33 research outputs found

    Trajectory Generation for a Quadrotor Unmanned Aerial Vehicle

    Get PDF
    RÉSUMÉ Le domaine des véhicules aériens sans pilote de type multicoptères a connu une progression substantielle au cours de la dernière décennie. La génération et le contrôle des trajectoires ont été au centre des préoccupations de ce nouveau domaine, avec des méthodes qui permettent d’exécuter des manoeuvres complexes dans l’espace. Plusieurs efforts ont été faits pour exécuter ces manoeuvres en utilisant la commande non linéaire, notamment la commande par platitude différentielle. Cependant, l’absence de théorie pour l’estimation des dérivées d’ordre supérieur a empêché l’application expérimentale de plusieurs de ces techniques. Ce travail explore tout d’abord l’approche par composition séquentielle pour l’exécution de manoeuvres à travers des fenêtres étroites. Cette technique implique la combinaison de plusieurs contrôleurs théoriquement simples afin de produire un résultat complexe. Les résultats expérimentaux réalisés dans le Laboratoire de Robotique Mobile et de Systèmes Automatisés à Polytechnique Montréal démontrent la validité de cette approche, en produisant des manoeuvres précises et répétables. Cependant, on atteint rapidement les limites d’une telle méthode dans les applications du monde réel, du fait de son manque de précision initiale et l’absence d’évaluation de faisabilité. Ce mémoire se concentre ensuite sur le développement d’une architecture d’estimation d’état basée sur le filtre de Kalman linéaire afin de fournir en temps réel des estimés des 2e et 3e dérivées de la position d’un quadricoptère (appelées respectivement accélération, et àcoup ou jerk). Des filtres de complexités différentes sont développés afin d’incorporer toute l’information disponible sur le système pour améliorer l’estimé résultant. On obtient alors un estimateur d’état complet qui utilise les mesures de position et d’accélération, ainsi que les entrées de commande, et fournit des estimés pour la rétroaction. Un contrôleur du jerk augmenté basé sur la théorie de la commande optimale est ensuite développé afin de valider cet estimateur. Il est conçu de façon à utiliser le jerk, l’accélération, la vitesse et la position du drone ; sans rétroaction de chacun de ces termes, le système est alors instable. Des tests sont effectués afin d’examiner les performances de l’estimateur et du contrôleur. Tout d’abord, le quadricoptère est chargé de suivre diverses entrées de référence dans l’espace pour assurer sa stabilité. Le contrôleur permet de suivre au plus près ces références, comme réalisé en simulation. Le contrôleur doit ensuite suivre un changement de référence afin d’évaluer la précision de l’estimateur développé. Les résultats montrent que l’estimation en temps réel du jerk suit adéquatement les valeurs hors ligne. Pour autant que nous le sachions, c’est la première mise en oeuvre dans le monde réel du retour de jerk pour contrôler un multicoptère.----------ABSTRACT The field of multirotor unmanned aerial vehicles (UAVs) has seen substantial progression in the past decade. Trajectory generation and control has been a main focus in this domain, with methods that enable the performance of complex three-dimensional maneuvers through space. Efforts have been made to execute these maneuvers using concepts of nonlinear control and differential flatness. However, a lack of theory for the estimation of higher-order dérivatives of a multirotor UAV has prevented the experimental application of several of these techniques concentrated on trajectory control. This work firstly explores the existing control approach of sequential composition for the execution of quadrotor manoeuvres through narrow windows. This technique involves the combination of several theoretically simple controllers in sequence in order to produce a complex result. Experimental results conducted in the Mobile Robotics and Automated Systems Laboratory (MRASL) at Polytechnique demonstrate the validity of this approach, producing precise and repeatable manoeuvres through narrow windows. However, they also show the limitations of such a method in real world applications, notably its initial inaccuracy and lack of feasibility evaluation. This thesis then focuses on the development of a state-estimation architecture based on linear Kalman filter techniques in order to provide a real-time value of a quadrotor UAV’s second and third derivatives (referred to as acceleration and jerk, respectively). Filters of different complexities are developed with the goal of incorporating all available system information into the resulting estimate. A full-state estimator is produced that uses a quadrotor’s position and acceleration measurements as well as control inputs in order to be usable for feedback. A jerk-augmented controller based off of optimal control theory is then developed in order to validate this estimator. It is designed in such a way to use the UAV’s jerk, acceleration, velocity and position as design parameters and to be unstable without feedback in each of these terms. Tests are conducted in order to examine the performance of both the estimator and controller. Firstly, the quadrotor is commanded to track various reference inputs in 3D space to ensure its stability. The controller tracks these references very closely to simulated responses. The controller is then asked to follow a changing reference in order to evaluate the precision of the developed estimator. Results show that the real-time estimation of the jerk follows offline values adequately. To the best of our knowledge, this is the first application to implement the feedback of a multirotor UAV’s jerk in real-world experimentation

