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Abstract

The Scale Invariant Feature Transform (SIFT) is one of the most popular matching
algorithms in the field of computer vision. It has advantages over many other
algorithms because features detected are fully invariant to image scaling and rotation,
and are also shown to be robust to changes in 3D viewpoint, addition of noise,
changes in illumination and a sustainable range of affine distortion. However, the
computational complexity is high, which prevents it from achieving real-time
performance. The aim of this project, therefore, is to develop a high-performance
image matching system based on the optimised SIFT algorithm to perform real-time
feature detection, description and matching. This thesis presents the stages of the

development of the system.

To reduce the computational complexity, an alternative to the grid layout of standard
SIFT is proposed, which is termed as SRI-DAISY (Scale and Rotation Invariant

DAISY). The SRI-DAISY achieves comparable performance with the standard SIFT

descriptor, but is more efficient to be implemented using hardware, in terms of both
computational complexity and memory usage. The design takes only 7.57 us to
generate a descriptor with a system frequency of 100 MHz, which is equivalent to
approximately 132,100 descriptors per second and is of the highest throughput when
compared with existing designs. Besides, a novel keypoint matching strategy is also
presented in this thesis, which achieves higher precision than the widely applied
distance ratio based matching and is computationally more efficient. All phases of
the SIFT algorithm have been investigated, including feature detection, descriptor
generation and descriptor matching. The characterisation of each individuaf part o

the designs carried out and compared with the software simulation results.

A fully stand-alone image matching system has been developed that consists of a
CMOS camera front-end for image capture, a SIFT processing core embedded in a
Field Programmable Logic Array (FPGA) device, and a USB back-end for data

transfer. Experiments are conducted by using real-world images to verify the system

performance. The system has been tested by integrating into two practical
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applications. The resulting image matching system eliminates the bottlenecks that
limit the overall throughput of the system, and hence allowing the system to process
images in reatime without interruption. The design can be modified to adapt to the

applications processing images with higher resolution and is still able to achieve real-

time.
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1.1 Introduction

Compuer vision, which focuses on providing computers with the ability to mimic
human perception, constitutes an important step in designing systems which can

perform intelligent tasks.

Object or scene recognition is one of the fundamental tasks in the field of computer
vision. One of the frequently used contexts is to identify the presence of specific
objects or a class of objects along with their locations in the scene. Recognition is
also used in identification of a wide variety of patterns, such as fingerprints and faces
just to name a few. Besides, it is an important part of applications such as image

retrieval, where the objective is to find an image similar to a given query image.

A common step in most recognition algorithms is to represent the image content in
terms of features. A local feature, which is also known as an interest point, is an
image pattern that is associated with a change of an image property neighbourhood,
such as intensity, colour and texture. Local features can be points, edges tknd sma

image patches. In general, a good feature should have the following properties:

» Repeatability: The repeatability represents the percentage of points that are
simultaneously presented in the commonly visible part of two images that are
taken under different viewing conditions. A high repeatability is expected.

» Distinctiveness: The feature should show a lot of variations of the local
intensity pattern underlying the feature, so that the features can survive large
image transformations and hence can be correctly matched.

= Locality: The regions identified by features of higher locality are less likely to
be occluded or suffer from geometric and photometric transformations
between two images taken under different viewing conditions. However, the
disadvantage is that the detected regions contain less information and are less
distinguished to survive large transformation. Therefore, the keypoints with
high locality are less likely to be repeatedly detected and corrected matched,
especially in existing of large transformation between images.

= Quantity: The number of features should be sufficiently large to meet the
requirement of different applications. Ideally, the features should densely

cover the entire image. This property is especially useful in applications, such

13



as object or scene recognition, where it is vital to have features densely
covering the entire object of interest. If too few features are detected, the
image content is not reliably represented.

= Accuracy: The features should be accurately localised in 2D image plane and
also in scale space. This property is important for applications, such as wide-
base line matching and camera calibration, where accurate locations are

needed.

Of all the above mentioned expected properties from local features, repeatability is
the most important one and has been widely used in the performance evaluation of

detectors [L

Image matching is an important aspect of computer vision and has been widely used
in solving problems related to object or scene recognition [2] [3], robot localisation
and mapping [4] [b object tracking [6] [}, 3D vision [8] [9] and etc. It obtains the
similarity of image pairs by identifying their relationship. In general, the image
matching usually involves three important stages.

Detection: The first one is the extraction of salient keypoints from images, where
each keypoint is typically associated with information, such as the location in 2D

image plane and scale space.

Description: The second stage is to associate each keypoint with a distinctive

descriptor based on the local region around the keypoint.

Matching: The final stage is the matching of keypoints between images based on the

descriptors.

1.2 Motivation

In the past few decades, a considerable amount of research has been made to explore
effective algorithms to determine correspondence between images. SIFT (Scale
Invariant Feature Transform) [10] has advantages over other algorithms because
features detected are fully invariant to image scaling and rotation, and are partially
invariant to changes in 3D viewpoint, addition of noise, and changes in illumination.

However, the high computational complexity makes it not eligible to real-time
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applications. In recent years, an impressive body of work has been done to improve
both the efficiency and performance of the standard SIFT algorithm. Apart from
developing variations to the standard SIFT algorithm, efforts have been made to

explore pipelined hardware architecture while seeking for help from new hardware

technologies. Related researches will be reviewed in Chapter 2, in terms of SIFT

variations and efficient hardware implementations.

1.3 Objectives and Contributions

The research presented in this thesis aims at tackling the major drawback of the
existing systems, which is the relatively low overall processing throughput with
feature description incorporated, and hence providing a high frame rate and high

accuracy image matching system.
This research mainly consists of two parts:

e The theoretical part, such as the improved spatial arrangement of descriptor,
and the parameters that can be tuned to improve hardware efficiency while
keeping relatively high performance.

e The hardware part, such as the hardware architecture of the SIFT processing

core, and the complete image matching system.
The main objectives of this project are:

= Appropriate system configuration and algorithm modification for an efficient
hardware design.

»= High frame rate image processing system. The ultimate target for the frame
rate is 60 fps for VGA images.

» High accuracy processing core so that the matching performance is
comparable with the high-precision software model.

»= Low resource usage so that the processing core can be integrated into a single

chip, which means the whole system on a chifjSo

The main contributions of this project are:
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» The grid layout of the standard SIFT descriptor is optimised by using the log-
polar spatial arrangement, which is more efficient to compute without
significant performance degradation.

= A novel feature matching strategy is proposed, which provides higher
matching accuracy when compared with existing widely applied matching
methods.

= A rotating buffer memory solution is proposed, with which the memory
requirement remains constant with the increase of the parallelism level of the
processing core and it contributes to the memory reduction of the design.

= A fully stand-alone image matching system is developed, which achieves
real-time performance for VGA images and is the first complete hardware
design for the SIFT algorithm.

1.4 Thesis Outline

This thesis presents the research carried out to achieve a real-time image matching
system of high frame rate and low hardware resource usage based on the optimised
SIFT Algorithm. The remainder of the thesis is organised as follows.

In[Chapter 2, a review to the related researches is presented, in terms of both the

image matching algorithms and the existing approaches that improve both the
efficiency and performance of the standard SIFT algorithm. The drawbacks of the
existing hardware systems developed for the SIFT algorithm are presented, which

leads to the necessity of this research.

Chapter 8 introduces the optimisations toward the standard 128-dimentional

descriptor. Evaluation is performed to compare the performance of the standard SIFT
and the spatial arrangement of the descriptor, named SRI-DAISY (Scale and
Rotation Invariant DAISY). A novel image matching strategy is proposed in the
same chapter, which achieves higher precision than distance ratio based matching

from SIFT and is more efficient to implement on hardware devices.

Chapter 4 presents a degdllanalysis to the parameters that affect the performance

and hardware efficiency of the SIFT processing core. Detailed evaluation is
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performed to achieve an appropriate parameter setting for an efficient hardware

design.

In [Chapter b, FPGA based hardware architecture of the SIFT processing core is

presented, which covers all phases of the optimised SIFT algorithm. Memory

requirement is analysed and efficient memory solutions are provided.

Chapter ¢ presents the developed embedded system for the optimised SIFT algorithm.

Tests and experiments are conducted for the performance evaluation of the system, in
terms of robustness to geometric and photometric transformations. Besides, the
matching performance is tested in two applications: object recognition and video

stabilisation.

Finally,| Chapter |/ concludes the thesis and presents discussion and suggestions for

further work.
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Chapter 2 Image Matching

18



2.1 Introduction

This chapter mainly consists of three parts. Firstly, relevant research on the intensity
based feature detection methods that led to the current state-of-the-art SIFT
algorithm are reviewed. Secondly, variations to the SIFT are introduced, which are
developed to improve either the efficiency or the performance of the standard SIFT
algorithm. Finally, a review of related work to speed up the SIFT implementation is
also presented with advantages and disadvantages that led to the necessity of the
research reported in this thesis.

2.2 Related Image Matching Algorithms

In this section, relevant reseaeston the feature detectors are reviewed, and an
emphasis is placed on the approaches proposed for extracting scale invariant features
that are closely related to th&$3 algorithm.

In this section, two major types of local features are reviewed: corner detector and

blob-like structure detector. The corner detector detects corners and highly textured
points, whereas the blob-like structure detector detects mainly blobs. A corner can be
identified by a single point while a blob relies on the boundary of its neighbourhood.

Corners are typically better localised in the image plane, and hence are suitable for
applications where localisation accuracy is of great concern, such as camera
calibration and estimation of epipolar geometry for wide-baseline matching. The

blob-like structures are less accurately localised in the 2D image than corners,

because the second derivatives give small response in the point where the signal
change is most significant. Therefore, blob-like structure detectors are less suited for
applications where precise correspondences are needed. However, since blob-like
structure detector gives a good estimation of the size thus the scale of the blob, it is
better suited to applications where a precision localisation is not necessary, such as
object or scene recognition. In practice, the blob detector is complementary to corner

detector, and hence are often used together [11] [1P] [13
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2.2.1 Corner Detector

In the traditional sense, the corner refers to a point in the 2D image that has large
curvature in both directions. Freeman [14] defined corners as discontinuity of an
average curve slope and the mean curvature to either side of it can be considered to
be uniform and free of discontinuities. It was then noticed that the so-called corners
can also be detected from image locations that have large gradients in all directions,
such as a small dark spot on a bright background. Nowat&ysrm “corner” is

used for both senses.

The development of image matching by using a set of local interest points can be
traced back to the work of Moravec [15] on stereo matching using a corner detector,
which functions by considering a local window in the image. A corner is detected if

the average changes of image intensity resulting from a small amount of window

shift are large in all directions. As shown in Figure[2-1, the red square represents the

image windowv(x,y). The leftmost image shows that the image intensity within the
window is approximated constant and window shifts in all directions will result in a
small change. The middle image shows an edge, where the window shifts along the
edge will result in a small amount of change, while the shifts perpendicular to the
edge will result in a large change. The rightmost image shows an actual corner, and
the window shifts will result in large changes in all possible directions.

1 -

Figure 2-1: Morawc’s corner detector.
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The similarity between image windows before and after the movement in a certain

direction is determined by calculating the sum of squared difference (SSD), as

defined in Equation (2.1).

E(u,v) =z:w(x,y)|1(x+u,y+v)—I(x,y)l2 2.1)
Xy

where w(x,y) specifies the image window and it is unity within a specified
rectangular region and zeros elsewhéfe,.y) and/(x + u,y + v) are the original
and shifted pixel intensity, respectively.
Smaller SSD indicates higher similarittyd the Moravec’s corner detector is actually
searching for the minimurfi(u, v) in all directions that is above a certain threshold.
The three major drawbacks of the Mwagc’s corner detector are listed below, which
are later improved by the Harris corner detector [16].

1. Shifts in only eight discrete directions are considered, and hence the response
is anisotropic.

2. The response is sensitive to noise due to use of binary and rectangular image
window.

3. Because it takes into account only the minimumg@d,v), the detector

responds too readily to edges.

One of the intensively used pixel based matching algorithms is developed by Harris
and Stephelm6], which isaproved upon Moravec’s work and is known today as

the Harris detector. It concerns not only corners but also any image location that has
large gradients in all directions at a predetermined scale. The Harris corner detector
is based on the second moment matrix, which is also known as auto-correlation
matrix that summarises the gradient distribution in a specified neighbourhood of a

point:

IJ%(Xl op) ley(x' op)

M = g(a;) *
! ley(xf GD) I;(X, GD)

(2.2)

with
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V)
e 2]

g(o-l) = 27_[0_12

0
L(x,0p) = ag(ob) * 1(x)

d
Iy(X» op) = @Q(UD) * 1(X)

wheready, is the differential scale with which the first-order local image derivatives
(I, I,) are computeds, is the integration scale of the Gaussian kernel that is applied

to the neighbourhood of the pixel to smooth the local image derivatives.

A corner typically has large principal curvature in all directions and can be obtained
by analysing the principal curvature in 2D images. Because the eigenvalues of the
second moment matrid are proportional to the amount of the principal curvatures
of I(x,0p), a pixel is labelled a corndrthe eigenvalues of the corresponding matrix

are both large.

By considering the differential of the corner score with respect to the dirgction
directly instead of using shifted patches, the Harris corner detector removes the
anisotropic response limitation of the Moravec’s method. The noisy response of
Moravec’s detector is addressed by using a Gaussian window instead of the square

and binary one, which uses a circular window with more weights put on the pixels
closer to the centrénstead of simple sum in Moravec’s method. Finally, the

sensitivity to edges is eliminated by analysing the principal curvatures of the local

2D images. An example of detection comparison is shown in Figufe 2-2. The left

image shows the corners detected with Moravec’s method, and the right image shows

the corners detected using Harris detector.
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Figure 2-2 An example of detection comparisofiMoravec’s corner detector and

Harris detector.

Harris corner detector is considered as one of the most reliable interest point

detectors ands stable in arbitrary lighting conditions. However, it is very susceptible

to changes in image scale, therefore fails to provide satisfying matching performance

when dealing with images of scales changes, which always occurs in images. To

tackle this problem, researches have been done to extract scale invariant features,
including improving the detectors to be scale adapted and exploring features that are

detected in the scale invariant manner.

A variation of Harris detector is proposed in [17], which is referred to as Harris-

Laplace. The Harris-Laplace detector is a combination of Harris detector and Laplace
operator proposed by Lindeberg [18]. It starts with the multi-scale point selection

using scale adapted Harris corner detector, followed by iterative scale selection using
Laplace operator, which works together to detect scale invariant features. The idea of
using the Laplace operator is to select the characteristic scale at which the similarity
between the detector operator and the local image structure achieves maximum,
which can be explained as finding the circular shape of the Laplacian kernel that is
adapted to a local image structure. The characteristic scale is an estimation of the
characteristic length of the corresponding image structure, and is related to the
structure and not to the resolution at which the structure is repreed [17]. As

shown in Figure 2-3, the top row shows the images of different scales, where the

yellow circles represent the corresponding circle of Laplacian kernel. The bottom
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row shows the Laplacian responses over scale, and the characteristic scale are 10.1

and 3.89 for the left and right images, respectivﬂ/ e Laplacian response
achieves a maximum when the size of the Laplace operator matches that of the blob-

like structure.
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Figure 2-3: An example of characteristic scale selection using Laplace otor [17].

Beaudet [19] proposed a rotation invariant Hessian-based detector termed DET,
which is derived from the second-order Taylor expansion of the intensity surface,

and especially the Hessian matrix that describes the local curvature. Beaudet defined

an operator called DET:
DET = Ly, — I2, (2.3)

Operator DET is related to the local curvature, and the features correspond to points

where DET achieves local extrema.

24



2.2.2 Blob Detector

Another most intuitive local feature is the blob, which is a region in an imagis that
either brighter or darker than the surrounding. In this section, three most widely
applied blob detectors are reviewed: Laplacian-of-Gaussian (LoG), Determinant-of-

Hessian (DoH), and Difference-of-Gaussian (DoG).

a. Laplacian-of-Gaussian
One of the first and most common blob detectors is proposed by Lindeberg [20],

which is based on the Laplacian-of-Gaussian (LoG). It searches for extrema from the

scale space [21] using the scale normalised LoG operator in Equatign (2.4).

ILoG(X, 0,)| = 07| Lyx(X,0,) + Ly (X, 0,)| (2.4)

whereL,, andL,, are the second order derivatives computed using Gaussian kernel

of standard deviatioa,, .

Increasing o,

Figure 2-4: Spatial responses to the Laplacian operator computed at different scale

levels .

Figure 2-4 shows how the spatial responses vary with the Laplacian operator

computed at different scale levels. The scale space is generated by successive
smoothing of the high resolution image with Gaussian based kernels of different
sizes. Koenderink [22] and Lindeberg [23] have shown that Gaussian function is the

only possible scale-space kernel.
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(b) LoG responses to different signals. Left: signals, Right: LoG responses.

Figure 2-5 LoG operator applied to several different signals.
26



The LoG detector is able to deal with significant scale changes, but the main

drawback is that local maxima are detected from both blob-like structures and the

neighbourhood of contours and edges. As showp in Figurge 2-5, the Laplacian

operator ir] Figure 2{5(a) responses to edges in the first two examples in|Figure

2-5(b), and responses to the blob like structure in the last example. Therefore, to

detect a blob, the response of the Laplacian operator should achieve the extrema at
the centre of the blob, where a maximum response and minimum response
corresponds to a dark blob on light background and light blob on dark background,

respectively.

b. Determinant-of-Hessian

A Hessian-based blob-like structure detector is proposed by Mikolayk [1], which
employs both the trace and determinant of the Hessian matrix (DoH) for feature

detection.

L..(X,0 L., (X0
4= [Fee o) Ly (x,0) 25)
Ixy (X' GD) Iyy (X' GD)

with

2

d
Ixx(xf O-D) = WQ(O'D) * 1(x)

where I, (X,0p) is the convolution of the Gaussian second order derivative
2
%g(a[,) with the imagd at pointx, and similarly forl,,,,(x, op) andl,,, (x,0p). op

is the scalatwhich the second-order local image derivatives are computed.

The trace of the Hessian matrix is often referredgbaplacian, which haa strong

response to both blob like structures and edges, as has been illusfrated in Fgure 2-5

A local maximum of DoH indicates the presence of a feature point with large local
curvatures. A feature is selected when the trace and DoH simultaneously achieves

local extrema, so as to overcome the drawback of the Laplacian which has strong

response to edges. As showh in Figurg 2-6, the left image shows the detection results
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using trace (Laplacian). The right image shows the detection result using both trace
and DoH ¢, = 4).

features detected with trace ~_features detected with both trace and determinant

Figure 2-6: Detection results.

To make Hessian detector to be invariant to scale changes, Hessian-@lase [17
developed which are similar to Harris-Laplace, but the features are detected using
DoH. According to the comparisons in [11] [18], the Hessian-based dei®atore

stable and repeatable than Harris-based detectors.

c. Difference-of-Gaussian

The Differencesf-Gaussian (DoG) has been widely used for feature deti@S
[24] [25] [26], which is a close approximation to the LaplacddGaussian (LoG)
and detects blob-like structures. The DoG represented by the dashed line in the right

image of Figure 247(b) is generated by applying subtractions to the two Gaussian

functions with different standard deviations,(@,) shown in the left image pf Figufe

2-7(a). The 2D example of DoG and LoG is giverli in Figurg 2-7(b). The DoG is

computationally more efficient than LoG, because the second-order derivatives

(Lxx, Lyy) with respect to scale of LoG are approximated by the difference of

Gaussian blurred images, as shown in Figure 2-7(c).
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Figure 2-7: Comparison between LoG and DoG.
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Lowe ] extended the DoG operator to deal with scale changes for the SIFT
algorithm, which is especially designed for image scaling. In the rest of this section,
detaiked description of the standard SIFT algorithm is given. The SIFT algorithm

mainly consists of two parts: feature detection and descriptor generation. Feature
detection module extracts the image features that are further transformed to

descriptor vectors in descriptor generation module.

Feature Detection

The feature detection module mainly consists of three stages: 1) Gaussian scale space
and DoG space construction. 2) Keypoint detection with stability checking. 3)

Gradient Magnitude and Orientation (GMO) calculation.

To achieve invariance to scale change of the image, stable features are searched
across all possible scales by using a continuous function of scale known as scale
space. The Gaussian scale space is built up by repeatedly convolving the input image
I with Gaussian kernef of different sizes, thereby leading to the scale space

composed of a series of smoothed imdge$the same resolution at discrete values

of g, as shown in Equatipn (2(6).

L(x,y,0) = G(x,y,0) * I(x,y) (2.6)

where * is the convolution operatar,decides the size of Gaussian kernel given in
Equation (2.7).

e~ (?+y?)/20? (2.7)

G ) ) =

Gy, 0) =5—
The scale of a scale space image is equal to the standard deviation of Gaussian kernel
used to generate that imaEe. Figureg 2-8 illustrates the Gaussian scale space and DoG

space construction by showing an example of six scales per octave. Scale space

images with the same resolution compose an octave. The input image to a new
octave is generated by sub-sampling image from the previous octave spatially by a
factor of two. The DoG given in EquatiEn (2.8) is generated by applying subtraction

operation to adjacent scale space images, which are separated by a constant

multiplicative factor k.
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D(x,y,0) = L(x,y,ko) — L(x,y,0) (2.8)

A pixel is defined as a keypoint when it is larger or smaller than its 26 neighbours in

the DoG space, with eight pixels in the same scale and nine in the scales above and

below, respectively. As shown |in Figure P-8, each square represents a pixel in the

DoG space, and the pixels in shadow correspond to the pixels to be compared with
their neighbouring pixels.

Input Image [

| |

G(Go) =1 G(GI) =1 G(Gz) =1 G(O’a) =1 G(O’,‘J =1 G(O’s) =1

v

Gaussian Scale

Space

Difference-of-Gaussian
(DoG)

Figure 2-8: Block diagram representing the Gaussian scale space and DoG space

construction by using a set of six Gaussian smoothed images.

Once a keypoint has been detected, it will be passed onto the stability checking
process to eliminate those that are likely to be unstable, either because they are near
an edge rather than a blob-like structure, or because they are found to be with low
contrast. Firstly, the location of the keypoint is improved to sub-pixel accuracy by
using a second-order Taylor expansion at its original locateny,o). The
correction offsetv from u with respect to coordinatés, y) and scaleris defined in
Equation (2.9).
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If wis larger than 0.5 in any one of the three dimensfang, o), the keypoint

actually lies closer to another pixel, as shown in Figure 2-9. Then the correction

offset will be added ta to produce the new location. This process repeatswatisil

smaller than 0.5 in all dimensions.

»  True Extrema
" r /
' "N " /“L
= -_.,.-"""F
/ ‘Detected
Exfrema

| X

L 4

Figure 2-9: Keypoint localisation under sub-pixel accuracy.

Secondly, keypoint with contract defined in Equatiop (2.10D) lower than the pre-

defined threshold is rejected to improve the stability of the system.

10D7
—D+= 2.10
c TV (2.10)
The final step of stability checking process is the principal curvature analysis.
Because the DoG responses to both blob-like structures and edges, the principal
curvature analysis step is necessary so as to remove local extrema that are located
along edges. This step is achieved by evaluating the eigenvalues of the corresponding

Hessian matrix. A local extrema is accepted if:

Tr(H)2  (Dxx + Dyy)?

= < Threshold (2.11)
Det(H) ~ DyyxDy, — DyyDyy

Dxx ny]

D D

whereH = [
y

xy
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Local extrema that have passed through all these steps can be identified as keypoint

with high confidence.

Descriptor Generation

The next step is to associate each keypoint with a descriptor, which is actually a 3D
representation of the gradient distribution of the local region centred on the keypoint.
The descriptor is highly distinctive and is robust to the remaining variations, such as
changes in 3D viewpoint and illumination. The gradient-orientation histogram is

used to describe a keypoint, which is generated from the gradient information of all

pixels within the local region. Given a pixel, the gradient magnitafe y) and

orientationd (x, y) are computed from Equatirn (2.12) and (2.13), respectively.

m(x,y) = /G,% + G} (2.12)

0(x,y) = tan‘l(%) (2.13)

whereG, andG, given below are the difference of smoothed pixel valuesand

y directions, respectively.
Gy =L(x+1,y)—L(x—1,y) (2.14)
Gy =L(x,y+1)—L(x,y—1) (2.15)

As shown on the leftfoFigure 2-10, the length and direction of a particular arrow

represents the gradient magnitude and orientation of each pixel, respectively.

*-
k-

*
e

Figure 2-10: Descriptor generation for ax8set of pixels.
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To generate a descriptor, each local region around a keypoint is segmented into

several square sub-regions, with each characterised by an 8-bin hisfogram| Figure

2-10 shows an example of a 2x2 descriptor vector computed from the local image

patch of size 8x8 pixels, whereas 4x4 square sub-regions are used in the standard
SIFT algorithm. Firstly, the image gradient and orientation are sampled around the
keypoint, which are accumulated to generate a histogram summarising the contents
of the entire local region. The orientation that corresponds to the bin with the largest
magnitude in the histogram is the dominant direction of the local gradient
distribution and is assigned to the keypoint, which is named as the principal
orientation @,,). Secondly, the local region of size 16x16 pixels is segmented into
4x4 square sub-regions with each of size 4x4 pixels, and pixels within the local

region are rotated with respect @g, for rotation invariance. Thirdly, each sub-

region is characterised by an 8-bin histogram with each bin covering 45°. As shown

on the right of Figure 2-10, each sub-region is described using an 8-bin histogram

with the orientation of each bin representing 45°, and the length of the arrow
represents the accumulated gradient magnitude of all pixels within the sub-region for

each of the eight orientations. Finally, histograms of all sub-regions are linked

together, leading tafinal descriptor of 128 dimensions, as shown in Figure|2-11.

0.25

0.2

0.15

0.1

0.05

0 20 40 60 80 100 120

Figure 2-11: Final descriptor of 128 dimensions for standard SIFT algorithm.
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2.3 SIFT Variations

Although the feature detection and description are often dasitpgether, the
solutions to these two problems are independently exp@ed [1] [27]. In this section,
an introduction is given to the algoriterthat are explored as alternatives to SIFT

with respect to detection and description, respectively.

2.3.1PCA-SIFT

The PCA-SIFT [28] applied Principal Component Analysis (PCA) [29] to the
standard SIFT algorithm for dimensionality reduction. Rather than using the
orientation histogram to represent the gradient distribution within the local region,
the PCA-SIFT applied PCA to the normalised gradient image patch centred on the
keypoint. The inputs to the PCA-SIFT are identical to the standard SIFT, which are
the keypoint location, scale, and principal orientation.

To generate a PCA-SIFT descriptor, a square patch is selected around a keypoint
with size proportional to its scale value and the patch is then rotated relative to the
principal orientation for rotation invariance. The gradient values in the patch are
sampled such that for every keypoint the final patch is of size 41x41.By
concatenating both the horizontal and vertical gradient maps for the 41x41 image
patch, an input vector of size 39x39x2=3042 elements is created, which is
normalised to reduce the effect of illumination changes. The final descriptor is of
size n=20, which is generated by projecting the input vector into the feature space
with dimensionality of n=20 using PCA.

The descriptor generation process takes comparable time for both PCA-SIFT and
standard SIFT. The PCA-SIFT is more compact, leading to faster matching speed.
However, according to the comparative study by Mikolajc@ [27], the PCA-SIFT is

less distinctive than standard SIFT. Besides, the standard SIFT is better suited to

handle errors introduced by orientation assignment and scale estirElion [28].
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2.3.2 Speeded Up Robust Features

Viola and Jones [30] proposed to use the integral image, which is also known as
summed-area tables [3in the context of real-time face detection. The entry of an
integral image at location is the sum of all pixels in the input image of a
rectangular region formed by the origin andsiven an integral image, it takes only

four simple arithmetic operations to calculate the area of any sized rectangular region,

as shown ip Figure 2-12.

A B

Figure 2-12 = I5(D) — I5(C) — Ix(B) + I5(A).

H. Bay [32] [33] extended this idea further and proposed the 8géful Robust

Features (SURF), which makes use of the integral images that allows for box-type
filters to approximate the determinant of Hessian matrix for fast feature detection.
The idea of using box-type filter instead of Gaussian filter is that the Gaussian filter

has to be quantised and cropped, and the approximatpushed even further with

box filters ], as shown |n Figure 2413. The first two images are the quantised and

cropped Gaussian second-order derivativeg-tlirection (,,) andxy-direction
(Gyy ), respectively. The last two images are the box-filteBs, (, Dy, ) that
approximates the Gaussian second-order derivatives in the first two images,
respectivel The Hessian matrix can be computed very fast using integral image
and box-type filters, independent of the filter size. Interest points are localised by
applying non-maximum suppression in a 3x3x3 neighbourhood, which are then

refined in scale and image space using quadratic interpolation.
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Figure 2-13 Box-filters.

The SURF descriptor is a histogram of the local distribution of Haar-wavelgt [34
responses within the neighbourhood of the keypoint. Again, by exploiting the
integral image, the Haar-wavelet responsg ,d,) in x or y direction can be
computed within six operations at any scale. The local neighbourhood is split into
4x4 square sub-regions with each described by a four-dimensional descriptor vector
v = (2dy, Zdy, Z|d,|, Z|d, |)for its underlying intensity structure, leading to a final
descriptor of 64 dimensions. The sum of Haar-wavelet responsandy direction

can be split up according to the sigrdofandd,,, respectively, thereby leading to a
more distinctive representation of 128 dimensiofifie SURF descriptor is
computationally effective with respect to computing the descriptor’s value at every
pixel, but all gradients contribute equally to their respective bins, which results in
damaging artifacts when used for dense computn [35].

2.3.3 Gradient Location and Orientation Histogram

GLOH , which is acronym of Gradient Location and Orientation Histogram, is

considered as an extension to SIFT by using log-polar location grid. As shown in

Figure 2-14, the local region is arranged with eight sub-regions in the angular

direction and three sub-regions in the radial direction, resulting irufi-regions.
Mikolajczyk computes SIFT descriptor for each of the 17 sub-regions. With the
gradient orientation quantisedtan16 bins, the resulting histogram is of 272 bins,
which is further reduced to 128 by applying PCA.
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Figure 2-14: Spatial arrangement for GLOH descriptor with 17 sub-regions.

According to the performance comparison of different descriptors by Mikolajczyk
, the GLOH descriptor obtains better results than SIFT in the presence of real
geometric and photometric transformations. However, GLOH is more expensive to

compute than SIFT.

2.3.4 DAISY

Inspired by the developments of SIFT and SURF, Tola [35] takes advantage of the

log-polar grid with Gaussian weights from [36] and speeds up computation by

applying Gaussian convolutions to orientation maps. The descriptor is named DAISY

due to the flower like arrangement of the local region, as sho

wn in Figur

e 2-15. The

radius of each sutegion is proportional to the Gaussian kernels and the ‘+’ sign
represents the centre of each sub-re [35]. DAIESY novel descriptor initially

proposed for dense wide-baseline matching across stereo image pairs. It retains the

robustness of SIFT and GLOH to perspective and lighting changes and can be

computed quickly at every pixel. Unlike SURF, the DAISY descriptor can be

computed efficiently at every pixel and does not introduce any artifacts that degrade

the matching performan5].
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direction=|

Figure 2-15: The DAISY descriptor with three rings of sub-regions in the log-polar

spatial arrangement around the centre.

@ shows the construction process for Gaussian smoothed orientation maps
with four discrete directions as an example. Four discrete orientations with each
smoothed by three Gaussian kernels are used as an example to demonstrate the
construction process. In practice, the DAISY descriptor quantises the gradient

orientation to eight directions, resulting in eight gradient mag (vith one for

each orientation representing°. Each orientate map is then smoothed with
Gaussian masg,,, which results in a set of Gaussian smoothed orientation maps for
eachdirection. The magnitude of the Gaussian smoothed orientation maps are the
entries to the final descriptor. The DAISY descriptor is fast to compute in that the
Gaussian smoothed orientation maps are computed instead of calculating the
weighted sum as in SIFT, witlvhich the descriptor generation process becomes
simple indexing operation that uses the centre of each sub-regions as an index to the

Gaussian smoothed orientation maps.
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Figure 2-16: Construction of Gaussian smoothed orientation map for DAISY.

2.4 Hardwar e Designs

The existing researches aiming at accelerating SIFT using hardware is divided into
three different categories: 1) optimising parallel algorithms based on multi-core
processors [37] [38], 2) using staibart Graphics Processing Unites (GPUSs)][39
[40] [41] to improve the processing efficiency, and 3) implementing SIFT using
FPGA (Field Programmable Logic Array) by exploring the inherparallel

processing property of FPGA devices.

Numerous studies [42] [43] have compared the performance of FPGAs, GPUs and
CPUs. Bodily [44] suggested that GPUs are not suitable for many embedded

applications, such as intelligent robots with limited power supply, mainly because the
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power consumption of GPUs is significant when compared to FPGA devices. In a
most recent evaluation research [45], the performance and energy comparison of
FPGAs, GPUs and multicores is conducted on a sliding-window applications due to
their frequent usage in digital signal processing, such as sum of absolute distance and
2D convolution. They concluded that FPGA is generally faster than GPUs and
multicores, and uses orders of magnitude less energy than other devices in many
situations, providing the only realistic embedded system implementation for high-
definition video. This section mainly focuses on the related FPGA designs for the
SIFT algorithm, highlighting their advantages and disadvantages. The architecture
proposed in each of them is analysasgthey are the most relevant publications to

this project.

2.4.1 Hardware Design for Feature Detection

Se [46] implemented the SIFT detection on a Virtex Il Xilinx FPGA to support a
stereo vision system for robotic navigation. It takes 60 ms to extract SIFT features
from VGA image and has achieved the performance improvement of 10 times in
relation to a Pentium Ill 700 MHz processor. This is the first work reported in the
literature in the field of SIFT extraction based on FPGAs, and marked the first
attempt to accelerate SIFT using hardwa&tewever, no architecture specifications
have been provided. In [47], a partial implementation of the SIFT algorithm on
FPGA is proposed to determine the translation and rotation between cameras for
stereo vision.only the Gaussian pyramid construction and keypoint detection is
implemented in FPGA. The system is able to determine the verge angle between the
two cameras with an accuracy of less than one degree with the system operating at 60
frames per second (fps) for input image of 640x240 pixels, which clearly shows the
advantage of using FPGAs for solving intensive computer vision related tasks.

