
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

1-26-2016 12:00 AM 

Feature Encoding Strategies for Multi-View Image Classification Feature Encoding Strategies for Multi-View Image Classification 

Kyle Doerr 
The University of Western Ontario 

Supervisor 

Jagath Samarabandu 

The University of Western Ontario 

Graduate Program in Electrical and Computer Engineering 

A thesis submitted in partial fulfillment of the requirements for the degree in Master of 

Engineering Science 

© Kyle Doerr 2016 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Artificial Intelligence and Robotics Commons, and the Software Engineering Commons 

Recommended Citation Recommended Citation 
Doerr, Kyle, "Feature Encoding Strategies for Multi-View Image Classification" (2016). Electronic Thesis 
and Dissertation Repository. 3500. 
https://ir.lib.uwo.ca/etd/3500 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F3500&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F3500&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F3500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/3500?utm_source=ir.lib.uwo.ca%2Fetd%2F3500&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract

Machine vision systems can vary greatly in size and complexity depending on the task

at hand. However, the purpose of inspection, quality and reliability remains the same. This

work sets out to bridge the gap between traditional machine vision and computer vision. By

applying powerful computer vision techniques, we are able to achieve more robust solutions

in manufacturing settings. This thesis presents a framework for applying powerful new image

classification techniques used for image retrieval in the Bag of Words (BoW) framework. In

addition, an exhaustive evaluation of commonly used feature pooling approaches is conducted

with results showing that spatial augmentation can outperform mean and max descriptor pool-

ing on an in-house dataset and the CalTech 3D dataset. The results of the experiments contained

within, details a framework that performs classification using multiple view points. The results

show that the feature encoding method known as Triangulation Embedding outperforms the

Vector of Locally Aggregated Descriptors (VLAD) and the standard BoW framework with an

accuracy of 99.28%. This improvement is also seen on the public Caltech 3D dataset where

the improvement over VLAD and BoW was 5.64% and 12.23% respectively. This proposed

multiple view classification system is also robust enough to handle the real world problem of

camera failure and still classify with a high reliability. A missing camera input was simulated

and showed that using the Triangulation Embedding method, the system could perform classifi-

cation with a minor reduction in accuracy at 98.89%, compared to the BoW baseline at 96.60%

using the same techniques. The presented solution tackles the traditional machine vision prob-

lem of object identification and also allows for the training of a machine vision system that can

be done without any expert level knowledge.

Keywords: Machine Vision, Manufacturing reliability, Triangulation embedding, Multi-

view image classification, Multiple view vision system
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Chapter 1

Introduction

1.1 Motivation

Machine vision is the process of applying image processing and analysis to automate certain

tasks. This term is typically applied to automating lower level tasks such as the reading of

optical characters, defect inspection, and object counting. Computer vision on the other hand

focuses on higher level tasks such as object and person classification, detection, tracking and

segmentation. Typically, computer vision tasks use more complex methods and models for

representing visual data. Often at that core of computer vision, these tasks are more difficult

than machine vision because of variability in the input data and often the data comes from

images that the input is not from a controlled environment. Trying to get a computer to interpret

and make decisions given a wide variety of complex visual information like a human would is

more challenging when the image or video is captured by a human and can contain variable

poses and possible occlusions. This would not be the case for machine vision environments

in which the camera is often in a fixed position and some knowledge of what to expect in the

image would be known beforehand.

Machine vision will often use more low level techniques that have proven themselves to

be useful in industrial settings but unable to handle the large variations in input data. Machine

vision often requires a clear specified problem that can only be handled in a controlled environ-

ment resulting in input data that has less variance. For a product that uses machine vision for

object verification and defect detection to have any use in an industrial setting it must provide

1



2 Chapter 1. Introduction

very high accuracy and always be more reliable and faster than human inspection. Depending

on the application in computer vision detecting object defects can have a wide variability in

accuracy depending on the application and technique used. For example, a system that can

achieve a 5% misclassification rate may achieve state of the art results for a particular learn-

ing task and that may be acceptable, but in an industrial setting that can potentially process

thousands of parts a day as say defective, this system may no longer be acceptable at fully

automating a task.

Machine vision systems offer high accuracy, but are limited to their environment and often

require very careful parameter tuning. Computer vision on the other hand has more freedom in

the variability of the data and while often has parameters tuning, typically it is not as stringent

with the parameter learning being treated sometimes as a learning task in itself; say using a

validation set. Our problem that we try to answer is, if machine vision works well on easier,

more well defined problems but not on challenging problems with greater variability in the

input and computer vision techniques perform reasonably well on more challenging hard prob-

lems, is there a way to bridge the gap between the two and use the strengths of computer vision

approaches in industrial applications?

In many manufacturing settings assembly lines use conveyor belts to move parts to different

stages of production. In places that manufacture auto parts the products might have minimal

variations in size, orientation, texture and luster. This is because each class of part is specific

to the location of the car it is on and the part design between car models and the year of

manufacture often varies. Many manufacturers employ people to manually inspect these parts

but given the level of similarity among the parts moving on a belt the current approach is prone

to human error. Correct part classification is essential for quality control and has financial

implications for automotive manufacturers when high standards are not met. In this work we

propose a low cost framework to address this problem of similar auto part classification using

techniques from computer vision.

Our specific problem was to perform classification on window guides and pillars. The

functionality of these parts is just that, to guide windows as they move up and down. The

vertical parts are called pillars and the horizontal parts are called window guides. Samples

of pillars and guides and where they fit on a vehicle can be seen in Figure 1.1. Since the
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parts come in different combinations of shapes, sizes and orientations we opted to use multiple

cameras angled downwards so that differences among similar parts could be visually captured.

More information on these parts can be found in Chapter 3.

1.1.1 Problem Statement

At the time of research, these automotive parts were previously categorized by humans during

the manufacturing process. Since there are several stages during the production process, the

parts could undergo chemical baths and painting as intermediate processes. Because of these

stages, appending simple labels for identification in the form of barcodes is not possible. Using

humans to visually categorize these parts and then sort them, resulted in frequent mislabelling

that created confusion for the manufacturers during the assembly stage.

Figure 1.1: Images of window pillars, guides1and their location on a vehicle

1.2 SIFT, SURF, and ORB features

1.2.1 SIFT features

Scale-Invariant Feature Transform (SIFT)[34], Speeded-Up Robust Features (SURF)[1], and

Oriented FAST and Rotated BRIEF (ORB)[43] are all methods for generating a collection of

local image features. These local image features are designed to be invariant to translation,

scaling and rotation. In other words, these local features can be reliably matched to a new set

of image features, even if the new image has undergone one or all of these transformations.

1https://www.ecstuning.com



4 Chapter 1. Introduction

The SIFT algorithm has been one of the most popular and widely used algorithms for

detecting and describing image features over the past 15 years. The input image is repeatedly

blurred and downsampled to create a pyramid. The differences between successive layers in

the pyramid is computed to form a subsequent pyramid known as a Difference of Gaussian

(DoG) pyramid. Local extrema at both the space neighbourhood and scale neighbourhood of

are marked as keypoints.

The keypoints correspond to an edge or a corner. Keypoints that lie on corners are more

desirable as they are more discriminative as explained in Section 2.4. The principal curvatures

of the keypoint are encoded by the Hessian matrix:

H =

Dxx Dxy

Dxy Dyy

 (1.1)

The ratio of the two eigenvalues of the Hessian matrix gives insight as to whether the

keypoint resembles more like a corner or edge. The keypoints that are too similar to edges are

removed.

The step after rejecting keypoints is to make the local feature rotationally invariant. Around

each keypoint, a histogram containing weighted orientations of local gradients within a circular

grid is computed. The dominant gradient becomes the canonical orientation in which the patch

is rotated respectively as seen in Figure 1.2b

(a) Difference of Gaussian Pyramid2 (b) SIFT Descriptors from keypoints3

Figure 1.2: Generation of SIFT Descriptors with scale and rotation invariance

2http://aishack.in/tutorials/sift-scale-invariant-feature-transform-log-approximation
3http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O
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1.2.2 SURF features

The SURF algorithm, like SIFT was based on the same principals of generating local image

features that are invariant to translation, scaling and rotation. While SIFT features are quite

robust, they are also slow to compute because of some computationally intensive tasks such as

repeatedly performing convolution with the Gaussian kernel then downsampling to build the

DoG pyramid. SURF uses a different approach to detect keypoints by using a Hessian based

detector with the Laplace of Gaussian (LoG) approximation, given by:

H(x, σ) =

Lxx(x, σ) Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

 (1.2)

The SURF approach is then to approximate the LoG using box filters. SIFT has a scale

space representation by repeatedly performing blurring and subsampling the input image then

computing the DoG pyramid. SURF achieves scale invariance by increasing the box filter size

at each level of the pyramid. Using the integral image representation initially introduced by

Viola and Jones [48], convolution with a box filter can be performed in constant time O(1)

regardless of the filter size.

The determinant of Hessian det(H) is computed with non-maximum suppression over the

space and neighbouring scales. The resulting maxima that are left are identified as keypoints.

The Haar like filters similar to the scale representation step are used to compute the dom-

inant gradient in the x & y direction in a circular region. The feature descriptor is built using

4x4 square subregions over the interest point. Gradient and magnitude information are used to

build a 64 dimensional feature vector.

1.2.3 ORB features

ORB features are based on principles of SIFT and SURF features and are explained in much

more detail in Section 2.4. The feature descriptors are built from sampling patterns precom-

puted to have a large variance. These sampling patterns are oriented by directional information

and build a binary string that allows for fast computation and comparison to other ORB fea-

tures. This brand of binary features are ideal for embedded applications and low powered
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(a) Box filters used in feature detection4
(b) Scale-space representation, computed in con-
stant time5

Figure 1.3: The shrinking of the hull by erosion

devices with limited memory.

1.3 Thesis Contribution

The contributions of this thesis are as follows:

• A comparison of faster, more efficient computer vision features for the purpose of

machine vision are evaluated and compared to traditional feature types and the pros and

cons of both are evaluated. The results obtained show that binary ORB features are

more suitable than SIFT and SURF features for machine vision applications in

controlled environments.

• A demonstration that using more advanced feature encoding techniques that contain

higher order information, for the purpose of fine-grained image classification with

multiple views has an improved classification accuracy for a machine vision dataset.

These results also generalize to the publicly available CalTech 3D dataset.

• A new object classification framework using binary ORB features that can classify very

similar automotive parts real-time and provide a meaningful, robust solution for

4http://docs.opencv.org/3.0-rc1/df/dd2/tutorial py surf intro.html
5http://www.fhhyc.com/understanding-surf-features-calculation-process
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manufacturing settings.

• A multi view machine vision system that is robust enough that it can handle missing

views with a minimal decrease in classification performance. These benefits are

demonstrated in the experimental results and show that the multiple view approach can

still provide a robust solution despite camera failure.

1.4 Organization of thesis

This thesis is organized as follows:

• Chapter Two: The challenges associated with computer vision are discussed along with

a literature review. Later in the chapter a review about one of the most popular image

classification and retrieval techniques and its advancements in the past few years. A

brief overview of the machine learning techniques used are also discussed and how they

can be used for vision systems.

• Chapter Three: This chapter talks specifically about the engineering problem we set out

to solve. The chapter then discusses the physical prototyping environment we used to

mimic a real world vision system. We also mention the image preprocessing techniques

we used prior to classifying the images. We finally discuss the improvement to the

vision system by including multiple views.

• Chapter Four: There is discussion in this chapter about the in-house dataset that we

created. We also discuss the use of a publicly available multi view dataset. We then

provide a series of classification experiments on both datasets. We provide an

assessment on using multiple views in a vision system and various classification

techniques. Experimental works and results are presented along with a discussion of

results.

• Chapter Five: An overall summary of this thesis is provided. Ideas and concepts learned

from this work are presented. Areas for future work are also discussed.
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1.5 Experiment Summary

All of the experiments conducted were evaluated on an in-house dataset containing automotive

parts as introduced in Section 4.1.1 and the publicly available CalTech 3D dataset presented in

Section 4.1.2.

