

Design and Development of an FPGA-based

Hardware Accelerator for Corner Feature

Extraction and Genetic Algorithm-based SLAM

System

Smart Systems

Master’s Degree Programme in Information and Communication Technology

Department of Computing, Faculty of Technology

Master of Science in Technology Thesis

2021

Yuhong Fu

Supervisors:

MSc. Jorge Peña Queralta

Assoc. Prof. Tomi Westerlund

June 2021

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system

using the Turnitin Originality Check service

Master of Science in Technology Thesis

Department of Computing, Faculty of Technology

University of Turku

Subject: Smart Systems

Programme: Master’s Degree Programme in Information and Communication Technology

Author: Yuhong Fu

Title: Design and Development of an FPGA-based Hardware Accelerator for Corner Feature

Extraction and Genetic Algorithm-based SLAM System

Number of pages: 69 pages, 0 appendix pages

Date: June 2021

Simultaneous Localization and Mapping (SLAM) systems are crucial parts of mobile robots.

These systems require a large number of computing units, have significant real-time

requirements and are also a vital factor which can determine the stability, operability and power

consumption of robots.

This thesis aims to improve the calculation speed of a lidar-based SLAM system in domestic

scenes, reduce the power consumption of the SLAM algorithm, and reduce the overall cost of

the whole platform. Lightweight, low-power and parallel optimization of SLAM algorithms are

researched. In the thesis, two SLAM systems are designed and developed with a focus on

energy-efficient and fast hardware-level design: a geometric method based on corner extraction

and a genetic algorithm-based approach. Finally, an FPGA-based hardware accelerated SLAM

is implemented and realized, and compared to a software-based system.

As for the front-end SLAM system, a method of using a Corner Feature Extraction (CFE)

algorithm on FPGA platforms is first proposed to improve the speed of the feature extraction.

Considering building a back-end SLAM system with low power consumption, a SLAM system

based on genetic algorithm combined with algorithms such as Extended Kalman Filter (EKF)

and FastSLAM to reduce the amount of calculation in the SLAM system is also proposed.

Finally, the thesis also proposes and implements an adaptive feature map which can replace a

grid point map to reduce the amount of calculation and utilization of hardware resources.

In this thesis, the lidar SLAM system with front-end and back-end parts mentioned above is

implemented on the Xilinx PYNQ Z2 Platform. The implementation is operated on a mobile

robot prototype and evaluated in real scenes. Compared with the implementation on the

Raspberry Pi 3B+, the implementation in this thesis can save 86.25% of power consumption.

The lidar SLAM system only takes 20 ms for location calculation in each scan which is 5.31

times faster compared with the software implementation with EKF.

Keywords: FPGA, CFE, Genetic Algorithm, SLAM.

I

Table of contents

List of Abbreviation .. III

List of Figures .. IV

List of Tables .. VI

1 Introduction .. 1

1.1 Background .. 1

1.2 Related Work .. 2

1.2.1 SLAM system based on different sensors ... 2

1.2.2 SLAM system based on different algorithms ... 8

1.2.3 SLAM system based on different platforms ... 10

1.3 Thesis Work and Contributions ... 11

1.4 Thesis Structure .. 13

2 The Overview and Design of the SLAM System.................................. 14

2.1 Front-end Design of the SLAM system .. 15

2.1.1 The feature extraction and matching in the lidar-based SLAM system . 16

2.1.2The loop closure design in front-end SLAM.. 18

2.2 Back-end Design of the SLAM system ... 19

2.2.1 The map in the back-end part .. 21

2.2.2 Other consideration in the back-end SLAM ... 22

2.3 Summary .. 22

3 CFE Algorithm-based Front-end Design and Implementation 23

3.1 The Function Design of the CFE-based Front-end System 23

3.1.1 CFE algorithm-based feature extraction algorithm 23

3.1.2 Design of feature extraction ... 26

3.1.3 Design of feature matching .. 27

3.2 The Front-end SLAM System Implementation in FPGA 29

3.2.1 The implementation of hardware modules ... 30

3.2.2 The implementation of software system .. 35

3.3 The Implementation Results of the Front-end System 35

3.4 The Evaluation Results of the Front-end System 37

3.5 Summary .. 38

4 GA-based Back-end System Design and Implementation 39

4.1 GA-based Back-end System Design in SLAM System 39

II

4.1.1 Particle generation with its pose and features transformation 39

4.1.2 Feature matching and new pose estimation .. 41

4.1.3 Pose update with the map update ... 42

4.2 The Back-end SLAM System Implementation in FPGA 42

4.2.1 The combination of the front-end and back-end 50

4.3 The Implementation Results of the Back-end System 50

4.4 Summary .. 50

5 Experiment and Results .. 51

5.1 The Software Simulation ... 52

5.2 The Implementation of FastSLAM and EKF in Software 54

5.3 The Hardware Evaluation .. 57

5.4 The Experiment and Device .. 57

5.5 The Resource Utilization ... 58

5.5.1 Resource utilization of FPGA design ... 58

5.6 The Algorithm Test in Lab Experiment ... 59

5.6.1 Resource utilization among two different platforms 61

5.7 Summary .. 62

6 Conclusion and Future Work ... 63

Reference ... 65

III

List of Abbreviation

SLAM Simultaneously Localization and Mapping

CFE Corner Feature Extraction

EKF Extended Kalman Filter

UAV Unmanned Aerial Vehicle

DVS Dynamic Vision Sensor

PnP Perspective-n-Point

ToF Time-of-Flight

GNSS Global Navigation Satellite System

BDS China’s BeiDou Navigation System

GPS United States’ Global Position System

GLONASS Russia's Global Navigation Satellite System

UWB Ultra-Wide Band

DMA Direct Memory Access

SONAR Sound Navigation and Ranging

KF Kalman Filter

PF Particle Filter

IMU inertial measurement unit

VIO Visual-inertial odometry

DS Dempster-Shafer

NDT Normal Distribution Transform

BA Bundle Adjustment

CNN Convolution Neural Network

SMG scan-matching genetic

GA Genetic algorithm

ROS robot operating system

DWA Dynamic Window Approach

UKF unscented Kalman Filter

RBPF Rao-Blackwellized Particle Filter

PRNG Pseudo random number generator

CORDIC coordinate rotation digital computer

SCD Singular Value Decomposition

IV

List of Figures

Figure 1.1 Service robot sales and growth rate from 2013 to 2020[2] 1

Figure 1.2 A typical vision-based method called ORB-SLAM[10] 3

Figure 1.3 LeGO-LOAM based lidar SLAM system[17] 5

Figure 1.4 Category of sensors can be used in SLAM .. 6

Figure 1.5 The result of VINS-Mono[27] ... 7

Figure 1.6 NDT-based sensor fusion[30] .. 8

Figure 1.7 Pose estimation and map formation with neuromorphic SLAM[31] .. 8

Figure 1.8 The category of SLAM .. 9

Figure 2.1 Front-end and back-end in a typical SLAM system. 14

Figure 2.2 Overall architecture of the front-end and back-end SLAM in this work

 .. 15

Figure 2.3 Genetic Algorithm based PF .. 20

Figure 3.1 The illustration of the CFE .. 24

Figure 3.2 The example of the multiple features extraction from one feature in

reality ... 25

Figure 3.3 The example of occluded region error ... 25

Figure 3.4 The data flow CFE-based front-end algorithm 27

Figure 3.5 The VHDL-based FPGA architecture of front-end design. 29

Figure 3.6 The communication process of the lidar scan[57] 30

Figure 3.7 The processing logic of the reset signal[57] 31

Figure 3.8 The finite state machine of lidar control module 31

Figure 3.9 The design of data buffer ... 32

Figure 3.10 The feature processing dataflow .. 33

Figure 3.11 The state machine of pose estimation module 34

Figure 3.12 The architecture of PYNQ-Z2 ... 35

Figure 3.13 Architecture of front-end system with the block diagram in Vivado

 .. 36

Figure 3.14 The feature extraction result from a square experiment environment

 .. 37

Figure 4.1 The calculation of rotation matrix ... 41

Figure 4.2 The hardware structure of the back-end SLAM system 43

Figure 4.3 The finite state machine of the control module 44

V

Figure 4.4 The allocation of features map... 46

Figure 4.5 The state machine of pose update module ... 47

Figure 4.6 The principle of PRNG .. 48

Figure 4.7 The calculation of Coordinate Transformation 48

Figure 4.8 The state machine of particle generation module 49

Figure 5.1 Data flow in ROS system .. 51

Figure 5.2 The world in Gazebo for simulation .. 52

Figure 5.3 The simulation of the robot in the back of the room 53

Figure 5.4 The simulation of the robot in the front of the room 53

Figure 5.5 The architecture of software implementation 54

Figure 5.6 The EKF implementation of software ... 55

Figure 5.7 The structure of PYNQ .. 56

Figure 5.8 The prototype developed and used in this work 57

Figure 5.9 The indoor environment .. 58

Figure 5.10 The experiment results based-on Genetic Algorithm 60

Figure 5.11 The experiment results based-on EKF ... 61

VI

List of Tables

Table 1.1 The comparison between different lidar-based SLAM methods 10

Table 3.1 The resource utilization of front-end system 36

Table 3.2 The displacement experiments results. .. 37

Table 4.1 The pseudo code of genetic algorithm-based back-end SLAM 40

Table 4.2 The resource utilization of back-end system 50

Table 5.1 The resource utilization of front-end back-end combined system 59

Table 5.2 The accuracy comparison between two methods 60

Table 5.3 Speed results comparison .. 61

Table 5.4 The power consumption comparison between two methods 61

Table 5.5 Performance comparison between two methods 61

1

1 Introduction

1.1 Background

In recent years, aging population has become a problem which cannot be ignored

in China. The “one-child” policy has been implemented to control the size of the rapidly

growing population of China. This policy led to a large fall in the total fertility rate from

an estimated 5.9 births per woman in 1970, to 2.9 births per woman by 1979. Although

the “full two-child” policy has been implemented, the assistants who have efficiency in

provision for the aged would be in shortage comparing with the increasing aging

population, which is a severe problem in the next few decades. The service robots aimed

at indoor scenarios can help to release the burden of elders. They can do several works

like picking up different items, sweeping the floors, or cleaning the dishes.

Therefore, the State Council of China has issued Next Generation Artificial

Intelligence Development Plan. Service Robots’ broad applications in education,

medical care, provision for the aged, environmental protection, urban operation, which

will dramatically improve targeted public service and people’s livelihood.[1]

Figure 1.1 Service robot sales and growth rate from 2013 to 2020[2]

With the application of robots and agents in social life, the requirements of the

robots in different specific areas will continue to increase. People need different kinds

of robots to accomplish different tasks. A robot for sale needs to have a reasonable price.

It should also have low power consumption to realize long-term operation tasks with

3.3 4.6
6.4

9.4
12.8

18.4

28

40.1

30.4

38.4 37.1

47.9

36.2

43.9

52.1

43

0

10

20

30

40

50

60

0

5

10

15

20

25

30

35

40

45

2013 2014 2015 2016 2017 2018 2019 2020e

The scale and growth rate of service robot sales from 2013
to 2020 in China

Total scale(Billion dollars) Growth rate(%)

2

stable status.

Simultaneous Localization and Mapping (SLAM) is a high-power consumption

system on robots which is broadly used in automatic-driving, service robots and

Unmanned Aerial Vehicle (UAV). Any agents or robots which have the ability to move

must have SLAM system to some extent to control their movement[3][4]. The SLAM

system therefore determines the robustness of the whole robot.

When a robot moves from one place to another, it can collect data from the robot’s

sensors and use these data to localize itself and build an incremental map. It may also

recognize some patterns in the environment or extract landmarks from it, which is

necessary for the robot to accomplish the navigation task. The different parts in the

SLAM system will influence each other, and accumulate errors in the localization and

Map. It is difficult to design a robust SLAM system with low power consumption. For

these reasons, SLAM is also an important research topic and the necessary components

to build a robot, which also needs to be upgraded to adapt to new requirements and

complex environments.

The existing SLAM system aiming at indoor scenarios such as house or laboratory

has some disadvantages like having high power consumption and need lots of

computation resources. For instance, most sweeping robots for indoor usage use the

Cortex A7 as their computation core such as Ecovacs T5 Max and Xiaomi MiJia

Sweeping Integrated Mopping Machine. Cortex A7 is an efficient microprocessor with

low power consumption. But it is hard for Cortex A7 to handle a huge amount of

calculation in parallel which is needed in most SLAM systems, it needs a lot of time to

map an environment and localization. We therefore need a new SLAM system design

with low power consumption and robust enough to deal with different accidents.

1.2 Related Work

1.2.1 SLAM system based on different sensors

SLAM is based on the data provided by distinct types of sensors. So various

researches on different sensors have also been made in the world[5]. These researches

can now roughly be divided into two types, one is the lidar-based SLAM, another is the

vision-based SLAM.[6][7][8][9]

 Vision-based SLAM

A popular type of sensor used for SLAM is the camera. Based on the different

3

cameras which can be used, the vision-based can be divided into Monocular camera-

based SLAM, Stereo camera-based SLAM, RGBD camera-based SLAM, and Dynamic

Vision Sensor (DVS) camera-based SLAM.