A hardware-software co-design is developed in [48], which partially implemented
the SIFT algorithm on a Xilinx XUP-Virtex Il Pro board. It takes only 0.8 ms to
detect features from QVGA images wdltlock frequency of 100 MHz. However,

little information on the design architecture and FPGA resource usage has been
provided. Bonato I]S proposed a det&tl hardware architecture for vision
Simultaneous Localisation And Mapping (SLAM) [49], which is able to detect

features at up to 30 fps for QVGA images. As shown in Figure| 2-17, the Gaussian
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pyramid construction is divided by octave and Gaussian blurred images within each

of the three octaves are computed in series, resulting in 18 Gaussian filter blocks.

Octave 0 Down-samiple Octave 1 Down-samiple Octave 2

:::::L—FF---J--»I F 1” ------- .
T T

images from Octave 0 images from Octave 1 images from Octave 2

. Gaussian smooth bock for a scale

Figure 2-17 The architecture implementing the Gaussian filters cascﬂ in [5

In order to reduce the FPGA resources usage and speed up the design, 5-bit unsigned
representation has been adopted for DoG (Different-of-Gaussian) images, with which
local minima are ignored in the detection stage. Since the system performance may
be degraded with many features ignored, the design may not be suitable for other
general image processing applications, such as object recognition that requires a
large number of features densely covering the target object.
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Figure 2-18 The fully parallel architecture for Gaussian filter [50
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Yao [50] proposed a partition-based feature detection scheme, which is able to detect
features from a VGA image within 8% To achieve real-time processing, the input
image is segmented into partitions of size 7x12 pixels with 7 pixels processed in
parallel. The Gaussian pyramid construction is simplified by using four smoothed
images instead of si&s suggested in the standard SIFT. The input to the second
octave is generated by down-sampling the original image instead of the Gaussian
smoothed image from the previous octave. Besides, the standard deviations of four
scale images are set to 1.1, 1.3, 1.6 and 2.0, respectivege simplifications

reduce the total number of features and degrade the robustness to scale changes.

Besides, the stability checking process for the keypoints is replaced by scaling down

DoG pixels, which sacrifices the accuracy of featyres. Figurel 2-18 shows the fully

parallel architecture for Gaussian pyramid construction. It should be noted that each

Gaussian smooth block consists of seven Gaussian filtering units working in parallel.

The overall processing timi&C, ;, is defined below.

(640 — b) x (480 — b) + (320 — b) x (240 — b)
TCyga = <
xxy (2.16)

X[(x+b+2)X(y+b+5)+2]

whereb is the size of the boundary region caused by the nature of 2D Gaussian filter.

x andy are the height and width of the image patrtition, respectively.

frame rate < 15 fps /

30fps > frame rate >= 15 fps

80—

~
o
T

60~

Time consumption (ms)
(%))
o
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frame rate >= 30 fps

20lt : : : : : : : : : :
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Gaussian kernel size

Figure 2-19: The left image shows the processing time for VGA image as a function
of the Gaussian kernel size ESWhe right image shows the processing time for

XGA image as a function of the patrtition size.
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This design is sensitive to both the size of Gaussian kernel and the input image.

Figure 2-19(a) shows the processing time as a function of the Gaussian kernel. The

issue of Gaussian kernel will be later addressgdhapter 4. Figure 2-19(b) shows

the processing time as a function of partition size for XGA (1024x768) images with
Gaussian kernel of size 15, which shows that at least 16 pixels have to be processed
concurrently to achieve real-time. This requires at least 16 Gaussian smooth units to
be implemented in parallel. Increasing the size of either the Gaussian kernel or the
input image will lead to a significant increase in the number of Gaussian smooth

units, which is inefficient, in terms of hardware resource usage.

Another regions-of-interest (ROI) based scalable architecture is proposed in [51],

which works in two different modes: high-speed mode and high-accuracy mode. As

shown inl Figure 2-20, the high-speed mode works in a pipelined architecture with

ROI of size 40x30 pixels, while the high-accuracy mode works in a sequential
architecture with ROI of size 80x60 pixels. The throughput of high-speed and high-

accuracy mode is 56 fps and 32 fps, respectively, with a clock frequency of 50 MHz.

The overall architecture for Gaussian smooth is similar to Figure| 2-18, but each

Gaussian smooth block consists of ten Gaussian filtering units working in parallel.

1

1

1
i i i 1
i i i 1
(77| |
o 72 Y [
I:l Read RO I:l Keypointextraction
Gaussian filtering I:l Cescriptor vector generation

(b) Sequential architecture flow in high-accuracy mode.

Figure 2-20: Overall architecture for two different modes proposﬂn [51
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Kim [52] improved uporBonato’s work \ to reduce the memory requirement by

replacing the cascade Gaussian filter process with parallel processing and sharing

Gaussian filter bank between octaves, as shown in Figurg By2Employing
parallel architecture within each octave, the buffer storing the intermediate

smoothing results in the cascade filtering mode is saved. The design is implemented
on Altera Stratix 1l FPGA (EP2S60F672C3), and achieves a reduction in registers
and LUTs of 58.6% and 36.6%, respectively. However, the overall throughput is not

stated.
Octave (shared)
—h.—b
Input image ™.
(input to octave 0§ —|

_ Gaussian smoothed
"images from Octave 01

|

oo

\

Down-zample

- Gaussian smooth block for a scale
(input to octave 1) .

Figure 2-21 Overview of the parallel architecture with Gaussian filter bank shared
between octaves i2

A SIFT hardware accelerator for real-time image feature extraction has been
proposed by Huang [$3The main contribution of this work is that the processing
time for feature detection is reduced to 3.4 ms for VGA sized video by taking

advantage of the image streaming method proposed jnAS4&hown in Figure 2-22,

the design mainly consists of two interactive parts. Every time a feature is identified
from the main processor, the co-processor is invoked to generate descriptor for the
detected feature point. The main processor does not start detecting until the

descriptor has been generated for the previously detected feature.
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Figure 2-22: State transition diagram of two interactive componenr [53

The overall processing timi&C, ;4 is defined as follows.

TCVGA = TCdetection + Nfeatures X TCdescription (2-17)

where TCgerection 1S the time requirement for feature detection and is directly
proportional to the size of the input ima@€getection 1S €qual to 3.4 ms for VGA.
TCaescription 1S the time requirement for generating a descriptor, which is equal to

33.1 USNfeqrures IS the number of descriptors to be generated.

Although feature detection has been significantly accelerated, the overall processing

time is actually decided by the number of features as a result of the two interactive

components working in seri¢s. Figure 2-23 shows the maximum number of features

that can be processed in réiate for input images of different resolutions. The
maximum number correspondsanoverall processing time of 33.3 ms. The number
of features that can be processed within 33s3lecreases with the increase of image
resolution, which indicates that the design is not applicable for processing higher

resolution images that may produce larger number of features.
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Figure 2-23: Maximum number of features for images of different resolution.

A most recent design that accelerates SIFT feature detection is proposed by Chang
[55], which is improved upon their earlier work in [56]. Chang improved the

processing speed by dividing the Gaussian pyramid construction process by scale, as

shown in Figure 2-24. The design is able to detect features from QVGA images
within 1.1 ms using Xilinx Virtex Il Pro FPGA (XC2VP305FF-1152), which

corresponds to 900 fps. The design introduces high control complexity as a result of

the octave interleaving. Besides, the design covers only the local extrema detection
from DoG space, whereas keypoint refinement process that contains complex matrix

inversion computation is not addressed.
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Figure 2-24 The architecture implementing the Gaussian filters cascin [56
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2.4.2 Hardware Design for Feature Description

The above mentioned researches mainly focus on the FPGA implementation of
feature detection. Considering that SIFT has the potential of detecting a large number
of features and the time consumption of descriptor generation is proportional to the
number of features detected, it becomes necessary to develop a high speed hardware
architecture for descriptor generation that can be fully embedded on-a-chip for real-
time applications.

Bonato ] proposed parallel hardware architecture for feature detection, which is
able to detect features at up to 30 fps for QVGA. However, the feature description is
implemented using software, which requires 11.7 ms to generate a descriptor and has
become the bottleneck that limit the overall throughput. Lin [57] proposed a VLSI
architecture that takes 15.315 us to generate a descriptor, which corresponds to
65,300 descriptors per second with a clock frequency of 200 MHz. The design
achieves 60 fps for VGA at approximately 1,088 features per frame. In a most recent
design ], a SIFT hardware accelerator for real-time feature extraction has been
proposed. It takes approximately 33.1 us to generate a description. To achieve an
overall throughput of 30 fps, the number of features is limited to 890 for VGA sized
video. Besides, not much detail on the architecture of descriptor generation module
has been provided irEFBConsidering the fact that SIFT has the potential of
detecting a large number of features that densely covering the entire image, the
number is likely to exceed 1,000 for a VGA image, so the through of [d [53
may not be large enough.

It can be seen from the review of the developed systems that the main drawback of
the existing systems is the relatively low overall processing throughput with feature
description incorporated. The drawback emerged mainly due to the computational
complexity of the algorithm that gives rise to a large requirement in the processing

time.
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Chapter 3 The Optimised SIFT Algorithm
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3.1 Introduction

In this chapter, an alternative to the spatial arrangement of the standard SIFT
descriptoris proposed by taking advantage of the log-polar spatial arrangement of
the DAISY descriptor. The standard DAISY is extended to be invariant to rotation
and scale changes, which is termed as SRI-DAISY (Scale and Rotation Invariant
DAISY). A novel keypoint matching strategy is also presented in this chapter, which
provides better matching accuracy and higher hardware efficiency than the distance
ratio based method from the SIFT.

3.2 Evaluation Criterion

The recall versus 1-precision curve has become popular evaluation criterion that is
widely used in the context of matching and recognition. Given two images of the

same object or scene, the recall is defined as the ratio of the number of correctly
matched feature points to the number of correspondences. The precision is the ratio

of the number of correct matches to the total number of matches.

I = # correct matches
recatt = # correspondences 3.1)

o # correct matches (3.2)
recision = .
p # total matches

The correspondences are regarded as potential features that can be correctly matched

between the pair of images with transformation.

The F-measure, which considers both recall and precision, reaches its best value at 1

and worst score at 0.

_ (14 B?) - precision - recall

) = (3.3)

p? - (precision + recall)
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wheref is the parameter that controls the balance between recall and precision.
Whenpg = 1, Fz becomes the harmonic mean of recall and precisfgh> 1, Fj
puts more emphasis on recall. Aif< 1, Fz becomes precision-oriented. In the

evaluation results presented in this theSisg set to 1, giving equal emphasis on

recall and precision.

3.3 Problem Analysis

It has been reviewed [n Chaptef 2 that currently existing designs are generally

focused on investigating the parallelism of feature detection module to fully embed
this part on a chip, whereas not much effort has been placed on improving the
throughput of description generation. Actually, descriptor generation has become the
bottleneck of the overall system due to both the high dimension of descriptors and

the huge time requirement to process a large number of features. According to the

literature review presented jn Chaptgr 2, researches focusing on improving the

efficiency of feature description fall into two categories:

e Exploration of descriptors that are more robust, with less computational
complexity and are much faster to be evaluated.

e Development of efficient hardware architecture by exploring the parallel
processing property of descriptor generation.

The performance of several widely applied descriptors has been evalu, in [27]
which shows that the circular arrangement has better localisation properties than the
grid layout of SIFT. Winde6] [58] performed more extensive evaluation into
different layout of descriptors and showed that DAISY [59] outperforms SIFT.
GLOH is the most robust descriptor among all kinds of proposed descriptors but
with high computational complexity. SU333] is a widely accepted algorithm
that offers the fastest speed at the cost of higher memory consumption while the

performance is not quite satisfying.

DAISY is faster to compute than SIFT, but the descriptor is initially proposed for
dense wide-baseline matching and does not deal with rotation and scale changes.
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Fischer [60] implemented Tdha] DAISY descriptor for fast computation, which

explored the rotation invariance of the standard DAISY. The rotation invariant

DAISY is termed O-DAISY, which is generated by rotating the descriptor relative to

the principal orientatiolig,,, in a similar way to SIFT. The design is able to process

images of 2034x2048 pixels at 30 fps, or VGA images at 406 fps, making it an

optimum solution for dense wide-baseline matching. However, O-DAISY suffers

from the following major drawbacks, which make it not suitable for general

matching tasks with large geometric transformations.

The orientation map of the standard DAISY descriptor is a qeahteysion

of SIFT’s orientation, and hence the rotation invariance is degraded when
compared to SIFT as a result of the reduced precisi@gy,ofin SIFT,6,,
corresponds to the direction of the largest bin in the 36-bin histogram
generated based on the gradient distribution of the local region, where each
bin represents £0In the standard DAISY, orientation maps of eight discrete
directions are computed with each representing, 4thich limits the
orientation up to eight discrete directions. Although Fischer increased the
number of orientations from 8 to 16 to improve the precisiof,pfat the

cost of doubling the computational complexity, the precisiof,gfis still
limited to 16 for O-DAISY with each representing 22.&hich potentially
degrades the rotation invariance of the descriptor.

The distinctiveness of descriptors is reduced as a result of the spatial
information discarded. Orientation maps of all 16 directions are involved in
the computation ob,,. However, only every other orientation map is
involved in descriptor generation so as to avoid the increase in descripto
dimension.

Gaussian smoothed orientation maps of each direction have to be buffered,
resulting in a huge memory requirement. The memory requirement is directly
proportional to the resolution of input images, the number of discrete
orientations, the number of Gaussian smoothed orientation maps for each
direction, and the precision of the gradient magnitude of each pixel. The
number of Gaussian smoothed orientation maps correspond to the number of

rings of sub-regions in the log-polar spatial arrangement around the centre.
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e The scale invariance is not addressed in O-DAISY, resulting descriptors
sensitive to scale changes.
Inspired by these evaluation results and hardware design, the SIFT detection is
integrated with the SRI-DAISY, which is a DAISY-like local region arrangement
that is adaptive to rotation and scale changes. The SRI-DAISY is faster to compute
without performance degradation when compared with the standard SIFT descriptor,

and is more robust to image rotation and scaling when compared with O-DAISY .

3.4 SRI-DAISY

In this section, the parameters that affect the spatial layout of the SRI-DAISY are
studied. In general, the throughput of descriptor generation module is proportional to
the number of keypoints to be described. The key factors that affect the processing
time of a descriptor are the sub-region arrangement, the size of local region, and the

throughput of memory interface for data access, such as GMOs. The memory

UT

interface will be discussead|Chapter

3.4.1 Spatial Arrangement for SRI-DAISY

There are two parameters to be considered for the overall layout of the SRI-DAISY

descriptor the number of rings and the number of sub-regions on each ring.

| Ring 6 Segments I Ring 8 Segmenis

2 Rings 6 Segments 2 Rings 8 Secments

Figure 3-1: Typical spatial arrangement for DAISY descriptor studin [58
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Typical spatial arrangements shown in Figurg 3-1 have been studied by \@der [58],

which shows that arrangement with two DAISY rings gives lower error rates than

that with a single ring, and 8 sub-regions per ring performs better than 6 sub-regions

per ring, as shown |n Table 3-1. Besides, the error rate falls significantly when the

number of discrete orientation is increased from 4 to 8, after which it shows little
improvement. So 8-bin histogram for each sub-region is a proper choice, which is

consistent with the standard SIFT.

Table 3-1: Error rates for different arrangement of local regioh [58

Number of discrete 1Ring 2 Rings
orientations (per sub-region) 6 8 6 8
4 34.43 34.24 29.05 28.64
8 27.89 26.52 23.28 22.94
12 26.55 26.19 22.85 22.57
16 26.93 26.28 22.59 22.75

Apart from the error rate, the dimension of the descriptors is also very important,
because it increases the computational complexity of both the descriptor generation
and matching process. Besides, higher dimension also increases the memory

requirement for buffering the descriptors. The descriptor dimension for different

arrangement is given(in Table B-2.

Table 3-2: Descriptor dimension for different arrangement of local region.

Number of discrete 1Ring 2Rings
orientations (per sub-region) 6 8 6 8
4 28 36 52 68
8 56 72 104 136
12 84 108 156 204
16 112 144 208 272
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With a trade-off made between performance and hardware efficiency, arrangement
with 1 ring 8 sub-regions each is used in this design, which results in the final

descriptor of 72 dimensions.

3.4.2 Parametersfor SRI-DAISY

The SRI-DAISY descriptor is generated from the local region, which size is
proportional to the detection scale of the keypoint. Each circular sub-region is
smoothed by a Gaussian kernel with standard deviation proportional to the detection
scale of the keypoint. Typically, larger sub-region contains more information and
hence is more distinctive to survive large transformations. However, it stands a
higher chance of being occluded. Besides, the computational complexity of Gaussian
smooth is closely related to the kernel size applied to each sub-region, so larger
region results in higher computation workload. Therefore, local region arrangement
has to be decided with a trade-off made between performance and computation

efficiency.

Figure 3-2shows a typical SRI-DAISY descriptor that is arranged with one ring in

the radial direction of eight surrounding sub-regions on the ring. Each circle

represents a sutegion. The ‘+’ sign in the centre of the local region is the keypoint.

Figure 3-2: The SRI-DAISY descriptor arrangement.
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In|Figure 3-2R is the distance from the keypoint to the centre of sub-regrass,

the radius of the sub-regions, angl.,; is the radius of the local region for descriptor

generation. The relationship betwa@gn andr;,.,; is given in Equatign (3.4), which

shows that for a given local region stzg.,;, if one of the two parametersandR is

fixed, the other one is known.
Tocal = R+ 71 (3.4)

In this section, three parameters are studied for SRI-DAISY descriptor, which are

closely related to the spatial layout of the descriptor:

1. Standard deviatiorof, 4;5y) Of the Gaussian kernel that is applied to the sub-
regions.op sy i proportional tor,., , and the ratio Ratio,,,,, ) Of
Oparsy 10 Tpcar 1S Studied.

2. Sub-region radius). The ratio ofr to r;,.,; IS Studied.

3. Region size factoF,.g;,,, Whichis the ratioof the diameter of the local

regionto the detection region, ang,cq; = Fregion * 30.

A distinction is made between the detection region and the local region prior to
evaluating the effect of different parameters. The detection region is a collection of
pixels that have effectively contributed to the SIFT detector response, whereas the

local region is the region on which the descriptors are generated.

A wide range of settings has been studied, and some example results are given in

Figure 3-3. The testing images are obtained from the website of Krystian

Mikolajczyk [61]. These images are captured specifically aiming to test and compare

keypoint detectors and local descriptprs. Figure 3-3(b) shows that there does not exist

one set of parameters that achieves the best performance for all types of images and

transformations.

Each parameter is studied in detail in the following sub-sections. Firstly, the
matching performance is checked as a function of the Gaussian kernel applied to
each sub-region. Secondly, experiments are conducted to see how the matching

performance varies with the changing of the sub-region radius, which decide the
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spatial layout of the DAISY descriptor. Finally, the impact of region size factor
Fregion IS €valuated.

(a) Example images. The first row shows reference images. The second row
shows the transformed images. From left to right: graf (viewpoint), boat

(scaling+rotation), bike (blur), and light changes.

F-measure (graf)

F-measure (boat)

r/r
local
local

01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 10
Ratio

oDAISY RatlocsDAISY

F-measure (bike) F-measure (light)

0.45

local

0.35

r/r

0.28

0.20

01 02 03 04 05 06 07 08 09 10 01 02z 03 04 05 06 07 08 09 10
Ratio

DAISY Ratlo(SDAISY

- i r ]
(b) F-measure as a function®f, _ andRatio,, .

Figure 3-3: Matching performance as a function of different parameter settings for

SRI-DAISY descriptor arrangement.
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a. Gaussian kernd

Figure 3-4 shows the matching performance as a functi®atwd which is

ODAISY’

collected from a database of images with a wide range of transformationsx- The
axis is the index to theatio,, ., in range [0.1, 0.5] of interval 0.05. In general,
the matching performance improves Reatio,, ., increases. The performance

becomes rather stable at around 0.35 and shows little improvement beyond that point.
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Figure 3-4 Matching performance as a function of the ratio betwegghsy

andrlocal .
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b. Sub-region Radius

Experimental results are discussed to see how the matching performance varies with

R andr for a given local region sizg,.,;. The local region is sampled with a radius

of four times the detection regiorf,{ ;,,=4.0).| Figure 3-6 shows the example

spatial layout of the local region. The ra’fi,qlocal is gradually increased, and hence

the sub-region radius varies.

r/rIocaI:02 r/rloca\l 0.28 I'/rlocalzo's5
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Figure 3-5: Local region arrangement for DAISY descriptor with one centre sub-

region plus a ring of eight sub-regions.

The overall matching performance of different arrangement for SRI-DAISY is

shown in Figure 3-6. In general, the performance is at a similar level for the selected

descriptor arrangements, aﬁgdrloml =0.35 is slightly superior to the others.

Individual experiments are further conducted to see the effect of sub-region

arrangement on different transformations.
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Figure 3-6: Matching performance as a functioﬁﬁ{oml.
Figure 3-7(b) shows the matching results for a set of structured scene (boat) with in-

plane rotation and scale changes show

N in Figure

p 3-7(a). The structured scene

contains distinctive edges with homogeneous regions. The recall and precision are

virtually the same foF/rlocal:0.28 and 0.35, and are slightly superior to the others.

Similar observation has been made for the textured scene (wall), as slﬁown in Figure

3-8

. The textured scene consists of repeat textures. The preci§i/3po 0f=0.20 for

textured scene holds a similar value to thaf/{}[wal:O.ZS and 0.35, which is

mainly due to the relatively smaller number of total matches when compared with

" fri0eq=0-28 and 0.35.
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Figure 3-7 Matching results as a function b/frlocal for the boat set.
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The overall performance is reflected in the curve of F-measure, as shown in|Figure

3-9| The best accuracy is achievedr;zig,iocal set to around 0.3 for both structured

scene and textured scene. And the effect of spatial arrangement is more apparent for

textured scene.
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Figure 3-9 F-measure as a function @frwcal. The left image shows the F-measure

for the boat set. The right image is for the wall set.

Figure 3-1(

) t

b Figure 3-

|2 shows the matching performance as a funcﬁp,rgog)afl

for images with transformation of viewpoint angle, image blur and illumination,

respectively. The performance of radius réf;lgocal:O.SS is superior to the others

in most cases and is chosen to parameterise the design.

63



1 13 13

os ——0.20 I
N i —+-0.28
0.8 . — —=-0.357
N 040

\\ - 0.45
0s 055/

0.5
0.4 \§§§k
0.3

0.2

F-measure

0.1

VA

@

20 30 40 50
Viewpoint angle

Figure 3-10 Matching result for textured scene (wall) with viewpoint angle.
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Figure 3-11 Matching result for textured scene (tree) with image blur.
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Figure 3-12Matching result for images with illumination changes.

The above mentioned experimental results shows that the robustness of the descriptor
can be improved by increasing the overlapped region, but only up to a certain point,

after which the robustness drops. Therefﬁ/glbcal is set to 0.35. The final spatial

arrangement is shown([in Figure 3}13.
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Figure 3-13: Determined spatial arrangement for DAISY descriptor.
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c. Region Size Factor

Experiments are conducted to check the effect of region size fagtay, to see
how the matching performance varies for differépty;,, for a given spatial

arrangement. A descriptor is actually a 3D representation of the gradient distribution

of the local region centred on a keypo|nt. Figure B-14 shows how the matching

performance varies for differeft,. ;,, On a database of images covering a wide
range of scene types and transformations. In general, the overall matching

performance improves with the size of local region.
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Figure 3-14: Matching results fé¥..;;,, in range [2.0, 6.0] from a database of

images with different scene type and transformation.
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Figure 3-15: Matching results fé}..4;,, on the wall set.

Detailed experimental results for the wall set are given in Figure

3-15. The ranking

for the number of matches is reversed when the scaling factor is larger than 1.5, but

the ranking for the number of correct matches does not follow that of the total

matches, which is reflected in the recall. This is because the descriptors are less

distinctive for smaller regions and the distance between descriptors are on the

average smaller, which leads to many incorrect matches and hence a lower precision.

The slope of precision curve reflects the invariance of the descriptor to the

transformation. The precision drops faster for smaller regions than larger ones,

reflecting that small regions do not contain enough information to be correctly

matched under large image transformations and larger regions are rather stable for

large transformations. Larger regions typically contain more information and hence
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the corresponding descriptors are more distinctive, making them easier to be

corrected matched under large transformations.

However, larger regions stand a higher chance of being occluded and the cost of
processing larger regions are higher, in terms of both hardware resource usage and
processing time. Most of the time devoted to descriptor computation is spent on

convolutions, and the computation workload of convolution is directly proportional

to the size of the sub-regions that increases linearlyRyith,,, as shown in Figurg

3-16. As a result, largét.. ., leads to a significant increase in the computational

workload and also the processing time.
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Figure 3-16: Local region size as a functiorfgfy;,, for descriptors.

Experiment results for other types of transformation are givien in Figure 3-17, which

shows how the matching performance of a given type of image transformation varies

With Fy..4i0n. The experimental results 8f, ;;,, beyond 3.0 are at a similar level.
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Figure 3-17: Matching results for different region size factors for sets of images with

viewpoint changes, image blur and illumination.

As a result of the above experiments, the spatial layout of SRI-DAISY descriptor is
arranged with one centre sub-region plus a ring of eight surrounding sub-region.
With each sub-region transferred into a histogram of eight bins, the final descriptor is

of 72 dimensions. Parameter settings for SRI-DAISY are summarised in Taple 3-3.

Table 3-3 Design parameters for SRI-DAISY.

Parameter Value

Ratiog, . 0.3
7‘/ Tocal 0.35
Fregion 4.0
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3.4.3 SRI-DAISY Implementation

The local region of each keypoint is segmented into several circular sub-rbgions
taking advantage of the DAISY-like polar sampled spatial arrangement. However,
the descriptor is not generated in a way proposeEr [60] for dense wide-baseline

matching, which is not suitable for general matching tasks as a result of the

drawbacks mentioned in sectipn [3.3. In general, the rotation invariance of SRI-

DAISY is achieved by arranging the spatial layout of the local region relatg to

and the scale invariance is achieved by computing the descriptor from the scale
normalised local regianThis section presents how the SRI-DAISY descriptor is
derived effectively without the necessity of rotating all the pixels within the local

region.

Polar Sampled Spatial Spatial Arrangement with
Arrangement Principal Orientation

1 F 3 - 3 [] T [
2D Histogram for 8-bin Gradient Orientation
Sub-region 3 Histogram for Sub-region 3

Figure 3-18: 2D histogram generation for sub-region 3.

Figure 3-1%3 illustrates the descriptor generation process with the polar sampled

spatial arrangement of the local region. Firstly, the principal orientéfipneeds to

be identified, which corresponds to the orientation of the largest bin in the 2D
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histogram obtained by weighting and accumulating all pixels within the local region.
Secondly, the local region is segmented into nine circular sub-regions. Thirdly, with
6, identified, the nine sub-regions are numbered from 1 to 9, starting from the one
pointed byd,, and going in a clockwise fashion, ending up with the one in the centre.

Fourthly, each sub-region is transferred to an 8-bin gradient-orientation histogram.

As shown in Figure 38 the histogram is re-ordered relativegig with the bin in

the direction of6,, being in the first place of the 2D histogram. Finally, the
descriptor is formed by linking together histograms of nine sub-regions in the

numbered sequence. Since there are nine sub-regions with each described by an 8-bin

histogram, the final descriptor is of 72 dimensions, as shown in Figurg 3-19.

Sub-region 1

135

Sub-region 2 Sub-region 9

V
Lo - FEUN | —
1

—

F2]

Figure 3-19: Linking together the histograms of nine sub-regions to generate a

descriptor of 72-dimensions.

It is notable that, in the standard SIFT algorithm, coordinates of each pixel within the
local region of a feature point should be rotatedyto achieve rotation invariance.
In this design, by taking advantage of the isotropy characteristic of the polar sampled

spatial arrangement, redundantly rotating the coordinates of all pixels can be avoided
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by simply arranging the eight surrounding sub-regions and the 2D histogram of each
sub-region relative t6,,. The arrangement can be easily achieved by figuring out
the centre coordinates of eight surrounding sub-regions, with the centre pixel of the
first sub-region in the direction 6f,,. And the rotation invariance within each sub-
region is achieved by rearranging the 2D histogram of each sub-region in such a way
that the bin in the direction @, is in the first place, followed by other bins in a
clockwise fashion. With the new arrangement for descriptors, the rotation of all
pixels within the local region can be avoided. Furthermore, the hardware expensive
sin and cos operations are saved and a descriptor can be obtained with less

computational complexity.

3.4.4 Perfor mance Comparison

The SRI-DAISY is compared with standard SIFT descriptor, in terms of both
matching performance and hardware efficiency.

a. Matching Performance

The performance of SIFT and SRI-DAISY is compared, in terms of both geometric
and photometric transformations, such as image rotation, scaling, viewpoint angle,
image blur and illumination. The recall versus 1-precision curve is used to evaluate
the descriptor performance. A perfect descriptor would give a recall equal to one for
any precision. In practice, recall increases for an increasing distance threshold
because the noise introduced by image transformations increases the distance
between similar descriptors. A factor that leads to non-increasing recall as the
threshold is increased is the distinctiveness of descriptors. In cases where images to
be matched are composed of structures of high similarity, non-distinctive descriptors
are unable to distinguish them thus resulting in false matches. The reason why the
recall does not achieve 1.0 is because not all keypoints in the reference image are
detected from the transformed images, which holds the same for the following
experiments. The input to both descriptors is a square image patch that contains

identical spatial information so as to eliminate the effect of different region size.
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I mage Rotation

To compare the performance for image rotation, a set of images with rotation angle
in the range -180 and 170 degrees is used, covering 360 degrees. The image rotation
is obtained by rotating the camera around its optical axis. Example images are shown

in|Figure 3-2T.

Figure 3-20: Example images in the dataset used for evaluation of image rotation.
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Figure 3-21 The number of both total and correct matches for a set of images with
orientation in range -18@o 170.
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Figure 3-21 shows that the number of matches of SRI-DAISY is slightly below that

of SIFT. The recall versus 1-precision curves for rotation in rangeol60 are

displayed in Figure 3-22, which shows that both curves are horizontal at a similar

recall value of around 0.9, indicating that both descriptors have a similar robustness

to image rotation.
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Figure 3-22 The recall versus 1-precision curve for image rotation dtd60.
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Scale | nvariance

Figure 3-23: Dataset used for evaluation of scale changes.
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Figure 3-24: Performance comparison between SIFT and SRI-DAISY on a set of

images with scale changes of a factor in range 1.47 to 3.75.

75



Scale change is acquired by changing the camera zoom. This section compares the

descriptors for scale changes in range 1.47 to 3.75. As shgwn in Figufe 3-23, the

leftmost image is the reference that is matched against the other four images with
different scaling factors. Both the SRI-DAISY and the SIFT descriptor are generated

using the image patch of the same size and perform virtually the same, as shown in

ol

Figure 3-24

Viewpoint Change

Viewpoint change is acquired by rotating the camera around the axis that is
perpendicular to its optical axis. Neither SIFT nor SRI-DAISY is fully invariant to

viewpoint changes. The partial invariance to such type of transformation is achieved

by the overall robustness of the descriptor. It can be seen from Figufe 3-26 that the

curves of both descriptors are horizontal at a similar recall value of around 0.8 when
the viewpoint angle is below 40 degrees, but degrades significantly afterwards. Lowe
has pointed out that invariance to viewpoint changfegreater than 40 degrees is
unnecessar@O], because training views are best taken at least every 30 degrees in
order to capture non-planar changes and occlusion effects for 3D objects. Therefore,
both SIFT and SRI-DAISY are robust enough for matching images with a viewpoint
angle of no greater than 30 degrees.

Figure 3-25: Dataset used for evaluation of viewpoint change.
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Figure 3-26: Performance comparison between SIFT and SRI-DAISY on a set of

images with viewpoint changes of 30 and 40 degrees.

Image Blur

Image blur is introduced by changing the camera focus, which causes the image
intensities and local structures change in an unpredictablﬁy [27
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Figure 3-27: Performance comparison between SIFT and SRI-DAISY of image blur
on a set of structured images.
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It can be seen from Figure 3427 .’fnd Figurg8that both descriptors are partially

robust to image blur, even for the more challenging textured scene where blur makes

regions nearly identical.
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Figure 3-28: Performance comparison between SIFT and SRI-DAISY of image blur

on a set of textured images with repeat textures.

Illumination

Figure 3-29 shows the matching results for illumination changes obtained by varying

the camera aperture. Both descriptors are normalised to reduce the effects of

illumination changes, and the curve of SRI-DAISY is slightly below that of SIFT.
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Figure 3-29: Performance comparison between SIFT and SRI-DAISY on a set of

images with illumination changes.

It can be seen from the above mentioned experiments that the SRI-DAISY descriptor
has achieved a dimension reduction while providing comparable performance to the
standard SIFT descriptor.

b. Hardware Efficiency

Figure 3-30 shows the overview of descriptor generation process for standard SIFT,

standard DAISY, O-DAISY and SRI-DAISY.
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Figure 3-30: Overview of descriptor generation process for standard SIFT, standard
DAISY, O-DAISY and SRI-DAISY.

