18 Gaussian filter blocks. 

 

 

Figure 2-17: The architecture implementing the Gaussian filters cascade in [5]. 

 

In order to reduce the FPGA resources usage and speed up the design, 5-bit unsigned 

representation has been adopted for DoG (Different-of-Gaussian) images, with which 

local minima are ignored in the detection stage. Since the system performance may 

be degraded with many features ignored, the design may not be suitable for other 

general image processing applications, such as object recognition that requires a 

large number of features densely covering the target object.  

 

Figure 2-18: The fully parallel architecture for Gaussian filters in [50]. 
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Yao [50] proposed a partition-based feature detection scheme, which is able to detect 

features from a VGA image within 31ms. To achieve real-time processing, the input 

image is segmented into partitions of size 7x12 pixels with 7 pixels processed in 

parallel. The Gaussian pyramid construction is simplified by using four smoothed 

images instead of six as suggested in the standard SIFT. The input to the second 

octave is generated by down-sampling the original image instead of the Gaussian 

smoothed image from the previous octave. Besides, the standard deviations of four 

scale images are set to 1.1, 1.3, 1.6 and 2.0, respectively. These simplifications 

reduce the total number of features and degrade the robustness to scale changes. 

Besides, the stability checking process for the keypoints is replaced by scaling down 

DoG pixels, which sacrifices the accuracy of features. Figure 2-18 shows the fully 

parallel architecture for Gaussian pyramid construction. It should be noted that each 

Gaussian smooth block consists of seven Gaussian filtering units working in parallel. 

The overall processing time ܶܥ௏ீ஺ is defined below. 

 
௏ீ஺ܥܶ ൌ ሺ͸ͶͲ െ ܾሻ ൈ ሺͶͺͲ െ ܾሻ ൅ ሺ͵ʹͲ െ ܾሻ ൈ ሺʹͶͲ െ ܾሻݔ ൈ ൈݕ ሾሺݔ ൅ ܾ ൅ ʹሻ ൈ ሺݕ ൅ ܾ ൅ ͷሻ ൅ ʹሿ (2.16) 

where ܾ  is the size of the boundary region caused by the nature of 2D Gaussian filter. ݔ and ݕ are the height and width of the image partition, respectively. 

      

Figure 2-19: The left image shows the processing time for VGA image as a function 

of the Gaussian kernel size for [50]. The right image shows the processing time for 

XGA image as a function of the partition size. 
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This design is sensitive to both the size of Gaussian kernel and the input image. 

Figure 2-19(a) shows the processing time as a function of the Gaussian kernel. The 

issue of Gaussian kernel will be later addressed in Chapter 4. Figure 2-19(b) shows 

the processing time as a function of partition size for XGA (1024x768) images with 

Gaussian kernel of size 15, which shows that at least 16 pixels have to be processed 

concurrently to achieve real-time. This requires at least 16 Gaussian smooth units to 

be implemented in parallel. Increasing the size of either the Gaussian kernel or the 

input image will lead to a significant increase in the number of Gaussian smooth 

units, which is inefficient, in terms of hardware resource usage. 

Another regions-of-interest (ROI) based scalable architecture is proposed in [51], 

which works in two different modes: high-speed mode and high-accuracy mode. As 

shown in Figure 2-20, the high-speed mode works in a pipelined architecture with 

ROI of size 40x30 pixels, while the high-accuracy mode works in a sequential 

architecture with ROI of size 80x60 pixels. The throughput of high-speed and high-

accuracy mode is 56 fps and 32 fps, respectively, with a clock frequency of 50 MHz. 

The overall architecture for Gaussian smooth is similar to Figure 2-18, but each 

Gaussian smooth block consists of ten Gaussian filtering units working in parallel. 

 

 

(a) Pipelined architecture in high-speed mode. 

 

(b) Sequential architecture flow in high-accuracy mode. 

Figure 2-20: Overall architecture for two different modes proposed in [51]. 
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Kim [52] improved upon Bonato’s work [5] to reduce the memory requirement by 

replacing the cascade Gaussian filter process with parallel processing and sharing 

Gaussian filter bank between octaves, as shown in Figure 2-21. By employing 

parallel architecture within each octave, the buffer storing the intermediate 

smoothing results in the cascade filtering mode is saved. The design is implemented 

on Altera Stratix II FPGA (EP2S60F672C3), and achieves a reduction in registers 

and LUTs of 58.6% and 36.6%, respectively. However, the overall throughput is not 

stated. 

 

 

Figure 2-21: Overview of the parallel architecture with Gaussian filter bank shared 

between octaves in [52]. 

 

A SIFT hardware accelerator for real-time image feature extraction has been 

proposed by Huang [53]. The main contribution of this work is that the processing 

time for feature detection is reduced to 3.4 ms for VGA sized video by taking 

advantage of the image streaming method proposed in [54]. As shown in Figure 2-22, 

the design mainly consists of two interactive parts. Every time a feature is identified 

from the main processor, the co-processor is invoked to generate descriptor for the 

detected feature point. The main processor does not start detecting until the 

descriptor has been generated for the previously detected feature. 



46 

 

 

 

Figure 2-22: State transition diagram of two interactive components for [53]. 

 

The overall processing time ܶܥ௏ீ஺ is defined as follows. 

௏ீ஺ܥܶ  ൌ ௗ௘௧௘௖௧௜௢௡ܥܶ ൅ ௙ܰ௘௔௧௨௥௘௦ ൈ  ௗ௘௦௖௥௜௣௧௜௢௡ (2.17)ܥܶ

where ܶ ௗ௘௧௘௖௧௜௢௡ܥ  is the time requirement for feature detection and is directly 

proportional to the size of the input image. ܶܥௗ௘௧௘௖௧௜௢௡ is equal to 3.4 ms for VGA. ܶܥௗ௘௦௖௥௜௣௧௜௢௡ is the time requirement for generating a descriptor, which is equal to 

33.1 us. ܰ ௙௘௔௧௨௥௘௦ is the number of descriptors to be generated. 

Although feature detection has been significantly accelerated, the overall processing 

time is actually decided by the number of features as a result of the two interactive 

components working in series. Figure 2-23 shows the maximum number of features 

that can be processed in real-time for input images of different resolutions. The 

maximum number corresponds to an overall processing time of 33.3 ms. The number 

of features that can be processed within 33.3 ms decreases with the increase of image 

resolution, which indicates that the design is not applicable for processing higher 

resolution images that may produce larger number of features. 
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Figure 2-23: Maximum number of features for images of different resolution.  

 

A most recent design that accelerates SIFT feature detection is proposed by Chang 

[55], which is improved upon their earlier work in [56]. Chang improved the 

processing speed by dividing the Gaussian pyramid construction process by scale, as 

shown in Figure 2-24. The design is able to detect features from QVGA images 

within 1.1 ms using Xilinx Virtex II Pro FPGA (XC2VP305FF-1152), which 

corresponds to 900 fps. The design introduces high control complexity as a result of 

the octave interleaving. Besides, the design covers only the local extrema detection 

from DoG space, whereas keypoint refinement process that contains complex matrix 

inversion computation is not addressed. 

 

 

Figure 2-24: The architecture implementing the Gaussian filters cascade in [56]. 
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2.4.2 Hardware Design for Feature Description 

The above mentioned researches mainly focus on the FPGA implementation of 

feature detection. Considering that SIFT has the potential of detecting a large number 

of features and the time consumption of descriptor generation is proportional to the 

number of features detected, it becomes necessary to develop a high speed hardware 

architecture for descriptor generation that can be fully embedded on-a-chip for real-

time applications. 

Bonato [5] proposed parallel hardware architecture for feature detection, which is 

able to detect features at up to 30 fps for QVGA. However, the feature description is 

implemented using software, which requires 11.7 ms to generate a descriptor and has 

become the bottleneck that limit the overall throughput. Lin [57] proposed a VLSI 

architecture that takes 15.315 us to generate a descriptor, which corresponds to 

65,300 descriptors per second with a clock frequency of 200 MHz. The design 

achieves 60 fps for VGA at approximately 1,088 features per frame. In a most recent 

design [53], a SIFT hardware accelerator for real-time feature extraction has been 

proposed. It takes approximately 33.1 us to generate a description. To achieve an 

overall throughput of 30 fps, the number of features is limited to 890 for VGA sized 

video. Besides, not much detail on the architecture of descriptor generation module 

has been provided in [53]. Considering the fact that SIFT has the potential of 

detecting a large number of features that densely covering the entire image, the 

number is likely to exceed 1,000 for a VGA image, so the throughput of [5] and [53] 

may not be large enough. 

It can be seen from the review of the developed systems that the main drawback of 

the existing systems is the relatively low overall processing throughput with feature 

description incorporated. The drawback emerged mainly due to the computational 

complexity of the algorithm that gives rise to a large requirement in the processing 

time. 
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Chapter 3 The Optimised SIFT Algorithm 
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3.1 Introduction 

In this chapter, an alternative to the spatial arrangement of the standard SIFT 

descriptor is proposed by taking advantage of the log-polar spatial arrangement of 

the DAISY descriptor. The standard DAISY is extended to be invariant to rotation 

and scale changes, which is termed as SRI-DAISY (Scale and Rotation Invariant 

DAISY). A novel keypoint matching strategy is also presented in this chapter, which 

provides better matching accuracy and higher hardware efficiency than the distance 

ratio based method from the SIFT. 

 

3.2 Evaluation Criterion 

The recall versus 1-precision curve has become popular evaluation criterion that is 

widely used in the context of matching and recognition. Given two images of the 

same object or scene, the recall is defined as the ratio of the number of correctly 

matched feature points to the number of correspondences. The precision is the ratio 

of the number of correct matches to the total number of matches.  

 

݈݈ܽܿ݁ݎ  ൌ  (3.1) ݏ݁ܿ݊݁݀݊݋݌ݏ݁ݎݎ݋ܿ ͓ݏ݄݁ܿݐܽ݉ ݐܿ݁ݎݎ݋ܿ ͓ 

݊݋݅ݏ݅ܿ݁ݎ݌  ൌ ݏ݄݁ܿݐܽ݉ ݈ܽݐ݋ݐ ͓ݏ݄݁ܿݐܽ݉ ݐܿ݁ݎݎ݋ܿ ͓   (3.2) 

The correspondences are regarded as potential features that can be correctly matched 

between the pair of images with transformation.  

The F-measure, which considers both recall and precision, reaches its best value at 1 

and worst score at 0. 

ఉܨ  ൌ ሺͳ ൅ ଶሻߚ ή ݊݋݅ݏ݅ܿ݁ݎ݌ ή ଶߚ݈݈ܽܿ݁ݎ ή ሺ݊݋݅ݏ݅ܿ݁ݎ݌ ൅ ሻ݈݈ܽܿ݁ݎ  (3.3) 
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where ߚ  is the parameter that controls the balance between recall and precision. 

When ߚ ൌ ͳ, ܨఉ becomes the harmonic mean of recall and precision. If ߚ  ൐ ͳ, ܨఉ 

puts more emphasis on recall. If ߚ ൏ ͳ ఉܨ ,  becomes precision-oriented. In the 

evaluation results presented in this thesis, ߚ is set to 1, giving equal emphasis on 

recall and precision. 

 

3.3 Problem Analysis 

It has been reviewed in Chapter 2 that currently existing designs are generally 

focused on investigating the parallelism of feature detection module to fully embed 

this part on a chip, whereas not much effort has been placed on improving the 

throughput of description generation. Actually, descriptor generation has become the 

bottleneck of the overall system due to both the high dimension of descriptors and 

the huge time requirement to process a large number of features. According to the 

literature review presented in Chapter 2, researches focusing on improving the 

efficiency of feature description fall into two categories:  

 Exploration of descriptors that are more robust, with less computational 

complexity and are much faster to be evaluated.  

 Development of efficient hardware architecture by exploring the parallel 

processing property of descriptor generation.  

The performance of several widely applied descriptors has been evaluated in [27], 

which shows that the circular arrangement has better localisation properties than the 

grid layout of SIFT. Winder [36] [58] performed more extensive evaluation into 

different layout of descriptors and showed that DAISY [59] outperforms SIFT. 

GLOH [27] is the most robust descriptor among all kinds of proposed descriptors but 

with high computational complexity. SURF [32] [33] is a widely accepted algorithm 

that offers the fastest speed at the cost of higher memory consumption while the 

performance is not quite satisfying. 

DAISY is faster to compute than SIFT, but the descriptor is initially proposed for 

dense wide-baseline matching and does not deal with rotation and scale changes. 
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Fischer [60] implemented Tola’s [59] DAISY descriptor for fast computation, which 

explored the rotation invariance of the standard DAISY. The rotation invariant 

DAISY is termed O-DAISY, which is generated by rotating the descriptor relative to 

the principal orientation ሺߠ௣௢ሻ in a similar way to SIFT. The design is able to process 

images of 2034x2048 pixels at 30 fps, or VGA images at 406 fps, making it an 

optimum solution for dense wide-baseline matching. However, O-DAISY suffers 

from the following major drawbacks, which make it not suitable for general 

matching tasks with large geometric transformations. 

 The orientation map of the standard DAISY descriptor is a quantised version 

of SIFT’s orientation, and hence the rotation invariance is degraded when 

compared to SIFT as a result of the reduced precision of ߠ௣௢. In SIFT, ߠ௣௢ 

corresponds to the direction of the largest bin in the 36-bin histogram 

generated based on the gradient distribution of the local region, where each 

bin represents 10o. In the standard DAISY, orientation maps of eight discrete 

directions are computed with each representing 45o, which limits the 

orientation up to eight discrete directions. Although Fischer increased the 

number of orientations from 8 to 16 to improve the precision of ߠ௣௢ at the 

cost of doubling the computational complexity, the precision of ߠ௣௢ is still 

limited to 16 for O-DAISY with each representing 22.5o, which potentially 

degrades the rotation invariance of the descriptor. 

 The distinctiveness of descriptors is reduced as a result of the spatial 

information discarded. Orientation maps of all 16 directions are involved in 

the computation of ߠ௣௢ . However, only every other orientation map is 

involved in descriptor generation so as to avoid the increase in descriptor 

dimension.  

 Gaussian smoothed orientation maps of each direction have to be buffered, 

resulting in a huge memory requirement. The memory requirement is directly 

proportional to the resolution of input images, the number of discrete 

orientations, the number of Gaussian smoothed orientation maps for each 

direction, and the precision of the gradient magnitude of each pixel. The 

number of Gaussian smoothed orientation maps correspond to the number of 

rings of sub-regions in the log-polar spatial arrangement around the centre. 
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 The scale invariance is not addressed in O-DAISY, resulting descriptors 

sensitive to scale changes.  

Inspired by these evaluation results and hardware design, the SIFT detection is 

integrated with the SRI-DAISY, which is a DAISY-like local region arrangement 

that is adaptive to rotation and scale changes. The SRI-DAISY is faster to compute 

without performance degradation when compared with the standard SIFT descriptor, 

and is more robust to image rotation and scaling when compared with O-DAISY. 

 

3.4 SRI-DAISY 

In this section, the parameters that affect the spatial layout of the SRI-DAISY are 

studied. In general, the throughput of descriptor generation module is proportional to 

the number of keypoints to be described. The key factors that affect the processing 

time of a descriptor are the sub-region arrangement, the size of local region, and the 

throughput of memory interface for data access, such as GMOs. The memory 

interface will be discussed in Chapter 5. 

3.4.1 Spatial Arrangement for SRI-DAISY 

There are two parameters to be considered for the overall layout of the SRI-DAISY 

descriptor: the number of rings and the number of sub-regions on each ring. 

 

Figure 3-1: Typical spatial arrangement for DAISY descriptor studied in [58]. 
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Typical spatial arrangements shown in Figure 3-1 have been studied by Winder [58], 

which shows that arrangement with two DAISY rings gives lower error rates than 

that with a single ring, and 8 sub-regions per ring performs better than 6 sub-regions 

per ring, as shown in Table 3-1. Besides, the error rate falls significantly when the 

number of discrete orientation is increased from 4 to 8, after which it shows little 

improvement. So 8-bin histogram for each sub-region is a proper choice, which is 

consistent with the standard SIFT. 

 

Table 3-1: Error rates for different arrangement of local region [58]. 

Number of discrete 
orientations (per sub-region) 

1 Ring 2 Rings 

6 8 6 8 

4 34.43 34.24 29.05 28.64 

8 27.89 26.52 23.28 22.94 

12 26.55 26.19 22.85 22.57 

16 26.93 26.28 22.59 22.75 
 

Apart from the error rate, the dimension of the descriptors is also very important, 

because it increases the computational complexity of both the descriptor generation 

and matching process. Besides, higher dimension also increases the memory 

requirement for buffering the descriptors. The descriptor dimension for different 

arrangement is given in Table 3-2. 

 

Table 3-2: Descriptor dimension for different arrangement of local region. 

Number of discrete 
orientations (per sub-region) 

1 Ring 2 Rings 

6 8 6 8 

4 28 36 52 68 

8 56 72 104 136 

12 84 108 156 204 

16 112 144 208 272 
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With a trade-off made between performance and hardware efficiency, arrangement 

with 1 ring 8 sub-regions each is used in this design, which results in the final 

descriptor of 72 dimensions. 

3.4.2 Parameters for SRI-DAISY 

The SRI-DAISY descriptor is generated from the local region, which size is 

proportional to the detection scale of the keypoint. Each circular sub-region is 

smoothed by a Gaussian kernel with standard deviation proportional to the detection 

scale of the keypoint. Typically, larger sub-region contains more information and 

hence is more distinctive to survive large transformations. However, it stands a 

higher chance of being occluded. Besides, the computational complexity of Gaussian 

smooth is closely related to the kernel size applied to each sub-region, so larger 

region results in higher computation workload. Therefore, local region arrangement 

has to be decided with a trade-off made between performance and computation 

efficiency.  

Figure 3-2 shows a typical SRI-DAISY descriptor that is arranged with one ring in 

the radial direction of eight surrounding sub-regions on the ring. Each circle 

represents a sub-region. The ‘+’ sign in the centre of the local region is the keypoint. 

 

 

Figure 3-2: The SRI-DAISY descriptor arrangement. 

 

 

 

 

    

  

    

ݎ݈ ݎ ݈ܽܿ݋  ܴ 
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In Figure 3-2, ܴ  is the distance from the keypoint to the centre of sub-regions, ݎ is 

the radius of the sub-regions, and ݎ௟௢௖௔௟ is the radius of the local region for descriptor 

generation. The relationship between ܴ, ݎ and ݎ௟௢௖௔௟ is given in Equation (3.4), which 

shows that for a given local region size ݎ௟௢௖௔௟, if one of the two parameters ݎ and ܴ  is 

fixed, the other one is known. 

௟௢௖௔௟ݎ  ൌ ܴ ൅  (3.4) ݎ

In this section, three parameters are studied for SRI-DAISY descriptor, which are 

closely related to the spatial layout of the descriptor: 

1. Standard deviation (ߪ஽஺ூௌ௒) of the Gaussian kernel that is applied to the sub-

regions. ߪ஽஺ூௌ௒  is proportional to ݎ௟௢௖௔௟ , and the ratio (ܴܽ݋݅ݐఙವಲ಺ೄೊ ) of ߪ஽஺ூௌ௒ to ݎ௟௢௖௔௟ is studied.  

2. Sub-region radius (ݎ). The ratio of ݎ to ݎ௟௢௖௔௟ is studied. 

3. Region size factor ܨ௥௘௚௜௢௡, which is the ratio of the diameter of the local 

region to the detection region, and ݎ௟௢௖௔௟ ൌ ௥௘௚௜௢௡ܨ כ  .ߪ͵

A distinction is made between the detection region and the local region prior to 

evaluating the effect of different parameters. The detection region is a collection of 

pixels that have effectively contributed to the SIFT detector response, whereas the 

local region is the region on which the descriptors are generated.  

A wide range of settings has been studied, and some example results are given in 

Figure 3-3. The testing images are obtained from the website of Krystian 

Mikolajczyk [61]. These images are captured specifically aiming to test and compare 

keypoint detectors and local descriptors. Figure 3-3(b) shows that there does not exist 

one set of parameters that achieves the best performance for all types of images and 

transformations.  

Each parameter is studied in detail in the following sub-sections. Firstly, the 

matching performance is checked as a function of the Gaussian kernel applied to 

each sub-region. Secondly, experiments are conducted to see how the matching 

performance varies with the changing of the sub-region radius, which decide the 
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spatial layout of the DAISY descriptor. Finally, the impact of region size factor ܨ௥௘௚௜௢௡ is evaluated. 

 

 

(a) Example images. The first row shows reference images. The second row 

shows the transformed images. From left to right: graf (viewpoint), boat 

(scaling+rotation), bike (blur), and light changes. 

 

 

(b) F-measure as a function of ݎ ௟௢௖௔௟ൗݎ  and ܴ  .ఙವಲ಺ೄೊ݋݅ݐܽ

Figure 3-3: Matching performance as a function of different parameter settings for 

SRI-DAISY descriptor arrangement.  
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a. Gaussian kernel 

Figure 3-4 shows the matching performance as a function of ܴܽ݋݅ݐఙವಲ಺ೄೊ, which is 

collected from a database of images with a wide range of transformations. . The ݔ-

axis is the index to the  ܴܽ݋݅ݐఙವಲ಺ೄೊ in range [0.1, 0.5] of interval 0.05. In general, 

the matching performance improves as ܴܽ݋݅ݐఙವಲ಺ೄೊ  increases. The performance 

becomes rather stable at around 0.35 and shows little improvement beyond that point.  

 

   

  

Figure 3-4: Matching performance as a function of the ratio between ߪ஽஺ூௌ௒ 

and ݎ௟௢௖௔௟. 
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b. Sub-region Radius  

Experimental results are discussed to see how the matching performance varies with ܴ and ݎ for a given local region size ݎ௟௢௖௔௟. The local region is sampled with a radius 

of four times the detection region (ܨ௥௘௚௜௢௡=4.0). Figure 3-5 shows the example 

spatial layout of the local region. The ratio ݎ ௟௢௖௔௟ൗݎ  is gradually increased, and hence 

the sub-region radius varies.  

 

  

   

Figure 3-5: Local region arrangement for DAISY descriptor with one centre sub-

region plus a ring of eight sub-regions. 

 

The overall matching performance of different arrangement for SRI-DAISY is 

shown in Figure 3-6. In general, the performance is at a similar level for the selected 

descriptor arrangements, and ݎ ௟௢௖௔௟ൗݎ =0.35 is slightly superior to the others. 

Individual experiments are further conducted to see the effect of sub-region 
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Figure 3-6: Matching performance as a function of ݎ ௟௢௖௔௟ൗݎ .  

 

Figure 3-7(b) shows the matching results for a set of structured scene (boat) with in-

plane rotation and scale changes shown in Figure 3-7(a). The structured scene 

contains distinctive edges with homogeneous regions. The recall and precision are 

virtually the same for ݎ ௟௢௖௔௟ൗݎ =0.28 and 0.35, and are slightly superior to the others. 

Similar observation has been made for the textured scene (wall), as shown in Figure 

3-8. The textured scene consists of repeat textures. The precision of ݎ ௟௢௖௔௟ൗݎ =0.20 for 

textured scene holds a similar value to that of ݎ ௟௢௖௔௟ൗݎ =0.28 and 0.35, which is 

mainly due to the relatively smaller number of total matches when compared with ݎ ௟௢௖௔௟ൗݎ =0.28 and 0.35. 
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(a) boat 

 

 

(b) Matching results 

Figure 3-7: Matching results as a function of ݎ ௟௢௖௔௟ൗݎ  for the boat set.  
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(a) Textured scene (wall) 

 

 

(b) Matching results 

Figure 3-8: Matching results as a function of ݎ ௟௢௖௔௟ൗݎ  for the wall set. 
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The overall performance is reflected in the curve of F-measure, as shown in Figure 

3-9. The best accuracy is achieved by ݎ ௟௢௖௔௟ൗݎ  set to around 0.3 for both structured 

scene and textured scene. And the effect of spatial arrangement is more apparent for 

textured scene. 

 

 

Figure 3-9: F-measure as a function of ݎ ௟௢௖௔௟ൗݎ . The left image shows the F-measure 

for the boat set. The right image is for the wall set. 

 

Figure 3-10 to Figure 3-12 shows the matching performance as a function of ݎ ௟௢௖௔௟ൗݎ  

for images with transformation of viewpoint angle, image blur and illumination, 

respectively. The performance of radius ratio ݎ ௟௢௖௔௟ൗݎ =0.35 is superior to the others 

in most cases and is chosen to parameterise the design. 
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Figure 3-10: Matching result for textured scene (wall) with viewpoint angle. 

 

 

Figure 3-11: Matching result for textured scene (tree) with image blur. 
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Figure 3-12: Matching result for images with illumination changes. 

 

The above mentioned experimental results shows that the robustness of the descriptor 

can be improved by increasing the overlapped region, but only up to a certain point, 

after which the robustness drops. Therefore, ݎ ௟௢௖௔௟ൗݎ  is set to 0.35. The final spatial 

arrangement is shown in Figure 3-13.  

 

 

Figure 3-13: Determined spatial arrangement for DAISY descriptor. 
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c. Region Size Factor  

Experiments are conducted to check the effect of region size factor ܨ௥௘௚௜௢௡ to see 

how the matching performance varies for different ܨ௥௘௚௜௢௡  for a given spatial 

arrangement. A descriptor is actually a 3D representation of the gradient distribution 

of the local region centred on a keypoint. Figure 3-14 shows how the matching 

performance varies for different ܨ௥௘௚௜௢௡ on a database of images covering a wide 

range of scene types and transformations. In general, the overall matching 

performance improves with the size of local region. 

 

  

Figure 3-14: Matching results for ܨ௥௘௚௜௢௡ in range [2.0, 6.0] from a database of 

images with different scene type and transformation. 
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Figure 3-15: Matching results for ܨ௥௘௚௜௢௡ on the wall set. 
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the corresponding descriptors are more distinctive, making them easier to be 

corrected matched under large transformations. 

However, larger regions stand a higher chance of being occluded and the cost of 

processing larger regions are higher, in terms of both hardware resource usage and 

processing time. Most of the time devoted to descriptor computation is spent on 

convolutions, and the computation workload of convolution is directly proportional 

to the size of the sub-regions that increases linearly with ܨ௥௘௚௜௢௡, as shown in Figure 

3-16. As a result, larger ܨ௥௘௚௜௢௡ leads to a significant increase in the computational 

workload and also the processing time. 

 

  

Figure 3-16: Local region size as a function of ܨ௥௘௚௜௢௡ for descriptors. 
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Figure 3-17: Matching results for different region size factors for sets of images with 

viewpoint changes, image blur and illumination. 

As a result of the above experiments, the spatial layout of SRI-DAISY descriptor is 

arranged with one centre sub-region plus a ring of eight surrounding sub-region. 

With each sub-region transferred into a histogram of eight bins, the final descriptor is 

of 72 dimensions. Parameter settings for SRI-DAISY are summarised in Table 3-3. 

Table 3-3: Design parameters for SRI-DAISY. 

Parameter Value ܴܽ݋݅ݐఙವಲ಺ೄೊ 0.3 ݎ ௟௢௖௔௟ൗݎ  ௥௘௚௜௢௡ 4.0ܨ 0.35 

20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Viewpoint angle

F
-m

ea
su

re

 

 

2.0
3.0
4.0
5.0
6.0

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Increasing blur

F
-m

ea
su

re

 

 

2.0
3.0
4.0
5.0
6.0

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decreasing light

F
-m

ea
su

re

 

 

2.0
3.0
4.0
5.0
6.0



70 

 

3.4.3 SRI-DAISY Implementation 

The local region of each keypoint is segmented into several circular sub-regions by 

taking advantage of the DAISY-like polar sampled spatial arrangement. However, 

the descriptor is not generated in a way proposed in [60] for dense wide-baseline 

matching, which is not suitable for general matching tasks as a result of the 

drawbacks mentioned in section 3.3. In general, the rotation invariance of SRI-

DAISY is achieved by arranging the spatial layout of the local region relative to ߠ௣௢, 

and the scale invariance is achieved by computing the descriptor from the scale 

normalised local region. This section presents how the SRI-DAISY descriptor is 

derived effectively without the necessity of rotating all the pixels within the local 

region. 

 

Figure 3-18: 2D histogram generation for sub-region 3. 

 

Figure 3-18 illustrates the descriptor generation process with the polar sampled 

spatial arrangement of the local region. Firstly, the principal orientation ߠ௣௢ needs to 

be identified, which corresponds to the orientation of the largest bin in the 2D 
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histogram obtained by weighting and accumulating all pixels within the local region. 

Secondly, the local region is segmented into nine circular sub-regions. Thirdly, with ߠ௣௢ identified, the nine sub-regions are numbered from 1 to 9, starting from the one 

pointed by ߠ௣௢ and going in a clockwise fashion, ending up with the one in the centre. 

Fourthly, each sub-region is transferred to an 8-bin gradient-orientation histogram. 

As shown in Figure 3-18, the histogram is re-ordered relative to ߠ௣௢ with the bin in 

the direction of ߠ௣௢  being in the first place of the 2D histogram. Finally, the 

descriptor is formed by linking together histograms of nine sub-regions in the 

numbered sequence. Since there are nine sub-regions with each described by an 8-bin 

histogram, the final descriptor is of 72 dimensions, as shown in Figure 3-19. 

 

 

Figure 3-19: Linking together the histograms of nine sub-regions to generate a 

descriptor of 72-dimensions. 

 

It is notable that, in the standard SIFT algorithm, coordinates of each pixel within the 

local region of a feature point should be rotated by ߠ௣௢ to achieve rotation invariance. 

In this design, by taking advantage of the isotropy characteristic of the polar sampled 

spatial arrangement, redundantly rotating the coordinates of all pixels can be avoided 
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by simply arranging the eight surrounding sub-regions and the 2D histogram of each 

sub-region relative to ߠ௣௢. The arrangement can be easily achieved by figuring out 

the centre coordinates of eight surrounding sub-regions, with the centre pixel of the 

first sub-region in the direction of ߠ௣௢. And the rotation invariance within each sub-

region is achieved by rearranging the 2D histogram of each sub-region in such a way 

that the bin in the direction of ߠ௣௢ is in the first place, followed by other bins in a 

clockwise fashion. With the new arrangement for descriptors, the rotation of all 

pixels within the local region can be avoided. Furthermore, the hardware expensive     and     operations are saved and a descriptor can be obtained with less 

computational complexity. 

3.4.4 Performance Comparison 

The SRI-DAISY is compared with standard SIFT descriptor, in terms of both 

matching performance and hardware efficiency. 

a. Matching Performance  

The performance of SIFT and SRI-DAISY is compared, in terms of both geometric 

and photometric transformations, such as image rotation, scaling, viewpoint angle, 

image blur and illumination. The recall versus 1-precision curve is used to evaluate 

the descriptor performance. A perfect descriptor would give a recall equal to one for 

any precision. In practice, recall increases for an increasing distance threshold 

because the noise introduced by image transformations increases the distance 

between similar descriptors. A factor that leads to non-increasing recall as the 

threshold is increased is the distinctiveness of descriptors. In cases where images to 

be matched are composed of structures of high similarity, non-distinctive descriptors 

are unable to distinguish them thus resulting in false matches. The reason why the 

recall does not achieve 1.0 is because not all keypoints in the reference image are 

detected from the transformed images, which holds the same for the following 

experiments. The input to both descriptors is a square image patch that contains 

identical spatial information so as to eliminate the effect of different region size. 
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Image Rotation 

To compare the performance for image rotation, a set of images with rotation angle 

in the range -180 and 170 degrees is used, covering 360 degrees. The image rotation 

is obtained by rotating the camera around its optical axis. Example images are shown 

in Figure 3-20. 

    

   

Figure 3-20: Example images in the dataset used for evaluation of image rotation. 

 

  

Figure 3-21: The number of both total and correct matches for a set of images with 

orientation in range -180o to 170o. 
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Figure 3-21 shows that the number of matches of SRI-DAISY is slightly below that 

of SIFT. The recall versus 1-precision curves for rotation in range 10o to 60o are 

displayed in Figure 3-22, which shows that both curves are horizontal at a similar 

recall value of around 0.9, indicating that both descriptors have a similar robustness 

to image rotation.  