Figure 1.2 A typical vision-based method called ORB-SLAM[10]

Monocular camera-based SLAM only uses a single camera to collect the data from

the environment. The images it collects are the projection of the 3D scenes. It is easy to

accomplish hardware design, but will take a large number of computation resources to

process in real-time. The camera needed to be moved in different places to see the same

landmark or feature point, then epipolar geometry[11] can be used to calculate the

ground truth of the movement. Figure 1.2 shows a typical monocular camera-based

SLAM method called ORB-SLAM. The left part of Figure 1.2 contains the feature

points extracted from the image, the right part contains the trajectory and landmarks of

ORB-SLAM. For stereo camera-based SLAM, the relative distance between two

cameras has already been known before the calculation begins, so it is convenient to

use Triangulation[12] to estimate the actual location of the feature point. Through these

feature points, the Perspective-n-Point (PnP)[13] can be used to estimate the pose of

the robots. Compared with the Monocular camera-based SLAM, Stereo camera-based

SLAM doesn’t take so many computation resources.

Another method that has been extensively used is the RGBD camera-based SLAM.

The RGBD camera can not only detect the image from the environment but also collect

the distance information by calculating the Time-of-Flight (ToF) of the lidar beam.

When distances between the feature points and the camera are known, the rebuild

process of the 3D scene by using the method called Kinect Fusion[14] can be done. The

RGBD camera-based SLAM only needs a small amount of the computation resources,

but the cost of the RGBD camera is too high. The DVS camera-based SLAM is a new

area for vision-based, it has some advantages such as low power consumption, high

4

speed. But the data it transmits only contains the pixel illuminate change. For this reason,

if information is needed for the computation, the DVS can’t be set to observe the static

environment, the camera should be in motion or be set to see dynamic scenes. Now

some papers have been published which talk about 3D Rebuilding by using the

DVS[15]. The DVS can automatically get rid of the static objects in the dynamic scenes,

but if the DVS has been set in an environment that has a periodic light source, it is also

easy to use DVS to reconstruct 3D scenes.

 Lidar-based SLAM

The above methods can achieve good results in practical applications. But visual

SLAM also has an inevitable shortcoming. The image provided by the camera will be

affected by environmental factors such as ambient light brightness. It is difficult for the

vision-based algorithm to extract useful information from the image provided by the

camera in a dark environment or environment which have high brightness. The

environmental data provided by lidar is less affected by environmental factors.

Therefore, even if the cost of multi-line lidar is relatively high, SLAM research based

on lidar will be more popular and more accurate.

According to the amount of laser scanning in one round, lidar can be divided into

single-line lidar and multi-line lidar. The single-line lidar can mainly be used to avoid

the collision with the high scan speed and it is also robust to use. It also has good

performance to detect the surrounding obstacles and know the accurate distances to

them. It is also easy for a robot to compute its messages to make fast reactions and be

sensitive at any angle, but it can only scan a 2D environment without sending any height

information. Now the 2D lidar is mainly used in the service robots like sweeping robots;

The multi-line lidar costs much more than the single-line lidar, it is mainly used in

automotive. Compared with the single-line lidar, it can recognize 3D scenes with huge

information about the environment. It can also identify the height information of objects.

Now there are different types of multi-line lidars with 4 beams, 8 beams and so on.

Because of the high cost of multi-line lidars. A team at the University of Turku design

an FPGA-based 3D lidar built with multiple inexpensive RPLidar A1 2D lidars. This

inexpensive design opens a wider range of possibilities for lower-end and smaller

autonomous robots, which can be able to produce three-dimensional world

representations.[16]

However, no matter single-line lidar or multi-line lidar is used in the SLAM system,

limited by the short wavelength of lidar, it is difficult to identify small-scale objects, so

5

it is only suitable for application scenes in outdoor environments or environment with

big obstacles, such as automatic driving.

Figure 1.3 LeGO-LOAM based lidar SLAM system[17]

 Other sensors

Besides the sensors mentioned above, there are some other sensors which can be

used in the SLAM system.[18]

Global Navigation Satellite System (GNSS) can use position information from

China’s BeiDou Navigation System (BDS), United States’ Global Position System

(GPS), Russia's Global Navigation Satellite System (GLONASS), or European Union's

Galileo. Because the GNSS module can realize the task on outdoor positioning with

low power consumption, it can be installed on mobile devices. The disadvantage of the

GNSS is that it has low accuracy for non-military usage, and the satellites’ signals can’t

be received indoors.

In order to overcome the disadvantages of GNSS positioning, the Ultra-Wide Band

(UWB) can be used for positioning. A UWB positioning system has two components,

one is transmitter and another is a receiver. The whole system can use echo of radar to

localize and make a map. UWB labels can be used as landmarks to assist the SLAM

system.[19]

Acoustic sensors have also been broadly used in solving the SLAM problem.

These sensors are Sound Navigation and Ranging (SONAR) sensors. They locate

objects from the echo of a signal that is bounced off the object. Because the light can

refract underwater, so it is suitable for using SONAR in these scenes. The SONAR also

has its disadvantages, its accuracy and speed are restricted by noise and speed of sound.

Besides, there are some sensors which can’t work independently in the SLAM

system but necessary for any robots to increase their accuracy and be more robust like

the collision sensor and odometer. Both of them can operate precisely in a dark

environment with low power consumption.[20]

6

There are also some interesting sensors which can accomplish the SLAM tasks

like the electronic nose. It could be used with the odometer to smell different landmarks

in the dark environment to generate a feature-based map. It can also be used to assist

the loop closure process.

 Sensor fusion

Except to use more sensors, there are also some methods to combine the

information of the sensors. Sensor fusion is now becoming a trend in SLAM system

design. There are several methods which can handle sensor fusion.

1) Kalman Filter-based sensor fusion

To deal with the gaussian noise such as the observation noise and noise generated

by the leakage of the circuits, the Kalman Filter-based (KF-based) methods like EKF[21]

or Particle Filter (PF)[22] can be used to solve these problems. The KF can’t be used

directly because it can only handle linear circumstances. The low-level redundant

sensor information can be deleted by using these methods.

Figure 1.4 Category of sensors can be used in SLAM

7

2) Estimation method based on Bayesian

The mainly used methods are Bayesian based-methods. In order to combine the

information from camera and (IMU), the method called Visual-inertial odometry (VIO)

has been presented. In VIO, there are two types of methods to couple the data, one is

loose coupling. It couples two types of information and uses them separately. The

overall architecture of it is simple, but noise of each sensor will add errors to the whole

calculation. Another is the tight coupling which first collects the information from each

sensor, and corrects them with others. It can dramatically increase the accuracy of the

whole calculation. The researchers have presented a method called VINS-

Mono.[23][24][25] A tightly coupled, nonlinear optimization-based method is used to

obtain highly accurate visual-inertial odometry by fusing preintegrated IMU

measurements and feature observations.[26]

Figure 1.5 The result of VINS-Mono[27]

3) Dempster-Shafer (DS)[28] inference

This method can handle the problem that the lidar sees an obstacle in a specific

place, but the camera can’t see anything at the same time. These problems can be solved

by voting the environment’s situation by the belief or confidence of each sensor.

Normal Distribution Transform(NDT)[29] is an algorithm designed for matching

in a gridded map. Some researchers have used the NDT+IMU to realize the localization

by using DS inference.[30]

8

Figure 1.6 NDT-based sensor fusion[30]

4) Neural network-based sensor fusion

Sensor fusion can also be done by neural networks. An appropriate structure for the

network has been chosen first. Then the network has been trained to get suitable weights.

Finally, the information from different sensors can be combined to illustrate the status

of the map with the pose of the robot.

This method is robust enough to get rid of errors. After getting the weight of the

networks. The knowledge about how these sensors are combined can also be known.

The researchers now have published a method which can combine the wheel encoder

information with the collision sensor to realize the SLAM tasks.[31]

Figure 1.7 Pose estimation and map formation with neuromorphic SLAM[31]

1.2.2 SLAM system based on different algorithms

Different SLAM algorithms have been used on different robots. After choosing a

suitable environment and a small robot. Different steps are needed to realize the whole

9

implementation.

In the area of lidar-based SLAM, There are some popular solutions like

FastSLAM[32] and Gmapping[33]. These filter-based methods are based on 2D lidar,

it assumes that the current pose is only affected by the previous pose and the previous

control or movement signal. Gmapping uses the traditional PF method to predict and

calibrate the pose of the robot. This method is limited by the quality of the particles, it

is suitable in a small-scale environment for service robots. For the outdoor environment,

increasing the amount of particles is required for the SLAM system which will

dramatically increase the computation cost. Without the loop closure process, filter-

based method also can’t operate robustly and always accumulate errors in outdoor

environments.

Except for the methods above, there are also some other solutions which assume

all poses have some connections to some extent. The method called Bundle Adjustment

(BA)[34] could optimize all poses together. In the 2D lidar-based SLAM area, there are

also some algorithms based on this assumption like Hector[35], Karto[36], and

Cartographer[37]. These methods all support the loop closure process to get rid of the

error accumulated by the sensor noise. In Cartographer, it uses a branch-and-bound

approach for computing scan-to-submap matches. It therefore is robust and has low

computation complexity.

In the 3D lidar area, the most popular solution is LOAM[38], this method can

Figure 1.8 The category of SLAM

10

calculate the curvature of the feature points in a single scan line and compare them with

their neighbors. It can also filter out the bad features like the features on the boundary

of an occluded region or feature points on a surface roughly parallel to the laser beam.

This method increases the quality of point cloud matching and registration and allows

maps in real-time.

Table 1.1 The comparison between different lidar-based SLAM methods

Algorithm Name Filter based or not Application

Fast SLAM √ Indoor and fast

Gmapping √ Indoor

Karto Both but hard for hardware

Cartographer Both but hard for hardware

Because the LOAM has bad performance on the road in the countryside. LeGO-

LOAM[17] therefore appears and it has been optimized for pose estimation on ground

vehicles. This method will use the ground plane to increase the accuracy and

performance of SLAM compared with LOAM.

In the area of vision-based SLAM, extracting the features should be done first.

Matching the features just like the LOAM should be done next. There are different

feature extraction methods like FAST[39], SURF[40], SIFT[41], and ORB[10] with

different speeds and feature quality. These feature extraction methods can adapt to

various environment. For the environment which needs a real-time reaction, FAST is

recommended to extract the features. FAST first selects a candidate feature point, then

it calculates its surrounding points. If the candidate point has 12 or more contiguous

pixels which are brighter than a specific threshold, this point could be considered as a

feature point. FAST will also take fewer computation resources. If high-quality features

are required to perform reliable matches between different views of an object or scene,

the feature extraction methods like SIFT are also needed for the computation. SIFT will

take much more computation resources than FAST and it will also be slower. ORB adds

a very fast and binary descriptor based on BRIEF to check whether it is the right FAST

features matching or not, it is also a good method for feature extraction. The ORB-

SLAM[10] based SLAM is extensively used in lidar-based SLAM.

1.2.3 SLAM system based on different platforms

If the parallel computations could be done by the hardware platform like FPGA or

ASIC to optimize the overall performance, it could increase the speed of feature

11

extraction by 1000 times[42]. Therefore, low-cost hardware devices could be used to

increase the speed of computation with low power consumption. In order to reach this

destination, a hybrid system of both software and hardware has been used. A

comparison between the hybrid system and the hardware devices with VHDL has also

been made.

In another example of hybrid system, groups in National Taiwan Normal

University optimize the vision-based process by using Nios II. It could accomplish the

task of communications with FPGA. The FPGA will do the job of the feature matching

and pose estimation. It can increase the speed of extracting SIFT features 121 times.[43]

For pure FPGA solution, the group mentioned above also designed a 2D lidar-

based SLAM system with CFE.[42] It can speed up the process of Initialization,

Prediction, CFE, Derivation of Likelihood, Landmarks Updating, and States updating.

The group from the University of Bridgeport presents a mobile robot navigation

mapping system based on neuromorphic technology[44] that counts the functional

characteristics of the grid cell in an FPGA. The group from Tsinghua University has

designed a Convolution Neural Network-based (CNN-based) feature-point extraction

method for real-time visualization SLAM on embedded FPGA[45]. This system can

run at a speed of 20 fps. The group from Aristotle University design a scan-matching

genetic SLAM (SMG-SLAM)system[46] based on the principle of the PF. This system

can generate a gridded map for further usage.

1.3 Thesis Work and Contributions

As introduced in previous section, the SLAM system has been used for different

kinds of service robots. The demand for service robots which help to release the burden

of elders will be increased, the scene in our thesis is the indoor environment at home.

To fulfill the requirements of low cost and low power consumption, the 2D lidar is

chosen as our main sensor of the robot to adapt to the dark environment like space under

the sofa or space under the bed.

As shown in previous section, the feature matching methods based on

Cartographer and LOAM are suitable for this SLAM system on 2D lidar. It is called

Corner Feature Extraction (CFE) algorithm which uses curvature to judge the features’

quality.