To achieve rotation invariance, the principal orientatigyy Xis first assigned to each

feature. In the standard SIFT, all pixels within the local region centred on the feature

point has to be rotated relative to the principal orientatiyp) (following Equation

(3.5) so as to achieve rotation invariance, as shoy

n in Figure 3-31. This process

includes complexin andcos operations that are expensive to be implemented on
FPGA devices. Therefore, the standard SIFT descriptor is inefficient for FPGA

implementation due to its rotation scheme.

x'=x- cos(Bpo) +y- sin(9p0)

y' =y- cos(epo) - x- sin(Hpo)

(3.5)

where (x,y) and (x',y’) are the pixel coordinates before and after rotation,

respectively.
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g is the principal orientation

Figure 3-31: Rotation of local region relative to the principal orientatgy) for

rotation invariance of standard SIFT, assuming upright directioh is 0

The SRI-DAISY tackled the drawbacks of the rotation scheme for standard SIFT by

taking advantage of the spatial arrangement of the descriptor, as has been presented

in section| 3.4.3. In SRI-DAISY, sub-regions are first summarised into 36-bin

histograms that are furthere-ordered relative tad,, for rotation invariance.
Compared with standard SIFT, the computational complexity of descriptor
generation is reduced. Besides, in the standard SIFT algorithm, boundary has to be
defined for each square sub-region to process the pixels within it for histogram
generation. However, the necessity of identifying the boundary of each sub-region
for histogram generation can be avoided by applying a Gaussian function to each
circular sub-region with coefficients outside the boundary set to zero. As a result, the

computational complexity is further reduced.

In both standard DAISY and O-DAISY, Gaussian smoothed orientation maps of all
discrete directions have to be buffered for fast indexing in descriptor generation
process. For SRI-DAISYit only needs to buffer the GMOs of the scales from which
the features are detected. Compared with standard DAISY and O-DAISY, SRI-
DAISY has achieved a significant memory reduction.
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3.5 A Novel Matching Strategy

This section proposes a novel feature matching strategy that is not only more

accurate in matching, but also more efficient to be implemented on FPGA devices.

3.5.1 Existing Matching Strategies

The matching process is one of the fundamental tasks in computer vision and takes
place among the keypoints associated with descriptors. A good set of

correspondences between images is essential in order to carry out further tasks. In
general, there are three widely used matching strategies: 1) Threshold based
matching 2) Nearest neighbour based matching 3) Distance ratio based matching.
The matching strategy using a global threshold does not perform well due to the fact
that the distinctiveness of keypoint varies. The matching strategy based on the
nearest neighbour performs better than the threshold based matching, but it finds
every keypoint in the input image a matched keypoint from the reference image,

which leads to many incorrect matches. To deal with the drawbacks of the previous
two matching strategies, LowﬂlO] proposed a new matching strategy under the
assumption that a correct match need to have the closest neighbour significantly
closer than the closest incorrect match. Therefore, a match is accepted if the ratio

between the closest neighbour and the second closest neighlsmallier than the

pre-defined threshold, as shown in Equdgtion (3.6).

(ER () - dy P

<0.8 (3.6)
(E2 e (D) ~ (]2

whered, is a descriptor from the input imag#é, andd, is the closest and the

second closest neighbour from the reference image, respeciNelydenotes the

descriptor dimension, ards the index to each dimension of the descriptor.
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3.5.2 A Nove Matching Strategy

Inspired by the three existing matching methods, a novel matching strategy that is
well balanced between performance and computation efficiency is proposed.
Experiments are conducted to show the performance comparison between the

proposed method and Lowe’s distance ratio based matching.

Instead of computing the Euclidean distance between descriptors, the novel matching

method focuss on the difference Ad) between each dimension of the pair of

descriptors under consideration, as shown in Equation| (8d7yepresents the

similarity between dimensions, and lower value indicates higher similarity.
Ad(Q) = dres (i) — dinp (D) (3.7)

wherei is the index to the dimension of descriptors and is in range [1, 72].

A pair of descriptors is accepted as correct matches only to meet the following two

conditions:

1. The potential pair of match need to have the ratio of the laiggdb the

dimensionality Dim-,) of the descriptor greater than a pre-defined threshold,

which can be expressed aD%ii>Thr Nyg - Npg IS the number of
72 Ditnoa

Dimyp
dimensions with\d below a pre-defined threshdldr,,.

2. The ratio ofNpg,, .. 10 Nag ... N€EAs to below a pre-defined threshold,

. Nad
which can expressed as—¢«omd < Thry,,

second '’

where Npg,,,.., and

Adciosest NAdclosest

Nad,,e0s: 1S Naa Of the second-closest match and that of the closest match,

respectively.

The first condition is a combination of the threshold based and the nearest neighbour
based matching, which ensures that the potential pair of matches is of high similarity

and selects only the best match with the laryggtabove a pre-defined threshold.

The second condition has the same basic idea with that of the distance ratio based
matching and rejects the matches of similar distances. The closest match is defined

as the pair of descriptors with the larg¥g;. The number of incorrect matches will
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be reduced as a result of the second condition, and hence the precision is improved.
The ratio is taken as the closest to the second-closest for the SIFT-based matching,

but it is the second-closest to the closest for this strategy.

Experiments are conducted to determine the following parameidns; ,

ThT' Nag andThTNAd

Dimyo

second ’
NAdclosest

a. Parametersfor Similarity Measurement of Descriptors

The similarity thresholdT(hr,,) is first estimated experimentally using a database of

over 1,000 correctly matched descriptors from a diverse range of scenes with

different transformationg. Figure 3432 shows the probability density function (PDF),

in terms ofAd between each dimension, which shotinat Ad of about 90%
dimensions are under 0.05, assuming that the descriptor has been normalised and

each dimension is in range [0,1].
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Figure 3-32: The probability density function of the distance between each
dimension of descriptors. The data is obtained using a database of over 1,000 pairs of

descriptors that are correctly matched.
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Figure 3-33: Matching performance as a function of distance threEheld for

differentThr ~,, inrange [0.4, 0.9] of interval 0.1.

Dim72

Experiments are first conducted to check the

relationship betWdey,

andThr ~,, and their impact on the matching performapce. Figure

Dim72

3-33 shows the

matching performance as a functionTafr,, for differentThr ~,, In range [0.4,

Dim72

0.9] of interval 0.1. The ratio d¥,,; of the second-closest match to that of the closest

match is not considered in this experiment. In general, for a @ikemn,, , the

Dimyyp

number of both matches and correct matches increases as the distance threshold

Thry, is relaxed, but the precision decreases as a result of the number of incorrect

matches that increases faster than correct matches. Difféfenk,, achieves the
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best F-measure with differefikr,,, which is due to the difference in PDF of correct
and incorrect matches as illustrated by the two examples gi[en in Figufe 3-34.
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Figure 3-34: The left image shows the PDFsNgy = 0.03. The right image shows
the PDFs fotV,; = 0.05.

Figure 3-34 shows the PDF for correct and incorrect matches, in terms of the ratio of

N,4 to Dim,,. The blue line with square marker shows the PDF of this ratio for
incorrect matches, and the red line with plus marker is for correct matches. In general,
the correct matches have a PDF centred at a higher ratio than the incorrect matches,
and the centres for both correct and incorrect matches varyTwitly, . For

Thry;=0.03, ifThr n,, is larger than 0.7, the number of correct matches decreases

Dimyp

faster than the incorrect matches, resulting a rise in precision but a drop in recall. If

Thr n,, is below 0.7, the number of incorrect matches increases faster than correct

Dimyp
matches, and hence a higher recall but a lower precision. The best F-measure which

is a balance between recall and precision is achiev@tiby,, =0.7. Therefore, all

Dim72

the matches with the ratio &, to Dim., belowThr ~,, =0.7 are rejected, which

Dimyo
eliminates 91% of the incorrect matches while discarding about 13% of correct
matches. Fof"hr,;=0.05, all the matches with the ratio 8f; to Dim,, below

Thr n,, =0.8 are rejected, which eliminates 87% of the incorrect matches while

Dimyo
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discarding 14% of correct matches. In genefal; ~n,, needs to be relaxed as

Dimyp

Thry, is relaxed, and the idea is not restricted to the above mentioned two examples.

b. Ratio Threshold for Incorrect Matches Reection

This section introduces the impactTfry,, ,_ . on the matching performance. All

NAdclosest

the matches with the ratio between the second-closest neighbour and the closest

neighbour greater thathrw,, . are rejected. Without the threshold on the ratio

NAdclosest

Of Nad,peona 10 Nad,e0sr KEYPOINtS that do not have corresponding matching point

are also assigned a matching point, which leads to many incorrect matches.
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Figure 3-35: Matching performance as a function of distance threEhold for

differentThr ~,; inrange [0.4, 0.9] of interval 0.1.
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Figure 3-3% shows the matching results'dfy,, = 0.9. The number of total

NAdclosest

matches is reduced significantly when compared with the resultg from Figufe 3-33,

resulting in a significant improvement on precision. The number of both total and
correct matches increase at the beginning as the distance thrEshglds relaxed,

but drops beyond a certain point, which can be explained by the PDFs of correct and

. . Np . .
incorrect matches as a function-6f:¢<end a5 shown | Figure 3-86.
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Figure 3-36: The probability that a match is correct can be determined by taking the

ratio of NAdsecond to NAdclosest '

@ shows the PDFs for correct and incorrect matches as a function of the
ratio of Nag ... 10 Nag,, ... fOr three differenThr,,. The solid lines show the PDF

for correct matches of differeffitir,,;, whereas the dashed lines are for incorrect
matches. In general, correct matches have a PDF centred at a lower ratio than that for

incorrect matches. The majority of incorrect matches has the raig,;of  to

second

Naaps.s. 1arger than 0.9. Therefe by discarding matches @thrw,, . >0.9,

N
Adcjpsest
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about 90% of incorrect matches are eliminated while discarding a certain number of
correct matches, resulting in a slight decrease in the number of correct matches.
Besides, correct matches for smaflér,,; have a PDF centred at a lower ratio, and
hence are on the average more distinctive. The centre of correct matches and
incorrect matches for larg&ihr,,; are close to each other, leading to a larger number

of correct matches discarded as incorrect. Therefore, by setting the ratio threshold to
0.9, the number of correct matches for larfker,,; drops faster. If the ratio threshold

is lowered to 0.8, almost all the incorrect matches are eliminated while a large
number of correct matches are discarded, leading to the precision of nearly 100% but

a significant drop in recall.
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Figure 3-37 Matching performance for different threshold value on the ratio of

NAdsecond to NAdclosest )

Figure 3-37 shows the matching performanceTfory,, = 0.9 and 0.8 as a

second
N
Adcjpsest

function of the distance threshdldér,, for Thr ~,, in range [0.4, 0.9] of interval

Dimyy

0.1. The overall matching performance drops with the decredSerof, . as a
NAdclosest

result of the significant reduction in the number of correct matches.
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c. Comparison with Matching Strategy from SIFT

Three sets of parameters listed in Table| 3-4 are compared with the distance ratio

based matching.

Table 3-4: Parameters for the novel matching strategy.

Setti ng ThrAd Thr IYAd ThrNAdsecond
Dim7, NAdclosest
1 0.03 0.6
2 0.04 0.7 0.9
3 0.05 0.8
450 F 100 F
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Figure 3-38 Comparison between the proposed matching strategy and the distance

ratio based matching proposed by Lowe.
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@ shows the experimental results from the boat sequence. In general, SIFT
has the highest recall. However, the precision of setting 2 and setting 3 are
significantly superior to that of SIFT, especially in presence of large transformations
where the distance between descriptors is on the average large. It can be seen from
the F-measure that setting 2 achieves the best balance between recall and precision.
Setting 3 is suggested for applications that concern more about the matching

precision.

SIFT SIFT correct matches

(a) Matching performance comparison between the distance ratio based matching
proposed in SIFT and our novel matching strategy on the boat set.

SIFT SIFT correct matches

,0.9)

(b) Matching performance comparison between the distance ratio based matching
proposed in SIFT and our novel matching strategy on the tree set.

Figure 3-39: Performance comparison (a) structured scene; (b) textured scene.
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Figure 3-39 shows the matching results conducted on two pairs of images of different
scene types. I|n Figure 3439(a), for the distance ratio based matching proposed by
Lowe, there are 104 initial matches, 59 of which are correct, giving the precision of

56.73%. For the novel method, there are 66 total matches, 53 of which are correct,

giving precision of 80.30%. |n Figure 34{39(b), for the distance ratio based matching

there are 101 matches, 77 of which are correct, giving the precision of 76.24%. For
the novel method, 74 out of the 85 initial matches are correct, giving precision of
87.06%. Despite of the incorrect matches that exist in both methods, it is obvious that

the novel method obtains higher matching precision.

The novel matching strategy is more robust to partial occlusion than SIFT. In the
presence of partial occlusion, parts of the histogram can be very different for the sub-
regions occluded even for good matches. This will lead to a significant change in the
Euclidean distance between descriptors. However, the matching result is less likely
to be affeatd for the novel method. This is mainly because the novel method does
not reply on the overaluclidean distance between descriptors, but is closely related
to the distance/d) between each dimension, which allows parts of the descriptor to
be significantly changed, and hence allows the local region to be partially occluded.
In short, the matching strategy proposed in this section not only achieves comparable
performance with that of SIFT, but also is more robust to partial occlusion and is

computationally more efficient.

d. Advantagein Application for Video Stabilisation

The novel matching strategy is beneficial to applications, such as video stabilisation.
In video stabilisation, RANSAC (RANdom SAmple Consensus) and least square are
usually utilised to estimate motion vectors. The least square is optimally fitted to all
matches, including both inliers and outliers. Therefore, least square does not perform
well when there is a larger portion of outliers in the total number of matches, and
hence higher matching precision is desirable. RANSAC, on the other hand, is
computed from inliers, and the processing time of RANSAC is proportional to the
number of iterations for model parameters estimation. If the number of iterations is
limited, the obtained parameters may not be optimal, and it may not even be the one

that fits the input data. Higher matching precision provides a larger probability of
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choosing inliers, and hence requires less iteration to produce a motion model.
Therefore, higher matching precision is desirable for model estimation with higher

precision and less processing time.

Figure 3-40(a) shows a pair of images that are matched by using the novel matching

strategy and the distance ratio based matching, respectively. The original matching

results are given |n Figure 3-40(b).

VHDL:

Hardware Description
and Design

Roger Lipsett
Carl Schaefer
Cary Ussery

(a) Image pair under consideration

T

Feature (Left) : e Feature (Left)
Feature (Right) | e - Feature (Right)

(b) Original matching results. Left: the novel strategy; Right: distance ratio based
method.

Figure 3-40 Matching performance comparison between the novel strategy and the

distance ratio based method,
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Figure 3-41 shows the comparison results with least square employed for motion

estimation. The left images shown |n Figure 3-40(a) is warped using the

transformation matrix estimated with least square. The corresponding Mean Square
Error (MSE) is 28.3125 and 48.1472, respectively. The MSE quantifies the
difference between an obtained result and its expected value. It measures the average
of the square of the error, where the error is the amount by which the result differs
from the expected value. It is obvious that high precision matching is beneficial to

least square based modelling fitting
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Figure 3-41The left column shows the warped image of the novel matching strategy

and the right column is for the distance ratio based matching.

Figure 3-42 shows the number of inliers identified by RANSAC as a function of the

number of iterations. The first three boxplots are for the novel matching strategy, and
the last three boxplots are for the distance ratio based matching from SIFT. The
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number of iterations is set to 5, 20, and 50, respectively. It can be segn from| Figure

3-42 that the novel method is more stable than nearest based matching.
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Figure 3-42: The number of inliers as a function of the number of iterations for
RANSAC.

Figure 3-43 shows the red-cyan colour composite of the overlay of the original right

image and the transformed left image. RANSAC is conducted on both the novel
matching strategy and the distance ratio based matching, and the results are shown

on the left column and right column, respectively. Each row corresponds to one of

the three number of iterations evaluated. It can be seer] from FigiBietBat two

images are better aligned using the novel method. A larger number of iterations are
required when applying RANSAC to the matches from the distance ratio based
method for higher parameter accuracy. The novel matching strategy requires less

iterations for model estimation, and hence a reduction in processing time.
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Figure 3-43: Comparison of transformation accuracy by showing the red-cyan colour

composite of the overlay of the original right image and the transformed left image.

3.6 Summary

This chapter proposed to replace the grid layout of SIFT with the log-polar spatial
arrangement of DAISY. The SRI-DAISY is improved upon the standard DAISY that

is initially proposed for dense wide-baseline matching, and is invariant to both
rotation and scale changes. Compared with O-DAISY, the orientation precision is
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improved from 22.%to 10 for each discrete direction. By employing the log-polar

spatial arrangement, shifting all pixels within the local region has been replaced by
simply arranging both the spatial layout and histogram of each sub-region relative
to 8,,, with which the complexin andcos functions are avoided. Besides, the

necessity of identifying the boundary of each sub-region for histogram computation
is also avoided. By arranging the local region into nine sub-regions, the descriptor
dimension is reduced from 128 to 72, which reduces the memory requirement to
buffer descriptors. The SRI-DAISY achieves comparable performance with standard
SIFT and is more efficient to be implemented using hardware, in terms of both

computational complexity and memory usage.

Besides, a novel keypoint matching strategy has been proposed in this chapter, which
provides higher precision than the distance ratio based matching. By using the novel
matching strategy, both the squaring operations and the square root computation are
avoided, and hence the novel matching strategy is more efficient to be implemented

on hardware devices.
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Chapter 4 Design Considerations
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4.1 Introduction

In this chapter, design parameters are considered to configure the system with high
performance and low hardware resource usage. Besidesedetabr analysis is
performed to see the effect of fixed-point arithmetic on the design performance to
enable efficient and accurate hardware architecture. Simulation results are presented
to compare the performance of the proposed processing core with the software model
with floating-point accuracy.

4.2 System Configuration

Prior to defining the hardware architecture for the optimised SIFT algorithm, a series

of experiments have been done in order to find the best set of parameters for the
SIFT based matching system. Each experiment aims to evaluate a particular aspect of
the method. The system throughput is a most relevant performance measure, and a
set of possible configurations is evaluated to establish a parameter combination that

retains a good performance while@chieves as close as possible to real-time.

In this section, all the results are obtained by matching a wide range of images
against themselves, but with various combinations of rotation and translation
movements. Therefore, the mapping relationship between a pair of images is known
or can be computed. The homography between the reference image and other images
in the same set of data are known and accurate, and can be used to provide ground

truth matches for the detector.

4.2.1 Evaluation Criterion

Real applications need distinctive and repetitive keypoints that can be differentiated
from the others and can be repeatedly detected in different views of the same scene
or object. Repeatability is one of the most important performance evaluation criteria
for the stability of feature detectors. It measures the ability of a detector to extract the
same feature points across images irrespective of imaging conditions. For a given

pair of images, the repeatability rate is computed as the ratio of the number of
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correspondence® the smaller number of detected interest points in the commonly

visible region of the pair of images, as shown below.

# correspondences
min(N1,N2)

Repeatability = (4.1)

whereN1 andN2 are the number of keypoints detected from the commonly visible
part of the pair of images, respectively.

Finding correspondences between image pairs using interest points are based on the
assumption that salient interest points will be repeatedly detected in both images. The
corresponding interest points are expected to be precisely localised on the same
scene element, and the associated surrounding region is supposed to cover the same
part of the scene. Therefore, the corresponding interest points are regarded as
potential features that can be correctly matched between the pair of images with
transformation. For each interest point, both the location and the detection scale of
the interest point are taken into account. The correspondences are defined as the two

pointsx, andx, that meet the following two conditions: 1) The scal&,ofs within

a factor ofy2 of the correct scale. 2) The locationxgfis within o pixels of the
correct location, where is the detection scale of the keypoint. Because the regions
of point neighbourhood of SIFT are denoted by circles centred on the keypoints and
with radius proportional te, shape information of the interest point neighbourhoods

Is not considered. The correct scale and location are generated by mapiong

using the homography relating the pair of images under consideration. The higher the
repeatability rate between two images, the more points can be potentially matched
and the better the matching performance is.

4.2.2 Design Parametersfor Keypoint Detector

In this section, the performance of the SIFT detector is evaluated, in terms of
correspondences and repeatability, which measure the actual and relative number of
corresponding regions, respectively. These two parameters indicate to what extent
the performance of the SIFT detector is affected by different parameter settings
Besides, because the repeatability only takes into account the location and scale of
the detected keypoints but not the similarity between the regions identified by the

corresponding keypoints, the influence of different parameter settings is further
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evaluated by following a more practical approach, which is to investigate the
matching stability by measuring the actual and relative nhumber of correct matches,

respectively.

a. Sampling Frequency in Spatial Domain

Prior to deciding the sampling frequency in scale, the amount of prior smoething
is decided, which is applied to the input image of each octave before building the

Gaussian scale space. This parameter is closely related to the sampling frequency in
the spatial domain.
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Figure 4-1: Detection performance comparison for different amount of prior

smoothingg,,.

The left image OE Figure 4{1 shows that the number of correspondences decreases
with the increase of the amount of prior smoothing. This can be understood by the

fact that local extrema in DoG scale space can be arbitrarily close together,
increasing the amount of prior smoothing actually increases the Gaussian kernel size,

which reduces the sampling frequency in spatial domain and hence the number of

correspondences as well. In the right image of Figurg 4-1, the repeatability increases

with the amount of prior smoothing and the ranking of repeatability is opposed to
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that of correspondences, indicating that smaller amount of prior smoothing tends to
contribute larger number of unstable keypoints that are poorly repeatable. This is
because the size of the circular regions featured by the detection scale varies
depending on the Gaussian window size, which is closely related to the amount of

prior smoothing.

The relationship between Gaussian window size and the detection region is explained

using an example shownfin Figure @-2, which illustrates the effect of Gaussian kernel

size on the local extrema detection. The detected regions identified by the keypoints
detected with smalles are on the average smaller, which corresponds to more
details of the image contents. These keypoints are regarded as of high locality. The
advantage of high locality is that regions identified by these keypoints are less likely
to be occluded or suffer from geometric and photometric transformations. However,
the disadvantage is that the detected regions contain less information and are less
distinguished to survive large transformation. Therefore, the keypoints with high
locality are less likely to be repeatedly detected and corrected matched, especially in

existence of large image transformation.
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(b) Left: Difference-of-Gaussian, Right: DoG response. The colour of the DoG
response is reversed for clear display.

Figure 4-2: Local extrema as a result of increasing kernel size.
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Figure 4-3 shows histograms of region size of the detected keypoints from the same

image but with different,,, which shows that the overall size of the detection

regions rise withy,.
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Figure 4-3: Histograms of region size for different amount of prior smoothing
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Figure 4-4 shows the Gaussian window size as a function of the amount of prior

smoothing. The Gaussian window size rises with the amount of prior smoothing,
which further increases the computational complexity and time consumption of the
hardware design. Therefore, wahrade-off made between the rate of detection, the

detection robustness and the hardware efficiency, the prior smoothing is set to

o,=1.4. Detaiéd analysisof the size of Gaussian kernel used in the hardware design

will be given in Sectioh 4.3|3.
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Figure 4-4: Gaussian filter window size as a function of the amount of prior

smoothingg,,.

b. Sampling Frequency in Scale Space

In this section, the sampling frequency in scale space for Gaussian scale space
construction is decided by taking into account both the detection performance and
hardware efficiency. When building the Gaussian scale space, a limited number of
scales and octaves are chosen to represent the continuous scale change in practice.
The setting of these two parameters has a great impact on both the detection
robustness of the system and the complexity of the hardware design, and hence may
differ from one application to another. Generally speaking, higher sampling
frequency in scale provides a larger number of keypoints. However, the keypoints
are on the average less stable, and hence are less likely to be detected in the
transformed imag. Besides, the computational cost and memory requirement
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also rise with increased sampling frequency of scales. Therefore, the perforfhance o

sampling frequency is evaluated up to thre

e. Figure

4-5 shows the sampling in

Gaussian scale space, where each octave consigs+a3) Gaussian smoothed

images. As a resul¢S + 2) DoG images are produced and keypoints are detected

from DoG scale space belonging upstecales.
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o : scale index, in range [0-1]

Figure 4-5: Sampling of scale for Gaussian scale space construction.

Table 4-1: Gaussian smoothing factar} for different sampling frequency/in

scale for Gaussian scale space construction.

Sampling frequency S in scale s=1 S§=2 s=3

1 1

0o Op * 2 ap*ZE ap*ZE

s=-1 oo *x 271 00*2‘% (;0*2"%
s=0 0y 0y 0y

1 1

s=1 0o * 2 0o * 22 0y * 23

s=2 0p * 22 ag * 2 00*23

3
s=3 - 0-0*25 0-0*2
s=4 - - 00*22
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Table 4-1 shows the Gaussian smoothing factors for different sampling frequency in

scale for Gaussian scale space construction. Instead of doubling the Gaussian
smoothing factors, input image to a new octave is generated by down sampling the
input image to the previous octave spatially by a factor of two. As a result, the same

set of smoothing factors given |in Table 4-1 are applied to all octaves, and the

computational cost is greatly reduced.

Number of Octaves

Gaussian scale space consists of a limited number of octaves, and each octave is
further subdivided into sublevels.

Figure 4-6: Gaussian smoothed images for each of the four octaved)
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Figure 4-6 shows the Gaussian smoothed images of up to four octaves, where the

fourth octave produces too small and over-smoothed images, resulting in a low
probability of detecting a large number of features with high distinctiveness.
Therefore, the performance of up to three octaves is compared. The comparison

results are demonstrated by using the boat sequence, as slﬁown in Figure 4-7. In the

following experiments, the reference image is always the image of the highest quality

and the smallest transformation.

Referenceimage Input image 1 nput image 2

Figure 4-7: The leftmost image in the first row is the reference image, and the arrow

indicates the severity of transformation.

The performance is tested for different number of octaves, in terms of detection
robustness and matching accuracy. It has been tested that about 82.3% and 16.8% of

the total keypoints are detected from the first and second octave, respectively. As

shown in the left image ¢f Figure 4-8, less than 1% is from the third octave. The

detection result of the reference image is given in the right image of Figure 4-8. Each

green dot corresponds to a keypoint detected from the corresponding octave and the
number of keypoints detected from each octave is 1550, 321, and 15, respectively.
The first two octaves provide a large number of keypoints densely covering the entire
image. Keypoints with local region exceeding the image borders have been discarded.
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Figure 4-8 Distribution of detected keypoints over octaves.

The detection robustness is evaluated by comparing the correspondences and

repeatability. It can be seen frpm Figure|4-9 that there is an obvious increase in both

the number of correspondences and the repeatability when the number of octaves is
increased fron0=1 to 0=2, reflecting that the detection robustness is improved
significantly. However, the robustness does not keep improving when more octaves

are used, and the detection robustneg®=@ and0=3 are kept at a similar level.
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Figure 4-9: Detection performance comparison for different number of octaves. The
comparison is performed on the structured scene with scale changes.
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Matching performance comparison is shown| in Figure |4-10. With the rise of

transformation severity, the matching performanc@= drops slightly below that

of 0=3, buitit is significantly superior to that @f=1.
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Figure 4-10: Matching performance comparison for different number of octaves.

Because the size of the source images used in the system is 640x480 pixels, and each
consecutive octave is the down sampled version of the input image from the previous
octave, the third octave is of 160x120 pixels and stands a little chance of detecting a
large number of keypoints. Therefore, two octaves (640x480 and 320x240) are
chosen to parameterise the design so as to further reduce the memory required to

buffer internal calculation results for the third octave.

Number of Scales per Octave

In addition to the number of octaves, the design is also parameterised by the number
of scales sampled per octave. Experiments are conducted to determine the sampling
frequencysS in scaleto provide relatively high detection robustness and matching

stability.
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Figure 4-11: Performance comparison for different sampling frequency in scale. The

comparison is performed on the structured scene with scale changes.

Evaluation results for the boat sequence (structured scene) and the wall sequence

(textured scene) are given|in Figure 4-11 |and Figure|4-12, respectively. Both the

number of correspondences and correct matches decrease significantly with the
severity of transformation. In all cases:3 performs the best. When the scale
changes are smalk =1 obtains the highest repeatability, which is due to the
relatively small number of detected interest points in the commonly visible regions
of the pair of images under consideration. However, the repeatabilitylofirops

below that of the other two settings as the scaling factor increases, which indicates
that the robustness to scale changes=fis relatively low. Although there is a drop

in the number of correct matches 12 when compared witki=3, the precision
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remains at a similar level, which indicates that the overall distinctiveness of the
regions detected are not significantly degraded as a result of the reduction in the
sampling frequency in scale fra$a3 toS=2. But there is an obvious degradation in

precision when the sampling frequency is further decreaseslto

The difference in the repeatability and precision is increased for the textured scene. It

can be seen from Figure 4412 that both the detection and the matching performance

of S=1 are significantly worse than those of the other two settings.
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Figure 4-12: Performance comparison for different sampling frequency in scale. The

comparison is performed on the textured scene with scale changes.
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It can be seen from above experingmesults that similar performance is achieved

by §=2 andS=3, andS=2 provides a considerable amount of keypoints and correct
matches despite of the reduction when compared Swth With the rise of the
sampling frequency in scale, higher computational cost and larger memory
requirement will be introduced into the hardware design accordingly. Therafore,
compromise isnade by sampling two scales per octave, which corresponds to five
Gaussian smoothed images per octave. As a result, both the detection and matching
performance are kept at a relatively high level, while keeping hardware design

complexity to theminimum.

c. Effect of Threshold

The effect of threshold on both the detection and matching results are tested to

eliminate the possibility that the results reported above are affected by the threshold.

Location Threshold

To eliminate the effect of location threshold on the correspondence determination in
the previous experimental results, the performance is compared by varying the
threshold. The value was fixed to 1.0 in the previous experiments, which means that
a matching location is defined as being within a factar pixels, wheres is the

detection scale of the keypoint. It is obvious that more keypoints are qualified as

correspondences as the distance threshold is relaxed. However, as shown ip Figure

4-13, the overall ranking of each configuration remains virtually the same, indicating

that the experimental results are rather indicative than quantitative and are not

sensitive to the location threshold.
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Figure 4-13: Comparison of detection robustness for different distance threshold of

keypoint location.
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Matching Threshold
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Figure 4-14: Comparison of matching results for different matching threshold.
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This section presents the effect of the matching threshold on the determination of
correct matches. In the distance ratio based matching, a pair of keypoints is qualified
as matched if the ratio of the nearest neighbour to that of the second nearest
neighbour is below a predefined threshold. It is obvious that more matches are

qualified as correct as the distance threshold is relaxed, but many incorrect matches
are qualified as correct as well and the number of incorrect matches increases faster
than that of correct matches, and hence the overall precision Wre 4-14
shows that the ranking of each configuration remains virtually the same, which

indicates that the experimental results are not sensitive to the choice of matching
threshold.

4.2.3 Design Parametersfor Descriptor Generation

In this section, the parameters that affect the performance of descriptors are studied.
A set of settings is wodd out, which is balanced between performance and
hardware efficiency, such as the localisation accuracy for descriptor generation, and

quantsation precision of principal orientatia@h,, .

For a given type of descriptor arrangement, there are mainly two factors that affect
the computation of descriptors:

1. The localisation accuracy that decides the scale from which the descriptors
are computed.
2. The guantisation error of the principal orientation, which corresponds to the

accuracy of the principal orientatiéyp, .

a. Localisation Accuracy

An issue arises on which scale to compute the descriptor for a given keypoint. In the
descriptor generation process, each keypoint is first assigned a principal orientation
8,0, based on the local GMO information within the local region of the keypoint. In
the standard SIFT algorithréi,, is computed based on the smoothed image chosen

by the closest scale of the keypoint, so that the orientation assignment is carried out
in a scale-invariant manner. The closest scale is the scale image that is nearest to the
detection scale to which the keypoint belongs under sub-pixel accuracy, and the size

of the local regionr,.,;) is directly proportional to the detection scatg. (Although
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higher precision can be obtained by using the smoothed image patch from the closest

scale with size decided by the detection scale, the hardware efficiency is low due to

the following two reasons:

1. To reduce the computational complexity and the processing time of

descriptor generation process, GMOs are typically computed in parallel with
feature detection and buffered for fast indexing for descriptor generation.
However, by computing the descriptors based on the closest scale, GMOs of
all possible scales have to be computed and buffered, resulting in a significant
memory usage.

Prior to generating the descriptor, the gradient magnitude of all pixels within
each sub-region has to be assigned a weight by applying a Gaussian

weighting function with standard deviation a@f,,;sy. As has been discussed

in [Chapter B, the standard deviatioR,;sy IS proportional to the radius

T0car Of the local region, which is further proportional to the detection scale
of the keypoint. This requires the Gaussian coefficients to be computed

during descriptor generation process and hence is ineffective.

To improve the hardware efficiencg trade-off should be made between descriptor

performance and hardware efficiency. The issue of localisation accuracy is analysed

in the following two aspects to deal with the above mentioned two factors that affect

the hardware efficiency.

1.

Calculate the descriptor based on the pre-defined scale instead of the closest
scale.
Decide the size of local regioyp,.,; based on the standard deviation of pre-

defined scale instead of the detection seatd the keypoint.

Scale Selection for Descriptor Computation

Experiments are first conducted to see how the precisidhofaries with the

descriptor computed on pre-defined scale instead of the closesf scale. Figure 4-15

shows the probability distribution ak, whereAs is the distance from the refined

location under sub-pixel accuracy (detection scale) to the origin (pre-defined scale)
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in s direction. According to the experiments, only an average of 2.5% of total

keypoints is refined closer to an adjacent scale.
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Figure 4-15: Probability distribution afs.

A detaikedanalysis is performed on a pair of images, namely the first and third image

in the first row of the boat sequence givep in Figurg|{ 4-7. Figurg 4-16 shows the scale

selection for keypoints, which shows that the closest scale of most keypoints are
consistent with that of the pre-defined scale, despite of a small number of outliers. In

this example, 28 of the total 1038 detected keypoints are refined to an adjacent scale.
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Figure 4-16: The top image shows the detection scale of keypoints. The middle

image shows the closest scales. The bottom image is for the pre-defined scales.
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Experiments are conducted to chebk effect of scale selection on the orientation

assignment. As shown|in Figure 4117 , of the total 28 keypoints with shift in scale, 9

have the peak shifted into adjacent bins and 1 has a significant shift in peak, whereas

the rest remains unchanged even with a shift in scale.

orientation shift
10 T T T 1 T T T T 1 T

0 by L . T 4 Y

Aorientation

_10 r r r r r r r r r r
0 100 200 300 400 500 600 700 800 900 1000

Figure 4-17: The top image shows the shift in scale. The bottom image shows the
shiftin6,,.