 

  

  

 

Figure 3-22: The recall versus 1-precision curve for image rotation of 10o to 60o. 
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Scale Invariance 

   

  

Figure 3-23: Dataset used for evaluation of scale changes. 

 

 

 

Figure 3-24: Performance comparison between SIFT and SRI-DAISY on a set of 

images with scale changes of a factor in range 1.47 to 3.75. 
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Scale change is acquired by changing the camera zoom. This section compares the 

descriptors for scale changes in range 1.47 to 3.75. As shown in Figure 3-23, the 

leftmost image is the reference that is matched against the other four images with 

different scaling factors. Both the SRI-DAISY and the SIFT descriptor are generated 

using the image patch of the same size and perform virtually the same, as shown in 

Figure 3-24. 

 

Viewpoint Change 

Viewpoint change is acquired by rotating the camera around the axis that is 

perpendicular to its optical axis. Neither SIFT nor SRI-DAISY is fully invariant to 

viewpoint changes. The partial invariance to such type of transformation is achieved 

by the overall robustness of the descriptor. It can be seen from Figure 3-26 that the 

curves of both descriptors are horizontal at a similar recall value of around 0.8 when 

the viewpoint angle is below 40 degrees, but degrades significantly afterwards. Lowe  

has pointed out that invariance to viewpoint changes of greater than 40 degrees is 

unnecessary [10], because training views are best taken at least every 30 degrees in 

order to capture non-planar changes and occlusion effects for 3D objects. Therefore, 

both SIFT and SRI-DAISY are robust enough for matching images with a viewpoint 

angle of no greater than 30 degrees.  

 

   

Figure 3-25: Dataset used for evaluation of viewpoint change. 
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Figure 3-26: Performance comparison between SIFT and SRI-DAISY on a set of 

images with viewpoint changes of 30 and 40 degrees. 

 

Image Blur 

Image blur is introduced by changing the camera focus, which causes the image 

intensities and local structures change in an unpredictable way [27]. 

 

   

 

 Figure 3-27: Performance comparison between SIFT and SRI-DAISY of image blur 

on a set of structured images. 
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It can be seen from Figure 3-27 and Figure 3-28 that both descriptors are partially 

robust to image blur, even for the more challenging textured scene where blur makes 

regions nearly identical. 

 

   

 

 Figure 3-28: Performance comparison between SIFT and SRI-DAISY of image blur 

on a set of textured images with repeat textures. 

 

Illumination 

Figure 3-29 shows the matching results for illumination changes obtained by varying 

the camera aperture. Both descriptors are normalised to reduce the effects of 

illumination changes, and the curve of SRI-DAISY is slightly below that of SIFT.  
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Figure 3-29: Performance comparison between SIFT and SRI-DAISY on a set of 

images with illumination changes. 

 

It can be seen from the above mentioned experiments that the SRI-DAISY descriptor 

has achieved a dimension reduction while providing comparable performance to the 

standard SIFT descriptor. 

 

b. Hardware Efficiency 

Figure 3-30 shows the overview of descriptor generation process for standard SIFT, 
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Figure 3-30: Overview of descriptor generation process for standard SIFT, standard 

DAISY, O-DAISY and SRI-DAISY. 

 

To achieve rotation invariance, the principal orientation (ߠ௣௢) is first assigned to each 

feature. In the standard SIFT, all pixels within the local region centred on the feature 

point has to be rotated relative to the principal orientation (ߠ௣௢) following Equation 

(3.5) so as to achieve rotation invariance, as shown in Figure 3-31. This process 

includes complex     and     operations that are expensive to be implemented on 

FPGA devices. Therefore, the standard SIFT descriptor is inefficient for FPGA 

implementation due to its rotation scheme. 

 
ᇱݔ ൌ ݔ ή ௣௢൯ߠ൫ݏ݋ܿ ൅ ݕ ή ᇱݕ ௣௢൯ߠ൫݊݅ݏ ൌ ݕ ή ௣௢൯ߠ൫ݏ݋ܿ െ ݔ ή  ௣௢൯ (3.5)ߠ൫݊݅ݏ

where (ݔǡ ݕ ) and (ݔǯǡ ǯݕ ) are the pixel coordinates before and after rotation, 

respectively. 
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Figure 3-31: Rotation of local region relative to the principal orientation (ߠ௣௢) for 

rotation invariance of standard SIFT, assuming upright direction is 0o. 

 

The SRI-DAISY tackled the drawbacks of the rotation scheme for standard SIFT by 

taking advantage of the spatial arrangement of the descriptor, as has been presented 

in section 3.4.3. In SRI-DAISY, sub-regions are first summarised into 36-bin 

histograms that are further re-ordered relative to ߠ௣௢  for rotation invariance. 

Compared with standard SIFT, the computational complexity of descriptor 

generation is reduced. Besides, in the standard SIFT algorithm, boundary has to be 

defined for each square sub-region to process the pixels within it for histogram 

generation. However, the necessity of identifying the boundary of each sub-region 

for histogram generation can be avoided by applying a Gaussian function to each 

circular sub-region with coefficients outside the boundary set to zero. As a result, the 

computational complexity is further reduced. 

In both standard DAISY and O-DAISY, Gaussian smoothed orientation maps of all 

discrete directions have to be buffered for fast indexing in descriptor generation 

process. For SRI-DAISY, it only needs to buffer the GMOs of the scales from which 

the features are detected. Compared with standard DAISY and O-DAISY, SRI-

DAISY has achieved a significant memory reduction.   
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3.5 A Novel Matching Strategy 

This section proposes a novel feature matching strategy that is not only more 

accurate in matching, but also more efficient to be implemented on FPGA devices.  

3.5.1 Existing Matching Strategies 

The matching process is one of the fundamental tasks in computer vision and takes 

place among the keypoints associated with descriptors. A good set of 

correspondences between images is essential in order to carry out further tasks. In 

general, there are three widely used matching strategies: 1) Threshold based 

matching 2) Nearest neighbour based matching 3) Distance ratio based matching. 

The matching strategy using a global threshold does not perform well due to the fact 

that the distinctiveness of keypoint varies. The matching strategy based on the 

nearest neighbour performs better than the threshold based matching, but it finds 

every keypoint in the input image a matched keypoint from the reference image, 

which leads to many incorrect matches. To deal with the drawbacks of the previous 

two matching strategies, Lowe [10] proposed a new matching strategy under the 

assumption that a correct match need to have the closest neighbour significantly 

closer than the closest incorrect match. Therefore, a match is accepted if the ratio 

between the closest neighbour and the second closest neighbour is smaller than the 

pre-defined threshold, as shown in Equation (3.6). 

 
ටσ ሾ݀௔ሺ݅ሻ െ ݀௕ሺ݅ሻ஽௜௠௜ୀ଴ ሿଶටσ ሾ݀௔ሺ݅ሻ െ ݀௖ሺ݅ሻ஽௜௠௜ୀ଴ ሿଶ ൏ ͲǤͺ (3.6) 

where ݀ ௔  is a descriptor from the input image, ݀௕  and ݀ ௖  is the closest and the 

second closest neighbour from the reference image, respectively. ݉݅ܦ denotes the 

descriptor dimension, and ݅ is the index to each dimension of the descriptor. 
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3.5.2 A Novel Matching Strategy 

Inspired by the three existing matching methods, a novel matching strategy that is 

well balanced between performance and computation efficiency is proposed. 

Experiments are conducted to show the performance comparison between the 

proposed method and Lowe’s distance ratio based matching. 

Instead of computing the Euclidean distance between descriptors, the novel matching 

method focuses on the difference (ο݀ ) between each dimension of the pair of 

descriptors under consideration, as shown in Equation (3.7). ο݀  represents the 

similarity between dimensions, and lower value indicates higher similarity. 

 ο݀ሺ݅ሻ ൌ ݀௥௘௙ሺ݅ሻ െ ݀௜௡௣ሺ݅ሻ (3.7) 

where ݅ is the index to the dimension of descriptors and is in range [1, 72]. 

A pair of descriptors is accepted as correct matches only to meet the following two 

conditions: 

1. The potential pair of match need to have the ratio of the largest οܰௗ to the 

dimensionality (݉݅ܦ଻ଶ) of the descriptor greater than a pre-defined threshold, 

which can be expressed as 
ேο೏஽௜௠ళమ ൐ ݎ݄ܶ ಿο೏ವ೔೘ళమ . οܰௗ  is the number of 

dimensions with ο݀ below a pre-defined threshold ݄ܶݎοௗ.   

2. The ratio of ܰ οௗೞ೐೎೚೙೏  to ܰ οௗ೎೗೚ೞ೐ೞ೟  needs to below a pre-defined threshold, 

which can expressed as 
ேο೏ೞ೐೎೚೙೏ேο೏೎೗೚ೞ೐ೞ೟ ൏ ݄ܶݎಿο೏ೞ೐೎೚೙೏ಿο೏೎೗೚ೞ೐ೞ೟ , where ܰ οௗೞ೐೎೚೙೏  and 

οܰௗ೎೗೚ೞ೐ೞ೟  is ܰ οௗ  of the second-closest match and that of the closest match, 

respectively.  

The first condition is a combination of the threshold based and the nearest neighbour 

based matching, which ensures that the potential pair of matches is of high similarity 

and selects only the best match with the largest οܰௗ above a pre-defined threshold. 

The second condition has the same basic idea with that of the distance ratio based 

matching and rejects the matches of similar distances. The closest match is defined 

as the pair of descriptors with the largest οܰௗ. The number of incorrect matches will 
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be reduced as a result of the second condition, and hence the precision is improved. 

The ratio is taken as the closest to the second-closest for the SIFT-based matching, 

but it is the second-closest to the closest for this strategy. 

Experiments are conducted to determine the following parameters: ݄ܶݎοௗ ݎ݄ܶ , ಿο೏ವ೔೘ళమand ܶ ಿο೏ೞ೐೎೚೙೏ಿο೏೎೗೚ೞ೐ೞ೟ݎ݄ . 
 

a. Parameters for Similarity Measurement of Descriptors 

The similarity threshold (݄ܶ  οௗ) is first estimated experimentally using a database ofݎ

over 1,000 correctly matched descriptors from a diverse range of scenes with 

different transformations. Figure 3-32 shows the probability density function (PDF), 

in terms of ο݀  between each dimension, which shows that ο݀  of about 90% 

dimensions are under 0.05, assuming that the descriptor has been normalised and 

each dimension is in range [0,1]. 

 

 

Figure 3-32: The probability density function of the distance between each 

dimension of descriptors. The data is obtained using a database of over 1,000 pairs of 

descriptors that are correctly matched. 
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Figure 3-33: Matching performance as a function of distance threshold ݄ܶݎοௗ for 

different ܶ ݎ݄ ಿο೏ವ೔೘ళమ in range [0.4, 0.9] of interval 0.1.  

 

Experiments are first conducted to check the relationship between ݄ܶݎοௗ 

and ݄ܶݎ ಿο೏ವ೔೘ళమ and their impact on the matching performance. Figure 3-33 shows the 

matching performance as a function of ݄ܶݎοௗ for different ܶ ݎ݄ ಿο೏ವ೔೘ళమ  in range [0.4, 

0.9] of interval 0.1. The ratio of ܰοௗ of the second-closest match to that of the closest 

match is not considered in this experiment. In general, for a given ݄ܶݎ ಿο೏ವ೔೘ళమ , the 

number of both matches and correct matches increases as the distance threshold ݄ܶݎοௗ is relaxed, but the precision decreases as a result of the number of incorrect 

matches that increases faster than correct matches. Different  ݄ܶݎ ಿο೏ವ೔೘ళమ achieves the 
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best F-measure with different ݄ܶݎοௗ, which is due to the difference in PDF of correct 

and incorrect matches as illustrated by the two examples given in Figure 3-34. 

 

 

Figure 3-34: The left image shows the PDFs for οܰௗ ൌ ͲǤͲ͵. The right image shows 

the PDFs for ܰ οௗ ൌ ͲǤͲͷ.  

 

Figure 3-34 shows the PDF for correct and incorrect matches, in terms of the ratio of οܰௗ  to ݉݅ܦ଻ଶ. The blue line with square marker shows the PDF of this ratio for 

incorrect matches, and the red line with plus marker is for correct matches. In general, 

the correct matches have a PDF centred at a higher ratio than the incorrect matches, 

and the centres for both correct and incorrect matches vary with ݄ܶݎοௗ . For ݄ܶݎοௗ=0.03, if ܶ ݎ݄ ಿο೏ವ೔೘ళమ is larger than 0.7, the number of correct matches decreases 

faster than the incorrect matches, resulting a rise in precision but a drop in recall. If ݄ܶݎ ಿο೏ವ೔೘ళమ is below 0.7, the number of incorrect matches increases faster than correct 

matches, and hence a higher recall but a lower precision. The best F-measure which 

is a balance between recall and precision is achieved by ݄ܶݎ ಿο೏ವ೔೘ళమ=0.7. Therefore, all 

the matches with the ratio of οܰௗ to ݉݅ܦ଻ଶ below ܶ ݎ݄ ಿο೏ವ೔೘ళమ=0.7 are rejected, which 

eliminates 91% of the incorrect matches while discarding about 13% of correct 

matches. For ݄ܶݎοௗ=0.05, all the matches with the ratio of οܰௗ  to ݉݅ܦ଻ଶ  below ݄ܶݎ ಿο೏ವ೔೘ళమ=0.8 are rejected, which eliminates 87% of the incorrect matches while 
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discarding 14% of correct matches. In general, ݄ܶݎ ಿο೏ವ೔೘ళమ  needs to be relaxed as ݄ܶݎοௗ is relaxed, and the idea is not restricted to the above mentioned two examples. 

 

b. Ratio Threshold for Incorrect Matches Rejection 

This section introduces the impact of ݄ܶݎಿο೏ೞ೐೎೚೙೏ಿο೏೎೗೚ೞ೐ೞ೟  on the matching performance. All 

the matches with the ratio between the second-closest neighbour and the closest 

neighbour greater than ݄ܶݎಿο೏ೞ೐೎೚೙೏ಿο೏೎೗೚ೞ೐ೞ೟  are rejected. Without the threshold on the ratio 

of οܰௗೞ೐೎೚೙೏  to ܰ οௗ೎೗೚ೞ೐ೞ೟ , keypoints that do not have corresponding matching point 

are also assigned a matching point, which leads to many incorrect matches.  

 

Figure 3-35: Matching performance as a function of distance threshold ݄ܶݎοௗ for 

different ܶ ݎ݄ ಿο೏ವ೔೘ళమ in range [0.4, 0.9] of interval 0.1.  
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Figure 3-35 shows the matching results of ݄ܶݎಿο೏ೞ೐೎೚೙೏ಿο೏೎೗೚ೞ೐ೞ೟  = 0.9. The number of total 

matches is reduced significantly when compared with the results from Figure 3-33, 

resulting in a significant improvement on precision. The number of both total and 

correct matches increase at the beginning as the distance threshold ݄ܶݎοௗ is relaxed, 

but drops beyond a certain point, which can be explained by the PDFs of correct and 

incorrect matches as a function of 
ேο೏ೞ೐೎೚೙೏ேο೏೎೗೚ೞ೐ೞ೟, as shown in Figure 3-36. 

 

 

Figure 3-36: The probability that a match is correct can be determined by taking the 

ratio of ܰ οௗೞ೐೎೚೙೏  to ܰ οௗ೎೗೚ೞ೐ೞ೟ .  
 

Figure 3-36 shows the PDFs for correct and incorrect matches as a function of the 

ratio of ܰ οௗೞ೐೎೚೙೏  to ܰ οௗ೎೗೚ೞ೐ೞ೟  for three different ݄ܶݎοௗ. The solid lines show the PDF 

for correct matches of different ݄ܶݎοௗ, whereas the dashed lines are for incorrect 

matches. In general, correct matches have a PDF centred at a lower ratio than that for 

incorrect matches. The majority of incorrect matches has the ratio of οܰௗೞ೐೎೚೙೏  to 

οܰௗ೎೗೚ೞ೐ೞ೟  larger than 0.9. Therefore, by discarding matches of ݄ܶݎಿο೏ೞ೐೎೚೙೏ಿο೏೎೗೚ೞ೐ೞ೟ >0.9, 
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about 90% of incorrect matches are eliminated while discarding a certain number of 

correct matches, resulting in a slight decrease in the number of correct matches. 

Besides, correct matches for smaller ݄ܶݎοௗ have a PDF centred at a lower ratio, and 

hence are on the average more distinctive. The centre of correct matches and 

incorrect matches for larger ݄ܶݎοௗ are close to each other, leading to a larger number 

of correct matches discarded as incorrect. Therefore, by setting the ratio threshold to 

0.9, the number of correct matches for larger ݄ܶݎοௗ drops faster. If the ratio threshold 

is lowered to 0.8, almost all the incorrect matches are eliminated while a large 

number of correct matches are discarded, leading to the precision of nearly 100% but 

a significant drop in recall. 

 

 

(a) ܶ ಿο೏ೞ೐೎೚೙೏ಿο೏೎೗೚ೞ೐ೞ೟ݎ݄ ൌ ͲǤͻ          (b) ܶ ಿο೏ೞ೐೎೚೙೏ಿο೏೎೗೚ೞ೐ೞ೟ݎ݄ ൌ ͲǤͺ 

Figure 3-37: Matching performance for different threshold value on the ratio of οܰௗೞ೐೎೚೙೏  to ܰ οௗ೎೗೚ೞ೐ೞ೟ . 
 

Figure 3-37 shows the matching performance for ݄ܶݎಿο೏ೞ೐೎೚೙೏ಿο೏೎೗೚ೞ೐ೞ೟  = 0.9 and 0.8 as a 

function of the distance threshold ݄ܶݎοௗ for ܶ ݎ݄ ಿο೏ವ೔೘ళమ in range [0.4, 0.9] of interval 

0.1. The overall matching performance drops with the decrease of ݄ܶݎಿο೏ೞ೐೎೚೙೏ಿο೏೎೗೚ೞ೐ೞ೟  as a 

result of the significant reduction in the number of correct matches. 
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c. Comparison with Matching Strategy from SIFT 

Three sets of parameters listed in Table 3-4 are compared with the distance ratio 

based matching.  

Table 3-4: Parameters for the novel matching strategy. 

Setting ࢘ࢎࢀο࢘ࢎࢀ ࢊ ࢚࢙ࢋ࢙࢕࢒ࢉࢊοࡺࢊ࢔࢕ࢉࢋ࢙ࢊοࡺ࢘ࢎࢀ ૠ૛࢓࢏ࡰࢊοࡺ  
1 0.03 0.6 

0.9 2 0.04 0.7 

3 0.05 0.8 

 

 

 

Figure 3-38: Comparison between the proposed matching strategy and the distance 

ratio based matching proposed by Lowe. 
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Figure 3-38 shows the experimental results from the boat sequence. In general, SIFT 

has the highest recall. However, the precision of setting 2 and setting 3 are 

significantly superior to that of SIFT, especially in presence of large transformations 

where the distance between descriptors is on the average large. It can be seen from 

the F-measure that setting 2 achieves the best balance between recall and precision. 

Setting 3 is suggested for applications that concern more about the matching 

precision. 

 

 

  

(a) Matching performance comparison between the distance ratio based matching 
proposed in SIFT and our novel matching strategy on the boat set.  

 

  

(b) Matching performance comparison between the distance ratio based matching 
proposed in SIFT and our novel matching strategy on the tree set. 

Figure 3-39: Performance comparison (a) structured scene; (b) textured scene. 

SIFT SIFT correct matches

Our (0.04, 0.7, 0.9) Our correct matches (0.04, 0.7, 0.9)

SIFT SIFT correct matches

Our (0.04, 0.7, 0.9) Our correct matches (0.04, 0.7, 0.9)
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Figure 3-39 shows the matching results conducted on two pairs of images of different 

scene types. In Figure 3-39(a), for the distance ratio based matching proposed by 

Lowe, there are 104 initial matches, 59 of which are correct, giving the precision of 

56.73%.  For the novel method, there are 66 total matches, 53 of which are correct, 

giving precision of 80.30%. In Figure 3-39(b), for the distance ratio based matching, 

there are 101 matches, 77 of which are correct, giving the precision of 76.24%.  For 

the novel method, 74 out of the 85 initial matches are correct, giving precision of 

87.06%. Despite of the incorrect matches that exist in both methods, it is obvious that 

the novel method obtains higher matching precision. 

The novel matching strategy is more robust to partial occlusion than SIFT. In the 

presence of partial occlusion, parts of the histogram can be very different for the sub-

regions occluded even for good matches. This will lead to a significant change in the 

Euclidean distance between descriptors. However, the matching result is less likely 

to be affected for the novel method. This is mainly because the novel method does 

not reply on the overall Euclidean distance between descriptors, but is closely related 

to the distance (ο݀) between each dimension, which allows parts of the descriptor to 

be significantly changed, and hence allows the local region to be partially occluded. 

In short, the matching strategy proposed in this section not only achieves comparable 

performance with that of SIFT, but also is more robust to partial occlusion and is 

computationally more efficient. 

 

d. Advantage in Application for Video Stabilisation 

The novel matching strategy is beneficial to applications, such as video stabilisation. 

In video stabilisation, RANSAC (RANdom SAmple Consensus) and least square are 

usually utilised to estimate motion vectors. The least square is optimally fitted to all 

matches, including both inliers and outliers. Therefore, least square does not perform 

well when there is a larger portion of outliers in the total number of matches, and 

hence higher matching precision is desirable. RANSAC, on the other hand, is 

computed from inliers, and the processing time of RANSAC is proportional to the 

number of iterations for model parameters estimation. If the number of iterations is 

limited, the obtained parameters may not be optimal, and it may not even be the one 

that fits the input data. Higher matching precision provides a larger probability of 
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choosing inliers, and hence requires less iteration to produce a motion model. 

Therefore, higher matching precision is desirable for model estimation with higher 

precision and less processing time. 

Figure 3-40(a) shows a pair of images that are matched by using the novel matching 

strategy and the distance ratio based matching, respectively. The original matching 

results are given in Figure 3-40(b). 

 

 

(a) Image pair under consideration 

 

(b) Original matching results. Left: the novel strategy; Right: distance ratio based 

method. 

Figure 3-40: Matching performance comparison between the novel strategy and the 

distance ratio based method, 
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Figure 3-41 shows the comparison results with least square employed for motion 

estimation. The left images shown in Figure 3-40(a) is warped using the 

transformation matrix estimated with least square. The corresponding Mean Square 

Error (MSE) is 28.3125 and 48.1472, respectively. The MSE quantifies the 

difference between an obtained result and its expected value. It measures the average 

of the square of the error, where the error is the amount by which the result differs 

from the expected value. It is obvious that high precision matching is beneficial to 

least square based modelling fitting 

 

   

   

Figure 3-41: The left column shows the warped image of the novel matching strategy 

and the right column is for the distance ratio based matching.  

 

Figure 3-42 shows the number of inliers identified by RANSAC as a function of the 

number of iterations. The first three boxplots are for the novel matching strategy, and 

the last three boxplots are for the distance ratio based matching from SIFT.  The 
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number of iterations is set to 5, 20, and 50, respectively. It can be seen from Figure 

3-42 that the novel method is more stable than nearest based matching. 

 

 

Figure 3-42: The number of inliers as a function of the number of iterations for 

RANSAC. 

 

Figure 3-43 shows the red-cyan colour composite of the overlay of the original right 

image and the transformed left image. RANSAC is conducted on both the novel 

matching strategy and the distance ratio based matching, and the results are shown 

on the left column and right column, respectively.  Each row corresponds to one of 

the three number of iterations evaluated. It can be seen from Figure 3-43  that two 

images are better aligned using the novel method. A larger number of iterations are 

required when applying RANSAC to the matches from the distance ratio based 

method for higher parameter accuracy. The novel matching strategy requires less 

iterations for model estimation, and hence a reduction in processing time. 
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Figure 3-43: Comparison of transformation accuracy by showing the red-cyan colour 

composite of the overlay of the original right image and the transformed left image. 

 

3.6 Summary 

This chapter proposed to replace the grid layout of SIFT with the log-polar spatial 

arrangement of DAISY. The SRI-DAISY is improved upon the standard DAISY that 

is initially proposed for dense wide-baseline matching, and is invariant to both 

rotation and scale changes. Compared with O-DAISY, the orientation precision is 
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improved from 22.5o to 10o for each discrete direction. By employing the log-polar 

spatial arrangement, shifting all pixels within the local region has been replaced by 

simply arranging both the spatial layout and histogram of each sub-region relative 

to ߠ௣௢ , with which the complex     and     functions are avoided. Besides, the 

necessity of identifying the boundary of each sub-region for histogram computation 

is also avoided. By arranging the local region into nine sub-regions, the descriptor 

dimension is reduced from 128 to 72, which reduces the memory requirement to 

buffer descriptors. The SRI-DAISY achieves comparable performance with standard 

SIFT and is more efficient to be implemented using hardware, in terms of both 

computational complexity and memory usage.  

Besides, a novel keypoint matching strategy has been proposed in this chapter, which 

provides higher precision than the distance ratio based matching. By using the novel 

matching strategy, both the squaring operations and the square root computation are 

avoided, and hence the novel matching strategy is more efficient to be implemented 

on hardware devices. 
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Chapter 4 Design Considerations 
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4.1 Introduction 

In this chapter, design parameters are considered to configure the system with high 

performance and low hardware resource usage. Besides, detailed error analysis is 

performed to see the effect of fixed-point arithmetic on the design performance to 

enable efficient and accurate hardware architecture. Simulation results are presented 

to compare the performance of the proposed processing core with the software model 

with floating-point accuracy. 

 

4.2 System Configuration  

Prior to defining the hardware architecture for the optimised SIFT algorithm, a series 

of experiments have been done in order to find the best set of parameters for the 

SIFT based matching system. Each experiment aims to evaluate a particular aspect of 

the method. The system throughput is a most relevant performance measure, and a 

set of possible configurations is evaluated to establish a parameter combination that 

retains a good performance while it achieves as close as possible to real-time. 

In this section, all the results are obtained by matching a wide range of images 

against themselves, but with various combinations of rotation and translation 

movements. Therefore, the mapping relationship between a pair of images is known 

or can be computed. The homography between the reference image and other images 

in the same set of data are known and accurate, and can be used to provide ground 

truth matches for the detector.  

4.2.1 Evaluation Criterion 

Real applications need distinctive and repetitive keypoints that can be differentiated 

from the others and can be repeatedly detected in different views of the same scene 

or object. Repeatability is one of the most important performance evaluation criteria 

for the stability of feature detectors. It measures the ability of a detector to extract the 

same feature points across images irrespective of imaging conditions. For a given 

pair of images, the repeatability rate is computed as the ratio of the number of 
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correspondences to the smaller number of detected interest points in the commonly 

visible region of the pair of images, as shown below.  

ݕݐ݈ܾ݅݅ܽݐܽ݁݌ܴ݁  ൌ ሺܰͳǡܰʹ ሻ݊݅݉ݏ݁ܿ݊݁݀݊݋݌ݏ݁ݎݎ݋ܿ ͓  (4.1) 

where ܰ ͳ and ܰ ʹ are the number of keypoints detected from the commonly visible 

part of the pair of images, respectively.  

Finding correspondences between image pairs using interest points are based on the 

assumption that salient interest points will be repeatedly detected in both images. The 

corresponding interest points are expected to be precisely localised on the same 

scene element, and the associated surrounding region is supposed to cover the same 

part of the scene. Therefore, the corresponding interest points are regarded as 

potential features that can be correctly matched between the pair of images with 

transformation. For each interest point, both the location and the detection scale of 

the interest point are taken into account. The correspondences are defined as the two 

points  ௔ and  ௕ that meet the following two conditions: 1) The scale of  ௕ is within 

a factor of ξʹ of the correct scale. 2) The location of  ௕  is within ߪ pixels of the 

correct location, where ߪ is the detection scale of the keypoint. Because the regions 

of point neighbourhood of SIFT are denoted by circles centred on the keypoints and 

with radius proportional to ߪ, shape information of the interest point neighbourhoods 

is not considered. The correct scale and location are generated by mapping  ௔ to  ௕ 

using the homography relating the pair of images under consideration. The higher the 

repeatability rate between two images, the more points can be potentially matched 

and the better the matching performance is.  

4.2.2 Design Parameters for Keypoint Detector 

In this section, the performance of the SIFT detector is evaluated, in terms of 

correspondences and repeatability, which measure the actual and relative number of 

corresponding regions, respectively. These two parameters indicate to what extent 

the performance of the SIFT detector is affected by different parameter settings. 

Besides, because the repeatability only takes into account the location and scale of 

the detected keypoints but not the similarity between the regions identified by the 

corresponding keypoints, the influence of different parameter settings is further 
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evaluated by following a more practical approach, which is to investigate the 

matching stability by measuring the actual and relative number of correct matches, 

respectively. 

 

a. Sampling Frequency in Spatial Domain 

Prior to deciding the sampling frequency in scale, the amount of prior smoothing ߪ௣ 

is decided, which is applied to the input image of each octave before building the 

Gaussian scale space. This parameter is closely related to the sampling frequency in 

the spatial domain.  

 

  

Figure 4-1: Detection performance comparison for different amount of prior 

smoothing ߪ௣.  

 

The left image of Figure 4-1 shows that the number of correspondences decreases 

with the increase of the amount of prior smoothing. This can be understood by the 

fact that local extrema in DoG scale space can be arbitrarily close together, 

increasing the amount of prior smoothing actually increases the Gaussian kernel size, 

which reduces the sampling frequency in spatial domain and hence the number of 

correspondences as well. In the right image of Figure 4-1, the repeatability increases 

with the amount of prior smoothing and the ranking of repeatability is opposed to 
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that of correspondences, indicating that smaller amount of prior smoothing tends to 

contribute larger number of unstable keypoints that are poorly repeatable. This is 

because the size of the circular regions featured by the detection scale varies 

depending on the Gaussian window size, which is closely related to the amount of 

prior smoothing.  

The relationship between Gaussian window size and the detection region is explained 

using an example shown in Figure 4-2, which illustrates the effect of Gaussian kernel 

size on the local extrema detection. The detected regions identified by the keypoints 

detected with smaller ߪ  are on the average smaller, which corresponds to more 

details of the image contents. These keypoints are regarded as of high locality. The 

advantage of high locality is that regions identified by these keypoints are less likely 

to be occluded or suffer from geometric and photometric transformations. However, 

the disadvantage is that the detected regions contain less information and are less 

distinguished to survive large transformation. Therefore, the keypoints with high 

locality are less likely to be repeatedly detected and corrected matched, especially in 

existence of large image transformation. 
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(a) Original image. 

 

(b) Left: Difference-of-Gaussian, Right: DoG response. The colour of the DoG 

response is reversed for clear display. 

Figure 4-2: Local extrema as a result of increasing kernel size.  
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Figure 4-3 shows histograms of region size of the detected keypoints from the same 

image but with different ߪ௣ , which shows that the overall size of the detection 

regions rise with ߪ௣.  

 

 

 

Figure 4-3: Histograms of region size for different amount of prior smoothing ߪ௣. 

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Prior smoothing 1.0

0 20 40 60 80 100
0

500

1000

1500

2000

2500
Prior smoothing 1.2

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400
Prior smoothing 1.4

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Prior smoothing 1.6

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400
Prior smoothing 1.8

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400
Prior smoothing 2.0



105 

 

Figure 4-4 shows the Gaussian window size as a function of the amount of prior 

smoothing. The Gaussian window size rises with the amount of prior smoothing, 

which further increases the computational complexity and time consumption of the 

hardware design. Therefore, with a trade-off made between the rate of detection, the 

detection robustness and the hardware efficiency, the prior smoothing is set to ߪ௣=1.4. Detailed analysis of the size of Gaussian kernel used in the hardware design 

will be given in Section 4.3.3.  

 

 

Figure 4-4: Gaussian filter window size as a function of the amount of prior 

smoothing ߪ௣. 

 

b. Sampling Frequency in Scale Space 

In this section, the sampling frequency in scale space for Gaussian scale space 
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also rise with increased sampling frequency of scales. Therefore, the performance of 

sampling frequency ܵ is evaluated up to three. Figure 4-5 shows the sampling in 

Gaussian scale space, where each octave consists of ሺܵ ൅ ͵ሻ Gaussian smoothed 

images. As a result, ሺܵ ൅ ʹሻ DoG images are produced and keypoints are detected 

from DoG scale space belonging up to ܵ scales.  