As mentioned in previous part, the software-based implementation for SLAM

calculation has high power consumption and low efficiency in real-time processing.

12

The matching process in the front-end part of SLAM should be fast enough to produce

real-time matching information. This information can also be translated into the

information of odometry. This thesis therefore proposes a method of building a hybrid

SLAM with both software and hardware, this method can dramatically increase the

accuracy of this SLAM system and realize an FPGA-based SLAM system for scenes

indoor. For the computation of CFE, an implementation of a hybrid system is used to

speed up the process of feature extraction and feature matching.

For the back-end design, this thesis extracts the features based on the CFE

algorithm and combines it with a genetic algorithm (GA)-based SLAM system, it can

therefore dramatically decrease the usage of the computation resources in SMG-SLAM.

This thesis can also simultaneously predict the robot’s movement and calibrate the

result with the observation of the environment.

The main work and contributions of this thesis are summarized as below:

1) A front-end with parallel processing of the SLAM system is proposed and designed.

The part is based on CFE to extract the information of landmarks and store it into

the map. The front-end of our system can perform parallel feature extractions and

matches. Six parallel processing units are employed to accelerate the process to

transfer the points from the polar coordinate system to the Cartesian coordinate

system. It can increase the speed of Points Matching and Map Initiation by 360

times. Some improvements are made in matching the feature points and the

registration of the feature points. The FPGA implementation therefore can increase

more than 4 times of computation concurrency.

2) An efficient GA-based back-end of the SLAM system is developed. This thesis

designs a PF based FastSLAM like SLAM system which can match and map in

real-time. This part can adapt to the indoor environment with the localization and

mapping in a relatively small hardware area usage. The proposed GA-based back-

end is implemented in FPGA and integrated with the SLAM, leading to up to 5-

time speed up after optimization for map initialization.

A complete SLAM system in the robot operating system (ROS) is implemented for

evaluation. The front-end part of the system can recognize different objects’ features

and make real-time comparison and matching processes. The back-end part of the

system can transmit the information of the surrounding environment to generate a

feature-based map. It can also localize itself in real-time on the map. The SLAM system

is mapped to FPGA with hardware-software co-design based on Xilinx PYNQ Z2.

13

1.4 Thesis Structure

Chapter 1 briefly introduces the background and state-of-the-art of the SLAM

systems. elaboration of the SLAM sensors being used these days, the developments of

the SLAM technology with the SLAM algorithm which was mostly used today are also

described. After that, the overview of this thesis is provided.

Chapter 2 describes the main components of a typical SLAM system and the

overall architecture of the SLAM design in this thesis. Different technology paths for

different parts and their advantages and disadvantages are analyzed in this part. Finally,

a structure that is suitable for our environment of application with low power

consumption and high accuracy is selected in our design.

In Chapter 3, the front-end part of our GA-based SLAM system with VHDL is

described. An introduction about the CFE algorithm with its limitation and how to solve

these problems in the filter design is also given. The coordinate rotation digital

computer (CORDIC) technology, AXIS, and DMA are also described in it to realize

hardware and software hybrid system.

In Chapter 4, a GA-based SLAM system is designed with the PF structure. The

principle of the PF is introduced. A hardware data-flow graph is given in this part. The

ROS[47] platform is also introduced to simulate its function in the software

environment.

In Chapter 5, the evaluation of the ROS is reported. Comparison between different

methods in hardware area usage are also given with the analysis. The experiment

environment and the devices are also shown in this part with their performance. The

comparison of hardware utilization and calculation time are discussed.

In Chapter 6, a conclusion is made with future works.

14

2 The Overview and Design of the SLAM System

In this chapter, the overall architecture of the SLAM system is described with the

SLAM system which has been designed in this thesis.

A typical SLAM system contains front-end part and back-end part[48]. The

connection and functions of them could be seen in Figure 2.1. In order to decrease the

power consumption, the long-term loop closure is replaced by the feature matching in

the back-end as shown in Figure 2.2. Besides, imu data can be used in the back-end part

to increase the accuracy. The whole SLAM system architecture is optimized in this

thesis. The specific overall design is shown in this chapter.

The goal of this thesis is to use FPGA to implement SLAM with the function of

visualization, mapping, front-end, back-end, and other tasks that need to be

implemented in hardware. The front-end and back-end designs are realized in this thesis,

the IMU can be replaced by the odometry data provided by the feature matching.

The front-end of the SLAM first extracts the feature points from the data sent by

the sensors, then to accomplishes the rough estimation of the pose for the robot or the

agents. The pose made by feature matching both in the short-term and long-term can be

estimated. The short-term process needs to match the features simultaneously to output

the pose of the robots. The pose of 2D robots mainly contains three variables. These

variables are x, y to represent the localization and the angle to describe the robots’ head

Figure 2.1 Front-end and back-end in a typical SLAM system.

15

direction. The long-term process is used to eliminate the error accumulated by the

sensors’ noise. This procedure is also called loop closure. Loop closure can also

influence the map which is built in the part of the back-end.

The back-end part of the SLAM is a process of optimization. In this process, the

back-end will translate the local coordinate system to the world coordinate system.

After that, the feature points or other points can be registered on the map. This map

information will be used in the front-end part. The loop closure process will also rebuild

the map. The back-end part and the front-end part connect and influence each other.

The robots with the SLAM system contain both front-end and back-end can use

some navigation algorithm like Dynamic Window Approach (DWA)to make the robots

accomplish different movement tasks.

2.1 Front-end Design of the SLAM system

The main function of the front-end part is the pose estimation based on the old

poses and the map. It therefore should also be able to extract some features from the

environment to match them in the current map to simultaneously update the pose of the

robot. The sensors should have a high operating frequency or speed compared to the

environmental changes. Otherwise, the SLAM can’t get any information from the

surrounding environment. When the sensor is collecting the data, an assumption that

Figure 2.2 Overall architecture of the front-end and back-end SLAM in this work

16

the robot is relatively static can be made.

2.1.1 The feature extraction and matching in the lidar-based SLAM system

The feature extraction method used in this thesis is the CFE. It means that

extracting the corner features from the environment by calculating its curvature is

needed for other calculations. The feature with bigger curvature will be a more

remarkable feature in the environment. In some simple environment, the curvature can

also be the description of a feature for matching, but for complex environment, it is

impossible to use it.

The most broadly used method for feature-points matching in lidar-based SLAM

is Iterative Closest Point (ICP)[49]. ICP wants to find the best matching between point

clouds. It is the same that the location on our map should be known by calculating the

observed features.

ICP has two steps. (1) finding the point correspondence and (2) registering the

corresponding points. ICP algorithm is iterative, repetitions of step (1) and step (2) are

needed until convergence.

In order to realize the process, some mathematic assists are needed. The first one

is the Singular Value Decomposition (SVD).

Calculation of the centroid position 𝑝, 𝑝′of two different point clouds which need

to be matched should be made first. The 𝑝௜ represents the first point cloud’s points, the

𝑝௜
‘ represents another point cloud’s points.

Then the rotation between two point clouds without the centroid can be calculated.

𝑞௜ = 𝑝௜ − 𝑝, 𝑞௜

′
= 𝑝௜

′
− 𝑝′ (2 − 1)

Then the rotation matrix is calculated by Equation (2-2). The 𝑅∗ is the rotation

matrix. The most suitable 𝑅 which makes the minimum value is calculated in Equation

(2-2). In this step, the optimization method like Gauss-Newton Algorithm is used in this

Equation.

𝑅∗ = 𝑎𝑟𝑔  min
ோ

1

2
෍ |𝑞௜ − 𝑅𝑞௜

′
|ଶ

௡

௜ୀଵ

(2 − 2)

17

According to the rotation matrix got in the last step, the movement 𝑡∗ between

two points clouds could be calculated. Now the rotation and movement of the two

robot’s poses are calculated.

𝑡∗ = 𝑝 − 𝑅𝑝′ (2 − 3)

In Equation (2-2), a non-linear optimization method is used. It can find the best

variable by iterating.

For lidar-based SLAM, there is also a method called NDT[29]. It is a method aim

at 2D lidar. In this method, the 2D plane is subdivided into cells. It is mainly used in

the gridded map. To each cell, a gaussian distribution will be assigned with it which can

models the probability of a point. The most important part of the NDT is calculating the

NDT parameter in the first scan and initialize the whole map space, it is first described

below.

The 2D plane is first divided into different cells. These cells have the same area

and size. For each cell which contains at least 3 points. Collect all the points 𝑥௜ as

Equation (2-4).

𝑥௜ୀଵ,…,௡ (2 − 4)

Then, the mean coordinates 𝑞 could be calculated by Equation (2-5). 𝑛 is the

number of points which lie in the cell.

𝑞 =
1

𝑛
෍ 𝑥௜

௜ୀ௡

௜ୀଵ

(2 − 5)

Now the covariance matrix Σ could be calculated with the normal distribution of

this cell as Equation (2-6) and (2-7) below.

Σ =
1

𝑛
෍(𝑥௜ − 𝑞)(𝑥௜ − 𝑞)்

௜ୀ௡

௜ୀଵ

(2 − 6)

18

𝑝(𝑥) ∼ 𝑒𝑥𝑝 ቌ−
(𝑥 − 𝑞)்Σ

ିଵ
(𝑥 − 𝑞)

2
ቍ (2 − 7)

Comparing with the gridded map whose value of each cell in gridded symbolize

the probability of its occupancy, the probability in this cell represents the probability

that the point lies in this location within this cell. It is the end of the calculation of the

first scan. The overall steps are as below.

1) Calculate the NDT of the first scan.

2) Predict the pose of next time step.

3) Map the points in the second scan into the coordinate system of the first scan.

4) Determine the corresponding normal distribution for each mapped point.

5) Calculate the score by sum the distribution for each mapped point.

6) Create a new parameter to optimize the score.

7) Go back to step 3 until meeting the convergence criterion.

After these steps, the exact movement between two timesteps is known. The system

could update the map and prepare for the next time step with the new map.

2.1.2The loop closure design in front-end SLAM

There are three main methods in Lidar front-end SLAM to realize loop closure.

They are loop closure methods called scan-scan, scan-map, and map-map.

The scan-scan is the most unstable algorithm in the front-end part for lidar-based

SLAM system. it could not be seen as a loop closure method because it only compares

the current scan with the last scan. It is impossible to make the comparison directly

because of the uncertainty of the lidar. Even the robots are stable, the current scan will

be different from the last scan. Different points on the same landmarks in these two

scans could be seen. The scan-scan method therefore has low accuracy. There is no

front-end SLAM system which uses it in the market.

The scan-map method is the most commonly used method with high accuracy and

can be used in rea-time. The principle of it is to compare the current scan with the local

map or submap which has been optimized by multiple scans. scan-map therefore has

high accuracy. The Cartographer from google uses it in its front-end SLAM design.

19

The method with the highest accuracy is. It uses a submap made by the current

scan to match with the submap in the global map to publish odometry information.

Because a large number of computation resources are needed for this method, it is hard

for the researchers to realize map-map algorithm in real-time. But this method will be

the future of the front-end SLAM design.

2.2 Back-end Design of the SLAM system

The principle of back-end design is to filter out the bad odometry information from

the front-end part to optimize the location and the map. The back-end part should also

be able to initialize or refresh the map simultaneously based on the sensor data for the

front-end part’s usage.

Nowadays, there are two main directions for SLAM in back-end optimization. One

is the filter-based SLAM and another is graph optimization-based SLAM.

The filter-based SLAM system[50] is mainly based on the Bayesian theory and

Markov assumption which assumes the current state of the robot or the agent only has

connections with the last state of it and the control variable it had between the last state

and the current state. The prediction therefore can be made by the Bayesian inference.

In the next step, the system will combine the prediction state with the observation value.

Finally, the system can have the best relative accuracy result after the optimization of

the noise.

There are lots of filter-based back-end SLAM algorithms like KF[51], EKF[52],

unscented Kalman Filter (UKF)[53], PF[54], etc.

Because the status matrix and observation matrix which the KF needed should be

all linear and it is impossible for us to have linear status or observation in reality, it is

impossible to use it in our application. Therefore, EKF is discussed in this thesis. This

method uses Taylor series-based linearization approximation on a certain point to make

the matrix to be linear. UKF uses weighted random linear regression to perform random

linearization, it has higher accuracy than EKF. Different from the KF-based methods

which have been mentioned above, PF is a non-parametric implementation of the

Bayesian filter. Its principle is to use a set of random state samples to express posterior

probability, the steps of its computations are as below.

1) GA-based PF prediction

The purpose of particle prediction is to generate a large number of particles in the

environment. These particles will move according to the state transition matrix and can

20

be used for weighting to approximate the posterior probability density later. It is just

like generating a large number of individuals in the GA.

2) GA-based PF reweighting

When the particles have received the observation information, each particle will be

calculated with a relative weight according to its possibility. The calculation about the

chance of survival and leave offspring for each individual in the GA is made in this step.