@ shows an example where the magnitudes of the peak and that of the
adjacent bin are of high similarity. In this examlg, is shifted to an adjacent bin

as a result of the shift in scale. Since the 36-bin histogram will be further interpolated

into 8-bin histograms, the effect on the histogram arrangement will be reduced by the
interpolation process.
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Figure 4-18: The 36-bin histogram féy, calculation with the peak shifts to an

adjacent bin as a result of the shift in scale.
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Figure 419|gives an example where the peak remains the same and is not affected by

the scale selection, whereas the pedk in Figure| 4-20 is shifted from bin12 to bin31

due to the fact that there are multiples peaks of similar magnitude. This can be
compensated by creating keypoints for any local peak that is within 80% of the

highest peak of the 36-bin histogram, with which there might be multiple keypoints

created at the same location but with different orientation. As a result, the orientation
assignment is not significantly affected by using pre-defined scale when compared
with the results based on the closest scale.
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Figure 4-19: The 36-bin histogram féy, calculation with no shift in peak.
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Figure 4-20: The 36-bin histogram féy, calculation with a significant shift in peak

as a result of the shift in scale.
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Scale Selection for Region Size Determination

The region siz€r,,.,;) determination based on the detection scale requires the
Gaussian coefficients to be computed in teak, which increases the computational
complexity and the processing time of descriptor generation. To improve the
hardware efficiencyr,.,; IS determined by using the pre-defined scale. However,
the error in scale value affects the descriptor computation as the operation requires
the selection of an image patch around the point which is proportional to the selected
scale value. To separate the effect of scale selection for GMOs from the scale

selection for region sizg,.,;, GMOs are computed from the closest scale in this

experiment.

Figure 4-21 shows the experimental results wjh,; proportional to the detection

scale and the pre-defined scale, respectively. The two curves are separated by a small
gap.
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Figure 4-21: Matching performance comparison between the detection scale and the

pre-defined scale.

An example of the overall matching performance comparison is shown in Figure

4-22, which shows that the last two curves are nearly identical, confirming that

computing descriptor based on the pre-defined scales does not affect the descriptor

performance significantly
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Figure 4-22: The overall matching performance comparison for localisation accuracy.

With descriptors computed based on the pre-selected scales instead of the closest
scales, the necessity of computing and buffering GMOs of all possible scales is
avoided. With the design parameterised by two octaves of five scales each, it is
possible to have features belonging up to two pre-defined scales, and hence scale
space information of two smoothed images (per octave) is sufficient. As a result,
computing GMOs within the neighbourhood of the keypoints during the descriptor
generation process is replaced by indexing into the buffer holding GMOs from the
pre-defined scales, which reduces the computational complexity and the processing

time while keeping the memory usage to a minimum level.
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With r;,.,; determined by the pre-defined scajg,,; is directly proportional to the
pre-defined scale, and henegy,sy is known and the Gaussian coefficients can be
computed offline and pre-loaded onto an LUT for fast indexing. As a result, the
computational complexity of descriptor generation can be further reduced at the cost

of a slight drop in the matching performance.

Table 4-2 lists the parameters for SRI-DAISY arrangement with keypoints belonging

up to two pre-defined scales.

Table 4-2: Parameters for SRI-DAISY descriptor arrangement.

o r/rlocal Fregion Tiocal R r
1.9799 20 13 7
0.35 4.0
2.8 32 21 10

b. Quantisation Precision of Principal Orientation

Because the descriptor is arranged relative to the principal orientation, the accuracy
of the principal orientation has a large impact on the rotation invariance of the
descriptor. Each feature is assigned a principal orientation that corresponds to the
largest bin in the-bin histogram of the neighbouring region, where the number

of orientations covering 360Experiments are conducted on the boat sequence with

in-plane rotation and scale changes and the results are giyen in Figure 4-23. In

general, the rotation invariance is enhanced with larger number of orientation bins.
With 4 bins covering 360 the number of correct matches drops significantly even
with a slight rotation angle. The number of correct matches is improved significantly
when the orientation is increased from 4 to 16,ibsihows little change beyond that
value. Virtually the same performance is obtained by 36 and 72 directions, indicating
that a larger number of orientation bins does not keep improving the rotation
invariance and hence is unnecessary. Therefore, the 360 degree range of orientations

is quantised to 36 directions.
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Figure 4-23: Matching results for different quantisation precision of the principal

orientation.

4.3 Error Analysis

In this section, experiments are conducted to formulate an appropriate fixed-point

model for the SIFT processing core. The simulation results are presented to see the

functionality and accuracy of the fixed-point based hardware design. The MATLAB

model with floating-point accuracy is used as a reference.

4.3.1 Computational Complexity

As has been introduce’eld|Chapter P the first stage of the feature detection module is

Gaussian smooth. In a digital form, Equa[ion 4.2) can be writ

L(x’y) = 27-[0_2 e—(x2+y2)/202 " I(X' y)
k k
2 2
L@y = D0 Y GAN 10 +1y+))
. k . k
===

ena

5 (4.3).

(4.2)

(4.3)

whereG (i,j) denotes Gaussian kernel coefficiehtis the size of the Gaussian

kernel applied, andl(x, y) is the image patch to which the Gaussian kernel is applied.
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As can be seen from Equatipn (4.3), the number of calculations increases non-

linearly with the size of Gaussian kerelWithout any optimisation, smoothing a

pixel requirest? multiplications andk? — 1) addition operations. This number then
needs to be multiplied by the number of pixels to be processed from the input image.
The number of operations is then multiplied by the number of smoothed images
within each octave, since Gaussian scale space consists of a humber of smoothed
images produced from the convolution of Gaussian kernel of different standard
deviations with the input image. If there are multiple octaves within the Gaussian
scale space, the number will be further increased. Therefore, the computational
complexity of Gaussian smooth process is decided by the size of input image, the

number of scales within each octave, and the number of octaves.

The decision of appropriate word length of fixed-point arithmetic is important
because it affects the resource usage and performance of the system. The word length
of the Gaussian kernels applied for Gaussian scale space construction affects the
implementation efficiency of the system. Increasing the word length provides
smoothed images with higher accuracy, but the system becomes more complicated as
the number of bits increases after each processing step, which will be discussed later.
Therefore, word length of Gaussian coefficients has to be studied and bit-truncation
is necessary at specific stages in the calculation process in order to reduce

complexity overheads.

The stability checking process also affects the throughput of feature detection

module, because it requires the location of the detected extrema to be repeatedly
refined and each refinement process involves matrix inversion that is expensive and
time consuming to be implemented on hardware devices. Besides, the data
dependency between location refinement process and low contrast removal prevents

these two processes from being implemented in parallel, which limits the throughput.

A large memory is required to buffer GMOs (Gradient Magnitude and Orientations)
for descriptor generation and the descriptors. Analysis has to be performed to trade-
off between memory and descriptor precision.

Table 4-3 summarises the error analysis performed in this section.
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Table 4-3 List of error analysis presented in this section.

Module Error Analysis

Maximum Gaussian kernel size

Word length of Gaussian kernel coefficients

LSBs truncation on Gaussian filtered images

Feature Detection Word length of DoG values

Maximum number of iterations for localisation refinement
keypoints

Approximation on low contrast removal

Precision of the Principal Orientation Calculation

Descriptor Generation __ _
Quantisation Error of Feature Descriptors

4.3.2 Simulation Scheme for Feature Detection

As shown in| Figure 4-24, three comparisons are performed to evaluate the

performance of the fixed-point based hardware design for feature detection module.
The experiments are conducted on the boat sequence.
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Figure 4-24: Three comparisons to evaluate the processing accuracy of feature
detection.
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4.3.3 Error of Gaussian Scale Space Construction

The error of the scale space construction refers to the compa8tem 1 as shown

in|Figure 4-24, which is evaluated in two aspects: 1) the size of the discrete Gaussian

filter window, 2) the quantisation of Gaussian coefficient using fixed-point accuracy.

a. Gaussian Kerne SizeError

The coefficients of discrete 1D Gaussian kernel of &ze (2j+ 1) can be
calculated by using EquatiEn (4.4).

i2

e 202 (4.4)

1
G: =
' V2ro

wherej decides the radius of the Gaussian window,idadnteger in range 0o ;.
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Figure 4-25: Detection performance as a function of gradually increasing Gaussian

kernel size.

The effect of Gaussian kernel size is determined by looking into both the detection

and matching performange. Figure 4-25 gives the experimental results from a pair of

images, which shows how the performance varies with the size of Gaussian kernel.

k=43 corresponds to Lovie software modgl. Figure 4-25 shows that detectors with
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smaller kernel sizes suffers from over-detection when compared with the reference
which potentially increases the memory requirement and processing time of the

descriptor generation module.
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Figure 4-26 Detection and matching performance for different Gaussian kernel sizes.

k=43 corresponds to Loviesoftware model.

Figure 4-26 gives the experimental results from a set of images with gradually

increasing transformation, which shows how the detection and matching
performance varies with the severity of transformatiorkfoof different values. The
difference in repeatability increases with the severity of transformation, and the

performance ok larger than 27 is similar to the reference. Besides, although the
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relative ranking of the number of correspondences remains virtually the same with
the severity of transformation, the number of correct matches drops faster for smaller
Gaussian kernels. This can be understood by the fact that the radius of local region is
proportional to the size of the corresponding Gaussian kignelnd larger regions
typically contain more information and hence are more discriminative to survive

large transformation. Example local regions identified by keypoints detected with

k;=23 andk;=43 are given ip Figure 4-27. The red and green circles represent the

local regions identified by keypoints detected usipg23 andk;=43, respectively.
The size of local regions represented by green circles is on the average larger than

those represented by red ones. However, the number of local regions of the former is

smaller than that of the latter, which agrees with the performance shown in |[Figure

4-26.

Figure 4-27: The red and green circles represent the local regions represented by

keypoints detected with;=23 andk;=43, respectively.

To make use of the parallel processing property of the FPGA, Gaussian kernels of
different sizes are applied to the source image concurrently for Gaussian scale space
construction, and the processing time is directly related to theksixef(the largest
Gaussian kernel applied. To keep relatively high accuracy while achieving the target
system throughput (60 fpsh; is set to 31, with which both the detection and
matching performance are kept at a similar level to that of [owa@ftware model.
Because the size of the other four Gaussian kernels does not have effect on the

129



system throughput, they are kept at the same level to that of t@eftware model.

As a result, the Gaussian kernels are of size 13, 17, 25, 29, and 31, respectively.

b. Fixed-point Error

There are two basic operations in the Gaussian filter process: addition and
multiplication, which can be implemented in either fixed-point or floating-point
format. This design uses theo’s complement fixed-point arithmeticas shown in
@. The data consists of a sign bit, an integer part, and a fractional part.
Generally speaking, the floating-point implementation providdarger dynamic
range and hence higher calculation accuracy, but usage of floating-point arithmetic is
expensive on hardware devices and leads to inefficient designs especially for FPGA
implementation. On the other hand, theetbpoint implementation consumes less
hardware resoges and offers higher processing speed, and hence more efficient
hardware designs. However, using fixed-point arithmetic can result in a reduction in
the accuracy if it is not carefully designed. This section formulates an appropriate
fixed-point representation for Gaussian kernel coefficients that maintains calculation

accuracy similar to the floating-point implementation.

Assumed
Binary Point

f

Sign bit Integer bits + Fractional bits

Figure 4-28 The two’s complement fixed-point representation.

Word length of Gaussian Filter Coefficients

The first stage of the SIFT processing core is the Gaussian filter. The word length of
the Gaussian coefficients affects the complexity of the core because the dynamic
range of the intermediate calculation results keeps increasing step by step, which
further increases the resource usage of the design. For example, a fulldexgth

multiplier yields an output ofm + n)bits. To deal with the bit-increasing issue, a
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proper word length has to be selected for Gaussian coefficients, and data truncation
is performed at the output of calculation steps where necessary. The number of
correspondences and the repeatability are checked with gradually increasing
fractional bits for Gaussian coefficients. It should be noticed that the Gaussian kernel
has to be normalised after scaling up the coefficients by a factor so as not to change
the average grey level of the image. The detection performance is tested as a result of
the limited precision of Gaussian kernel coefficients. In this experiment, the
maximum Gaussian kernel size is sek$e31. The output is indicative rather than
quantitative, and the Gaussian kernel size does not affect the relative ranking of the

outputs. This idea applies to all the experiments in the following sections.
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Figure 4-29: Correspondences and repeatability as a function of fractional bits.

Figure 4-29 shows that when the fractional bits are gradually increased from,8 to 16

both the number of correspondences and the repeatability converge to those of the
floating-point model. The detection performance becomes rather stable when the
coefficient is represented by more than 12 bits. To save hardware resources while
preserving relatively high robustness of the feature detector, each Gaussian kernel
coefficient is represented by 14 bits.
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Data Truncation

Data truncation is necessary in that the hardware resource usage for implementing
operations increases accordingly as a result of the increment of the word length after
each computation step, such as adders and multipliers. Data truncation can be
performed on either the Most Significant Bit (MSB) [62] or Least Significant Bit
(LSB) [63] to minimise the hardware implementation cost. When the dynamic range
of the signals being processed is much smaller than the peak value for the bit-width
used, MSB truncation can be performed to reduce the dynamic range while
preserving high accuracy. On the other hand, the LSB truncation keeps the original

dynamic range at the expense of accuracy.

One major task while working with the fixed-point arithmetic is to prevent overflow
and incorrect results, which occurs when a result may not fit into the reserved word
length. To prevent overflow, experiments are conducted to determine the maximum

word length of Gaussian filtered results while keeping the area usage to a minimum

level.| Table 4-4 shows the theoretical maximum word length at each stage of the

Gaussian filter process. In each 1D Gaussian filter process, the word length of input
signals is extended to avoid overflow, which leads to the final output of 46 bits

theoretically.

Table 4-4: Theoretical maximum word length of Gaussian filter process.

I nput/output Maximum Word length (bits)
Input Pixel(I) 8
Input 1D Gaussian filter coefficieiG) 14
Output of 1D vertical filter 27
Final Filtered Pixel(L) 46

However, the practical maximum word length can be different. The Virtex-6 FPGA
device provides advanced DSP48E1 slice and each supports multiplication with input
data of either 18x25 signed or 17x24 unsigned [64]. Larger multipliers are built by
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assembling these embedded multipliers. With the input of 1D Gaussian filter in the
horizontal direction truncated from 27 bits to 22 bits on the MSB, embedded

multipliers are saved and the final output is reduced from 46 bits to 36 bits, as shown
in| Table 4-5.

Table 4-5: Maximum word length of Gaussian smooth process from real data sources.

I nput/output Maximum Word length (bits)
Input Pixel(I) 8
Input 1D Gaussian filter coefficieiG) 14
Output of 1D vertical filter 22
Final Filtered Pixe(L) 36

To further reduce the requirement for hardware resources, LSB trundation

performed at the output of Gaussian filter process. Figure|l 4-30 shows the Mean

Square Error (MSE) of Gaussian filter with LSB truncation at the output. In this
section, the MSE is used to measure the difference between the values obtained with
and without data truncation. The MSE is defined by Equftion (4.5).

26\1 [Lorig(i)lg Lirunc (i)]z (4.5)

MSE =

whereL,n. andL,,;, are the intensity value of Gaussian filtered pixels with and
without truncation, respectivelyly is the number of pixels involved in the
computation of MSE. Smaller values of MSE indicate that,. is closerto Ly,.4,

and hence is of higher accuracy.
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Figure 4-30 MSE for Gaussian filter output with different number of LSBs truncated.

Figure 4-3) shows that MSE increases with the number of LSBs truncated and

remains constant until more than 12 bits are truncated. The MSE provides a

guantitative measure of how much the truncation operation affects the scale space

obtained, but provides no information about how much the detection result is

affected as a function of the number of LSBs truncated. With this objective in mind,

amore practical wais employed to check the effect of data truncation to see how

the detection performance varies with the number of LSBs truncated at the output of

Gaussian filter. The experimeahsettings are given

in Table 4

}-6.

Table 4-6: Experimeat settings for performance evaluation of data truncation on

Gaussian smoothed pixels.

Settings Value
Maximum Gaussian kernel size 31
Word length of Gaussian kernel coefficient 14 bits
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Figure 4-31 shows that the detection performance remains unchanged until 18 LSBs

are truncated, and the detection performance drops significantly when more than 22
bits are truncated. Therefore, 16 LSBs are truncated at the output, and each smoothed
pixel is represented B0 bits without loss of detection accuracy.
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Figure 4-31 Detection performances as a function of the word length of Gaussian

filtered pixek.

4.3.4 Error of Keypoint Detection with Stability Checking

The error of keypoint detection with stability checking refers to the comparison

“Step2” in|Figure 4-24. This section presents the detection robustness as a result of
the changes in the following aspects: (1) the word length of DoG (2) the number of

iteration cycles for the location refinement process (3) the approximation in low
contrast removal.

a. Truncation Error

The theoretical maximum word length of theG value is 21 bits, including a sign

bit. Actually, the word length can be lowered by performing truncation on LSBs on
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DoG values. Reducing the word length brings a reduction in the memory requirement

for buffering DoG values.

Table 4-9 gives the settings for the experiments conducted in this section.

Table 4-7: Experimeat settings for performance evaluation of DoG word length.

Settings Value

Maximum Gaussian kernel size 31
Word length of Gaussian kernel coefficients 14 bits
LSBs truncation on Gaussian fileelimages 16 bits

Figure 4-32 shows the detection results as a function of LSBs truncation that is

performed on the DoG values prior to local extrema detection. The detection
performance is virtually the same when less than 8 bits are truncated.
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Figure 4-32 Correspondences and repeatability as a function of the number of LSBs

truncated from DoG values.
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Table 4-8 lists the block RAM usage for buffering DoG values as a function of the
number of LSBs truncated for VGA sized images. With 6 bits truncated, the memory
usage is reduced without significant degradation on the robustness of the feature
detection. The corresponding word length of the DoG values is 15 bits.

Table 4-8: Block RAM consumption as a function of the number of LSBs truncated

from DoG values.

Number of L SBstruncated RAMB36E1 RAMBI18E1
0 7 1
2 6 1
4 6 0
6 4 3
8 3 3
10 4 0

b. Location Refinement Process

Each local extremum = (x,y)T detected from the DoG scale space is passed to the
location refinement process, where interpolation is performed on the location of the
extremum. Output ofeach interpolation process is the offsets between the
interpolated location and that of the origin. If the offset is larger than 0.5 in any
dimension, the extremum is shifted to a new locatios (x’,y’)T by adding the
offsets A\x, Ay) to the origin and repeats the interpolation process until the maximum

number of iterations is hit.

Five iterations are used in the reference model. However, it has beshtihestthe

maximum number of iterations can be reduced from five to one, which significantly

reduces the processing time at the cost of a little loss in localisation accuracy.

Table 4-9 lists the settings for the experiments conducted in this section.
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Table 4-9: Experimeat settings.

Settings Value

Maximum Gaussian kernel size 31
Word length of Gaussian kernel coefficients 14 bits
LSBs truncation on Gaussian fileelimages 16 bits
LSBs truncation on DoG values 3 bits

It is concluded from the experiments that the location refinement pesciss
around 86% of total extrema are completed within only one iteration,cycle
indicating that the detected points are the local extrema under sub-pixel accuracy and
are not refined to an adjacent location. Another 12% are fixed within two iterations

indicating that the extrema are shifted to an adjacent location. Only around 1% of the
extrema requires more than two iteration cycles, as shqwn in Figu1e 4-33.

1%

86%
(within one iteration)

Figure 4-33: The location refinement process of around 86% of the total detected
extrema is completed within only one iteration cycle, and 12% is finished within two

iterations. Only around 1% takes more than two iterations.

Figure 4-34 shows the overall probability distributiom@fandAy. The majority of

offsets falls in the interval [-0.5, 0.5], indicating that most of the detected points are
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the local extrema under sub-pixel accuracy and are not refined to an adjacent location

in any direction. Because the descriptors are computed from pre-defined scales

instead of the closest scales (Segtion {|28aijs not analysed in this section.
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Figure 4-34: Overall probability distribution af andAy.

The effect of changing the number of iterations is investigated by looking at the
probability distribution of offsets. Figure 4-85(a) and (b) show the distributidix of

andAy for refinement processes that are completed with one and two iteration cycles,

respectively] Figure 85(c) shows the probability adx andAy for refinement

processes requiring more than two iteration cycles, which shows that only a few
pixels are refined to a location that is more than one pixel away from the originally
detected location. Therefore, the number of iteration cycles is limited to one, and the
detected extrema is shifted to an adjacent pixel directly without further refinement if
either Ax or Ay is beyond 0.5, with which approximately 99% of the original
accuracy is kept.
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(b) Probability ofAx andAy for refinement process with two iteration cycles.
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(c) Probability ofAx andAy for refinement process with more than two iteration
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Figure 4-35: Probability distribution dfx andAy.
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Although the processing time can be improved by expldiiegparallel processing
property within refinement process, successive iteration cycles for the same
candidate keypoint have to be implemented in series, and hence the processing time
is directly proportional to the number of iterations. As a result, by performing only
one iteration cycle, the processing time is significantly reduced while keeping a high

level of accuracy for feature detection.

Another advantage of reducing the maximum number of iteration cycles to one is
that repeatedly computing the offs&tsan be avoided. The location of the extréima

relative to the origix = (x,y,s)T is given below.

2 -1

R=——0

0x2  0x

where

Fraial e

92D Dyx ny Dys
D,s D

By substituting (4.7) in1o (4.6), it gives (418).

[lDyy Dys|  |Pxs Dxy| |Dxy Dis|]
1 | Dys Dss Dss Dys Dyy Dys
0°D _ 1 Dys ny Dyx  Dys st Dxx (4 7)
). B BZ_D | Dgs  Dyg Dys  Dss D}’S ny )
ox? l ny Dyy ny Dxx Dxx ny J
st Dys Dys st ny Dyy
|Dyy Dys st ny ny st
Dys Dss| D Dysl Dy Dyl
1 D D D D D D *
 — ys Xy xx XS xs xx -D
X aZ_D X Dss st st Dss Dys ny X _Dy (48)
ox? ny Dyy ny Dxx Dxx ny §
UDss Dyl Dy Dil 1Dy Dyl

The location refinement process is complicated in that it involves matrix inversion
for computinggk, which is expensive to be implemented on FPGA devices. With the
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maximum number of iterations reduced to one, there is no need to compute the exact
offsetX from the origin. The refined location can be determined by checking the
relationship between the offsefrom the origin and 0.5. Hbs(X) is larger than 0.5

in any dimension, the extremum is closer to a neighbouring pixel. Therefore, matrix

inversion can be avoided by rearranding (4.8) [into [(4.9), with which the division

operation involved in matrix inversion is replaced by a comparator for each

dimension, and hence the implementation efficiency is improved.

Dyy st ny ny DXS
[ Dys Dss Dys Dyy Dys ] D
DyS Dxx st st Dxx : * 2D
abs D.. D.. D.l |D,. Ds X _gy > abs {0.5 |5z }
I l Dyy Dyy Dyx| |Pux Dy J st (4.9)
Ulp,, Dy Dyl Dy, Dy, )
Table 4-10: Derivatives of D.
Derivatives Computation
D, [D(x+1,y,s)—D(x—1,y,5)]/2
D, [D(x,y+1,5) —D(x,y +1,5)]/2
Dy [D(x,y,s +1) —D(x,y,s — 1)]/2
D,y D(x+1,y,s)+D(x—1,y,s)—2D(x,y,s)
D, D(x,y+1,s)+D(x,y—1,5s) —2D(x,y,s)
Dy D(x,y,s+ 1)+ D(x,y,s +1) —2D(x,y,s)
[(x+1L,y+1,s)+D(x—1,y—1,5)-D(x—1,y+1,s)—D(x
Dry +1,y—1,5)]/4
[((x+1Ly,s+1)+D(x—-1,y,s—1)—-D(x—1,y,s+1)—D(x
Dys +1,y,s—1)]/4
[,y+1,s+1)+D(xy—1,s—1)—-D(x,y—1,5+1)

Dys —-D(xy+1,5—1)]/4
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The Hessian and derivative of can be approximated by using differences of

neighbouring DoG values, with whighcan be resolved with minimal cost, as shown

in|Table 4-10. Therefore, both the processing time and computational complexity are

reduced as a result of limiting the number of iteration cycles for location refinement

process to one instead of five.

In short, by reducing the number of iterations to one, the average processing time is
reduced below half the original one. With the matrix inversion avoided by replacing
division operation with comparison operator, the hardware efficiency is improved as

a result of reduction in processing time and computational complexity.

c. Low Contrast Extrema Removal

In the standard SIFT algorithm, extrema with a valufDgk)| less than 0.03 will be
discarded as they are unstable with low contrast, assuming image pixel values are in

range [0, 1]. The contrast at the extremum is defined below.

D(R) =D + AD (4.10)
with
Ap = L aD"
C20x X

whereX has been given in Equatipn (4.6), which is the offset from the refined

location to the origin.

Because the computational complexity of the location refinement process has been
reduced by replacing the division operation by a compartterexact value € is

not calculated for hardware efficiency. To further reduce the computational

complexity, Equation (4.10) is approximatbg D(X) = D.|Figure 4-36 shows the

probability distribution of the ratio dAD| to |D(X)|, which is below 5% in most

cases.
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The contrast at the refined location is always larger than that at the origin, which can
be expressed @b (X)| > |D|. Therefore, by eliminating extrema with| below the
pre-defined threshold instead of usingg) for low contrast removal, extrema with
contrasiD(X)| slightly greater than the pre-defined threshold may be eliminated if
|D| is less than 0.03, which can be expresse&®)| >0.03> |D|. Because the

difference betweemD| and|D(X)| is rather small, as shown |in Figure 4-36, the

number of keypoints is not reduced significantly as a result of approximating
|D(%)| with |D|, as shown if Figure 4-87.
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Figure 4-37: Comparison of detection results for low contrast removal.
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By discarding low contrast points based on the original extrema, the low contrast
removal process is no longer dependent on the location refinement process, and
hence these two processes can be processed in parallel. As a result, the throughput of
stability checking process is improved at the cost of a slight degradation in detection

performance.

4.3.5 Overall Comparison for Feature Detection

The overall detection performance is compared as a result of the above mentioned

approximations, which corresponds to the comparison “Step 3” shown in|Figure 4-24.

Table 4-11lists the experimental settings for Lowe’s software model and the FPGA

design.
Table 4-11: Experimeat settings for feature detection.
Settings Lowe’s Model FPGA Design
Maximum Gaussian kernel size 43 31
Word length of Gaussian kernel coefficier] Floating-point 14 bits
LSBs truncation on Gaussian filtered imag 0 16 bits
Word length of DoG values Floating-point 21 bits
Maximum number of iterations for
localisation refinement of keypoints > !
Approximation on low contrast removal No Yes

@ shows the comparison of correspondence and repeatability between the
software model and the FPGA design. The FPGA design keeps the detection
robustness at a similar level to that of the software model. The FPGA design
provides a larger number of correspondences argher repeatability mainly
because of the use of smaller Gaussian kerkhgk31) that causes slight over-

detection.
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Figure 4-38 Comparison of detection and matching performance between software
model and the FPGA design.

4.3.6 Simulation Scheme for Descriptor Generation

As shown in| Figure 4-39, three comparisons are performed to evaluate the

performance of the hardware design for the descriptor generation module. The
Normalised Descriptor Vector Generation block consists of three units: 36-bin

histogram generation, linear interpolation and descriptor computation.
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Figure 4-39: Three comparisons to evaluate the processing accuracy of descriptor

generation.
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4.3.7 Precision of Principal Orientation Calculation

In this section, experiments are conducted to see how the principal orientation is

affeced by the precision of GMOs, which refers to the comparisstep I' as

shown in Figure 4-39. There are two sources of errors: 1) the error introduced by the

approximation based computation method 2) the quaiotiserror caused by using
fixed-point accuracy with limited word lengtBxperiments are conducted to check

the effect of GMOs on descriptor generation, and further the matching performance.

a. Approximation Error

Initially, GMO computation involves complicated operations, such as diyision
square root computation aragtctan function. Without any optimisations, it is
considerably expensive for these operations to be realised on hardware devices.
Therefore, the approximation based computation meith@ioposed to reduce the
computational complexity. Calculation errors are introduced into the system by using
the approximation based method for GMO computation, including the shift register
(SRT) based square root calculation for gradient magnitude, and the LUT-based

gradient orientation computation.

SRT-based Square Root Calculation

The relative error of the SRT-based square root calculator is giyen in Figute 4-40

which is generated by taking the ratio of the result from the SRT-based square root
computerto that of the double precision floating-point model. In general, the relative

error decreases with the increase of the radicand and falls below 1% when the
radicand is around 30,000 that corresponds to 15 bits in binary. For better precision,
more bits must be used in calculation, which brings up the trade-off between the

precision and the processing time. Def@iintroduction to the SRT-based square

root computer will be given jn Chaptefr 5.
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Figure 4-40: Relative error of the SRT-based square root calculation.

Because each Gaussian smoothed pixel is represented by 20 bits and the word length
of the radicand for gradient magnitude calculation is double that of the smoothed

pixel, the relative error caused by using the SRT-based square root calculation is

actually small enough to be safely ignoned. Figure ¢-41 shows the error for the

gradient magnitude calculated by using the SRT-based square root calculator relative
to the floating-point calculation for the reference image from the boat sequence. The
x-coordinate is the row index to the image, andytoeordinate shows the relative

error from the corresponding row of image as a result of using SRT-based square
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root calculation. The relative error of the entire image is below 0.01% and is small

enough to be safely ignored.
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Figure 4-41 Relative error produced by comparing the gradient magnitudes
calculated using the SRT-based square root solution with those produced by the
MATLAB model.

LUT-based Orientation Calculation

The gradient orientation is calculated using Equdtion (R.13).

0(x,y) = tan‘l(%) (4.11)

The gradient orientatiof(x, y) is inefficient to be computed on hardware since it
includes division operation argtctan computation that are hardware-expensive and
time-consuming. Inspired by the fact that the orientation is quantised to 36 directions
with each representing 4ahere is no need to compute the exact gradient orientation
of each pixel. Instead, the quantised orientation that a pixel belongs to is computed
directly by using the LUT-based strategy, which is fast to compute while keeping the

initial precision.
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The quantised orientatiagh in range [0, 8] is first considered. Taking advantage of

the monotonically increasing property tah function in range [0, 90, 6, can be

decided by

where

comparing its tangent value with predefined thresholds:

tan(6;) < tan(10-6,) < tan(6;41) (4.12)

6, =10i, i€][0,8]

(4.12) can be arranged into (4.1L3) by substituting Eqyation (2.18) ia®)|(4.

G
tan(6;) < ||Gy|| < tan(6;41) (4.13)
X

To avoid division operatiop, (4.13) is further arranged|into (4.14).

Therefore,

|G| - tan(8;) < |G| < |G, - tan(B;41) (4.14)

the quantised orientati@ncan be easily identified by comparit@,|

with pre-defined thresholds. If the relationship shovx.in in (4.14) is satisfiesl set
toi. Pixel orientatiord(x,y) can be easily identified by checking the signGpf

andG,,, and hence the quantised orientation that a pixel belongs to can be identified

by simple multiplication and comparison operations.

The error i

calculation.

( 6, G,=0G,=>0
J17—9t, Gy <0,G, =0
0xy)=118+06, G, <0,6,<0
35—6;, G,=0,G,<0

(4.15)

n principal orientationdf,) is checked as a result of the LUT-based

Figure 4-41

P shows the comparison results between the LUT-based method and the

floating-poi

are quantis

nt model usingtan function. In the LUT-based method, the orientations

ed to integers in range 0 to 35 with each representingyli€n compared

with the results from the floating-point model, the er®# (, y)) in orientation is
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always less than 0.5. With the orientations from the floating-point model also

quantised to integers in range 0 to 35, the difference is eliminated, as shown in the

bottom image df Figure 4-42. Therefore, the LUT-based method is able to provide

quantised orientations that are of the same accuracy with that of the floating-point

model.
AB(x,y) between LUT-based method and floating point model
0.5 T T T T
i
=
X of d
D
<
-0.5 r [ r r r r [ r
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AB(x,y) between LUT-based method and rounded floating poing model
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>
X o0
D
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Figure 4-42: Comparisons of the pixel orientations calculated by using the LUT
based method and that from the MATLAB model usitan function.

b. Fixed-point Error

The theoretical maximum word length of the gradient magnitude is 21 bits with the
input filtered pixels represented by 20 bits. In practice, truncation is performed on the
LSBs of the filtered pixels before the gradient magnitude calculation. This is to
reduce the time requirement of the SRT-based square root calculator, which is
proportional to the word length of the radicand. Besides, the resultant word length of
gradient magnitude is reduced as well, which reduces the memory requirement for
buffering GMOs as well as the throughput requirement of the DDRS3 that is
proportional to the word length of GMO. The final gradient magnitude is represented
by 10 bits. It should be noticed that the input to the LUT-based orientation

calculation is still 20 bits.
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Figure 4-43 Comparison of the results generated with and without truncation

performed on the LSBs of Gaussian filtered pixels.
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The comparisons between the results generated with and without data truncation is

shown i) Figure 4-43, which shows the errofjp as a result of the data truncation.

It can be seen from Figure 4443(a) thé},, is zero in most cases, which indicates

that the same orientation is defineddgs whether the truncation is performed or not.
There are several outliers where another orientation is defingg, ashe outlier

occurs mainly due to the possibjlthat the 36-bin histogram of the local region has

two bins of similar accumulated magnitude, as shown in Figure 4-43(b). This can be

compensated by creating keypoints for any local peak that is within 80% of the
highest peak of the 36-bin histogram, with which there might be multiple keypoints
created at the same location but with different orientation. As a result, the orientation
assignment is not significantly affected by reducing the word length of Gaussian
filtered pixels.