The first set of experiments in Section 4.2.1: Classification Performance with a Single View,

evaluated image classification accuracy by the use of single view images of objects within the

Bag of Words (BoW) pipeline. These experiments set the baseline for classification accuracy

and are compared against further experiments. The results on the first set of experiments show

that for single view image classification, accuracy is generally proportional to dictionary size.

This can be seen on the in-house dataset in Figure 4.6 and also on the CalTech dataset in Figure

4.7. The figures show that classification accuracy received a boost in performance for larger

dictionary sizes. These two experiments also compared a newer binary descriptor against the

traditional SIFT descriptor.

The next section of experiments in Section 4.3: Classification Performance with Multiple

Views, goes from image classification using a single view to using multiple views on the in-

house dataset. The motivation of this experiment was to determine if adding additional views

would improve classification performance enough to justify adding more cameras in the frame-

work. First, an evaluation of various view points was performed, with the results presented in

Figure 4.8. The results show that using the four view points had a substantial increase in clas-

sification accuracy. Another trend that was observed, was that increasing the dictionary size

improved performance to 95.62% (C=256), much like the case of using a single view. This

is the first time to our knowledge that binary features have been applied to multi view image

classification within the standard BoW pipeline. In both the single and multiple view experi-

ments using ORB features resulted in a higher classification accuracy when compared to SIFT

or SURF features.

Following this, the same BoW framework was applied to the CalTech dataset to see how

previous findings would generalize to more typical computer vision type datasets. Mirroring

the previous experiment of multi view image classification with the CalTech dataset, the clas-

sification also performed better as function of dictionary size as seen in Figure 4.9. The major
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finding from this experiment was that using SIFT features resulted in a higher classification

performance compared to ORB features on the CalTech dataset for single and multi view clas-

sification tasks, this was not the case on the in-house dataset. One of the major differences be-

tween the two datasets, is that the CalTech set had large changes in height and scale, whereas

the in-house dataset, the cameras were stationary. It is known that ORB features are fast to

compute when compared to SIFT as seen in Table 4.1, but SIFT performs better at matching

features at different heights and scales. These results reveal that ORB features, in addition to

being much faster to compute, can outperform competing techniques when there are not large

changes in height and scale, which for this type of industrial vision system would often be the

case.

Using ORB features as the baseline, there were significant improvements in classification

performance extending from 1 to 8 views as seen in the confusion matrices shown in Figure

4.10 and Figure 4.11 that led to a mean classification accuracy improvement over the 8 object

classes by 9.03%. We were able to show that ORB features are ideal when working with

datasets more common in machine vision. This is something that limited prior research has

been done, comparing traditional features with binary features beyond the traditional feature

matching tasks.

The next set of experiments in Section 4.4: Evaluation of Multiple Dictionaries, evaluates

how to best represent the centroids that make up the dictionary. One of the natural questions

within the BoW pipeline that has been extended to multiple views is how to represent the

centroids. This set of experiments compares three different methodologies: A codebook for

each view (4.4.1), A single codebook for all the views (4.4.2), and summing the visual words

across views (4.4.3). This is an important experiment because how the choice of representing

the image as a feature vector is crucial for classification. The results of this experiment are

shown in Figure 4.12, and they indicate that using one or four vocabularies for each view were

comparable. Using the summation of visual words across views while faster, performed the

least favourably. Since the results were nearly the same between the one and four dictionaries

we opted to use one dictionary so there would not be the requirement to learn four vocabularies

off-line. The results contained within this section show an empirical evaluation of several

vocabulary representations.
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From the previous experiments we had established the multiple view BoW framework per-

forming classification with a Support Vector Machine (SVM). Classification using a SVM is a

powerful tool and is often considered one of the first options when choosing a classifier. The

next set of experiments in Section 4.5.1: Kernel Selection for SVM optimization, was to op-

timize the classifier by studying various kernels. The goal was to see if the data was linearly

separable and to what degree. If it is not, then using kernels would increase the likelihood

of separability in a higher dimensional space. The results presented in Table 4.2 show that

the Gaussian kernel could actually perform the best with an accuracy rate of 97.8%. The more

recent similarity functions known as the Histogram Intersection and the X2 which are also func-

tions, were also introduced in Section 4.5.3. The results from these two kernels as presented

in Table 4.3 show a considerable increase in classification accuracy of 98.37% and 98.43%.

Using the linear kernel as a classification baseline which obtained an accuracy of 95.62%, both

of these kernels performed better. In fact, they even performed slightly better then the powerful

Gaussian Kernel. It was demonstrated in this section that despite the elegant theory behind ker-

nel methods, that the best performing kernel for a multiple view classification problem turned

out to be the X2 additive kernel. This kernel has two key advantages: it is fast to compute and

unlike the traditional SVM kernels there are no hyper parameters that have to be determined

thus making it ideal for smaller datasets.

The loss of spatial information that occurs within the BoW framework was addressed using

feature pooling techniques is presented in Section 4.6.2. Spatial augmentation and pooling,

using: max mean and sum pooling was evaluated and compared to the BoW baseline. The

results on both datasets are shown in Figure 4.18 and Figure 4.19. On both datasets using

spatial augmentation was the best and outperformed the BoW baseline with an accuracy of

96.08% on the in-house dataset and 93.03 % on the CalTech dataset using the basic linear

kernel. The contributions to this experiment is an empirical evaluation of feature pooling and

spatial binning techniques applied to a multiple view classification problem.

The next step of experiments was to evaluate descriptor encoding strategies using the fea-

ture encoding method Vectors of Locally Aggregated Descriptors (VLAD). In other literature

this method of feature encoding has shown to provide excellent retrieval results. This method

is evaluated on both datasets presented in Section 4.7.1. The in-house dataset evaluation is
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shown in Figure 4.21 and gave a classification accuracy of 98.76% and the CalTech dataset

in Figure 4.22 with 88.74%. Both of the results reveal a considerable improvement over the

standard BoW baseline. Despite the popularity of VLAD feature encodings, very little work

until now has been done to see how well this method works when using multiple views and

very limited research has been performed to see how well this technique works outside of the

traditional single view classification and retrieval problem.

The final encoding strategy evaluated is presented in Section 2.7: Triangulation Embed-

ding. Triangulation Embedding maintains the BoW pipeline, yet on several occasions has

given state of the art results for the task of image retrieval. Very little research is available on

using this technique outside of the image search domain. Using the in-house dataset, the results

of this embedding method can be seen in Table 4.5, which gave the best accuracy over all the

other techniques at 99.28%. This considerable increase in classification accuracy also general-

ized to the CalTech dataset, where the results are presented in Table 4.6, showing an accuracy

of 94.38%. There are several contributions contained within this section. Firstly, to the best of

our knowledge, Triangulation Embedding has never be applied to a multiple view classification

task. The next contribution is we have demonstrated that this powerful method is compatible

with binary features, which has the added benefit of being very fast to compute. Thirdly, we

were able to demonstrate this powerful technique can be used outside of the computer vision

domain and can be used reliably for industrial machine vision applications. By doing this, we

have demonstrated a way to help bridge the gap between the two fields of computer vision and

machine vision, something this thesis set out to do.

The final set of experiments evaluate the ability of this framework to handle random camera

downtime was also evaluated and compared against the original BoW. This section of exper-

iments is located in Section 4.8.3: Triangulation Embedding, recovering from camera down-

time. When compared to the original BoW, the Triangulation Embedding method is robust

enough to withstand a randomly missing input and have a minimal reduction in classification

accuracy. Equipment in factory settings is very susceptible to damage or forced to undergo un-

scheduled repairs because of the harsh conditions that are present in factories. Most industrial

vision systems on the market today cannot operate if one of the sensors is damaged, which

poses a huge risk for the manufacturer that purchased the vision system, as they run the risk
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of having to halt production to keep up quality control. This set of experiments sees how well

the proposed system is at classifying, when any one of the several cameras is disabled when

capturing an image set. This experiment was carried out by randomly selecting a view for ev-

ery image set taken and discarding it. For the in-house dataset this method proved to be quite

robust and achieved an accuracy of 98.89% as seen in Table 4.7 for the in-house data and an

accuracy of 91.94% shown in Table 4.8 for the CalTech dataset. The results demonstrated by

this set of experiments, shows that this machine vision system used in conjunction with Trian-

gulation embedding, can provide a robust solution that can still remain operational and useful

for a business when one of the camera inputs is unavailable.



Chapter 2

Background and Literature Review

2.1 Machine Learning

Machine learning is a central topic in artificial intelligence and its definition is to have a ma-

chine learn from experience of a given task if a given performance measure can be improved

from prior experiences [36]. The goal of learning is achieved using concepts from computer

science, mathematics and statistics.

There are three main branches in machine learning: reinforcement, unsupervised and su-

pervised learning. Reinforcement learning is when an agent is not told what action to take but

learns from the feedback it receives after taking an action. At a high level it can be said that

the agent attempts to maximize its rewards after making decisions. Unsupervised learning fo-

cuses on finding some structure using unlabelled data. The focus of this work is on supervised

learning. In which a learning algorithm is given some labelled input and output data and must

recognize a pattern and create a mapping function between the input and output [44]. Among

all three learning approaches there is a tremendous amount of applications including image and

text classification, medical diagnostics, speech recognition and data mining to name a few.

2.2 Image Processing, Understanding and Computer Vision

Digital image processing as defined by [16] is the activity of processing digital images using

a digital computer. Image processing is the field of taking an image and applying algorithms

13
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on the image to return an altered image with some desirable characteristics. Some examples

could be performing image enhancement, compression, noise reduction and feature detection

to name a few.

Image understanding tries to make sense of what is contained within the image. Image

understanding is often seen as a mid-level process that relies on the output of a processed

image and is more towards artificial intelligence. Examples of image understanding would be

the task of image classification or segmenting an image and labelling the regions.

Computer vision on the other-hand is the closest towards artificial intelligence. The objec-

tive being seeing as humans do and having the ability to learn, and make decisions from visual

information. An example would be what semantic information can be applied to a series of

recognizable objects in an image. While Gonzalez and Woods [16] admits that there is no

universally clear definition to distinguish between the three areas they are often thought of as

low, mid, and high level processing. The work in this thesis primarily focuses on mid-level

processing.

2.2.1 Image Representation

Following the definition of a digital image by Gonzalez and Woods [16], they define a gray

scale image as a two dimensional function f (x, y). The values of f are discrete quantities

representing the gray scale intensity and x, y corresponding to a spatial location on the image

as seen in Figure 2.1. The standard colour image is a vector valued function consisting of three

channels: red, green and blue. Each channel holds the intensity of the colour at that particular

pixel and when combined forms a colour image.

2.3 Feature Extraction

In the field of computer vision, an image feature is something of interest in a digital image.

It is often, but not always a corner or an edge. It stands out as something interesting that is

in the digital image. These are often referred to as ‘interest points’. The process of finding

these interest points is commonly referred to as feature detection. Once a point or region of

interest is found in the image, the next natural step is to find suitable description for this interest
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Figure 2.1: A representation of a digital image

point. There are numerous ways to describe these interest points such as colour, orientation, or

intensity to name a few. These are referred to as feature descriptors.

2.4 ORB Features

As mentioned earlier the task of feature extraction is two step: detection and description. The

most common feature type in computer vision is Scale-Invariant Feature Transform (SIFT)

features. SIFT features, developed by David Lowe [34] have many good properties such as

scale invariance, but SIFT descriptors are costly to compute. A new trend in the development

of feature types that have emerged are known as binary image descriptors because they are

faster to compute and match and have smaller memory requirements making them suitable

for embedded devices. Rublee et al. [43] developed a method called ORB (Oriented FAST

and Rotated BRIEF). The interest point detector uses the FAST (Features from Accelerated

Segment Test) method [42] and a modified version of BRIEF as the feature descriptor [4].