3) GA-based PF resampling

This thesis uses the number of particles in the specific area to simulate the

probability of particle appearance in this area. The resampling process, therefore,

deletes all the old particles and regenerates the new particles by the probability or

weight which is mentioned above. Like the GA, the individual who adapts to the

environment will survive and have more chances to have offspring. The new particles

will also be used to do the prediction step recursively.

4) Map estimation and optimization

After the particles have been converged, an estimation of their trajectory with the

landmarks could also be made. The trajectory can be used to optimize the whole map.

The SLAM system based on graph optimization is mainly constructed by BA. This

method arranges the poses of the robot in time sequence with the information of

surrounding landmarks in a matrix. It will get a sparse matrix that can be solved through

Figure 2.3 Genetic Algorithm based PF

21

a special matrix solution method to obtain the latest odometry information and make

real-time predictions of the pose.

Limited by the area of hardware in the low power consumption platform, the robot

used in this thesis is not suitable for large-scale matrix operations. At the same time, the

accuracy of the PF algorithm is generally higher than that of EKF and other KF based

algorithms. It is also more robust for the robot with variable speed control and steering.

What’s more, the method based on PF is easier to implement in parallel. This method

therefore can run in real-time. However, directly applying the PF to the SLAM system

is doomed to fail due to the large number of variables required to describe the

surrounding environment. This thesis therefore uses the Rao-Blackwellized Particle

Filter (RBPF) to adapt to the SLAM architecture.

2.2.1 The map in the back-end part

At present, there are three different types of the map which were mostly used in

the back-end part of SLAM[55]. One is the topology map, which records the pose

changes of the robot and its related motion nodes. This action can only be reproduced,

so it is difficult to perform alternative tasks with different changes for the topology map.

Besides, this map is also difficult to adapt to large and complex scenes. It will fall into

a local optimum in the navigation problem. However, compared to the grid map, it takes

up less memory and runs more efficiently in small-scale environment. With the

improvement of hardware performance, this method has gradually withdrawn from the

stage of history. The grid map is the most-used map in RatSLAM like designs.[56]

The second type of map is the grid map, which quantifies the map of the entire

area as the corresponding points. It is the most extensively used type of map in SLAM.

Each grid point has three states which are undetected, unoccupied, and occupied. This

kind of map contains more map information, which is more conducive to the

implementation of arbitrary navigation tasks. This kind of map is more scalable than

topological maps, so it has a wide range of application scenes. But at the same time, the

grid map is difficult to interface with the symbolic problem interpreter, and its

requirements for pose estimation are very high and will take up more memory space

and hardware resources.

The last type of map is the feature-based map, which is different from the grid map

and the topology map. The grid map stores the information of the entire location, while

the feature map such as the FastSLAM algorithm only needs to store some significant

22

features or landmarks. Only storing the data of the features and landmarks will greatly

reduce the memory space occupied by the normal points. This thesis uses the feature

map to construct the whole SLAM system. In the part below about visualization, this

thesis maps the feature map to the actual map for better performance. It should be noted

that this thesis does not use the grid map for map construction.

2.2.2 Other consideration in the back-end SLAM

The basic principle of loop closure is that when the robot recognizes the same

scene comparing with the previous scenes, it gradually changes the trajectory of itself

with the optimization of the previous map by calculating the offset value of each step.

It will also change the world coordinates of the corresponding sensor data to correct the

cumulative error.

In addition, there is also a problem of movement sequence in a single scan. The

environment cannot be seen as static when the lidar is scanning. This mechanism will

produce motion blur which causes the objects in the environment that were originally

straight to become curved. Therefore, estimation of the relative time and coordinates of

each lidar point based on the lidar acquisition frequency and the speed of the robot is

needed. Estimating the data coordinates of the lidar point and its relative position to

remove motion blur is critical in running objects with high speed.

2.3 Summary

This chapter introduces the basic structure of a standard SLAM system, which

usually includes a front-end part and a back-end part. The front-end part is responsible

for calculating the current pose of the agent by extracting and matching the feature

points, which includes the direction and the location of the robot. When the front-end

part recognizes a familiar scene in the environment, it will start the process of loop

closure. The back-end part is responsible for correcting the cumulative error generated

by the front-end and initializing or optimizing map data in real-time. The generated map

and the current pose of the robot can be used for path planning and navigation in the

future.

After comparing the various algorithms, the PF-based SLAM system with the GA

has finally been chosen in this thesis for this design with the usage of the feature map

and the optimization without loop closure.

23

3 CFE Algorithm-based Front-end Design and

Implementation

In this chapter, a description of the CFE algorithm-based front-end design in the

SLAM system is made with the implementation. This front-end system is first described

with the dataflow which contains the main function of the front-end system. Then, it

comes to the overall hardware architecture of the front-end system which including the

modules of CFE-based implementation with its connection. The specific module

description including the processor system and programmable logic comes after the

overall design. In the end, the prototype of the front-end system and its evaluation is

made with the PYNQ Z2.

3.1 The Function Design of the CFE-based Front-end System

According to the SLAM system designed in Chapter 2. The front-end system can

be divided into two parts. One is the feature extraction (Section 3.1.1 & Section 3.1.2)

which needs to extract good features without noise, another is the feature matching

(Section 3.1.3).

The aim of feature extraction is to find stable landmarks that can be used as

features in the environment and find the descriptors of them. Therefore, the CFE

method is chosen in this thesis, which will extract the corner points as features, and use

the curvature as the descriptors.

In order to increase the efficiency of feature matching, the current scan would be

compared with the previous scan only with the descriptors from the feature extraction.

Further optimization will be done in the back-end system.

3.1.1 CFE algorithm-based feature extraction algorithm

In order to realize fast feature extractions in real-time, this thesis references the

design of the CFE in the LOAM[17] and applies it to the 2D scene. The specific

description is as follows.

As shown in Figure 3.1, the blue point in Figure is the center of the lidar. The green

lines represent lidar rays that are emitted from the center and rotate clockwise sweeping

through points A, B, C, and D. The blue lines represent the targets in the environment,

24

which are the obstacle or walls.

The points sampled by the lidar are all in the polar coordinate system. The

conversion from the polar coordinate system to the cartesian coordinate system should

be made first by Equation (3-1). In this Equation, θ means the angle data received. 𝑑

means the detected distance at this angle. Therefore, CORDIC is needed for the data

processing module in Section 3.2.1.

𝑥 = 𝑑 ∗ 𝑐𝑜𝑠θ, 𝑦 = 𝑑 ∗ 𝑐𝑜𝑠θ (3 − 1)

Then the two vectors 𝐴𝐵ሬሬሬሬሬ⃗ and 𝐵𝐶ሬሬሬሬሬ⃗ built by the lidar points on the wall are taken

to calculate its dot product. Then, find the molds of the 𝐴𝐵ሬሬሬሬሬ⃗ vector and 𝐵𝐶ሬሬሬሬሬ⃗ vector.

Divide the dot product of the two vectors by the product of the two molds to get the

projection ratio α between 𝐴𝐵ሬሬሬሬሬ⃗ and 𝐵𝐶ሬሬሬሬሬ⃗ , which is the descriptor needed for feature

matching in Section 3.1.3. The whole process could be seen in Equation (3-2). 𝑝

means vector 𝐴𝐵ሬሬሬሬሬ⃗ . 𝑞 means vector 𝐵𝐶ሬሬሬሬሬ⃗ .It can be seen that when the descriptor is equal

to 0, the feature it describes is a vertical corner point, like the∠𝐴𝐵𝐶 in Figure 3.1.

When the descriptor is equal to 1, like the ∠𝐵𝐶𝐷 in Figure 3.1, it could not be

regarded as a corner, it could only be regarded as a plane.

α =
𝑝. 𝑞

|𝑝||𝑞|
(3 − 2)

Therefore, a threshold is set here. When a corner point’s descriptor is less than the

threshold and greater than 0, its location could be stored as the feature point and its

corresponding projection ratio as a descriptor.

Figure 3.1 The illustration of the CFE

25

Extracting feature points by using this method will cause various problems. Filters

or other methods are needed to solve these problems. The specific problems are as

follows:

1) Multiple features error

In one scan, when the lidar scans through a corner, it may get several feature points.

However, it only has one corner in reality. As Figure 3.2 shows, ∠𝐴𝐵𝐶 and ∠𝐵𝐶𝐷

could be recognized in the scan, but only one corner exists in reality.

When the receive module of the front-end meets sequence corner points, it will

calculate its projection ratio and choose the one with the smallest ratio to be stored in

the map. This error will be eliminated in the feature postfiltering module in Section

3.2.1.

2) Occluded region error

The objects in the environment can occlude the environment in its back. If the

SLAM system only has lidar, it can’t know the real environment of this area. On the

boundary of the occluded, CFE will extract one feature point from it. This feature point

Figure 3.2 The example of the multiple features extraction from one feature in reality

Figure 3.3 The example of occluded region error

26

doesn’t exist in reality. Different features could be seen when the robot is moving. This

error will be eliminated in the prefiltering module in Section 3.2.1.

In the occluded region, there is a large distance between its point. Like the

∠𝐴𝐵𝐶 in Figure 3.3, the distance between A and B is too large, so these points will be

deleted.

3) Parallel lidar ray error

The reflected ray quality of the lidar points is determined by their surface. If the

surface of the point is approximately parallel to the ray of the lidar. The quality is

extremely poor. Therefore, the prefiltering module will scan and identify the quality of

the return rays of the lidar and delete the lidar rays with poor quality. Because the

information of the quality is included in the lidar’s output packages, bad points can be

filtered out before the transform of the coordinate system.

4) Others

The lidar has a maximum and minimum recognition distance range. When the

points appear within the minimum recognition range, they will be regarded as noise

points. The point out of the maximum recognition range will also be deleted, thereby

improving the robustness of the lidar. This error is also eliminated by the prefiltering

module.

3.1.2 Design of feature extraction

Based on the CFE algorithm and its consideration above, the data flow of the

overall front-end system is shown in Figure 3.4. The feature extraction is first described

below.

1) Data pre-filtering

In this part, the lidar ray information with bad quality and unreasonable distance is

deleted.

2) Sampling

Sampling is the input port of the CFE algorithm. It is important for the design in

the front-end. If the sampling interval is too large, the feature could not be recognized.

If the sampling interval is too small, the computation is too complex for the computation

and waste too much hardware resources. The specific sampling interval is described in

the implementation part. A first in first out memory component is implemented.

3) CFE processing

CFE processing based on the contents above has been designed. It can extract the

27

lidar information from the sampling part can calculate its curvature value.

4) Data post-filtering

The point generated by the occluded region will be deleted in this part with the

points out of range or have low quality.

3.1.3 Design of feature matching

Pose Matching receives data from the CFE algorithm. It describes how to calculate

the movement by a feature which has just been recognized. When the whole system just

initializes, the pose matching part will store the features generated during the first scan

cycle in the internal memory and calculate the centroid of the features.

Consider the lidar scan is much faster than the movement of the robot as

prerequisites. When the information from the next cycle has arrived at the pose

Figure 3.4 The data flow CFE-based front-end algorithm

28

matching, the present scan should be similar to the previous scan. The previous features

should also be similar to the previous features. Therefore, the movement of the robot is

the same as the movement of the centroid of features. As long as the Euclidean distance

of the observed centroid is less than a certain value and the difference between its

curvature meets a certain threshold, it can be considered as the same feature. The

movement can be considered as the distance between two centroids.

Next comes the calculation of the rotation. Consider the previous feature points

cloud as 𝑃௦ consider the next feature points cloud as 𝑃௧. The 𝑃௧ has been translated to

the same coordinate system. Rotation 𝑅 that meets Equation (3-3) should be found.

𝑃௧ = 𝑅𝑃௦ (3 − 3)

So, the loss 𝐹(𝑅) can be calculated to evaluate the rotation in Equation (3-4).

𝐹(𝑅) = ෍ ||𝑅𝑃௦

ே

௜ୀ଴

− 𝑃௧||ଶ (3 − 4)

This Equation can be simplified to Equation (3-5). The question can be

transformed to Equation (3-6).

𝐹(𝑅) = ෍(||𝑃௦||ଶ + ||𝑃௧||ଶ − 2𝑃௧
்𝑅𝑃௦)ଶ

ே

௜ୀ଴

(3 − 5)

𝑅∗ is needed to find the minimum 𝐹(𝑅).

𝑅∗ = arg 𝑚 𝑎𝑥ோ(2𝑃௧
்𝑅𝑃௦) = arg 𝑚 𝑎𝑥ோ𝑡𝑟𝑎𝑐𝑒(𝑃௧

்𝑅𝑃௦) (3 − 6)

𝑡𝑟𝑎𝑐𝑒(𝑃௧
்𝑅𝑃௦) = 𝑡𝑟𝑎𝑐𝑒(𝑅𝑃௧

்𝑃௦) (3 − 7)

SVD[57] is used for the next calculation. In linear algebra, the SVD is a

factorization of a real or complex matrix that generalizes the eigen decomposition of a

square normal matrix to any 𝑚 × 𝑛 matrix via an extension of the polar decomposition.