With the gradient magnitude and orientation represented by 10 bits and 6 bits,
respectively, each GMO can be represented by 16 bits. Therefore, four GMOs can be
concatenated and sent to DDR3 as a single data to make full use of the data width (64
bits).

The previously presented results show the effect of the approximation based GMO
computation and the reduced accuracy of gradient magnitude on the efiggr in
computation from a more theoretical perspective. Because the rotation invariance
depends on the precision @&f,, experiments are conducted to check the rotation
invariance of descriptors as a result of the above mentioned errors. The recall versus

1-precision curve is used, which has become the golden standard for descriptor

performance evaluation. It can be seen fiom Figure [4-44 that the descriptor

performance remains virtually the same.
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Figure 4-44: Comparison of recall versus 1-precision curve between software model
and theFPGA design for “Step 1”.

4.3.8 Quantisation Error of Feature Descriptor

The feature descriptor is quantised by reducing the number of bits representing each
descriptor. The aim of the quantisation is to reduce the memory requirement for

storing descriptors with minimal loss of matching reliability. To eliminate the effect

of matching strategy on the results, experiments are conducted using both the

distance ratio based method and the novel matching strategy. The results are given in

Figure 4-4%, showing the matching performance as a function of the word length of

the final descriptors. For the SIFT-based method, the matching results remain

virtually the same when representing descriptors by at least 3 bits. For the novel

matching strategy presentadChapter 8, the results are rather stable when the word

length is at least 5 bits. Therefore, the suggested word length of the final descriptors
is 3 bits and 5 bits for the SIFT-based method and the proposed strategy, respectively.
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(b) Matching performance using the proposed matching strategy.

Figure 4-45Matching performance as a function of the word length of descriptors.

Figure 4-4¢4

b shows that the Block RAM usage is proportional to the word length of

the normali
RAM for b
complexity

sed descriptors. Although the proposed matching strategy consumes more
uffering descriptors than the SIFT-based matching, the computational
is reduced and resources are saved, such as DSP48E & ti&ie-off

made between matching performance, processing complexity and memory usage

each descriptor is representlkd 5 bits and the matching is carried out using the

proposed matching strategy.
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descriptors.

4.3.9 Overall Comparison for Descriptor Generation

Figure 4-47 shows the comparison of the recall versus 1-precision curve between the

software model and the FPGA desigvhich corresponds to “Step 3” shown in

Figure 4-39. The curve of the FPGA design is slightly below that of the software

model as a result of the limited word length of Gaussian coefficients, the

approximation based GMO computation, and the reduced word length of descriptors.
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Figure 4-47: Comparison of recall versus 1-precision curve between software model
and the FPGA design.
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4.4 Summary

In this chapter, design parameters are studied for both keypoint detection and
descriptor generation. The feature detection module is parameterised with two
octaves of five Gaussian smoothed images each. Instead of computing the descriptors
based on the closest scale of the keypoint, the pre-defined scale is used for descriptor
generation, which reduces both the memory requirement and the processing time to a

lower level at a cost of a little loss in matching performance.

In an FPGA-based implementation, there is always a trade-off between the
processing accuracy and the hardware performance, such as resource usage and
system throughput. The designer needs to balance the required performance against
the implementation cost. With trade-off made between throughput and accuracy,

the size of largest Gaussian kernel is limite& 31, which achievea throughput

of at least 60 fps with two pixels processed in parallel. et@iéscription of the

relationship betweehk; and system throughput will be given|in Chapter 5. The

Gaussian filter process has been chosen to have input and output of 8 bits and 20 bits,
respectively, with data truncation performed on both MSBs and LSBs to reduce
computation cost. Error introduced by quantised Gaussian filter coefficients is
reduced by representing the coefficients by 14 bits. Another example of the trade-off
between accuracy and throughput is that the maximum number of iteration cycles for
location refinement process is limited to one, which reduces the processing time at
the cost of a little loss in performance. Besides, an approximation based method has
been proposed for GMO computation. Since the time consumption of the SRT-based
square root calculator is proportional to the word length of the radicand, the time
requirement is reduced to half by truncating 10 LSBs of the Gaussian filtered pixels
for gradient magnitude calculation at the expense of a slight degradation in matching
performance. When quantised to integers in range 0 to 35 with each represéehting 10
the gradient orientation computed using the LUT-based method has the same
accuracy with the floating-point model usiagn function. An example of the trade-

off between accuracy and resource usage is to use the fixed-point data format that
consumes less hardware resource usage at the expense of a slight degradation in
computation accuracy. Another example is to save the on-chip memory consumption

by reducing the word length of the normalised descriptors. By representing each
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descriptor with only 5 bits, the loss of matching accyiia kept at a minimum level

while keeping the matching accuracy at almost the original level.
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Chapter 5 Processing Core of the Optimised
SIFT Algorithm
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5.1 Introduction

This chapter presents the detdiinformation on the processing core developed for
the optimised SIFT algorithm. The core addresses the inefficient data acquisition and
processing problem by offering a new pixel streaming method and a high level of
parallel computation. Besides, novel memory access strategies are proposed for

memory reduction.

The processing core proposed in this thesis is the first complete FPGA solution to the
SIFT with all phases of the algorithm covered. By taking advantage of the parallel

processing ability of FPGA, the design is able to process VGA video at least 60 fps,
providing that there are no more than 2,200 keypoints per frame. The design is fully

mapped to a Xilinx Virtex-6 FPGA device.

5.2 FPGA-Based SIFT Processing System

Taking advantage of the hardware resources and the high-level parallel processing
capability provided by the FPGA technology, it is possible to embed the entire

system into an FPGA device. The complete SIFT based image matching system is

shown in Figure 5{1. The FPGA embedded system (in red) processes the images

received from the camera and sends data to a host PC. The data could be the raw
images received from the camera, or the matching results from the SIFT processing
core. External memory (DDR3) is required as the internal memory in the FPGA

device is insufficient for the system.
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Figure 5-1: Block diagram of the SIFT based image matching system.

The FPGA embedded SIFT processing system mainly consists of the following

blocks:

a. Camera Interfacing Block: This block interfaces with the commercial camera
mounted on an Avnet Dual Image Sensor FMC Module to acquire the images
which are streamed into an internal buffer.

b. Memory Interfacing Block: This block interfaces with the external memory
on the Xilinx ML605 FPGA board to provide extra memory (DDR3) for
intermediate processing results of the SIFT core.

c. SIFT Processing Core: The task of this core is to detect keypoints from the
images acquired from the camera and further transfer the keypoints to
distinctive descriptors that can be used for image matching. The output is the
coordinates of the matched keypoints from images under consideration.

d. USB Interfacing Block: This block interfaces with USB controller chip to
transfer both the raw images received from the camera and coordinates of

matched keypoints to a host PC for display and further processing.

This chapter mainly foceson an efficient SIFT processing core, and description of

the FPGA based platform will be giver} in Chapter 6.
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5.2.1 Field Programmable Gate Array Technology

The calculation requirement increases rapidly with image resolution, frame rate, and

the number of keypoints to be processed in each frame. Furthermore, the amount of
data transferred from the camera front-end to the USB back-end is extremely large if

the image resolution and frame rate are required to be high. In order to obtain a high

overall frame rate, an efficient processing method and data acquisition scheme needs
to be applied. The data should be collected, processed and transferred concurrently
without interruption. Using an FPGA device is an excellent solutiorthis

requirement.

a. Overview of FPGA DeviceBlock Structure

An FPGA is a semiconductor device that is based around a matrix of Configurable
Logic Blocks (CLB) interconnected via programmable interconnects both
horizontally and vertically. The device can be programmed to the desired function by
users after manufacture, and hence the ndfmd-Programmable FPGAs have
evolved far beyond the basic capabilities of its predecessors, such as DSP and ASIC.
As shown in Figure 5-2, an FPGA device typically consists of an array of CLBs,
interconnect routing, 10 blocks (IOB), memory (BRAM), and digital clock
management (DCM). The FPGA devices are generally programmed by using a

Hardware Description Language (HDL), such as VHDL or Verilog.

a0l
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a0l
a0l

10B —— — " b 10B
CLB CLB BRAM CLB

108 —_ —1- 1 108
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40l
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0
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Figure 5-2: General architecture of an FPGA device [65].
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b. Featuresof Xilinx FPGAs

Xilinx offers a broad range of FPGAs providing advance features, low-power, high-
performance, and high capacity for any FPGA design. Below is an overview of
Xilinx leading FPGA families, in terms of features of interest.

Table 5-1: Features of Xilinx FPGASs.

Features Artix™-7 | Kintex™-7 | Virtex-7 | Spartan-6 | Virtex-6
Logic Cells 215,000 480,000 2,000,000 150,000 760,000
Block RAM 13 Mbits 34 Mbits 68 Mbits 4.8 Mbits 38 Mbits
DSP Slices 740 1,920 3,600 180 2,016

(DDR3) Mbits/s Mbits/s Mbits/s Mbits/s

/O Pins 500 500 1,200 576 1,200
/O Voltage 1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V 12& 33 1.2v, 1.5V,

33V 1.8V, 2.5V

Table 5-1 shows that Virtex-7 family provides up to 2,000,000 logic cells and 68

Mbits Block RAM. These features, especially the number of Block RAMs available,
are attractive to the hardware design for the SIFT processing core, which is
demanding in hardware resources. However, with the DDR3 employed to deal with
the large memory requirement, Virtex-6 FPGA meets the hardware resource
requirement of the design for processing VGA images. The design can be migrated
onto a Virtex-7 FPGA device for processing images of higher resolution, but this is
beyond the scope of this project.

The Virtex-6 FPGA family is divided into three sub-families, each targeting on
different features: Virtex-6 LXT FPGAs, Virtex-6 SXT FPGAs, and Virtex-6THX
FPGAs. Every Virtex-6 FPGA has 156 1064 dual-port RAMs, each storing 36
Kbits. Each block RAM has two completely independent ports that share the stored
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data [66]. Each port can be configured with one of the available widths, independent
of the other port. This design used the Xilinx ML605 base board with the
XC6VLX240T-FFG1156 FPGA as shown in Figure 5-3, which provides 241,152
logic cells, 37,680 slices, 768 DSP48EL1 slices, and a maximum of 1K[8%6
Block RAM.

Pits
o
< ¢

Figure 5-3: ML605 base board with the XC6VLX240T-FFG1156 FPGA.

5.2.2 Advantages of using FPGA

The main advantages of using FPGA in SIFT-based image processing system are:

1. FPGAs have grown in capacity and performance, and have become a viable
solutionto computationally intensive tasks. SIFT is known for its promising
performance. However, SIFT is of high computational complexity, making
FPGA a viable choice. An example is the Gaussian scale space construction
process, which requires a huge number of operations that makes it extremely
difficult to achieve the real-time processing target when a serial computing
device is used, such as PC or DSP.

2. The SIFT processing core can be programmed to perform concurrently and in
a pipelined fashion. This feature takes advantage of the inherent parallel

processing property of FPGA devices, with which the sub-modules of SIFT
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algorithm can be implemented in parallel to achieve high throughput. For
example, the Gaussian filters are applied to each pixel independently to
generate the Gaussian pyramid. Therefore, these independent processes can
be performed in parallel to reduce the total computation time. With the sub-
modules of SIFT algorithm arranged into pipelined architecture, the
throughput is further improved. For example, the SIFT feature detection part
takesM clock cycles, and the SIFT descriptor generation takesdock

cycles to generate descriptors based on the output from the feature detection.
The best case i = N so that the output of feature detection part can be
continuously streamed into the descriptor generation. In this case, one set of
descriptors are outputted after evéfyclock cycles, which is the maximum

achievable performance of the SIFT processing core. Béwdscription of

the pipeline architecture will be given in Section|5.3.

. Xilinx support a wide range of embedded processing IP cores that works
directly in a software tool called Xilinx Platform Studio (XPS). XPS is an
integrated environment that contains a wide variety of embedded tools, IP
cores and libraries to quickly create and develop an embedded system inside
FPGA devices. The IP cores can be easily included in a design project to
shorten the design cycle. For example, the Multi-Port Memory Controller
(MPMC) provides fully parameterisable access to external memory, such as
DDR3 on Xilinx Virtex-6 FPGA board. Moreover, there are many processor
IP cores available for FPGAhat considerably extend the functionality of the
system, such as MicroBlaze and PowerPC 440. Besides, a customised IP core
can be integrated into a MicroBlaze based system, with which it is possible to
build a highly compact and easyaccess system on an FPGA device.
Compared with the mask programmable ASIC technology, it is fast,
convenient and flexible to develop an embedded system in an FPGA device.

. FPGAs are available in a wide range of sizes with different features. An
FPGA device can have more than one thousand I/O pins, which supports
many standard I/O interfaces. Therefore, it is straightforward to interface to
external devices off the board for functionality extension, such as the
commercial camera and the USB controller board.
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5.3 Hardware Architecture of the SIFT Processing Core

This section describes the SIFT processing core that is fully embedded in an FPGA

device. The core is developed following the parameters considered and analysed in

Chapter 4. The pipeline strategy is employed for high throughput, which is the most

important technique used by reconfigurable systems.

Iteration 1 Iteration 2 Iteration 3

(a) Non-Pipelined Architecture

Eltaﬂ.ﬁm 1 gl Tteration 2 gl Iteration 3 le—Tteration 4_>| Time
.

>

«—— Initial Delay —>

I
Output 1

Output 2
Output 3

Stage 2 Stage 3 [ ] Idle

] Stage 1
(b) Pipelined Architecture

Figure 5-4 Block diagram of the non-pipelined and the pipelined architecture.

Figure 5-4 compares the non-pipelined and the pipelined architecture of a three-stage

design. As shown |n Figure 3-4(a), the non-pipelined architecture receives an output

every period of time that equals to the sum of the processing time of all stages. In

Figure 5-4(b), the pipelined architecture receives an output every period of time after
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an initial delay. The length of the period is decided®lage 2, which has the longest

processing time of all stages.

5.3.1 General Block Diagram

The overall hardware architecture of the SIFT processing core is shpwn in Figure 5-5

which mainly consists of three parts that are arranged into a three-stage pipelined
architecture: feature detection, descriptor generation, and descriptor matching.
Pipeline stage 1 (feature detection) inputs the 8-bit grayscale pixel diteam and
outputs the coordinates of detected keypdititéx, y) as well as the GMOs of all
pixels from the pre-defined scales. In stage 2, a 72-dimention des@rgsiaix, y)

is generated for each keypoint detected in stage 1. In stage 3 (descriptor matching),
the keypoint matching is performed based on the descriptors generated from stage 2
and outputs the coordinates of the matched keypoint [éi(s, y). The GMOs are

buffered using external memory DDR3 on the FPGA board to save on-chip memory.

- FCilx, v Y H
f{:}“ .]'} Feature I:.)‘.' J':] DEEI:[":i'[JtD[" Desc {J: '1}:]1_ DESEI"i]_‘JtDt" Mt.'{x. }:]
Detection | Generation "| Matching
* DDR3 T
GMOs

Figure 5-5: Block diagram of the SIFT processing core.

5.3.2 Memory Overview

Carneiro and Jepson [67] have noticed that the number of interest points is around
0.3% of total image size for the state-of-the-art methods developed bye [10] and
by Mikolajczyk and Schmid [68]. In this design, the memory is designed under the

assumption that the maximum number of stable keypoints is 1,536 for octave 0 and

512for octave 1, which never overflows in the experiments.
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The ping pong buffer managemeist employed and output of each module is
buffered for input to the next pipeline stage so as to pipeline each stage making them
processing concurrently. A ping pong buffer is used in a data transfer and contains
two identical buffers. While one buffer is receiving data from the previous stage, the
other one is being read for the next stage. This type of memory management ensures
a real-time processing. In this system, RAM holding input images from the
commercial camera is designedaaging pong buffer to ensure that images can be
correctly received while the previous frame is being processed. Similarly, the buffer
between individual processing modules is implemented pisig pong buffer for

fully pipelined architecture, such as the buffer holding keypoint information between
feature detection module and descriptor generation module. The design of an input
image buffer is complicated in that it is simultaneously accessed by the commercial

camera, SIFT processing core and USB interface. The architecture will be given in

details in Chapter [6 together with the introduction to the camera interface and the
USB interface.

5.3.3 Feature Detection

The first part of the SIFT algorithm is the feature detection module which mainly
consists of three blocks:

1. The first block in the diagram is the Gaussian scale space and Difference-of-
Gaussian (DoG) space construction block that applies Gaussian filter
windows of different sizes to the source image to generate a set of smoothed
images. Then the subtract operations are applied to adjacent smoothed images
to generate the DoG images.

2. The second block is the keypoint detection with stability checking, which is
responsible for searching for keypoints from DoG space, refining keypoint
locations, and eliminating pixels with low contract or large edge response.
Stability checking is important in that pixels with low contrast is sensitive to
noise and the difference-of-Gaussian function will have a large response

along edges therefore is unstable to small amount of noise.
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3. The third block is the GMO calculation, where each pixel is assigned a

gradient magnitudei(x, y) and orientatiord (x, y) based on the local image

properties in preparation for the descriptor generation.

The overall hardware architecture for feature detection module is shagwn in

Figure

5-6f The pixel stream is input to Block 1 and this block outputs the DoG values and

Gaussian smoothed pixels that are buffered as an input to Block 2 and Block 3,

respectively. Block 2 is responsible for identifying stable keypoints from DoG space,

whereas Block 3 calculates the GMO of pixels from the pre-defineésscal

Block 1: Gaussian Scale Space
and DoG Space Construction

F

DoG
RAM

LD T

Block 2: Keypoint
Detection with
Stability Checking

Scale
RAM

Block 3: Gradient
Magnitude and
Orientation
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Feature

Coordinates
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Figure 5-6: Block diagram of feature detection module.
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As shown in Figure 5-

7, the three blocks are arranged into a three-stage pipelined

and partially parallel architecture. Since Block 2 has no data dependency with Block

3, these two blocks are processed in parallel, which cuts the input-output delay by

one unit of time when compared with the pipelined architecture. Detailed

introduction to Block 1 and Block 3 are presented in the following sections. The

hardware architecture of Blocki2given in

Appendix A

>
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Figure 5-7: The pipelined and partially parallel architecture.

a. SRT Based Multi-Pixel Processing Scheme

In this design, a SRT-based multi-pixel processing method is proposed, with which
the time requirement for accessing the pixels for Gaussian scale space construction is

reduced.

Processing Time

Figure 5-8(a) shows the source image to be smoothed, where the shadow area

represents the pixels located in the boundary region within which the pixels are
invalid as a result of the Gaussian smooth process. The rectangular (in red) displayed
on the top left corner of the source image represents the region of pixels for
smoothing the first valid pixel in the image, which is shown in detai@gure

5-8|(b). In[ Figure 5-B(b), each dot represents a pixel. The dots filled with shadow

indicate those invalid pixels that are located in the boundary region, and the red dot
in the center of the region represents the first valid pixel to be smoothed. Both the
boundary size(k; — 1)/2) and the size of regiork{ - k) for each Gaussian filter

process are decided by that of the largest Gaussian kérpglapplied. In the

exampled given i‘n Figure 5-8(®); is set to 15.
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Figure 5-8: Pixels included for Gaussian smooth of the first valid pixel.

Gaussian filter has been quantised to reduce the computation complexity of Gaussian

convolution operations. The required processing time for one VGA image is given in

(5.1). Different scales are processed in parallel and the RAMs buffering source

images are configured as Dual Port RAM (DPRAM) with both read and write
accesses to the memory allowed on either port. The BRAM holding input images

works with the clock domain of 200MHz, which corresponds to clock cycle of 5ns.

1 1
TRorig =575 ) Wi~ 2ke)(h — 2ke) (ko] 5.1)

wherei is the indexto octaves. w; — 2k;) and(h; — 2k;) represent the number of
valid pixels to be smoothed in each row and column of the source image,

respectivelyk.” is the number of pixels involved in smoothing one valid pixel

independent of the number of scales.

Gaussian scale space can be constructed by smoothing the source image with a large

Gaussian kernel for each of the five scales instead of applying multiple successive
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Gaussian kernels. Takingdvantage of the parallel processing property of FPGA,
scale images within the same octave can be generated in parallel by applying
Gaussian kernel of different sizes to the source image concurrently. In this case, the
memory for buffering intermediate smoothed results using cascade Gaussian filtering

is saved, and accessing the source image several times per octave can be avoided. As
a result of parallel processing, the number of scales per octave has no effect
onTRyrig, andTR, 4 is equal to 405 ms for VGA image. However, the time
allowance is no more than 16.7 ms per frame for a frame rate of 60 fps. In this design,
the SRT-based multi-pixel processing scheme is proposed for real-time processing.
The theoretical time requirement for pixel acdes=alculated b@!).

ke +npixer — 1
TRpuiti =5 cell( g plxel )

z I <h — kg +1>l (5.2)
w; - ceil
=0 nplxel

wheren,,;,.; denotes the number of pixels smoothed in parallehndh; are the
width and height of the input image to each octéweil” indicates round-up to the
closest integerk, is the size of the largest Gaussian kernel and is set to 31.
ceil (W) is the number of clock cycles (5ns) required to access a column of
pixels from the DPRAM.

In this design, the Gaussian scale space consists of two octaves with five scales each.

The time consumption of pixel streaming with different number of pixels processed

in parallel for VGA image is shown|in Table $-2. The second configuratigp.(=2)

meets the throughput requirement of at least 60 fps and is chosen to demonstrate the
efficiency of both the proposed SRT-based image streaming method and the memory
solution. Detaitd description of the SRT-based multi-pixel processing strategy will

be given in next section.
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Table 5-2: Time requirement for different number of pixels processed in parallel.

Frame n. Time requirement Achieved throughput
pixel (ms/frame) (fps)
1 28.416 35
2 14.208 70
VGA
3 10.064 99
4 7.589 131

Although the multi-pixel processing method is proposed for VGA sized video, it can

be applied to systems with source images of higher resolution for real-time

processing

. Table 5/3 shows the number of pixels to be processed in parallel for

images of higher resolution to achieve real-time performance. The estimated

throughput for images of higher resolution is givgn in Tablg

b 5-3.

Table 5-3: Throughput estimation for different frame sizes with multi-pixel

processing scheme.

Frame R@Iution Nyixel con;irr:;ion Estimated
(pixels) (ms/frame) throughput (fps)
SVGA 800x600 2 22.56 44
XGA 1024x768 3 26.55 37
XVGA 1280x800 4 26.06 38
UVGA 1600x1200 7 31.54 31

Although the design is configured to process two octaves with five scales each,

larger number of octaves can be processed by making slight modification to the

VHDL codes. Because all the octaves are processed in serial and the same processing

block is shared, the amount of occupied device will remain almost constant as the

number of octaves increases. By usa¢arger number of octaves, the logic for

control the data routing needs to be increased, and also the size of memory blocks
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storing the information of detected keypoipts. Figurg 5-9 shows that the design still

achieves redlime despite of the higher image resolution and larger number of

octaves.
. SVGA ” XGA
54[]\ 46%
52 44
50 42
0
§ 48 =2 0
46
38 B
44 \B\ 3\\
D . % T 7
42 | I—
1 1.5 2 2.5 3 35 4 34l 15 2 25 3 3.5 4
# octaves # octaves
(a) SVGA (800x600 pixels) (b) XGA (1024x768 pixels)
XVGA o UVGA
48 d
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44 36
§ 42 -ﬁ 34
40
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36 \B\\H 30 i S
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(c) XVGA (1280x800 pixels) (d) UVGA (1600x1200 pixels)

Figure 5-9: Frame rate and processing time as a function of the number of octaves.

Overview of Gaussian Filter Window Movement

In general, smoothing an image with a Gaussian kernel is equivalent to shifting the

filler window over the entire image pixel by pixel. For simplicity without losing
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generality,the Gaussian kernel of size 3x3 is used as an example to illustrate the
Gaussian filter window movemeMith n,;,.,;=2 chosen to parameterise the design,
two identical Gaussian filters are employed to smooth the image concurrently. In
Figure 5-10, Gaussian filter windows are defined by thick lines and the each square
represents a pixel. Figure 5-10(a) and Figure 5-10(b) shows the Gaussian filter
window movement in horizontal direction and vertical direction, respectively. The
arrows indicate the direction of movement, and the image is scanned in an order from
left to right and top to bottom. As shown in Figure 5-10(a), when the first two pixels
in the same column have been smoothed, the two identical filter windows move
horizontally by one column to smooth the next two pixels. When the filter windows
reach the rightmost end of the source image, they return to the leftmost end and
move down vertically by two rows to start a new round of horizontal scan, as shown
in Figure 5-10(n

0 1 2 £37 638 638 0 1

B

il 38 530

0 0
1 1 |
2 - e i 2 1
3 3 &
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5 3
478 479
(@ (b)

Figure 5-10: Gaussian window movement over the image in horizontal and vertical

direction.

Pixel Streaming Strategy

A SRT-based multi-pixel processing method is proposed, with which the time
requirement for pixel access is reduced by sharing pixels between adjacent Gaussian
smoothing processin both horizontal and vertical directions. Each output of a 3x3

Gaussian filter is a function of nine pixels within the window. Without the register,
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each pixel must be read nine times as the filter window is scanned through the image.
Pixels adjacent horizontally are involved in successive filter processes, so they may
be buffered and delayed in registers for sharing. This reduces the number of reads
from nine to three pixels for each filter process, with which the accessing time

increase linearly with the Gaussian window size instead of exponentially without

using registers. A 3x3 filter spans three columns (two previous columns and the
current column), and hence the previous two columns can be inherited from the

previous filter process and buffered in the register, while a new column of xels i

read in.
0 1 2 637 638 430 > 1 2 637 638 630
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1 1
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Figure 5-11: Source image streaming at the process level.
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Figure 5-12: Source image streaming at the pixel level.
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Figure 5-11 anP Figure 5-l2 show the source image streaming strategy at different

levels. The arrow indicates the streaming path. Smoothjpg, adjacent pixels in

parallel is referred to as a process. The pixels involved by each smoothing process

are defined by the window in thick line, which consists of several contiguous rows of

pixels. When it comes to the hardware design, pixels are constantly streamed into a

SRT where the Gaussian smooth is performed. The SRT corresponds

to the process

window in|Figure 5-1L and is dfg + np;..) rows byk; columns when using

conventiol 2D Gaussian kernel. The process window movement is synchronised

with that of Gaussian filter window shown in Figure 5-10. It can be seer

1 from Figure

5-11 that the source image is accessed horizontally at the process

level with the

sequence indicated by the arrow, and vertically at the pixel level as sh

pwn in|Figure

5-12.
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Figure 5-13: The SRT-based image streaming.
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Figure 5-13 illustrates the SRT-based pixel streaming method. The SRT holding
pixels involved in the Gaussian filter operations is updated dynamically while the
pixels are being smoothed. Once a round of Gaussian smooth operation is finished,
the SRT is updated with a new column of pixels from the buffer where the source
image is located and is ready to start another round of Gaussian smooth operation.
Two separate one-dimensional (1D) Gaussian kernels are used instead of the
conventional two-dimensional (2D) Gaussian kernel by taking advantage of the
linearly separable property of Gaussian kernel, with which the size of the SRT is
reduced fronkg (kg + npixer) 10 2(kg + npixer). This strategy is consistent with the
multi-pixel streaming method at the pixel level and enables the re-use of intermediate
results, which will be discussed in next section. As shown in Figli#; pixels

are constantly streamed into the left column of the register where the 1D Gaussian
smooth is performed in the vertical direction. With two pixels accessed per clock
cycle, the left column is updated eyeeil((k; + 1)/2) clock cycles (5ns) for a

Gaussian kernel of siZg;.

Gaussian Convolution

In the conventional 2D Gaussian smooth operation, the Gaussian kernel is directly
applied to the pixel window and produces a result at the central position of the

window in the output imagE. Figure 5114 shows the 2D convolution between a pixel

window of size 3x3 and a 2D Gaussian kernel of the same size.

Pixel wind ow Gaussian kernel

¥

N/

L TN I
'{’ Convolution ) [[] Boundaryregion

N o

Resource image Output image

Figure 5-14: Gaussian smooth operation on a window of pixels (3x3) using

conventional 2D Gaussian kernel.
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The conventional 2D Gaussian smooth operation is ineffective in that each pixel is

involved in the Gaussian smooth operation of a region of pixels centered on it, where

the region is of siz&; X k;, as shown in the left image

of Figure 5-15(ap. T

improve the computational efficiency of Gaussian smooth process, conventional 2D

Gaussian kernel is substituted by two separate 1D Gaussian kernels by taking

advantage of Gaussian kernel’s linearly separable property as shown ip (5.3).

Gp(xy) = (

1
V2ro

e~

x2 1
=) (e
2mo

2D Gaussian filter

2

13?7) = G1p(X) - G1p(y) (5.3)

1D Gaussian filter
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smooth operations
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Figure 5-15: Comparison of 2D and 1D Gaussian convolution, in terms of

computation efficiency at the pixel level.
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The 1D Gaussian smooth consists of two stages. In the first stage, a 1D kernel is used
to smooth the image in the vertical/horizontal direction. In the second stage, another
1D kernel is used to smooth in the perpendicular direction. In Figure 5-15(a), the
filter window in thick lines and dashed lines represents the first and the last Gaussian
smooth operation in which the target pixel is involved within its neighborhood,
respectively. As shown in Figure 5-15(b), the target pixel is procéssetimes

when using 2D Gaussian kernel. However, each pixel only needs to be prdgessed
times by using 1D Gaussian kernel instead, which benefits from the intermediate

results usage of the 1D Gaussian smooth in the first direction.

1D Gaussian Smooth in the Vertical Direction
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Figure 5-16: Block diagram of the SRT-based 1D Gaussian smooth with intermediate

resultsre-used.

Figure 5-16 shows the diagram of the 1D Gaussian smooth with the re-use of

intermediate results. Since the source image is streamed into the SRT vertically, the
1D Gaussian smooth is first performed in the vertical direction, then in the horizontal
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direction. Intermediate results of 1D vertical Gaussian smooth are continuously
shifted into and out of a register, where the 1D Gaussian smooth is performed in the
horizontal direction. For the 1D Gaussian kernel of kjzethe smooth result from

the vertical direction can be re-used for the 1D Gaussian smooth in the horizontal
direction for the following k; — 1) processes, which reduces the computation
complexity of the system. As a result, the data in the SRT holding intermediate
results from 1D Gaussian smooth in the vertical direction falls into two categories

below:

1) The data in the leftmogk; — 1) columns are inherited from previous 1D
Gaussian smooth in the vertical direction;

2) The data in the rightmost column is new and is generated by applying 1D
Gaussian smooth in the vertical direction to the rightmost column of pixels in

the current process window.

Vertical Direction
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Figure 5-17: Pipelined architecture for the Gaussian smooth process with 1D

Gaussian kernel of sizg, = 3.

To achieve the maximum throughput, the pixel streaming process and the Gaussian

convolution process are arranged into a two-stage pipelined architectlure. In|Figure

5-17, the left side shows the 1D Gaussian convolution in the vertical direction and

the right side shows the convolution operation in the horizontal direction. In this case,
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the source image is continuously streamed into the computation module. Figure 5-18

shows the typical timing diagram of the Gaussian convolution using 1D Gaussian

kernel. Because the SRT holding pixels for 1D Gaussian smooth is updated every

% clock cycles of 200 MHz, two Gaussian smoothed pixels that are processed in

parallel can be obtained evé‘i%fi clock cycles of 100 MHz after an initial delay.

) Time
n vertes v (000, 177/
vz v et vEz vas | Ve3s ! vean !
1D Gaussian Smooth : = = = = = = = = = = = m e mmm i
i Horizontal | % . Y,
Direction o e e Ll
! Idie ' HL ! ! H2g ' H3O ! 'HE37 'HE3E!
E Initial Delay : l l l l
10 Gaussian '
smoothed Output L1 128 130 LE37 LE3E

Figure 5-18: Timing diagram for 1G Gaussian convolution with 1D Gaussian kernel

of sizek;=3.

Each 2D Gaussian smooth requirég® multiplication-accumulation(MAC)
operations. The number BfAC operations for a 1D Gaussian convolution to obtain

a result isk;. Therefore, it require8k, MAC operations to generate a smoothed
pixel that is equivalent to a 2D convolution output. The computational advantage of
the non-separable 2D convolution against the separable 1D convolukighy &k

For Gaussian kernel of sizg =31, the use of 1D Gaussian convolution introduces a
reduction in the number MAC operations by a factor of 15.5, which indicates a
reduction of up to 15.5 times in the use of device area for these operations. The total

number ofMAC operations to be performed onMrx N sized image to construct the

Gaussian scale space®bctaves and scales using 2D and 1D are givien(5.4

and (5.5), respectively.
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0-1

MN
MACgaussz2p = z 40 k™S (5.4)
i=0
0-1
MN
MACqaussin = ) 7 2kgS (55)

i=0

The computational efficiency is further improved by taking advantage of the

symmetric property of 1D Gaussian kernel. As shawRigure 5-17, pixels sharing

the same weighting factor are added up before applying multiplication operations. It

can be seen from (5{4) ﬁnd (8.6) that the computational cost increases linearly with

kernel size instead of exponentially as the 2D convolution does, which has greatly
reduced the number of operations for Gaussian smooth and further the device area.
0-1

, MN
MACsqussin = ) - (kg + 1S (5.6)
i=0

Memory Solution

Initially, the memory requirement for buffering Gaussian smoothed pik&ts.(;.)

of one scale and DoG valug¥Ry,;) are given ip (5.71) and (5/8), respectively.

MRgcqie = e[(wo — 2b)(hy — 2D)] (5.7)

MRpoe = 4l[(wo — 2b) (hy — 2b)] (5.8)

wheree andl are the word length of a Gaussian smoothed pixel and a DoG value
respectivelyb is equal taqk; — 1)/2 and is the size of the boundary region within
which both the filtered pixels and the DoG values are unavailable due to the nature of

Gaussian smooth.