 

 

Figure 4-5: Sampling of scale for Gaussian scale space construction. 

 

Table 4-1: Gaussian smoothing factors (ߪ) for different sampling frequency ܵ in 

scale for Gaussian scale space construction. 

Sampling frequency ࡿ in scale ࡿ ൌ ૚ ࡿ ൌ ૛ ࡿ ൌ ૜ ߪ଴ ߪ௣ כ ௣ߪ ʹ כ ʹభమ ߪ௣ כ ʹభయ ݏ ൌ െͳ ߪ଴ כ ʹିଵ ߪ଴ כ ʹିభమ ߪ଴ כ ʹିభయ ݏ ൌ Ͳ ߪ଴ ߪ଴ ߪ଴ ݏ ൌ ͳ ߪ଴ כ ଴ߪ ʹ כ ʹభమ ߪ଴ כ ʹభయ ݏ ൌ ଴ߪ ʹ כ ʹଶ ߪ଴ כ ଴ߪ ʹ כ ʹమయ ݏ ൌ ଴ߪ - ͵ כ ʹయమ ߪ଴ כ ݏ ʹ ൌ Ͷ - - ߪ଴ כ ʹరయ 
 

,݋)ߪ (ݏ = 0ߪ כ  ܵ/ݏ+݋2

0 1 

… 

-1 0 S+1 S 

… 

-1 0 S+1 S 

s : scale index, in range [-1, S+1] 

S : sampling frequency in scale ߪ଴ : prior smoothing factor 

o : octave index 
2 

 scale index, in range [0, ܱ-1] : ݋
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Table 4-1 shows the Gaussian smoothing factors for different sampling frequency in 

scale for Gaussian scale space construction. Instead of doubling the Gaussian 

smoothing factors, input image to a new octave is generated by down sampling the 

input image to the previous octave spatially by a factor of two. As a result, the same 

set of smoothing factors given in Table 4-1 are applied to all octaves, and the 

computational cost is greatly reduced. 

 

Number of Octaves 

Gaussian scale space consists of a limited number of octaves, and each octave is 

further subdivided into sublevels.  

 

   

         

Figure 4-6: Gaussian smoothed images for each of the four octaves (ܱ ൌ Ͷ). 
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Figure 4-6 shows the Gaussian smoothed images of up to four octaves, where the 

fourth octave produces too small and over-smoothed images, resulting in a low 

probability of detecting a large number of features with high distinctiveness. 

Therefore, the performance of up to three octaves is compared. The comparison 

results are demonstrated by using the boat sequence, as shown in Figure 4-7. In the 

following experiments, the reference image is always the image of the highest quality 

and the smallest transformation. 

 

 

Figure 4-7: The leftmost image in the first row is the reference image, and the arrow 

indicates the severity of transformation. 

 

The performance is tested for different number of octaves, in terms of detection 

robustness and matching accuracy. It has been tested that about 82.3% and 16.8% of 

the total keypoints are detected from the first and second octave, respectively. As 

shown in the left image of Figure 4-8, less than 1% is from the third octave. The 

detection result of the reference image is given in the right image of Figure 4-8. Each 

green dot corresponds to a keypoint detected from the corresponding octave and the 

number of keypoints detected from each octave is 1550, 321, and 15, respectively. 

The first two octaves provide a large number of keypoints densely covering the entire 

image. Keypoints with local region exceeding the image borders have been discarded. 

Reference image Input image 1 Input image 2 

Input image 3 Input image 4 Input image 5 
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Figure 4-8: Distribution of detected keypoints over octaves. 

 

The detection robustness is evaluated by comparing the correspondences and 

repeatability. It can be seen from Figure 4-9 that there is an obvious increase in both 

the number of correspondences and the repeatability when the number of octaves is 

increased from ܱ =1 to ܱ =2, reflecting that the detection robustness is improved 

significantly. However, the robustness does not keep improving when more octaves 

are used, and the detection robustness of ܱ=2 and ܱ =3 are kept at a similar level. 

 

 

Figure 4-9: Detection performance comparison for different number of octaves. The 

comparison is performed on the structured scene with scale changes. 
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Matching performance comparison is shown in Figure 4-10. With the rise of 

transformation severity, the matching performance of ܱ=2 drops slightly below that 

of ܱ=3, but it is significantly superior to that of ܱ=1.   

 

  

Figure 4-10: Matching performance comparison for different number of octaves.  

 

Because the size of the source images used in the system is 640x480 pixels, and each 

consecutive octave is the down sampled version of the input image from the previous 

octave, the third octave is of 160x120 pixels and stands a little chance of detecting a 

large number of keypoints. Therefore, two octaves (640x480 and 320x240) are 

chosen to parameterise the design so as to further reduce the memory required to 

buffer internal calculation results for the third octave. 

 

Number of Scales per Octave 

In addition to the number of octaves, the design is also parameterised by the number 

of scales sampled per octave. Experiments are conducted to determine the sampling 

frequency ܵ in scale to provide relatively high detection robustness and matching 
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Figure 4-11: Performance comparison for different sampling frequency in scale. The 

comparison is performed on the structured scene with scale changes. 
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changes are small, ܵ =1 obtains the highest repeatability, which is due to the 

relatively small number of detected interest points in the commonly visible regions 

of the pair of images under consideration. However, the repeatability of ܵ=1 drops 
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remains at a similar level, which indicates that the overall distinctiveness of the 

regions detected are not significantly degraded as a result of the reduction in the 

sampling frequency in scale from ܵ=3 to ܵ =2. But there is an obvious degradation in 

precision when the sampling frequency is further decreased to ܵ=1. 

The difference in the repeatability and precision is increased for the textured scene. It 

can be seen from Figure 4-12 that both the detection and the matching performance 

of ܵ=1 are significantly worse than those of the other two settings.  

 

   

  

Figure 4-12: Performance comparison for different sampling frequency in scale. The 

comparison is performed on the textured scene with scale changes. 
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It can be seen from above experimental results that similar performance is achieved 

by ܵ =2 and ܵ =3, and ܵ =2 provides a considerable amount of keypoints and correct 

matches despite of the reduction when compared with ܵ=3. With the rise of the 

sampling frequency in scale, higher computational cost and larger memory 

requirement will be introduced into the hardware design accordingly. Therefore, a 

compromise is made by sampling two scales per octave, which corresponds to five 

Gaussian smoothed images per octave. As a result, both the detection and matching 

performance are kept at a relatively high level, while keeping hardware design 

complexity to the minimum. 

 

c. Effect of Threshold 

The effect of threshold on both the detection and matching results are tested to 

eliminate the possibility that the results reported above are affected by the threshold. 

 

Location Threshold 

To eliminate the effect of location threshold on the correspondence determination in 

the previous experimental results, the performance is compared by varying the 

threshold. The value was fixed to 1.0 in the previous experiments, which means that 

a matching location is defined as being within a factor of ߪ pixels, where ߪ is the 

detection scale of the keypoint. It is obvious that more keypoints are qualified as 

correspondences as the distance threshold is relaxed. However, as shown in Figure 

4-13, the overall ranking of each configuration remains virtually the same, indicating 

that the experimental results are rather indicative than quantitative and are not 

sensitive to the location threshold. 
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Figure 4-13: Comparison of detection robustness for different distance threshold of 

keypoint location. 
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Matching Threshold 

 

 

 

Figure 4-14: Comparison of matching results for different matching threshold. 
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This section presents the effect of the matching threshold on the determination of 

correct matches. In the distance ratio based matching, a pair of keypoints is qualified 

as matched if the ratio of the nearest neighbour to that of the second nearest 

neighbour is below a predefined threshold. It is obvious that more matches are 

qualified as correct as the distance threshold is relaxed, but many incorrect matches 

are qualified as correct as well and the number of incorrect matches increases faster 

than that of correct matches, and hence the overall precision drops. Figure 4-14 

shows that the ranking of each configuration remains virtually the same, which 

indicates that the experimental results are not sensitive to the choice of matching 

threshold. 

4.2.3 Design Parameters for Descriptor Generation 

In this section, the parameters that affect the performance of descriptors are studied. 

A set of settings is worked out, which is balanced between performance and 

hardware efficiency, such as the localisation accuracy for descriptor generation, and 

quantisation precision of principal orientation ߠ௣௢.  

For a given type of descriptor arrangement, there are mainly two factors that affect 

the computation of descriptors: 

1. The localisation accuracy that decides the scale from which the descriptors 

are computed. 

2. The quantisation error of the principal orientation, which corresponds to the 

accuracy of the principal orientation ߠ௣௢. 

a. Localisation Accuracy  

An issue arises on which scale to compute the descriptor for a given keypoint. In the 

descriptor generation process, each keypoint is first assigned a principal orientation ߠ௣௢ based on the local GMO information within the local region of the keypoint. In 

the standard SIFT algorithm, ߠ௣௢ is computed based on the smoothed image chosen 

by the closest scale of the keypoint, so that the orientation assignment is carried out 

in a scale-invariant manner. The closest scale is the scale image that is nearest to the 

detection scale to which the keypoint belongs under sub-pixel accuracy, and the size 

of the local region (ݎ௟௢௖௔௟) is directly proportional to the detection scale (ߪ). Although 
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higher precision can be obtained by using the smoothed image patch from the closest 

scale with size decided by the detection scale, the hardware efficiency is low due to 

the following two reasons: 

1. To reduce the computational complexity and the processing time of 

descriptor generation process, GMOs are typically computed in parallel with 

feature detection and buffered for fast indexing for descriptor generation. 

However, by computing the descriptors based on the closest scale, GMOs of 

all possible scales have to be computed and buffered, resulting in a significant 

memory usage. 

2. Prior to generating the descriptor, the gradient magnitude of all pixels within 

each sub-region has to be assigned a weight by applying a Gaussian 

weighting function with standard deviation of ߪ஽஺ூௌ௒. As has been discussed 

in Chapter 3, the standard deviation  ߪ஽஺ூௌ௒  is proportional to the radius ݎ௟௢௖௔௟ of the local region, which is further proportional to the detection scale ߪ 

of the keypoint. This requires the Gaussian coefficients to be computed 

during descriptor generation process and hence is ineffective. 

To improve the hardware efficiency, a trade-off should be made between descriptor 

performance and hardware efficiency. The issue of localisation accuracy is analysed 

in the following two aspects to deal with the above mentioned two factors that affect 

the hardware efficiency. 

1. Calculate the descriptor based on the pre-defined scale instead of the closest 

scale.  

2. Decide the size of local region ݎ௟௢௖௔௟ based on the standard deviation of pre-

defined scale instead of the detection scale ߪ of the keypoint. 

 

Scale Selection for Descriptor Computation 

Experiments are first conducted to see how the precision of ߠ௣௢  varies with the 

descriptor computed on pre-defined scale instead of the closest scale. Figure 4-15 

shows the probability distribution of οݏ, where οݏ is the distance from the refined 

location under sub-pixel accuracy (detection scale) to the origin (pre-defined scale) 
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in ݏ  direction. According to the experiments, only an average of 2.5% of total 

keypoints is refined closer to an adjacent scale. 

 

 

Figure 4-15: Probability distribution of οݏ. 

 

A detailed analysis is performed on a pair of images, namely the first and third image 

in the first row of the boat sequence given in Figure 4-7. Figure 4-16 shows the scale 

selection for keypoints, which shows that the closest scale of most keypoints are 

consistent with that of the pre-defined scale, despite of a small number of outliers. In 

this example, 28 of the total 1038 detected keypoints are refined to an adjacent scale. 

 

Figure 4-16: The top image shows the detection scale of keypoints. The middle 

image shows the closest scales. The bottom image is for the pre-defined scales. 
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Experiments are conducted to check the effect of scale selection on the orientation 

assignment. As shown in Figure 4-17 , of the total 28 keypoints with shift in scale, 9 

have the peak shifted into adjacent bins and 1 has a significant shift in peak, whereas 

the rest remains unchanged even with a shift in scale.  

 

 

Figure 4-17: The top image shows the shift in scale. The bottom image shows the 

shift in ߠ௣௢. 

 

Figure 4-18 shows an example where the magnitudes of the peak and that of the 

adjacent bin are of high similarity. In this example, ߠ௣௢ is shifted to an adjacent bin 

as a result of the shift in scale. Since the 36-bin histogram will be further interpolated 

into 8-bin histograms, the effect on the histogram arrangement will be reduced by the 

interpolation process. 

 

  

Figure 4-18: The 36-bin histogram for ߠ௣௢ calculation with the peak shifts to an 

adjacent bin as a result of the shift in scale. 
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Figure 4-19 gives an example where the peak remains the same and is not affected by 

the scale selection, whereas the peak in Figure 4-20 is shifted from bin12 to bin31 

due to the fact that there are multiples peaks of similar magnitude. This can be 

compensated by creating keypoints for any local peak that is within 80% of the 

highest peak of the 36-bin histogram, with which there might be multiple keypoints 

created at the same location but with different orientation. As a result, the orientation 

assignment is not significantly affected by using pre-defined scale when compared 

with the results based on the closest scale. 

 

 

Figure 4-19: The 36-bin histogram for ߠ௣௢ calculation with no shift in peak. 

  

Figure 4-20: The 36-bin histogram for ߠ௣௢ calculation with a significant shift in peak 

as a result of the shift in scale. 
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Scale Selection for Region Size Determination 

The region size ሺݎ௟௢௖௔௟ሻ  determination based on the detection scale requires the 

Gaussian coefficients to be computed in real-time, which increases the computational 

complexity and the processing time of descriptor generation. To improve the 

hardware efficiency, ݎ௟௢௖௔௟ is determined by using the pre-defined scale. However, 

the error in scale value affects the descriptor computation as the operation requires 

the selection of an image patch around the point which is proportional to the selected 

scale value. To separate the effect of scale selection for GMOs from the scale 

selection for region size ݎ௟௢௖௔௟, GMOs are computed from the closest scale in this 

experiment.  

Figure 4-21 shows the experimental results with ݎ௟௢௖௔௟ proportional to the detection 

scale and the pre-defined scale, respectively. The two curves are separated by a small 

gap.  
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Figure 4-21: Matching performance comparison between the detection scale and the 

pre-defined scale. 

An example of the overall matching performance comparison is shown in Figure 

4-22, which shows that the last two curves are nearly identical, confirming that 

computing descriptor based on the pre-defined scales does not affect the descriptor 

performance significantly.  

 

 

Figure 4-22: The overall matching performance comparison for localisation accuracy. 
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space information of two smoothed images (per octave) is sufficient. As a result, 

computing GMOs within the neighbourhood of the keypoints during the descriptor 

generation process is replaced by indexing into the buffer holding GMOs from the 

pre-defined scales, which reduces the computational complexity and the processing 

time while keeping the memory usage to a minimum level. 
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With ݎ௟௢௖௔௟ determined by the pre-defined scale, ݎ௟௢௖௔௟ is directly proportional to the 

pre-defined scale, and hence  ߪ஽஺ூௌ௒ is known and the Gaussian coefficients can be 

computed offline and pre-loaded onto an LUT for fast indexing. As a result, the 

computational complexity of descriptor generation can be further reduced at the cost 

of a slight drop in the matching performance.  

Table 4-2 lists the parameters for SRI-DAISY arrangement with keypoints belonging 

up to two pre-defined scales.  

 

Table 4-2: Parameters for SRI-DAISY descriptor arrangement. 

࣌ ࢘ ൗ࢒ࢇࢉ࢕࢒࢘  ࢘ ࡾ ࢒ࢇࢉ࢕࢒࢘ ࢔࢕࢏ࢍࢋ࢘ࡲ 

1.9799 
0.35 4.0 

20 13 7 

2.8 32 21 10 

 

 

b. Quantisation Precision of Principal Orientation  

Because the descriptor is arranged relative to the principal orientation, the accuracy 

of the principal orientation has a large impact on the rotation invariance of the 

descriptor. Each feature is assigned a principal orientation that corresponds to the 

largest bin in the  -bin histogram of the neighbouring region, where   is the number 

of orientations covering 360o. Experiments are conducted on the boat sequence with 

in-plane rotation and scale changes and the results are given in Figure 4-23. In 

general, the rotation invariance is enhanced with larger number of orientation bins. 

With 4 bins covering 360o, the number of correct matches drops significantly even 

with a slight rotation angle. The number of correct matches is improved significantly 

when the orientation is increased from 4 to 16, but it shows little change beyond that 

value. Virtually the same performance is obtained by 36 and 72 directions, indicating 

that a larger number of orientation bins does not keep improving the rotation 

invariance and hence is unnecessary. Therefore, the 360 degree range of orientations 

is quantised to 36 directions. 
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Figure 4-23: Matching results for different quantisation precision of the principal 

orientation. 

 

4.3 Error Analysis 

In this section, experiments are conducted to formulate an appropriate fixed-point 

model for the SIFT processing core. The simulation results are presented to see the 

functionality and accuracy of the fixed-point based hardware design. The MATLAB 

model with floating-point accuracy is used as a reference.  

4.3.1 Computational Complexity  

As has been introduced in Chapter 2, the first stage of the feature detection module is 

Gaussian smooth. In a digital form, Equation (4.2) can be written as (4.3). 

ǡݔሺܮ  ሻݕ ൌ ͳʹߪߨଶ  ିሺ௫మା௬మሻȀଶఙమ כ ǡݔሺܫ  ሻ (4.2)ݕ

ǡݔሺܮ  ሻݕ ൌ ෍ ෍ ሺ݅ǡܩ ݆ሻ כ ݔሺܫ ൅ ݅ǡ ݕ ൅ ݆ሻೖమ
௝ୀିೖమ

ೖమ
௜ୀିೖమ

 (4.3) 

where ܩሺ݅ǡ ݆ሻ  denotes Gaussian kernel coefficient, ݇  is the size of the Gaussian 

kernel applied, and ܫሺݔǡ  .ሻ is the image patch to which the Gaussian kernel is appliedݕ
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As can be seen from Equation (4.3), the number of calculations increases non-

linearly with the size of Gaussian kernel ݇. Without any optimisation, smoothing a 

pixel requires ݇ଶ multiplications and ሺ݇ଶ െ ͳሻ addition operations. This number then 

needs to be multiplied by the number of pixels to be processed from the input image. 

The number of operations is then multiplied by the number of smoothed images 

within each octave, since Gaussian scale space consists of a number of smoothed 

images produced from the convolution of Gaussian kernel of different standard 

deviations with the input image. If there are multiple octaves within the Gaussian 

scale space, the number will be further increased. Therefore, the computational 

complexity of Gaussian smooth process is decided by the size of input image, the 

number of scales within each octave, and the number of octaves.  

The decision of appropriate word length of fixed-point arithmetic is important 

because it affects the resource usage and performance of the system. The word length 

of the Gaussian kernels applied for Gaussian scale space construction affects the 

implementation efficiency of the system. Increasing the word length provides 

smoothed images with higher accuracy, but the system becomes more complicated as 

the number of bits increases after each processing step, which will be discussed later. 

Therefore, word length of Gaussian coefficients has to be studied and bit-truncation 

is necessary at specific stages in the calculation process in order to reduce 

complexity overheads. 

The stability checking process also affects the throughput of feature detection 

module, because it requires the location of the detected extrema to be repeatedly 

refined and each refinement process involves matrix inversion that is expensive and 

time consuming to be implemented on hardware devices. Besides, the data 

dependency between location refinement process and low contrast removal prevents 

these two processes from being implemented in parallel, which limits the throughput. 

A large memory is required to buffer GMOs (Gradient Magnitude and Orientations) 

for descriptor generation and the descriptors. Analysis has to be performed to trade-

off between memory and descriptor precision. 

Table 4-3 summarises the error analysis performed in this section. 
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Table 4-3 List of error analysis presented in this section. 

Module Error Analysis 

Feature Detection 

Maximum Gaussian kernel size 

Word length of Gaussian kernel coefficients 

LSBs truncation on Gaussian filtered images 

Word length of DoG values 

Maximum number of iterations for localisation refinement of 
keypoints 

Approximation on low contrast removal 

Descriptor Generation 
Precision of the Principal Orientation Calculation 

Quantisation Error of Feature Descriptors 

 

4.3.2 Simulation Scheme for Feature Detection 

As shown in Figure 4-24, three comparisons are performed to evaluate the 

performance of the fixed-point based hardware design for feature detection module. 

The experiments are conducted on the boat sequence. 

 

Figure 4-24: Three comparisons to evaluate the processing accuracy of feature 

detection. 
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4.3.3 Error of Gaussian Scale Space Construction 

The error of the scale space construction refers to the comparison “Step 1” as shown 

in Figure 4-24, which is evaluated in two aspects: 1) the size of the discrete Gaussian 

filter window, 2) the quantisation of Gaussian coefficient using fixed-point accuracy. 

 

a. Gaussian Kernel Size Error  

The coefficients of discrete 1D Gaussian kernel of size ݇ ൌ ሺʹ݆ ൅ ͳሻ  can be 

calculated by using Equation (4.4). 

௜ܩ  ൌ ͳξʹߪߨ ݁ି ೔మమ഑మ (4.4) 

where ݆ decides the radius of the Gaussian window, and ݅ is integer in range -݆ to ݆. 
 

  

Figure 4-25: Detection performance as a function of gradually increasing Gaussian 

kernel size.  

 

The effect of Gaussian kernel size is determined by looking into both the detection 

and matching performance. Figure 4-25 gives the experimental results from a pair of 

images, which shows how the performance varies with the size of Gaussian kernel. ݇ீ=43 corresponds to Lowe’s software model. Figure 4-25 shows that detectors with 
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smaller kernel sizes suffers from over-detection when compared with the reference, 

which potentially increases the memory requirement and processing time of the 

descriptor generation module. 

 

  

  

Figure 4-26: Detection and matching performance for different Gaussian kernel sizes. ݇ீ=43 corresponds to Lowe’s software model. 

 

Figure 4-26 gives the experimental results from a set of images with gradually 

increasing transformation, which shows how the detection and matching 

performance varies with the severity of transformation for ݇ீ of different values. The 
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performance of ݇ீ  larger than 27 is similar to the reference. Besides, although the 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

100

200

300

400

500

600

700

Scale changes

# 
co

rr
es

po
nd

en
ce

s

 

 

23
27
31
35
39
43

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
30

35

40

45

50

55

60

Scale changes

re
pe

at
ab

ili
ty

 (
%

)
 

 

23
27
31
35
39
43

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

100

200

300

400

500

600

Scal changes

# 
co

rr
ec

t m
at

ch
es

 

 

23
27
31
35
39
43

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale changes

F
-m

ea
su

re

 

 

23
27
31
35
39
43



129 

 

relative ranking of the number of correspondences remains virtually the same with 

the severity of transformation, the number of correct matches drops faster for smaller 

Gaussian kernels. This can be understood by the fact that the radius of local region is 

proportional to the size of the corresponding Gaussian kernel ݇ீ, and larger regions 

typically contain more information and hence are more discriminative to survive 

large transformation. Example local regions identified by keypoints detected with ݇ீ=23 and ݇ ீ=43 are given in Figure 4-27. The red and green circles represent the 

local regions identified by keypoints detected using ݇ீ=23 and ݇ ீ=43, respectively. 

The size of local regions represented by green circles is on the average larger than 

those represented by red ones. However, the number of local regions of the former is 

smaller than that of the latter, which agrees with the performance shown in Figure 

4-26. 

 

 

Figure 4-27: The red and green circles represent the local regions represented by 

keypoints detected with ݇ீ=23 and ݇ ீ=43, respectively. 

 

To make use of the parallel processing property of the FPGA, Gaussian kernels of 

different sizes are applied to the source image concurrently for Gaussian scale space 

construction, and the processing time is directly related to the size (݇ீ) of the largest 

Gaussian kernel applied. To keep relatively high accuracy while achieving the target 

system throughput (60 fps), ݇ீ  is set to 31, with which both the detection and 

matching performance are kept at a similar level to that of Lowe’s software model. 

Because the size of the other four Gaussian kernels does not have effect on the 
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system throughput, they are kept at the same level to that of Lowe’s software model. 

As a result, the Gaussian kernels are of size 13, 17, 25, 29, and 31, respectively.  

 

b. Fixed-point Error 

There are two basic operations in the Gaussian filter process: addition and 

multiplication, which can be implemented in either fixed-point or floating-point 

format. This design uses the two’s complement fixed-point arithmetic, as shown in 

Figure 4-28. The data consists of a sign bit, an integer part, and a fractional part. 

Generally speaking, the floating-point implementation provides a larger dynamic 

range and hence higher calculation accuracy, but usage of floating-point arithmetic is 

expensive on hardware devices and leads to inefficient designs especially for FPGA 

implementation. On the other hand, the fixed-point implementation consumes less 

hardware resources and offers higher processing speed, and hence more efficient 

hardware designs. However, using fixed-point arithmetic can result in a reduction in 

the accuracy if it is not carefully designed. This section formulates an appropriate 

fixed-point representation for Gaussian kernel coefficients that maintains calculation 

accuracy similar to the floating-point implementation. 

  

Figure 4-28: The two’s complement fixed-point representation. 

 

Word length of Gaussian Filter Coefficients 

The first stage of the SIFT processing core is the Gaussian filter. The word length of 

the Gaussian coefficients affects the complexity of the core because the dynamic 

range of the intermediate calculation results keeps increasing step by step, which 

further increases the resource usage of the design. For example, a full length  ൈ   

multiplier yields an output of ሺ ൅  ሻbits. To deal with the bit-increasing issue, a 
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proper word length has to be selected for Gaussian coefficients, and data truncation 

is performed at the output of calculation steps where necessary. The number of 

correspondences and the repeatability are checked with gradually increasing 

fractional bits for Gaussian coefficients. It should be noticed that the Gaussian kernel 

has to be normalised after scaling up the coefficients by a factor so as not to change 

the average grey level of the image. The detection performance is tested as a result of 

the limited precision of Gaussian kernel coefficients. In this experiment, the 

maximum Gaussian kernel size is set to ݇ீ=31. The output is indicative rather than 

quantitative, and the Gaussian kernel size does not affect the relative ranking of the 

outputs. This idea applies to all the experiments in the following sections. 

 

   

Figure 4-29: Correspondences and repeatability as a function of fractional bits. 

 

Figure 4-29 shows that when the fractional bits are gradually increased from 8 to 16, 

both the number of correspondences and the repeatability converge to those of the 

floating-point model. The detection performance becomes rather stable when the 

coefficient is represented by more than 12 bits. To save hardware resources while 

preserving relatively high robustness of the feature detector, each Gaussian kernel 

coefficient is represented by 14 bits. 
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Data Truncation 

Data truncation is necessary in that the hardware resource usage for implementing 

operations increases accordingly as a result of the increment of the word length after 

each computation step, such as adders and multipliers. Data truncation can be 

performed on either the Most Significant Bit (MSB) [62] or Least Significant Bit 

(LSB) [63] to minimise the hardware implementation cost. When the dynamic range 

of the signals being processed is much smaller than the peak value for the bit-width 

used, MSB truncation can be performed to reduce the dynamic range while 

preserving high accuracy. On the other hand, the LSB truncation keeps the original 

dynamic range at the expense of accuracy. 

One major task while working with the fixed-point arithmetic is to prevent overflow 

and incorrect results, which occurs when a result may not fit into the reserved word 

length. To prevent overflow, experiments are conducted to determine the maximum 

word length of Gaussian filtered results while keeping the area usage to a minimum 

level. Table 4-4 shows the theoretical maximum word length at each stage of the 

Gaussian filter process. In each 1D Gaussian filter process, the word length of input 

signals is extended to avoid overflow, which leads to the final output of 46 bits 

theoretically.  

 

Table 4-4: Theoretical maximum word length of Gaussian filter process. 

Input/output Maximum Word length (bits) 

Input Pixel ሺ۷ሻ 8 

Input 1D Gaussian filter coefficient ሺ۵ሻ 14 

Output of 1D vertical filter 27 

Final Filtered Pixel ሺۺሻ 46 

 

However, the practical maximum word length can be different. The Virtex-6 FPGA 

device provides advanced DSP48E1 slice and each supports multiplication with input 

data of either 18x25 signed or 17x24 unsigned [64]. Larger multipliers are built by 
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assembling these embedded multipliers. With the input of 1D Gaussian filter in the 

horizontal direction truncated from 27 bits to 22 bits on the MSB, embedded 

multipliers are saved and the final output is reduced from 46 bits to 36 bits, as shown 

in Table 4-5. 

 

Table 4-5: Maximum word length of Gaussian smooth process from real data sources. 

Input/output Maximum Word length (bits) 

Input Pixel ሺ۷ሻ 8 

Input 1D Gaussian filter coefficient ሺ۵ሻ 14 

Output of 1D vertical filter 22 

Final Filtered Pixel ሺۺሻ 36 

 

To further reduce the requirement for hardware resources, LSB truncation is 

performed at the output of Gaussian filter process. Figure 4-30 shows the Mean 

Square Error (MSE) of Gaussian filter with LSB truncation at the output. In this 

section, the MSE is used to measure the difference between the values obtained with 

and without data truncation. The MSE is defined by Equation (4.5). 

ܧܵܯ  ൌ σ ሾܮ௢௥௜௚ሺ݅ሻ െ ௧௥௨௡௖ሺ݅ሻሿଶே଴ܮ ܰ  (4.5) 

where ܮ௧௥௨௡௖ and ܮ௢௥௜௚ are the intensity value of Gaussian filtered pixels with and 

without truncation, respectively, ܰ  is the number of pixels involved in the 

computation of MSE. Smaller values of MSE indicate that ܮ௧௥௨௡௖ is closer to ܮ௢௥௜௚, 

and hence is of higher accuracy.  
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Figure 4-30: MSE for Gaussian filter output with different number of LSBs truncated. 

 

Figure 4-30 shows that MSE increases with the number of LSBs truncated and 

remains constant until more than 12 bits are truncated. The MSE provides a 

quantitative measure of how much the truncation operation affects the scale space 

obtained, but provides no information about how much the detection result is 

affected as a function of the number of LSBs truncated. With this objective in mind, 

a more practical way is employed to check the effect of data truncation to see how 

the detection performance varies with the number of LSBs truncated at the output of 

Gaussian filter. The experimental settings are given in Table 4-6. 

 

Table 4-6: Experimental settings for performance evaluation of data truncation on 

Gaussian smoothed pixels. 

Settings Value 

Maximum Gaussian kernel size 31 

Word length of Gaussian kernel coefficients 14 bits 
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Figure 4-31 shows that the detection performance remains unchanged until 18 LSBs 

are truncated, and the detection performance drops significantly when more than 22 

bits are truncated. Therefore, 16 LSBs are truncated at the output, and each smoothed 

pixel is represented by 20 bits without loss of detection accuracy. 

 

   

Figure 4-31: Detection performances as a function of the word length of Gaussian 

filtered pixels. 

 

4.3.4 Error of Keypoint Detection with Stability Checking 

The error of keypoint detection with stability checking refers to the comparison 

“Step 2” in Figure 4-24. This section presents the detection robustness as a result of 

the changes in the following aspects: (1) the word length of DoG (2) the number of 

iteration cycles for the location refinement process (3) the approximation in low 

contrast removal. 

 

a. Truncation Error 

The theoretical maximum word length of the DoG value is 21 bits, including a sign 
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DoG values. Reducing the word length brings a reduction in the memory requirement 

for buffering DoG values.  

Table 4-9 gives the settings for the experiments conducted in this section.  

 

Table 4-7: Experimental settings for performance evaluation of DoG word length. 

Settings Value 

Maximum Gaussian kernel size 31 

Word length of Gaussian kernel coefficients 14 bits 

LSBs truncation on Gaussian filtered images 16 bits 

 

Figure 4-32 shows the detection results as a function of LSBs truncation that is 

performed on the DoG values prior to local extrema detection. The detection 

performance is virtually the same when less than 8 bits are truncated.  

 

   

Figure 4-32: Correspondences and repeatability as a function of the number of LSBs 

truncated from DoG values. 
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Table 4-8 lists the block RAM usage for buffering DoG values as a function of the 

number of LSBs truncated for VGA sized images. With 6 bits truncated, the memory 

usage is reduced without significant degradation on the robustness of the feature 

detection. The corresponding word length of the DoG values is 15 bits.  