Consider 𝑃௧
்𝑃௦ as 𝐻 to compute SVD. 𝑈 is the left unitary matrix. Σ is the

singular matrix. 𝑉 is the right unitary matrix. The calculation is shown in Equation (3-

29

8).

𝑡𝑟𝑎𝑐𝑒(𝑅𝑃௧
்𝑃௦) = 𝑡𝑟𝑎𝑐𝑒(𝑅𝐻) = 𝑡𝑟𝑎𝑐𝑒൫𝑅𝑈Σ𝑉்൯ = 𝑡𝑟𝑎𝑐𝑒൫Σ𝑉்𝑅𝑈൯ (3 − 8)

In order to get the maximum trace. 𝑉்𝑅𝑈 should be equal to 𝐼 . That makes

Equation (3-9).

𝑅∗ = 𝑉𝑈் (3 − 9)

Therefore, the rotation could be calculated correctly. Movement information with

the rotation information will be sent to the back-end system. The calculates of the

rotation and movement is shown in the pose estimation module in Section 3.2.1.

3.2 The Front-end SLAM System Implementation in FPGA

CFE is a lightweight feature extraction method which can be realized in parallel,

it is therefore suitable to be implemented based on FPGA. Implementation of the CFE

Figure 3.5 The VHDL-based FPGA architecture of front-end design.

30

algorithm-based front-end design in the SLAM system is described below. The

hardware architecture is shown in Figure 3.5. It mainly includes the part of

programmable logic part and the processor system part.

3.2.1 The implementation of hardware modules

In this thesis, implementation based on VHDL is finished. As shown in Figure 3.5,

The gray and yellow modules in the architecture are designed in programmable logic.

The blue modules in it are peripheral devices or modules designed by the processor

system.

There are 8 main modules. The controller module is designed to control the overall

front-end system like the data flow above. Other modules are described below.

1) Lidar control module

The lidar control module can be divided into two parts, one is the part to

communicate reset signal with lidar, another is the part that communicates scan signal

with lidar.

The lidar communication module is responsible for sending control signals to the

lidar and receiving the signals from the lidar to put them into the prefiltering module.

All data are transmitted through the UART (Universal Asynchronous Receiver and

Transmitter) data protocol. This data transmission protocol is robust and can be simply

implemented by hardware. This protocol is also very suitable for implementation by

hardware description language.

Figure 3.6 The communication process of the lidar scan[58]

31

The normal communication process of the lidar is shown in Figure 3.6. The FPGA

board is connected to the lidar through the PMOD port. This thesis also implements the

hardware of the UART port. When the button is pressed, the board will automatically

send the start scanning command to the lidar, and the lidar will send the measured value

back.

Figure 3.7 The processing logic of the reset signal[58]

The reset control signal can be sent by pushing the reset button on the board. The

processing logic of the reset signal shows in Figure 3.7. It is slightly different from the

scan control signal.

Based on the mechanism above the finite state machine of the lidar control module

is designed as Figure 3.8. It takes the waiting time into consideration. The received data

Figure 3.8 The finite state machine of lidar control module

32

of the lidar control module is sent to the prefiltering module by the control module. The

check bit information is sent to the correct visualization module.

2) Prefiltering module

As mentioned in Section 3.1.1, the prefiltering module is responsible for

preprocessing the data from the lidar. The return data of the lidar contains some

messages with errors or garbled due to timing issues. One of the subsequent goals is to

remove the points on mirrors. The echoes returned from mirrors are extremely unstable

and should not be used in feature extraction. Under the circumstances that the lidar

beam is approximately parallel to the surface of lidar points, the quality of the lidar data

is not high and should also not be used. Quality is the data received from the lidar. it

can be judged directly. if the quality is too bad, the data pre-filtering module will wait

for the next point input from the lidar control module.

Another consideration in this module is the distance of the point, if the distance is

too large or too small, the data pre-filtering module will also throw the current value

and wait for the next point input. The data pass through the prefiltering module is sent

to the sampling module.

3) Correct visualization module

The goal of this module is to determine whether the format of the data is correct

or not. If the format is right, the subsequent filtering process can be performed. If there

is something wrong with the format because of a problem with the timing, the board

will light up a led to display. Users can control the reset button to reset the lidar control

module.

4) Sampling

The design of the sampling module is built by a First In First Out (FIFO) structure

as shown in Figure 3.9, which is responsible for extract the data with three equally

spaced points according to the time sequence and pushing them into the data processing

module. Once the lidar input one point into this buffer, the buffer will throw the oldest

Figure 3.9 The design of data buffer

33

point like moving the sliding window. Although interval sampling of the points has been

done in the buffer, points information will not be lost in the buffer. The data after

sampling will be used to generate features in the data processing module.

5) Data processing module

The data processing module is responsible for calculating three points from the

buffer into a Corner Feature by using the CFE method. This processing step includes

the angle-to-radian conversion module. Besides, the CORDIC-based block is used in

this thesis to calculate the sine and cosine values. After that, the coordinates of x and y

can be calculated.

The data processing module is three-way parallel and is optimized by the design

of the data buffer module, and this optimization can significantly increase the

calculation efficiency by three times.

After obtaining the coordinates of the three points, the vectors of two adjacent

points will be calculated and these two vectors will be multiplied to get the dot product.

Because the format used to calculate in VHDL is integral, the projection ratio must

be 0 after the transformation of the value smaller than 1 to an integer. So, the feature

processing module is designed to first multiply the dot production value by time, then

it divides the result by the multiple of the vectors’ molds.

When calculating the molds, it is necessary to use the square root calculation, which

will also be implemented by using the CORDIC IP core in Vivado. After the calculation,

the output values can be put into the feature postfiltering module.

6) Data post-filtering module

Figure 3.10 The feature processing dataflow

34

Some of the situations mentioned in the previous Section cannot be directly

eliminated when the receive module gets the lidar data, so it is necessary to add a post-

data filtering module.

The multiple features error should be dealt with first in this module. Feature points

that are close enough are combined into a set through buffers. In this set, the post-

filtering module will select the point with the minimum projection ratio bigger than 0

as the most representative point to output and use it for feature matching. This point is

also closest to the actual corner feature.

The last one is the occluded region error, the point which has a negative projection

ratio will be eliminated. The features which have at least one mold of the vectors that

are bigger than the threshold will also be deleted.

7) Pose estimation module

This module is engaged in estimating the odometry information of the current time

step from the last time step. SVD can be simplified in 2D circumstances. Therefore, the

matching process is made by constructing a comprehensive matrix of related poses with

environmental feature points. The finite state machine of the pose estimation module is

shown in Figure 3.11.

Figure 3.11 The state machine of pose estimation module

35

3.2.2 The implementation of software system

Next comes the implementation of the software system, the software system is the

part which can connect to the laptop by LAN. The architecture of the PYNQ is shown

in Figure 3.12. On the laptop, users can edit the processor system and program the

programmable logic by using the bitstream file in the SD card.

By using the AXI interface, the processor system can easily connect to the

programmable logic by just read the address and write the specific address. The

program can be easily built by the library functions. The processor system will visualize

the movement result with feature points.

3.3 The Implementation Results of the Front-end System

After the implementation of the front-end system, the hardware resources are

calculated by the Xilinx Synthesis tools as Table 3.1 below. In order to evaluate its

performance, the system is built according to Figure 3.13 to test the performance of the

front-end SLAM system.

Figure 3.12 The architecture of PYNQ-Z2

36

Table 3.1 The resource utilization of front-end system

Resource Utilization Available Utilization Ratio(%)

LUT 13222 53200 24.853

LUTRAM 100 17400 0.574

FF 7986 106400 7.506

DSP 29 220 13.181

IO 12 125 9.600

BUFG 1 32 3.125

Figure 3.13 Architecture of front-end system with the block diagram in Vivado

37

3.4 The Evaluation Results of the Front-end System

As shown in Figure 3.13, the lidar displacement is calculated from a square

experimental environment. The blue points in it are the normal points, the red points in

it are the feature points. This graph is generated by the signal transmitted to the PC.

The calculation of displacement could also be calculated by these feature points.

The experiments are set by ten times. The real displacement is determined by the ruler,

which is 15cm in the positive direction of the x-axis and 20cm in the positive direction

of the y-axis. This experiment is repeated by 10 times. The robot has no rotation in any

direction.

The detected movement can be shown in Table 3.2. The implementation has an

average accuracy of 94%. The construction of the back-end part will be started in

Chapter 4.

Table 3.2 The displacement experiments results.

Experiment number X movement Y movement X accuracy Y accuracy

1 14.013 20.979 93.42% 95.11%

2 13.619 20.717 90.79% 96.42%

3 13.981 21.268 93.20% 93.66%

4 13.727 21.241 91.51% 93.80%

5 14.061 21.054 93.74% 94.73%

Figure 3.14 The feature extraction result from a square experiment environment

38

6 14.493 20.611 96.62% 96.94%

7 13.711 21.429 91.40% 92.86%

8 14.456 20.933 96.37% 95.33%

9 14.335 20.905 95.57% 95.48%

10 13.710 20.851 91.40% 95.74%

3.5 Summary

In this chapter, the design for the front-end SLAM system is given. It includes the

CFE based corner feature extraction and feature matching.

The implementation of building a front-end SLAM system in FPGA is also given

in this chapter. The front-end system by VHDL is built in this chapter with the test in

the square experiment environment. After comparing it with the ground truth, the

accuracy of the front-end part allows the construction of the back-end part of SLAM.

In the next Chapter, the design and implementation of the back-end SLAM system

will also be given.

39

4 GA-based Back-end System Design and Implementation

In this chapter, a genetic algorithm-based back-end system is designed. The back-

end system in this thesis is based on GA. The GA in this thesis uses features to match

with the global map. The feature map used in this thesis keeps the character of the grid

map to increase the speed of matching. It is also a feature map which has low power

consumption. It is therefore suitable for us to build robust architecture in the indoor

environment, and can also be implemented in parallel.

The implementation of the back-end SLAM system is also described based on the

design. The hardware architecture and the implementation of modules are given in this

part. The connection between the front-end and back-end is also shown in this chapter.

In the end, the hardware utilization has been mentioned with the analysis.

4.1 GA-based Back-end System Design in SLAM System

When the back-end system receives a front-end information bag which contains

features, newest movement and rotation, the back-end system will perform the

following three steps.

1) Particle generation with its pose and features transformation (Section 4.1.1)

2) Feature matching and new pose estimation (Section 4.1.2)

3) Pose update with the Map update (Section 4.1.3).

Step 1 generate the particles and move the feature of particles with the current pose

to simulate the sensor noise. Step 2 filter out bad estimation generated by step 1 and

remain the best pose estimation. Step 3 will use the pose estimation to update the current

pose, the features of this pose will also be stored in the feature map. The pseudo code

of the algorithm is shown in Table 4.1.

4.1.1 Particle generation with its pose and features transformation

In this Section, generation is based on the data generated by the front-end. The

data generated by the front-end contains movement data (XY), robot rotation data (θ)

and 4 feature data (XY). Based on the pose estimation result in the front-end, particles

are generated to guess the real location. In Section 4.2, the parallel-based particle

generation will be illustrated in the particle generator module to increase the speed of

40

this function.

After the generation of the particles, their features should also be changed to fit

the new coordinate system. The specific steps are shown as follows.

The calculation can be done by Equation below. The 𝑝 represents the local

coordinates of the landmarks. The 𝑝’ represent the global coordinates of the landmarks.

The 𝑅 is the transform matrix which is decided by the head direction change of the

robot. 𝑡 is the displacement of the robot.

Table 4.1 The pseudo code of genetic algorithm-based back-end SLAM

41

𝑝’ = 𝑅𝑝 + 𝑡 (4 − 2)

θ is the rotation angle compared with the world coordinates. Rotation matrix 𝑅

can be described as Equation below.

𝑅 = ቂ
cos θ − sin θ
sin θ cos θ

ቃ (4 − 3)

Figure 4.1 can describe this matrix properly. As shown in Equation 4-3, the sin and

cos calculations are needed for transformation, this will also be implemented by

CORDIC.

4.1.2 Feature matching and new pose estimation

During this step, the data from particle generation is used to check the correctness

of guessing. The data including the 𝑁 particles and 4𝑁 particles’ features. Then

comes the matching process, each feature will find its corresponding feature in the

whole map space. It is hard when the map is big and needs too much calculation

Figure 4.1 The calculation of rotation matrix

42

resources for comparing each of them. A special memory allocation design is given in

map memory from Section 4.2, it will divide the memory space into different cells. The

corresponding feature can be found in the same cell. It will dramatically decrease the

comparison time.

During the comparison, the Manhattan distance is used to calculate the distance

between particle’s feature and global map’s feature. Particle’s fitness is decided by the

sum of all features’ distances.

If the corresponding features can’t be found in the specific particle, this particle

will be thrown away directly. If all particles can’t find their corresponding features, the

imu data will be used directly. This can be implemented as the calculation module in

Section 4.2.

Although the particle generation can run in parallel, it is hard for feature matching

to do the same thing which can result in data error. Therefore, once a particle feature

matching is ended, the best-fit particle will also be updated.