    Automatic Flight Control Systems

    Get PDF
    The history of flight control is inseparably linked to the history of aviation itself. Since the early days, the concept of automatic flight control systems has evolved from mechanical control systems to highly advanced automatic fly-by-wire flight control systems which can be found nowadays in military jets and civil airliners. Even today, many research efforts are made for the further development of these flight control systems in various aspects. Recent new developments in this field focus on a wealth of different aspects. This book focuses on a selection of key research areas, such as inertial navigation, control of unmanned aircraft and helicopters, trajectory control of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight control, and fault tolerant flight control. This book consists of two major sections. The first section focuses on a literature review and some recent theoretical developments in flight control systems. The second section discusses some concepts of adaptive and fault-tolerant flight control systems. Each technique discussed in this book is illustrated by a relevant example

    Efficient Real-Time Solutions for Nonlinear Model Predictive Control with Applications

    Get PDF
    Nonlinear Model Predictive Control is an advanced optimisation methodology widely used for developing optimal Feedback Control Systems that use mathematical models of dynamical systems to predict and optimise their future performance. Its popularity comes from its general ability to handle a wide range of challenges present when developing control systems such as input/output constraints, complex nonlinear dynamics multi-variable systems, dynamic systems with significant delays as well as handling of uncertainty, disturbances and fault-tolerance. One of the main and most important challenges is the computational burden associated with the optimisation, particularly when attempting to implement the underlying methods in fast/real-time systems. To tackle this, recent research has been focused on developing efficient real-time solutions or strategies that could be used to overcome this problem. In this case, efficiency may come in various different ways from mathematical simplifications, to fast optimisation solvers, special algorithms and hardware, as well as tailored auto-generated coding tool-kits which help to make an efficient overall implementation of these type of approaches. This thesis addresses this fundamental problem by proposing a wide variety of methods that could serve as alternatives from which the final user can choose from depending on the requirements specific to the application. The proposed approaches focus specifically of developing efficient real-time NMPC methods which have a significantly reduced computational burden whilst preserving desirable properties of standard NMPC such as nominal stability, recursive feasibility guarantees, good performance, as well as adequate numeric conditioning for their use in platforms with reduced numeric precision such as ``floats'' subject to certain conditions being met. One of the specific aims of this work is to obtain faster solutions than the popular ACADO toolkit, in particular when using condensing-based NMPC solutions under the Real-Time Iteration Scheme, considered for all practical purposes the state-of-the-art standard real-time solution to which all the approaches will be bench-marked against. Moreover, part of the work of this thesis uses the concept of ``auto-generation'' for developing similar tool-kits that apply the proposed approaches. To achieve this, the developed tool-kits were supported by the Eigen 3 library which were observed to result in even better computation times than the ACADO toolkit. Finally, although the work undertaking by this thesis does not look into robust control approaches, the developed methods could be used for improving the performance of the underlying ``online'' optimisation, eg. by being able to perform additional iterations of the underlying SQP optimisation, as well as be used in common robust frameworks where multi-model systems must be simultaneously optimised in real-time. Thus, future work will look into merging the proposed methods with other existing strategies to give an even wider range of alternatives to the final user

    Correct-By-Construction Control Synthesis for Systems with Disturbance and Uncertainty