There is no need to buffer all the smoothed pixels of the entire scale, since the GMO
calculation of a pixel is only related to its four neighbouring pixels. This is the same

case with that of DoGs, since the keypoint detection is only related to the 26

neighbouring pixels in a 3x3x3 regign. Figure 5-19 shows an efficient memory
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solution to buffer Gaussian smoothed image, named as rotating buffer. DPRAM acts
as the buffer for efficient memory access. The data depth and width of the RAM are
4(wy — 2b) ande, respectively, wheréw, — 2b) is the number of valid pixels per

row for octave 0. The RAM for DoG values is of the same depth with that for

smoothed pixels, but the data width 46 with four DoG values of a pixel

concatenated and saved as one data for fast access. Since the same access strategy is

used for both Gaussian smoothed pixels and DoG values, the rotating buffer for
Gaussian smoothed pixels is used as an example to describe the efficiency of the

proposed method.

In|Figure 5-19, each square in the image being processed represents a pixel (the

boundary region is not shown). The squares in colour are the pixels that have been
smoothedi is the index to the columns of the image and is in range,[@b-1], and

j is the index to the rows of the image and is in rang&[@b-1]. In the right image

of |Figure 5-19, each square in the buffer holds a Gaussian smoothed pixel. The

buffer is divided into two parts with each part having two rows. The buffer is

accessed in a way that one part is being written while the other part is being read.

Figure 5-19(a) shows that the Gaussian smoothed pixels are woitRant 1 of the

buffer when the source image is being smoothed in the first round of scan. When Part
1 has been filled with smoothed pixel values from the first round of scan, the

following two rows of smoothed pixels from the second round of scan are mapped

Part 2, as shown |n Figure 5{19(b). Figure $-19(c) shows that when it comes to the

third round of scan, the smoothed pixels are written back to Part 1, overwriting the
pixel values from the first round of horizontal scan, and so forth.
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Figure 5-19: The Rotating buffer based memory solutioGBussian smoothed

pixels withn, e, = 2.
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As shown in Figure 20[ a SRT of four rows by three columns is used to hold the

Gaussian smoothed pixels for GMO calculation while the source image is being

processed. The size of the SRT is decided by the number of pixels smoothed in

parallel, and is of siz@,;,.; + 2) X3.|Figure 5-2p(a) shows that the SRT remains

empty before Part 1 of the buffer has been filled with Gaussian smoothed pixels from

the first round of scan. As shown |in FigureQﬁb) and Figure 5-20(c), when it

comes to the following rounds of scan, smoothed pixels are continuously streamed
into and out of the SRT for GMO calculation and the smoothed pixels are accessed in

two ways:

1) The two rows of smoothed pixels with higher physical level in the smoothed
image are accessed from the rotating buffer.

2) The other two rows of smoothed pixels with lower physical level in the
smoothed image are continuously shifted into the SRT while the same rows

of source image are being smoothed.

Therefore, of the total four newly updated scaled pixels of each column in the SRT,
two are retrieved from the rotating buffer and the other two are from the pixels being
smoothed. By taking advantage of the DPRAM provided by FPGAs, the two parts of

buffer can be accessed simultaneously and independently.
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Figure 5-21: Gaussian smoothed image wjjh.; = 4.
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It should be noted that the rotating buffer for either smoothed pixels or DoG values is
of size4 x (wy — 2b), which remains constant and is independent of the number of

pixels processed in parallel. Whep,.,=4, for example, four rows of pixels (row 0

to row 3, row 5 to row 8, and so forth) are smoothed in parallel. As shgwn in Figure

5-21, GMO calculation of pixels in dark grey (row 1, row 2) is only related to pixels

smoothed in the same round of scan (row 0 to row 3). However, GMO calculation of
pixels in light grey (row 3, row 4) involves the smoothed pixels of the adjacent round
of scan (row 2, row 5). Therefore, the buffer only needs to hold the smoothed pixels

of the last two rows of each round of scan, independent of the number of pixels

processed in parallel. As shown in Figure $-22, when multiple pingls.( > 2) are

smoothed in parallel, the size of rotating buffer is constant with the increagg of
and stays the same with thatmgf,., = 2, but the size of registers increases from

four rows to fiyxe; + 2) rows.

The memory requirement for Gaussian smoothed piXéR ((,;.) of a scale and
DoG values MR'p,;) are reduced from (5[7) anpd (5.8 |(5.9) and| (5.1Q)

respectively.

MR,scale =e: [4(WO - Zb)] (5.9)

MR'pye = 41+ [4(wy — 2b)] (5.10)

wheree andl are the word length of a Gaussian smoothed pixel and a DoG value,

respectively. It can be seen from (%.9) pnd @@that the memory consumption is

independent of,;.;.

Although the design is proposed for VGA images, it can be applied to images of

higher resolution[ Table 5+4 summarises the memory requirement for images of

different sizes, where the buffer size for DoG values is estimated with five scales per
octave. With both buffers shared between octaves, the memory requirement is

independent of the selected number of octaves.
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Table 5-4 Memory requirement of Gaussian smoothed pixels and DoGs for images

with different sizes.

: Memory requirement
Sour ceimage |mage rezlol ution Gaussian smooth .
(pixels) (Kbitsscal) DoG (K bits)
QVGA 320x240 1.20eW 4.781@
VGA 640x480 2.45e 9.78l
SVGA 800x600 3.07e 12.28l
XGA 1024x768 3.95e 15.78l
WXGA 1280x800 4.95e 19.78l
UXGA 1600x1200 6.20e 24.78|
(1) e is the word length of a Gaussian smoothed pixel.
(2) L is the word length of a DoG value.

b. Gradient Magnitude and Orientation Calculation

Considering that the GMO computation of a pixel is only related to its four adjacent

smoothed pixels in the same scale, they can be computed in parallel with Gaussian

smooth with only a negligible initial delay. The block diagram of the proposed

approximation based architecture for GMO computation is shgwn in Figur

Gy sign andGy, g4, are defined iv|\ (a1

e 5-23.

and| (5.12), respectivelYy., represents

the gradient orientation in the first quadrant. With the orientation quantised to

integers in range 0 to 3By, is integer in range O to 8.

0,
stign = {1

y_sign = {1’

Lx+1,y) > Lx—1,y)
Lx+1,y) <L(x—1,y)

0, Lxy+1)=>L(xy—1)
Lix,y+1) <L(x,y—1)

(5.11)

(5.12)

The approximation based strategy takes only four clock cycles to calculate a pixel

orientation.
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Figure 5-23: Block diagram of the approximation based GMO calculation.

Memory Solution

The memory requiremenMR ;) for GMOs is defined iE (5.1B).

1

MRawo = bwo *Nscaie* ) [(Wi=2b=2)(hi=2b=2)]  (5.13)

i=0

wherebg,,o is the bits number per GM®,.,;. iS the number of pre-selected scales

per octave for GMO calculation.

It has been studied i|n Chapter 4 that gradient magnitude and orientation are
represented by 10 bits and 6 bits, respectively. With two scales per octave selected,

the required memory size MR;y,=1.27 Mbytes, which is too large for many
hardware devices to afford. To tackle this problem, a DDR3 based memory solution
is proposed in this thesis to provide up to 512 Mbytes off-chip memory. The Xilinx

EDK development tools provide parameterisable Xilinx Multi-Port Memory
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Controller (MPMC) [69], which offers access to DDR3 from one to eight
independent ports. Each port can be chosen from a set of Personality Interface
Modules (PIMs). In this design, MPMC is configured with two Native Port Interface
(NPI) PIMs, which support configurable data width of 32 bits or 64 bits on each port.
One is used to write calculated GMOs to DDR3, and the other is used to read GMOs

from DDR3 for descriptor generation. As shown in Figure p-24, four sets of GMOs

are concatenated and sent as a single data to make full use of the data width of 64
bits. The throughput requiremeMAR ;0w ) fOr NPI write port is defined below.

TPReyowr = f - MRgumo (5.14)

wheref is the system frame rate.

- 64 bits

L 4

GMO block | GMO block | GMO block | GMO block

Gradient [3:0] & Onentation [3:0]

L

16 bats

£

Figure 5-24: Data concatenation for GMO.

The throughput requireme®RR ;0w ) IS 76.1Mbytes/s with an overall frame rate

of 60 fps. It can be seen frgm Table [5-5 that NPI write port with 32-word burst data

transfer meets the throughput requirement.

In[Table 5-%, latency on writes is not characterised because MPMC allows write data

to be pushed in before or after the address request. It should be noticed that the
throughput listed iE Table 55 is the maximum total data throughput. The throughput
increases with the burst size of the transfer data, so the 64-word burst offers the

highest maximum bandwidth but might increase the delay on other ports. Therefore,
the 32-word burst data transfer is used for DDR3 memory access with priority given

to NPI read port to constantly feed GMOs into the descriptor generation module
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without interruption, which will be discussed later in secfion $.3.4. The ekttail

configuration of the NPI PIM Write Interface is given in Append

X B.

Table 5-5: MPMC port latency and theoretical throughput for Virtex-6 FPGA

Port A Port B
Port Type NPI NPI
Operation Write Read
Data Width 64 bits 64 bits

Data Transfer Type

32-word burst

32-word burst

Initial Transaction Latency

(MPMC_CIk0) N/A 30
Maximum Total Data Throughput
1,14 14
(Mbytes/s) 143 408

5.3.4 Descriptor Generation

The second part of the SIFT algorithm is the Descriptor Generation Module (DGM)

where each keypoint is described using a gradient-orientation histogram. The overall

hardware architecture of the descriptor generation module is sh¢wn in Figu

re 5-25

which mainly consists of six sub-modules:

1. Gaussian Weighting Factor Controller, which is Look-up Table (LUT) based

and provides Gaussian weighting factors for both Principal Orientation

Calculation and 36-bin Histogram Generation.

2. Principal Orientation Calculation. This sub-module inputs the GMOs from

DDR3 and outputs the principal orientation of the keypoint by weighting and

accumulating pixels within the local region.

3. Centre Coordinate Calculation. In this sub-module, the centre coordinates of

eight surrounding sub-regions are calculated based on the principal

orientation, with which the locations of the surrounding sub-regions are fixed

for the orientation invariance of the sub-region arrangemen
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4. 36-bin Histogram Generation. By assigning a consistent orientation to each
keypoint, each sub-region within the local region is described by using a 36-
bin histogram that is represented relative to the principal orientation and
therefore achievingptation invariance. The orientation histogram has 36 bins
covering 360 degrees of orientation.

5. Linear Interpolation. The 36-bin histogram is interpolated into 8-bin
histogram by distributing the value of each histogram into its adjacent
histogram binsoasto avoid abrupt changes in the descriptor as a result of a
sample shifts from being within one histogram to another.

6. Descriptor Normalisation. The descriptor is normalised twice to reduce the
effects of illumination changes, such as image contrast, and to reduce the

influence of large gradient magnitudes.

Feature coordinates  GMOs from Normalized Descriptors of
from FDM DDR3 72 Dimensions
MUX [
v ]
Principal Orientation | ™ Descriptor

Calculation Mormalization

-

\ 8 1
r|====== =T
i W k.
I
I Centre Coordinates RAM

torir Yoril

Controller ﬁ e Linear
L Interpolation

36-hin Histogram
Generation

Gaussian Lt .
i M| Calculation
Weighting [y U k-
E. y I R .
Factor ¥ | o
I
]
i
I

la— -~

Figure 5-25: Block diagram of descriptor generation module, where FDM stands for

the Feature Detection Module.

Taking advantage of the parallel processing property of hardware devices, the six

sub-modules are arranged into a five-stage pipelined and parallel processing

architecturelt can be seen from Figure 5425 that Stage 1 inputs the GMOs and the
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weighting factors retrieved from the Gaussian weighting factor controller, and
outputs the principal orientation, which is then passed to Stage 2 and Stage 3. In
Stage 2, center coordinates of eight surrounding sub-regions are computed and fed
into Stage 3. Then the 36-bin histogram of each sub-region is generated in Stage 3
with the weighting factors retrieved from Gaussian weighting factor controller. In
Stage 4, 36-bin histograms are interpolated into 8-bin histograms, which are
normalised in the last stage to generate the final descriptor of 72 dimensions.
Detailed introduction to the partition based memory access scheme, the SRT (Shift
RegisTer) based reconfigurable divider and the SRT based square root calculator are

presented in this section. Hardware architecture of the descriptor generation module

is given irj Appendix C.

a. Memory Access Scheme

DDR3 is used as the buffer for GMOs (Gradient Magnitude and Orientations)
Although NPI PIM read port supports theoratithroughput of up to 1,408lbytes/s,
it is not large enough if the DDR3 is used directly as the input to DGM without an

efficient memory access strategy.

Memory Throughput Analysis

Figure 5-2¢ shows the sub-regions arrangement. Eachegigo- is defined as a

rectangle, because it is difficult to define circular sub-regions when accessing pixels

from the memory and processing sub-regions to generate gradient histogram.

Figure 5-26: Rectangular sub-regions arrangement with overlap.
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The square in dashed line indicates the local region centred on the keypoint. The data
(GMOs) in the overlapped region have to be repeatedly accessed if each sub-region
is accessed independently from the memory, which largely increases the throughput
requirement for NPl PIM read interface of MPMC. Thereforés imore efficient if

the entire local region is accessed as a whole from DDR3 and buffered as input to the
descriptor generation module. In this case, the throughput requireffdhfs(z,) of

the NPI read port is defined [py (5.15).

TPRypira = Neabits * A1 * Ngesc * f * 64bits (5.15)

with

(G
Neapits = Ceil (Z)

whered, is the diameter of the local regian,,;;;s is the number of 64-bit data to be
accessed from the memory for each row of the local regjgg. is the number of
descriptors to be generated per frafhes the system frame rate. The throughput
requirement is in range 412\Mbyteds to 1011.7 Mbytes/s with 2,000 keypoints per
frames, which is proportional to the size of the sub-region, the number of keypoints

to be described, and the frame rate.

The throughput of the NPI PIM read port increases with data burst size, but might
increase the delay on other ports. With both ports configured as 32-word burst
transfer, neither of them is able to achieve the theatghcoughput given ip Tablle

5-5| It has been obtained from experiments that with 32-word burst data transfer on

both NPI PIM port, it requires on the average 46 MPMC clock cycles (5ns) for each

read transaction, which corresponds to a throughput of approximately 530.7

Mbytes/s and is not high enough to meet the throughput requirement of the design.
To tackle this problem, an efficient memory access strategy is required.

In this thesis, a partition-based memory access scheme is proposed to reduce the
throughput requirement increased by repeatedly accessing pixel values within the

overlapped area shared between adjacent local regions. With the new memory access

strategy employed, the throughput requiremefPR ,prs) is defined in (5.18)

196



which is no longer related to the number of keypoints and is less dependent on the

size of sub-regions.

3

1
TPR) s = f Z © TPR, (5.16)
i=0 j=2

with
TPRy; = Npartition " Nrow,; ~ Neabits 64bits

where

n — ceil <(hi —2b-2)+ (npartition -1) 'noverlapsi>
TOWg; —

npartition
Neapits = Ceil — 2

j is the index to the two pre-defined scales (scale2 and scale8)satiee index to

octaves nyqrtirion 1S the number of partitions of each octave ang,  is the
number of rows per partitiong,e,iqp,; IS the overlapped rows shared by the local

region of keypoints in adjacent rows and is equal to 40 and 64 for scale2 and scale3,

respectively.

The throughput and memory requirement of the partition-based solutidn wit

different partition sizes are given in

Table 5-6. The time consumption per partition is calculated based on the

experimental result, which is 46 MPMC clock cycles per 32-word burst read
transaction. The buffer size is clbseelated to the number of partitions, which
decides the number of rows of GMOs to be buffered for each partition. Six partitions
for octave 0 and one patrtition for octave 1 are chosen with the compromise made
between throughput and memory requirement, with which the throughput

requirement is reduced significantly.
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Table 5-6: DDR3 throughput requirement of partition-based memory access solution

with different partition size (scale2/scale3).

Rows of Memory DDR3 throughput
Number of . .
Octave artitions GMOs (per requirement requirement
P partition) (Mbytes) (Mbyted/s)
2 244/256 0.66/0.74 33.96/35.63
3 176/192 0.50/0.59 36.74/40.08
4 142/160 0.42/0.51 39.52/44.53
0 5 122/140 0.38/0.47 42.44/48.71
6 108/128 0.34/0.44 45.09/53.44
7 100/118 0.32/0.42 48.71/57.47
8 92/112 0.31/0.40 51.22/62.34
1 1 208/208 0.23/0.23 6.86/6.86

Partition-based Memory Access Solution

This section describes in details the proposed partition-based memory access solution
that is developed to reduce the throughput requirement of the NPI PIM read port.
Figure 5-27 shows the block diagram of the memory access solution to NPI PIM read
interface. NP1 PIM Read Unit fetches GMOs from DDR3 and sends data to DGM
through Multiplexing Controller. Read Interface Controller is designed to deal with
enable signal KeadStart) and status indicatorsiMOReadyq:o[5: 0], GMOReadyoes
DGStartoe[5: 0],DGStartye, DGFinishoeo[5: 0], DGFinishy,) t0 control the processing
procedures of the NPI PIM Read Unit and the Descriptor Generation Module to

make these two partso-operate properly. Configuration of the NPI PIM Read

Interface is given iE Appendix|B.
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Figure 5-27: Overview of the memory access solution to NP1 PIM read interface.

Figure 5-28 shows the pipelined architecture of the partition-based memory access
solution. The processing time varies for each partition, which is proportional to the
number of keypoints withireach partition. However, the time requirement for
accessing GMOs from DDR3 is approximately the same since each patrtition is of the

same size.
* Time
Memory Access for | Memory Access for 1dl Memory Access for | Memory Access for
Partition 1 Partition 2 & Partition 3 Partition 4
1dl Process Features from Process Features Process Features
& Partition 1 from Partition 2 from Partition 3
— — — |
Idle Idle

Figure 5-28: Pipelined architecture for the partition-based memory access solution.

1) StatuslIndicators

The GMOs from octave 0 are divided into six partitions and octave 1 is taken as one
partition. Therefore, the status indicators for octave O is a six-bit big endian signal

with each bit active high. As shown in Figur8-the Most Significant Bit (MSB)
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holds the indicating bit for the first partition of octave 0, and the Least Significant Bit

(LSB) holds the indicating bit for the last partition of octave 0.

MSB LSB
GMOReady,,_, [5: 0] olol1lololae
[——— : R --------ET!
v v v v v v

Ready_pl Ready_p2 HReady_p3 Ready_p4+ Ready p5 Ready_p6

(@)

DGFinishy_,[5: 0]

|
H r
|
i

v ¥ ¥ v ¥ v
Finish_pl Finish_p2 Finish_p3 Finish_p4 Finish_p5 Finish_p6

DGStart ., [5: 0]

v v v v v v
Start pl  Start_p2  Start_p3 Start pt  Start_pd Start_p6
(©)

Figure 5-29: An example of the status indicators for octave 0.

2) Read Interface Controller

Detailed flowcharts of the control logic are provided in Figure 5-30 and Figure 5-31.
Figure 5-30 shows that DGM does not start processing a newly arrived partition until
keypoints from the previous partition have been processed. Figure 5-31 shows that
DGM always waits for the corresponding indicating bitStartyc.o[5: 0] ,DGStartyce,)
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to be asserted before it starts processing a new partition. Once the current partition

has been processed, the corresponding indicatin@&ftnish,..[5: 0] .DGFinishoe;)

is asserted, which indicates that DGM is in the state IDLE and is ready to process

next partition. For example, when GMOs from partition 3 is ready in the buffer, the

buffer status indicator is set as shown

in Figure

5-29(a). The Read Interface

Controller waits for the finish indicating bifiqish_p2) for partition 2 to be asserted,

as shown in Figure 5-29(b). Then DGM starts processing partition 3 when the start

indicator has been set as shown in Figure 5-29(c).

!
||ka_ Start _/J
v |

Get GMOs from DOR3
for partition i
e,

.-"'-.a .

.P'.- '\-\.\_\_
- .
7 Al pixel values of
AR e | A -
"--\..__\_Ed rtition § dLLL.ﬁhLd.___,—-""f

i=i+l

M

\\fr\rn partition {J I] ’

TS

NO :r" “All partitio nh:.m“H
- accessed? ,_,-\3‘
Iy e
YES
! H\"
Finish |
llk""\-\_ _n/’J

Lo
S <
MO ’-Df_"::rlpmr LLH:;EEMH\
finished for kKeypoi ntq

» ReadStart
g

GMOs of
partition i are
ready in the
buffer

. Finished processing
L keypoints from

partition [i-1)

Start processing
kevpoints frotm

partition |

Figure 5-30: General flowchart of the Read Interface Controller.

201



Start J

P
i=i+1 y
Start processing NO
keypoints from partition >—— Start processing
i? P R— | | keypoints from
partition i
YES
\ 4
Descriptor generation for |
keypoints from partition i? |
/ \
_Descri tior
escriptor generation~_ NO
finished for keypoints from
\\ partition i? // Finished
™ — processing
ves > keypoints from
partition i
N

" All partitions processed?

Figure 5-31: General flowchart of DGM.

In a short summary, two conditions should be met before DGM starts processing

keypoints from a new patrtition.

= GMOs of a new partition have been accessed from DDR3 and buffered, ready
to use.

» Finish indicating bit has been asserted, indicating that the previous partition
has been processed and DGM is in the state IDLE and is ready to process the

next partition.
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3) Multiplexing Controller

The block diagram of the Multiplexing Controller is showh in Figu@25This unit

works with two different clock domains, where data received from DDR3 are first
pushed into the FIFO underclock frequency of 200 MHz, and then sent to ping
pong buffers that operate widttlock frequency of 100 MHz.

Ping-pang

|( ________ 1='I FO ________ +__Pe-mu1ﬁphxer | Buffers | Multiplexer .
Bl |5-4
cq — |™P=b| DFRAMAL (sl
| 12 | g4 ey |21 i
|| DPRAMAZ (=i
fied 64 | 2 | B4
ad I e fid £l R
" " |mplp| DPRAL BE1 |l ”
—p | 1:2 | oq |21 b
qqﬁb DFRAM Bz | weplah
|l »le N
Z00MHz ! 100MHz |

Figure 5-32: Block diagram of the Multiplexing Controller.

This unit mainly consists of four parts:

» FIFO: facilitate data exchange across independent clock domains.

= Demultiplexer: send data to ping pong buffers alternatively for
continuous data transfer.

= Ping pong buffers: two groups of buffers with each buffering a partition
of GMOs from one of the two pre-selected scales alternatively. The two
groups of buffers work in a way that one group is being written while
GMOs in the other group is being transmitted to DGM.

= Multiplexer: route data from ping pong buffers to DGM.

During a system design, there are many components that work with different clock

domains. Asynchronous FIFO plays an important role in the exchange of data that
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are consecutively transferred across different clock domains. The asynchronous
FIFO has two interfaces, one for pushing data into the FIFO and the other for reading
the data out. Each interface has its own independent clock signal. For example, as
shown in Figure 5-33, Systemplshes data into the FIFO on Clock X and System

Y reads data out o@lock Y. Signal fifo_full and fifo_empty are employed to take

care of the overflow and underflow conditions, respectively.

«—fifo full — fifo_empt —
[ Datain— FIFO [ Dataout™—
—— W BN ———— <« en
Clock X Clock ¥

Figure 5-33: Asynchronous FIFO in between two systems with independent clock

domains.

b. SRT based Reconfigurable Divider

Figure 5-34 shows the flow chart of the SRT-based divider, with which the division

operation is replaced by simpler operations, such as shift, compare, and subtract. The
register REG is first initialisd with the most significanW bits of the dividend and is
compared with the divisor, wher€ is the word length of the divisor. In the
following iteration cycles, the dividend is continuously shifted into REG bit by bit,
which is compared with the divisor to decide the corresponding bit of the quotient.
The index controls the division process and is initialised Mo N). After each

comparison iteration, index minus by one and the divider finishes when index=0.

Table 5-71 gives an example to the SRT-based divider with the word length of
dividend and divisor set td=12 andNV=5, respectively. The REG is initiadid with
the most significant 5 bits of the dividei@tl0100”), and the bit of dividend with

underline is continuously shifted into the register REG from the rightmost end.
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Initialize REG with the N

M5Bs of Dividend.

index=M-N
) __F__,--l--_.q__q_ Left shift REG by 1 bit, and
Index = mdﬂ}f:}:f""' T~ NO | opy Dividend (index-1) into
>~ _REG=zDivisor _—~ ’ the LSB of REG.
T Set Quotient (index) =0.
I YES

Subtract Divisor from REG,
then left shift REG by 1 bit and
copy Dividend (index-1) into
the LSB of REG.

Set Quotient [index]) =1.

NO T
~ Index=0
- - __d_.-"
1 YES
YES __—  T—__ N
~__ BEG=Divisor __—
Remainder = T
REG-Divisar [ ] Remainder= REG
*;l Finish |{

Figure 5-34: Flow chart of the SRT-based divider.

Table 5-7 An exampleof the SRT-based divider.

.. _ . . Compare
. Dividend (=11} | Divizor - . . .

Iteration | Index «“10100000 11017 | (N=5) REG (?:;sg; Difference | Quotient | Kemainder
Iritialize 7 “l0loo0o01101™ 10100 - - “Oo0oo0or”

1] 7 “lolooooollol” “10100™ TES 17 “1000000”

1 [ “1010000011017 “107 HO - “1000000%°

2 5 “l0loo0ool1o1™ “100™ HO - 1000000

3 4 “1010000011017( “100117 [ 10007 HO - 10000000 -

4 3 “1010000011017 “10001" HO - “1000000%°

5 2 “101000001 1017 “100011™ TESD 100007 | “10000100F°

& 1 “lolooooollol™ 10000 TES “11017 | *“100001106°°

7 0 “lolooooallor” “11011" HO “1000% | 100001117 #1000

The divider can be configured with dividend and divisor ranging from 2 to 35 bits

and 1 to 26 bits, respectively. The resource usage of the SRT-based divider is
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relatively low when compared with dedicated IP cores provided by Xilinx, as shown
in|Table 5-8.

Table 5-8: Resource usage comparison of different solutions to divider.

Radix-2 High-Radix SR_T'_based
divider
Target Device Xilinx Virtex-6 FPGA
Dividend (bits) 32 37 35
Divisor (bits) 32 24 26
LUTs 2,126 532 336
FFs 3,202 795 165
DSP48E1 0 11 0
RAMBI18E1l 0 1 0

c. SRT based Reconfigurable Square Root Calculator

Figure 5-3% shows the flow chart of the SRT-based square root calculation, with

which the square root computation is replaced by simpler operations, such as shift,
compare, and subtract. The register iRight is first inigalisvith the two most
significant bits of the radicand and is compared with iLeft, which is inkihtis ‘1°.

In the following iteration cycles, the radicand is continuously shifted into iRight
which is compared with iLeft to decide the corresponding bit of iISquareRoot holding
the square root value. The index controls the division process and is initialigéd to (
1), whereN is the word length of the radicand. After each comparison iteration,

index minus by two and the calculation finishes when index=1.

206



Start
Initialise iLeft="1", iRight is
initialised with the two most
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Set iSquareRoot (index_o) = 0.
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Figure 5-35: Flow chart for reconfigurable square root calculation.

Register iLeft is updated following the flowchart showvli in Figure (5-36, wheye

the index to the current iteration cycle.

e

YES o NO
S

,F bz
"“Eﬁqﬁ}@ﬂ

;

S NO

Y

9
~] .nllbiﬂw- l

iLeft="001"

iLeft="101" ‘

iLeft=iLeft{l)&"001"

iLeft=iLeft[k]&" 101"

l

.
|f Finish -\:u
S

Figure 5-36: Update register iLeft.
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Table 5-9 gives an example to further explain the reconfigurable square root

calculator. The two bits with underline are the bits to be shifted into iRight from the

rightmost end.

Table 5-9 An exampleof the reconfigurable SRT-based square root calculator.

. . Compan
Beration | o | Radieand (v=12) | o o | ipogy | T eft | Difference | iSquaeOut | Index o
) 1010 0000 0000 e
Tritialze | 11 | 101000000000 | 17 157 - - “oo000” |5
1 11 | Wioooooooon | =17 107 TES *17 | ~lo0000¢ | 5
y 5 [ 10000000000 | =1o1" | #1107 | TES =7 [ Fll0000" | 4
3 7 [ 1010 000 o000 | ~1101° | Flo0 i[6) - o000 | 3
3 5 [ 101000000000 | “11001° | ~looo0” | HO - “lloon0” | 2
3 5[ 10100000 8000 | “1100017 [ “l000000°|  TES | <1111 | “lloolo” | 1
5 1 | 10100000 0000 | ~1lo0l0r7| “1111007 | WO - onio” | 0

The reconfigurable square root calculator supports input/output of up to 48bits| Table

5-10 shows that the requirement of the SRT-based method is relatively low when

compared with that of the dedicated IP core provided by Xilinx.

Table 5-10: Resource usage comparison of different solutions to square root

calculation.
Input / M ax
Method E‘Z:/?i Output LU;?-SFF LUTs | FFs | Freguency
Width P (MH2)
CORDIC Xilinx 2,549 2,448 | 2,511 277
SRT- Virtex-6 48
based FPGA 1,696 1,495 | 1,068 228

5.3.5 Descriptor Matching

This stage maps each keypoint from input images to a corresponding point from the

reference image. Descriptor vectors of each keypoints are buffered and the keypoints

are matched using the novel matching strategy preserted in Chapter 3. This stage is a
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task well-suited for hardware implementation, considering that the time consuming

descriptor matching process can be compensated by exploring the inherent

parallelism of embedded hardware devites. Figure|5-37 shows the block diagram of

the descriptor matching module, which consists of one Get Descriptor unit and two

identical Compare Descriptor units.

Descriptor Buffer Descriptor Matching FIFO for matches
3 | Compare
RAMO ! 1 p
| ] Descriptor

RAMI | (o | e riptor = o
RAM2 —|_> Compare

Descriptor

Figure 5-37: Block diagram of the Descriptor Matching module.

Descriptor Buffer: The design can be configured to work in two different modes. In

the first mode, each image is compared with its previous frame. In this mode, RAMs

are accessed in a way showr in Figure p-38(a), where one RAM is being written

while the other two are being read. In the second mode, the input images are
continuously compared with the same reference image. Descriptors from the
reference image are buffered in RAMO and act as the database. Descriptors from
consecutive input images are mapped into ping pong buffers RAM1 and RAM2 in
turn, with which one is being written by the descriptor generation module, while the

other one is being read by the descriptor matching module, as shawn in |Figure
5-3ﬁ(b). With DPRAM acting as the buffer, two descriptors arrive every clock cycle,
corresponding to a throughput of 0.2G descriptors per second with a clock frequency

of 100 MHz. Because DPRAM supports performance of up to 450 MHz, the

throughput can be further improved by using higher clock frequency if necessary.
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Figure 5-38: Descriptor buffer access.
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Figure 5-39: Flowchart for Get Descriptor unit.
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Get Descriptor: This unit is responsible for accessing descriptors from Descriptor
Buffer and routing data to Compare Descriptor units. For each descriptor from the

input image, all the descriptors from the reference image have to be accessed from

the buffer, as shown |n Figure 5{39. The corresponding throughput requirement is

0.24G descriptors per second. Because two descriptors are accessed from the buffer
every clock cycle, they can be matched against the reference image in.pasadle

result, descriptors from the reference image can be shared by two matching processes
and the throughput requirement is reduced to half (0.12G).

Compare Descriptor: This unit compares each descriptor from the input image
against the descriptors from the reference database, and mainly consists of the

following four steps:

1) Calculate the distanc@d) between each dimension of the pair of descriptors.

This process is iterated.. times for each descriptor from the input image, where

n..r denotes the number of descriptors from the reference database.

2) Count the numbemV,;) of dimensions witlAd below the pre-defined threshold
(Thry,) and keep the two pairs of descriptors with the largest and the second largest

Nag4, Which corresponds to the closest and the second-closest neighbour, respectively.
3) CompareV,, of the closest neighbour with a pre-defined threshold.

4) CompareéVyg, . With Nyg_, = Thru,,

second’
N
Adcjpsest

The above mentioned four steps are iteratgg times, wheren;,, denotes the

number of descriptors from the input image to be matched against the reference
database. By registering intermediate results of each step, the Compare Descriptor
unit is able to process descriptors that are continuously received from Get Descriptor

unit. The overall timing diagram for the descriptor matching module is shown in

Figure 5-40, showing descriptors reading and matching.
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Figure 5-40: Overall timing diagram of the descriptor matching module.

5.4 Trade-off between Resour ce Usage and System Perfor mance

Resource usage is an important criterion that evaluates the implemented system. In
this design, the resource usage of the SIFT processing core falls into two categories
(a) Logic and memory that are required to implement the processing core itself and
are independent of the number of pixels processed in parallel, such as the RAM
buffering the scaled images and DoG values. These resources increase withéhe fram
size. (b) Memory for storing intermediate calculating results that increases linearly

with the parallelism level of the design, such as the number of pixels processed in
parallel that requires larger register to hold neighbouring filtered pixels for GMO

calculation.

Throughput is an important parameter to assess the efficiency of the processing core,
since the high frame rate is the primary target of this project. In this section,
throughput refers to that of the SIFT processing core. The throughput of the complete

platform with camera front-end and USB back-end will be discusged in Chiapter 6

The throughput of the SIFT core can be expressed as the number of frames that the
core is able to process per second. Throughput can also be expressed as the number
of pixels that are correctly detected, described and matched per second.
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It has been mentioned in sectiEn 5/3.1 that the SIFT processing core has been

arranged into a three-stage pipelined architecture, with which the overall throughput

is decided by the stage that consumes the longest time. It can be seen from equation

(5.2) that the key factor that affects the throughput of feature detection is thie 3ize (

of the largest Gaussian kernel applied, followed by the number of pixglsf

smoothed in parallel. The throughput of feature detection decreakgsnaseases,

but increases linearly with the number of pixels processed in parallel, as shown in

Table 5-2. Smaller kernel size resultsainigher frame rate for feature detection, but

potentially increases the processing time of descriptor generation and matching as a
result of the larger number of keypoints detected due to over-detection. Besides, with
the increase of; andn,;,.;, the number of multiplications increases accordingly
and extra resources are required to buffer the intermediate results of the following
calculation steps. Therefore, two pixels are filtered in parallel using Gaussian kernel
of k;=31, with which the design achieves at least 60 fps while keeping relatively
high accuracy and low resource usage. The relationship between the throughput,
accuracy and resource usage of the feature detection module isis@L
and Table 5-1P.