After the calculation of fitness value and best-fit particle, the best one will be used

for the next iteration to increase the correctness of guessing. The next generation will

have fewer particles with less rand range. The iteration will repeat 3 times.

After the iteration, the final particle is decided with its features. It will be stored

and used in the next step as the format of location, head direction and coordinates of

features.

4.1.3 Pose update with the map update

Based on the data from the last step, the new contents of both map and the robot

pose will be stored. The robot pose is updated directly by the data received. The map

update process will find the feature in the specific map cell and replace the oldest feature

information in it.

Therefore, it can also have some robustness for the hijack problem. When the robot

is thrown into a new environment, the old feature map will not disturb much of SLAM

processing. Although it still needs some time to adapt to the new environment.

4.2 The Back-end SLAM System Implementation in FPGA

In the following part, the description of modules in hardware implementation will

be given. The algorithm proposed in Section 4.1 is used for the implementation. Unlike

43

the SMG-SLAM which uses the grid map for the total computation, this implementation

only uses the feature map based on landmarks received from the front-end part. It can

therefore dramatically decrease the computation cost of the implementation.

As shown in Figure 4.2, the controller part controls all the memory and the

processing logic blocks and makes them work in order without inducing timing issues.

It uses the state machine to build. The description of other modules is also given below.

1) Controller

It controls all the modules with the control signal, it will also control the data

transmission between different modules. As shown in Figure 4.3. The finite state

machine is built based on the algorithm in Section 4.1.

For the control. Below is the description of the total data flow and the finite state

machine of the control system in back-end FPGA design.

 Map initial

Figure 4.2 The hardware structure of the back-end SLAM system

44

Because at the beginning of the back-end system, it doesn’t have any information

about any environment information, it just uses the landmarks extracted from the first

scan to store in the landmarks’ memory in this step. In this step, 64 particles around the

center of the map are established according to the sensor noise. The signal flag from the

front-end is read in this state. After the initialization, the control module will never enter

this state.

 Particle generator control

When the front-end movement and rotation information enter this step, the back-

end system can use the Monte Carlo method to set the particles which can assume the

movement of the robots according to the raw movement. Monte Carlo has been

mentioned before in the previous part of the paper. In this step, a lot of predictions about

the newest pose are made to find the robot’s location.

The global coordinates of the four nearest landmarks around the particle will also

be calculated after the displacement. In this state, the start signal will be transmitted to

the particle generator module. It will also listen to the signal from the fitness calculation

module.

 Fitness calculation control

In this state, the fitness calculation will be done by control the fitness calculation

module to calculate Manhattan distances and sum them. After that, the fitness result

will be checked in check fitness state.

 Check the iteration

In this state, the iteration number is checked. It will decide the next state as shown in

Figure 4.3 The finite state machine of the control module

45

Figure 4.3.

 Read imu data

When the scan landmarks are put into the back-end system, then some imu data will

also be put into this part for the preparation of the movement of the particles.

 Update pose and map

If the robot detects the landmarks which exist in previous timesteps, it will update

it with the newest observation, or it can just create a new landmark. If the memory map

is full, updated contents will also be stored in it.

2) Core memory

Core memory is used to store particle information from the particle generator

module. The information contains the coordinates of the particle with 4 features. The

location information in the core memory is the information after movement and rotation.

The calculate module will use the data in core memory to find corresponding features

for the particle in the map memory.

3) Fitness memory

It was used to store the fitness information about the difference between particles’

landmarks and the observation landmarks by the sum of Manhattan distances from the

calculation module. It will also automatically store the information about the best-fit

particle by a small function block when the memory is updated. This function block

will also extract the best-fit particle information and its features from core memory by

using the index sent by the calculation module. The fitness memory also decides

whether the best-fit particle can be used in the update pose module by the fit status. The

fit status is also controlled by the calculation module. The best fit data in fitness memory

is used in the pose update module.

Although only one particle memory space is needed for further processing, other

particle information is also stored in this memory for further optimization to eliminate

the possibility to fall into the local optimal particle.
4) Map memory

The map memory stores the landmarks’ information. It will also be updated by the

pose update module. The allocation of the map memory is shown in Figure 4.4.

In order to increase the speed of the calculation, the memory area of the features

map is divided into 𝑁ଶ areas. N decides the number of cells in the features map. The

features can be stored in the cells. The cell’s location decides the base address of the

features. The base address is composed of x address and y address. Each cell has

maximum 𝑀 features. In the features map, each cell has a memory space for the

46

pointer. The feature itself also has a related address determined by the appearance

sequence of the feature. The parameters M and N decide the fitness calculation. If the

M is too big and N is too small, the calculation speed will be slowed down. If the N is

too big and N is too small, the features will be hard to find its fitness features.

During the operation of the calculation module, it will read the corresponding cell’s

features’ values of the current particle’s feature. Each cell has a memory space to record

the oldest feature. When the feature needs to be stored in the map, the designated

memory space will be the first update. Then, the pointer’s value will plus one. Pointer’s

value will never bigger than the size of the cell.

5) Calculation

The Calculation part calculates the fitness value of each particle by sum the

Manhattan distances of 4 features and transmit it to the fitness memory. If the

corresponding cell does not exit any features or the distance between two features is out

of bond, the fit status will remain its current status. Otherwise, the smallest distance

will be calculated by its Manhattan distance and the fit status will be set to 1. The sum

of Manhattan distances will be transmitted into the fitness memory with its particle

index.

6) Pose update

Figure 4.4 The allocation of features map

47

In this module, fitness memory.is first checked with the best-fit particle. The top of

the memory stores the best-fit particle with fit status.

If there is at least one particle which has at least one landmark which meets the

maximum threshold check (fit status = 1). The module will consider this match is

successful and it will go to the next state directly to calculate the newest pose of the

robot or intelligent agent or enter the next iteration.

If not (fit status = 0), it means that the robot may not detects enough landmarks to

match or the robot has been moved too fast to record the old landmarks. In this

circumstance, the raw imu data will be used in this module to calculate the newest pose

and to add some raw feature points with raw movement and rotation to the whole map.

The odometry information accumulator is a block not only reads the odometry data

but also accumulates it to get rough odometry of the robot or agent. When the imu data

is used to calculate or it is not needed in this scan, it will automatically reset itself to

accumulate the next displacement and rotation.

Next comes the true update, the pose update is combined with the map update, it

will use the best-fit particle and its feature to update the map information. The feature

map is updated from the oldest feature. The overall state machine of this module is

shown in Figure 4.5.

7) Direct store

Figure 4.5 The state machine of pose update module

48

When the back-end system started, it has no landmarks in the whole map memory,

Therefore, the direct store module will put the first scan’s landmarks directly into the

map memory for further matching and computation.

As shown in Figure 4.6. When the robot just initializes in the new environment, its

original coordinate is shown as Equation (4-3).

𝑥 = 𝑦 =
𝑁 ∗ 𝑍𝑜𝑜𝑚𝑓𝑎𝑐𝑡𝑜𝑟

2
(4 − 3)

In order to simplify the calculation of coordinates, negative coordinates are not

allowed in the design. All coordinates are symbolized as 16-bits integers.

8) Particle generator

This module is used to generate particles according to the noise of the different

sensors to guess the true location of the robot. It should be noted that the 4 features with

the movement and rotation can come from the front-end or fitness memory’s best

Figure 4.6 The principle of PRNG

Figure 4.7 The calculation of Coordinate Transformation

49

particle.

Pseudo random number generator (PRNG) is used for the implementation. It is a

method which can quickly generate pseudo random numbers without extra physical

devices. It is also easy to be implemented in FPGA devices. PRNG is popular in

different areas like Monte Carlo-based simulation methods, process generation in video

games, and cryptography.

The specific principle of PRNG is shown in Figure 4.6. This Figure is simplified

to the calculation of four bits. The seed is used for each calculation of the PRNG. The

PRNG will generate a periodic sequence in the end. In order to build the PRNG, the

dataflow design is also needed for the implementation. When the PRNG block detects

the rising edge of the Trigger, it will start to compute the random numbers. When the

random numbers are generated, the Done_flag will be set to 1 and the control part will

know that the Particle_output is valid.

The temp value from PRNG is stored in the core memory. After that, the

coordinates of the original particle will be changed with the last pose and the rotation

and movement result from the front-end. These results are also stored in the core

memory. The feature coordinates will be transformed as Figure 4.7. The specific state

machine of this module is shown in Figure 4.8. In this module, the design will take the

advantage of the FPGA to generate particles’ computations in parallel.

Figure 4.8 The state machine of particle generation module

50

4.2.1 The combination of the front-end and back-end

AXIS is used to connect the front-end with the back-end. The back-end can’t do

the visualization in real-time. The final map data and trajectory data are stored in the

file generated by Jupyter in PYNQ.

The data will be used for visualization by the QT in C++ on PC.

4.3 The Implementation Results of the Back-end System

After the implementation of the back-end system, the utilization of hardware

resources is calculated by the Xilinx Synthesis tools as Table 4.2 below. The specific

evaluation of the back-end system will be combined with the front-end part and be

shown in specific in Chapter 5. This time, PYNQ Z2 will still be used for

implementation.

Table 4.2 The resource utilization of back-end system

Resource Utilization Available Utilization Ratio (%)

LUT-6 9762 53200 18.349

LUTRAM 600 17400 3.448

FF 4623 106400 4.344

DSP 37 220 16.818

IO 12 125 9.600

BUFG 1 32 3.125

4.4 Summary

The design of the back-end of the SLAM system is described in this chapter. The

advantages of the GA-based back-end algorithm are described compared with SMG.

Then, the hardware architecture is described in the Chapter. It including the part

that controls the whole back-end system, the part that generates the random numbers,

the part that refreshes the map, et al. The design of the back-end and the connection

between front-end and back-end is also finished.

In Chapter 5, a further comparison will be made between these two methods, the

evaluation of the whole SLAM system will also be implemented in the ROS.

51

5 Experiment and Results

In this chapter, in order to test the efficiency and usability of the feature-based

SLAM system by genetic algorithm, implementation of the front-end part in C++ within

the ROS is performed. It means that the front-end design can be used in the back-end

part.

After that, the front-end architecture is implemented on the platform of PYNQ-Z2

to do the comparison. PYNQ-Z2 board is also used to extract map and location

information for visualization. The software implementation is also proposed to make

the comparison.

Next, the comparison of the resource utilization between the Raspberry Pi and

PYNQ-Z2 board is made. The FPGA-based algorithm can increase the concurrency of

feature matching by 4-5 times.

In the end, a test of our back-end SLAM system is made to check its possibility

and performance, a comparison between the feature-based SLAM algorithm with the

FastSLAM algorithm mentioned before is made. In this comparison, the GA-based

Figure 5.1 Data flow in ROS system

52

methods proposed in this thesis can save 86.25% of power comparing with the software

platform with only 0.4% accuracy lost in SLAM.

5.1 The Software Simulation

In this software implementation, the Gazebo platform is used to generate a visual

world for robots. Gazebo is a simulation platform for ROS which has been broadly used.

In order to simulate the indoor environment at home, the components such as bed, chairs,

tables and standing people are added to the world. The specific world is shown in Figure

5.2.

In order to verify the feasibility of the algorithm in this thesis, an implementation

based on ROS with Gazebo is also made, the architecture of the software simulation is

shown in Figure 5.1.

The Movement manager is a component to control the movement of the robot, it

will publish speed messages to a specific topic called cmd_vel. A topic is a data center

Figure 5.2 The world in Gazebo for simulation

53

for other modules to subscribe to.

Then the Gazebo node will subscribe to the command and move the robot in

Gazebo world. Gazebo world itself can also generate some messages with the

movement of the robot. The virtual odometer and lidar in the robot will generate the

scanlines information with the odometry information by Gazebo. The lidar will send

angle and distance information to the front-end. The front-end part will send movement

Figure 5.4 The simulation of the robot in the front of the room

Figure 5.3 The simulation of the robot in the back of the room

54

information with the corner information to the back-end. The back-end part will

generate the position information with the map. The calculations are the same as the

process which has been mentioned before. The SLAM system will then generate the

map messages with the odometry for further usages.

Then, a visualization tool like rviz can subscribe to the information of the robot to

generate the map with the location as Figure below. Figure 5.3 and Figure 5.4 show that

the different feature points with different colors are recognized by the SLAM system.

The different colors symbolize different positions.

The blue square which is added after the rviz visualization symbolizes the room

area with the cyan-blue symbolizes the robot in the room. The arrow in the circle

symbolizes the orientation of the robot.

5.2 The Implementation of FastSLAM and EKF in Software

After the implementation of FPGA, software simulation is implemented with the

same architecture. In this thesis, the FastSLAM algorithm in C++ with the QT to do the

Figure 5.5 The architecture of software implementation

55

visualization is realized. Qt[59] is a free and open-source widget toolkit for creating

graphical user interfaces as well as cross-platform applications that run on various

software and hardware platforms such as Linux, Windows, macOS, Android, or

embedded systems with little or no change in the underlying codebase while still being

a native application with native capabilities and speed.