    Full text link
    This dissertation focuses on correct-by-construction control synthesis for Cyber-Physical Systems (CPS) under model uncertainty and disturbance. CPSs are systems that interact with the physical world and perform complicated dynamic tasks where safety is often the overriding factor. Correct-by-construction control synthesis is a concept that provides formal performance guarantees to closed-loop systems by rigorous mathematic reasoning. Since CPSs interact with the environment, disturbance and modeling uncertainty are critical to the success of the control synthesis. Disturbance and uncertainty may come from a variety of sources, such as exogenous disturbance, the disturbance caused by co-existing controllers and modeling uncertainty. To better accommodate the different types of disturbance and uncertainty, the verification and control synthesis methods must be chosen accordingly. Four approaches are included in this dissertation. First, to deal with exogenous disturbance, a polar algorithm is developed to compute an avoidable set for obstacle avoidance. Second, a supervised learning based method is proposed to design a good student controller that has safety built-in and rarely triggers the intervention of the supervisory controller, thus targeting the design of the student controller. Third, to deal with the disturbance caused by co-existing controllers, a Lyapunov verification method is proposed to formally verify the safety of coexisting controllers while respecting the confidentiality requirement. Finally, a data-driven approach is proposed to deal with model uncertainty. A minimal robust control invariant set is computed for an uncertain dynamic system without a given model by first identifying the set of admissible models and then simultaneously computing the invariant set while selecting the optimal model. The proposed methods are applicable to many real-world applications and reflect the notion of using the structure of the system to achieve performance guarantees without being overly conservative.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145933/1/chenyx_1.pd

    Nonlinear Control of Unmanned Aerial Vehicles : Systems With an Attitude

    Get PDF
    This thesis deals with the general problem of controlling rigid-body systems through space, with a special focus on unmanned aerial vehicles (UAVs). Several promising UAV control algorithms have been developed over the past decades, enabling truly astounding feats of agility when combined with modern sensing technologies. However, these control algorithms typically come without global stability guarantees when implemented with estimation algorithms. Such control systems work well most of the time, but when introducing the UAVs more widely in society, it becomes paramount to prove that stability is ensured regardless of how the control system is initialized.The main motivation of the research lies in providing such (almost) global stability guarantees for an entire UAV control system. We develop algorithms that are implementable in practice and for which (almost) all initial errors result in perfect tracking of a reference trajectory. In doing so, both the tracking and the estimation errors are shown to be bounded in time along (almost) all solutions of the closed-loop system. In other words, if the initialization is sound and the initial errors are small, they will remain small and decrease in time, and even if the initial errors are large, they will not increase with time.As the field of UAV control is mature, this thesis starts by reviewing some of the most promising approaches to date in Part I. The ambition is to clarify how various controllers are related, provide intuition, and demonstrate how they work in practice. These ideas subsequently form the foundation on which a new result is derived, referred to as a nonlinear filtered output feedback. This represents a diametrically different approach to the control system synthesis. Instead of a disjoint controller/estimator design, the proposed method is comprised of two controller/estimator pairs, which when combined through a special interconnection term yields a system with favorable stability properties.While the first part of the thesis deals with theoretical controller design,Part II concerns application examples, demonstrating how the theory can solve challenging problems in modern society. In particular, we consider the problem of circumnavigation for search and rescue missions and show how UAVs can gather data from radioactive sites to estimate radiation intensity

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Advances in gain-scheduling and fault tolerant control techniques

