
Automatic Flight  
Control Systems 

Latest Developments

Edited by Thomas Lombaerts

Edited by Thomas Lombaerts

Photo by Petrovich9 / iStock

The history of flight control is inseparably linked to the history of aviation itself. Since 
the early days, the concept of automatic flight control systems has evolved from 

mechanical control systems to highly advanced automatic fly-by-wire flight control 
systems which can be found nowadays in military jets and civil airliners. Even today, 

many research efforts are made for the further development of these flight control 
systems in various aspects. Recent new developments in this field focus on a wealth 
of different aspects. This book focuses on a selection of key research areas, such as 

inertial navigation, control of unmanned aircraft and helicopters, trajectory control 
of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight 

control, and fault tolerant flight control. This book consists of two major sections. The 
first section focuses on a literature review and some recent theoretical developments 

in flight control systems. The second section discusses some concepts of adaptive 
and fault-tolerant flight control systems. Each technique discussed in this book is 

illustrated by a relevant example.
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Preface 

The history of flight control is inseparably linked to the history of aviation itself. 
Shortly after the German aviation pioneer Otto Lilienthal (1848-1896) left the ground
for the first time in his self-made glider from Windmühlenberg (windmill hill) of
Derwitz (Germany) in the summer of 1891, the problem of flight in a heavier-than-air 
vehicle created a new challenge, that of controlled flight. During his numerous 
experimental flights, Otto Lilienthal realized that leaving the ground was easier than
staying in the air. For controlling his flights, he invented the first means of lateral
stabilization using a vertical rudder. Following the first successful motorized flight of 
the Wright Brothers in 1903, the first artificially controlled flight was demonstrated in 
1914 by Lawrence Sperry (1892-1923), the third son of the gyrocompass co-inventor 
Elmer Ambrose Sperry, by flying his Curtiss-C-2 airplane hands-free in front of a 
speechless crowd. This very first autopilot consisted of three gyroscopes and a
magnetic compass both linked to the pneumatically operated flight control surfaces.
The autopilot enabled stable flight by holding the pitch, roll and yaw attitudes 
constant, while maintaining the compass course. Since these early days, Sperry and
many other engineers improved the concept of automatic stabilized flight further up to
highly advanced automatic fly-by-wire flight control systems which can be found 
nowadays in military jets and civil airliners. Even today, many research efforts are
made for the further development of these flight control systems in various aspects.
Recent new developments in this field focus on a wealth of different aspects, such as
nonlinear flight control, autonomous control of unmanned aircraft, formation flying, 
aeroservoelastic control, intelligent control, adaptive flight control, fault tolerant flight 
control, and many others. This book focuses on a selection of these key research areas.

This book consists of two major sections. The first section contains three chapters and
focuses on a literature review and some recent theoretical developments in flight 
control systems. The second section discusses some concepts of adaptive and fault-
tolerant flight control systems. This topic has been receiving a lot of research attention 
from the scientific community lately. Each technique discussed in this book is
illustrated by a relevant example. 

The first chapter is a literature survey providing a global overview perspective to the
field of GPS-aided inertial navigation. The chapter discusses the topics of modeling, 
sensor properties and estimation techniques. 
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XII Preface

The second chapter discusses the concept of quantitative feedback theory. This 
frequency-based control technique makes use of the Nichols chart in order to achieve a 
desired robust design over a specified region of plant uncertainties. Desired time-
domain responses are translated into frequency-domain tolerances, which lead to 
bounds (or constraints) on the loop transmission function. The design process is 
transparent, allowing a designer to see what trade-offs are necessary to achieve a 
desired performance level. As an example, QFT is applied for the lateral control of a 
UAV. 

The third chapter discusses the topic of gain tuning for flight control laws for an 
unmanned space re-entry vehicle technology demonstrator in order to satisfy 
trajectory tracking requirements. The method for gain tuning is based upon the 
Practical Stability criterion. This is a technique developed previously by the authors 
for analyzing the robustness of a given flight control law. 

In the fourth chapter, the first of the second section, an adaptive feedforward control 
method is suggested for gust load alleviation. With the novel development of airborne 
Light Detection and Ranging (LIDAR) turbulence sensor available for the accurate 
measurement of the vertical gust velocity at considerable distances ahead of the 
aircraft, it becomes feasible to design an adaptive feedforward control algorithm to 
alleviate the structural loads induced by any turbulence and to extend the life of the 
structure. This proposed approach identifies in real time the flexible modes for 
parameter adjustment in the feedforward controller. This method is demonstrated on 
the F/A-18 active aeroelastic wing simulation model. 