The implementation of the EKF is also implemented to compare the performance

with the design in this thesis. The platform used in this thesis is Raspberry Pi 3B+. It is

a cheap platform for embedded systems. In this design, the map and trajectory messages

are stored in the Raspberry pi. The Anydesk is used to connect the Raspberry Pi and PC

as shown in Figure 5.5. QT is used to show the software performance of the EKFSLAM

and visualization. A comparison of these different methods will be made in the Section

below. Below is a figure to show the software result of EKF in an environment with the

road and trees.

In Figure 5.6, a robot is moving in a road environment which has trees beside the

road, the blue points in Figure 5.6 are the landmarks extracted from the environment.

The red trajectory represents the ground truth of the robots, it is gained by the GNSS

module in the outdoor environment. The blue trajectory is the trajectory calculated by

Figure 5.6 The EKF implementation of software

56

the EKF. The red trajectory is the route which we want to realize in the beginning. The

red crosses are the sudden turning we want to realize. Because the real direction can’t

be changed directly, the red trajectory is formed automatically by the robot.

The performance could be calculated by Equation (5-1) below. The 𝑞௜ represents

the point on the trajectory estimated by the EKF. 𝑝௜ represent the point on trajectory

of the ground truth at the same time.

𝑀𝑆𝐸 =
1

𝑛
෍(𝑞௜ − 𝑝௜)

ଶ

௡

௜ୀଵ

(5 − 1)

Figure 5.7 The structure of PYNQ

57

The MSE of the EKF in Figure 5.5 is 0.023m which shows the good performance

of EKF-based SLAM in the outdoor environment.

5.3 The Hardware Evaluation

In the FPGA, the front-end part and the back-end part can be connected by the top

file. Now comes to how to export the data in the FPGA to visualize. PYNQ platform

provides a resolution. In PYNQ, a simple Linux core can be installed on the Cortex A9

core. The structure of the PYNQ is as Figure below. The programmable logic part is the

part which can be programmed by the VHDL. The lidar and odometer can be connected

to the PYNQ by using UART. The processor system is the part of Cortex A9 which can

be controlled by the python program. It can be connected with a PC by using a network

cable.

In this core, we can use python to control and read the register in the PL. In the

back-end design in this thesis, a part of HLs system is designed with the AXIS protocol

to transmit the data. The Cortex A9 core can then send the data to the computer by using

UART for faster visualization.

5.4 The Experiment and Device

To simulate indoor environment at home. In the lab, different obstacles are set to

Figure 5.8 The prototype developed and used in this work

58

increase the number of landmarks in the area and simulate complex environment. The

environment is shown in Figure 5.8 in our small car. The small car contains a leishen

16 lines lidar and an RPlidar A1. The 16 lines lidar will be used to get the ground truth

of the whole environment by using the Lego-LOAM.

The inexpensive RPLidar A1 is utilized for our experiment. It is a 360 two-

dimensional lidar with 1 resolution at 10Hz. A simple lidar platform in a square

experiment can be seen in Figure 5.9. In this platform, the lidar is connected directly to

a ZYNQ-Z7 board to test its front-end performance. There is also a connection between

the FPGA board and the PC by UART.

5.5 The Resource Utilization

In this part, the utilization of the hardware resources in the PYNQ-Z2 board and

Raspberry Pi 3B+ are shown.

5.5.1 Resource utilization of FPGA design

From table 6.1, resource utilization in PYNQ Z2 xc7z020clg400-1 can be seen. In

FPGA, there are certain blocks of RAM that use LUT storage space. Users can also use

RAM dynamically formed from LUTs in the logic part which might claim LUT

resources for calculating (i.e. use LUT-in-logic). LUTRAM has a large storage space

while RAM-by-LUT-in-logic will consume a lot of LUT resources in order to achieve

Figure 5.9 The indoor environment

59

a large storage space. However, RAM-by-LUT-in-logic is more flexible and convenient

to use.

Implementing the feature-extraction algorithm using VHDL in FPGA presents a

lot of challenges. On one side, the need for the calculation of trigonometric functions.

To solve this, a CORDIC algorithm is implemented in VHDL. In particular, the

CORDIC only calculates sine samples. For the cosine calculations which are needed in

both back-end and front-end systems, the angle values are transformed. Therefore, the

cosine calculations could be done by the sine calculations. On the other side, conversion

of the angle’s type from the degree to the radius and integrating the CORDIC

calculations into a state machine, requiring complimentary intermediate signals. By

using CORDIC, Table 5.1 shows that DSP resources are not used much in this design.

Implementing the genetic algorithm-based back end needs more resources with

LUTRAM for storing the generated particles and the map. The total IO resource

utilization is not the front-end utilization add back-end utilization, because the

combined system only has one UART connection with the PC. BUFG is the part for

connecting. Therefore, the total utilization is one.

Table 5.1 The resource utilization of front-end back-end combined system

Resource Front-end
Utilization Ratio

Back-end
Utilization Ratio

Total
Utilization Ratio

LUT-6 24.853% 18.349% 43.203%
LUTRAM 0.574% 3.448% 4.023%
FF 7.505% 4.344% 11.850%
DSP 13.181% 16.818% 30.000%
IO 9.600% 9.600% 9.600%
BUFG 3.125% 3.125% 3.125%

5.6 The Algorithm Test in Lab Experiment

In this part, the test experiment of our back-end design and a comparison between

this thesis with the result from EKF is also made. The ground truth was provided by the

Lego-LOAM.

The result of our methods is shown in Figure 5.10. The blue points in Figure 5.10

are the landmarks that exist in the environment. It can be seen that this is a square

environment with two boxes in it.

60

The red points symbolize the estimated landmarks stored in the memory. The red

trajectory symbolizes the estimated trajectory of the robot. The blue trajectory

symbolized the real trajectory of the robot.

The result shows that the method proposed in this thesis can be used for the SLAM

system indoor with pretty good accuracy. As Table 5.2 shows, the size of the box in the

area calculated by the genetic algorithm in this thesis is 0.157 𝑚ଶ. The size of the box

in the area calculated by the EKF is 0.149 𝑚ଶ. The real size of the box is 0.15 𝑚ଶ. The

Genetic Algorithm based methods we proposed in this thesis have increased the

concurrency 4-5 times which could speed up the computation process of SLAM with

0.4% accuracy lost comparing with the EKF.

Table 5.2 The accuracy comparison between two methods

 parameter accuracy

EKF 0.149 94.9%

GA 0.157 95.2%

The power consumption has also been calculated in this chapter. The power

consumption of EKF-based algorithm is 12W on the Raspberry Pi 3B+. The power

consumption in this thesis is only 1.65W which is calculated by Vivado. The GA-based

methods proposed in this thesis save 86.25% of power consumption in the SLAM

system.

In Table 5.4, it is shown that the FPGA-based SLAM system can also be faster

than the SLAM system based on software. The parameter in this Table symbolizes the

condition of the memory of the feature map.

Figure 5.10 The experiment results based-on Genetic Algorithm

61

Table 5.3 Speed results comparison

parameter M = 16, N = 16, Zoom factor = 16

Actual time for one iteration (GA) 4.55ms

Actual time for one iteration (EKF) 24.2ms

Achieved speed up 5.31 times

Table 5.4 The power consumption comparison between two methods

 Power consumption

EKF 12w

GA 1.65w

Although it remains some space to improve compared with the EKF based SLAM

system, the SLAM system proposed in this thesis has lower-power consumption and

high-speed comparison comparing with it.

5.6.1 Resource utilization among two different platforms

Table 5.5 Performance comparison between two methods

 Xilinx Zynq XC7Z010

(VHDL Impl.)

Raspberry Pi 3B+

(C++ Impl.)

Approx. Resource Max. 24%(fixed) + 2% 23% (fixed) + 47% CPU

Max. concurrency 50-60 < 5 -15

The performance between the CPU and the design on the ZYNQ board is compared.

Figure 5.11 The experiment results based-on EKF

62

The result is listed below.

For future work, more of our design LUT will be shared to minimize hardware

utilization. As shown in Table 5.5, The MAX. concurrency means that the amount of

lidar odometry calculations can be run in parallel. It can be already seen that the FPGA

design can have high efficiency on parallel computation.

5.7 Summary

In this chapter. The feasibility evaluation of the SLAM algorithm is made in the

ROS. It shows that the SLAM system in this thesis can extract features from the

domestic environment in Gazebo and realize the localization tasks.

The prototype of our system is second made to evaluate the performance in the lab

environment. The system is based on Xilinx PYNQ Z2. The multi-line lidar is also

implemented in this prototype to generate the ground truth of the prototype.

In order to compare the performance of the SLAM system in the thesis, the EKF

is also implemented on the Raspberry Pi 3B+ platform. Compared with the system on

the software, the system in this thesis can save 86.25% of power consumption with only

0.4% of accuracy loss. The hybrid SLAM system only takes 4.55ms for location

calculation in each scan which is 5.31 times faster compared with the software

implementation with EKF.

63

6 Conclusion and Future Work

Low-cost, stable and fast SLAM systems are expected to be of great demand and

broadly used in the future. The motivation for this study was to design, develop and

implement a hybrid SW-HW methodology for a robust SLAM but also with low power

consumption to make the whole system have a long operating time.

In this thesis, replacing some feature-extraction work on the CPU with FPGA with

low power consumption and high speed is confirmed to be possible. This results in SW-

HW co-design at the system level shows that FPGA can handle multiple tasks in parallel

to accelerate the multiple homogeneous tasks and CPU can have more computation

resources to do some complex work like state changes and visualization. High-

parallelism and low-latency SLAM systems meeting the low-cost and high energy

efficiency requirements set as objectives of the thesis.

It has also been confirmed that the SLAM system with the CFE method and the

genetic algorithm can operate in ROS with Gazebo for visualization. With the ROS

implementation, it is easier to implement the system in FPGA.

Finally, it is confirmed that the Genetic Algorithm Based SLAM system in FPGA

can be used in the indoor environment compared with the FastSLAM algorithm with a

slight trajectory disturbance. The accuracy lost is 0.4% comparing with the software

implementation. But the design on FPGA can save 85.25% of the computation power

consumption. The hybrid SLAM system only takes 4.55ms for location calculation in

each scan which is 5.31 times faster compared with the software prototype with EKF.

The main challenge in this work was to design the complete system based on

FPGA. Both the back-end and the front-end systems need to control the memory to

read and write in the right order, it can only be carefully realized by state machine in

FPGA.

In the future, a grid-based topology map will be added to our implementation.

Grid-based topology maps now can be used on global navigation with the free space

and the specific target. The navigation tasks can be handled by combining the global

navigation method with the local navigation method. To handle local navigation tasks,

a collision-avoidance mechanism will also be built in the future.

The hijack problem in a mobile robot will also be considered in the future. If

someone takes up the robot and throws it into a new environment, the robot must

recognize the brand-new environment and make new navigation tasks based on the

new environment.

64

References

[1] Department of International Cooperation Ministry of Science and

Technology and P.R.China, “Next Generation Artificial Intelligence

Development Plan,” 2017.

[2] HIT ROBOT Group and China Institute of Science and Technology

Evaluation, “Research Report on the Service Robot Industry in China 2019,”

2019.

[3] A. Singandhupe and H. M. La, “A Review of SLAM Techniques and

Security in Autonomous Driving,” in 2019 Third IEEE International

Conference on Robotic Computing (IRC), 2019, pp. 602–607. doi:

10.1109/IRC.2019.00122.

[4] C. Cadena et al., “Past, present, and future of simultaneous localization and

mapping: Toward the robust-perception age,” IEEE Transactions on

Robotics, vol. 32, no. 6, pp. 1309–1332, 2016, doi:

10.1109/TRO.2016.2624754.

[5] M. Zaffar, S. Ehsan, R. Stolkin, and K. M. D. Maier, “Sensors, SLAM and

Long-term Autonomy: A Review,” 2018 NASA/ESA Conference on

Adaptive Hardware and Systems, AHS 2018, pp. 285–290, 2018, doi:

10.1109/AHS.2018.8541483.

[6] D. V Nam and K. Gon-Woo, “Solid-State LiDAR based-SLAM: A Concise

Review and Application,” in 2021 IEEE International Conference on Big

Data and Smart Computing (BigComp), 2021, pp. 302–305. doi:

10.1109/BigComp51126.2021.00064.

[7] A. Li, X. Ruan, J. Huang, X. Zhu, and F. Wang, “Review of vision-based

Simultaneous Localization and Mapping,” in 2019 IEEE 3rd Information

Technology, Networking, Electronic and Automation Control Conference

(ITNEC), 2019, pp. 117–123. doi: 10.1109/ITNEC.2019.8729285.

[8] A. Li, X. Ruan, J. Huang, X. Zhu, and F. Wang, “Review of vision-based

Simultaneous Localization and Mapping,” in 2019 IEEE 3rd Information

Technology, Networking, Electronic and Automation Control Conference

(ITNEC), 2019, no. Itnec, pp. 117–123. doi: 10.1109/ITNEC.2019.8729285.