The FAST keypoint detector identifies a pixel as being a corner by taking the image inten-

sity at point p and comparing it to a circular ring of n connected pixels. Given the intensity at
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Figure 2.2: ORB features found in an image

the candidate pixel Ip, if the n connected pixels are greater or less than a given threshold t the

point can be classified as a potential corner. This method exploits the contiguous constraint on

the pixel regions to speed up performance by only performing the intensity difference test at

the compass directions, thereby avoiding needless computations, if the pixel does not meet the

corner criteria as can be seen in Figure 2.3.

The FAST keypoint detector can also identify keypoints that lie along edges in addition to

corners. Intuitively, corners have gradients in all directions, whereas an edge will have minimal

gradients along the edge direction. It is worth pointing out that having gradients that vary in

all directions is a desirable property because it causes the feature to have more variance. This

leads to more discriminative features because that feature will respond differently and have a

greater response to varying inputs. This can be seen in Figure2.4

The typical approach is to find many potential keypoints, then rank the keypoints based on

a measure of how much of a corner it is. This measure is called the Harris corner measure

[19]. Given a windowed region w centered at the location of the keypoint as f (u, v) compute

the change E given by a shift (x, y) as:
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Figure 2.3: A visual of the FAST corner test

Figure 2.4: Keypoints on edges will have little change along the direction of the edge. Gradi-
ents along the corner will have a large change in all directions.1

Ex,y =

∑
u,v

wu,v( f(u+x,v+y) − f(u,v))2 (2.1)

Where W ε [0, 1] is the window function that is set to 1 for overlap and 0 otherwise.

Using the first order Taylor expansion to approximate a function, let ∇ fx and ∇ fy be the

partial derivatives in the x-direction and y-direction, then:

f (u + x, v + y) ≈ f (u, v) + x∇ fx + y∇ fy (2.2)

1http://www.cse.psu.edu/ rtc12/CSE486/
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Substituting equation 2.2 into equation 2.1 then:

Ex,y ≈

∑
u,v

wu,v(x∇ fx + y∇ fy)2 (2.3)

Because neighbouring pixels inside the circle may also meet the criteria for being a corner,

the authors of ORB use the Harris corner measure [19] to rank the corners. Using 2.3 in matrix

form:

Ex,y ≈ (x, y) A

x

y

 (2.4)

Where A known as the Harris Matrix which is the covariance matrix of the partial deriva-

tives of the windowed region defined as:

A =

∑
u,v

wu,v

 ∇ f 2
x ∇ fx∇ fy

∇ fx∇ fy ∇ f 2
y

 (2.5)

As mentioned earlier corners have gradients that vary in all directions for minor shifts

whereas edges are relatively flat along the direction of the edge. The eigenvalues λ1 and λ2

of A capture the amount of covariance. If λ1 > λ2 would mean that most of the gradient is

captured in one direction. If λ1 ≈ λ2 then the gradient variance is spread along both the x

and y axes which follows the definition above that a corner has gradients in all directions for

small shifts whereas an edge only has strong gradients on the orthogonal axis against the edge

direction - rather most of the gradients can be captured along one axis. The corner response is

efficiently calculated based on these two eigenvalues.

An interesting note about keypoints is that inherently no information about their scale is

taken into consideration. That means if a feature was found in one image on an object at some

scale and then found again in a separate image on an object at a different scale it makes the

feature matching process less reliable. In many applications it would be desirable to match fea-

tures regardless of scale. Moving towards scale invariance the corners are detected at multiple

levels using the image pyramid approach. The detected corners and the corresponding scale is
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stored and the desired number of keypoints, now ranked are selected.

Figure 2.5: Features are produced at each level of the pyramid

Keypoints are commonly described by their orientation. In the case of corner based interest

points, they can be thought of as what angle that corner points to. The FAST method alone

does not provide this orientation information, but rather computed by calculating the intensity

centroid as proposed by Rosin [41]. In this method the moment of an image patch is defined

as:

mpq =

∑
x,y

xpyqI(x, y) (2.6)

The centroid location C(x, y) can then be computed by:

C =

(
m10

m00
,

m01

m00

)
(2.7)

By constructing a simple vector from the corner to the centroid the angle θ can be computed

as:

θ = tan−1(m01,m10) (2.8)
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Figure 2.6: A sample showing where the centroid is located within an image

Following this approach the authors of ORB offer a modified version of the BRIEF feature

descriptor [4]. The feature descriptor is a bit string on a smoothed image patch p. The bit string

is formed by constructing a series of binary tests τ defined by:

τ(p; x, y) =


1 : p(x) < p(y)

0 : p(x) ≥ p(y)
(2.9)

The test results are defined by intensity of point p at x. The final descriptor then is built

using:

fn(p) :=
∑

1≤i≤n

2i−1τ(p; xi, yi) (2.10)

Calonder et al. [4] observed that the selection of points falling under a Gaussian distribution

around the center of the patch to perform the best. Rublee et al. [43] opted to go with this

Gaussian sampling of points and a vector length of n = 256. Smoothing of the image patch

is done prior to the sampling. Test points by default are 5 x 5 sub-window of a 31 x 31 pixel

patch. At this point, the binary tests do not take into account the orientation information nor are

they capable of being invariant to in-plane rotations. The binary tests are rotated based on the
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orientation of the computed intensity centroid. This is done by taking a selection of n binary

tests at location (xi, yi) defining a 2 x n matrix:

S =

(
x1, ..., xn

y1, ..., yn

)
(2.11)

A rotation matrix in R2 is created from the patch orientation θ. The orientation is discretized

by
2π
30

increments. The rotation matrix is defined as:

Rθ =

cos θ −sin θ

sin θ cos θ

 (2.12)

The rotation matrix is used to rotate the location of the binary patch tests in 2.10. The series

of binary tests is now:

Sθ = RθS (2.13)

The rotated BRIEF operator is then defined as:

gn(p, θ) := fn(p)|(xi, yi) ε Sθ (2.14)

2.5 Bag of Words

2.5.1 Descriptor Quantization

Descriptor quantization is common among all BoW and extended BoW models. This process

is often done through clustering a set of feature descriptors to form what is known as the visual

words. All the visual words or clusters are known as the visual vocabulary. The most popular

clustering algorithm is known as k-means which was first proposed by James MacQueen [35].

One of the earliest mentions of constructing the visual vocabulary using the k-means approach

for object categorization is given by Csurka et al.[9]. A set of n feature descriptors can be

described as: x1, ..., xn ε R
D. In building the visual vocabulary the descriptor space is partitioned

using k-means with k vectors being the centroids, described as: µ1, ..., µk ε R
D. Each descriptor
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has a data to means assignments: q1, ..., qn ε {1, ...,K}. The centroids are found using the

objective function, effectively minimizing the l2 error:

qki = argmin
k

‖xi − µk ‖
2 (2.15)

Unfortunately with this method the quantization of words is done by vector quantization

(or hard quantization) there is no obvious choice for the number of visual words (centroids)

and often needs to be determined empirically.

Figure 2.7: k-means data clustering by use of a Voronoi diagram [37]

2.5.2 Histogram Encodings

One of the natural issues that is brought up in the image retrieval or classification task is how

to meaningfully represent the image in such a way that it can be compared to other images.

One idea of representing the images is to use a global histogram of intensity values. The

concept of using histograms of words faces some challenges that histograms of intensity values

may not give any information about what is contained in the image. Images that share no

relationships may have very similar histograms. One approach to circumvent this problem is

to use a histogram of quantized local descriptors from a previously learned visual vocabulary.

Chatfield [6] gives an excellent overview of this approach. The idea is to build the visual
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vocabulary as a preprocessing step. Afterwards on each new query or training image recompute

the image descriptors x ε X then assign each descriptor to a visual word by Equation 2.15. The

resulting query image is then represented as a 1×n vector with n being the number of centroids

learned by k-means. This histogram representation is a type of feature vector which can then

be used for retrieval or image classification purposes.

Figure 2.8: The process of descriptor encoding

2.5.3 Spatial Pyramids and Pooling

One of the limitations of the BoW model is that it is an orderless representation of encoded

keypoints found on a digital image. The geometric and spatial information can reveal a lot

about the scene especially when it comes to image classification. This information is lost.

One method for overcoming this proposed by Lazebnik et al. [32] is to partition the image into

increasing fine sub-regions and computing a histogram per region. This work was adapted from

Grauman and Darrell [18] in which the authors proposed the pyramid match kernel (PMK). The

PMK is a function that can compare histograms of image descriptors at increasingly coarser

grids as seen in Figure 2.9. Each successive level in the pyramid has an increased weight

applied to the histogram Il defined as:

Il =
1

2L−l f or l = 0, ..., L − 1 (2.16)

It was suggested by Graunman and Darrell [18] to use the histogram intersection function

to compare histograms, as they showed it was a Mercer kernel and thus suitable for use in a

support vector machine (described later). In the works done by [32] and [18] it is worth noting

that increasing the number of levels in the pyramid improves recognition performance up to
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a point and then starts to decrease. There are also variations in the construction of the spatial

grids of mxm but mxn.

Conversely a more simple approach to incorporate weak geometry is to simply concatenate

all the histograms derived from each spatial region. The one obvious problem is that simple

concatenation of each histogram per spatial region causes the feature vector to become quite

large. One way to circumvent this is to perform sum, max or average pooling. In which

each bin of the histogram per level of the pyramid is aggregated by the sum, max or average

response.

Figure 2.9: Spatial Pyramid construction on images

Choosing the number of levels in the pyramid or the partition layout remains an open ques-

tion and is often found on a validation set. One thing to keep in mind is that classification

performance will plateau then start to decrease as the number of grids grows simply because

there will be fewer descriptors found in each cell. This will start to cause sparsity in the feature

vector and corrupt the image similarity metric.

2.5.4 Support Vector Machines

Support vector machines (SVMs) are a very useful tool in machine learning. Developed by

Vapnik and Cortes [7] from statistical learning theory, it is a powerful method of supervised

learning. Starting off with discriminant analysis, assuming a set of data is linearly separable;

that is, a hyperplane can be drawn that separates data given a set of inputs x = [x1, x2, ..., xn] a

set of weights w = [w1,w2, ...,wn] can be established to form a discriminant:

g(x) = wT x + w0 (2.17)
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To find a decision rule:

g(x) =


Class 1, g(x) > 0

Class 2, g(x) < 0
(2.18)

Figure 2.10: A simple diagram of a Support Vector Machine with a separating plane in 2D

In Figure 2.10 the example is clearly linearly separable with the separating hyperplane said

to be the discriminant. The problem arises in finding the ideal location of the discriminant

function that will generalize well on new data by finding the ideal weights with respect to the

given training data.

The idea is to write the discriminant as a linear combination of the data that lies closest to

the separating hyperplane. These data points closest to the discriminant are known as support

vectors. Given a training set of data for a binary classification problem:

yi =


−1, Class 1

+1, Class 2
(2.19)

With the condition:

yi(wT x + w0) ≥ b, b > 0 (2.20)

Constructing two canonical hyperplanes passing through the support vectors on both sides
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Figure 2.11: The points lying closest to the separating hyperplane are deemed the support
vectors

of the discriminant defines the margin m. The margin can be written as m = 2
|W | . The problem

can be reformulated as:

Minimize |w| sub ject to :

yi(wT x + w0) ≥ b
(2.21)

In other words, minimizing the |w| translates to maximizing the margin separating the sup-

port vectors. This can be modelled as a constrained quadratic optimization problem [20].

In many cases, the data may not be completely separable and a slack variable ξ is used to

provide a penalty for training examples that lie on incorrect sides of the discriminant. Using

optimization techniques the SVM is computed by:

Minimize |w| sub ject to :

1
2

w2 + C
∑

i

ξi,

sub ject to :

yi(wT xi + b) ≥ 1 − ξi, where ξi ≥ 0 ∀i

(2.22)
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The weight vector is given by W and bias b. This method can be solved analytically by the

sequential minimal optimization technique developed by Platts [39] with complexity O(n3).