    Get PDF
    This thesis presents some contributions to the state-of-the-art of the fields of gain-scheduling and fault tolerant control (FTC). In the area of gain-scheduling, the connections between the linear parameter varying (LPV) and Takagi-Sugeno (TS) paradigms are analyzed, showing that the methods for the automated generation of models by nonlinear embedding and by sector nonlinearity, developed for one class of systems, can be easily extended to deal with the other class. Then, two measures, based on the notions of overboundedness and region of attraction estimates, are proposed in order to compare different models and choose which one can be considered the best one. Later, the problem of designing state-feedback controllers for LPV systems has been considered, providing two main contributions. First, robust LPV controllers that can guarantee some desired performances when applied to uncertain LPV systems are designed, by using a double-layer polytopic description that takes into account both the variability due to the varying parameter vector and the uncertainty. Then, the idea of designing the controller in such a way that the required performances are scheduled by the varying parameters is explored, which provides an elegant way to vary online the behavior of the closed-loop system. In both cases, the problem reduces to finding a solution to a finite number of linear matrix inequalities (LMIs), which can be done efficiently using the available solvers. In the area of fault tolerant control, the thesis first shows that the aforementioned double-layer polytopic framework can be used for FTC, in such a way that different strategies (passive, active and hybrid) are obtained depending on the amount of available information. Later, an FTC strategy for LPV systems that involves a reconfigured reference model and virtual actuators is developed. It is shown that by including the saturations in the reference model equations, it is possible to design a model reference FTC system that automatically retunes the reference states whenever the system is affected by saturation nonlinearities. In this way, a graceful performance degradation in presence of actuator saturations is incorporated in an elegant way. Finally, the problem of FTC of unstable LPV systems subject to actuator saturations is considered. In this case, the design of the virtual actuator is performed in such a way that the convergence of the state trajectory to zero is assured despite the saturations and the appearance of faults. Also, it is shown that it is possible to obtain some guarantees about the tolerated delay between the fault occurrence and its isolation, and that the nominal controller can be designed so as to maximize the tolerated delay.Aquesta tesi presenta diverses contribucions a l'estat de l'art del control per planificació del guany i del control tolerant a fallades (FTC). Pel que fa al control per planificació del guany, s'analitzen les connexions entre els paradigmes dels sistemes lineals a paràmetres variants en el temps (LPV) i de Takagi-Sugeno (TS). Es demostra que els mètodes per a la generació automàtica de models mitjançant encastament no lineal i mitjançant no linealitat sectorial, desenvolupats per una classe de sistemes, es poden estendre fàcilment per fer-los servir amb l'altra classe. Es proposen dues mesures basades en les nocions de sobrefitació i d'estimació de la regió d'atracció, per tal de comparar diferents models i triar quin d'ells pot ser considerat el millor. Després, es considera el problema de dissenyar controladors per realimentació d'estat per a sistemes LPV, proporcionant dues contribucions principals. En primer lloc, fent servir una descripció amb doble capa politòpica que té en compte tant la variabilitat deguda al vector de paràmetres variants i la deguda a la incertesa, es dissenyen controladors LPV robustos que puguin garantir unes especificacions desitjades quan s'apliquen a sistemes LPV incerts. En segon lloc, s'explora la idea de dissenyar el controlador de tal manera que les especificacions requerides siguin programades pels paràmetres variants. Això proporciona una manera elegant de variar en línia el comportament del sistema en llaç tancat. En tots dos casos, el problema es redueix a trobar una solució d'un nombre finit de desigualtats matricials lineals (LMIs), que es poden resoldre fent servir algorismes numèrics disponibles i molt eficients. En l'àrea del control tolerant a fallades, primerament la tesi mostra que la descripció amb doble capa politòpica abans esmentada es pot utilitzar per fer FTC, de tal manera que, en funció de la quantitat d'informació disponible, s'obtenen diferents estratègies (passiva, activa i híbrida). Després, es desenvolupa una estratègia de FTC per a sistemes LPV que fa servir un model de referència reconfigurat combinat amb la tècnica d'actuadors virtuals. Es mostra que mitjançant la inclusió de les saturacions en les equacions del model de referència, és possible dissenyar un sistema de control tolerant a fallades que resintonitza automàticament els estats de referència cada vegada que el sistema es veu afectat per les no linealitats de la saturació en els actuadors. D'aquesta manera s'incorpora una degradació elegant de les especificacions en presència de saturacions d'actuadors. Finalment, es considera el problema de FTC per sistemes LPV inestables afectats per saturacions d'actuadors. En aquest cas, es porta a terme el disseny de l'actuador virtual de tal manera que la convergència a zero de la trajectòria d'estat està assegurada tot i les saturacions i l'aparició de fallades. A més, es mostra que és possible obtenir garanties sobre el retard tolerat entre l'aparició d'una fallada i el seu aïllament, i que el controlador nominal es pot dissenyar maximitzant el retard tolerat
    corecore