 

Table 4-8: Block RAM consumption as a function of the number of LSBs truncated 

from DoG values. 

Number of LSBs truncated RAMB36E1 RAMB18E1 

0 7 1 

2 6 1 

4 6 0 

6 4 3 

8 3 3 

10 4 0 

 

b. Location Refinement Process 

Each local extremum ܠ ൌ ሺݔǡ  ሻ் detected from the DoG scale space is passed to theݕ

location refinement process, where interpolation is performed on the location of the 

extremum. Output of each interpolation process is the offsets between the 

interpolated location and that of the origin. If the offset is larger than 0.5 in any 

dimension, the extremum is shifted to a new location ܠᇱ ൌ ሺݔᇱǡ  ᇱሻ் by adding theݕ

offsets (οݔǡ οݕ) to the origin and repeats the interpolation process until the maximum 

number of iterations is hit. 

Five iterations are used in the reference model. However, it has been tested that the 

maximum number of iterations can be reduced from five to one, which significantly 

reduces the processing time at the cost of a little loss in localisation accuracy.  

Table 4-9 lists the settings for the experiments conducted in this section. 



138 

 

 

Table 4-9: Experimental settings. 

Settings Value 

Maximum Gaussian kernel size 31 

Word length of Gaussian kernel coefficients 14 bits 

LSBs truncation on Gaussian filtered images 16 bits 

LSBs truncation on DoG values 3 bits 

 

It is concluded from the experiments that the location refinement processes for 

around 86% of total extrema are completed within only one iteration cycle, 

indicating that the detected points are the local extrema under sub-pixel accuracy and 

are not refined to an adjacent location. Another 12% are fixed within two iterations, 

indicating that the extrema are shifted to an adjacent location. Only around 1% of the 

extrema requires more than two iteration cycles, as shown in Figure 4-33. 

.  

Figure 4-33: The location refinement process of around 86% of the total detected 

extrema is completed within only one iteration cycle, and 12% is finished within two 

iterations. Only around 1% takes more than two iterations. 

 

Figure 4-34 shows the overall probability distribution of οݔ and οݕ. The majority of 

offsets falls in the interval [-0.5, 0.5], indicating that most of the detected points are 

86%
(within one iteration)

12%

1%
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the local extrema under sub-pixel accuracy and are not refined to an adjacent location 

in any direction. Because the descriptors are computed from pre-defined scales 

instead of the closest scales (Section 4.2.3a), οݏ is not analysed in this section. 

 

 

Figure 4-34: Overall probability distribution of οݔ and οݕ. 

 

The effect of changing the number of iterations is investigated by looking at the 

probability distribution of offsets. Figure 4-35(a) and (b) show the distribution of οݔ 

and οݕ for refinement processes that are completed with one and two iteration cycles, 

respectively. Figure 4-35(c) shows the probability of οݔ  and οݕ  for refinement 

processes requiring more than two iteration cycles, which shows that only a few 

pixels are refined to a location that is more than one pixel away from the originally 

detected location. Therefore, the number of iteration cycles is limited to one, and the 

detected extrema is shifted to an adjacent pixel directly without further refinement if 

either οݔ  or  οݕ  is beyond 0.5, with which approximately 99% of the original 

accuracy is kept. 
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(a) Probability of οݔ and οݕ for refinement process with one iteration cycle. 

 

(b) Probability of οݔ and οݕ for refinement process with two iteration cycles. 

 

(c) Probability of οݔ and οݕ for refinement process with more than two iteration 
cycles. 

Figure 4-35: Probability distribution of οݔ and οݕ. 
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Although the processing time can be improved by exploring the parallel processing 

property within refinement process, successive iteration cycles for the same 

candidate keypoint have to be implemented in series, and hence the processing time 

is directly proportional to the number of iterations. As a result, by performing only 

one iteration cycle, the processing time is significantly reduced while keeping a high 

level of accuracy for feature detection. 

Another advantage of reducing the maximum number of iteration cycles to one is 

that repeatedly computing the offsets ܠො can be avoided. The location of the extrema ܠො 
relative to the origin ܠ ൌ ሺݔǡ ǡݕ  .ሻ் is given belowݏ

ොܠ  ൌ െ߲ଶܠ߲ܦଶିଵ ܠ߲ܦ߲  (4.6) 

where 

ܠ߲ܦ߲ ൌ ቎ܦ௫ܦ௬ܦ௦቏ 
߲ଶܠ߲ܦଶ ൌ ቎ܦ௫௫ ௫௬ܦ ௫௬ܦ௫௦ܦ ௬௬ܦ ௫௦ܦ௬௦ܦ ௬௦ܦ  ௦௦቏ܦ

By substituting (4.7) into (4.6), it gives (4.8). 

 
߲ଶܠ߲ܦଶିଵ ൌ ͳቚడమ஽డܠమ ቚ ൈ ێێۏ

ێێێ
௬௬ܦฬۍ ௬௦ܦ௬௦ܦ ௦௦ܦ ฬ ฬܦ௫௦ ௦௦ܦ௫௬ܦ ௬௦ܦ ฬ ฬܦ௫௬ ௬௬ܦ௫௦ܦ ௬௦ܦ௬௦ฬฬܦ ௦௦ܦ௫௬ܦ ௫௦ܦ ฬ ฬܦ௫௫ ௫௦ܦ௫௦ܦ ௦௦ܦ ฬ ฬܦ௫௦ ௬௦ܦ௫௫ܦ ௫௬ܦ௫௬ฬฬܦ ௫௦ܦ௬௬ܦ ௬௦ܦ ฬ ฬܦ௫௬ ௬௦ܦ௫௫ܦ ௫௦ܦ ฬ ฬܦ௫௫ ௫௬ܦ௫௬ܦ ۑۑے௬௬ฬܦ

ۑۑۑ
ې
 (4.7) 

ොܠ  ൌ ͳቚడమ஽డܠమ ቚ ൈ ێێۏ
ێێێ
௬௬ܦฬۍ ௬௦ܦ௬௦ܦ ௦௦ܦ ฬ ฬܦ௫௦ ௦௦ܦ௫௬ܦ ௬௦ܦ ฬ ฬܦ௫௬ ௬௬ܦ௫௦ܦ ௬௦ܦ௬௦ฬฬܦ ௦௦ܦ௫௬ܦ ௫௦ܦ ฬ ฬܦ௫௫ ௫௦ܦ௫௦ܦ ௦௦ܦ ฬ ฬܦ௫௦ ௬௦ܦ௫௫ܦ ௫௬ܦ௫௬ฬฬܦ ௫௦ܦ௬௬ܦ ௬௦ܦ ฬ ฬܦ௫௬ ௬௦ܦ௫௫ܦ ௫௦ܦ ฬ ฬܦ௫௫ ௫௬ܦ௫௬ܦ ۑۑے௬௬ฬܦ

ۑۑۑ
ې ൈ ቎െܦ௫െܦ௬െܦ௦቏ (4.8) 

The location refinement process is complicated in that it involves matrix inversion 

for computing ܠො, which is expensive to be implemented on FPGA devices. With the 
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maximum number of iterations reduced to one, there is no need to compute the exact 

offset ܠො from the origin. The refined location can be determined by checking the 

relationship between the offset ܠො from the origin and 0.5. If    ሺܠොሻ is larger than 0.5 

in any dimension, the extremum is closer to a neighbouring pixel. Therefore, matrix 

inversion can be avoided by rearranging (4.8) into (4.9), with which the division 

operation involved in matrix inversion is replaced by a comparator for each 

dimension, and hence the implementation efficiency is improved. 

 
 ݏܾܽ

۔ۖۖەۖۖ
 ۓ
ێێۏ
ێێێ
௬௬ܦฬۍ ௬௦ܦ௬௦ܦ ௦௦ܦ ฬ ฬܦ௫௦ ௦௦ܦ௫௬ܦ ௬௦ܦ ฬ ฬܦ௫௬ ௬௬ܦ௫௦ܦ ௬௦ܦ௬௦ฬฬܦ ௦௦ܦ௫௬ܦ ௫௦ܦ ฬ ฬܦ௫௫ ௫௦ܦ௫௦ܦ ௦௦ܦ ฬ ฬܦ௫௦ ௬௦ܦ௫௫ܦ ௫௬ܦ௫௬ฬฬܦ ௫௦ܦ௬௬ܦ ௬௦ܦ ฬ ฬܦ௫௬ ௬௦ܦ௫௫ܦ ௫௦ܦ ฬ ฬܦ௫௫ ௫௬ܦ௫௬ܦ ۑۑے௬௬ฬܦ

ۑۑۑ
ې ൈ ቎െܦ௫െܦ௬െܦ௦቏ۙۘۖۖ

ۖۗۖ  ൐ ቊͲǤͷ ݏܾܽ  ൈ ቤ߲ଶܠ߲ܦଶ ቤቋ 

 

(4.9) 

Table 4-10: Derivatives of D. 

Derivatives Computation 

ݔሺܦ௫ ሾܦ ൅ ͳǡ ǡݕ ሻݏ െ ݔሺܦ െ ͳǡ ǡݕ  ʹሻሿȀݏ

ǡݔሺܦ௬ ሾܦ ݕ ൅ ͳǡ ሻݏ െ ǡݔሺܦ ݕ ൅ ͳǡ  ʹሻሿȀݏ

ǡݔሺܦ௦ ሾܦ ǡݕ ݏ ൅ ͳሻ െ ǡݔሺܦ ǡݕ ݏ െ ͳሻሿȀʹ 

ݔሺܦ ௫௫ܦ ൅ ͳǡ ǡݕ ሻݏ ൅ ݔሺܦ െ ͳǡ ǡݕ ሻݏ െ ǡݔሺܦʹ ǡݕ  ሻݏ
ǡݔሺܦ ௬௬ܦ ݕ ൅ ͳǡ ሻݏ ൅ ǡݔሺܦ ݕ െ ͳǡ ሻݏ െ ǡݔሺܦʹ ǡݕ  ሻݏ
ǡݔሺܦ ௦௦ܦ ǡݕ ݏ ൅ ͳሻ ൅ ǡݔሺܦ ǡݕ ݏ ൅ ͳሻ െ ǡݔሺܦʹ ǡݕ  ሻݏ
 ௫௬ܦ

ሾሺݔ ൅ ͳǡ ݕ ൅ ͳǡ ሻݏ ൅ ݔሺܦ െ ͳǡ ݕ െ ͳǡ ሻݏ െ ݔሺܦ െ ͳǡ ݕ ൅ ͳǡ ሻݏ െ ൅ݔሺܦ ͳǡ ݕ െ ͳǡ  ሻሿȀͶݏ

ݔ௫௦ ሾሺܦ ൅ ͳǡ ǡݕ ݏ ൅ ͳሻ ൅ ݔሺܦ െ ͳǡ ǡݕ ݏ െ ͳሻ െ ݔሺܦ െ ͳǡ ǡݕ ݏ ൅ ͳሻ െ ൅ݔሺܦ ͳǡ ǡݕ ݏ െ ͳሻሿȀͶ 

ǡݔ௬௦ ሾሺܦ ݕ ൅ ͳǡ ݏ ൅ ͳሻ ൅ ǡݔሺܦ ݕ െ ͳǡ ݏ െ ͳሻ െ ǡݔሺܦ ݕ െ ͳǡ ݏ ൅ ͳሻെ ǡݔሺܦ ݕ ൅ ͳǡ ݏ െ ͳሻሿȀͶ 
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The Hessian and derivative of ܦ  can be approximated by using differences of 

neighbouring DoG values, with which ܠො can be resolved with minimal cost, as shown 

in Table 4-10. Therefore, both the processing time and computational complexity are 

reduced as a result of limiting the number of iteration cycles for location refinement 

process to one instead of five. 

In short, by reducing the number of iterations to one, the average processing time is 

reduced below half the original one. With the matrix inversion avoided by replacing 

division operation with comparison operator, the hardware efficiency is improved as 

a result of reduction in processing time and computational complexity. 

 

c. Low Contrast Extrema Removal 

In the standard SIFT algorithm, extrema with a value of ȁܦሺܠොሻȁ less than 0.03 will be 

discarded as they are unstable with low contrast, assuming image pixel values are in 

range [0, 1]. The contrast at the extremum is defined below. 

ොሻܠሺܦ  ൌ ܦ ൅ ο(4.10) ܦ 

with 

οܦ ൌ ͳʹ ்ܠ߲ܦ߲  ොܠ
where ܠො  has been given in Equation (4.6), which is the offset from the refined 

location to the origin. 

Because the computational complexity of the location refinement process has been 

reduced by replacing the division operation by a comparator, the exact value of ܠො is 

not calculated for hardware efficiency. To further reduce the computational 

complexity, Equation (4.10) is approximated by ܦሺܠොሻ ൌ  Figure 4-36 shows the .ܦ

probability distribution of the ratio of ȁοܦȁ to ȁܦሺܠොሻȁ, which is below 5% in most 

cases.  
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Figure 4-36: Probability of the ratio between ȁοܦȁ and ȁܦሺܠොሻȁ. 
 

The contrast at the refined location is always larger than that at the origin, which can 

be expressed as ȁܦሺܠොሻȁ ൐ ȁܦȁ. Therefore, by eliminating extrema with ȁܦȁ below the 

pre-defined threshold instead of using ܦሺܠොሻ for low contrast removal, extrema with 

contrast ȁܦሺܠොሻȁ slightly greater than the pre-defined threshold may be eliminated if ȁܦȁ is less than 0.03, which can be expressed as ȁܦሺܠොሻȁ ൐0.03൐ ȁܦȁ. Because the 

difference between ȁܦȁ  and ȁܦሺܠොሻȁ is rather small, as shown in Figure 4-36, the 

number of keypoints is not reduced significantly as a result of approximating ȁܦሺܠොሻȁ with ȁܦȁ, as shown in Figure 4-37. 

 

..   

Figure 4-37: Comparison of detection results for low contrast removal. 
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By discarding low contrast points based on the original extrema, the low contrast 

removal process is no longer dependent on the location refinement process, and 

hence these two processes can be processed in parallel. As a result, the throughput of 

stability checking process is improved at the cost of a slight degradation in detection 

performance. 

 

4.3.5 Overall Comparison for Feature Detection 

The overall detection performance is compared as a result of the above mentioned 

approximations, which corresponds to the comparison “Step 3” shown in Figure 4-24. 

Table 4-11 lists the experimental settings for Lowe’s software model and the FPGA 

design. 

Table 4-11: Experimental settings for feature detection. 

 

Figure 4-38 shows the comparison of correspondence and repeatability between the 

software model and the FPGA design. The FPGA design keeps the detection 

robustness at a similar level to that of the software model. The FPGA design 

provides a larger number of correspondences and a higher repeatability mainly 

because of the use of smaller Gaussian kernel (݇ீ=31) that causes slight over-

detection. 

Settings Lowe’s Model FPGA Design 

Maximum Gaussian kernel size 43 31 

Word length of Gaussian kernel coefficients Floating-point 14 bits 

LSBs truncation on Gaussian filtered images 0 16 bits 

Word length of DoG values Floating-point 21 bits 

Maximum number of iterations for 

localisation refinement of keypoints 
5 1 

Approximation on low contrast removal No Yes 
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Figure 4-38: Comparison of detection and matching performance between software 

model and the FPGA design. 

4.3.6 Simulation Scheme for Descriptor Generation 

As shown in Figure 4-39, three comparisons are performed to evaluate the 

performance of the hardware design for the descriptor generation module. The 

Normalised Descriptor Vector Generation block consists of three units: 36-bin 

histogram generation, linear interpolation and descriptor computation. 

 

Figure 4-39: Three comparisons to evaluate the processing accuracy of descriptor 

generation. 
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4.3.7 Precision of Principal Orientation Calculation 

In this section, experiments are conducted to see how the principal orientation is 

affected by the precision of GMOs, which refers to the comparison “Step 1” as 

shown in Figure 4-39. There are two sources of errors: 1) the error introduced by the 

approximation based computation method 2) the quantisation error caused by using 

fixed-point accuracy with limited word length. Experiments are conducted to check 

the effect of GMOs on descriptor generation, and further the matching performance.  

 

a. Approximation Error 

Initially, GMO computation involves complicated operations, such as division, 

square root computation and        function. Without any optimisations, it is 

considerably expensive for these operations to be realised on hardware devices. 

Therefore, the approximation based computation method is proposed to reduce the 

computational complexity. Calculation errors are introduced into the system by using 

the approximation based method for GMO computation, including the shift register 

(SRT) based square root calculation for gradient magnitude, and the LUT-based 

gradient orientation computation. 

 

SRT-based Square Root Calculation 

The relative error of the SRT-based square root calculator is given in Figure 4-40, 

which is generated by taking the ratio of the result from the SRT-based square root 

computer to that of the double precision floating-point model. In general, the relative 

error decreases with the increase of the radicand and falls below 1% when the 

radicand is around 30,000 that corresponds to 15 bits in binary.  For better precision, 

more bits must be used in calculation, which brings up the trade-off between the 

precision and the processing time. Detailed introduction to the SRT-based square 

root computer will be given in Chapter 5. 
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Figure 4-40: Relative error of the SRT-based square root calculation. 

 

Because each Gaussian smoothed pixel is represented by 20 bits and the word length 

of the radicand for gradient magnitude calculation is double that of the smoothed 

pixel, the relative error caused by using the SRT-based square root calculation is 

actually small enough to be safely ignored. Figure 4-41 shows the error for the 

gradient magnitude calculated by using the SRT-based square root calculator relative 

to the floating-point calculation for the reference image from the boat sequence. The ݔ-coordinate is the row index to the image, and the ݕ-coordinate shows the relative 

error from the corresponding row of image as a result of using SRT-based square 
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root calculation. The relative error of the entire image is below 0.01% and is small 

enough to be safely ignored. 

 

  

Figure 4-41: Relative error produced by comparing the gradient magnitudes 

calculated using the SRT-based square root solution with those produced by the 

MATLAB model. 

 

LUT-based Orientation Calculation 

The gradient orientation is calculated using Equation (2.13). 

ǡݔሺߠ  ሻݕ ൌ    ିଵሺܩ௬ܩ௫ሻ (4.11) 

The gradient orientation ߠሺݔǡ  ሻ is inefficient to be computed on hardware since itݕ

includes division operation and        computation that are hardware-expensive and 

time-consuming. Inspired by the fact that the orientation is quantised to 36 directions 

with each representing 10o, there is no need to compute the exact gradient orientation 

of each pixel. Instead, the quantised orientation that a pixel belongs to is computed 

directly by using the LUT-based strategy, which is fast to compute while keeping the 

initial precision.  
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The quantised orientation ߠ௧ in range [0, 8] is first considered. Taking advantage of 

the monotonically increasing property of     function in range [0, 90o], ߠ௧  can be 

decided by comparing its tangent value with predefined thresholds: 

    ሺߠ௜ሻ ൑    ሺͳͲ ή ௧ሻߠ ൑    ሺߠ௜ାଵሻ (4.12) 

where  ߠ௜ ൌ ͳͲ݅ǡ ݅ א ሾͲǡ ͺሿ 
(4.12) can be arranged into (4.13) by substituting Equation (2.13) into (4.12). 

    ሺߠ௜ሻ ൑ หܩ௬หȁܩ௫ȁ ൏    ሺߠ௜ାଵሻ (4.13) 

To avoid division operation, (4.13) is further arranged into (4.14). 

 ȁܩ௫ȁ ή    ሺߠ௜ሻ ൑ หܩ௬ห ൏ ȁܩ௫ȁ ή    ሺߠ௜ାଵሻ (4.14) 

Therefore, the quantised orientation ߠ௧  can be easily identified by comparing หܩ௬ห 
with pre-defined thresholds. If the relationship shown in (4.14) is satisfied, ߠ௧ is set 

to ݅ . Pixel orientation ߠሺݔǡ  ௫ܩ ሻ can be easily identified by checking the sign ofݕ

and ܩ௬, and hence the quantised orientation that a pixel belongs to can be identified 

by simple multiplication and comparison operations. 

ǡݔሺߠ  ሻݕ ൌ ۔ۖەۖ
ۓ ௧ߠ ǡ ௫ܩ ൒ Ͳǡ ௬ܩ ൒ Ͳͳ͹ െ ௧ߠ ǡ ௫ܩ ൏ Ͳǡ ௬ܩ ൒ Ͳͳͺ ൅ ௧ߠ ǡ ௫ܩ ൏ Ͳǡ ௬ܩ ൏ Ͳ͵ͷ െ ௧ߠ ǡ ௫ܩ ൒ Ͳǡ ௬ܩ ൏ Ͳ  (4.15) 

The error in principal orientation (ߠ௣௢ ) is checked as a result of the LUT-based 

calculation.  

Figure 4-42 shows the comparison results between the LUT-based method and the 

floating-point model using      function. In the LUT-based method, the orientations 

are quantised to integers in range 0 to 35 with each representing 10o. When compared 

with the results from the floating-point model, the error (ȟߠሺ ǡ  ሻ) in orientation is 
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always less than 0.5. With the orientations from the floating-point model also 

quantised to integers in range 0 to 35, the difference is eliminated, as shown in the 

bottom image of Figure 4-42. Therefore, the LUT-based method is able to provide 

quantised orientations that are of the same accuracy with that of the floating-point 

model. 

 

 

Figure 4-42: Comparisons of the pixel orientations calculated by using the LUT 

based method and that from the MATLAB model using      function. 

 

b. Fixed-point Error 

The theoretical maximum word length of the gradient magnitude is 21 bits with the 

input filtered pixels represented by 20 bits. In practice, truncation is performed on the 

LSBs of the filtered pixels before the gradient magnitude calculation. This is to 

reduce the time requirement of the SRT-based square root calculator, which is 

proportional to the word length of the radicand. Besides, the resultant word length of 

gradient magnitude is reduced as well, which reduces the memory requirement for 

buffering GMOs as well as the throughput requirement of the DDR3 that is 

proportional to the word length of GMO. The final gradient magnitude is represented 

by 10 bits. It should be noticed that the input to the LUT-based orientation 

calculation is still 20 bits. 
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(a) error in principal orientation calculation for keypoints 

 

(b) 36-bin histogram of the local region for principal orientation computation 

with multiple peaks of similar value 

Figure 4-43: Comparison of the results generated with and without truncation 

performed on the LSBs of Gaussian filtered pixels. 
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The comparisons between the results generated with and without data truncation is 

shown in Figure 4-43, which shows the error in ߠ௣௢ as a result of the data truncation. 

It can be seen from Figure 4-43(a) that ȟߠ௣௢ is zero in most cases, which indicates 

that the same orientation is defined as ߠ௣௢ whether the truncation is performed or not. 

There are several outliers where another orientation is defined as ߠ௣௢. The outlier 

occurs mainly due to the possibility that the 36-bin histogram of the local region has 

two bins of similar accumulated magnitude, as shown in Figure 4-43(b). This can be 

compensated by creating keypoints for any local peak that is within 80% of the 

highest peak of the 36-bin histogram, with which there might be multiple keypoints 

created at the same location but with different orientation. As a result, the orientation 

assignment is not significantly affected by reducing the word length of Gaussian 

filtered pixels. 

With the gradient magnitude and orientation represented by 10 bits and 6 bits, 

respectively, each GMO can be represented by 16 bits. Therefore, four GMOs can be 

concatenated and sent to DDR3 as a single data to make full use of the data width (64 

bits). 

The previously presented results show the effect of the approximation based GMO 

computation and the reduced accuracy of gradient magnitude on the error in ߠ௣௢ 

computation from a more theoretical perspective. Because the rotation invariance 

depends on the precision of ߠ௣௢, experiments are conducted to check the rotation 

invariance of descriptors as a result of the above mentioned errors. The recall versus 

1-precision curve is used, which has become the golden standard for descriptor 

performance evaluation. It can be seen from Figure 4-44 that the descriptor 

performance remains virtually the same. 
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Figure 4-44: Comparison of recall versus 1-precision curve between software model 

and the FPGA design for “Step 1”. 

 

4.3.8 Quantisation Error of Feature Descriptor 

The feature descriptor is quantised by reducing the number of bits representing each 

descriptor. The aim of the quantisation is to reduce the memory requirement for 

storing descriptors with minimal loss of matching reliability. To eliminate the effect 

of matching strategy on the results, experiments are conducted using both the 

distance ratio based method and the novel matching strategy. The results are given in 

Figure 4-45, showing the matching performance as a function of the word length of 

the final descriptors. For the SIFT-based method, the matching results remain 

virtually the same when representing descriptors by at least 3 bits. For the novel 

matching strategy presented in Chapter 3, the results are rather stable when the word 

length is at least 5 bits. Therefore, the suggested word length of the final descriptors 

is 3 bits and 5 bits for the SIFT-based method and the proposed strategy, respectively.  
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(a) Matching performance using the SIFT-based method. 

     

(b) Matching performance using the proposed matching strategy. 

Figure 4-45: Matching performance as a function of the word length of descriptors. 

 

Figure 4-46 shows that the Block RAM usage is proportional to the word length of 

the normalised descriptors. Although the proposed matching strategy consumes more 

RAM for buffering descriptors than the SIFT-based matching, the computational 

complexity is reduced and resources are saved, such as DSP48E1. With a trade-off 

made between matching performance, processing complexity and memory usage, 

each descriptor is represented by 5 bits and the matching is carried out using the 

proposed matching strategy.  
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Figure 4-46: Block RAM (36 Kbits) consumption as a function of the word length of 

descriptors. 

4.3.9 Overall Comparison for Descriptor Generation 

Figure 4-47 shows the comparison of the recall versus 1-precision curve between the 

software model and the FPGA design, which corresponds to “Step 3” shown in 

Figure 4-39. The curve of the FPGA design is slightly below that of the software 

model as a result of the limited word length of Gaussian coefficients, the 

approximation based GMO computation, and the reduced word length of descriptors. 

 

Figure 4-47: Comparison of recall versus 1-precision curve between software model 

and the FPGA design. 
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4.4 Summary 

In this chapter, design parameters are studied for both keypoint detection and 

descriptor generation. The feature detection module is parameterised with two 

octaves of five Gaussian smoothed images each. Instead of computing the descriptors 

based on the closest scale of the keypoint, the pre-defined scale is used for descriptor 

generation, which reduces both the memory requirement and the processing time to a 

lower level at a cost of a little loss in matching performance.  

In an FPGA-based implementation, there is always a trade-off between the 

processing accuracy and the hardware performance, such as resource usage and 

system throughput. The designer needs to balance the required performance against 

the implementation cost. With a trade-off made between throughput and accuracy, 

the size of largest Gaussian kernel is limited to ݇ீ=31, which achieves a throughput 

of at least 60 fps with two pixels processed in parallel. Detailed description of the 

relationship between ݇ீ  and system throughput will be given in Chapter 5. The 

Gaussian filter process has been chosen to have input and output of 8 bits and 20 bits, 

respectively, with data truncation performed on both MSBs and LSBs to reduce 

computation cost. Error introduced by quantised Gaussian filter coefficients is 

reduced by representing the coefficients by 14 bits. Another example of the trade-off 

between accuracy and throughput is that the maximum number of iteration cycles for 

location refinement process is limited to one, which reduces the processing time at 

the cost of a little loss in performance. Besides, an approximation based method has 

been proposed for GMO computation. Since the time consumption of the SRT-based 

square root calculator is proportional to the word length of the radicand, the time 

requirement is reduced to half by truncating 10 LSBs of the Gaussian filtered pixels 

for gradient magnitude calculation at the expense of a slight degradation in matching 

performance. When quantised to integers in range 0 to 35 with each representing 10o, 

the gradient orientation computed using the LUT-based method has the same 

accuracy with the floating-point model using      function. An example of the trade-

off between accuracy and resource usage is to use the fixed-point data format that 

consumes less hardware resource usage at the expense of a slight degradation in 

computation accuracy. Another example is to save the on-chip memory consumption 

by reducing the word length of the normalised descriptors. By representing each 
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descriptor with only 5 bits, the loss of matching accuracy is kept at a minimum level 

while keeping the matching accuracy at almost the original level. 
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Chapter 5 Processing Core of the Optimised 

SIFT Algorithm 
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5.1 Introduction  

This chapter presents the detailed information on the processing core developed for 

the optimised SIFT algorithm. The core addresses the inefficient data acquisition and 

processing problem by offering a new pixel streaming method and a high level of 

parallel computation. Besides, novel memory access strategies are proposed for 

memory reduction.  

The processing core proposed in this thesis is the first complete FPGA solution to the 

SIFT with all phases of the algorithm covered. By taking advantage of the parallel 

processing ability of FPGA, the design is able to process VGA video at least 60 fps, 

providing that there are no more than 2,200 keypoints per frame. The design is fully 

mapped to a Xilinx Virtex-6 FPGA device. 

 

5.2 FPGA-Based SIFT Processing System 

Taking advantage of the hardware resources and the high-level parallel processing 

capability provided by the FPGA technology, it is possible to embed the entire 

system into an FPGA device. The complete SIFT based image matching system is 

shown in Figure 5-1. The FPGA embedded system (in red) processes the images 

received from the camera and sends data to a host PC. The data could be the raw 

images received from the camera, or the matching results from the SIFT processing 

core. External memory (DDR3) is required as the internal memory in the FPGA 

device is insufficient for the system. 
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Figure 5-1: Block diagram of the SIFT based image matching system. 

 

The FPGA embedded SIFT processing system mainly consists of the following 

blocks: 

a. Camera Interfacing Block: This block interfaces with the commercial camera 

mounted on an Avnet Dual Image Sensor FMC Module to acquire the images 

which are streamed into an internal buffer. 

b. Memory Interfacing Block: This block interfaces with the external memory 

on the Xilinx ML605 FPGA board to provide extra memory (DDR3) for 

intermediate processing results of the SIFT core.  

c. SIFT Processing Core: The task of this core is to detect keypoints from the 

images acquired from the camera and further transfer the keypoints to 

distinctive descriptors that can be used for image matching. The output is the 

coordinates of the matched keypoints from images under consideration. 

d. USB Interfacing Block: This block interfaces with USB controller chip to 

transfer both the raw images received from the camera and coordinates of 

matched keypoints to a host PC for display and further processing. 

This chapter mainly focuses on an efficient SIFT processing core, and description of 

the FPGA based platform will be given in Chapter 6. 
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5.2.1 Field Programmable Gate Array Technology 

The calculation requirement increases rapidly with image resolution, frame rate, and 

the number of keypoints to be processed in each frame. Furthermore, the amount of 

data transferred from the camera front-end to the USB back-end is extremely large if 

the image resolution and frame rate are required to be high. In order to obtain a high 

overall frame rate, an efficient processing method and data acquisition scheme needs 

to be applied. The data should be collected, processed and transferred concurrently 

without interruption. Using an FPGA device is an excellent solution to this 

requirement. 

 

a. Overview of FPGA Device Block Structure 

An FPGA is a semiconductor device that is based around a matrix of Configurable 

Logic Blocks (CLB) interconnected via programmable interconnects both 

horizontally and vertically. The device can be programmed to the desired function by 

users after manufacture, and hence the name “Field-Programmable”. FPGAs have 

evolved far beyond the basic capabilities of its predecessors, such as DSP and ASIC. 

As shown in Figure 5-2, an FPGA device typically consists of an array of CLBs, 

interconnect routing, IO blocks (IOB), memory (BRAM), and digital clock 

management (DCM). The FPGA devices are generally programmed by using a 

Hardware Description Language (HDL), such as VHDL or Verilog. 

 

Figure 5-2: General architecture of an FPGA device [65]. 
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b. Features of Xilinx FPGAs 

Xilinx offers a broad range of FPGAs providing advance features, low-power, high-

performance, and high capacity for any FPGA design. Below is an overview of 

Xilinx leading FPGA families, in terms of features of interest. 

 

Table 5-1: Features of Xilinx FPGAs. 