2.5.5 Kernels

Most real world data is not linearly separable. In 1965 Thomas Cover proved that nonlinearly

separable data is more likely to be linearly separable when cast into a higher dimensional

space. This is known as Cover’s theorem [8]. By raising the dimensionality of the input

space by the use of a kernel function allows the feature space to remain linear while increasing

the likelihood of data separability. Selecting a kernel that corresponds to a dot product in

a higher dimensional space is known as the kernel trick. A kernel function that is Positive

Semidefinite (PSD) satisfies what is known as Mercer’s condition [3]. An example of raising

the dimensionality of a binary class problem to a higher dimension making it linearly separable

is given Figure 2.12 below by using the kernel function K(x, x2):

Figure 2.12: Data that becomes linearly separable when mapped to a higher dimensional space

Kernel methods are also an approach to compare the similarity between input data. In many

applications two image representations can be compared to one another by using their respec-

tive feature vectors as input into a kernel function. As mentioned above the kernel trick can

give a higher dimensional representation without even knowing an explicit mapping function

but rather computing the dot product of two inputs. Generating the discriminant function of a

SVM requires creating a Gram Matrix of feature vectors as input and compared using a kernel

function. This linear kernel corresponds to the dot product, but any kernel can be used, ide-



28 Chapter 2. Background and Literature Review

ally one that satisfies Mercer’s condition. This allows for higher dimensional mappings of the

data to take place with a simple modification to the comparison function that has an increased

chance of being linearly separable.

2.6 First Order Information Encoding

Despite the success of the Bag of Words (BoW) representation it has remained relatively un-

changed in retrieval and classification systems. One proposed method to help recover from

the problem of quantization loss is to use first order information known by Vector of Locally

Aggregated Descriptors (VLAD). This method proposed by Jegou et al. [25] is to extend the

encoding of building a histogram of visual word occurrences found within an image. The pro-

posed approach assigns each descriptor x ∈ X to a centroid (using Nearest Neighbour) of a

previously learned visual vocabulary as in Equation 2.15. After the assignment stage, the dif-

ference between each descriptor and assigned centroid is computed forming a set of residual

vectors. These two stages can be seen in Figure 2.13 and Figure 2.14.

Figure 2.13: VLAD stage 1: Assign a descriptor to a word (centroid) in the visual vocabulary
by Nearest Neighbour, as in the traditional BoW.
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Figure 2.14: VLAD stage 2: The residual vector of a single descriptor and its assigned centroid
is a sub-vector which will then subsequently be aggregated.

The formal definition of the VLAD calculation:

vi, j =
∑

NearestN(x)=ci

x j − ci, j (2.23)

With x j and ci, j being the difference between each of the jth components of the centroid ci

and the descriptor that is assigned to it. The resulting feature vector then has dimensionality

D = k × d. Where d is the length of the descriptor and k is the number of centroids.

Recent extensions to the VLAD encoding method with hopes of increasing its discrimi-

native capability have been proposed. One method by Eggert et al. [12] involves creating a

secondary dictionary by clustering the data within each Voroni cell in the dictionary, similar

to using a vocabulary tree approach. Another technique by Liu et al. [33] involves creating a

secondary dictionary offline at a finer resolution by computing a set of residual vectors on the

original dictionary and then clustering by k-means over the residual set. The encoding would

then be the aggregation of the primary VLAD vector along with a secondary VLAD vector at

a finer scale using the clustered residuals. Further enhancements were also shown by Tak-Eun

and Ho [28] involve reweighing the residuals prior to the aggregation stage of VLAD based on

the salient regions of the corresponding local descriptor.
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2.7 Triangulation Embedding

So far, the BoW and VLAD encoding methods have been introduced. Triangulation embedding

uses a different type of encoding method that operates on a per descriptor basis and is the core

work of this thesis.

Two main approaches for determining the position of a point are: trilateration which finds

points by a distance measure and the other is triangulation. Triangulation as recently described

by Jegou and Zisserman [27] uses angles and will be our point of focus. In the proposed tri-

angulation embedding strategy, a set of image descriptors X are clustered using the traditional

k-means approach. Once this is completed, a new set of image descriptors are then matched

to the recently formed centroids. In the VLAD approach only the residuals of the query de-

scriptors matched to the nearest centroid are computed. This approach deviates from VLAD

because it does not use nearest neighbour assignment, but rather computes the residuals for

each centroid.

There are two stages for this feature encoding method: embedding and aggregation. Their

proposed embedding step φ : Rd → RD (d < D) maps each descriptor x ∈ X as:

x 7→ φ(x) (2.24)

The aggregation stage is defined as a summation over all the mappings:

ψ(X) =
∑
x∈X

φ(x) (2.25)

Given a set of visual words formed by k-means, C = {c1, ..., c|c |}i, ci ε R
D o f |C|. The

first step to defining the triangulation embedding function φ4 is computing a set of normalized

residual vectors from the descriptors as:

r j(x) =

{
x − c j

||x − c j||

}
, for j = 1...|C|, x , c j (2.26)

The set r j(x) are then concatenated to form R(x). Another difference here is that these

residuals are unit normed thus describing their relationship to the visual vocabulary based on

their angles, hence the term triangulation. The normalization happens on a per descriptor
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basis, whereas in the VLAD case, unit normalization is performed after the residual vectors

are summed. This approach is also known as secant manifolds [21]. Other papers that use this

technique outside of the computer vision area refer to these visual words learned by k-means

as anchor points.

For each descriptor x ∈ X. It is important to point out that the unit ball is formed by

quantizing residuals of image descriptors matched to the original dictionary on a validation set.

For each subsequent descriptor to be embedded and later used for indexing or retrieval, the

authors describe the triangulation embedding function, as:

φ4(x) = Σ−
1
2 (R(x) − R0) (2.27)

With the R0 = EX[R(X)] and Σ belonging to the covariance matrix from a training set. This

is typically referred to as whitening the vector. Where whitening is the process of centering,

rotating and scaling the data defined as:

φ4(x)′ = diag(λ−
1
2

1 , ..., λ
− 1

2
D ) PT φ(x) (2.28)

With λ being the largest eigenvalues and their associated eigenvectors from matrix P ∈

RD×D. The above equation shown by Jegou and Chum [23] can improve image retrieval and

research in [27] and [10] shows that the discriminative ability of the embedding is improved.

It is also worth noting that selecting the first n eigenvectors such that n < D jointly performs

dimensionality reduction, later to be discussed in Section 2.9.

As the focus of this thesis is on image classification using multiple views, we proposed

a method to aggregate the features from different views. For every view i in the image set,

the features are whitened as described in Equation 2.28, using the same projection matrix P

that is learned off-line across all views. The whitened feature vectors for each view are then

concatenated to represent the image set:

Φ4(x) := φ4i(x)′ f or i = 1...n (2.29)

Quite recently further enhancements to the Triangulation Embedding method done by Do

et al. [10] have further improved the mean average precision (mAP) by 1.6% on the Holidays
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and 3.4% on the Oxford5k datasets. The authors provide a more rigorous explanation of the

embedding step 2.24 and use a higher order representation leading to a weighted quadratic at

the anchor points. In their publication they also prove that VLAD encoding is related to another

very successful encoding method known as Local Tangent-Based Coding (LTC) as introduced

by Yu and Zhang [49]. LTC is based on the idea that features and codewords construct a smooth

manifold. Through the use of anchor points, a nonlinear function f (x) on Rd, that embeds

points onto the manifold can be approximated by a linear function on RD, where d < D given

by Equation 2.28. The linear approximation of the nonlinear f (x) is given by f (x) ≈ PTφ(x),

where PT is found by PCA.

All of these encoding strategies are derived from a common representation known as Super

Vector Encoding. The identifying characteristic of this set of encoding methods, is that all of

these encoding methods use local information such as the residuals between the descriptor and

nearest centroid (residual distance) to capture higher order information. The resulting feature

vector has a dimensionality that is a factor of the dimensionality of the feature descriptor. Both

the VLAD and Triangulation Embedding are examples of a Super-Vectors where both encoding

methods capture local information between the descriptor and codeword. The original BoW

representation that uses histogram encoding does not contain local information and is not con-

sidered a Super-Vector because the feature vector depends on the number of centroids, not the

dimensionality of the descriptor type.

Encoding strategies that are derived from a Super-Vector, have shown superior performance

as demonstrated by Peng et al. [38]. The authors conducted a comparative study on how the

aggregation of different feature types performs with different encoding methods, for the task

of action recognition based on multiple views from video sources. Another comprehensive

evaluation was carried out by Yongzhen et al. [22] on several common datasets for scene clas-

sification and object recognition. Once again, encoding methods based on the Super Vector

Encoding showed superior performance.
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2.8 Power Normalization to Address Bursty Features

One of the phenomenons of feature detection is that once a feature is identified in an image

there is a greater chance of a nearby feature (in the spatial sense) of also being detected with a

high similarity score. This phenomenon is known as feature bursts as analyzed by [24]. This

can often result in large peaks in the feature vector which can corrupt the similarity metric

that is in many kernel based learning approaches. The variance in the feature vector can be

stabilized by applying power-law normalization defined as:

f (z) = sign(z) |z|α 0 ≤ α ≤ 1 (2.30)

Power normalization can be applied on each encoded descriptor individually or the feature

vector. It is worth noting that when applied to the feature vector when α = 0.5 its known as the

popular Hellinger Kernel.

Its worth noting that the peaks in the above images can occur from both the original BoW

histogram component or they can occur from the vector residuals.

2.9 Dimensionality Reduction

One of the on going challenges in computer vision is that much of the data is inherently high

dimensional and redundant. This raises the challenge of running time for many algorithms.

Another problem is that as the dimensionality increases the distance between neighbouring

data points grows exponentially. This is known as the curse of dimensionality. This problem

is addressed by mapping the high dimensional data to a lower dimensional space based on the

assumption that high-dimensional data lies near a lower-dimensional manifold.

One of the most common approaches to perform dimensionality reduction is to use Princi-

pal Component Analysis (PCA). PCA attempts to find an orthogonal projection of the data onto

a lower dimensional linear subspace from n dimensions to d such that n ≥ d while capturing

the greatest variance in the data.

There are several approaches to performing PCA. The sample mean of n samples of x

observations defined as:
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Figure 2.15: Example of a bursty feature in a histogram

Figure 2.16: After applying power normalization to the histogram

x̄ =
1
N

N∑
n=1

xn (2.31)

With the mean-centered covariance defined as:

∑
=

1
N − 1

N∑
n=1

(xn − x̄)(xn − x̄)T (2.32)

For simplicity and keeping with common notation we will refer to the covariance matrix

with mean subtraction along the columns as
∑

as XX
T
.

Singular Value Decomposition (SVD) is defined as taking a matrix X of size m x n and

factoring it such that:

X = US VT (2.33)
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Where U is a m x m orthogonal matrix, V is a n x n orthogonal matrix and S is a diagonal

matrix whose diagonal elements are in decreasing order.

If the provided matrix to be decomposed is a square and symmetric matrix as in the case of

XX
T

then SVD is equivalent diagonalization of XX
T

by U resulting in each column vector of u

in U being eigenvectors. The numerical method to solving the SVD problem in this work was

the use of the Jacobi Method.

The covariance matrix
∑

is symmetric of size nxn and thus can always be diagonalized and

diagonalized by an orthogonal matrix. Two matrices A and D are said to be similar AD̃ if an

invertible matrix P exists such that A = P−1DP

Figure 2.17: PCA example on a 2D dataset after projection of the data onto the principal
component axes2

The principal components refer to the orthogonal vectors forming the new coordinate sys-

tem spanned by the dominant eigenvectors of the data covariance matrix [15]. The eigenvectors

capture the directions that maximize the variance in the data with a corresponding eigenvalue

that captures the magnitude of variance. This example can be seen in Figure 2.17.