[9] B. Gao, H. Lang, and J. Ren, “Stereo Visual SLAM for Autonomous

65

Vehicles: A Review,” in 2020 IEEE International Conference on Systems,

Man, and Cybernetics (SMC), 2020, vol. 2020-Octob, pp. 1316–1322. doi:

10.1109/SMC42975.2020.9283161.

[10] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A Versatile

and Accurate Monocular SLAM System,” IEEE Transactions on Robotics,

vol. 31, no. 5, pp. 1147–1163, 2015, doi: 10.1109/TRO.2015.2463671.

[11] Q. Huang and Y. Zhang, “Space Target Association Based on Epipolar

Geometry Constraints under Multi-Star Sensors,” in 2019 3rd International

Conference on Electronic Information Technology and Computer

Engineering (EITCE), 2019, vol. 2, pp. 1550–1554. doi:

10.1109/EITCE47263.2019.9094972.

[12] R. I. Hartley and P. Sturm, “Triangulation,” Computer Vision and Image

Understanding, vol. 68, no. 2, pp. 146–157, 1997, doi:

10.1006/cviu.1997.0547.

[13] S. Li, C. Xu, and M. Xie, “A robust O(n) solution to the perspective-n-point

problem,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 34, no. 7, pp. 1444–1450, 2012, doi: 10.1109/TPAMI.2012.41.

[14] T. Whelan et al., “Computer Science and Artificial Intelligence Laboratory

Technical Report Kintinuousௗ: Spatially Extended KinectFusion

Kintinuousௗ: Spatially Extended KinectFusion,” 2012.

[15] H. Kim, S. Leutenegger, and A. J. Davison, “Real-Time 3D Reconstruction

and 6-DoF Tracking with an Event Camera,” in Computer Vision -- ECCV

2016, 2016, pp. 349–364.

[16] H. T. and T. W. J. Pe˜na Queralta1, F. Yuhong, L. Salomaa, L. Qingqing, T.

N. Gia, Z. Zou, “FPGA-based Architecture for a Low-Cost 3D Lidar Design

and Implementation from Multiple Rotating 2D Lidars with ROS,” pp. 2–

5, 2019.

[17] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and Ground-

Optimized Lidar Odometry and Mapping on Variable Terrain,” IEEE

International Conference on Intelligent Robots and Systems, pp. 4758–4765,

2018, doi: 10.1109/IROS.2018.8594299.

[18] M. Zaffar, S. Ehsan, R. Stolkin, and K. M. D. Maier, “Sensors, SLAM and

Long-term Autonomy: A Review,” 2018 NASA/ESA Conference on

Adaptive Hardware and Systems, AHS 2018, pp. 285–290, 2018, doi:

66

10.1109/AHS.2018.8541483.

[19] Y. Song, M. Guan, W. P. Tay, C. L. Law, and C. Wen, “UWB/LiDAR fusion

for cooperative range-only SLAM,” Proceedings - IEEE International

Conference on Robotics and Automation, vol. 2019-May, pp. 6568–6574,

2019, doi: 10.1109/ICRA.2019.8794222.

[20] R. Kreiser, A. Renner, Y. Sandamirskaya, and P. Pienroj, “Pose Estimation

and Map Formation with Spiking Neural Networks: Towards

Neuromorphic SLAM,” IEEE International Conference on Intelligent

Robots and Systems, pp. 2159–2166, 2018, doi:

10.1109/IROS.2018.8594228.

[21] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of

the EKF-SLAM Algorithm,” Proceedings of the 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 3562–3568,

2006.

[22] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on

particle filters for online nonlinear/nongaussian bayesian tracking,”

Bayesian Bounds for Parameter Estimation and Nonlinear

Filtering/Tracking, vol. 50, no. 2, pp. 723–737, 2007, doi:

10.1109/9780470544198.ch73.

[23] N. V Dinh and G. Kim, “Multi-sensor Fusion Towards VINS: A Concise

Tutorial, Survey, Framework and Challenges,” in 2020 IEEE International

Conference on Big Data and Smart Computing (BigComp), 2020, pp. 459–

462. doi: 10.1109/BigComp48618.2020.00-26.

[24] T. Qin, P. Li, and S. Shen, “VINS-Monoௗ: A Robust and Versatile Monocular

Visual-Inertial State Estimator,” vol. 34, no. 4, pp. 1004–1020, 2018.

[25] G. Huang, “Visual-Inertial Navigationௗ: A Concise Review,” 2019

International Conference on Robotics and Automation (ICRA), pp. 9572–

9582, 2019, doi: 10.1109/ICRA.2019.8793604.

[26] N. Van DInh and G. W. Kim, “Multi-sensor fusion towards vins: A concise

tutorial, survey, framework and challenges,” Proceedings - 2020 IEEE

International Conference on Big Data and Smart Computing, BigComp

2020, pp. 459–462, 2020, doi: 10.1109/BigComp48618.2020.00-26.

[27] T. Qin, P. Li, and S. Shen, “VINS-Monoௗ: A Robust and Versatile Monocular

Visual-Inertial State Estimator,” vol. 34, no. 4, pp. 1004–1020, 2018.

67

[28] G. Shafer, “Dempster-shafer theory,” Encyclopedia of artificial intelligence,

vol. 1, pp. 330–331, 1992, doi: 10.4018/978-1-59904-849-9.ch068.

[29] P. Biber and W. Straßer, “The Normal Distributions Transform: A New

Approach to Laser Scan Matching,” in Proceedings 2003 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS

2003)(Cat. No. 03CH37453), 2003, vol. 3, no. October, pp. 2743–2748.

[30] L. Qingqing, J. Pena Queralta, T. Nguyen Gia, Z. Zou, and T. Westerlund,

“Multi Sensor Fusion for Navigation and Mapping in Autonomous Vehicles:

Accurate Localization in Urban Environments,” Unmanned Systems, 2020,

doi: 10.1142/s2301385020500168.

[31] R. Kreiser, A. Renner, Y. Sandamirskaya, and P. Pienroj, “Pose Estimation

and Map Formation with Spiking Neural Networks: Towards

Neuromorphic SLAM,” IEEE International Conference on Intelligent

Robots and Systems, pp. 2159–2166, 2018, doi:

10.1109/IROS.2018.8594228.

[32] D. Rodriguez-Losada, P. San Segundo, F. Matia, R. Galan, A. Jiménez, and

L. Pedraza, “FastSLAM: A Factored Solution to the Simultaneous

Localization and Mapping Problem,” IFAC Proceedings Volumes (IFAC-

PapersOnline), vol. 6, no. PART 1, pp. 542–547, 2007, doi:

10.3182/20070903-3-fr-2921.00092.

[33] B. L. E. A. Balasuriya et al., “Outdoor robot navigation using Gmapping

based SLAM algorithm,” 2nd International Moratuwa Engineering

Research Conference, MERCon 2016, pp. 403–408, 2016, doi:

10.1109/MERCon.2016.7480175.

[34] B. Triggs, P. McLauchlan, and R. Hartley, Vision Alogirithms: Theory and

Practice, vol. 7246. 2012. doi: 10.1007/978-3-642-29066-4{_}11.

[35] R. Goebel, RoboCup 2011: Robot World Cup XV. 2011. doi: 10.1007/978-

3-642-34182-3.

[36] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and R.

Vincent, “Efficient sparse pose adjustment for 2D mapping,” IEEE/RSJ

2010 International Conference on Intelligent Robots and Systems, IROS

2010 - Conference Proceedings, pp. 22–29, 2010, doi:

10.1109/IROS.2010.5649043.

[37] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D

68

LIDAR SLAM,” Proceedings - IEEE International Conference on Robotics

and Automation, vol. 2016-June, pp. 1271–1278, 2016, doi:

10.1109/ICRA.2016.7487258.

[38] J. Zhang and S. Singh, “Low-drift and real-time lidar odometry and

mapping,” Autonomous Robots, vol. 41, no. 2, pp. 401–416, 2017, doi:

10.1007/s10514-016-9548-2.

[39] E. Rosten and T. Drummond, “Machine learning for high-speed corner

detection,” Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.

3951 LNCS, pp. 430–443, 2006, doi: 10.1007/11744023_34.

[40] W. E. Holzinger, H. Löcker, and B. Löcker, “SURF: Speeded Up Robust

Features,” Bulletin of Insectology, vol. 61, no. 1, pp. 121–122, 2008.

[41] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004,

doi: 10.1023/B:VISI.0000029664.99615.94.

[42] C. J. H. Chien, C. C. Hsu, W. Y. Wang, W. C. Kao, and C. J. H. Chien,

“FPGA-Implemented Corner Feature Extracting Simultaneous Localization

and Mapping,” IEEE International Conference on Consumer Electronics -

Berlin, ICCE-Berlin, vol. 2016-Octob, pp. 98–99, 2016, doi:

10.1109/ICCE-Berlin.2016.7684729.

[43] C. J. H. Chien, C. J. H. Chien, and C. C. Hsu, “Hardware-Software Co-

Design of an Image Feature Extraction and Matching Algorithm,”

Proceedings - 2019 2nd International Conference on Intelligent

Autonomous Systems, ICoIAS 2019, pp. 37–41, 2019, doi:

10.1109/ICoIAS.2019.00013.

[44] P. J. Zeno, “Using an FPGA to emulate grid cell spatial cognition in a mobile

robot,” 2016 Joint IEEE International Conference on Development and

Learning and Epigenetic Robotics, ICDL-EpiRob 2016, pp. 7–8, 2017, doi:

10.1109/DEVLRN.2016.7846778.

[45] Z. Xu, J. Yu, C. Yu, H. Shen, Y. Wang, and H. Yang, “CNN-based Feature-

point Extraction for Real-time Visual SLAM on Embedded FPGA,”

Proceedings - 28th IEEE International Symposium on Field-Programmable

Custom Computing Machines, FCCM 2020, pp. 33–37, 2020, doi:

10.1109/FCCM48280.2020.00014.

69

[46] G. Mingas, E. Tsardoulias, and L. Petrou, “An FPGA implementation of the

SMG-SLAM algorithm,” Microprocessors and Microsystems, vol. 36, no.

3, pp. 190–204, 2012, doi: 10.1016/j.micpro.2011.12.002.

[47] H. Yoshida, H. Fujimoto, D. Kawano, Y. Goto, M. Tsuchimoto, and K. Sato,

“ROS: an open-source Robot Operating System,” IECON 2015 - 41st

Annual Conference of the IEEE Industrial Electronics Society, pp. 4754–

4759, 2015, doi: 10.1109/IECON.2015.7392843.

[48] C. Cadena et al., “Past, present, and future of simultaneous localization and

mapping: Toward the robust-perception age,” IEEE Transactions on

Robotics, vol. 32, no. 6, pp. 1309–1332, 2016, doi:

10.1109/TRO.2016.2624754.

[49] J. Khalife, S. Ragothaman, and Z. M. Kassas, “Pose estimation with lidar

odometry and cellular pseudoranges,” IEEE Intelligent Vehicles Symposium,

Proceedings, no. Iv, pp. 1722–1727, 2017, doi: 10.1109/IVS.2017.7995956.

[50] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45, no.

3, pp. 52–57, 2002, doi: 10.1145/504729.504754.

[51] G. others Welch, Greg Bishop, G. Welch, G. Bishop, and others, “An

introduction to the Kalman filter,” IEEE Antennas and Wireless

Propagation Letters, vol. 17, no. 5, pp. 833–836, 1995, doi:

10.1109/LAWP.2018.2818058.

[52] E. Hoshiya, Masaru Saito, M. Hoshiya, and E. Saito, “Structural

identification by extended Kalman filter,” Journal of engineering

mechanics, vol. 110, no. 12, pp. 1757–1770, 1984.

[53] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for

nonlinear estimation,” IEEE 2000 Adaptive Systems for Signal Processing,

Communications, and Control Symposium, AS-SPCC 2000, pp. 153–158,

2000, doi: 10.1109/ASSPCC.2000.882463.

[54] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on

particle filters for online nonlinear/nongaussian bayesian tracking,”

Bayesian Bounds for Parameter Estimation and Nonlinear

Filtering/Tracking, vol. 50, no. 2, pp. 723–737, 2007, doi:

10.1109/9780470544198.ch73.

[55] S. Thrun and A. Bücken, “Learning Maps for Indoor Mobile Robot

Navigation.,” 1996.

70

[56] H. Tang, R. Yan, and K. C. Tan, “Cognitive Navigation by Neuro-Inspired

Localization, Mapping, and Episodic Memory,” IEEE Transactions on

Cognitive and Developmental Systems, vol. 10, no. 3, pp. 751–761, 2018,

doi: 10.1109/TCDS.2017.2776965.

[57] K. Baker, “Singular value decomposition tutorial,” The Ohio State

University, vol. 24, 2005.

[58] SLAMTEC, “RPLIDAR Low Cost 360 Degree Laser Range Scanner

Interface Protocol and Application Notes,” 2018.

http://bucket.download.slamtec.com/b42b54878a603e13c76a0a0500b535

95846614c6/LR001_SLAMTEC_rplidar_protocol_v1.1_en.pdf

[59] The Qt Company., “Qt 6.0.2 Released,” 2021. https://www.qt.io/blog/qt-

6.0.2-released