Features ArtixTM-7 KintexTM-7 Virtex-7 Spartan-6 Virtex-6 

Logic Cells 215,000 480,000 2,000,000 150,000 760,000 

Block RAM 13 Mbits 34 Mbits 68 Mbits 4.8 Mbits 38 Mbits 

DSP Slices 740 1,920 3,600 180 2,016 

Memory 
Interface 
(DDR3) 

1,066 
Mbits/s 

1,866 
Mbits/s 

1,866 
Mbits/s 

800 Mbits/s 
1,066 

Mbits/s 

I/O Pins 500 500 1,200 576 1,200 

I/O Voltage  1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V 
1.2V, 1.5V, 
1.8V, 2.5V, 

3.3V 

1.2V, 1.5V, 
1.8V, 2.5V 

 

Table 5-1 shows that Virtex-7 family provides up to 2,000,000 logic cells and 68 

Mbits Block RAM. These features, especially the number of Block RAMs available, 

are attractive to the hardware design for the SIFT processing core, which is 

demanding in hardware resources. However, with the DDR3 employed to deal with 

the large memory requirement, Virtex-6 FPGA meets the hardware resource 

requirement of the design for processing VGA images. The design can be migrated 

onto a Virtex-7 FPGA device for processing images of higher resolution, but this is 

beyond the scope of this project. 

The Virtex-6 FPGA family is divided into three sub-families, each targeting on 

different features: Virtex-6 LXT FPGAs, Virtex-6 SXT FPGAs, and Virtex-6 HXT 

FPGAs. Every Virtex-6 FPGA has 156 to 1064 dual-port RAMs, each storing 36 

Kbits. Each block RAM has two completely independent ports that share the stored 
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data [66]. Each port can be configured with one of the available widths, independent 

of the other port. This design used the Xilinx ML605 base board with the 

XC6VLX240T-FFG1156 FPGA as shown in Figure 5-3, which provides 241,152 

logic cells, 37,680 slices, 768 DSP48E1 slices, and a maximum of 14,976 Kbits 

Block RAM. 

 

Figure 5-3: ML605 base board with the XC6VLX240T-FFG1156 FPGA. 

 

5.2.2 Advantages of using FPGA 

The main advantages of using FPGA in SIFT-based image processing system are: 

1. FPGAs have grown in capacity and performance, and have become a viable 

solution to computationally intensive tasks. SIFT is known for its promising 

performance. However, SIFT is of high computational complexity, making 

FPGA a viable choice. An example is the Gaussian scale space construction 

process, which requires a huge number of operations that makes it extremely 

difficult to achieve the real-time processing target when a serial computing 

device is used, such as PC or DSP. 

2. The SIFT processing core can be programmed to perform concurrently and in 

a pipelined fashion. This feature takes advantage of the inherent parallel 

processing property of FPGA devices, with which the sub-modules of SIFT 
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algorithm can be implemented in parallel to achieve high throughput. For 

example, the Gaussian filters are applied to each pixel independently to 

generate the Gaussian pyramid. Therefore, these independent processes can 

be performed in parallel to reduce the total computation time. With the sub-

modules of SIFT algorithm arranged into pipelined architecture, the 

throughput is further improved. For example, the SIFT feature detection part 

takes ܯ  clock cycles, and the SIFT descriptor generation takes ܰ  clock 

cycles to generate descriptors based on the output from the feature detection. 

The best case is ܯ ൌ ܰ so that the output of feature detection part can be 

continuously streamed into the descriptor generation. In this case, one set of 

descriptors are outputted after every ܯ clock cycles, which is the maximum 

achievable performance of the SIFT processing core. Detailed description of 

the pipeline architecture will be given in Section 5.3. 

3. Xilinx support a wide range of embedded processing IP cores that works 

directly in a software tool called Xilinx Platform Studio (XPS). XPS is an 

integrated environment that contains a wide variety of embedded tools, IP 

cores and libraries to quickly create and develop an embedded system inside 

FPGA devices. The IP cores can be easily included in a design project to 

shorten the design cycle. For example, the Multi-Port Memory Controller 

(MPMC) provides fully parameterisable access to external memory, such as 

DDR3 on Xilinx Virtex-6 FPGA board. Moreover, there are many processor 

IP cores available for FPGAs that considerably extend the functionality of the 

system, such as MicroBlaze and PowerPC 440. Besides, a customised IP core 

can be integrated into a MicroBlaze based system, with which it is possible to 

build a highly compact and easy-to-access system on an FPGA device. 

Compared with the mask programmable ASIC technology, it is fast, 

convenient and flexible to develop an embedded system in an FPGA device. 

4. FPGAs are available in a wide range of sizes with different features. An 

FPGA device can have more than one thousand I/O pins, which supports 

many standard I/O interfaces. Therefore, it is straightforward to interface to 

external devices off the board for functionality extension, such as the 

commercial camera and the USB controller board. 
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5.3 Hardware Architecture of the SIFT Processing Core 

This section describes the SIFT processing core that is fully embedded in an FPGA 

device. The core is developed following the parameters considered and analysed in 

Chapter 4. The pipeline strategy is employed for high throughput, which is the most 

important technique used by reconfigurable systems.   

 

 

(a) Non-Pipelined Architecture 

 

(b) Pipelined Architecture 

Figure 5-4: Block diagram of the non-pipelined and the pipelined architecture. 

 

Figure 5-4 compares the non-pipelined and the pipelined architecture of a three-stage 

design. As shown in Figure 5-4(a), the non-pipelined architecture receives an output 

every period of time that equals to the sum of the processing time of all stages. In 

Figure 5-4(b), the pipelined architecture receives an output every period of time after 
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an initial delay. The length of the period is decided by Stage 2, which has the longest 

processing time of all stages. 

 

5.3.1 General Block Diagram 

The overall hardware architecture of the SIFT processing core is shown in Figure 5-5, 

which mainly consists of three parts that are arranged into a three-stage pipelined 

architecture: feature detection, descriptor generation, and descriptor matching. 

Pipeline stage 1 (feature detection) inputs the 8-bit grayscale pixel stream ܫሺݔǡ  ሻ andݕ

outputs the coordinates of detected keypoints ܥܨሺݔǡ  ሻ as well as the GMOs of allݕ

pixels from the pre-defined scales. In stage 2, a 72-dimention descriptor ܿݏ݁ܦሺݔǡ  ሻݕ
is generated for each keypoint detected in stage 1. In stage 3 (descriptor matching), 

the keypoint matching is performed based on the descriptors generated from stage 2 

and outputs the coordinates of the matched keypoint pairs ܥܯሺݔǡ  ሻ. The GMOs areݕ

buffered using external memory DDR3 on the FPGA board to save on-chip memory. 

 

  

Figure 5-5: Block diagram of the SIFT processing core. 

 

5.3.2 Memory Overview 

Carneiro and Jepson [67] have noticed that the number of interest points is around 

0.3% of total image size for the state-of-the-art methods developed by Lowe [10] and 

by Mikolajczyk and Schmid [68]. In this design, the memory is designed under the 

assumption that the maximum number of stable keypoints is 1,536 for octave 0 and 

512 for octave 1, which never overflows in the experiments. 
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The ping pong buffer management is employed and output of each module is 

buffered for input to the next pipeline stage so as to pipeline each stage making them 

processing concurrently. A ping pong buffer is used in a data transfer and contains 

two identical buffers. While one buffer is receiving data from the previous stage, the 

other one is being read for the next stage. This type of memory management ensures 

a real-time processing. In this system, RAM holding input images from the 

commercial camera is designed as a ping pong buffer to ensure that images can be 

correctly received while the previous frame is being processed. Similarly, the buffer 

between individual processing modules is implemented as a ping pong buffer for 

fully pipelined architecture, such as the buffer holding keypoint information between 

feature detection module and descriptor generation module. The design of an input 

image buffer is complicated in that it is simultaneously accessed by the commercial 

camera, SIFT processing core and USB interface. The architecture will be given in 

details in Chapter 6 together with the introduction to the camera interface and the 

USB interface. 

 

5.3.3 Feature Detection 

The first part of the SIFT algorithm is the feature detection module which mainly 

consists of three blocks: 

1. The first block in the diagram is the Gaussian scale space and Difference-of-

Gaussian (DoG) space construction block that applies Gaussian filter 

windows of different sizes to the source image to generate a set of smoothed 

images. Then the subtract operations are applied to adjacent smoothed images 

to generate the DoG images. 

2. The second block is the keypoint detection with stability checking, which is 

responsible for searching for keypoints from DoG space, refining keypoint 

locations, and eliminating pixels with low contract or large edge response. 

Stability checking is important in that pixels with low contrast is sensitive to 

noise and the difference-of-Gaussian function will have a large response 

along edges therefore is unstable to small amount of noise. 
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3. The third block is the GMO calculation, where each pixel is assigned a 

gradient magnitude ݉ሺݔǡ ǡݔሺߠ ሻ and orientationݕ  ሻ based on the local imageݕ

properties in preparation for the descriptor generation.  

The overall hardware architecture for feature detection module is shown in Figure 

5-6. The pixel stream is input to Block 1 and this block outputs the DoG values and 

Gaussian smoothed pixels that are buffered as an input to Block 2 and Block 3, 

respectively. Block 2 is responsible for identifying stable keypoints from DoG space, 

whereas Block 3 calculates the GMO of pixels from the pre-defined scales.  

 

 

Figure 5-6: Block diagram of feature detection module. 

 

As shown in Figure 5-7, the three blocks are arranged into a three-stage pipelined 

and partially parallel architecture. Since Block 2 has no data dependency with Block 

3, these two blocks are processed in parallel, which cuts the input-output delay by 

one unit of time when compared with the pipelined architecture. Detailed 

introduction to Block 1 and Block 3 are presented in the following sections. The 

hardware architecture of Block 2 is given in Appendix A. 
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Figure 5-7: The pipelined and partially parallel architecture. 

 

a. SRT Based Multi-Pixel Processing Scheme 

In this design, a SRT-based multi-pixel processing method is proposed, with which 

the time requirement for accessing the pixels for Gaussian scale space construction is 

reduced.   

 

Processing Time  

Figure 5-8(a) shows the source image to be smoothed, where the shadow area 

represents the pixels located in the boundary region within which the pixels are 

invalid as a result of the Gaussian smooth process. The rectangular (in red) displayed 

on the top left corner of the source image represents the region of pixels for 

smoothing the first valid pixel in the image, which is shown in details in Figure 

5-8(b). In Figure 5-8(b), each dot represents a pixel. The dots filled with shadow 

indicate those invalid pixels that are located in the boundary region, and the red dot 

in the center of the region represents the first valid pixel to be smoothed. Both the 

boundary size (ሺ݇ீ െ ͳሻȀʹ) and the size of region (݇ீ ή ݇ீ) for each Gaussian filter 

process are decided by that of the largest Gaussian kernel (݇ீ ) applied. In the 

exampled given in Figure 5-8(b), ݇ீ is set to 15. 
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Figure 5-8: Pixels included for Gaussian smooth of the first valid pixel. 

 

Gaussian filter has been quantised to reduce the computation complexity of Gaussian 

convolution operations. The required processing time for one VGA image is given in 

(5.1). Different scales are processed in parallel and the RAMs buffering source 

images are configured as Dual Port RAM (DPRAM) with both read and write 

accesses to the memory allowed on either port. The BRAM holding input images 

works with the clock domain of 200MHz, which corresponds to clock cycle of 5ns. 

 ܴܶ௢௥௜௚ ൌ ͷ ή ͳʹ ή෍ ሾሺݓ௜ െ ʹ݇ீሻሺ݄௜ െ ʹ݇ீሻሺ݇ீሻଶሿଵ௜ୀ଴  (5.1) 

where ݅ is the index to octaves. (ݓ௜ െ ʹ݇ீሻ and ሺ݄௜ െ ʹ݇ீሻ represent the number of 

valid pixels to be smoothed in each row and column of the source image, 

respectively. ݇ீଶ  is the number of pixels involved in smoothing one valid pixel 

independent of the number of scales. 

Gaussian scale space can be constructed by smoothing the source image with a large 

Gaussian kernel for each of the five scales instead of applying multiple successive 
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Gaussian kernels. Taking advantage of the parallel processing property of FPGA, 

scale images within the same octave can be generated in parallel by applying 

Gaussian kernel of different sizes to the source image concurrently. In this case, the 

memory for buffering intermediate smoothed results using cascade Gaussian filtering 

is saved, and accessing the source image several times per octave can be avoided. As 

a result of parallel processing, the number of scales per octave has no effect 

on ܴܶ௢௥௜௚ , and ܶ ܴ௢௥௜௚  is equal to 405 ms for VGA image. However, the time 

allowance is no more than 16.7 ms per frame for a frame rate of 60 fps. In this design, 

the SRT-based multi-pixel processing scheme is proposed for real-time processing. 

The theoretical time requirement for pixel access is calculated by (5.2). 

 

ܴܶ௠௨௟௧௜ ൌ ͷ ή     ൬݇ீ ൅ ݊௣௜௫௘௟ െ ͳʹ ൰
ή෍ ቈݓ௜ ή ݈ܿ݁݅ ቆ݄௜ െ ݇ீ ൅ ͳ݊௣௜௫௘௟ ቇ቉ଵ௜ୀ଴  

(5.2) 

where ݊ ௣௜௫௘௟  denotes the number of pixels smoothed in parallel. ݓ௜  and ݄ ௜  are the 

width and height of the input image to each octave. “    ” indicates round-up to the 

closest integer. ݇ீ  is the size of the largest Gaussian kernel and is set to 31.     ቀ௞ಸା௡೛೔ೣ೐೗ିଵଶ ቁ is the number of clock cycles (5ns) required to access a column of 

pixels from the DPRAM. 

In this design, the Gaussian scale space consists of two octaves with five scales each. 

The time consumption of pixel streaming with different number of pixels processed 

in parallel for VGA image is shown in Table 5-2. The second configuration (݊௣௜௫௘௟=2) 

meets the throughput requirement of at least 60 fps and is chosen to demonstrate the 

efficiency of both the proposed SRT-based image streaming method and the memory 

solution. Detailed description of the SRT-based multi-pixel processing strategy will 

be given in next section. 
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Table 5-2: Time requirement for different number of pixels processed in parallel. 

Frame ࢒ࢋ࢞࢏࢖࢔ Time requirement 
(ms/frame) 

Achieved throughput 
(fps) 

VGA 

1 28.416 35 

2 14.208 70 

3 10.064 99 

4 7.589 131 

 

Although the multi-pixel processing method is proposed for VGA sized video, it can 

be applied to systems with source images of higher resolution for real-time 

processing. Table 5-3 shows the number of pixels to be processed in parallel for 

images of higher resolution to achieve real-time performance. The estimated 

throughput for images of higher resolution is given in Table 5-3. 

 

Table 5-3: Throughput estimation for different frame sizes with multi-pixel 

processing scheme. 

Frame 
Resolution 

(pixels) 
 Time ࢒ࢋ࢞࢏࢖࢔

consumption 
(ms/frame) 

Estimated 
throughput (fps) 

SVGA 800x600 2 22.56 44 

XGA 1024x768 3 26.55 37 

XVGA  1280x800 4 26.06 38 

UVGA 1600x1200 7 31.54 31 

 

Although the design is configured to process two octaves with five scales each, 

larger number of octaves can be processed by making slight modification to the 

VHDL codes. Because all the octaves are processed in serial and the same processing 

block is shared, the amount of occupied device will remain almost constant as the 

number of octaves increases. By using a larger number of octaves, the logic for 

control the data routing needs to be increased, and also the size of memory blocks 
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storing the information of detected keypoints. Figure 5-9 shows that the design still 

achieves real-time despite of the higher image resolution and larger number of 

octaves.  

 

     

(a) SVGA (800x600 pixels)    (b) XGA (1024x768 pixels) 

      

(c) XVGA (1280x800 pixels)   (d) UVGA (1600x1200 pixels) 

Figure 5-9: Frame rate and processing time as a function of the number of octaves. 

 

Overview of Gaussian Filter Window Movement 

In general, smoothing an image with a Gaussian kernel is equivalent to shifting the 

filter window over the entire image pixel by pixel. For simplicity without losing 
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generality, the Gaussian kernel of size 3×3 is used as an example to illustrate the 

Gaussian filter window movement. With ݊௣௜௫௘௟=2 chosen to parameterise the design, 

two identical Gaussian filters are employed to smooth the image concurrently. In 

Figure 5-10, Gaussian filter windows are defined by thick lines and the each square 

represents a pixel. Figure 5-10(a) and Figure 5-10(b) shows the Gaussian filter 

window movement in horizontal direction and vertical direction, respectively. The 

arrows indicate the direction of movement, and the image is scanned in an order from 

left to right and top to bottom. As shown in Figure 5-10(a), when the first two pixels 

in the same column have been smoothed, the two identical filter windows move 

horizontally by one column to smooth the next two pixels. When the filter windows 

reach the rightmost end of the source image, they return to the leftmost end and 

move down vertically by two rows to start a new round of horizontal scan, as shown 

in Figure 5-10(b). 

 

 

    (a)                                                     (b) 

Figure 5-10: Gaussian window movement over the image in horizontal and vertical 

direction. 

 

Pixel Streaming Strategy 

A SRT-based multi-pixel processing method is proposed, with which the time 

requirement for pixel access is reduced by sharing pixels between adjacent Gaussian 

smoothing processes in both horizontal and vertical directions. Each output of a 3×3 

Gaussian filter is a function of nine pixels within the window. Without the register, 
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each pixel must be read nine times as the filter window is scanned through the image. 

Pixels adjacent horizontally are involved in successive filter processes, so they may 

be buffered and delayed in registers for sharing. This reduces the number of reads 

from nine to three pixels for each filter process, with which the accessing time 

increase linearly with the Gaussian window size instead of exponentially without 

using registers. A 3×3 filter spans three columns (two previous columns and the 

current column), and hence the previous two columns can be inherited from the 

previous filter process and buffered in the register, while a new column of pixels is 

read in.  

 

 

Figure 5-11: Source image streaming at the process level. 

 

 

Figure 5-12: Source image streaming at the pixel level. 
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Figure 5-11 and Figure 5-12  show the source image streaming strategy at different 

levels. The arrow indicates the streaming path. Smoothing ݊௣௜௫௘௟ adjacent pixels in 

parallel is referred to as a process. The pixels involved by each smoothing process 

are defined by the window in thick line, which consists of several contiguous rows of 

pixels. When it comes to the hardware design, pixels are constantly streamed into a 

SRT where the Gaussian smooth is performed. The SRT corresponds to the process 

window in Figure 5-11 and is of ሺ݇ீ ൅ ݊௣௜௫௘௟ሻ rows by ݇ ீ  columns when using 

conventional 2D Gaussian kernel. The process window movement is synchronised 

with that of Gaussian filter window shown in Figure 5-10. It can be seen from Figure 

5-11 that the source image is accessed horizontally at the process level with the 

sequence indicated by the arrow, and vertically at the pixel level as shown in Figure 

5-12. 

 

 

(a) Source Image 

(b) Pixel streaming into the SRT 

Figure 5-13: The SRT-based image streaming. 
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Figure 5-13 illustrates the SRT-based pixel streaming method. The SRT holding 

pixels involved in the Gaussian filter operations is updated dynamically while the 

pixels are being smoothed. Once a round of Gaussian smooth operation is finished, 

the SRT is updated with a new column of pixels from the buffer where the source 

image is located and is ready to start another round of Gaussian smooth operation. 

Two separate one-dimensional (1D) Gaussian kernels are used instead of the 

conventional two-dimensional (2D) Gaussian kernel by taking advantage of the 

linearly separable property of Gaussian kernel, with which the size of the SRT is 

reduced from ݇ீሺ݇ீ ൅ ݊௣௜௫௘௟ሻ to ʹሺ݇ீ ൅ ݊௣௜௫௘௟ሻ. This strategy is consistent with the 

multi-pixel streaming method at the pixel level and enables the re-use of intermediate 

results, which will be discussed in next section. As shown in Figure 5-13(b), pixels 

are constantly streamed into the left column of the register where the 1D Gaussian 

smooth is performed in the vertical direction. With two pixels accessed per clock 

cycle, the left column is updated every     ሺሺ݇ீ ൅ ͳሻ ʹΤ ሻ clock cycles (5ns) for a 

Gaussian kernel of size ݇ீ. 

Gaussian Convolution 

In the conventional 2D Gaussian smooth operation, the Gaussian kernel is directly 

applied to the pixel window and produces a result at the central position of the 

window in the output image. Figure 5-14 shows the 2D convolution between a pixel 

window of size 3x3 and a 2D Gaussian kernel of the same size. 

 

Figure 5-14: Gaussian smooth operation on a window of pixels (3x3) using 

conventional 2D Gaussian kernel. 
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The conventional 2D Gaussian smooth operation is ineffective in that each pixel is 

involved in the Gaussian smooth operation of a region of pixels centered on it, where 

the region is of size ݇ீ ൈ ݇ீ , as shown in the left image of Figure 5-15(a). To 

improve the computational efficiency of Gaussian smooth process, conventional 2D 

Gaussian kernel is substituted by two separate 1D Gaussian kernels by taking 

advantage of Gaussian kernel’s linearly separable property as shown in (5.3). 

ଶ஽ሺ ǡܩ   ሻ ൌ ቆ ͳξʹߪߨ ݁ି ೣమమ഑మቇ ή ቆ ͳξʹߪߨ ݁ି ೤మమ഑మቇ ൌ ଵ஽ሺ ሻܩ ή  ଵ஽ሺ ሻ (5.3)ܩ

 

(a) 

(b) 

Figure 5-15: Comparison of 2D and 1D Gaussian convolution, in terms of 

computation efficiency at the pixel level. 
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The 1D Gaussian smooth consists of two stages. In the first stage, a 1D kernel is used 

to smooth the image in the vertical/horizontal direction. In the second stage, another 

1D kernel is used to smooth in the perpendicular direction. In Figure 5-15(a), the 

filter window in thick lines and dashed lines represents the first and the last Gaussian 

smooth operation in which the target pixel is involved within its neighborhood, 

respectively. As shown in Figure 5-15(b), the target pixel is processed ݇ீଶ times 

when using 2D Gaussian kernel. However, each pixel only needs to be processed ݇ீ 

times by using 1D Gaussian kernel instead, which benefits from the intermediate 

results usage of the 1D Gaussian smooth in the first direction. 

 

 

Figure 5-16: Block diagram of the SRT-based 1D Gaussian smooth with intermediate 

results re-used. 

 

Figure 5-16 shows the diagram of the 1D Gaussian smooth with the re-use of 

intermediate results. Since the source image is streamed into the SRT vertically, the 

1D Gaussian smooth is first performed in the vertical direction, then in the horizontal 
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direction. Intermediate results of 1D vertical Gaussian smooth are continuously 

shifted into and out of a register, where the 1D Gaussian smooth is performed in the 

horizontal direction. For the 1D Gaussian kernel of size ݇ீ, the smooth result from 

the vertical direction can be re-used for the 1D Gaussian smooth in the horizontal 

direction for the following (݇ ீ െ ͳ ) processes, which reduces the computation 

complexity of the system. As a result, the data in the SRT holding intermediate 

results from 1D Gaussian smooth in the vertical direction falls into two categories 

below: 

1) The data in the leftmost ሺ݇ீ െ ͳሻ columns are inherited from previous 1D 

Gaussian smooth in the vertical direction; 

2) The data in the rightmost column is new and is generated by applying 1D 

Gaussian smooth in the vertical direction to the rightmost column of pixels in 

the current process window. 

 

 

Figure 5-17: Pipelined architecture for the Gaussian smooth process with 1D 

Gaussian kernel of size ݇ீ ൌ ͵. 

 

To achieve the maximum throughput, the pixel streaming process and the Gaussian 

convolution process are arranged into a two-stage pipelined architecture. In Figure 

5-17, the left side shows the 1D Gaussian convolution in the vertical direction and 

the right side shows the convolution operation in the horizontal direction. In this case, 
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the source image is continuously streamed into the computation module. Figure 5-18 

shows the typical timing diagram of the Gaussian convolution using 1D Gaussian 

kernel. Because the SRT holding pixels for 1D Gaussian smooth is updated every ௞ಸାଵଶ  clock cycles of 200 MHz, two Gaussian smoothed pixels that are processed in 

parallel can be obtained every 
௞ಸାଵସ  clock cycles of 100 MHz after an initial delay. 

 

 

Figure 5-18: Timing diagram for 1G Gaussian convolution with 1D Gaussian kernel 

of size ݇ீ=3. 

 

Each 2D Gaussian smooth requires ݇ீଶ  multiplication-accumulation ሺ   ሻ 
operations. The number of     operations for a 1D Gaussian convolution to obtain 

a result is ݇ ீ . Therefore, it requires ʹ݇ீ      operations to generate a smoothed 

pixel that is equivalent to a 2D convolution output. The computational advantage of 

the non-separable 2D convolution against the separable 1D convolution is ݇ீଶȀʹ݇ீ . 

For Gaussian kernel of size ݇ீ=31, the use of 1D Gaussian convolution introduces a 

reduction in the number of     operations by a factor of 15.5, which indicates a 

reduction of up to 15.5 times in the use of device area for these operations. The total 

number of     operations to be performed on an  ൈ  sized image to construct the 

Gaussian scale space of ܱ octaves and ܵ scales using 2D and 1D are given in (5.4) 

and (5.5), respectively. 
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    ீ௔௨௦௦ଶ஽ ൌ ෍ܰܯͶ௜ ݇ீଶܵைିଵ
௜ୀ଴  (5.4) 

    ீ௔௨௦௦ଵ஽ ൌ ෍ܰܯͶ௜ ʹ݇ீܵைିଵ
௜ୀ଴  (5.5) 

The computational efficiency is further improved by taking advantage of the 

symmetric property of 1D Gaussian kernel. As shown in Figure 5-17, pixels sharing 

the same weighting factor are added up before applying multiplication operations. It 

can be seen from (5.4) and (5.6) that the computational cost increases linearly with 

kernel size instead of exponentially as the 2D convolution does, which has greatly 

reduced the number of operations for Gaussian smooth and further the device area. 

    ீ௔௨௦௦ଵ஽ᇱ ൌ ෍ܰܯͶ௜ ሺ݇ீ ൅ ͳሻܵைିଵ
௜ୀ଴  (5.6) 

 

Memory Solution 

Initially, the memory requirement for buffering Gaussian smoothed pixels (ܴܯ௦௖௔௟௘) 

of one scale and DoG values (ܴܯ஽௢ீ) are given in (5.7) and (5.8), respectively. 

௦௖௔௟௘ܴܯ  ൌ ݁ሾሺݓ଴ െ ʹܾሻሺ݄଴ െ ʹܾሻሿ (5.7) 

஽௢ீܴܯ  ൌ Ͷ݈ሾሺݓ଴ െ ʹܾሻሺ݄଴ െ ʹܾሻሿ (5.8) 

where ݁  and ݈ are the word length of a Gaussian smoothed pixel and a DoG value, 

respectively. ܾ is equal to ሺ݇ீ െ ͳሻȀʹ and is the size of the boundary region within 

which both the filtered pixels and the DoG values are unavailable due to the nature of 

Gaussian smooth. 

There is no need to buffer all the smoothed pixels of the entire scale, since the GMO 

calculation of a pixel is only related to its four neighbouring pixels. This is the same 

case with that of DoGs, since the keypoint detection is only related to the 26 

neighbouring pixels in a 3×3×3 region. Figure 5-19 shows an efficient memory 
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solution to buffer Gaussian smoothed image, named as rotating buffer. DPRAM acts 

as the buffer for efficient memory access. The data depth and width of the RAM are Ͷሺݓ଴ െ ʹܾሻ and ݁, respectively, where ሺݓ଴ െ ʹܾሻ is the number of valid pixels per 

row for octave 0. The RAM for DoG values is of the same depth with that for 

smoothed pixels, but the data width is Ͷ݈  with four DoG values of a pixel 

concatenated and saved as one data for fast access. Since the same access strategy is 

used for both Gaussian smoothed pixels and DoG values, the rotating buffer for 

Gaussian smoothed pixels is used as an example to describe the efficiency of the 

proposed method. 

In Figure 5-19, each square in the image being processed represents a pixel (the 

boundary region is not shown). The squares in colour are the pixels that have been 

smoothed. ݅ is the index to the columns of the image and is in range [0, ݓ଴-2b-1], and ݆ is the index to the rows of the image and is in range [0, ݄଴-2b-1]. In the right image 

of Figure 5-19, each square in the buffer holds a Gaussian smoothed pixel. The 

buffer is divided into two parts with each part having two rows. The buffer is 

accessed in a way that one part is being written while the other part is being read. 

Figure 5-19(a) shows that the Gaussian smoothed pixels are written to Part 1 of the 

buffer when the source image is being smoothed in the first round of scan. When Part 

1 has been filled with smoothed pixel values from the first round of scan, the 

following two rows of smoothed pixels from the second round of scan are mapped to 

Part 2, as shown in Figure 5-19(b). Figure 5-19(c) shows that when it comes to the 

third round of scan, the smoothed pixels are written back to Part 1, overwriting the 

pixel values from the first round of horizontal scan, and so forth. 
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(a) 

 

(b) 

 

(c) 

Figure 5-19: The Rotating buffer based memory solution for Gaussian smoothed 

pixels with ݊௣௜௫௘௟ ൌ ʹ. 

 



186 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 5-20: The SRT-based data access for GMO calculation with ݊௣௜௫௘௟ ൌ ʹ. 

 Pixels that have been smoothed  Pixels being smoothed 

 Pixels who’s GMOs are being calculated  Pixels involved in the GMO calculation 
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As shown in Figure 5-20, a SRT of four rows by three columns is used to hold the 

Gaussian smoothed pixels for GMO calculation while the source image is being 

processed. The size of the SRT is decided by the number of pixels smoothed in 

parallel, and is of size ሺ݊௣௜௫௘௟ ൅ ʹሻ ൈ3. Figure 5-20(a) shows that the SRT remains 

empty before Part 1 of the buffer has been filled with Gaussian smoothed pixels from 

the first round of scan. As shown in Figure 5-20(b) and Figure 5-20(c), when it 

comes to the following rounds of scan, smoothed pixels are continuously streamed 

into and out of the SRT for GMO calculation and the smoothed pixels are accessed in 

two ways:  

1) The two rows of smoothed pixels with higher physical level in the smoothed 

image are accessed from the rotating buffer. 

2) The other two rows of smoothed pixels with lower physical level in the 

smoothed image are continuously shifted into the SRT while the same rows 

of source image are being smoothed. 

Therefore, of the total four newly updated scaled pixels of each column in the SRT, 

two are retrieved from the rotating buffer and the other two are from the pixels being 

smoothed. By taking advantage of the DPRAM provided by FPGAs, the two parts of 

buffer can be accessed simultaneously and independently. 

 

 

Figure 5-21: Gaussian smoothed image with ݊௣௜௫௘௟ ൌ Ͷ. 
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(a) 

 

(b) 

 

(c) 

 

Figure 5-22: The SRT-based data access for GMO calculation with ݊௣௜௫௘௟ ൌ Ͷ. 

 Pixels that have been smoothed  Pixels being smoothed 

 Pixels who’s GMOs are being calculated  Pixels involved in the GMO calculation 
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It should be noted that the rotating buffer for either smoothed pixels or DoG values is 

of size Ͷ ൈ ሺݓ଴ െ ʹܾሻ, which remains constant and is independent of the number of 

pixels processed in parallel. When ݊௣௜௫௘௟=4, for example, four rows of pixels (row 0 

to row 3, row 5 to row 8, and so forth) are smoothed in parallel. As shown in Figure 

5-21, GMO calculation of pixels in dark grey (row 1, row 2) is only related to pixels 

smoothed in the same round of scan (row 0 to row 3). However, GMO calculation of 

pixels in light grey (row 3, row 4) involves the smoothed pixels of the adjacent round 

of scan (row 2, row 5). Therefore, the buffer only needs to hold the smoothed pixels 

of the last two rows of each round of scan, independent of the number of pixels 

processed in parallel. As shown in Figure 5-22, when multiple pixels (݊௣௜௫௘௟ ൐ ʹ) are 

smoothed in parallel, the size of rotating buffer is constant with the increase of ݊௣௜௫௘௟ 
and stays the same with that of ݊௣௜௫௘௟ ൌ ʹ, but the size of registers increases from 

four rows to (݊ ௣௜௫௘௟ ൅ ʹ) rows. 

The memory requirement for Gaussian smoothed pixels (ܴܯԢ௦௖௔௟௘) of a scale and 

DoG values (ܴܯԢ஽௢ீ ) are reduced from (5.7) and (5.8) to (5.9) and (5.10), 

respectively. 