2http://www.user.tu-berlin.de/felix.biessmann/mmreview/



Chapter 3

Part Classification on a Conveyor Belt

Framework

There has been previous research in using multiple view techniques for object recognition and

retrieval tasks [14, 47, 40, 31, 30, 46]. It has already been demonstrated that the addition of

multiple views within the BoW framework can improve accuracy for object classification as

demonstrated by Savarese and Lei [45] and Fu et al. [14] on the same dataset. On other datasets,

the task of object classification can be improved using multiple views as seen in the works of

methods that rely on high quality reconstruction for classification, but 3D reconstruction is

heavily affected by noise resulting in holes in the model in addition to being computationally

more expensive. In many machine vision applications that require rapid classification using

methods of 3D model generation are simply not practical when using standard cameras.

Many existing systems require the manufacturer of the vision system to create new tem-

plates, or modify some parameters as most current systems use low level vision techniques.

Our goal was to use computer vision techniques that could learn an additional object class dur-

ing normal manufacturing production that could be performed with minimal supervision. This

is often at the cost to the customer and possibly cause system downtime. Another real concern

for manufacturers that do buy these vision systems is that computer hardware can break at any

time without warning, in many cases halting production. The goal here was to create a setup

that could address both of these problems.

36
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3.1 Physical Setup

The purposed method of performing classification on a conveyor belt was to use multiple cam-

eras to view the object from four sides. The motivation behind this was to make use of ad-

ditional information that comes from multiple views and possible occlusions of discernible

regions that may take place on the part. The occlusion of discriminating features on the object

is very much a real case for the in-house dataset that was constructed. The hopes being that

this approach would boost classification performance.

Figure 3.1: Positioned cameras focused over a conveyor belt

A diagram of the envisioned system can be seen in Figure 3.1 showing how the cameras

were positioned around the conveyor belt to capture from the four corners. Naturally the four

captured images provide a different view point of the object to be classified as can be seen in

Figure3.2.

A mock conveyor belt that had a moving board with wheels would sit on top of a wooden

frame. The moving board would simulate the belt portion of a conveyor and allowed for one

directional object movement. Allowing for multiple image captures of a moving part without

accidental displacement of the part and provide a more authentic simulation. The constructed

conveyor can be seen in Figure 3.3.
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Figure 3.2: A diagram showing how different views can look drastically different depending
on the view point

The cameras were positioned about 1.4 meters above the belt and angled at approximately

45◦ down towards the object. The spacing of the mounted cameras was arbitrarily selected to

ensure the conveyor portion of the belt was always viewable. For consistency once positioned,

the cameras were not moved.

The actual cameras themselves were simple, low cost, commercially available USB 2.0 web

cameras. These cameras are able to record video in 1080p; however, all captured frames were

processed and stored at a resolution of 1280x720. Many other works relating to multi view

images require more specialized and costly cameras. The goal here being that the selection of

cameras need not be expensive and provide a cost efficient solution. The type of camera used

can be seen in Figure3.4.

3.2 Object Localization

Given that the cameras are positioned above the conveyor belt at an angle, there are regions

outside of the belt that are captured. Since the regions off of the belt provide no additional

information about the part red patches as seen in Figure 3.3 were placed on the belt surrounding

the object. As the focus of this work is on the classification aspect of the problem and not image

segmentation the red markers served to provide a simple boundary of the object.

We aimed to overcome this problem by finding a generalized approach that avoids advanced

image segmentation techniques. The boundary surrounding the markers are evaluated to see,

if they fall within a certain range and a boolean value is returned. The set of boolean values
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Figure 3.3: Mock conveyor used in lab to gather data.

creates the binary mask. Given three discrete sets Θ = {θ1, θ2, θ3} representing each colour

channel, segmentation by colour thresholding is defined as:

g(x, y) =


1 : f (x, y) ⊆ Θ

0 : f (x, y) * Θ

(3.1)

To reduce the number of spurious pixels being identified as the markers the basic noise

reduction technique of median filtering was applied as a preprocessing step. One of the masks

generated can be seen in Figure 3.5b.

The final stage of enclosing the object and thus separating the object from the background

was to connect the identified regions in the mask. This is done by applying a convex hull
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Figure 3.4: The type of camera used in our experiments 1

as seen in 3.6a. Given a set of n points corresponding to pixels for which g(x, y) = 1 the

computational complexity of finding the hull is O(n log n) based on the Graham method [17].

At this stage the current mask contains the image but also may contain some markers that

fall within the hull. We remedied this problem by applying the morphological operation of

erosion. Since the hull could take on various shapes depending on the image captured we

needed to shrink the size of the mask while preserving its shape. The convex hull could vary

widely among views as it relates to the position of the belt and shrinking the mask by a set

amount of pixels runs the risk of masking out some of the auto part in the image. This approach

helps to minimize the impact of this problem. At this point only features within the masked

region will be detected shown in Figure 3.5d.

Using the definition from Woods and Gonzalez [16], erosion stems from set theory and is

defined given two sets A and B in Z2 the erosion of A by B denoted A 	 B is given by:

A 	 B = { z | (B)z ⊆ A } (3.2)

Set B is commonly called a structuring element. In the context of digital images B is a mxn

1http://www.logitech.com/en-us/product/hd-pro-webcam-c920
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(a) Markers identified by colour thresholding (b) Binary mask on which to apply the convex hull

(c) Object enclosed by the hull shown in blue (d) Reduced area to only enclose the part

Figure 3.5: The object localization process

matrix and is the set of all points, that when translated by z is contained in A.

Using the definition of a digital image from Section 2.2.1 given image A and treating it as a

function corresponding to (x, y) pixels the result of performing erosion over A with structuring

element B returns a mask g given by:

g(x, y) =


1 : if B fits A

0 : if B does not fit A
(3.3)

A visual representation can be seen in 3.7. It is worth noting that structuring elements can

have varying shapes. Morphological operations can also be useful for many image processing

operations such as hole filling or perimeter extraction. The formal definition of the particular

operation of erosion 3.2 from set theory also makes it clear how this can be applied on non-

binary images and extended to multiple channels or volume images.
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(a) Convex hull (b) Distance map of the hull after erosion

Figure 3.6: The shrinking of the hull by erosion

3.3 Extension to Multiple Views

Historically, most problems in computer vision involving the use of stereo or multi view images

try to compensate from the fact that we live in a 3D world and when taking images 3D points are

mapped to a 2D plane, for the standard camera model resulting in a loss of depth information.

The basics of how a camera works come from the pinhole camera. The same concept takes

place when working with digital images. Multiple Rays of light emanates from a single point

known as the point source. The concept of a pinhole camera is to capture only a single ray

from each point on the object. The model lets rays of light into a small opening in a light proof

box that inverts the image. The opening of the box that allows light in is called the aperture.

An ideal pinhole camera has an infinitely small aperture that will only allow one ray to pass

through. Realistic cameras based on this model are not ideal and have more than one ray per

point entering the aperture. Small apertures allow less rays in resulting in a darker but more

focused image. Larger apertures allow for a brighter but more blurry image.

The pinhole camera model does allow for an approximation of a perspective projection for

generating an image. The mapping of the object to the image plane can be see in Figure 3.9.

Its worth noting that in this diagram the image plane is actually in front of the camera.

The mathematics of projection remains the same except now the image is not flipped upside

down. Using homogeneous coordinates this model can be described in matrix form by:
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Figure 3.7: Structuring elements note that element A fits whereas B and C do not.2
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(3.4)

The above formulation can be rewritten as:

zm = PM (3.5)

Most cameras do not use an actual pinhole to filter rays of light but make use of a lens for

the purpose of focusing the rays of light as seen in Figure 3.10

The matrix m can simply be rewritten as m = ( f x/z, f y/z, 1)T . The drawbacks regarding

this formulation is it lacks camera pose and internal geometry. Through matrix decomposi-

tion of matrix P the decomposition can give intrinsic and extrinsic parameters. The intrinsic

matrix contains internal parameters such as focal length. The extrinsic matrix contains param-

eters used to define motion about a static scene relating the world coordinates to the camera

2http://www.slideshare.net/shkulathilake/morphological-image-processing-43465879
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Figure 3.8: Pinhole

Figure 3.9: Projection diagram

coordinates.

These camera parameters can be found through a process known as camera calibration. The

distortion coefficients can be identified by both sets of parameters and corrected for. Glossing

over the details of camera calibration it is important to point out that this plays a very important

role in recovering depth. Most of the techniques above would require the use of calibration for

whatever multi view information they deal with.

This work focuses on the use of multiple views of the image in which to capture features

on. Our belief being that using multiple views of an object can improve the classification

performance. This has been seen by the works given by [14] and [45], using the BoW model

for object classification is improved when the number of views is increased without having to

handle with depth information. The belief that different views of the object contain additional

information was something of interest. For our particular dataset that is introduced in Section

4.1.1, the actual objects could not always be distinguishable from one view as the differences
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Figure 3.10: Lens used to focus light3

between some of the part classes could only be identified when looking at the object from

multiple view points.

This is where this work deviates from many of the above approaches. Many techniques

for generating 3D models require many views of the part. This is evident by the large number

of views of the same object in publicly available datasets. Many stereo imaging techniques

have two cameras very close together. The objects in-house dataset can only be distinguished

at a visual level when the views are angled far apart as in our setup. Other feature based

techniques to work on the correspondence problem between sets of features across multiple

views relies on strong discriminative features. Unfortunately our objects for classification are

all black and have some level of luster. Reliable feature matching techniques are not feasible

as with most reconstruction methods using correspondence when there are not enough features

matched consistently across the frames with high confidences they are dropped. The end result

is an extremely sparse point cloud representation with very few points and certainly not enough

points to regenerate the full model. There is of course the technique of deflectometry [29] uses

very specialized equipment for paint defects after performing surface reconstruction. The main

issue with that approach is the object needs to be stationary. Even if the common 3D approach

for image classification could be reliably performed our system requires classification of the

3http://www.cse.unr.edu/ bebis/CS485/
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object on a moving belt near real time.



Chapter 4

Experimental Results

4.1 Introduction to Datasets Used in Experiments

4.1.1 Introduction to In-House Dataset

As mentioned earlier the object would sit atop the board with a white background with red

marking points. All of the parts used were automotive parts. The parts are named window

pillars and guides as shown in Figure 1.1. On each of the parts there is a white label appended,

which due to a confidentially agreement with the manufacturer the label is hidden from this

publication. Where noted we have selected publicly available images to give the reader a sense

of the type of parts used. The stock images which were taken from the popular automotive

website ECS Tuning. The stock images were selected to show the levels of similarity among

the parts and better illustrate the problem. For all experiments, conducted we used our dataset

and no stock images were used. Any non-stock image displayed within this publication were

used in the actual dataset. Any stock image will contain the ECS Tuning watermark. It is worth

noting that all of the parts were new and their condition was the same as used as in the factory.

One of the challenging aspects of this dataset is the high level of similarity between parts

that serve the same function but differ in some physical characteristic. Parts that serve the

same function but can vary in any orientation, length and luster are all considered distinct

classes because they have their own identification number that the manufacturer uses.

The automotive parts could vary in luster. During the painting process all of the parts are

47
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painted black. From the black paint there are two types of paint that could be applied. One of

the paints gives a matte finish whereas the other one gives the part a glossy finish. This can be

seen in Figure 4.1

Figure 4.1: Window pillars comparing the two types of lustre: matte and glossy

Different models of vehicles often require the same part, but just at a different length as

vehicles are made in different sizes. In most cases there are multiple parts needed for the same

vehicle but differ in required size. This can be seen in Figure 4.2.

The parts could also be different based on the intended location of install. For example a

part that has the same functionality but is designed to be installed on the left side of the vehicle

will be different than the part that is designed on the right side of the vehicle. These parts are

denoted to belong to a different orientation as seen in Figure 4.4.

Parts that had the same functionality/purpose but could vary in the ways mentioned above

are referred to as belonging to the same family. For this dataset there are 39 classes. Since each

view provides a snapshot of the object at four different angles is named an Image Set. Of the

39 classes there were 35 images sets per class for a total of 1365 images .
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Figure 4.2: Window pillars comparing the longer and shorter window pillars for front and back
placement

The images were captured by moving the part along the belt. To simulate a real world

environment, after each image is taken, the belt is moved and the part’s location sitting on

the board is moved, rotated or both. During all movements, the belt remained in view of the

cameras while the part remained inside the markers used for tracking, and the rotation was no

greater than approximately ± 45◦.