Table 5-11: Relationship between throughput, accuracy and resource usage with

respect to Gaussian kernel sigg for feature detection module.

Gaussian kernel

size kg Throughput

Accuracy Resource Usage

f | | |

Table 5-12: Relationship between throughput, accuracy and resource usage with

respect to the parallelism level of feature detection.

Parallelism level

Throughput

Resource Usage

f

|

|
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Section] 5.3.4 has shown examples of the trade-off between the accuracy, memory

and throughput. By taking advantage of the LUT-based processing method, it takes
only four clock cycles to calculate one pixel orientation with relatively high accuracy.
By representing each GMO with 16 bits, four GMOs are concatenated as one data to
make full use of the MPMC interface, which reduces the throughput requirement of
the MPMC interface. Besides, on-chip memory requirement for the partition-based
memory access solution is also reduced, which is proportional to the word length of
GMOs. Therefore, the slight degradation in the accuracy of GMOs leads to the
decreased requirement in both the on-chip memory and the throughput of MPMC

interface.

5.5 Summary

This chapter presents the hardware architecture of the SIFT processing core with all
phases of the algorithm covered, including feature detection, descriptor generation
and descriptor matching. With the pipelined and parallel structure developed, the
SIFT processing core is fully embedded on-chip and is able to process VGA images
at least 60 fps with a system clock of 100 MHz.

In feature detection module, pixels can be constantly streamed into the processing
core and filtered with relatively low computation cost as a result of the SRT-based
pixel streaming strategy. Efficient memory solutions have been proposed for
Gaussian smoothed images and DoG values. The memory requirement remains
constant with the increase of the parallelism level of the SIFT processing core, which
is one of the contributions of this work. Besides, GMOs are buffered in on-board
DDR3, which offers 512 Mbytes memory. Each GMO is represented by 16 bits,
which saves the on-chip memory requirement of the partition based memory solution
and reduces the throughput requirement of the MPMC interface while preserving
relatively high accuracy. The throughput of feature detection can be increased by
increasing the parallelism level of the design at the expense of a small amount of
resources for buffering intermediate results, such as the SRT holding pixels for
Gaussian filter and that holding neighbouring filtered pixels for GMO calculation,
etc. The throughput can also be increased by using Gaussian kernel of smaller sizes,
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which increases the throughput at the expense of accuracy and scale invariance and is

not an optimal choice.

In descriptor generation module, each feature point takes only 7.57 us to be
generated as a result of the polar sampled spatial arrangement of SRI-DAISY, the
LUT-based Gaussian smooth and interpolation, and the SRT-based square root
computation and division. The design processes up to 132,100 descriptors per second
at a system frequency of 100 MHz, which is fast enough to generate descriptor for
VGA resolution video of at least 60 fps, provided that there are no more than 2,200

keypoints per frame.

The descriptor matching module implemented the novel matching strategy, which
achieves a throughput of 0.2G descriptors per secondawitbck frequency of 100

MHz. Because this module does not include complex computations, such as square
root computation, the resource usage is low and the throughput can be increased by

running several modules in parallel.

The SIFT processing colie incorporated into a platform with camera front-end

anda USB back-end, which will be introduced in Chapter 6.
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Chapter 6 An Image Matching System based on
the Optimised SIFT
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6.1 Introduction

Design parameters have been evaluatgd in Chabter 4 to show that high performance
and high accuracy can be achieved by the hardware design for the optimised SIFT

algorithm. The hardware architecture of the SIFT processing core has been presented

in|Chapter %, which can be integrated into an FPGA device. In this chapter, an image

matching system is described in which the SIFT processing core presented in

Chapter % is integrated into an embedded system that communicates with a camera

front-end and a USB back-end, as shown in Figure 6-1. Besides, three types of

experiments are conducted to verify the system performance. Hardware efficiency of

the design is compared with existing solutions in this chapter.

Camera

Figure 6-1: The SIFT based image matching system.

6.2 Embedded System in FPGA

As mentioned in Chapter| 5, the contemporary FPGA devices are rich in resources

and FPGA vendors support a wide range of embedded processing peripheral IP cores
so that extensive logic functionality can be des@jto work in a single FPGA
device. Taking advantage of the reconfigurable property of the FPGA, it is fast and
convenient to build a complete digital system on a FPGA device, including

processing, controlling and interfacing block, which is a system-on-chip (SoC)
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design. An embedded system is developed to operate the SIFT processing core and
the entire platform is verified on the Xilinx ML605 FPGA board.

Figure 6-2 shows the block diagram of the SIFT-based image matching system,

which shows the main interfacing, processing, controlling and buffering units.
Detailed introduction to the camera controller and the USB controller are given in

Appendix O.

Avnet FMC Module
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Figure 6-2: Block diagram of the image matching system showing the main

interfacing, processing, controlling and buffering units.

The OV9715 image sensor mounted on the Avhet FMC Module is connected to the
FPGA board via FMC LPC [70] connector and is configured to deliver 640x480

resolution video at 30 fps. All the control and processing blocks are fully embedded
in the FPGA device. The input images and matched keypoints coordinates are
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outputted to PC via USB that is connected to the FPGA board through FMC HPC
connector. Status of the FPGA system can be monitored by the messages sent to PC
via RS232 serial interface. Configuration of the Avnet FMC module with OV9715

OmniVision image sensor is giver| in Appendix E.

i MicroBlaze EDK Platform
| PLBVA.6 1[
veme ] ST procesing | | clock
' ) ::::::::::‘f!:if_'ii_:::::::::: generator

User-developed Core
|:\ XPS IP Core

Figure 6-3 Block diagram of the EDK platform.

Figure 6-3 shows the block diagram of the embedded system that is developed by

using XPS provided by Xilinx Embedded Development Kit (EDK) [71]. EDK is an
integrated development environment for designing embedded processing systems. In
this design, thdP cores implemented in the EDK system fall into two categories
XPS pre-built IP cores, such as the MPMC interface for DDR3 access, and the user-
developed components, such as the SIFT processing core.

6.3 Experimental Results

In this section, three types of experiments are conducted to verify the system
performance. The first experiment examines the system’s robustness in presence of

different geometric and photometric transformations, such as in-plane rotation and
image scaling, changes in viewpoint angle, blur, illumination and noise. This type of

experiment is ideal since it does not contain complex cluttered background or partial
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occlusion, so the system is integrated into an object recognition application in the
second experiment. In the last experiment, matching results from the system are used
for video stabilisation, which tests the detection and matching accuracy of the system.
It should be noticed that the matching results displayed in the first two experiments
are the outputs of the proposed system directly. In the last experiment, RANSAC is
applied to eliminate outliers such that the estimation of transformation matrix is more

accurate. All experiments are conducted on real world images of size 640x480 pixels.

6.3.1 Experimentsusing Real World I mages

The system performance is tested in presence of different transformations, such as
changes in scale and rotation, viewpoint angle, image blur, illumination, and in
presence of noise. A reference image, which is photographed on a white background,

Is matched against itself, but with various transformations. Each solid line connects a

pair of keypoints matched using the novel matching strategy presej@éapter B.

a. Rotation Invariance

Figure 6-4 shows the matching results for a set of images with rotation of -180 to 180

degrees. The average precision is above 95%, indicating that the SRI-DAISY based

matching system is fully invariant to rotation.

220



Figure 6-4: Testing results for image rotation.

b. Scalelnvariance

The matching performance is tested at a variety of s¢ales. Figure 6-5 shows the

matching results, where both zoom in and zoom out have been tested. In general, a
larger number of keypoints are matched when keypoints from the down-scaled
images are matched against the reference, because scales for all keypoints from the
down-scaled images would be present in the reference image. It is more challenging

to match the images that are scaled up against the reference image, such as the

images shown on the last row| of Figure|6-5, because the correspondences of many

keypoints detected from the up-scaled images are not detected from the eeferenc

image. It can be seen frgm Figure [6-5 that although the number of matches is limited
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for images that are scaled by a factor of 0.3 and 3.5, respectively, all of the matches
are correct. The average precision is greater than 95%, indicating that the design is
robust to scale changes.

Figure 6-5 Testing results for scale changes. The scaling factors are 0.9, 0.7, 0.6, 0.3,

2 and 3.5, respectively, starting from the upper-left corner.

c. Viewpoint Changes

The robustness is also tested under various projective transformations. The number
of matches drops with the increase of viewpoint angle and is reduced to three in a
most challenging situation with viewpoint angle of approximately 60 degrees, as

222



shown in the image on the bottom-right cornen of Figurg 6-6. In general, the

viewpoint changes have a larger impact on the number of matches than the
correctness of matches. For viewpoint changes of within 60 degrees, the precision is
85% in the worst case, which is mainly due to the limited number of matches.

Therefore, the design is partially robust to viewpoint changes.

Figure 6-6: Testing results for viewpoint changes.

d. Blur

In presence of image blur, the pixel intensities and shape of local structures change in
an unpredictable way. The SIFT descriptor is not designed invariant to such
transformation. In this experiment, the camera vibration is created manually in

different directions during shooting to produce blurred images. Experimental results

are presented |n Figure 6-7, which shows that the number of matches decreases with

the increasing amount of blur. However, there are still some correct matches in

presence of a significant amount of blur, as shown in the image on the bottom-right

corner o[ Figure 647.
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Figure 6-7: Testing results for image blur.

e. I[llumination Changes

The illumination invariance is demonstrate

J in Figurg 6-8. The two images are of the

same scene from the same viewpoint, except for the difference in illumination. In the

first test shown in the left image

of Figure

6-8, there are 108 matches in total, 3 of

which are incorrect. In a more challenging situation where there exists a significant

change in illumination, only 1 of the 60 matches is incorrect, as shown in the right

image of | Figure 648. The reduction of matches is mainly because the

correspondences of many keypoints detected from the reference image are not

detected from the low contrast (dark) area from the input image.
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Figure 6-8: Testing results for illumination changes.

f. Noise

The robust to noise is tested by adding up to 3% Gaussian noise to images. A random
number from the uniform interval [-7.65, 7.65] is added to each pixel, where the
pixel values are in range [0, 255]{ In Figure|6-9, the left and the right image show the

results with 1% and 3% Gaussian noise added, respectively. The average error is

below 5%, and hence the system is robust in presence of noise.

Figure 6-9: Testing results with Gaussian noise added.

g. 3Drotation

The system performance is tested on 3D objects, because SIFT has been widely

applied as the first stage of applications, such as 3D reconstruction. The keypoints
are detected and matched from adjacent images.
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Figure 6-10 shows the matching resultsd@D object that is rotated alongy and

z axis, respectively. Although SIFT is not designed to be invariant to rotation of a 3D
object, the system still shows some level of robustness. 3D in-depth rotation along
thez-axis is most challenging, and the system is robust to in-depth rotation of up to

20 degrees.

Z
%
X
V4
@i]
X
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%}]
X

Figure 6-10: Matching results for 3D object that is rotated atorygandz-axis,
respectively.
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6.3.2 Application for Object Recognition

The system is tested on a practical application, aiming at object recognition in a
typical lab environment. In this experiment, object recognition is formulated as
follows: Given a reference image of the target object or scene, keypoints are firstly
extracted and each keypoint is associated with a descriptor. Then descriptors are
generated for all keypoints that are detected from the input images, whether or not
the keypoints are from the target object or scene. Each descriptor in the input images
is compared with all descriptors in the reference image. The coordinates of the
matched keypoints are buffered. The consecutive input images act as the database

containing the target object to be recognised from the reference image. Experiments

are conducted on the recognition of both planar and 3D obhjects. Figufe 6-11 shows

the flowchart illustrating the work mode for object recognition.
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Figure 6-11: Flowchart for the system when used for object recognition.
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a. Planar Object Recognition

In this section, the SIFT features are used for object recognition of planar objects.
Because object recognition in real world requires objects to be correctly identified in
presence of nearby clutter or partial occlusion, experiments are conducted for object
recognition from some challenging scenes, where there is a combination of

significant amount of transformations, cluttered background and partial occlusion.

[ A e

S

g
d
o

Figure 6-12: Object recognition for planar objects in presence of transformations,

cluttered background and partial occlusion.
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It has been mentioned by Lowe that any three of the correct matches would be

suficient for reliable recognition. The matching results shown in Figure|6-12 are the

outputs from the system without outlier elimination, which shows that the system
provides high precision matches that can be applied for reliable object recognition.

b. 3D Object Recognition

Figure 6-13: Object recognition for 3D objects in presence of transformations,

cluttered background and partial occlusion.
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In this section, the SIFT features are used for object recognition of 3D objects, which
is more challenging than recognition of planar objects as a result of the lighting
condition that is uncontrolled in the lab environment. This will degrade the
recognition effect since the illumination changes affect the 3D surfaces with differing
orientations by different amounts, which can cause a large change in the relative

magnitudes of some gradients. However, it can be seen from the experimental results

shown in Figure 6-13 that the system is capable of providing correct matches for the

3D objects recognition.

6.3.3 Application for Video Stabilisation

The previous application concerns more about the quantity of matches than the
quality. In this section, experiments are conducted to test the quality of matching.
The system performance is tested in the application of video stabilisation, which is
used to eliminate unwanted shakiness in the video caused by high frequency
movement of the camera while recording. In this experiment, video stabilisation is
formulated as follows: Given a video sequence, each keypoint detected from
consecutive frames is associated with a descriptor. Each descriptor in the current
frame is compared against all descriptors in the previous frame. Then the affine
transformation matrix is computed on the matches over successive frames with
outliers eliminated by RANSAC, where the outliers correspond to incorrect matches
that do not agree with the transformation parameters between images.
Transformation matrix is then estimated that represents the inter-frame motion
between successive frames. In this experiment, the system contributes to camera
motion estimation by detecting salient features that can be tracked over multiple

frames of video and matching descriptors between adjacent frames in the video

sequence. Figure 6-[L4 shows the flowchart for video stabilisation.

FPGA PC
e N Feature Descriptor Descriptor Motion Video N
— - > + > -
‘\7 Start 7/._ Detection Generation Matching Estimation Reorganisation ‘\ Finish /

Figure 6-14: Flowchart of the system used as feature tracker for video stabilisation.
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It should be noticed that the video sequence used in this experiment is real jittered
ones recorded using a hand-held camera for a static view. Actually, a keypoint shift
in position can occur not only due to camera shakiness, but also in presence of
intentional panning movement or because it belongs to a moving object in the scene,
which will result in inaccuracy in motion estimation. Because the aim is to test the

detection and matching accuracy of the system, there is no intentional camera
movement or moving object in this experiment. Therefore, the misalignment between
successive frames is the result of unintentional high-frequency motion, named jitter.

Left image Right image

Roger Lipsett
Carl Schaefer

Cary Ussen

(@)

O Feature (left)
Feature (Right)

O Inlier point (Left)
Inlier point (Right)

(b)

Figure 6-15: (a) Two successive frames from a video sequence. (b) Left: original

matches; Right: matches after model fitting using RANSAC.
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The red-cyan colour composite is used to illustrate the pixel-wise difference between

images. It can be seen from Figure §-15(b) that there is an obvious offset in both

vertical and horizontal directions between the two frames shown in Figure 6-15(a).

The matched keypoints from the two successive frames are represented by red circle
and green cross, respectively, which are connected by yellow lines to show the

correspondences selected by using the novel matching strategy.

Figure 6-16 Left: Overlay of the original second image and the first frame; Right:

Overlay of stabilised second image and the first frame.

The second frame is warped and compared with the first frame. It can be seen from

the right image df Figure 6-16 that the original first frame (in red) is well aligned

with the stabilised second frame (in cyan), such that the red-cyan composite shown

in the left image of Figure 6-16 becomes almost purely black-and-white in the

overlapped region, indicating that the pixel-difference between the original first

frame and the stabilised second frame is negligible.

Peak Signate-Noise Ratio (PSNR) reflects the misalignment between two frames
and can be used as a measurement for evaluating the similarity between frames. In
this section, it is used to numerically evaluate the stabilisation performance, which is

defined as:

11\2/1AX
PSNR(1,,1,) = 101 —_— 6.1
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where I;4x IS the maximum intensity value of a pixel and is equal to 255.
MSE (1., 1) is the mean square error between fransnd frameb, as defined in
Equation (6.2).

w-1h-1
1
MSE(g 1) = —— > > [la(i.)) = 1@, DI 6.2)
i=0 j=0

wherew andh are the width and height of input frames, respectively.

There are two PSNR-based evaluation criteria [72] for video stabilisation: Inter-
frame Transformation Fidelity (ITF) and Global Transformation Fidelity (GTF). ITF
measures the short-time stabilisation between successive frames and shows how
good the estimated transformation fits the true transformation. GTF is a long-time
measurement that evaluates the motion compensation of the current stabilised frame
with respect to the initial reference image. In general, stabilised video should be
more continuous than the original sequence, so PSNR should increase from the input
sequence to the stabilised one, and hence stabilised sequence should have a higher
IFT and GTF than the original input sequence.

Figure 6-17 anfd Figure 6-[L8 shows the ITF and GTF for both the original and the

stabilised video sequence. In both cases, the curve that represents the stabilised video
sequence is always above the original one. Both ITF and GTF of the original video
sequence drop as a result of the less overlapping area with the reference frame.
Despite of the accumulative error passed down consecutive frames, the high values
of PSNR of GTF shows that the fidelity of the system is high. It should be noticed
that the fidelity measurement used to evaluate the performance is more indicative
than quantitative, because the values depend on the video sequence under

consideration.
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Figure 6-17 PSNR between successive frames for both the original and the stabilised

video sequence.
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Figure 6-18 PSNR between stabilised frames and the reference image for both the

original and the stabilised video seqoen
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Figure 6-19: Left column: the original frames. Right column: the stabilised frames.
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Figure 6-19 shows the stabilisation results, where the left and the right column shows

the images before and after stabilisation, respectively. The processed video is stable,
which indicates that the keypoints detected and matched using the system provide a

solid basis for unwanted motion compensation.

6.4 Hardwar e Efficiency Evaluation

The design is fully embedded on a Xilinx XC6VLX240T FPGA device, which
provides 301,440 registers, 150,720 LUTs, 768 DSP48EL1 slices and 14.625Mbits
BRAM blocks.

Table 6-1: FPGA resource usage for the whole system (VGA).

Max Clock
Registers LUTs FI\/IRQ'!\Q) DSP48E1 | Frequency
(MH2)
Camera Controller 674 1,344 2.67 0 225
Feature | 3843 | 26,815 | 051 207 138
Detection
SIFT Descriptor
Processing p. 32,468 77,871 2.18 8 135
Generation
core
Descriptor
. 3,568 | 15,663" 0 0 146
M atching®
USB Controller 8,909 9,642 0 0 119
N NPI Write 3,243 3,436 0.59 0 202
Interface | \piRead | 1,809 | 1,984 | 4.85 0 213
92,748 116,064 11.74 320
) 1 11
Whole System (30.77%) | (77.01%) | (80.29%) | (41.47%) °
(1) 4,096 of the total LUTs usage is configured as RAM holding coordinates of matche
features.
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6.4.1 Resour ce Usage

The design can be configured to process VGA and QVGA sized images, and the
corresponding hardware resource usage of the whole system with the EDK platform
n Table §-1 gnd

included are given

Table 6-2, respectively. The BRAM usage of Camera Controller includes buffer for

input images. The BRAM usage of descriptor generation module includes the
memory for generated descriptors. The descriptor matching module consists of two

Compare Descriptor units, each of which consumes 1,244 registers and 4,368 LUTSs.

Table 6-2: FPGA resource usage for the whole system (QVGA).

M ax
. BRAM Clock
Regist LUT . DSP48E1
egsers S (Mbits) Frequency
(MH2)
Feature | 3756 | 26,387 | 0.33 207 138
Detection
SIFT Descriptor
Processing P’ 32,392 | 77,863 | 1.11 8 135
Generation
core
bescriptor | 5 477 | 1278 | o 0 146
Matching
89,128 114,841 5.17 320
Whole System (29.57%) | (76.19%)| (35.34%)| (a1.479%6)| *°
(1) 2,048 of the total LUTs usage is configured as RAM holding coordinates of mat(
features.

6.4.2 Comparison with the Existing Designs

This section compares the hardware efficiency of the design presented in this thesis
with existing designs with respect to both processing speed and hardware resource

usage.
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Table 6-3: Hardware resource usage and throughput comparison of different

hardware designs for feature detection (QVGA).

Proposed design
Frame Size QVGA
Hardware Altera Stratix | Xilinx Virtex Il xilinx Virtex-6
Device/Technology Il Pro
Operati (r;?l E ;fq“ency 50 100 100
Registers 19,100 5,676 23,756
LUTs 43,366 5,554 26,387
DSP 64 N/A 207
Memory Usage (Mbits) 1.35 1.69 0.33
Frame Rate (fps) 30 900 306

Table 6-4: Hardware resource usage and throughput comparison of different

hardware designs for feature detection (VGA).

51
High- High- Proposed
Accuracy Speed design
Mode Mode
Frame Size VGA
.Hardware )_(ilinx Altera Cyclone I TSMC Xilinx
Device/Technology Virtex-5 0.18um Virtex-6
Cloci;rl_?g;ency 100 50 100 100
Registers 19,529 23,247 23,843
LUTs 35,889 32,592 N/A 26,815
DSP 97 258 207
Memory Usage (Mbits) 3.24 0.87 0.67 0.896 0.51
Frame Rate (fps) 30 32 56 290 70

238



Table 6-3 anf Table 6t4 show the comparison with some existing hardware designs

for feature detection. When compared [5] that processes QVGA images, the
LUT usage and memory consumption of the system is reduced by approximately
39.2% and 75.6%, respectivelESS] implements only local extrema detection from
DoG scale space, and does not include the keypoint refinement process and GMO
computation. The keypoint refinement process involves complex matrix inversion,
and GMO computation process containstan and square root computation, both of
which are inefficient to be implemented on hardware devices. Therre, [5] is not
directly comparable with the proposed design. For implementation of local extrema
detection from DoG scale space, the proposed design utilises 5,787 registers and
5,694 LUTSs, which is virtually the same with that@‘.[When compared WitO],

and ], which process VGA images, the design presented in this thesis has
achieved memory reduction by approximately 84.3%, 23.9% (41.4% for high-speed
mode), and 43.1%, respectively. The design has achieved the minimum memory
usage as a result of the rotating buffer memory solution to Gaussian smoothed pixels

and DoG values.

Table 6-5: Hardware resource usage and throughput comparison of different

hardware designs for descriptor generation.

Proposed design

Hardware TSMC 0.13um | TSMC 0.18 um | Xilinx Virtex-6
Device/Technology
Clock Frequency (MH2) 200 100 100
Memory Usage (M bits) N/A 4.86 2.18
Time Consumption per 15.315 33.1 7.57
Descriptor (us)
Descriptor Throughput 65,300 30,200 132,100

The performance comparison for descriptor generation, in terms of hardware

resource usage and system throughput, is summarised in Taple 6-5. With different

hardware implementation technologies used, it is difficult to compare the resource
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usage between different designs. However, the system throughput can be easily

compared. It can be seen frpm Table|6-5 that the overall throughput of the proposed

design is twice that and achieves speed improvement by approximately 4.37

times when compared wi7

It should be noticed that the pipelined structure maxddtise frame rate of the SIFT
processing core, buhe overall frame rate of the system is limited to half of the
theoretical throughput of the SIFT processing core because of the data acquisition
limit of the camera front-end. The camera can be configured to capture QVGA
images at 60 fps or VGA images at 30 fps. However, this is not consideged
problem since the aim is to provide a high frame rate and high accuracy SIFT

processing core.

6.5 Summary

In this chapter, an FPGA-based image matching system has been presented. The
system has been designed and implemented in a Xilinx Virtex-6 FPGA device that
includes the SIFT processing core, the interface to camera, the interface to USB, and
the controller core for memory and data routing, which are all implemented using
VHDL.

The SIFT processing core has achieved at least 60 VGA fps by using Xilinx ML605
FPGA board. However, the whole system with the camera front-end and the USB
back-end included is not able to achieve this high throughput, which is limited by the
camera front-end that captures grayscale images at 30 fps for VGA sized video and
60 fps for QVGA.

Tests of the SIFT-based image matching system have been conducted, from the
robustness to geometric and photometric transformations, to the performance in
applications such as object recognition and video stabilisation. The system can be
configured to process QVGA or VGA images in two different modes to adapt to
different applications. In the application for object recognition, the system works in
the mode where input images are compared with the reference image of the target
object or scene. In the application for video stabilisation, the system works in the

mode where each input image is compared with the previous frame.
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The whole system can capture images from the image sensor, run the SIFT-based
processing step, and finally send dataatBC in realtiime with high accuracy. In
addition, as only 80% of the FPGA capacity is used, it is possible to add new image
processing functions, if required by other applications.
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Chapter 7 Summary, Conclusions and

Discussion
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7.1 Introduction

As stated ir] Chapter|1, the aim of this research project is to develop a high-

performance real-time image matching system. Specifically, the following objectives
have been addressed: (a) improvement towards the standard SIFT algorithm for an
efficient hardware design; (b) high frame rate image matching system; (c) high
accuracy matching system that achieves comparable performance with the software
model; (d) low resource usage. The work carried out to fulfil these objectives has
been presented in the previous chapters in this thesis. This chapter summarises the
work that has been carried out throughput the project as a development step towards
a high-performance real-time image matching system. Discussion to further optimise

the system and suggestion for further work are also presented in this chapter.

7.2 Thesis Summary

Chapter 2 provided a basic introduction to related research into the intensity based

feature detection methods that led to state-of-the-art SIFT algorithm. To improve
either the efficiency or performance of the SIFT algorithm, many variations have
been proposed, such as PCA-SIFT, SURF, GLOH and DAISY. DAISY has been

proven to achieve the best result.

A review of systems aiming at accelerating SIFT was also carried [out in Chfapter 2

in terms of the processing aspect to improve the throughput of SIFT-based designs.
The review showed that current researches mainly focus on the development of real-
time feature detection part. However, little efforts have been made to improve the

throughput of descriptor generation. Because SIFT has the potential of detecting a
large number of features densely covering the entire image, descriptor generation
process has become the bottleneck that would potentially prevent the entire system
from achieving reatime, especially for systems that process high resolution images.

This leads to the necessity of the research presented in this thesis.

Chapter 8 introduced SRI-DAISY, which is an alternative to the grid layout of the

standard SIFT descriptor. The SRI-DAISY takes advantage of the log-polar spatial
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arrangement of the standard DAISY, which is extended to be adaptive to image
scaling and rotation. The performance of SRI-DAISY and the standard SIFT is
compared for a wide range of transformations, including scaling, rotation, projection

blur and illumination changes. The SRI-DAISY achieves comparable performance
with SIFT, but is more efficient as a result of the following aspects: (a) the memory
requirement for buffering descriptors is reduced as a result of the dimension
reduction from 128 to 72; (b) no need to shift all pixels within the local region; (c) no

need to identify the boundaries of each sub-region.

A novel keypoint matching strategy was also preseimg@&hapter 8, which is

inspired by the three existing widely applied matching methods. The novel matching
strategy is superior to the distance ratio based matching in the following aspects: (a)
achieve higher precision; (b) do not require hardware expensive square root

computation or division operations.

In{Chapter 4, design parameters that are esseatelhigh performance hardware

design are studied. The design is parameterised with two octaves of five Gaussian
smoothed images each. The system has been structured to compute the descriptors
based on the pre-defined scales, which reduces both the memory requirement and
processing time to a lower level at a cost of a little loss in matching performance.
The fixed-point calculation is utilised to reduce the hardware resource usage.
Experiments were conducted to determine the word length that is best balanced

between computation accuracy and resource usage.

In|Chapter b, the FPGA-based processing core for the optimised SIFT is presented.

All phases of the SIFT algorithm are covered: feature detection, descriptor
generation and descriptor matching. The core utilises pipelined and parallel
architecture to maximise the throughput. When running at 100 MHz in a Xilinx

Virtex-6 FPGA, the processing core can achieve a frame rate of at least 60 fps for

VGA images.

The feature detection utilises the SRT-based multi-pixel processing scheme and
achieves at least 60 fps. The design can be modified to process images of higher
resolution at a higher frame rate by making slight modification to the VHDL codes.

Actually, in the current design, the overall throughput of feature detection is limited

244



by the speed at which pixels are accessed from the buffer holding input images. As
discussed in Sectiﬂ 0, the input image buffer consists of two groups of RAM with

two DPRAMs each, with which two pixels are accessed every clock cycle (5 ns).

However, pixel throughput can be further increased by two means: (1) divide the

input image into more parts with each loaded onto a separate DPRAM, thereby
providing more ports to access pixels in parallel; (2) work with higher clock

frequency. DPRAM supports a clock frequency of up to 450 MHz.

An efficient memory solution has been proposegd in Chapter 5 for buffering Gaussian

smoothed pixels and DoG values, named the rotating buffer. The rotating buffer is
hardware efficient in the following aspect: the size is a constant and is independent
of the number of pixels processed in parallel, which is beneficial when the design is

modified to process more pixels for higher throughput.

Besides, an efficient hardware design for SRI-DAISY has been propdsed in Ghapter

The descriptor generation process takes advantage of the log-polar spatial
arrangement and requires only 7.57 us to generate a descriptor of 72 dimensions,
which is equivalent to a throughput of approximately 132,100 descriptors per second
with a system clock of 100 MHz. When compared with existing hardware solutions,

the design achieves the largest overall throughput with less hardware resource usage.

In[Chapter §, an embedded system was developed, which mainly consists of three

parts: the camera front-end, the SIFT processing core presented in Chapter 5, and the

USB back-end. Due to the data acquisition limit of the camera front-end, the
processing core cannot run at its maximum available speed. The camera works at 30
fps for VGA, which limits the throughput of the entire system to 30 fps.
Experimental results conducted on a set of real-world images were given to verify
the functionality of the system. Besides, the system has been tested in two
applications: object recognition and video stabilisation. The design is of high
flexibility and can be configured to process QVGA or VGA images in two different
modes to adapt to different applications.
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7.3 Conclusions and Discussion

Throughout this thesis, the SIFT algorithm has been optimised and efficiently
implemented to achieve the target of a high frame rate, high accuracy and low

resource usage SIFT-based image matching system.

Although the design parameters have been selected to achieve the target of a high
frame rate and high accuracy SIFT-based image matching system, some parameters,
such as the amount of prior smoothing and descriptor matching threshold, can be
modified to meet the requirement of different applications. When deciding the
amount of prior smoothing and the size of the quantised Gaussian window, there is a
trade-off between the distinctiveness and locality of the keypoints, which are the two

competing properties that cannot be fulfilled simultaneously.

For applications such as image retrieval, where there are many candidate keypoints
to be matched, detection regions identified by keypoints of lower locality contain
more information and are easier to be correctly matched. However, these keypoints
are more likely to suffer from geometric and photometric transformation. In the case
of planar objects or in-plane rotation of camera, there is no occlusion or geometric
transformation. The distinctiveness can be increased by increasing either the amount
of prior smoothing or the size of the quantised Gaussian window. However, larger
Gaussian window brings in higher computational complexity, more hardware area

occupation and longer processing time for feature detection.

The quantity of the detected keypoints, which affects the performance of certain
applications and the system throughput, is another property that needs to be taken
into consideration when deciding the design parameters. Some applications require a
large number of keypoints densely covering the objects of interest, such as object or
scene recognition. However, a high number of keypoints has a negative impact on
the computation time for descriptor generation, which is proportional to the number
of descriptors to be generated and should be kept to a minimum. Decreasing the
amount of prior smoothing or using quantised Gaussian window of smaller sizes
contributes to an increased number of keypoints, which reduces the processing time

of keypoints detection while increasing the processing time of descriptor generation.
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Some applications are concechmore about the quality than the quantity of
matching. For applications such as video stabilisation, the motion vectors are

estimated based on the matched features by using model fitting methods, such as the

least square or RANSAC. It has been stated in Chapter 3 that higher matching

precision enables a model with higher accuracy and less processing time. Therefore,
threshold values can be adjusted to improve the matching precision, such as

decreasing the threshold for accepting matches with the ratii,Qf to

cond

Npg below the pre-defined threshold. This will inevitably decrease the number

closest

of correct matches, but the matches are on the average more likely to be correct.
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Figure 7-1: An example of octave interleaving with two clock cycles between

adjacent Gaussian smooth process in the horizontal direction for octave 0.

In the current design, Gaussian pyramid construction is divided by octave and
Gaussian blurred images within each octave are computed in parallel. When octave 0
has been processed, the Gaussian smoothed image is down-sampled spatially by a
factor of two and acts as the input to the next octave. In the future, octave

interleaving can be adapted, as illustrated in Figurge 7-1. The idea is to make use of

the clock cycles when the processing unit is in idle. For the example given in [Figure

7-1}, the gap between the Gaussian smoothing of adjacent pixels from octave 0 is two

system clock cycles (10 ns), which supports five octaves to be interleaved without
any two octaves requiring the same clock cycle. In the current design, because
DPRAMs work with the clock domain of 200 MHz, whereas the SIFT processing

core works with 100 MHz, it takes eight system clock cycles (10 ns) to access a
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column of pixels for Gaussian smooth in the vertical direction using Gaussian kernel

of sizek;=31. Therefore, the current design supports 17 octaves to be interleaved.

Octave interleaving is especially beneficial for processing images of higher
resolution, such as UVGA images (1600x1200 pixels) that requires seven pixels to
be processed in parallel to achieve tgak. However, the major disadvantage of
octave interleaving is that extra RAMs are required to buffer intermediate results for
different octaves, such as Gaussian smoothed pixels and DoG values, which is
constant in the current design. Therefore, octave interleaving is suggested for designs
with high availability in memory. But increasing the parallelism level by processing
more pixels in parallel is recommended if memory availability becomes an issue. In
this design, the hardware resource usage for processing one pixel is 5,787 registers
and 5,694 LUTSs.