Ԣ௦௖௔௟௘ܴܯ  ൌ ݁ ή ሾͶሺݓ଴ െ ʹܾሻሿ (5.9) 

Ԣ஽௢ீܴܯ  ൌ Ͷ݈ ή ሾͶሺݓ଴ െ ʹܾሻሿ (5.10) 

where ݁  and ݈ are the word length of a Gaussian smoothed pixel and a DoG value, 

respectively. It can be seen from (5.9) and (5.10) that the memory consumption is 

independent of ݊௣௜௫௘௟.  
Although the design is proposed for VGA images, it can be applied to images of 

higher resolution. Table 5-4 summarises the memory requirement for images of 

different sizes, where the buffer size for DoG values is estimated with five scales per 

octave. With both buffers shared between octaves, the memory requirement is 

independent of the selected number of octaves. 
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Table 5-4: Memory requirement of Gaussian smoothed pixels and DoGs for images 

with different sizes. 

Source image 
Image resolution 

(pixels) 

Memory requirement 

Gaussian smooth 
(Kbits/scale) 

DoG (Kbits) 

QVGA 320x240 1.20e (1) 4.78l (2) 
VGA 640x480 2.45e 9.78l 
SVGA 800x600 3.07e 12.28l 
XGA 1024x768 3.95e 15.78l 

WXGA 1280x800 4.95e 19.78l 
UXGA 1600x1200 6.20e 24.78l 

(1) ݁  is the word length of a Gaussian smoothed pixel. 

(2) ݈  is the word length of a DoG value. 

 

b. Gradient Magnitude and Orientation Calculation 

Considering that the GMO computation of a pixel is only related to its four adjacent 

smoothed pixels in the same scale, they can be computed in parallel with Gaussian 

smooth with only a negligible initial delay. The block diagram of the proposed 

approximation based architecture for GMO computation is shown in Figure 5-23. ܩ௫̴௦௜௚௡  and ܩ௬̴௦௜௚௡  are defined in (5.11) and (5.12), respectively. ߠ௧௘௠௣ represents 

the gradient orientation in the first quadrant. With the orientation quantised to 

integers in range 0 to 35, ߠ௧௘௠௣ is integer in range 0 to 8. 

௫౩౟ౝ౤ܩ  ൌ ൜Ͳǡ  ሺ ൅ ͳǡ  ሻ ൒  ሺ െ ͳǡ  ሻͳǡ  ሺ ൅ ͳǡ  ሻ ൏ ሺ െܮ ͳǡ  ሻ  (5.11) 

௬̴ୱ୧୥୬ܩ  ൌ ൜Ͳǡ  ሺ ǡ  ൅ ͳሻ ൒  ሺ ǡ  െ ͳሻͳǡ  ሺ ǡ  ൅ ͳሻ ൏ ǡݔሺܮ ݕ െ ͳሻ  (5.12) 

The approximation based strategy takes only four clock cycles to calculate a pixel 

orientation.  
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Figure 5-23: Block diagram of the approximation based GMO calculation. 

 

Memory Solution 

The memory requirement (ீܴܯெை) for GMOs is defined in (5.13). 

ெைீܴܯ  ൌ ܾீெை ή ௦ܰ௖௔௟௘ ή෍ ሾሺݓ௜ െ ʹܾ െ ʹሻሺ݄௜ െ ʹܾ െ ʹሻሿଵ௜ୀ଴  (5.13) 

where ܾ ீெை is the bits number per GMO. ௦ܰ௖௔௟௘ is the number of pre-selected scales 

per octave for GMO calculation. 

It has been studied in Chapter 4 that gradient magnitude and orientation are 

represented by 10 bits and 6 bits, respectively. With two scales per octave selected, 

the required memory size is ீܴܯெை=1.27 Mbytes, which is too large for many 

hardware devices to afford. To tackle this problem, a DDR3 based memory solution 

is proposed in this thesis to provide up to 512 Mbytes off-chip memory. The Xilinx 

EDK development tools provide parameterisable Xilinx Multi-Port Memory 
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Controller (MPMC) [ 69 ], which offers access to DDR3 from one to eight 

independent ports. Each port can be chosen from a set of Personality Interface 

Modules (PIMs). In this design, MPMC is configured with two Native Port Interface 

(NPI) PIMs, which support configurable data width of 32 bits or 64 bits on each port. 

One is used to write calculated GMOs to DDR3, and the other is used to read GMOs 

from DDR3 for descriptor generation. As shown in Figure 5-24, four sets of GMOs 

are concatenated and sent as a single data to make full use of the data width of 64 

bits. The throughput requirement (ܴܶܲீெைௐ௥) for NPI write port is defined below. 

 ܴܶܲீெைௐ௥ ൌ ݂ ή  ெை (5.14)ீܴܯ

where ݂  is the system frame rate. 

 

 

Figure 5-24: Data concatenation for GMO. 

 

The throughput requirement (ܴܶܲீெைௐ௥) is 76.1 Mbytes/s with an overall frame rate 

of 60 fps. It can be seen from Table 5-5 that NPI write port with 32-word burst data 

transfer meets the throughput requirement.  

In Table 5-5, latency on writes is not characterised because MPMC allows write data 

to be pushed in before or after the address request. It should be noticed that the 

throughput listed in Table 5-5 is the maximum total data throughput. The throughput 

increases with the burst size of the transfer data, so the 64-word burst offers the 

highest maximum bandwidth but might increase the delay on other ports. Therefore, 

the 32-word burst data transfer is used for DDR3 memory access with priority given 

to NPI read port to constantly feed GMOs into the descriptor generation module 
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without interruption, which will be discussed later in section 5.3.4. The detailed 

configuration of the NPI PIM Write Interface is given in Appendix B. 

 

Table 5-5: MPMC port latency and theoretical throughput for Virtex-6 FPGA 

 Port A Port B 

Port Type NPI NPI 

Operation Write Read 

Data Width 64 bits 64 bits 

Data Transfer Type 32-word burst 32-word burst 

Initial Transaction Latency 
(MPMC_Clk0) 

N/A 30 

Maximum Total Data Throughput 
(Mbytes/s) 

1,143 1,408 

 

5.3.4 Descriptor Generation 

The second part of the SIFT algorithm is the Descriptor Generation Module (DGM), 

where each keypoint is described using a gradient-orientation histogram. The overall 

hardware architecture of the descriptor generation module is shown in Figure 5-25, 

which mainly consists of six sub-modules: 

1. Gaussian Weighting Factor Controller, which is Look-up Table (LUT) based 

and provides Gaussian weighting factors for both Principal Orientation 

Calculation and 36-bin Histogram Generation.   

2. Principal Orientation Calculation. This sub-module inputs the GMOs from 

DDR3 and outputs the principal orientation of the keypoint by weighting and 

accumulating pixels within the local region. 

3. Centre Coordinate Calculation. In this sub-module, the centre coordinates of 

eight surrounding sub-regions are calculated based on the principal 

orientation, with which the locations of the surrounding sub-regions are fixed 

for the orientation invariance of the sub-region arrangement. 
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4. 36-bin Histogram Generation. By assigning a consistent orientation to each 

keypoint, each sub-region within the local region is described by using a 36-

bin histogram that is represented relative to the principal orientation and 

therefore achieving rotation invariance. The orientation histogram has 36 bins 

covering 360 degrees of orientation. 

5. Linear Interpolation. The 36-bin histogram is interpolated into 8-bin 

histogram by distributing the value of each histogram into its adjacent 

histogram bins so as to avoid abrupt changes in the descriptor as a result of a 

sample shifts from being within one histogram to another. 

6. Descriptor Normalisation. The descriptor is normalised twice to reduce the 

effects of illumination changes, such as image contrast, and to reduce the 

influence of large gradient magnitudes. 

 

 

Figure 5-25: Block diagram of descriptor generation module, where FDM stands for 

the Feature Detection Module. 

 

Taking advantage of the parallel processing property of hardware devices, the six 

sub-modules are arranged into a five-stage pipelined and parallel processing 

architecture. It can be seen from Figure 5-25 that Stage 1 inputs the GMOs and the 
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weighting factors retrieved from the Gaussian weighting factor controller, and 

outputs the principal orientation, which is then passed to Stage 2 and Stage 3. In 

Stage 2, center coordinates of eight surrounding sub-regions are computed and fed 

into Stage 3. Then the 36-bin histogram of each sub-region is generated in Stage 3 

with the weighting factors retrieved from Gaussian weighting factor controller. In 

Stage 4, 36-bin histograms are interpolated into 8-bin histograms, which are 

normalised in the last stage to generate the final descriptor of 72 dimensions. 

Detailed introduction to the partition based memory access scheme, the SRT (Shift 

RegisTer) based reconfigurable divider and the SRT based square root calculator are 

presented in this section. Hardware architecture of the descriptor generation module 

is given in Appendix C. 

 

a. Memory Access Scheme 

DDR3 is used as the buffer for GMOs (Gradient Magnitude and Orientations). 

Although NPI PIM read port supports theoretical throughput of up to 1,408 Mbytes/s, 

it is not large enough if the DDR3 is used directly as the input to DGM without an 

efficient memory access strategy.  

 

Memory Throughput Analysis 

Figure 5-26 shows the sub-regions arrangement. Each sub-region is defined as a 

rectangle, because it is difficult to define circular sub-regions when accessing pixels 

from the memory and processing sub-regions to generate gradient histogram.  

 

Figure 5-26: Rectangular sub-regions arrangement with overlap. 
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The square in dashed line indicates the local region centred on the keypoint. The data 

(GMOs) in the overlapped region have to be repeatedly accessed if each sub-region 

is accessed independently from the memory, which largely increases the throughput 

requirement for NPI PIM read interface of MPMC. Therefore, it is more efficient if 

the entire local region is accessed as a whole from DDR3 and buffered as input to the 

descriptor generation module. In this case, the throughput requirement (ܴܶܲே௉ூோௗ) of 

the NPI read port is defined by (5.15). 

 ܴܶܲே௉ூோௗ ൌ ݊଺ସ௕௜௧௦ ή ݀௟ ή ݊ௗ௘௦௖ ή ݂ ή ͸Ͷܾ݅(5.15) ݏݐ 

with 

݊଺ସ௕௜௧௦ ൌ     ൬݀௟Ͷ ൰ 

where ݀ ௟ is the diameter of the local region. ݊଺ସ௕௜௧௦ is the number of 64-bit data to be 

accessed from the memory for each row of the local region. ݊ௗ௘௦௖ is the number of 

descriptors to be generated per frame. ݂ is the system frame rate. The throughput 

requirement is in range 412.9 Mbytes/s to 1011.7 Mbytes/s with 2,000 keypoints per 

frames, which is proportional to the size of the sub-region, the number of keypoints 

to be described, and the frame rate. 

The throughput of the NPI PIM read port increases with data burst size, but might 

increase the delay on other ports. With both ports configured as 32-word burst 

transfer, neither of them is able to achieve the theoretical throughput given in Table 

5-5. It has been obtained from experiments that with 32-word burst data transfer on 

both NPI PIM port, it requires on the average 46 MPMC clock cycles (5ns) for each 

read transaction, which corresponds to a throughput of approximately 530.7 

Mbytes/s and is not high enough to meet the throughput requirement of the design. 

To tackle this problem, an efficient memory access strategy is required.  

In this thesis, a partition-based memory access scheme is proposed to reduce the 

throughput requirement increased by repeatedly accessing pixel values within the 

overlapped area shared between adjacent local regions. With the new memory access 

strategy employed, the throughput requirement (ܴܶܲԢ஽஽ோଷ ) is defined in (5.16), 
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which is no longer related to the number of keypoints and is less dependent on the 

size of sub-regions. 

 ܴܶܲ஽஽ோଷᇱ ൌ ݂ ή෍ ෍ ܴܶܲ௦௜ଷ௝ୀଶଵ௜ୀ଴  (5.16) 

with ܴܶܲ௦௜ ൌ ݊௣௔௥௧௜௧௜௢௡ ή ݊௥௢௪ೞ೔ ή ݊଺ସ௕௜௧௦ ή ͸Ͷܾ݅ݏݐ 

where 

݊௥௢௪ೞ೔ ൌ     ቆሺ݄௜ െ ʹܾ െ ʹሻ ൅ ሺ݊௣௔௥௧௜௧௜௢௡ െ ͳሻ ή ݊௢௩௘௥௟௔௣ೞ೔݊௣௔௥௧௜௧௜௢௡ ቇ 

݊଺ସ௕௜௧௦ ൌ     ൬ݓ௜ െ ʹܾ െ ʹͶ ൰ 

݆ is the index to the two pre-defined scales (scale2 and scale3) and ݅ is the index to 

octaves. ݊ ௣௔௥௧௜௧௜௢௡  is the number of partitions of each octave and ݊௥௢௪ೞ೔  is the 

number of rows per partition. ݊௢௩௘௥௟௔௣ೞ೔ is the overlapped rows shared by the local 

region of keypoints in adjacent rows and is equal to 40 and 64 for scale2 and scale3, 

respectively.  

The throughput and memory requirement of the partition-based solution with 

different partition sizes are given in  

Table 5-6. The time consumption per partition is calculated based on the 

experimental result, which is 46 MPMC clock cycles per 32-word burst read 

transaction. The buffer size is closely related to the number of partitions, which 

decides the number of rows of GMOs to be buffered for each partition. Six partitions 

for octave 0 and one partition for octave 1 are chosen with the compromise made 

between throughput and memory requirement, with which the throughput 

requirement is reduced significantly.  
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Table 5-6: DDR3 throughput requirement of partition-based memory access solution 

with different partition size (scale2/scale3). 

Octave 
Number of 
partitions 

Rows of 
GMOs (per 
partition) 

Memory 
requirement 

(Mbytes) 

DDR3 throughput 
requirement 
(Mbytes/s) 

0 

2 244/256 0.66/0.74 33.96/35.63 

3 176/192 0.50/0.59 36.74/40.08 

4 142/160 0.42/0.51 39.52/44.53 

5 122/140 0.38/0.47 42.44/48.71 

6 108/128 0.34/0.44 45.09/53.44 

7 100/118 0.32/0.42 48.71/57.47 

8 92/112 0.31/0.40 51.22/62.34 

1 1 208/208 0.23/0.23 6.86/6.86 

 

 

Partition-based Memory Access Solution 

This section describes in details the proposed partition-based memory access solution 

that is developed to reduce the throughput requirement of the NPI PIM read port. 

Figure 5-27 shows the block diagram of the memory access solution to NPI PIM read 

interface. NPI PIM Read Unit fetches GMOs from DDR3 and sends data to DGM 

through Multiplexing Controller. Read Interface Controller is designed to deal with 

enable signal (ܴ݁ܽ݀ܵݐݎܽݐ) and status indicators (ݕܴܱ݀ܽ݁ܯܩை௖௧଴ሾͷǣ Ͳሿ, ݕܴܱ݀ܽ݁ܯܩை௖௧ଵ ை௖௧଴ሾͷǣݐݎܽݐܵܩܦ , Ͳሿ,ݐݎܽݐܵܩܦை௖௧ଵ, ݄ݏ݅݊݅ܨܩܦை௖௧଴ሾͷǣ Ͳሿ , ݄ݏ݅݊݅ܨܩܦை௖௧ଵ) to control the processing 

procedures of the NPI PIM Read Unit and the Descriptor Generation Module to 

make these two parts co-operate properly. Configuration of the NPI PIM Read 

Interface is given in Appendix B. 
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Figure 5-27: Overview of the memory access solution to NPI PIM read interface. 

 

Figure 5-28 shows the pipelined architecture of the partition-based memory access 

solution. The processing time varies for each partition, which is proportional to the 

number of keypoints within each partition. However, the time requirement for 

accessing GMOs from DDR3 is approximately the same since each partition is of the 

same size.  

 

Figure 5-28: Pipelined architecture for the partition-based memory access solution. 

 

1) Status Indicators 

The GMOs from octave 0 are divided into six partitions and octave 1 is taken as one 

partition. Therefore, the status indicators for octave 0 is a six-bit big endian signal 

with each bit active high. As shown in Figure 5-29, the Most Significant Bit (MSB) 
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holds the indicating bit for the first partition of octave 0, and the Least Significant Bit 

(LSB) holds the indicating bit for the last partition of octave 0. 

 

(a) 

(b) 

(c) 

Figure 5-29: An example of the status indicators for octave 0. 

 

2) Read Interface Controller 

Detailed flowcharts of the control logic are provided in Figure 5-30 and Figure 5-31. 

Figure 5-30 shows that DGM does not start processing a newly arrived partition until 

keypoints from the previous partition have been processed. Figure 5-31 shows that 

DGM always waits for the corresponding indicating bit (ݐݎܽݐܵܩܦை௖௧଴ሾͷǣ Ͳሿ ,ݐݎܽݐܵܩܦை௖௧ଵ) 
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to be asserted before it starts processing a new partition. Once the current partition 

has been processed, the corresponding indicating bit (݄ݏ݅݊݅ܨܩܦை௖௧଴ሾͷǣ Ͳሿ ,݄ݏ݅݊݅ܨܩܦை௖௧ଵ) 
is asserted, which indicates that DGM is in the state IDLE and is ready to process 

next partition.  For example, when GMOs from partition 3 is ready in the buffer, the 

buffer status indicator is set as shown in Figure 5-29(a). The Read Interface 

Controller waits for the finish indicating bit (݌̴݄ݏ݅݊݅ܨʹ) for partition 2 to be asserted, 

as shown in Figure 5-29(b). Then DGM starts processing partition 3 when the start 

indicator has been set as shown in Figure 5-29(c).  

 

 

Figure 5-30: General flowchart of the Read Interface Controller.  
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Figure 5-31: General flowchart of DGM. 

 

In a short summary, two conditions should be met before DGM starts processing 

keypoints from a new partition. 

 GMOs of a new partition have been accessed from DDR3 and buffered, ready 

to use. 

 Finish indicating bit has been asserted, indicating that the previous partition 

has been processed and DGM is in the state IDLE and is ready to process the 

next partition. 
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3) Multiplexing Controller 

The block diagram of the Multiplexing Controller is shown in Figure 5-32. This unit 

works with two different clock domains, where data received from DDR3 are first 

pushed into the FIFO under a clock frequency of 200 MHz, and then sent to ping 

pong buffers that operate with a clock frequency of 100 MHz. 

 

 

Figure 5-32: Block diagram of the Multiplexing Controller. 

 

This unit mainly consists of four parts:  

 FIFO: facilitate data exchange across independent clock domains. 

 De-multiplexer: send data to ping pong buffers alternatively for 

continuous data transfer. 

 Ping pong buffers: two groups of buffers with each buffering a partition 

of GMOs from one of the two pre-selected scales alternatively. The two 

groups of buffers work in a way that one group is being written while 

GMOs in the other group is being transmitted to DGM. 

 Multiplexer: route data from ping pong buffers to DGM. 

 

During a system design, there are many components that work with different clock 

domains. Asynchronous FIFO plays an important role in the exchange of data that 
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are consecutively transferred across different clock domains. The asynchronous 

FIFO has two interfaces, one for pushing data into the FIFO and the other for reading 

the data out. Each interface has its own independent clock signal. For example, as 

shown in Figure 5-33, System X pushes data into the FIFO on Clock_X and System 

Y reads data out on Clock_Y. Signal fifo_full and fifo_empty are employed to take 

care of the overflow and underflow conditions, respectively. 

 

Figure 5-33: Asynchronous FIFO in between two systems with independent clock 

domains. 

 

b. SRT based Reconfigurable Divider 

Figure 5-34 shows the flow chart of the SRT-based divider, with which the division 

operation is replaced by simpler operations, such as shift, compare, and subtract. The 

register REG is first initialised with the most significant ܰ bits of the dividend and is 

compared with the divisor, where ܰ is the word length of the divisor. In the 

following iteration cycles, the dividend is continuously shifted into REG bit by bit, 

which is compared with the divisor to decide the corresponding bit of the quotient. 

The index controls the division process and is initialised to (ܯ -ܰ ). After each 

comparison iteration, index minus by one and the divider finishes when index=0.  

Table 5-7 gives an example to the SRT-based divider with the word length of 

dividend and divisor set to 12=ܯ and ܰ =5, respectively. The REG is initialised with 

the most significant 5 bits of the dividend (“10100”), and the bit of dividend with 

underline is continuously shifted into the register REG from the rightmost end.  
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Figure 5-34: Flow chart of the SRT-based divider. 

 

Table 5-7: An example of the SRT-based divider. 

 

 

The divider can be configured with dividend and divisor ranging from 2 to 35 bits 

and 1 to 26 bits, respectively. The resource usage of the SRT-based divider is 
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relatively low when compared with dedicated IP cores provided by Xilinx, as shown 

in Table 5-8. 

 

Table 5-8: Resource usage comparison of different solutions to divider. 

 Radix-2 High-Radix 
SRT-based 

divider 

Target Device Xilinx Virtex-6 FPGA 

Dividend (bits) 32 37 35 

Divisor (bits) 32 24 26 

LUTs 2,126 532 336 

FFs 3,202 795 165 

DSP48E1 0 11 0 

RAMB18E1 0 1 0 

 

 

c. SRT based Reconfigurable Square Root Calculator 

Figure 5-35 shows the flow chart of the SRT-based square root calculation, with 

which the square root computation is replaced by simpler operations, such as shift, 

compare, and subtract. The register iRight is first initialised with the two most 

significant bits of the radicand and is compared with iLeft, which is initialised to ‘1’. 

In the following iteration cycles, the radicand is continuously shifted into iRight, 

which is compared with iLeft to decide the corresponding bit of iSquareRoot holding 

the square root value. The index controls the division process and is initialised to (ܰ-

1), where ܰ  is the word length of the radicand. After each comparison iteration, 

index minus by two and the calculation finishes when index=1.  
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Figure 5-35: Flow chart for reconfigurable square root calculation. 

 

Register iLeft is updated following the flowchart shown in Figure 5-36, where   is 

the index to the current iteration cycle. 

 

Figure 5-36: Update register iLeft. 
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Table 5-9 gives an example to further explain the reconfigurable square root 

calculator. The two bits with underline are the bits to be shifted into iRight from the 

rightmost end. 

 

Table 5-9: An example of the reconfigurable SRT-based square root calculator. 

 

 

The reconfigurable square root calculator supports input/output of up to 48bits. Table 

5-10 shows that the requirement of the SRT-based method is relatively low when 

compared with that of the dedicated IP core provided by Xilinx.  

 

Table 5-10: Resource usage comparison of different solutions to square root 

calculation. 

Method 
Target 
Device 

Input / 
Output 
Width 

LUT6-FF 
pairs 

LUTs FFs 
Max 

Frequency 
(MHz) 

CORDIC Xilinx 
Virtex-6 
FPGA 

48 

2,549 2,448 2,511 277 

SRT-
based 

1,696 1,495 1,068 228 

 

5.3.5 Descriptor Matching 

This stage maps each keypoint from input images to a corresponding point from the 

reference image. Descriptor vectors of each keypoints are buffered and the keypoints 

are matched using the novel matching strategy presented in Chapter 3. This stage is a 
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task well-suited for hardware implementation, considering that the time consuming 

descriptor matching process can be compensated by exploring the inherent 

parallelism of embedded hardware devices. Figure 5-37 shows the block diagram of 

the descriptor matching module, which consists of one Get Descriptor unit and two 

identical Compare Descriptor units.  

 

Get 

Descriptor

Compare 

Descriptor

Compare 

Descriptor

RAM0

RAM1

RAM2

Descriptor Buffer

 

Descriptor Matching

FIFO

FIFO for matches

 

 

Figure 5-37: Block diagram of the Descriptor Matching module. 

 

Descriptor Buffer: The design can be configured to work in two different modes. In 

the first mode, each image is compared with its previous frame. In this mode, RAMs 

are accessed in a way shown in Figure 5-38(a), where one RAM is being written 

while the other two are being read. In the second mode, the input images are 

continuously compared with the same reference image. Descriptors from the 

reference image are buffered in RAM0 and act as the database. Descriptors from 

consecutive input images are mapped into ping pong buffers RAM1 and RAM2 in 

turn, with which one is being written by the descriptor generation module, while the 

other one is being read by the descriptor matching module, as shown in Figure 

5-38(b). With DPRAM acting as the buffer, two descriptors arrive every clock cycle, 

corresponding to a throughput of 0.2G descriptors per second with a clock frequency 

of 100 MHz. Because DPRAM supports performance of up to 450 MHz, the 

throughput can be further improved by using higher clock frequency if necessary. 
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Figure 5-38: Descriptor buffer access. 
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Figure 5-39: Flowchart for Get Descriptor unit. 
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Get Descriptor: This unit is responsible for accessing descriptors from Descriptor 

Buffer and routing data to Compare Descriptor units. For each descriptor from the 

input image, all the descriptors from the reference image have to be accessed from 

the buffer, as shown in Figure 5-39. The corresponding throughput requirement is 

0.24G descriptors per second. Because two descriptors are accessed from the buffer 

every clock cycle, they can be matched against the reference image in parallel. As a 

result, descriptors from the reference image can be shared by two matching processes 

and the throughput requirement is reduced to half (0.12G). 

Compare Descriptor: This unit compares each descriptor from the input image 

against the descriptors from the reference database, and mainly consists of the 

following four steps: 

1) Calculate the distance (ο݀) between each dimension of the pair of descriptors. 

This process is iterated ݊௥௘௙ times for each descriptor from the input image, where ݊௥௘௙ denotes the number of descriptors from the reference database. 

2) Count the number (ܰοௗ) of dimensions with ο݀ below the pre-defined threshold 

  .and keep the two pairs of descriptors with the largest and the second largest οܰௗ, which corresponds to the closest and the second-closest neighbour, respectively (οௗݎ݄ܶ)

3) Compare ܰοௗ of the closest neighbour with a pre-defined threshold.  

4) Compare ܰοௗೞ೐೎೚೙೏  with ܰ οௗ೎೗೚ೞ೐ೞ೟ ή ಿο೏ೞ೐೎೚೙೏ಿο೏೎೗೚ೞ೐ೞ೟ݎ݄ܶ .  
The above mentioned four steps are iterated ݊௜௡௣  times, where ݊ ௜௡௣  denotes the 

number of descriptors from the input image to be matched against the reference 

database. By registering intermediate results of each step, the Compare Descriptor 

unit is able to process descriptors that are continuously received from Get Descriptor 

unit. The overall timing diagram for the descriptor matching module is shown in 

Figure 5-40, showing descriptors reading and matching. 
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Figure 5-40: Overall timing diagram of the descriptor matching module. 

 

5.4 Trade-off between Resource Usage and System Performance 

Resource usage is an important criterion that evaluates the implemented system. In 

this design, the resource usage of the SIFT processing core falls into two categories: 

(a) Logic and memory that are required to implement the processing core itself and 

are independent of the number of pixels processed in parallel, such as the RAM 

buffering the scaled images and DoG values. These resources increase with the frame 

size. (b) Memory for storing intermediate calculating results that increases linearly 

with the parallelism level of the design, such as the number of pixels processed in 

parallel that requires larger register to hold neighbouring filtered pixels for GMO 

calculation. 

Throughput is an important parameter to assess the efficiency of the processing core, 

since the high frame rate is the primary target of this project. In this section, 

throughput refers to that of the SIFT processing core. The throughput of the complete 

platform with camera front-end and USB back-end will be discussed in Chapter 6. 

The throughput of the SIFT core can be expressed as the number of frames that the 

core is able to process per second. Throughput can also be expressed as the number 

of pixels that are correctly detected, described and matched per second.  
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It has been mentioned in section 5.3.1 that the SIFT processing core has been 

arranged into a three-stage pipelined architecture, with which the overall throughput 

is decided by the stage that consumes the longest time. It can be seen from equation 

(5.2) that the key factor that affects the throughput of feature detection is the size (݇ீ) 

of the largest Gaussian kernel applied, followed by the number of pixels (݊௣௜௫௘௟) 
smoothed in parallel. The throughput of feature detection decreases as ݇ீ increases, 

but increases linearly with the number of pixels processed in parallel, as shown in 

Table 5-2.  Smaller kernel size results in a higher frame rate for feature detection, but 

potentially increases the processing time of descriptor generation and matching as a 

result of the larger number of keypoints detected due to over-detection. Besides, with 

the increase of ݇ீ  and ݊௣௜௫௘௟ , the number of multiplications increases accordingly 

and extra resources are required to buffer the intermediate results of the following 

calculation steps. Therefore, two pixels are filtered in parallel using Gaussian kernel 

of ݇ீ=31, with which the design achieves at least 60 fps while keeping relatively 

high accuracy and low resource usage. The relationship between the throughput, 

accuracy and resource usage of the feature detection module is shown in Table 5-11 

and Table 5-12. 

 

Table 5-11: Relationship between throughput, accuracy and resource usage with 

respect to Gaussian kernel size  ݇ீ for feature detection module. 

Gaussian kernel 
size  ݇ீ 

Throughput Accuracy Resource Usage 

Ė Ę Ę Ę 

 

Table 5-12: Relationship between throughput, accuracy and resource usage with 

respect to the parallelism level of feature detection. 

Parallelism level Throughput Resource Usage 

Ė Ę Ę 
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Section 5.3.4 has shown examples of the trade-off between the accuracy, memory 

and throughput. By taking advantage of the LUT-based processing method, it takes 

only four clock cycles to calculate one pixel orientation with relatively high accuracy. 

By representing each GMO with 16 bits, four GMOs are concatenated as one data to 

make full use of the MPMC interface, which reduces the throughput requirement of 

the MPMC interface. Besides, on-chip memory requirement for the partition-based 

memory access solution is also reduced, which is proportional to the word length of 

GMOs. Therefore, the slight degradation in the accuracy of GMOs leads to the 

decreased requirement in both the on-chip memory and the throughput of MPMC 

interface. 

 

5.5 Summary 

This chapter presents the hardware architecture of the SIFT processing core with all 

phases of the algorithm covered, including feature detection, descriptor generation 

and descriptor matching. With the pipelined and parallel structure developed, the 

SIFT processing core is fully embedded on-chip and is able to process VGA images 

at least 60 fps with a system clock of 100 MHz. 

In feature detection module, pixels can be constantly streamed into the processing 

core and filtered with relatively low computation cost as a result of the SRT-based 

pixel streaming strategy. Efficient memory solutions have been proposed for 

Gaussian smoothed images and DoG values. The memory requirement remains 

constant with the increase of the parallelism level of the SIFT processing core, which 

is one of the contributions of this work. Besides, GMOs are buffered in on-board 

DDR3, which offers 512 Mbytes memory. Each GMO is represented by 16 bits, 

which saves the on-chip memory requirement of the partition based memory solution 

and reduces the throughput requirement of the MPMC interface while preserving 

relatively high accuracy. The throughput of feature detection can be increased by 

increasing the parallelism level of the design at the expense of a small amount of 

resources for buffering intermediate results, such as the SRT holding pixels for 

Gaussian filter and that holding neighbouring filtered pixels for GMO calculation, 

etc. The throughput can also be increased by using Gaussian kernel of smaller sizes, 
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which increases the throughput at the expense of accuracy and scale invariance and is 

not an optimal choice. 

In descriptor generation module, each feature point takes only 7.57 us to be 

generated as a result of the polar sampled spatial arrangement of SRI-DAISY, the 

LUT-based Gaussian smooth and interpolation, and the SRT-based square root 

computation and division. The design processes up to 132,100 descriptors per second 

at a system frequency of 100 MHz, which is fast enough to generate descriptor for 

VGA resolution video of at least 60 fps, provided that there are no more than 2,200 

keypoints per frame. 

The descriptor matching module implemented the novel matching strategy, which 

achieves a throughput of 0.2G descriptors per second with a clock frequency of 100 

MHz. Because this module does not include complex computations, such as square 

root computation, the resource usage is low and the throughput can be increased by 

running several modules in parallel. 