There was only one part per class to generate all the image sets. A natural concern was

the fact that the label was fixed and would bias the dataset since the label contained numerical

characters. To address this obvious threat to experimental validity in each of the 5460 images

the four corners of the label region were manually marked and stored as a mask. This label

mask was used during experimentation to stop features from being found within or on the edge

of the label.
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Figure 4.3: Window guides of varying length1

Figure 4.4: Window pillars with left and right orientation1

4.1.2 Introduction to Caltech 3D dataset

As mentioned earlier the in-house dataset is under a confidentiality agreement and thus cannot

be publicly released. To show that the contributions contained within this thesis is not just

valid but can also be extended to other multi view datasets. The publicly available multi view

dataset known as the CalTech 3D object categories [45] was used to as benchmark. This dataset

contained 10 individual object instances from 8 categories. Each instance had 8 viewing angles,

3 heights and 3 scales. See Figure 4.5. One exception was the car dataset which only had two

heights instead of three. The images were 400 x 300 pixels and the dataset contained a mask

1https://www.ecstuning.com
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Figure 4.5: A diagram showing samples of the CalTech 3D dataset

of each object.

4.2 Evaluation of Single and Multiple Views

4.2.1 Classification Performance with a Single View

The following two experiments evaluate classification performance using different features, on

both the in-house dataset and the CalTech 3D set. In both cases, only the first view point was

used throughout the entire BoW pipeline. This reduces the problem to image classification

from a single view.

4.2.2 Results

The classification results for the in-house dataset are shown in Figure 4.6. ORB features had

a greater classification accuracy over SIFT and SURF features. For ORB and SIFT features,

once the dictionary size reaches 256, the classification accuracy as a function of dictionary size

starts to level off and the improvement in classification is quite minimal and does not justify
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Figure 4.6: Classification performance on in-house dataset using the BoW model comparing
SIFT, SURF and ORB features against vocabulary size using a single view

the increased computational time.
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Figure 4.7: Classification performance on CalTech dataset using the BoW model with varying
vocabulary size using a single view
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The results shown in Figure 4.7 shows classification accuracy by feature type as a function

of dictionary size using a single view of the CalTech dataset. Unlike the prior experiment,

SIFT features outperformed ORB features by a fair margin. That being said, looking at the

results for SIFT features, it is concerning to see these fluctuations in accuracy as seen when the

dictionary size is 64 and 256.

4.3 Classification Performance with Multiple Views

8 16 32 64 128 256 512

Dictionary Size

0

20

40

60

80

100

C
la
ss
if
ic
a
ti
o
n
 A
cc

u
ra
cy

 %

1 view

2 views adjacent

2 views diagonal

4 views

Figure 4.8: Classification performance showing the impacts of using different combinations of
views and dictionary size on in-house dataset

The results for varying the number of views and dictionary size for the in-house dataset are

presented in Figure 4.8. The results within this figure indicate two things. Firstly, increasing

the dictionary size has a positive impact on classification performance. In fact the general

trend of improved performance by increasing the dictionary size using only one view as seen

in 4.6 also extends to multiple views. This improvement can likely be attributed to a reduction

in quantization loss as the number of centroids is increased. Secondly, the takeaway from
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this is the consistent improvement of classification performance when the dictionary size is

increased. As discussed earlier multiple views of an object can increase the information that

can be extracted from the object for classification. This is especially true for the case when

objects appear the same from a particular view but have clear visible differences from other

views. These distinctive differences are often occluded by the object itself. This is the case

with our in-house dataset.

Method Classification Time (ms)
SIFT 2325
SURF 1210
ORB 350

Table 4.1: Comparison of classification time [11]

The classification times are listed in Table 4.1. As mentioned earlier, many applications re-

quire near real-time classification. As is the case for our application. The full set of algorithms

required for descriptor extraction is a core component in running time. As mentioned by the

authors Rublee et al. [43] ORB descriptors are faster to compute compared to SIFT and SURF

descriptors. Their comparison is focused on descriptor matching and not necessarily the image

classification task.

In Table 4.1 we evaluate the time it takes from reading an image set, detecting keypoints,

computing descriptors, constructing a feature vector and finally performing classification using

all four views. For this evaluation, the number of detected features was set to 300 features per

view and the dictionary size was 1000 centroids. The dataset used was a subset of the in-house

dataset containing 25 classes. The classification time shows that ORB has a speed increase of

over 6x compared to SIFT and 3x compared to SURF. With the multiple view framework that

was proposed SIFT and SURF are not ideal for near real-time classification.

The same approach of assessing classification accuracy as a function of the number of

centroids used to construct the dictionary was carried out on the Caltech dataset. For a fair

comparison between the results obtained in Figure 4.8 the same experimental setup, and the

use of 10-fold cross validation was used. Here the results show that SIFT descriptors perform

better then ORB. This deviation could be attributed to a few things. Firstly, the dataset used
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Figure 4.9: Classification performance using multiple views of the CalTech 3D dataset

objects that were captured from 3 different heights and 3 different scales. In our setup, have

such a great variation in height and scale as the object is captured once it enters the field of

view from the four cameras. Secondly the cameras were at a set height. The take away from

this would be SIFT descriptors may be better suited for image classification when the object

can appear at drastically different heights and scales. ORB descriptors handle scale by the

simple image pyramid approach. SIFT descriptors handle scale by the more elegant approach

of feature description at multiple scales by using the Difference of Gaussian, stemming from

scale space theory.

Figure 4.8 showed that for our in-house dataset, increasing the number of views consistently

improved classification performance regardless of the dictionary size used. This would lead to

the conclusion that increasing the number of views improves classification performance under

the assumption that the features found in additional views would provide more discriminative

information to assist with the classification task. This also holds true for the CalTech 3D set

as seen comparing the confusion matrices generated by an average accuracy over the 10-fold
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cross validation. The two matrices can be seen in Figure 4.10 and Figure 4.11. Both sets of

results used 256 centroids for the visual vocabulary and 350 ORB features. It is clear just

by visual inspection that using the multiple view setup considerably improved classification

accuracy. For example the toaster object has a mean accuracy of being correctly classified at

57.41% but extending this to using all 8 views, the mean classification accuracy jumped to

75.93%. For everyone of the 8 classes in this dataset classification accuracy improved. The

mean classification accuracy improvement over the 8 classes was 9.03%

4.4 Evaluation of Multiple Dictionaries

This section evaluates different strategies on how to utilize the visual vocabulary most effec-

tively. The method in which the visual vocabulary is used ultimately affects the resulting feature

vector that is fed to a classifier. In this work three approaches are evaluated. The following

three subsections use the following definition for a set of image descriptors:

Every image contains one or more features x belonging to a set of features X.

4.4.1 A codebook for each view

Every image belongs to a view i and has a corresponding visual vocabulary/codebook (CB) i

containing n centroids. Multiple histograms are created by associating Xi to CBi forming the

histogram Hi. The feature vector is then defined as f v := Hi for views i = 1, ..., k. The resulting

feature vector has dimensionality 1 × ni

4.4.2 A single codebook for all the views

A second approach is a bit more simple. For every x ∈ Xi assign x to the single codebook

CB1 of dimensionality n. The feature vector is f v := Hi. The resulting feature vector has

dimensionality 1 × ni
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4.4.3 Summation of visual words

The final approach is to sum the histograms H corresponding to each view. For every x ∈ Xi

multiple histograms Hi are created using one CB the same way as in Section 4.4.2. The feature

vector is defined as f v = Σk
i=0 Hi. The resulting feature vector has dimensionality 1 × n. The

above approach simply requires the indexes for each of the histograms to be consistent.

4.4.4 Results
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Figure 4.12: A comparison on using different methods of utilizing the visual vocabulary for
image classification using in-house dataset

The results using the three approaches can be seen in Figure 4.12. It is clear that the

summation strategy performs the least favourably. There is however a speedup in classification

using this approach as the length of the feature vector does not depend on the number of views.
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Unfortunately the results show that the summation method performs much more poorly for

small codebook sizes but does catchup with the other approaches for large codebook sizes.

The results also indicate two things. The first being that classification accuracy is compara-

ble for either approach but using the multiple dictionary approach performs slightly better than

one dictionary when the number of centroids is larger. For this particular dataset, this effect can

be seen when the number of centroids is 256. For all of the experiments, the second strategy

of using one dictionary for i views is used where applicable.

4.5 Kernel Selection for SVM Optimization

In subsection 2.5.5, the concept of kernels was introduced. Kernel methods can be a useful

tool for improving classification by operating in an implicit feature space by using a kernel

function without having to map the input data itself by use of the kernel trick. This implicit

feature space can be of a greater dimension in which data is more likely to be separable. The

only requirement is that the selected kernel meets the requirements for being positive semi-

definite, also known as a Mercer Kernel.

4.5.1 Traditional Kernels for use with an SVM

The following kernels are some of the most commonly used kernels for the purpose of implic-

itly mapping the feature space to a higher dimension with the exception of the linear kernel.

Assuming the following are column vectors:

Linear Kernel:

k(x, x′) = xT x′ (4.1)

Polynomial Kernel:

k(x, x′) = (γxT x′ + r)d, r > 0 (4.2)

Gaussian Kernel

k(x, x′) = exp
(
−γ||x − x′||2

)
(4.3)

For the polynomial and Gaussian kernel there are two hyper-parameters that normally have
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to be learned, γ and cost. The cost parameter is to penalize the model for training samples that

are misclassified. Normally a grid search is employed to search the parameter space using a

logarithmic scale.

4.5.2 Results

The grid search for all experiments below are for finding the best γ and Cost C. The range of

values used are: [-10,-9, ... , 9, 10]. These values in the set are the exponents and here we used

a base 10. So the γ values are: [γ−10, γ−9, ..., γ9, γ10]. The same is true for the cost C

The grid search performs 10-fold cross validation against both parameters and the value

inside the heat map is the mean accuracy.

This experiment referenced in Figure 4.13 evaluated the polynomial kernel 4.2 with a de-

gree of 2. Very little can be said for this figure as the accuracy was either very poor or quite

high with the greatest mean accuracy of 97.45% found by using the full grid search.

This experiment from Figure 4.14 evaluated the polynomial kernel with a degree of 3.

Since the degree of this kernel was greater then the previous experiment carried out in Figure

4.13. Cover’s theorem, suggests the data should be more likely to be linearly separable and

thus perform better, this was not the cause. perhaps the data used for the most part, was

already linearly separable and thus classification did not benefit from a kernel mapping with an

increased dimensionality. The mean accuracy of 96.86% found by using the full grid search.

The radial basis function was the final kernel that was evaluated. This kernel takes the input

and using the kernel trick to map the data to an infinite dimensional feature space. The heat

map for this grid search can be seen in Figure 4.15. This heat map looks considerably different

then the other two for the same set of hyper parameters. One can easily see the triangular

region in the heat map and how the closer to the center of the region the greater the accuracy.

The best accuracy found was 97.8%.

The Table 4.2 shows the best hyper-parameters searched and the corresponding parameter

values that performed the best. As seen on some of the heat maps some of the largest accuracy

values are repeated. The first set of hyper parameters to maximize the accuracy was recorded.

The results show that the RBF kernel had a higher classification performance compared to the
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Figure 4.13: Heat Map of Grid Search for polynomial degree 2 parameters

Kernel Log2C Log2y Best Log2C Best Log2y Accuracy (%)
Linear -10,1,10 NA 10 NA 97.1

Poly. (Degree=2) -10,1,10 -10,1,10 1 × 10−10 1 × 106 97.5
Poly. (Degree=3) -10,1,10 -10,1,10 1 × 10−10 1 × 104 96.9
Gaussian Kernel -10,1,10 -10,1,10 100 0.1 97.8

Table 4.2: Hyper-parameter search for several kernels and the affects on classification
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Figure 4.14: Heat Map of Grid Search for polynomial degree 3 parameters

linear and both polynomial kernels of degree 2 and degree 3.
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Figure 4.15: Heat Map of Grid Search for RBF kernel

4.5.3 Histogram Intersection and X2 kernels

Histogram Intersection

A well known problem with the traditional BoW is the lack of spatial information. That is,

using a histogram based approach, spatial relationships among features are ignored and the

geometry of the scene is lost.