In conclusion, throughout this thesis, a stand-alone image matching system was
developed and tested successfully. This system can be widely used in computer
vision related applications, such as Self Localisation and Mapping for robust

navigation, 3D reconstruction, etc. The system also can be applied to applications
beside computer vision, such as a real-time vision system for visual prosthesis

simulator.
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Appendix A. Extrema Detection with Stability Checking

Gaussian scale space consists of two octaves with five scales each. By comparing
pixels with their neighbours, local extrema belonging up to two scales are detected.
A pixel will be passed to the stability checking process if it is a local extremum and
will be identified as a keypoint after is has passed through the three refinement
processes. Although two pixels are processed in parallel for higher system
throughput, only one stability checking module is used because seldom has the
chance that two pixels lie next to each other are both extrema. Each local extremum
detected from the DoG scale space is passed to the stability checking process, which

consists of three steps: location refinement, low contrast removal, and edge response

elimination. The overall hardware structure is shown in Figurg¢ A-1, where three sub-

modules have no data dependency and are processed in parallel by taking advantage

of the parallel processing property of FPGA.

DoG values |
ctored in shift | Stability Checking i
register : '
i - Location — IopmT T T i
H i k=] Refine i ' BAM for keypoints |
s = = | |
Al i o = B ! 1
I = = =] 1 1
= £ AN/
Exfrema _:.\ E _i‘l Low Contrast % i | Ram4 i
Detection = it Removal = = |5 . :
| B = = RAME | !
! & || EdgeResponse | . | TTTTTTT T
! = Elimination '
i ]
i 1

Figure A-1: Block diagram for extrema detection with stability checking.

The minimum throughput requiremeritRR;p) of the extrema detection block is

shown in Equation (A.1). Because only those pixels that are local extrema are passed

to stability checking block'PRypactually corresponds to the maximum throughput

requirement of stability checking process.
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Noct

TPRep = 2f - ) (Wi = kg = D(hy = kg — 1] (A1)

wheref is the system frame rate (60 fps

As a result of the SRT-based multi-pixel streaming scheme, two Gaussian smoothed
pixels are generated eve’ﬁfgjr—1 clock cycles of 100 MHz after an initial delay. To
keep a constant overall throughput for feature detection module, it is suggested that
the extrema detection and stability checking process should finish »’i"gﬁqlim:lock

cycles. Because the extrema detection sub-module includes only 26 simple
comparison operations, it is easy to be completed within a few clock cycles with
hardware parallel property explored. So the design mainly focuses on the solution to

the stability checking block and uses internal buffer and registers to create pipelined

architecture. As shown |n Figure A-1, an internal buffer is inserted between the

extrema detection and the stability checking process for two purposes:

1. The stability checking process is carried out based on the DoG values
stored in the internal buffer and has no direct data dependency with
the extrema detection process.

2. In the most unlikely cases that both pixels processed in parallel are
local extrema, the related neighbouring DoG values can be stored in
the internal buffer before the previous pixel has been processed.

With the internal buffer, the extrema detection with stability checking module is
arranged into a two-stage pipelined architecture. With intermediate computation
results within the stability checking process registered by the clock, the pipelined
architecture is adopted within the stability checking process, making it possible to
deal with consecutively arrived extrema and the time requirement of the stability

checking process is no longer of a great concern.
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Appendix B. NPI PIM Interface

NPI PIM WriteInterface

The interface of NPl PIM Write Unit is shown in Figure B-1. The NPI PIM write
unit has been developed to support 64-bit NPI 32-word burst write, and the
description of the interface is given|in Table B-1. MPMC_CIkO is the main MPMC
clock and is set to 200 MHz.

NPI PIM Write Unit

— MPMC_CIkD PIM AddrReq —>*
———»{ PIM InitDone PIM_ Addr[31:0] ¥
— PIM AddrAck PIM_RNW SN

PIM Size —>

PIM_WYFIFO Push |[——>
PIM_WiFIFO BE [7:0] >
PIM_WiFIFO Data [63:0] N

— 4] PIM_WiFIFO_Empty

— | PIM_WiFIFO_Alm ostFull

Figure B-1: NPI PIM write interface with 64-bit NP1 32-word burst write.
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Table B-1 Signals related to NPI PIM write interface and their functions.

Signal Name Description
MPMC_CIkO Clock signal.
‘1’ indicates that initialisation is complete and that FIFOs are
PIM_InitDone available for use. Do not assert PIM_WrFIFO_Push until
PIM_InitDoneis equal to “1°.
PIM_AddrAck This active high signal indicates that MPMC has begun arbitrat

for address request. Valid for one cycle of MPMC_CIkO.

PIM_WrFIFO_Empty

This active high signal indicates that there are less3Bé&its of
data in the write FIFO.

PIM_WrFIFO_AlmostFull

This active high signal indicates that PIM_WTrFIFO_Push canng
asserted on the next cycle of MPMC_CIKO. This signal is only
asserted when using SRL FIFOs. If BRAM FIFOs are used, the
PIM cannot allow more than 1024 bytes of data to be pushed in
the FIFOs.

PIM_AddrReq

This active high signal indicates that NPl is ready for MPMC to
arbitrate an address request. This request cannot be aborted.
be asserted until PIM_AddrAck is asserted.

PIM_Addr

Indicates the starting address of a particular request. Only valid
when PIM_AddrReq is valid. Must be aligned to Size burst leng

PIM_RNW

Read/Not Write:
0 = Request is a Write request.
1 = Request is a Read request.

Only valid when PIM_AddrReq is valid.

PIM_Size

Indicates the transfer type of the request:
0x4 = 32-word burst transfers

Only valid when PIM_AddrReq is valid.

PIM_WIrFIFO_Push

This active high signal indicates push WrFIFO_Data into write
FIFOs.

Cannot be asserted while PIM_InitDone is 0.
Cannot be asserted while WrFIFO_AlmostFull is asserted.

Can be asserted before, after, or during the address phase unls
MPMC is configured in one of several special cases.

PIM_WrFIFO_BE

Indicates which bytes of WrFIFO_Data to write. Only valid with
PIM_WTrFIFO_Push.

PIM_WrFIFO_Data

Data to be pushed into MPMC write FIFOs. Only valid with
PIM_WTrFIFO_Push.
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NPl PIM Read Interface

The entity of NP1 PIM Read Unit is showr in Figure B-2.

NPI PIM Read Unit

— 5 MPMC CIk0
—»| PIM InitDone

—— PIM_ AddrAck

PIM_EdFIFO _Empty
— | PIM RdFIFO Latency

| PIM_RdFIFO_Data [63:0]

PIM_AddiReq —>
FIM_Addr [31:0] —>

PIM RNW | —>

PIM Size |—>

PIM_RdFIFO Pop |— >

Figure B-2: NPI PIM read interface with 64-bit NP1 32-word burst read.

The NPI PIM read unit has been developed to support 64-bit NP1 32-word burst read,

and the description of the interface is displaysg

d in Tablé

e B-2. Signals shared between

NPI PIM write interface and read interface are not repeated here.

Table B-2: Signals related to NPI PIM read interface and their functions.

Signal Name Description

PIM_RdFIFO_Empty

When this active high signal is de-asserted, it indicates that
enough data is in the read FIFOs to assdit IRAFIFO_Pop.

PIM_RdFIFO_Latency piM_RdFIFO_Pop is asserted and/or PIM_RdFIFO_Empty is
asserted until PIM_RdFIFO_Daavalid

Indicates the number of cycles from the time

MPMC_CIKO.

This active high signal indicates that read FIFO fetch the next
PIM_RdFIFO_Pop | value of PIM_RdFIFO_Data. Must be asserted for one cycle @

PIM_RdFIFO_Data | Data to be popped out of MPMC read FIFOs.
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Appendix C. Hardware Architecture of the Descriptor

Generation Module

Gaussian Weighting Factor Controller

As shown in Figure 5-26, each sub-region is defined as a réet@ingjzeD x D (D

is the diameter of the circular sub-region) for simplicitg. generate the gradient
histogram for each sub-region, gradient magnitude of each pixel within the sub-
region has to be weighted by Gaussian function with the parameter of the distance
from the pixel to be weighted and the centre of the corresponding sub-region. Pixels
located closer to the centre offer larger contribution to the sub-region histogram, and
pixels outside the circular sub-region offer no contribution by setting the
corresponding weighting factors to 0. With the Gaussian function used to weight the
gradient magnitude of pixels within each sub-region, the square sub-regions can be
regarded as circular ones. Considering the isotropy character of both the circular sub-
region and Gaussian function, contribution of a pixel will be the same however the

image rotates, because the distance is not changed.

Because the Gaussian weighting factors concern only the distance from pixels to be
weighted to the centre of the corresponding circular region, they can be calculated
offline and pre-loaded into an LUT. The LUT is an array of values used to reduce
processing time for applications that uses complex calculations, which is an efficient
alternative to the complex computations. An LUT holds data or results calculated
offline from the complex calculatie@mneeded by applications, and gives an output
value for each index value. By keeping the results in the LUT, data can be accessed
immediately by referring to the LUT instead of doing calculations, and the complex
computation is replaceay simpler array indexing operations. Therefore, the LUT is

an optimal choice for reducing the computational complexity and processing time of

hardware designs.

The block diagram of the Gaussian Weighting Factor Controller is shgwn in Figure

C-1 In|Figure C-L(x.y.) is the centre coordinates of the sub-region being

processed, anf;, y;) represents the coordinates of pixels within the sub-region.
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Figure C-1 shows that a Gaussian weighting factor can be identified with two

subtract operations and an LUT within two clock cycles, which greatly reduce the
computational complexity and the processing time. Taking advantage of the
symmetrical property of Gaussian filter, only a quarter of the entire Gaussian
window is loaded into thelWLT to further save the memory.

| o

» = L e e £ = B o e »>
X iL"D .
x 12 L 4 4
. ! I'| subtract ——» 4hs a | | | 11 Gﬂ‘_—‘LSSli_m
4 4 > Factorz
9 || subtract >  abs [ Awd -
Yo ———F—m» A ro
| ) L 3
ER -
i
&

2-input LUT holding
the bottom right
quarter of the
Ganszian filter

Figure C-1: Gaussian weighting factor controller with 2-input LUT.

Principal Orientation Calculation

In this sub-module, pixel values within each sub-region are weighted and
accumulated to generate the 36-bin gradient histogram. The first step of the
descriptor generation is to identify the principal orientatiy X, which corresponds

to the orientation of the largest bin in the histogram obtained by weighting and

acamulating all pixels within the local regign. Figure -2 shows the block diagram

of the Principal Orientation Calculation module.
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Figure C-2 Block diagram for the Principal Orientation Calculation module
(pipeline stage 1).

To make full use of the throughput of the DPRAM, two blocks of GMOs are
accessed per clock cycle. A block is actually four sets of GMOs that are concatenated
and buffered in DDR3 as a single data. Taking advantage of the parallel processing

property of FPGA, these two blocks are processed in parallel to increase the

throughput.| Figure C{3 shows the block diagram of the Windowing and

Accumulating unit.The GMO blocks routed from ping pong buffers are split into

four sets of GMOs and then sent to four Processing Units (PUs).

T LT 1
i (25hitsx36) frorn each |
processing unit |
25 126 |26 /| 16
»  PU | > /s[> BinD
16 :
| = 23 |26 [ ] 16
GOz from 645 Split ’P? ! | * 16 ~—> Binl
ping-pang buffer —=7> gatq —km s | E |
| :--PU = !
16 ’ ! .
| 26
23 . 26
> P [ — > Bin 35
| 16
"‘“““"““““““““““““““I Trncation

Figure C-3: Block diagram for the Windowing and Accumulating Unit.
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The block diagram of the PU is shown in Figure|C-4.

25,
¥ = Temp_ bind

25,
T [ > Temp binl

Gaussian weighting
factor

l 11

1& Sp].'l.t =3 s . W

25,
¥ [ * Temp_ binz

T

GMOs ~ 7 | data
Pixel
gradient oc
= ¥ |— Temp_ bin34
_| 25
B, ¥ ——— Temp_ hin3s
Crientation

Figure C-4: Detadd architecture of the PU.

For keypoints from scale2 and scale3, the diameter of circular sub-regions is 15 and
21, respectively. With four sets of GMOs grouped as a single data block, 4x15 blocks
of GMOs are required for each sub-region from scale2 and 6x21 blocks for scale3.
Only 21 GMOs per row are needed for keypoints from scale 3, but 6 blocks give 24
sets. Therefore, three sets of GMOs have to be abandoned. The idea is to divide the

coordinate of the first set of valid data by four, retaining the remainder as the mode

selector that decides which sets to be discarded, as shble C-1.

Table C-1 Relationship between remainder and mode for keypoints from scale3.

Remainder Mode
1 0-3
2 1-2
3 2-1
0 3-0
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Figure C-5: Four different circumstances to discard certain data.

Figure C-f

b shows four different modaswhich certain sets need to be discarded.

Considering that dividéy-four is equivalent to right-shifting the signal by two bits,

the last two bits of the coordinate of the first set of GMOs is equivalent to the

remainder
Mode 1-2

and is used as the mode selector. Figulfe C-6 describes this idea by using

shown ip Figure C-5(b) as an example. As a result, the division operation

can be avoided in this processing unit.
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Figure C-6 The mode selector for GMO access.

For keypoints from scale2, four blocks gives 16 GMOs. Either the first or the last set
of GMOs has to be discarded. In this case, the remainder from right shifting the
coordinateby two acts as the mode selector, as shoyn in Tabl’e C-2.

Table C-2 Relationship between remainder and mode for keypoints from scale2.

Remainder Mode
0 1-0
1 0-1

Centre Coordinates Calculation

Figure C-T shows the block diagram of the Centre Coordinates Calculation unit,

which consists of an LUT and two signed adders. This unit inputs both the principal
orientationd,, and the coordinatesc(y.) of the keypoint, and outputs the centre
coordinates of eight surrounding sub-regionsg(,yor:), Wherei is the index to the
eight surrounding sub-regions and is in range 0 to 7. Again, the LUT technique is

employed to avoid the complsin andcos operations.
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Figure C-7: Block diagram of the Centre Coordinates Calculation uniagiimput
LUT (pipeline stage 2).

Table C-3: Centre coordinates of circular sub-regions relative to the feature point in

bothx andy directions.

Sub-region Axop; Ayori
1 R cos(6,,) R sin(6p,)
2 gR (cos(8,,) — sin(fy,)) \/TER(COS(HPO) + sin(6,,))
3 —Rsin(6,,) R cos(8p,)
4 —ZR(c05(Bp0) + Sin(8po)) PR (c05(8po) = sin(60))
5 —R cos(6,,) —R sin(6y,)
6 ‘/Z—ER(sin(on) — cos(6,,)) —gR(cos(on) + sin(6,,))
7 R sin(HpO) —R COS(QpO)
8 gR (cos(8,,) + sin(8y,)) gR(Sin(epo) — c0s(6,,))
9 0 0
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In|Table C-3, Axyri,Ayori) represent the offsets from the centre coordinates of eight

surrounding sub-region{z;,Vor;) to that of the keypointx(,y,) in both x and y

directions. It can be seen from Table [C-3 that coordinates offsefg; (Ayor;) are

only related tod,, andR, whereR is the distance between the centre pixel of
surrounding sub-regions and the keypoint. ConsideringRlisitfixed andd,, has
been normalised to integers in range 0 to 8%,£;,Ayor;) Can be calculated offline

and pre-loaded onto a single-input LUT with, acting as the index.

It has been mentioned that redundantly rotating the coordinates of all pixels within
the local region for rotation invariance has been replaced by arranging both the
location and the 2D gradient histogram of each sub-region relative to the principal
orientation. With the LUT-based coordinate calculation method, the location of each

surrounding sub-regions is arranged relative to the principal orientation by using only

two adders, as shown|in Figure C-7. As a result, the rotation invariance of sub-region

arrangement can be achieved with adders, and the hardware expanaivécos

operations are avoided.

36-bin Histogram Calculation

Figure C-8 shows the block diagram of the 36-bin Histogram Calculation, where

pixel values within each sub-region are weighted and accumulated to generate the

36-bin gradient histograms. The Windowing and Accumulating unit shares the same

architecture with that shown jn Figure C-3, but with different PU. As shown in

Figure C-9, pixel orientation is normalised relative to the principal orientation to

achieve rotation invariance.

Blogks of GMOs fron 64 Windowing and 165 DPRAM
ping pong buffer Accumulating

36-bin
histogram
(36x16hits)

Figure C-8 Block diagram for 36-bin Histogram Calculation (pipeline stage 3).

268



2y
Temp_bin0
2
3 ﬁL) Temp_bin1

2
3 > > Temp_bin2

Gaussian
weighting factor

%(11

Split 8 5 x 1:16
data

e

16

Y

GMO

Gradient
magnitude
0

2
> ﬁL)Temp_binSAL
23 .
1 Temp_bin35

7

Normalise

. orientation .
Original Normalised

orientation orientation

Figure C-9: Block diagram for PU of 36-bin histogram calculation.

Linear Interpolation

This sub-module inputs the 36-bin histogram and outputs the interpolated 8-bin

histogram with each bin representing 45°. The linear interpolation is realised base on
Bin36; ; = Bin36; X F; ; (C.1)

wherei is the index to 36 bins of the input 36-bin histogram to be interpolated, and
is the index to the 8 bins of the resultant 8-bin gradient histodtams; represents

the 36-bin gradient histogram excludiBin36,, Bin364, Bin36,g, andBin36,,.

F; ; is the corresponding weighting factors that decides the weight of a bin in the 36-
bin histogram to its two neighbours in the 8-bin histogram, ind6; ; is the

interpolated magnitude to be accumulated to the 8-bin gradient histogram.
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Figure C-10: An example of the linear interpolation for 36-bin histogram.

Given an example bin with orientation of 1002X0) as shown iE Figure C-[10(a),

7/9 of its magnitude is accumulatedRm8, with orientation of 90°jE2) in the 8-

bin histogram and 2/9 of its magnitude is accumulategi®®; with orientation of

135° (j=3), as shown iE Figure C-10(b).
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Figure C-11: Block diagram of Linear Interpolation module (pipeline stage 4).

The block diagram of this unit is shown

in Figure C

-11, which mainly consists of

three parts: an LUT holding interpolation weighting factors, 64 multipliers, and 8

accumulators with each corresponds to a bin representing 45°. In order to build up an

efficient hardware architecture while preserving relatively high precigjgnare

scaled up by a factor of 1,024 with only the integer part preserved. It can be seen

from Equation]

C.

P) that the calculation /f; is only related to the distance from

B36bini 10 Ogpinj, Which represents the orientation of the 36-bin histogram and the

resultant 8-bin histogram, respectively. Therefore, interpolation weighting factors

F; ; can be pre-calculated and saved in the LUT for fast indexing.

L |836pini —

F; 1

Ospin|

X 1024

L 45
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Pre-calculating’; ; turns interpolations into simple multiply-add operations. Besides,
the 36 bins to be interpolated have no data dependency with each other and can be
processed in parallel. It should be noticed ®at36,, Bin364, Bin36;5, and
Bin36,, are in the direction a®in8,, Bin8,, Bin8,, andBin8, respectively, and

are fully accumulated to the corresponding bins in the 8-bin histogram. Therefore,
they are sent directly to the corresponding accumulators without interpolation, which
save eight multipliers and hence there are 64 multipliers in total. Considering that

F; ; in Equation (C.1L) are integers in range 0 to 1024, multiplications can be replaced

by shifting, addition and subtraction operations, with which some precious hardware

resources are saved, such as DSP48E1 on FPGA devices.

Descriptor Normalisation

This sub-module inputs the interpolated 8-bin histograms, and outputs the normalised

descriptors. As shown in| Figure C-12, it mainly consists of two identical

Normalisation Units, a Threshold Bins unit and a multiplexer.

ThreshBins
Interpolated Bin8, Normalisation | VormIstBins .
: . » Threshold Bins
bins from v Unit 1

pipeline stage 4
» RAM —» MUX

Bin8;
|—> Norr:Jlapts;tlon ——» Norm2ndBins
ThreshBins nl

Figure C-12: Block diagram of the Descriptor Normalisation (pipeline stage 5).

As suggested in the SIFT algorithm, interpolated bins should be normalised twice
and the second normalisation is performed to reduce the influence of large gradient
magnitudes. Firstly, the interpolated bin8;) are fed into Normalisation Unit 1

and are normalised to integers (NormlstBins) in range O to 1023. Secondly,
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NormlstBins that is larger than the pre-defined threshold is forced to the value of the
threshold in Threshold Bins. Finally, Normalisation Unit 2 performs the second
normalisation and outputs Norm2ndBins, which are linked together to obtain the final

descriptor of 72 dimensions.

Bin8;

\ 4 \ 4

Quadratic Sum Square Root

Computation Calculation > Dividers  —» NormlstBins

Figure C-13: Block diagram of the normalisation unit.

As shown irﬁ Figure C-13, each normalisation unit consists of three parts: a Quadratic

Sum Calculator, a Square Root Calculator and Dividers. The SRT-based square root

calculator and dividers are used to reduce the hardware resource usage.
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Appendix D. The SIFT based | mage Matching System

Camera Controller

The Camera Controller receives input images from the camera row by row, and
further buffers the pixels in the input image buffer that is shared by the camera, the
SIFT processing core and the USB. Because the image sensor and input image buffer
works with two different clock domains of 40 MHz (PCLK) and 200 MHz,
respectively, an asynchronous FIFO is employed in the exchange of data that

transfers across different clock domains. Timing diagram of the OV9715 image

sensor is given [n Appendix F.

1220 PCLE
|1 I B4DPCLK | A0S PCLE
Lo > I |
D (9:0) | s W i
| e ! | |
:In?alidpi:-cels In?alidpi:-cels i |
! ' i i
— -
Firit row ofimage Secpnd row ofimage
&validpixels]:{ »/[valid pixels )
i Gap between two | !
rows
128F LK
b
Camzrm -=FIFD :
(540 FCLE) | V | W % |
% et E g
"ldle ' Writing b Idle I Writing | Idle
FIFO-= RAM ' % |
(128 PCLE)
« - > e
ldle Writing Idle Writing Idle

Figure D-1: Timing diagram showing that each line of pixels from the camera are
first pushed into FIFO under PCLK domain, and then further buffered in RAM under
clock of 200 MHz.
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The 10-bit input pixels are synchronised by the rising edge of PELK. Figune D-1

shows that it takes 640 PCLK clock cycles to push a row of valid pixels into one end

of the FIFO for VGA sized image, and it requires 640 clock cycles of 200 MHz to
drain the FIFO from the other end, which corresponds to 128 PCLK clock cycles.
Because the gap between two rows of valid pixels is 1,048 PCLK clock cycles, the

FIFO has been drained beddhe next row of pixels arrives.

USB Controller

Figure D-2 shows the block diagram of the USB Controller core that interfaces with

the USB transceiver (CY7C68001) on the USB board. This core deals with the data
transfer between the FPGA board and the host PC.

Buffer USB Controller '

1 1

Input Image ' ' Cormmand i
Buffer | ! Contraller ! USB

! 5B

i ﬂ: Interface C_I::}, Board

1 : !

Matched ! i Data '

kevpoint FIFO F:.\""I Ml ti plesxer = '

1 H !

1

Figure D-2: Block diagram of the USB Controller with connection to buffers and the
USB board.

Two sets of data are transferred to PC via USB: the raw images, and the coordinates

of matched keypoints. The raw images are sent to PC for the following two reasons.

e To visualise the matching results.
e The images can be processed by MALTAB model for comparison with

the processing algorithm embedded in the FPGA device.

The USB Controller core mainly consists of the following three units:
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e Command Controller: Generate two types of commands, which indicate that
either the input image buffer has been filled with pixels, or coordinates of
matched keypoints are ready to output. The commands are pushed into a
FIFO to be accessed by Data Multiplexer.

e Data Multiplexer: Read control commands from Command Controller and
select accordingly from Input Image Buffer and Matched Keypoint FIFO. The
selected data is then routed to USB Interface for output. Header is attached to
each set of data to avoid transaction errors.

e USB Interface: At the initialisation stage, this unit configures the USB board
to high speed mode (480 Mbits/s) that sends 512 bytes in the transfer of each
package. At the data output stage, this unit first sends an identification file to
the PC, indicating the start of transaction for a set of data, followed by the
data received from Data Multiplexer and ends up with the identification file

that indicates the end of transfer.

The format of identification files are given|in Figure P-3. The PC can tell from the

identification files the size of images, the index to the received data, and the number
of packages to be received, especially for the coordinates of matched keypoints that
vary with input images. Indexesandm are important in that they tell which input

image the received keypoints belong to.
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INPIMG;EN;VGA;D0;310;n;
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Raw image transaction nput image size

ndex to raw images

Start of transaction E
End of transaction |

o -- Numberof packages (512 bytes/package)
First half of input image
(a) Identification files for the first half of the raw image.

INPIMG;S5T;VGA;D1;290;n;

INPIMG; FN;VGA;D1;290;n;
AR

Second half of input image - - - - —————--———- | Mumber of packages (512 bytes/package)

(b) Identification files for the second half of the raw image.

MECOOR;ST;VGA ;3000 m;
AMELPUR

Ma.tn:hed 'EEI‘tLIr'E. MECOOR; EN;VGA; 006 m:
coordinates transaction T‘ T‘ ndex to the raw image that the
1 L
1

Number of matched keypoints matched keypoints belong to

(c) Identification files for the coordinates of the matched keypoints.

Figure D-3: Identification files attached to each set of data to be sent to PC.

As shown in Figure D44, by concatenating the coordinates of a pair of matched

keypoints as a single data, each pair of matches takes only 6 bytes and each package
contains 85 pairs of matches plus two zero bytes. The PC reads from the
identification file the number of matches and works out the number of packages to be

received.
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i Coordinates of keypoints from reference image:, Coordinates of keypoints from input image
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& bytes

Figure D-4: Concatenation of matched keypoint coordinates.

Memory Controller

Due to the limited BRAM resources available on the FPGA device, the input image
buffer is shared by the camera, the SIFT processing core and the USB. The Memory
Controller core is designed to stop a frame from being over-written before it has been
either processed by the SIFT processing core or sent to PC via USB. The input image
buffer consists of two groups of RAMs with one for each half of the input frame.
One group is being written by the camera while the other is being read by the SIFT
processing core and the USB. Each group consists of two DPRAMSs that together
buffer half of an input frame. Port A of each DPRAM is shared between the camera

front-end and the SIFT processing core and Port B is allocated to the USB only. The

command for both DPRAMSs within the same group is the qame. Figufe D-5 shows

the command for one DPRAM in each group.

In this design, each group contains two DPRAMS, so pixels can be accessed from
two channels (Port A) concurrently by the SIFT processing core. The input frames
are continuously routed to and from the input image buffer under the control of the
Memory Controller and only the latest frame can be stored on the buffer.
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Figure D-5: Command for input image buffer access.

Figure D-6 shows the flowchart for writing and reading the input image buffer by the

camera and the SIFT processing core, respectively. The status of RAMEcked

when a new frame arrive&/§YNC="1’). If RAMO is empty before the first row
synchronisation signaHREF) is asserted, it indicates that RAMO is ready to accept
the first part of a new frame. Otherwise, the coming frame is abandoned as the data
from the previous frame is still waiting to be sent to PC via the USB. The status of
RAML1 is checked when RAMO has been filled up with the first part of an input
image. If RAM1 is empty before the next row synchronisation sigHREF) is
assertedit indicates that RAML1 is ready to accdpé other part of the new frame

and SIFT processing core is enabled to process the first half frame.

It should be noticed that the SIFT processing core is not enabled immediately after
RAMO has been filled with data due to the possibility that the second half of frame

may be abandoned. Once RAML1 has been filled up with data, the SIFT processing
core is enabled to process the second half frame. Status checking for RAMO and
RAML1 is necessary in that the previous frame may be overwritten by the new one
before it has been fully accessed by the USB.
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Figure D-6 (a) Flowchart for writing input image buffer by the camera. (b)

Flowchart for reading input image buffer by the SIFT processing core.

Display Controller

A MATLAB based software model is written to run on a PC to visualise the results

of the developed image matching system. The flowchart of the MATLAB based

display controller is given

n Figure D

7.

The software model communicates with the FPGA board through the USB link, and

performs the following tasks:
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o Keep retrieving data package by package from FPGA until a valid
identification file is received, which indicates that a set of data is ready to be
transferred from FPGA to PC.

e Buffer the raw images if the entire frame has been correctly received.

o Buffer the coordinates of matched keypoints and display the matching results.

“INFIMG” && "0 identification “MFCOOR™

file received?

h

Require 310
packages "INPIMG" E& "D1"
'L ¥
Read Calculate the number of
identification file packages to be raceived

, |

Require 290 Require matched
identification packages keypoints
file correct? ‘L ¢

Read Read
identification file identification file
NO

Buffer the first half
of raw image

identification
file correct?

identification
file correct?

NO

Index
matched?

NO
D0 correct?

Read buffer and

Buffer image display results

Figure D-7: Flowchart for the Display Controller.
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Appendix E. Avnet FMC Module

As shown in Figure E{1, the Dual Image Sensor FMC Module is a low pin count

(LPC) FMC module containing interfaces intended for video processing. This
module contains no processing intelligence and requires that it be plugged into a
compatible baseboard for power, control and data processing.

Figure E-1: The left image shows the top of the Avnet FMC module. The right image

is for the bottom.

All the camera functions can be configured throuighihterface by writing in some
registers, such as the frame rate and size of input images. The registeressedacc

by the fC bus, but the actual protocol used for communication is the Serial Camera
Control Bus (SCCB) interface which is for some mode the sanf&asrotocol. In

the FC protocol, two pins are used. One is the clock (SCL) and the other is the data
(SDA). The SCCB protocol consists of two signals, which is the single-directional
control signal (SIO_C) and bi-directional data signal (SIO_D), respectively. The
SIO_C must be driven by the master device, while SIO_D can be driven by both

master and slave device. As shown|in Figurel E-2, FPGA and FMC module with

image sensor acts as the master and slave device, respectively.
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Figure E-2: Function block diagram for the 2-wire SCCB.

Figure E-J

image size and video frame rate by writing in registers of image sensor that is
connected to port 2 of théa multiplexer. The clock period of the input clock
(XCLK) of the camera is set by writing to registers of video clock generator that is
connected to port 3 of théd multiplexer. Configuration of other devices remains as

default. The correspondindd addresses are given]
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Figure E-3: Block diagram of slave device f&E Iperipheral configuration.
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Table E-1 1°C address.

Device I°C Address
1°C Multiplexer OXEO
Image Sensor 0x60
Video Clock Synth. 0xC8

As shown ir@h the basic element of the data transmission using the SCCB
protocol is called a phase, and each write transmission cycle consists of three phases.
Each phase consists of 9 bits, where the ninth bit is datf@are bit or an NA bit,
depending on whether the data transmission is a wiit¢ ¢r read (1’). The IP

address corresponds to tR€ laddress of devices, and the sub-address is the address

of the register to be written to. The SCCB protocol is implemented using VHDL and

the timing diagram is shown |n Figure E-5. Degditonfiguration parameters are
given in Table E-P.

| | | |
—7]6[s[4]3]2[1]o|x]|7]&6[s]4]3]2|1]o]x|[7]6]5]4]2]2]1]0|x——
| phase 1 | phase 2 | phase 3 |

phase 1: IP address
phase 2: sub-address
phase 3: write data

Figure E-4: The 3-phase write transmission cycle.

Start of

End of
transmission transmission
SI'D_C : ﬁ"-___,-") k",___,-": -.__‘.-"_ F I“\_,_, \_ \_'_;" ‘_-' _. "‘-.__,-'(. -“‘\,_ o H( 1‘,_.- f :
| |
1 |
i P AR L LD S R D . .0 D ___f-l-\_

Figure E-5: Timing diagram of SCCB configuration.
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Table E-2 Configuration of FMC Module with Image Sensor

Device Function Register Value
0x24 0x6D
0x26 0x12

Video Clock | get the clock period of the Oxar Ox12
Generator | jnput clock (XCLK) of the 0x28 OXFF

(0x60) camera to 12MHz. 0x29 0x80
0x2A 0x02
0x2B 0x07
0x17 0x25
0x18 O0xA2
0x19 0x01
Ox1A OxCA
0x03 Ox0A
0x32 0x07
0x98 0x40
0x99 0xAO0

Set the size of the input imag____OX9A 0x01
to 640x480. 0x57 0x00
Image Sensol 0x58 0x78

(0x60) 0x59 0x50
0x4C 0x13
0x4B 0x36
0x3D 0x3C
Ox3E 0x03
0xBD 0x50
OXxBE 0x78

Set the video _frame rate to 0x5C 0x19
(XCLK) of the camera has Ox11 0x00

been set to 12MHz.
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Appendix F.  OmniVision OV9715 I mage Sensor

The OV9715 image sensor is one megapixel CMOS image sensor that has an image
array capable of providing full-frame, sub-sampled or windowed 8-bit/10-bit images

in raw RGB format. The sensor delivers XWGA (1280x800) resolution video at 30
fps and the maximum image transfer rate for 640x400 resolution video is 60 fps. In

our system, the image sensor is configured to deliver 640x480 resolution video at 30

fps by truncation, as shown|in Figure F-1.

(D, 0) ™ 1280 pixels

et
1.2

......

Sensor Array Size

Valid PixelSize

800 pixels
480 pixels

r 3

ook Ao

640 pixels

Figure F-1: Sensor array size (1280x800) and valid pixel size (640x480).

Detailed timing diagram is shown jn Figure F-2, where VSYNC indicates the starting

of a new frame and HREF indicates when the pixels are valid. The image sensor
array is accessed row by row, and HREF acts as the row synchronisation signal.
PCLK is the clock signal that is configured to 40 MHz, and all the other signals are

synchronised by the rising edge of PCLK. D is the 10-bit input data.

PCLK | | | | | | | | | | |
VSYNC &

Ed
Hes ML L Ly T

Figure F-2: Timing diagram of the image sensor.
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