The SIFT processing core is incorporated into a platform with a camera front-end 

and a USB back-end, which will be introduced in Chapter 6. 
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Chapter 6 An Image Matching System based on 

the Optimised SIFT 
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6.1 Introduction 

Design parameters have been evaluated in Chapter 4 to show that high performance 

and high accuracy can be achieved by the hardware design for the optimised SIFT 

algorithm. The hardware architecture of the SIFT processing core has been presented 

in Chapter 5, which can be integrated into an FPGA device. In this chapter, an image 

matching system is described in which the SIFT processing core presented in 

Chapter 5 is integrated into an embedded system that communicates with a camera 

front-end and a USB back-end, as shown in Figure 6-1. Besides, three types of 

experiments are conducted to verify the system performance. Hardware efficiency of 

the design is compared with existing solutions in this chapter. 

 

 

Figure 6-1: The SIFT based image matching system. 

 

6.2 Embedded System in FPGA 

As mentioned in Chapter 5, the contemporary FPGA devices are rich in resources 

and FPGA vendors support a wide range of embedded processing peripheral IP cores 

so that extensive logic functionality can be designed to work in a single FPGA 

device. Taking advantage of the reconfigurable property of the FPGA, it is fast and 

convenient to build a complete digital system on a FPGA device, including 

processing, controlling and interfacing block, which is a system-on-chip (SoC) 

USB 

board 
Camera 

Virtex-6 

FPGA 

board 
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design. An embedded system is developed to operate the SIFT processing core and 

the entire platform is verified on the Xilinx ML605 FPGA board.   

Figure 6-2 shows the block diagram of the SIFT-based image matching system, 

which shows the main interfacing, processing, controlling and buffering units. 

Detailed introduction to the camera controller and the USB controller are given in 

Appendix D. 

 

 

Figure 6-2: Block diagram of the image matching system showing the main 

interfacing, processing, controlling and buffering units. 

 

The OV9715 image sensor mounted on the Avnet FMC Module is connected to the 

FPGA board via FMC LPC [70] connector and is configured to deliver 640x480 

resolution video at 30 fps. All the control and processing blocks are fully embedded 

in the FPGA device. The input images and matched keypoints coordinates are 
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outputted to PC via USB that is connected to the FPGA board through FMC HPC 

connector. Status of the FPGA system can be monitored by the messages sent to PC 

via RS232 serial interface. Configuration of the Avnet FMC module with OV9715 

OmniVision image sensor is given in Appendix E. 

 

 

Figure 6-3: Block diagram of the EDK platform. 

 

Figure 6-3 shows the block diagram of the embedded system that is developed by 

using XPS provided by Xilinx Embedded Development Kit (EDK) [71]. EDK is an 

integrated development environment for designing embedded processing systems. In 

this design, the IP cores implemented in the EDK system fall into two categories: 

XPS pre-built IP cores, such as the MPMC interface for DDR3 access, and the user-

developed components, such as the SIFT processing core. 

 

6.3 Experimental Results 

In this section, three types of experiments are conducted to verify the system 

performance. The first experiment examines the system’s robustness in presence of 

different geometric and photometric transformations, such as in-plane rotation and 

image scaling, changes in viewpoint angle, blur, illumination and noise. This type of 

experiment is ideal since it does not contain complex cluttered background or partial 
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occlusion, so the system is integrated into an object recognition application in the 

second experiment. In the last experiment, matching results from the system are used 

for video stabilisation, which tests the detection and matching accuracy of the system. 

It should be noticed that the matching results displayed in the first two experiments 

are the outputs of the proposed system directly. In the last experiment, RANSAC is 

applied to eliminate outliers such that the estimation of transformation matrix is more 

accurate. All experiments are conducted on real world images of size 640x480 pixels. 

6.3.1 Experiments using Real World Images 

The system performance is tested in presence of different transformations, such as 

changes in scale and rotation, viewpoint angle, image blur, illumination, and in 

presence of noise. A reference image, which is photographed on a white background, 

is matched against itself, but with various transformations. Each solid line connects a 

pair of keypoints matched using the novel matching strategy presented in Chapter 3.  

a. Rotation Invariance 

Figure 6-4 shows the matching results for a set of images with rotation of -180 to 180 

degrees. The average precision is above 95%, indicating that the SRI-DAISY based 

matching system is fully invariant to rotation. 
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Figure 6-4: Testing results for image rotation. 

 

b. Scale Invariance 

The matching performance is tested at a variety of scales. Figure 6-5 shows the 

matching results, where both zoom in and zoom out have been tested. In general, a 

larger number of keypoints are matched when keypoints from the down-scaled 

images are matched against the reference, because scales for all keypoints from the 

down-scaled images would be present in the reference image. It is more challenging 

to match the images that are scaled up against the reference image, such as the 

images shown on the last row of Figure 6-5, because the correspondences of many 

keypoints detected from the up-scaled images are not detected from the reference 

image. It can be seen from Figure 6-5 that although the number of matches is limited 
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for images that are scaled by a factor of 0.3 and 3.5, respectively, all of the matches 

are correct. The average precision is greater than 95%, indicating that the design is 

robust to scale changes. 

 

 

Figure 6-5: Testing results for scale changes. The scaling factors are 0.9, 0.7, 0.6, 0.3, 

2 and 3.5, respectively, starting from the upper-left corner. 

 

c. Viewpoint Changes 

The robustness is also tested under various projective transformations. The number 

of matches drops with the increase of viewpoint angle and is reduced to three in a 

most challenging situation with viewpoint angle of approximately 60 degrees, as 
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shown in the image on the bottom-right corner of Figure 6-6. In general, the 

viewpoint changes have a larger impact on the number of matches than the 

correctness of matches. For viewpoint changes of within 60 degrees, the precision is 

85% in the worst case, which is mainly due to the limited number of matches. 

Therefore, the design is partially robust to viewpoint changes.  

 

 

Figure 6-6: Testing results for viewpoint changes. 

 

d. Blur 

In presence of image blur, the pixel intensities and shape of local structures change in 

an unpredictable way. The SIFT descriptor is not designed invariant to such 

transformation. In this experiment, the camera vibration is created manually in 

different directions during shooting to produce blurred images. Experimental results 

are presented in Figure 6-7, which shows that the number of matches decreases with 

the increasing amount of blur. However, there are still some correct matches in 

presence of a significant amount of blur, as shown in the image on the bottom-right 

corner of Figure 6-7.  
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Figure 6-7: Testing results for image blur. 

 

e. Illumination Changes 

The illumination invariance is demonstrated in Figure 6-8. The two images are of the 

same scene from the same viewpoint, except for the difference in illumination. In the 

first test shown in the left image of Figure 6-8, there are 108 matches in total, 3 of 

which are incorrect. In a more challenging situation where there exists a significant 

change in illumination, only 1 of the 60 matches is incorrect, as shown in the right 

image of Figure 6-8. The reduction of matches is mainly because the 

correspondences of many keypoints detected from the reference image are not 

detected from the low contrast (dark) area from the input image. 
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Figure 6-8: Testing results for illumination changes. 

 

f. Noise 

The robust to noise is tested by adding up to 3% Gaussian noise to images. A random 

number from the uniform interval [-7.65, 7.65] is added to each pixel, where the 

pixel values are in range [0, 255]. In Figure 6-9, the left and the right image show the 

results with 1% and 3% Gaussian noise added, respectively. The average error is 

below 5%, and hence the system is robust in presence of noise. 

 

Figure 6-9: Testing results with Gaussian noise added.  

 

g. 3D rotation 

The system performance is tested on 3D objects, because SIFT has been widely 

applied as the first stage of applications, such as 3D reconstruction. The keypoints 

are detected and matched from adjacent images. 
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Figure 6-10 shows the matching results for a 3D object that is rotated along ݕ ,ݔ and ݖ axis, respectively. Although SIFT is not designed to be invariant to rotation of a 3D 

object, the system still shows some level of robustness. 3D in-depth rotation along 

the ݖ-axis is most challenging, and the system is robust to in-depth rotation of up to 

20 degrees. 

 

 

Figure 6-10: Matching results for 3D object that is rotated along ݕ ,ݔ and ݖ-axis, 

respectively. 
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6.3.2 Application for Object Recognition  

The system is tested on a practical application, aiming at object recognition in a 

typical lab environment. In this experiment, object recognition is formulated as 

follows: Given a reference image of the target object or scene, keypoints are firstly 

extracted and each keypoint is associated with a descriptor. Then descriptors are 

generated for all keypoints that are detected from the input images, whether or not 

the keypoints are from the target object or scene. Each descriptor in the input images 

is compared with all descriptors in the reference image. The coordinates of the 

matched keypoints are buffered. The consecutive input images act as the database 

containing the target object to be recognised from the reference image. Experiments 

are conducted on the recognition of both planar and 3D objects. Figure 6-11 shows 

the flowchart illustrating the work mode for object recognition.  

 

 

Figure 6-11: Flowchart for the system when used for object recognition. 



228 

 

a. Planar Object Recognition 

In this section, the SIFT features are used for object recognition of planar objects. 

Because object recognition in real world requires objects to be correctly identified in 

presence of nearby clutter or partial occlusion, experiments are conducted for object 

recognition from some challenging scenes, where there is a combination of 

significant amount of transformations, cluttered background and partial occlusion.  

 

 

Figure 6-12: Object recognition for planar objects in presence of transformations, 

cluttered background and partial occlusion. 
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It has been mentioned by Lowe that any three of the correct matches would be 

sufficient for reliable recognition. The matching results shown in Figure 6-12 are the 

outputs from the system without outlier elimination, which shows that the system 

provides high precision matches that can be applied for reliable object recognition. 

 

b. 3D Object Recognition 

 

Figure 6-13: Object recognition for 3D objects in presence of transformations, 

cluttered background and partial occlusion. 
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In this section, the SIFT features are used for object recognition of 3D objects, which 

is more challenging than recognition of planar objects as a result of the lighting 

condition that is uncontrolled in the lab environment. This will degrade the 

recognition effect since the illumination changes affect the 3D surfaces with differing 

orientations by different amounts, which can cause a large change in the relative 

magnitudes of some gradients. However, it can be seen from the experimental results 

shown in Figure 6-13 that the system is capable of providing correct matches for the 

3D objects recognition. 

6.3.3 Application for Video Stabilisation 

The previous application concerns more about the quantity of matches than the 

quality. In this section, experiments are conducted to test the quality of matching. 

The system performance is tested in the application of video stabilisation, which is 

used to eliminate unwanted shakiness in the video caused by high frequency 

movement of the camera while recording. In this experiment, video stabilisation is 

formulated as follows: Given a video sequence, each keypoint detected from 

consecutive frames is associated with a descriptor. Each descriptor in the current 

frame is compared against all descriptors in the previous frame. Then the affine 

transformation matrix is computed on the matches over successive frames with 

outliers eliminated by RANSAC, where the outliers correspond to incorrect matches 

that do not agree with the transformation parameters between images. 

Transformation matrix is then estimated that represents the inter-frame motion 

between successive frames. In this experiment, the system contributes to camera 

motion estimation by detecting salient features that can be tracked over multiple 

frames of video and matching descriptors between adjacent frames in the video 

sequence. Figure 6-14 shows the flowchart for video stabilisation. 

 

Figure 6-14: Flowchart of the system used as feature tracker for video stabilisation. 
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It should be noticed that the video sequence used in this experiment is real jittered 

ones recorded using a hand-held camera for a static view. Actually, a keypoint shift 

in position can occur not only due to camera shakiness, but also in presence of 

intentional panning movement or because it belongs to a moving object in the scene, 

which will result in inaccuracy in motion estimation. Because the aim is to test the 

detection and matching accuracy of the system, there is no intentional camera 

movement or moving object in this experiment. Therefore, the misalignment between 

successive frames is the result of unintentional high-frequency motion, named jitter. 

 

 

(a) 

 

(b) 

Figure 6-15: (a) Two successive frames from a video sequence. (b) Left: original 

matches; Right: matches after model fitting using RANSAC. 
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The red-cyan colour composite is used to illustrate the pixel-wise difference between 

images. It can be seen from Figure 6-15(b) that there is an obvious offset in both 

vertical and horizontal directions between the two frames shown in Figure 6-15(a). 

The matched keypoints from the two successive frames are represented by red circle 

and green cross, respectively, which are connected by yellow lines to show the 

correspondences selected by using the novel matching strategy. 

 

 

Figure 6-16: Left: Overlay of the original second image and the first frame; Right: 

Overlay of stabilised second image and the first frame. 

 

The second frame is warped and compared with the first frame. It can be seen from 

the right image of Figure 6-16 that the original first frame (in red) is well aligned 

with the stabilised second frame (in cyan), such that the red-cyan composite shown 

in the left image of Figure 6-16 becomes almost purely black-and-white in the 

overlapped region, indicating that the pixel-difference between the original first 

frame and the stabilised second frame is negligible. 

Peak Signal-to-Noise Ratio (PSNR) reflects the misalignment between two frames 

and can be used as a measurement for evaluating the similarity between frames. In 

this section, it is used to numerically evaluate the stabilisation performance, which is 

defined as: 

 ܴܲܵܰሺܫ௔ǡ ௕ሻܫ ൌ ͳͲ    ଵ଴ ௔ǡܫሺܧܵܯெ஺௑ଶܫ  ௕ሻ (6.1)ܫ
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where ܫெ஺௑  is the maximum intensity value of a pixel and is equal to 255. ܧܵܯሺܫ௔ǡ  ௕ሻ is the mean square error between frame ܽ and frame ܾ, as defined inܫ

Equation (6.2). 

௔ǡܫሺܧܵܯ  ௕ሻܫ ൌ ͳݓ ൈ ݄ ෍ ෍ሾܫ௔ሺ݅ǡ ݆ሻ െ ௕ሺ݅ǡܫ ݆ሻሿଶ௛ିଵ
௝ୀ଴

௪ିଵ
௜ୀ଴  (6.2) 

where ݓ and ݄  are the width and height of input frames, respectively. 

There are two PSNR-based evaluation criteria [72] for video stabilisation: Inter-

frame Transformation Fidelity (ITF) and Global Transformation Fidelity (GTF). ITF 

measures the short-time stabilisation between successive frames and shows how 

good the estimated transformation fits the true transformation. GTF is a long-time 

measurement that evaluates the motion compensation of the current stabilised frame 

with respect to the initial reference image. In general, stabilised video should be 

more continuous than the original sequence, so PSNR should increase from the input 

sequence to the stabilised one, and hence stabilised sequence should have a higher 

IFT and GTF than the original input sequence.  

Figure 6-17 and Figure 6-18 shows the ITF and GTF for both the original and the 

stabilised video sequence. In both cases, the curve that represents the stabilised video 

sequence is always above the original one. Both ITF and GTF of the original video 

sequence drop as a result of the less overlapping area with the reference frame. 

Despite of the accumulative error passed down consecutive frames, the high values 

of PSNR of GTF shows that the fidelity of the system is high. It should be noticed 

that the fidelity measurement used to evaluate the performance is more indicative 

than quantitative, because the values depend on the video sequence under 

consideration. 
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Figure 6-17: PSNR between successive frames for both the original and the stabilised 

video sequence. 

 

 

Figure 6-18: PSNR between stabilised frames and the reference image for both the 

original and the stabilised video sequence. 
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Figure 6-19: Left column: the original frames. Right column: the stabilised frames. 
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Figure 6-19 shows the stabilisation results, where the left and the right column shows 

the images before and after stabilisation, respectively. The processed video is stable, 

which indicates that the keypoints detected and matched using the system provide a 

solid basis for unwanted motion compensation. 

 

6.4 Hardware Efficiency Evaluation 

The design is fully embedded on a Xilinx XC6VLX240T FPGA device, which 

provides 301,440 registers, 150,720 LUTs, 768 DSP48E1 slices and 14.625Mbits 

BRAM blocks. 

 

Table 6-1: FPGA resource usage for the whole system (VGA). 

 Registers LUTs 
BRAM 
(Mbits) 

DSP48E1 
Max Clock 
Frequency 

(MHz) 

Camera Controller 674 1,344 2.67 0 225 

SIFT 
Processing 

core 

Feature 
Detection 

23,843 26,815 0.51 207 138 

Descriptor 
Generation 

32,468 77,871 2.18 8 135 

Descriptor 
Matching(2) 

3,568 15,662(1) 0 0 146 

USB Controller 8,909 9,642 0 0 119 

NPI 
Interface 

NPI Write 3,243 3,436 0.59 0 202 

NPI Read 1,899 1,984 4.85 0 213 

Whole System 
92,748 

(30.77%) 
116,064 
(77.01%) 

11.74 
(80.29%) 

320 
(41.47%) 

115 

(1) 4,096 of the total LUTs usage is configured as RAM holding coordinates of matched 
features. 
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6.4.1 Resource Usage 

The design can be configured to process VGA and QVGA sized images, and the 

corresponding hardware resource usage of the whole system with the EDK platform 

included are given in Table 6-1 and  

Table 6-2, respectively. The BRAM usage of Camera Controller includes buffer for 

input images. The BRAM usage of descriptor generation module includes the 

memory for generated descriptors. The descriptor matching module consists of two 

Compare Descriptor units, each of which consumes 1,244 registers and 4,368 LUTs. 

 

Table 6-2: FPGA resource usage for the whole system (QVGA). 

 Registers LUTs 
BRAM 
(Mbits) 

DSP48E1 

Max 
Clock 

Frequency 
(MHz) 

SIFT 
Processing 

core 

Feature 
Detection 

23,756 26,387 0.33 207 138 

Descriptor 
Generation 

32,392 77,863 1.11 8 135 

Descriptor 
Matching 

3,477 12,787(1) 0 0 146 

Whole System 
89,128 

(29.57%) 
114,841 
(76.19%) 

5.17 
(35.34%) 

320 
(41.47%) 

115 

(1) 2,048 of the total LUTs usage is configured as RAM holding coordinates of matched 
features. 

 

6.4.2 Comparison with the Existing Designs 

This section compares the hardware efficiency of the design presented in this thesis 

with existing designs with respect to both processing speed and hardware resource 

usage.  
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Table 6-3: Hardware resource usage and throughput comparison of different 

hardware designs for feature detection (QVGA). 

 [5] [55] Proposed design 

Frame Size QVGA 

Hardware 
Device/Technology 

Altera Stratix 
II  

Xilinx Virtex II 
Pro 

Xilinx Virtex-6  

Operating Frequency 
(MHz) 

50 100 100 

Registers 19,100 5,676 23,756 

LUTs 43,366 5,554 26,387 

DSP 64 N/A 207 

Memory Usage (Mbits) 1.35 1.69 0.33 

Frame Rate (fps) 30 900 306 

 

Table 6-4: Hardware resource usage and throughput comparison of different 

hardware designs for feature detection (VGA). 

 [50] 

[51] 

[53] 
Proposed 

design 
High-

Accuracy 
Mode 

High-
Speed 
Mode 

Frame Size VGA 

Hardware 
Device/Technology 

Xilinx 
Virtex-5 

Altera Cyclone II 
TSMC 
0.18um 

Xilinx 
Virtex-6 

Clock Frequency 
(MHz) 

100 50 100 100 

Registers 19,529 23,247 

N/A 

23,843 

LUTs 35,889 32,592 26,815 

DSP 97 258 207 

Memory Usage (Mbits) 3.24 0.87 0.67 0.896 0.51 

Frame Rate (fps) 30 32 56 290 70 
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Table 6-3 and Table 6-4 show the comparison with some existing hardware designs 

for feature detection. When compared with [5] that processes QVGA images, the 

LUT usage and memory consumption of the system is reduced by approximately 

39.2% and 75.6%, respectively. [55] implements only local extrema detection from 

DoG scale space, and does not include the keypoint refinement process and GMO 

computation. The keypoint refinement process involves complex matrix inversion, 

and GMO computation process contains        and square root computation, both of 

which are inefficient to be implemented on hardware devices. Therefore, [5] is not 

directly comparable with the proposed design. For implementation of local extrema 

detection from DoG scale space, the proposed design utilises 5,787 registers and 

5,694 LUTs, which is virtually the same with that of [5]. When compared with [50], 

[51] and [53], which process VGA images, the design presented in this thesis has 

achieved memory reduction by approximately 84.3%, 23.9% (41.4% for high-speed 

mode), and 43.1%, respectively. The design has achieved the minimum memory 

usage as a result of the rotating buffer memory solution to Gaussian smoothed pixels 

and DoG values. 

 

Table 6-5: Hardware resource usage and throughput comparison of different 

hardware designs for descriptor generation. 

 [53] [57] Proposed design 

Hardware 
Device/Technology 

TSMC 0.13 um TSMC 0.18 um Xilinx Virtex-6 

Clock Frequency (MHz) 200 100 100 

Memory Usage (Mbits) N/A 4.86 2.18 

Time Consumption per 
Descriptor (us) 

15.315 33.1 7.57 

Descriptor Throughput 65,300 30,200 132,100 

 

The performance comparison for descriptor generation, in terms of hardware 

resource usage and system throughput, is summarised in Table 6-5. With different 

hardware implementation technologies used, it is difficult to compare the resource 
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usage between different designs. However, the system throughput can be easily 

compared. It can be seen from Table 6-5 that the overall throughput of the proposed 

design is twice that of [53] and achieves speed improvement by approximately 4.37 

times when compared with [57]. 

It should be noticed that the pipelined structure maximised the frame rate of the SIFT 

processing core, but the overall frame rate of the system is limited to half of the 

theoretical throughput of the SIFT processing core because of the data acquisition 

limit of the camera front-end. The camera can be configured to capture QVGA 

images at 60 fps or VGA images at 30 fps. However, this is not considered as a 

problem since the aim is to provide a high frame rate and high accuracy SIFT 

processing core. 

6.5 Summary 

In this chapter, an FPGA-based image matching system has been presented. The 

system has been designed and implemented in a Xilinx Virtex-6 FPGA device that 

includes the SIFT processing core, the interface to camera, the interface to USB, and 

the controller core for memory and data routing, which are all implemented using 

VHDL. 

The SIFT processing core has achieved at least 60 VGA fps by using Xilinx ML605 

FPGA board. However, the whole system with the camera front-end and the USB 

back-end included is not able to achieve this high throughput, which is limited by the 

camera front-end that captures grayscale images at 30 fps for VGA sized video and 

60 fps for QVGA. 

Tests of the SIFT-based image matching system have been conducted, from the 

robustness to geometric and photometric transformations, to the performance in 

applications such as object recognition and video stabilisation. The system can be 

configured to process QVGA or VGA images in two different modes to adapt to 

different applications. In the application for object recognition, the system works in 

the mode where input images are compared with the reference image of the target 

object or scene. In the application for video stabilisation, the system works in the 

mode where each input image is compared with the previous frame. 
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The whole system can capture images from the image sensor, run the SIFT-based 

processing step, and finally send data to a PC in real-time with high accuracy. In 

addition, as only 80% of the FPGA capacity is used, it is possible to add new image 

processing functions, if required by other applications. 
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Chapter 7 Summary, Conclusions and 

Discussion 
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7.1 Introduction 

As stated in Chapter 1, the aim of this research project is to develop a high-

performance real-time image matching system. Specifically, the following objectives 

have been addressed: (a) improvement towards the standard SIFT algorithm for an 

efficient hardware design; (b) high frame rate image matching system; (c) high 

accuracy matching system that achieves comparable performance with the software 

model; (d) low resource usage. The work carried out to fulfil these objectives has 

been presented in the previous chapters in this thesis. This chapter summarises the 

work that has been carried out throughput the project as a development step towards 

a high-performance real-time image matching system. Discussion to further optimise 

the system and suggestion for further work are also presented in this chapter. 

 

7.2 Thesis Summary 

Chapter 2 provided a basic introduction to related research into the intensity based 

feature detection methods that led to state-of-the-art SIFT algorithm. To improve 

either the efficiency or performance of the SIFT algorithm, many variations have 

been proposed, such as PCA-SIFT, SURF, GLOH and DAISY. DAISY has been 

proven to achieve the best result.  

A review of systems aiming at accelerating SIFT was also carried out in Chapter 2, 

in terms of the processing aspect to improve the throughput of SIFT-based designs. 

The review showed that current researches mainly focus on the development of real-

time feature detection part. However, little efforts have been made to improve the 

throughput of descriptor generation. Because SIFT has the potential of detecting a 

large number of features densely covering the entire image, descriptor generation 

process has become the bottleneck that would potentially prevent the entire system 

from achieving real-time, especially for systems that process high resolution images. 

This leads to the necessity of the research presented in this thesis. 

Chapter 3 introduced SRI-DAISY, which is an alternative to the grid layout of the 

standard SIFT descriptor. The SRI-DAISY takes advantage of the log-polar spatial 
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arrangement of the standard DAISY, which is extended to be adaptive to image 

scaling and rotation. The performance of SRI-DAISY and the standard SIFT is 

compared for a wide range of transformations, including scaling, rotation, projection, 

blur and illumination changes. The SRI-DAISY achieves comparable performance 

with SIFT, but is more efficient as a result of the following aspects: (a) the memory 

requirement for buffering descriptors is reduced as a result of the dimension 

reduction from 128 to 72; (b) no need to shift all pixels within the local region; (c) no 

need to identify the boundaries of each sub-region. 

A novel keypoint matching strategy was also presented in Chapter 3, which is 

inspired by the three existing widely applied matching methods. The novel matching 

strategy is superior to the distance ratio based matching in the following aspects: (a) 

achieve higher precision; (b) do not require hardware expensive square root 

computation or division operations.  

In Chapter 4, design parameters that are essential to a high performance hardware 

design are studied. The design is parameterised with two octaves of five Gaussian 

smoothed images each. The system has been structured to compute the descriptors 

based on the pre-defined scales, which reduces both the memory requirement and 

processing time to a lower level at a cost of a little loss in matching performance. 

The fixed-point calculation is utilised to reduce the hardware resource usage. 

Experiments were conducted to determine the word length that is best balanced 

between computation accuracy and resource usage.  

In Chapter 5, the FPGA-based processing core for the optimised SIFT is presented. 

All phases of the SIFT algorithm are covered: feature detection, descriptor 

generation and descriptor matching. The core utilises pipelined and parallel 

architecture to maximise the throughput. When running at 100 MHz in a Xilinx 

Virtex-6 FPGA, the processing core can achieve a frame rate of at least 60 fps for 

VGA images. 

The feature detection utilises the SRT-based multi-pixel processing scheme and 

achieves at least 60 fps. The design can be modified to process images of higher 

resolution at a higher frame rate by making slight modification to the VHDL codes. 

Actually, in the current design, the overall throughput of feature detection is limited 
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by the speed at which pixels are accessed from the buffer holding input images. As 

discussed in Section 0, the input image buffer consists of two groups of RAM with 

two DPRAMs each, with which two pixels are accessed every clock cycle (5 ns). 

However, pixel throughput can be further increased by two means: (1) divide the 

input image into more parts with each loaded onto a separate DPRAM, thereby 

providing more ports to access pixels in parallel; (2) work with higher clock 

frequency. DPRAM supports a clock frequency of up to 450 MHz. 

An efficient memory solution has been proposed in Chapter 5 for buffering Gaussian 

smoothed pixels and DoG values, named the rotating buffer. The rotating buffer is 

hardware efficient in the following aspect: the size is a constant and is independent 

of the number of pixels processed in parallel, which is beneficial when the design is 

modified to process more pixels for higher throughput.  

Besides, an efficient hardware design for SRI-DAISY has been proposed in Chapter 

5. The descriptor generation process takes advantage of the log-polar spatial 

arrangement and requires only 7.57 us to generate a descriptor of 72 dimensions, 

which is equivalent to a throughput of approximately 132,100 descriptors per second 

with a system clock of 100 MHz. When compared with existing hardware solutions, 

the design achieves the largest overall throughput with less hardware resource usage.  

In Chapter 6, an embedded system was developed, which mainly consists of three 

parts: the camera front-end, the SIFT processing core presented in Chapter 5, and the 

USB back-end. Due to the data acquisition limit of the camera front-end, the 

processing core cannot run at its maximum available speed. The camera works at 30 

fps for VGA, which limits the throughput of the entire system to 30 fps.  

Experimental results conducted on a set of real-world images were given to verify 

the functionality of the system. Besides, the system has been tested in two 

applications: object recognition and video stabilisation. The design is of high 

flexibility and can be configured to process QVGA or VGA images in two different 

modes to adapt to different applications. 
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7.3 Conclusions and Discussion 

Throughout this thesis, the SIFT algorithm has been optimised and efficiently 

implemented to achieve the target of a high frame rate, high accuracy and low 

resource usage SIFT-based image matching system. 

Although the design parameters have been selected to achieve the target of a high 

frame rate and high accuracy SIFT-based image matching system, some parameters, 

such as the amount of prior smoothing and descriptor matching threshold, can be 

modified to meet the requirement of different applications. When deciding the 

amount of prior smoothing and the size of the quantised Gaussian window, there is a 

trade-off between the distinctiveness and locality of the keypoints, which are the two 

competing properties that cannot be fulfilled simultaneously.  

For applications such as image retrieval, where there are many candidate keypoints 

to be matched, detection regions identified by keypoints of lower locality contain 

more information and are easier to be correctly matched. However, these keypoints 

are more likely to suffer from geometric and photometric transformation. In the case 

of planar objects or in-plane rotation of camera, there is no occlusion or geometric 

transformation. The distinctiveness can be increased by increasing either the amount 

of prior smoothing or the size of the quantised Gaussian window. However, larger 

Gaussian window brings in higher computational complexity, more hardware area 

occupation and longer processing time for feature detection.   

The quantity of the detected keypoints, which affects the performance of certain 

applications and the system throughput, is another property that needs to be taken 

into consideration when deciding the design parameters. Some applications require a 

large number of keypoints densely covering the objects of interest, such as object or 

scene recognition. However, a high number of keypoints has a negative impact on 

the computation time for descriptor generation, which is proportional to the number 

of descriptors to be generated and should be kept to a minimum. Decreasing the 

amount of prior smoothing or using quantised Gaussian window of smaller sizes 

contributes to an increased number of keypoints, which reduces the processing time 

of keypoints detection while increasing the processing time of descriptor generation. 
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Some applications are concerned more about the quality than the quantity of 

matching. For applications such as video stabilisation, the motion vectors are 

estimated based on the matched features by using model fitting methods, such as the 

least square or RANSAC. It has been stated in Chapter 3 that higher matching 

precision enables a model with higher accuracy and less processing time. Therefore, 

threshold values can be adjusted to improve the matching precision, such as 

decreasing the threshold for accepting matches with the ratio of οܰௗೞ೐೎೚೙೏  to 

οܰௗ೎೗೚ೞ೐ೞ೟  below the pre-defined threshold. This will inevitably decrease the number 

of correct matches, but the matches are on the average more likely to be correct. 

 

 

Figure 7-1: An example of octave interleaving with two clock cycles between 

adjacent Gaussian smooth process in the horizontal direction for octave 0. 

 

In the current design, Gaussian pyramid construction is divided by octave and 

Gaussian blurred images within each octave are computed in parallel. When octave 0 

has been processed, the Gaussian smoothed image is down-sampled spatially by a 

factor of two and acts as the input to the next octave. In the future, octave 

interleaving can be adapted, as illustrated in Figure 7-1. The idea is to make use of 

the clock cycles when the processing unit is in idle. For the example given in Figure 

7-1, the gap between the Gaussian smoothing of adjacent pixels from octave 0 is two 

system clock cycles (10 ns), which supports five octaves to be interleaved without 

any two octaves requiring the same clock cycle. In the current design, because 

DPRAMs work with the clock domain of 200 MHz, whereas the SIFT processing 

core works with 100 MHz, it takes eight system clock cycles (10 ns) to access a 
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column of pixels for Gaussian smooth in the vertical direction using Gaussian kernel 

of size ݇ ீ=31. Therefore, the current design supports 17 octaves to be interleaved.  

Octave interleaving is especially beneficial for processing images of higher 

resolution, such as UVGA images (1600x1200 pixels) that requires seven pixels to 

be processed in parallel to achieve real-time. However, the major disadvantage of 

octave interleaving is that extra RAMs are required to buffer intermediate results for 

different octaves, such as Gaussian smoothed pixels and DoG values, which is 

constant in the current design. Therefore, octave interleaving is suggested for designs 

with high availability in memory. But increasing the parallelism level by processing 

more pixels in parallel is recommended if memory availability becomes an issue. In 

this design, the hardware resource usage for processing one pixel is 5,787 registers 

and 5,694 LUTs. 