The original approach as proposed by Grauman and Darrell [18] is that given two sets of

vectors X and Y , the correspondence between the two sets is computed. Grids over the feature

space are computed with an increasing amount of coarseness at each level l which contains 2l
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Figure 4.16: Generating spatial pyramids [32]

cells for each resolution 0, ..., L for a total of D = 2dl cells. Two points are said to match if they

fall into the same cell of the grid. Matches that occur at finer grid levels have a higher weight.

The histograms Hl
X and Hl

Y are the points from X and Y that fall into the ith cell of the grid at

level l. The weighted sum of matches is given by the histogram intersection function:

I(Hl
X,H

l
Y) =

D∑
i=1

min(Hl
X,H

l
Y) (4.4)

This work was further developed by Lazebnik [32]. The author deviated from the previous

work by construction grids on the images and not the entire feature space and thus incorporate

weak geometry.

The image is divided into fine sub-regions This process can be see in Figure 4.16. Local

histograms within each cell are computed and weighted based on what level of the pyramid the
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grid belongs to.

Using the same notation given by Svetlana et al. [32] I(Hl
X,H

l
Y) is abbreviated to Il.

kL(X,Y) = IL +

L−1∑
l=0

1
2L−l (I

l − Il+1) (4.5)

=
1
2LI

0 +

L∑
l=1

1
2L−l (I

l − Il+1) (4.6)

The associated weight at level l is set to
1

2L−l , thus the associated features and respective

histograms found at finer resolutions of the pyramid have more weight. Since the histograms at

higher levels are given more weight when intersections take place as defined by 4.6, there is a

larger similarity score. This results in a scheme that favours matches at higher levels returning

a larger score if the intersection takes place in the same grid which introduces weak geometry.

X2 kernel

Another kernel function of interest is the X2 additive kernel from the Chi-Squared distribution.

This kernel function is given by:

k(x, x′) = −
∑

i

(xi − yi)2

(xi + yi)
(4.7)

It is worth noting that while the Histogram Intersection is positive definite (Mercer kernel).

The X2 additive kernel in 4.7 is only conditionally positive definite. Kernel selections that are

not positive definite can still be used, and often work well in practice [5]. Not being positive

definite means there is no geometrical interpretation and the hyperplane that maximizes the

margin discussed in subsection 2.5.4, is no longer guaranteed to be optimal.

4.5.4 Results

The results presented in Table 4.3 show the classification performance using the in-house

dataset with all four views. The linear kernel classification accuracy came from Section 4.3.

The linear kernel accuracy value is the baseline to compare the other two kernels against as they
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Kernel Accuracy (%)
Linear Kernel 95.62
Histogram Intersection Kernel 98.37
X2 (additive) 98.43

Table 4.3: Comparison of the Histogram Intersection and X2 kernels

all had the same number of features and same number of words (256 centroids) in the visual

vocabulary. The results show that the histogram intersection kernel and the X2 both perform

better than the standard approach that lacks any geometry. The discriminative ability of the

HIK approach is greater than the linear kernel which is consistent with [32]. Our work shows

that this improvement using weak geometry can be applied to a multiple view system.

The X2 kernel performed slightly better than the HIK. It is surprisingly as the process of

generating the spatial pyramids with increasing weights was not used for the X2 test. This

result is quite surprisingly because the only change that took place was swapping the linear

kernel for the X2 kernel and the problem with the lack of spatial information is still present.

4.6 Evaluation of Spatial Histograms and Pooling

There are several methods for improving the standard histogram from the bag of words repre-

sentation. The most common way is to incorporate weak geometry by using spatial histograms

as shown by Grauman & Darrell [18] and Lazebnik et al. [32] as looked at in the previous

section. Another technique when using spatial binning is to pool the local encoded features

across the spatial regions. An exhaustive evaluation of these different techniques can be found

in the work done by Chatfield et al [6].

4.6.1 Spatial Histograms

As introduced in Section 4.5.3 the loss of spatial information is detrimental to the discrimina-

tive ability for the image classification task. Weak geometry can be incorporated by the use of

spatial histograms by partitioning the image into grids. Once done the local features in each

grid area encoded, for example by creating a histogram. An example of this process can be
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seen in Figure 4.17 by partitioning the image into a 2 × 2 grid.

Figure 4.17: An example of spatial histograms 2

It is really important to point out there are many different flavours to this approach. For

example the grid shape need not be n × n. Often vertical or horizontal strips i.e. 3 × 1 are

used or some combination of grid shapes. The most suitable grid shape is often determined

empirically. In the case of the HIK using the method described by Lazebnik et al [32] the grid

size increased at a constant weight the the histograms were re-weighted based on what level

the cell belongs to. This also does not have to be the case. The histograms do not need to be

re-weighted by a scale factor determined by the level the cell belongs to. That approach also

uses the histogram intersection kernel to find the intersection between sets. This is also not a

requirement as any valid kernel can be used. In fact, the classifier is not restricted to be a SVM.

The encoded features in each cell can then be concatenated and used in classification. Using

this approach it is often beneficial to normalize the encoded features by each individual cell

using the l1 or l2 norm and then concatenating each feature encoding to build the full feature

vector and possibly normalizing again on the entire feature vector prior to classification. It is

also worth pointing out that increasing the number of spatial histograms too much can cause

over fitting and harm classification.
2SPATIALHISTIM: http://clic.cimec.unitn.it/vsem/content/bovw.html
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4.6.2 Feature Pooling

When using the spatial histogram approach the encoded features can be concatenated to form

the full feature vector. Another approach known as feature pooling combines the feature en-

codings in each spatial cell by some operation. The benefit to this is that simple concatenation

of encoded features can greatly increase the dimensionality of the representation by a factor of

n where n is the number of cells. According to Boureau et al [2], “Pooling is used to achieve

invariance to image transformations, more compact representations, and better robustness to

noise and clutter.”

Some of the most frequently used pooling operations include mean, max and sum pooling.

Given an image that is partitioned into M cells with each cell containing encoded features with

the BoW histogram model. Each cell would then contain a 1× j feature vector F, where j is the

number of centroids in the visual vocabulary. The following three pooling techniques assume

that for every m ε M at least one feature exists in m and thus the required encoding stage can

take place.

Mean Pooling:

The mean pooling across M cells is defined as:

F j =
1
M

M∑
m=1

um j (4.8)

Max Pooling

The max pooling across M cells is defined as:

F j = max{u1 j, u2 j, ... , uM j} (4.9)

Sum Pooling:

The sum pooling across M cells is defined as:

F j =

M∑
m=1

um j (4.10)
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4.6.3 Results

For all of the experiments conducted in this section, any technique that requires spatial his-

tograms or pooling was done by taking the image and partitioning the image into 2 × 2 grids

for level, L = 1. The experiments conducted do not exceed beyond the first level into finer

grids, as it actually harms classification performance. All of the experiment involving spatial

histogram and pooling were used along size the original BoW model. All of the feature vec-

tors are composed of the image at level L = 0 and concatenated with the pooling or spatial

histogram approach at level L = 1. Prior to applying any pooling operation, the feature vector

of each cell in the grid is l2 normalized

Keeping consistent with previous experiments, a dictionary size of 256 centroids was used.

This means that the dimensionality of the feature vector using any of the pooling approaches

is 1 × 512n, where n is the number of views. The spatial histogram which contains four cells

at L = 1 is concatenated with the original BoW representation at L = 0. The resulting feature

vector dimensionality for this technique is 1 × 1280n

The first experiment performed evaluates the impact of using spatial histograms and feature

pooling techniques on the in-house dataset as seen in Figure 4.18. There was no positive results

on performance caused by the various pooling approaches. The only accuracy improvement

noted, was from using the spatial augmentation/pyramid approach in which there was a slight

increase in classification accuracy for the in-house dataset.

The following experiment was repeated using the 8 view CalTech 3D set as seen in Figure

4.19. The results show that the pooling techniques perform slightly better but the greatest

improvement in classification performance came from the spatial histogram. Using the spatial

histogram approach had a considerable boost in classification performance by over 11%. The

downside to the spatial histogram approach in particular with this dataset is that it consists of

8 views and thus the size of the feature vector that has a size of 10240

As the spatial histogram had such a considerable improvement in classification accuracy

as seen in Figure 4.19 a comparison showing improvements to classification at the object level

was performed as seen in Figure 4.20. Classification accuracy for each object in the dataset

was improved. The greatest improvement came from the accuracy of the toaster class. Classifi-
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Figure 4.18: Spatial histograms and feature pooling applied to in-house dataset

cation of this object was considerably worse then the other object categories in the dataset and

as a result was really lowering the overall classification mean. The use of spatial histograms

improved classification of the toaster object from 57.41% to 75.93%.

In this chapter an evaluation of using different techniques with the goal of improving clas-

sification by incorporating weak geometry and using a more robust image representation by

feature pooling was evaluated. Most works that use these techniques focus on improving clas-

sification using a single view. This chapter showed that these techniques that can improve clas-

sification with a single view could be incorporated to a multiple view framework and further

improve classification. While most of these techniques are often applied to computer vision

tasks, the improvements can generalize to machine vision tasks.
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Figure 4.19: Spatial histograms and feature pooling applied to CalTech 3D dataset

4.7 Evaluation of Descriptor Encoding Strategies

In the past few years there have been advancements in representing an image. The traditional

BoW model encodes the descriptors by matching the features to the visual vocabulary and the

final image representation is a histogram. A more modern approach of descriptor encoding

known as a Vector of Locally Aggregated Descriptors (VLAD) was first introduced by Jegou

et al. [26]. The VLAD representation replaces the histogram representation by aggregating the

difference between a descriptor assigned to a centroid by Nearest Neighbour (NN) assignment

along all of its dimensions. A more detailed explanation of this approach can be found in

Section 2.6. Feature encoding using the VLAD method is commonly refereed to in literature

as containing first order image statistics. Whereas the traditional BoW with a histogram is said

to contain zero order image statistics.
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Figure 4.20: Classification improvements when adding spatial histograms

4.7.1 Results

The results shown in Figure 4.21 evaluates the VLAD encoding classification results as a func-

tion of dictionary size. This experiment also evaluates the results of different normalization

strategies. The results for this experiment show that without any normalization the classifi-

cation is quite good. In fact at the smallest dictionary size it outperforms the baseline BoW

approach. The one notable issue is the shape of the classification line is jagged. Unlike almost

all of the experiments presented the trend of increasing the dictionary size has a positive im-

pact on performance. This makes it hard to predict the effects of the number of centroids on

classification.

The next two evaluations compare the use of the l2 normalization and power normalization

followed by l2 normalization before training. The results show that applying power normaliza-

tion at α = 0.5 followed by l2 normalization performs the best. It also happens that this series
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Figure 4.21: The results of the in-house dataset using the VLAD encoding approach

of normalizations appears to be the most stable with the greatest accuracy of 99.4 % using

64 centroids when building the visual vocabulary. All of the VLAD normalization strategies

perform better then the BoW for a comparable dictionary size.

One of that natural drawbacks to this method is the size of the feature vector can easily

grow to the point where it is unreasonable to work with. The dimensionality of VLAD using

this multiple view framework is that using ORB features which have a dimensionality of 32,

the resulting feature vector will be of length 1 × 32ni where n is the number of centroids and i

is the number of views. Sticking with our baseline for our in-house dataset which has 4 views,

with a dictionary size of 256 the length fo the feature vector is 1 × 32768

For the purpose of comparison, the same experiment was carried out on the CalTech dataset

as seen in Figure 4.22. There are some similarities between these results and the results ob-

tained earlier from Figure 4.21. Firstly, the VLAD approach is superior then the regular his-

togram based BoW. It appears that this experiment shows the importance of normalization prior
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Figure 4.22: Classification of Caltech using the VLAD encoding approach

to classification. While the best results happen to appear for unnormalized feature vectors, at

dictionary size 32, it is the most unstable of the two normalized VLAD encodings, and appears

to have a fair reduction in classification accuracy as the dictionary size grows.

For the Caltech dataset, the best normalization approach appeared to be l2 whereas in the

in-house set power normalization followed by l2 appeared to work the best. The results are

too similar to make any generalization of the best approach, though it could be argued that the

variance in the classification results as a function of the dictionary size it is too unstable.

4.7.2 VLAD and Dimensionality Reduction

Following this the next set of experiments evaluates the effects of dimensionality reduction as

discussed in Section 2.9. The VLAD encoding method drastically increasing the dimension-

ality of the feature vector by a factor of n, where n is the dimensionality of the descriptor,
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resulting in an increase in the training and testing time.
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Figure 4.23: In-House eigenvalue distribution of PCs on feature vectors using VLAD encod-
ings

Both the figures 4.23 and 4.24 show the eigenvalues as a function of the number of Principal

Components (PCs). The eigenvalues and corresponding eigenvectors are sorted in descending

order. The eigenvalue explains how much of the variance in contained within each principal

component. Looking at the In-House eigenvalue distribution in 4.23 the majority of variance is

contained within the first 100 components in which case the eigenvalues start to level off. This

indicates that the image representation contains a lot of redundant information. The CalTech

Dataset Dimensionality Reduction D to→ D’ Accuracy (%)
In-House - 98.76
In-House 32 768→ 256 96.53
CalTech - 88.74
CalTech 65 536→ 256 64.85

Table 4.4: Effects of Dimensionality Reduction when using VLAD encodings
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Figure 4.24: CalTech eigenvalue distribution of PCs on feature vectors using VLAD

dataset on other hand in 4.24 does not level off quickly and the data distribution cannot be well

explained by first i PCs.

Judging by the two eigenvalue distribution figures it would likely appear that dimensionality

reduction would have a greater negative result on classification performance for the CalTech

dataset as compared to the in-house dataset. This is confirmed in Table 4.4

4.8 Triangulation Embedding

Triangulation Embedding is a powerful vector representation of an image introduced by Jegou

and Zisserman [27] for the image search task. This method is discussed in Section 2.7. Their

work is adapted for the image classification task within a multiple view framework.
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4.8.1 Triangulation Embedding Classification Results

The first set of classification results compares classification accuracy using Triangulation Em-

bedding and other methods discussed throughout this thesis, shown in Table 4.5. The classifi-

cation accuracy using this method has an accuracy of 99.28% on the in-house dataset and an

accuracy of 94.38% on the CalTech dataset. On both datasets this method outperforms all the

other approaches.

Approach Accuracy (%)
BoW + l2 95.62
Histogram Intersection Kernel 98.37
X2 (additive) 98.43
Spatial Pyramids 96.08
VLAD + l2 98.76
ΣR(x) 96.08
Φ4 99.28

Table 4.5: Comparison of the Triangulation Embedding method on the in-house dataset

Approach Accuracy (%)
BoW +l2 82.15
Spatial Pyramids 93.63
VLAD + l2 88.74
ΣR(x) 83.53
Φ4 94.38

Table 4.6: Comparison of the Triangulation Embedding method on the CalTech 3D set

4.8.2 Triangulation Embedding analysis

In computer vision, images are represented by feature vectors. These representations can be

compared to one another by using a similarity metric. These types of metrics take two vectors

as inputs and returns a scalar value. For example, within an SVM framework, image similar-

ity is evaluated using a kernel function that also outputs a scalar. One of the most common

similarity metrics is the cosine similarity also defined as a linear kernel (assuming l2 normed

inputs) mentioned in equation 4.1. The similarity between two feature vectors x1 and x2 should
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Figure 4.25: Similarity scores histogram of Shoe vs. Iron classes using BoW
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Figure 4.26: Similarity score histogram of Shoe vs. Iron classes using Triangulation Embed-
ding

be close to unity when the images are similar. Conversely, a lower similarity value would be

returned when the two feature vectors are dissimilar, which would likely be the case when the

feature vectors belong to different classes. Focusing on the classification problem, this means

that feature vectors belonging to the the same class should, in general return a larger similar-

ity score when they belong to the same class and lower scores when they belong to different

classes.

Looking at the results presented in Section 4.8.1, the triangulation embedding method con-

sistently outperforms the original BoW approach. A more detailed comparison on where the

classification fails can be seen in the confusion matrices shown in Figure 4.10 and Figure 4.11.

Focusing on the Shoe vs. Iron classes, by looking at their confusion matrices and improve-

ment in classification accuracy can be seen. Taking the feature vectors of both classes, the

cosine similarity among Shoe vs. Iron classes was computed and a histogram of these scores
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was created. The first histogram in Figure 4.25 using the BoW has many scores with relatively

larger similarity scores compared to the Triangulation Embedding method in Figure 4.26. The

feature vectors compared belong to different classes, yet the BoW method shoes there is a rel-

atively large amount of similarity even though the feature vectors belong to different classes.

This is not an ideal situation. The histogram shown in Figure 4.26 using the Triangulation

Embedding method has many of the scores being much lower, implying the feature vectors be-

longing to the two different classes are more dissimilar. The takeaway from this analysis is that

the Triangulation Embedding method produces a more discriminative feature vector as shown

by the similarity scores that are frequently used in image classification and retrieval tasks.

4.8.3 Triangulation Embedding, recovering from camera downtime

A major issue that plagues many vision systems is unexpected downtime. Any piece of com-

puter hardware can fail to function unexpectedly. The likelihood of hardware failure is greatly

increased in industrial settings as the hardware may be exposed to physical damage, extreme

temperatures and dirty environments to name but a few. This poses a major risk to the manu-

facturer as they may have to halt production.

Approach Accuracy (%)
BoW 94.51
BoW + l2 93.72
BoW + PN 96.60
Φ4 98.56
Φ4 + l2 98.56
Φ4 + PN 98.89

Table 4.7: Comparison of the Triangulation Embedding method on the in-house dataset

To evaluate how robust the system was at handling random camera downtime was simu-

lated. The final feature vector in our framework is the concatenation of n sub-feature vectors

derived from the n views.vector is derived To represent a missing camera input one of the sub-

feature vectors was replaced with a zero, effectively reducing the system to n − 1 views. Its

worth noting this was not done on the learning set to generate the visual vocabulary.

The results evaluated in this section use a somewhat different form of a SVM. The software
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Approach Accuracy (%)
BoW 75.59
BoW + l2 75.57
BoW + PN 74.87
Φ4 91.69
Φ4 + l2 91.21
Φ4 + PN 91.94

Table 4.8: Comparison of the Triangulation Embedding method on the CalTech dataset

package is known as LibLinear [13]. As the name suggests, this SVM implementation only

supports linear kernels but has the advantage of being very fast as it scales almost linearly

based on the number of samples.

The results presented in Table 4.7 and Table 4.8 show two things: Firstly, On both datasets

the drop in calcification accuracy was reduced by using the Triangulation Embedding method

over the BoW method. Secondly, applying Power Normalization (PN) with α = 0.5 in lieu of

l2 normalization further improves classification accuracy.

4.9 Running Times of Feature Encoding Methods

There were three main feature encoding methods discussed in this thesis: Histogram encoding

for the standard BoW, the Vectors of Locally Aggregated Descriptors (VLAD) and the Trian-

gulation Embedding method. The experiments were conducted on an Intel i7 desktop with 32

GB of RAM. The implementation was done in Python 3.4 using the OpenCV library and the

NumPy module for many of the calculations.

Approach Encoding Rate (images/sec)
BoW 18.64
VLAD 17.78
Φ4 12.90

Table 4.9: Comparison of the feature encoding rates

The encoding rates for these methods are presented in Table 4.9. These rates also include

the time it takes to extract the ORB descriptors. By including the feature extraction times to
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the encoding rate, it gives a more meaningful sense of how fast feature vectors can be built for

the purpose of running through a classifier. The Triangulation Embedding performed the best

in terms of classification accuracy and also has an encoding rate that is fast enough to be useful

within the proposed framework. Using the proposed four view setup with each image having a

resolution of 1280 × 720, it takes approximately 0.31 seconds to generate a feature vector.

The processing times could be improved by moving from Python which is a scripting lan-

guage to using a pure C/C++ implementation. Further optimization can also be achieved using

parallel processing and GPU computing, something that will be left to future work.



Chapter 5

Conclusions and Future Work

5.1 Summary

The work contained within this thesis is a framework for creating a machine vision system

for correct product classification of very similar items. The type of system designed is for

the purpose of error-proofing. In the field of machine vision this type of system to reduce

errors is commonly referred to as Poka-yoke, which the direct Japanese to English translation

is “mistake proofing.”

This work studies and evaluates complex computer vision approaches and applies them to

machine vision problems in an effort to bridge the gap between the two fields. The method-

ology contained within this framework uses advances in binary features and feature encoding,

where most earlier literature focuses on feature matching with binary features, or feature en-

coding using traditional non-binary features. Most prior works are focused on the task of image

retrieval not image classification. The solution presented within this framework can allow for

on-line learning of new object classes during regular factory operation and avoids using physi-

cal measurements or expert level knowledge, as is the case with most machine vision systems.

The feature pooling method of spatial augmentation performed the best, while being the

most common in literature. The newer methods of mean and max pooling, fell short with

respect to improvements in classification. The spatial augmentation approach performed the

best.

The results of VLAD encoding, while relatively new and impressive in the literature, did
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not prove to be very robust for binary descriptors. In fact, reading literature one would assume

the VLAD approach was an easy out of the box solution for improving the BoW model, yet

this was not immediately realized as normalization is an essential requirement for performance

and there was no uniform normalization that was consistent within the literature. Having these

requirements that are not overtly clear makes one wonder the generalization capabilities of the

method between datasets.

The in-house dataset itself, while we believe in its validity, perhaps more exciting challenge

would come from additional object classes. If more parts were available or additional parts

that serve a different purpose on the vehicle could further demonstrate the usefulness of this

framework.

While various image encoding strategies using 2D images were studied there was also some

experimentation with using depth information. Mentioned earlier in this thesis, the difficulty

of using depth information for 3D representation. Experimentation with depth reconstruction

using feature matching with calibrated cameras and the popular Structure From Motion (SFM)

technique performed poorly. It was likely the result that the object itself sits on a white back-

ground, and the features detected on the part were unlikely to match across multiple frames

with a high enough confidence. Without strongly matched features across multiple frames, the

ability to generate an acceptable point cloud was compromised.

The embedding stage of the triangulation embedding approach, while explained in limited

detail by the original authors had room for exploration of various dimensionality reduction

techniques. The one resulting in the best accuracy was found using PCA through the Singu-

lar Value Decomposition (SVD) approach. There was also a considerable improvement using

descriptor whitening when compared to simple summation aggregation
∑

R(x) for triangula-

tion embedding. This leads to the question on further improving on the benefits of descriptor

whitening and the influence feature descriptors have on each other.

Finally, the results show that the system is robust enough to handle camera failure with a

minimal decrease in accuracy. A vision system that can handle unexpected camera failures

provides a great benefit for users, as production will not have to stop in effort to maintain

quality control.
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5.2 Future Work

Granted this framework is robust enough to provide a meaningful low cost industrial solution,

but further improvements remain. The integration of other types of sensors to capture other

features, such as a depth sensor would be of particular interest. Another area of interest that is

left to future work would be the use of Convolutional Neural Networks. As of late they have

exceeded many previous benchmarks for image classification and retrieval tasks. Despite the

difficulty in network architecture and the large quantity of training images needed, it would be

interesting to see what classification improvements, if any, could be provided.
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