In conclusion, throughout this thesis, a stand-alone image matching system was 

developed and tested successfully. This system can be widely used in computer 

vision related applications, such as Self Localisation and Mapping for robust 

navigation, 3D reconstruction, etc. The system also can be applied to applications 

beside computer vision, such as a real-time vision system for visual prosthesis 

simulator. 
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Appendix A. Extrema Detection with Stability Checking 

Gaussian scale space consists of two octaves with five scales each. By comparing 

pixels with their neighbours, local extrema belonging up to two scales are detected. 

A pixel will be passed to the stability checking process if it is a local extremum and 

will be identified as a keypoint after is has passed through the three refinement 

processes. Although two pixels are processed in parallel for higher system 

throughput, only one stability checking module is used because seldom has the 

chance that two pixels lie next to each other are both extrema. Each local extremum 

detected from the DoG scale space is passed to the stability checking process, which 

consists of three steps: location refinement, low contrast removal, and edge response 

elimination. The overall hardware structure is shown in Figure A-1, where three sub-

modules have no data dependency and are processed in parallel by taking advantage 

of the parallel processing property of FPGA.  

 

 

Figure A-1: Block diagram for extrema detection with stability checking. 

 

The minimum throughput requirement (ܴܶܲா஽) of the extrema detection block is 

shown in Equation (A.1). Because only those pixels that are local extrema are passed 

to stability checking block, ܶܲ ܴா஽actually corresponds to the maximum throughput 

requirement of stability checking process.  
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 ܴܶܲா஽ ൌ ʹ݂ ή෍ሾሺݓ௜ െ ݇ீ െ ͳሻሺ݄௜ െ ݇ீ െ ͳሻሿ݊ݐܿ݋
௜ୀ଴  (A.1) 

where ݂  is the system frame rate (60 fps). 

As a result of the SRT-based multi-pixel streaming scheme, two Gaussian smoothed 

pixels are generated every 
௞ಸାଵସ  clock cycles of 100 MHz after an initial delay. To 

keep a constant overall throughput for feature detection module, it is suggested that 

the extrema detection and stability checking process should finish within 
௞ಸାଵସ  clock 

cycles. Because the extrema detection sub-module includes only 26 simple 

comparison operations, it is easy to be completed within a few clock cycles with 

hardware parallel property explored. So the design mainly focuses on the solution to 

the stability checking block and uses internal buffer and registers to create pipelined 

architecture. As shown in Figure A-1, an internal buffer is inserted between the 

extrema detection and the stability checking process for two purposes:  

1. The stability checking process is carried out based on the DoG values 

stored in the internal buffer and has no direct data dependency with 

the extrema detection process.  

2. In the most unlikely cases that both pixels processed in parallel are 

local extrema, the related neighbouring DoG values can be stored in 

the internal buffer before the previous pixel has been processed.  

With the internal buffer, the extrema detection with stability checking module is 

arranged into a two-stage pipelined architecture. With intermediate computation 

results within the stability checking process registered by the clock, the pipelined 

architecture is adopted within the stability checking process, making it possible to 

deal with consecutively arrived extrema and the time requirement of the stability 

checking process is no longer of a great concern. 
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Appendix B. NPI PIM Interface  

NPI PIM Write Interface 

The interface of NPI PIM Write Unit is shown in Figure B-1. The NPI PIM write 

unit has been developed to support 64-bit NPI 32-word burst write, and the 

description of the interface is given in Table B-1. MPMC_Clk0 is the main MPMC 

clock and is set to 200 MHz. 

 

 

Figure B-1: NPI PIM write interface with 64-bit NPI 32-word burst write. 
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Table B-1: Signals related to NPI PIM write interface and their functions. 

Signal Name Description 

MPMC_Clk0 Clock signal.  

PIM_InitDone 
‘1’ indicates that initialisation is complete and that FIFOs are 
available for use. Do not assert PIM_WrFIFO_Push until 
PIM_InitDone is equal to ‘1’. 

PIM_AddrAck 
This active high signal indicates that MPMC has begun arbitration 
for address request. Valid for one cycle of MPMC_Clk0. 

PIM_WrFIFO_Empty 
This active high signal indicates that there are less than 32 bits of 
data in the write FIFO. 

PIM_WrFIFO_AlmostFull 

This active high signal indicates that PIM_WrFIFO_Push cannot be 
asserted on the next cycle of MPMC_Clk0. This signal is only 
asserted when using SRL FIFOs. If BRAM FIFOs are used, the 
PIM cannot allow more than 1024 bytes of data to be pushed into 
the FIFOs. 

PIM_AddrReq 
This active high signal indicates that NPI is ready for MPMC to 
arbitrate an address request. This request cannot be aborted. Must 
be asserted until PIM_AddrAck is asserted. 

PIM_Addr 
Indicates the starting address of a particular request. Only valid 
when PIM_AddrReq is valid. Must be aligned to Size burst length. 

PIM_RNW 

Read/Not Write: 

0 = Request is a Write request. 

1 = Request is a Read request. 

Only valid when PIM_AddrReq is valid. 

PIM_Size 

Indicates the transfer type of the request: 

0x4 = 32-word burst transfers 

Only valid when PIM_AddrReq is valid. 

PIM_WrFIFO_Push 

This active high signal indicates push WrFIFO_Data into write 
FIFOs. 

Cannot be asserted while PIM_InitDone is 0. 

Cannot be asserted while WrFIFO_AlmostFull is asserted. 

Can be asserted before, after, or during the address phase unless 
MPMC is configured in one of several special cases. 

PIM_WrFIFO_BE 
Indicates which bytes of WrFIFO_Data to write. Only valid with 
PIM_WrFIFO_Push. 

PIM_WrFIFO_Data 
Data to be pushed into MPMC write FIFOs. Only valid with 
PIM_WrFIFO_Push. 
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NPI PIM Read Interface 

The entity of NPI PIM Read Unit is shown in Figure B-2. 

 

Figure B-2: NPI PIM read interface with 64-bit NPI 32-word burst read. 

 

The NPI PIM read unit has been developed to support 64-bit NPI 32-word burst read, 

and the description of the interface is displayed in Table B-2. Signals shared between 

NPI PIM write interface and read interface are not repeated here. 

 

Table B-2: Signals related to NPI PIM read interface and their functions. 

Signal Name Description 

PIM_RdFIFO_Empty 
When this active high signal is de-asserted, it indicates that 

enough data is in the read FIFOs to assert PIM_RdFIFO_Pop. 

PIM_RdFIFO_Latency 

Indicates the number of cycles from the time 

PIM_RdFIFO_Pop is asserted and/or PIM_RdFIFO_Empty is de-

asserted until PIM_RdFIFO_Data is valid 

PIM_RdFIFO_Pop 

This active high signal indicates that read FIFO fetch the next 

value of PIM_RdFIFO_Data. Must be asserted for one cycle of 

MPMC_Clk0. 

PIM_RdFIFO_Data Data to be popped out of MPMC read FIFOs. 
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Appendix C. Hardware Architecture of the Descriptor 

Generation Module 

Gaussian Weighting Factor Controller 

As shown in Figure 5-26, each sub-region is defined as a rectangle of size ܦ ൈ  ܦ) ܦ

is the diameter of the circular sub-region) for simplicity. To generate the gradient 

histogram for each sub-region, gradient magnitude of each pixel within the sub-

region has to be weighted by Gaussian function with the parameter of the distance 

from the pixel to be weighted and the centre of the corresponding sub-region. Pixels 

located closer to the centre offer larger contribution to the sub-region histogram, and 

pixels outside the circular sub-region offer no contribution by setting the 

corresponding weighting factors to 0. With the Gaussian function used to weight the 

gradient magnitude of pixels within each sub-region, the square sub-regions can be 

regarded as circular ones. Considering the isotropy character of both the circular sub-

region and Gaussian function, contribution of a pixel will be the same however the 

image rotates, because the distance is not changed. 

Because the Gaussian weighting factors concern only the distance from pixels to be 

weighted to the centre of the corresponding circular region, they can be calculated 

offline and pre-loaded into an LUT. The LUT is an array of values used to reduce 

processing time for applications that uses complex calculations, which is an efficient 

alternative to the complex computations. An LUT holds data or results calculated 

offline from the complex calculations needed by applications, and gives an output 

value for each index value. By keeping the results in the LUT, data can be accessed 

immediately by referring to the LUT instead of doing calculations, and the complex 

computation is replaced by simpler array indexing operations. Therefore, the LUT is 

an optimal choice for reducing the computational complexity and processing time of 

hardware designs. 

The block diagram of the Gaussian Weighting Factor Controller is shown in Figure 

C-1. In Figure C-1, ሺݔ௖ǡ ௖ሻݕ  is the centre coordinates of the sub-region being 

processed, and ሺݔ௜ǡ  .௜ሻ represents the coordinates of pixels within the sub-regionݕ



262 

 

Figure C-1 shows that a Gaussian weighting factor can be identified with two 

subtract operations and an LUT within two clock cycles, which greatly reduce the 

computational complexity and the processing time. Taking advantage of the 

symmetrical property of Gaussian filter, only a quarter of the entire Gaussian 

window is loaded into the LUT to further save the memory. 

 

 

Figure C-1: Gaussian weighting factor controller with 2-input LUT. 

 

Principal Orientation Calculation 

In this sub-module, pixel values within each sub-region are weighted and 

accumulated to generate the 36-bin gradient histogram. The first step of the 

descriptor generation is to identify the principal orientation (ߠ௣௢), which corresponds 

to the orientation of the largest bin in the histogram obtained by weighting and 

accumulating all pixels within the local region. Figure C-2 shows the block diagram 

of the Principal Orientation Calculation module. 
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Figure C-2: Block diagram for the Principal Orientation Calculation module 

(pipeline stage 1). 

 

To make full use of the throughput of the DPRAM, two blocks of GMOs are 

accessed per clock cycle. A block is actually four sets of GMOs that are concatenated 

and buffered in DDR3 as a single data. Taking advantage of the parallel processing 

property of FPGA, these two blocks are processed in parallel to increase the 

throughput. Figure C-3 shows the block diagram of the Windowing and 

Accumulating unit. The GMO blocks routed from ping pong buffers are split into 

four sets of GMOs and then sent to four Processing Units (PUs). 

 

 

Figure C-3: Block diagram for the Windowing and Accumulating Unit. 
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The block diagram of the PU is shown in Figure C-4. 

 

.  

Figure C-4: Detailed architecture of the PU. 

 

For keypoints from scale2 and scale3, the diameter of circular sub-regions is 15 and 

21, respectively. With four sets of GMOs grouped as a single data block, 4x15 blocks 

of GMOs are required for each sub-region from scale2 and 6x21 blocks for scale3. 

Only 21 GMOs per row are needed for keypoints from scale 3, but 6 blocks give 24 

sets. Therefore, three sets of GMOs have to be abandoned. The idea is to divide the ݔ 

coordinate of the first set of valid data by four, retaining the remainder as the mode 

selector that decides which sets to be discarded, as shown in Table C-1.  

 

Table C-1: Relationship between remainder and mode for keypoints from scale3. 

Remainder Mode 

1 0-3 

2 1-2 

3 2-1 

0 3-0 
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(a) Mode 0-3.

 

(b) Mode 1-2.

(c) Mode 2-1. 

 

(b) Mode 3-0. 

Figure C-5: Four different circumstances to discard certain data. 

 

Figure C-5 shows four different modes in which certain sets need to be discarded. 

Considering that divide-by-four is equivalent to right-shifting the signal by two bits, 

the last two bits of the ݔ coordinate of the first set of GMOs is equivalent to the 

remainder and is used as the mode selector. Figure C-6 describes this idea by using 

Mode 1-2 shown in Figure C-5(b) as an example. As a result, the division operation 

can be avoided in this processing unit.  
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Figure C-6: The mode selector for GMO access. 

 

For keypoints from scale2, four blocks gives 16 GMOs. Either the first or the last set 

of GMOs has to be discarded. In this case, the remainder from right shifting the ݔ 

coordinate by two acts as the mode selector, as shown in Table C-2. 

 

Table C-2: Relationship between remainder and mode for keypoints from scale2. 

Remainder Mode 

0 1-0 

1 0-1 

 

Centre Coordinates Calculation 

Figure C-7 shows the block diagram of the Centre Coordinates Calculation unit, 

which consists of an LUT and two signed adders. This unit inputs both the principal 

orientation ߠ௣௢  and the coordinates (ݔ௖,ݕ௖) of the keypoint, and outputs the centre 

coordinates of eight surrounding sub-regions (ݔைோ௜,ݕைோ௜), where ݅ is the index to the 

eight surrounding sub-regions and is in range 0 to 7. Again, the LUT technique is 

employed to avoid the complex     and     operations.  
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Figure C-7: Block diagram of the Centre Coordinates Calculation unit with a 2-input 

LUT (pipeline stage 2). 

 

Table C-3: Centre coordinates of circular sub-regions relative to the feature point in 

both ݔ and ݕ directions. 

Sub-region ο࢞࢏ࡾࡻ ο࢟࢏ࡾࡻ 
1 ܴ    ሺߠ௣௢ሻ ܴ    ሺߠ௣௢ሻ 
2 ξଶଶ ܴ൫   ሺߠ௣௢ሻ െ    ሺߠ௣௢ሻ൯ ξଶଶ ܴ൫   ሺߠ௣௢ሻ ൅    ሺߠ௣௢ሻ൯ 
3 െܴ    ሺߠ௣௢ሻ ܴ    ሺߠ௣௢ሻ 
4 െξଶଶ ܴ൫   ሺߠ௣௢ሻ ൅    ሺߠ௣௢ሻ൯ ξଶଶ ܴ൫   ሺߠ௣௢ሻ െ    ሺߠ௣௢ሻ൯ 
5 െܴ    ሺߠ௣௢ሻ െܴ    ሺߠ௣௢ሻ 
6 ξଶଶ ܴ൫   ൫ߠ௣௢൯ െ    ሺߠ௣௢ሻ൯ െξଶଶ ܴ൫   ሺߠ௣௢ሻ ൅    ሺߠ௣௢ሻ൯ 
7 ܴ    ሺߠ௣௢ሻ െܴ    ሺߠ௣௢ሻ 
8 ξଶଶ ܴ൫   ሺߠ௣௢ሻ ൅    ሺߠ௣௢ሻ൯ ξଶଶ ܴ൫   ൫ߠ௣௢൯ െ    ሺߠ௣௢ሻ൯ 
9 0 0 

 

ሺߠ௣௢ሻ 
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Ͳ ͳ ͹ ͙ 

2-input LUT 

0 ͳ 

͵ͷ 

͙ ͵Ͷ 
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10 
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6 

9 
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ሺ݅ሻ 

2-input LUT of size 36x8 
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In Table C-3, (οݔைோ௜,οݕைோ௜) represent the offsets from the centre coordinates of eight 

surrounding sub-regions (ݔைோ௜,ݕைோ௜) to that of the keypoint (ݔ௖,ݕ௖) in both x and y 

directions. It can be seen from Table C-3 that coordinates offsets (οݔைோ௜,οݕைோ௜) are 

only related to ߠ௣௢ and ܴ , where ܴ  is the distance between the centre pixel of 

surrounding sub-regions and the keypoint. Considering that ܴ is fixed and ߠ௣௢ has 

been normalised to integers in range 0 to 35, (οݔைோ௜,οݕைோ௜) can be calculated offline 

and pre-loaded onto a single-input LUT with ߠ௣௢ acting as the index. 

It has been mentioned that redundantly rotating the coordinates of all pixels within 

the local region for rotation invariance has been replaced by arranging both the 

location and the 2D gradient histogram of each sub-region relative to the principal 

orientation. With the LUT-based coordinate calculation method, the location of each 

surrounding sub-regions is arranged relative to the principal orientation by using only 

two adders, as shown in Figure C-7. As a result, the rotation invariance of sub-region 

arrangement can be achieved with adders, and the hardware expensive     and     
operations are avoided.  

 

36-bin Histogram Calculation 

Figure C-8 shows the block diagram of the 36-bin Histogram Calculation, where 

pixel values within each sub-region are weighted and accumulated to generate the 

36-bin gradient histograms. The Windowing and Accumulating unit shares the same 

architecture with that shown in Figure C-3, but with different PU. As shown in 

Figure C-9, pixel orientation is normalised relative to the principal orientation to 

achieve rotation invariance. 

 

Figure C-8: Block diagram for 36-bin Histogram Calculation (pipeline stage 3). 
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Figure C-9: Block diagram for PU of 36-bin histogram calculation. 

 

Linear Interpolation 

This sub-module inputs the 36-bin histogram and outputs the interpolated 8-bin 

histogram with each bin representing 45°. The linear interpolation is realised base on  

͸௜̴௝͵݊݅ܤ  ൌ ͸௜͵݊݅ܤ ൈ  ௜̴௝ (C.1)ܨ

where ݅ is the index to 36 bins of the input 36-bin histogram to be interpolated, and ݆ 
is the index to the 8 bins of the resultant 8-bin gradient histogram. ݊݅ܤ͵͸௜ represents 

the 36-bin gradient histogram excluding ݊݅ܤ͵͸଴ ͸ଽ͵݊݅ܤ , ͸ଶ଻͵݊݅ܤ ͸ଵ଼, and͵݊݅ܤ , -௜̴௝ is the corresponding weighting factors that decides the weight of a bin in the 36ܨ .

bin histogram to its two neighbours in the 8-bin histogram, and ݊݅ܤ͵͸௜̴௝  is the 

interpolated magnitude to be accumulated to the 8-bin gradient histogram.  
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(a) 

 

(b) 

Figure C-10: An example of the linear interpolation for 36-bin histogram. 

 

Given an example bin with orientation of 100° (݅=10) as shown in Figure C-10(a), 

7/9 of its magnitude is accumulated to ݊݅ܤͺଶ with orientation of 90° (݆=2) in the 8-

bin histogram and 2/9 of its magnitude is accumulated to ݊݅ܤͺଷ with orientation of 

135° (݆ =3), as shown in Figure C-10(b). 
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Figure C-11: Block diagram of Linear Interpolation module (pipeline stage 4). 

 

The block diagram of this unit is shown in Figure C-11, which mainly consists of 

three parts: an LUT holding interpolation weighting factors, 64 multipliers, and 8 

accumulators with each corresponds to a bin representing 45°. In order to build up an 

efficient hardware architecture while preserving relatively high precision, ܨ௜̴௝  are 

scaled up by a factor of 1,024 with only the integer part preserved. It can be seen 

from Equation (C.2) that the calculation of ܨ௜̴௝ is only related to the distance from ߠଷ଺௕௜௡௜ to ଼ߠ௕௜௡௝, which represents the orientation of the 36-bin histogram and the 

resultant 8-bin histogram, respectively. Therefore, interpolation weighting factors ܨ௜̴௝ can be pre-calculated and saved in the LUT for fast indexing. 

௜̴௝ܨ  ൌ ቈͳ െ หߠଷ଺௕௜௡௜ െ ௕௜௡௝หͶͷ଼ߠ ቉ ൈ ͳͲʹͶ (C.2) 
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Pre-calculating ܨ௜̴௝ turns interpolations into simple multiply-add operations. Besides, 

the 36 bins to be interpolated have no data dependency with each other and can be 

processed in parallel. It should be noticed that ݊݅ܤ͵͸଴ ͸ଽ͵݊݅ܤ , ͸ଵ଼͵݊݅ܤ , , and ݊݅ܤ͵͸ଶ଻ are in the direction of ݊݅ܤͺ଴, ݊݅ܤͺଶ, ݊݅ܤͺସ, and ݊݅ܤͺ଺, respectively, and 

are fully accumulated to the corresponding bins in the 8-bin histogram. Therefore, 

they are sent directly to the corresponding accumulators without interpolation, which 

save eight multipliers and hence there are 64 multipliers in total. Considering that ܨ௜̴௝ in Equation (C.1) are integers in range 0 to 1024, multiplications can be replaced 

by shifting, addition and subtraction operations, with which some precious hardware 

resources are saved, such as DSP48E1 on FPGA devices.  

 

Descriptor Normalisation 

This sub-module inputs the interpolated 8-bin histograms, and outputs the normalised 

descriptors. As shown in Figure C-12, it mainly consists of two identical 

Normalisation Units, a Threshold Bins unit and a multiplexer.  

Normalisation 

Unit 1

Normalisation 

Unit 2

Threshold Bins

MUXRAM

Interpolated 

bins from 

pipeline stage 4

ThreshBins

Norm1stBins

Norm2ndBins

ThreshBins

8݊݅ܤ ݅  

8݊݅ܤ ݅  

Figure C-12: Block diagram of the Descriptor Normalisation (pipeline stage 5). 

 

As suggested in the SIFT algorithm, interpolated bins should be normalised twice 

and the second normalisation is performed to reduce the influence of large gradient 

magnitudes. Firstly, the interpolated bins (݊݅ܤͺ௜) are fed into Normalisation Unit 1 

and are normalised to integers (Norm1stBins) in range 0 to 1023. Secondly, 
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Norm1stBins that is larger than the pre-defined threshold is forced to the value of the 

threshold in Threshold Bins. Finally, Normalisation Unit 2 performs the second 

normalisation and outputs Norm2ndBins, which are linked together to obtain the final 

descriptor of 72 dimensions. 

Quadratic Sum 

Computation

Square Root 

Calculation
Dividers Norm1stBins

8݊݅ܤ ݅  

 

Figure C-13: Block diagram of the normalisation unit. 

 

As shown in Figure C-13, each normalisation unit consists of three parts: a Quadratic 

Sum Calculator, a Square Root Calculator and Dividers. The SRT-based square root 

calculator and dividers are used to reduce the hardware resource usage. 
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Appendix D. The SIFT based Image Matching System 

Camera Controller 

The Camera Controller receives input images from the camera row by row, and 

further buffers the pixels in the input image buffer that is shared by the camera, the 

SIFT processing core and the USB. Because the image sensor and input image buffer 

works with two different clock domains of 40 MHz (PCLK) and 200 MHz, 

respectively, an asynchronous FIFO is employed in the exchange of data that 

transfers across different clock domains. Timing diagram of the OV9715 image 

sensor is given in Appendix F.  

 

 

Figure D-1: Timing diagram showing that each line of pixels from the camera are 

first pushed into FIFO under PCLK domain, and then further buffered in RAM under 

clock of 200 MHz. 
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The 10-bit input pixels are synchronised by the rising edge of PCLK. Figure D-1 

shows that it takes 640 PCLK clock cycles to push a row of valid pixels into one end 

of the FIFO for VGA sized image, and it requires 640 clock cycles of 200 MHz to 

drain the FIFO from the other end, which corresponds to 128 PCLK clock cycles. 

Because the gap between two rows of valid pixels is 1,048 PCLK clock cycles, the 

FIFO has been drained before the next row of pixels arrives.  

 

USB Controller 

Figure D-2 shows the block diagram of the USB Controller core that interfaces with 

the USB transceiver (CY7C68001) on the USB board. This core deals with the data 

transfer between the FPGA board and the host PC. 

 

 

Figure D-2: Block diagram of the USB Controller with connection to buffers and the 

USB board. 

 

Two sets of data are transferred to PC via USB: the raw images, and the coordinates 

of matched keypoints. The raw images are sent to PC for the following two reasons. 

 To visualise the matching results. 

 The images can be processed by MALTAB model for comparison with 

the processing algorithm embedded in the FPGA device. 

The USB Controller core mainly consists of the following three units: 
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 Command Controller: Generate two types of commands, which indicate that 

either the input image buffer has been filled with pixels, or coordinates of 

matched keypoints are ready to output. The commands are pushed into a 

FIFO to be accessed by Data Multiplexer.  

 Data Multiplexer: Read control commands from Command Controller and 

select accordingly from Input Image Buffer and Matched Keypoint FIFO. The 

selected data is then routed to USB Interface for output. Header is attached to 

each set of data to avoid transaction errors. 

 USB Interface: At the initialisation stage, this unit configures the USB board 

to high speed mode (480 Mbits/s) that sends 512 bytes in the transfer of each 

package. At the data output stage, this unit first sends an identification file to 

the PC, indicating the start of transaction for a set of data, followed by the 

data received from Data Multiplexer and ends up with the identification file 

that indicates the end of transfer. 

The format of identification files are given in Figure D-3. The PC can tell from the 

identification files the size of images, the index to the received data, and the number 

of packages to be received, especially for the coordinates of matched keypoints that 

vary with input images. Indexes ݊ and ݉  are important in that they tell which input 

image the received keypoints belong to. 
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(a) Identification files for the first half of the raw image. 

 

(b) Identification files for the second half of the raw image. 

 

(c) Identification files for the coordinates of the matched keypoints. 

Figure D-3: Identification files attached to each set of data to be sent to PC. 

 

As shown in Figure D-4, by concatenating the coordinates of a pair of matched 

keypoints as a single data, each pair of matches takes only 6 bytes and each package 

contains 85 pairs of matches plus two zero bytes. The PC reads from the 

identification file the number of matches and works out the number of packages to be 

received. 
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Figure D-4:  Concatenation of matched keypoint coordinates. 

 

Memory Controller 

Due to the limited BRAM resources available on the FPGA device, the input image 

buffer is shared by the camera, the SIFT processing core and the USB. The Memory 

Controller core is designed to stop a frame from being over-written before it has been 

either processed by the SIFT processing core or sent to PC via USB. The input image 

buffer consists of two groups of RAMs with one for each half of the input frame. 

One group is being written by the camera while the other is being read by the SIFT 

processing core and the USB. Each group consists of two DPRAMs that together 

buffer half of an input frame. Port A of each DPRAM is shared between the camera 

front-end and the SIFT processing core and Port B is allocated to the USB only. The 

command for both DPRAMs within the same group is the same. Figure D-5 shows 

the command for one DPRAM in each group. 

In this design, each group contains two DPRAMs, so pixels can be accessed from 

two channels (Port A) concurrently by the SIFT processing core. The input frames 

are continuously routed to and from the input image buffer under the control of the 

Memory Controller and only the latest frame can be stored on the buffer. 

 



279 

 

 

 

Figure D-5: Command for input image buffer access. 

 

Figure D-6 shows the flowchart for writing and reading the input image buffer by the 

camera and the SIFT processing core, respectively. The status of RAM0 is checked 

when a new frame arrives (     =’1’). If RAM0 is empty before the first row 

synchronisation signal (    ) is asserted, it indicates that RAM0 is ready to accept 

the first part of a new frame. Otherwise, the coming frame is abandoned as the data 

from the previous frame is still waiting to be sent to PC via the USB. The status of 

RAM1 is checked when RAM0 has been filled up with the first part of an input 

image. If RAM1 is empty before the next row synchronisation signal (    ) is 

asserted, it indicates that RAM1 is ready to accept the other part of the new frame 

and SIFT processing core is enabled to process the first half frame. 

It should be noticed that the SIFT processing core is not enabled immediately after 

RAM0 has been filled with data due to the possibility that the second half of frame 

may be abandoned. Once RAM1 has been filled up with data, the SIFT processing 

core is enabled to process the second half frame. Status checking for RAM0 and 

RAM1 is necessary in that the previous frame may be overwritten by the new one 

before it has been fully accessed by the USB. 
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(a)       (b) 

Figure D-6: (a) Flowchart for writing input image buffer by the camera. (b) 

Flowchart for reading input image buffer by the SIFT processing core. 

 

Display Controller 

A MATLAB based software model is written to run on a PC to visualise the results 

of the developed image matching system. The flowchart of the MATLAB based 

display controller is given in Figure D-7.  

The software model communicates with the FPGA board through the USB link, and 

performs the following tasks: 
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 Keep retrieving data package by package from FPGA until a valid 

identification file is received, which indicates that a set of data is ready to be 

transferred from FPGA to PC. 

 Buffer the raw images if the entire frame has been correctly received. 

 Buffer the coordinates of matched keypoints and display the matching results. 

 

 

Figure D-7: Flowchart for the Display Controller. 
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Appendix E. Avnet FMC Module 

As shown in Figure E-1, the Dual Image Sensor FMC Module is a low pin count 

(LPC) FMC module containing interfaces intended for video processing. This 

module contains no processing intelligence and requires that it be plugged into a 

compatible baseboard for power, control and data processing.  

 

  

Figure E-1: The left image shows the top of the Avnet FMC module. The right image 

is for the bottom. 

 

All the camera functions can be configured through I2C interface by writing in some 

registers, such as the frame rate and size of input images. The registers are accessed 

by the I2C bus, but the actual protocol used for communication is the Serial Camera 

Control Bus (SCCB) interface which is for some mode the same as I2C protocol. In 

the I2C protocol, two pins are used. One is the clock (SCL) and the other is the data 

(SDA). The SCCB protocol consists of two signals, which is the single-directional 

control signal (SIO_C) and bi-directional data signal (SIO_D), respectively. The 

SIO_C must be driven by the master device, while SIO_D can be driven by both 

master and slave device. As shown in  Figure E-2, FPGA and FMC module with 

image sensor acts as the master and slave device, respectively.   
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Figure E-2: Function block diagram for the 2-wire SCCB. 

 

Figure E-3 shows the detailed block diagram of the slave device. We configure 

image size and video frame rate by writing in registers of image sensor that is 

connected to port 2 of the I2C multiplexer. The clock period of the input clock 

(XCLK) of the camera is set by writing to registers of video clock generator that is 

connected to port 3 of the I2C multiplexer. Configuration of other devices remains as 

default. The corresponding I2C addresses are given in Table E-1. 

 

 

Figure E-3: Block diagram of slave device for I2C peripheral configuration. 
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Table E-1: I2C address. 

Device I2C Address 

I2C Multiplexer 0xE0 

Image Sensor 0x60 

Video Clock Synth. 0xC8 

 

As shown in Figure E-4, the basic element of the data transmission using the SCCB 

protocol is called a phase, and each write transmission cycle consists of three phases. 

Each phase consists of 9 bits, where the ninth bit is a Don’t-Care bit or an NA bit, 

depending on whether the data transmission is a write (‘0’) or read (‘1’). The IP 

address corresponds to the I2C address of devices, and the sub-address is the address 

of the register to be written to. The SCCB protocol is implemented using VHDL and 

the timing diagram is shown in Figure E-5. Detailed configuration parameters are 

given in Table E-2. 

 

Figure E-4: The 3-phase write transmission cycle. 

 

 

Figure E-5: Timing diagram of SCCB configuration. 
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Table E-2: Configuration of FMC Module with Image Sensor 

Device Function Register Value 

Video Clock 
Generator  

(0x60) 

Set the clock period of the 
input clock (XCLK) of the 

camera to 12MHz. 

0x24 0x6D 

0x26 0x12 

0x27 0x12 

0x28 0xFF 

0x29 0x80 

0x2A 0x02 

0x2B 0x07 

Image Sensor  

(0x60) 

Set the size of the input image 
to 640x480. 

0x17 0x25 

0x18 0xA2 

0x19 0x01 

0x1A 0xCA 

0x03 0x0A 

0x32 0x07 

0x98 0x40 

0x99 0xA0 

0x9A 0x01 

0x57 0x00 

0x58 0x78 

0x59 0x50 

0x4C 0x13 

0x4B 0x36 

0x3D 0x3C 

0x3E 0x03 

0xBD 0x50 

0xBE 0x78 

Set the video frame rate to 
30fps, assuming the clock 
period of the input clock 

(XCLK) of the camera has 
been set to 12MHz.  

0x5C 0x19 

0x5D 0x00 

0x11 0x00 
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Appendix F. OmniVision OV9715 Image Sensor 

The OV9715 image sensor is one megapixel CMOS image sensor that has an image 

array capable of providing full-frame, sub-sampled or windowed 8-bit/10-bit images 

in raw RGB format. The sensor delivers XWGA (1280x800) resolution video at 30 

fps and the maximum image transfer rate for 640x400 resolution video is 60 fps. In 

our system, the image sensor is configured to deliver 640x480 resolution video at 30 

fps by truncation, as shown in Figure F-1. 

 

Figure F-1: Sensor array size (1280x800) and valid pixel size (640x480). 

Detailed timing diagram is shown in Figure F-2, where VSYNC indicates the starting 

of a new frame and HREF indicates when the pixels are valid. The image sensor 

array is accessed row by row, and HREF acts as the row synchronisation signal. 

PCLK is the clock signal that is configured to 40 MHz, and all the other signals are 

synchronised by the rising edge of PCLK. D is the 10-bit input data. 

 

Figure F-2: Timing diagram of the image sensor. 