The fifth chapter provides an extensive overview of different fault-tolerant flight 
control techniques, including Gain-Scheduled PID control, Model Reference Adaptive 
Control, Sliding Mode Control, Backstepping Control, Model Predictive Control, and 
Flatness-based Trajectory Planning/Re-planning. At the end of the chapter, simulations 
and flight tests of a quadrotor UAV testbed are discussed. 

The sixth chapter investigates the contributions that an automatic flight control system 
(AFCS) may provide to the recovery prospects of the Chinook tandem helicopter after 
a load failure scenario. An analysis is made as to how the advanced AFCS, 
implemented to improve the handling qualities characteristics of the helicopter, 
improves the CH-47 behavior during emergency situations such as failure scenarios of 
its suspended load. An example of such a failure scenario is when one of the load 
suspension cables snaps. 

The seventh and last chapter describes a new high fidelity large transport aircraft 
simulation benchmark which has been developed as a tool-based design and 
evaluation platform for resilient flight control system design. The simulation model 
contains nonlinear kinematics and aircraft dynamics, and includes actuator and sensor 
properties. Moreover, the model includes an extensive list of failure modes, varying 
from stuck or faulty control surfaces to significant aerodynamic damage. An important 
failure mode is the engine separation scenario, which has been validated by means of 

Preface IX 

the black box data recovered from such an accident. This tool is freely available for the 
research community and can be used to develop new fault-tolerant flight control 
algorithms.

I would like to express my sincere gratitude to all the authors for all the time and
effort they spent contributing chapters of high quality to this book. I would like to 
thank the publisher, InTech, for taking the initiative to publish this book and for 
making this book Open Access, which guarantees a wide dissemination of the
published results. I also wish to acknowledge the Publishing Process Manager Ms 
Martina Pecar-Durovic, for her indispensable technical and administrative assistance 
while preparing and publishing this book.

Dr Ir Thomas Lombaerts 
German Aerospace Center DLR 

Institute of Robotics and Mechatronics
Department of System Dynamics and Control 

Oberpfaffenhofen – Wessling 
Germany
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Fundamentals of GNSS-Aided Inertial Navigation

Ahmed Mohamed and Apostolos Mamatas
University of Florida

USA

1. Introduction

GNSS-aided inertial navigation is a core technology in aerospace applications from military
to civilian. It is the product of a confluence of disciplines, from those in engineering to the
geodetic sciences and it requires a familiarity with numerous concepts within each field in
order for its application to be understood and used effectively. Aided inertial navigation
systems require the use of kinematic, dynamic and stochastic modeling, combined with
optimal estimation techniques to ascertain a vehicle’s navigation state (position, velocity
and attitude). Moreover, these models are employed within different frames of reference,
depending on the application. The goal of this chapter is to familiarize the reader with the
relevant fundamental concepts.

2. Background

2.1 Modeling motion

The goal of a navigation system is to determine the state of the vehicle’s trajectory in space
relevant to guidance and control. These are namely its position, velocity and attitude at any
time. In inertial navigation, a vehicle’s path is modeled kinematically rather than dynamically,
as the full relationship of forces acting on the body to its motion is quite complex. The
kinematic model incorporates accelerations and turn rates from an inertial measurement
unit (IMU) and accounts for effects on the measurements of the reference frame in which
the model is formalized. The kinematic model relies solely on measurements and known
physical properties of the reference frame, without regard to vehicle dynamic characteristics.
On the other hand, in incorporating aiding systems like GNSS, a dynamic model is used
to predict error states in the navigation parameters which are rendered observable through
the external measurements of position and velocity. The dynamics model is therefore one
in which the errors are related to the current navigation state. As will be shown, some
errors are bounded while others are not. At this point, we make the distinction between
the aided INS and free-navigating INS. Navigation using the latter method represents a form
of "dead reckoning", that is the navigation parameters are derived through the integration
of measurements from some defined initial state. For instance, given a measured linear
acceleration, integration of the measurement leads to velocity and double integration results
in the vehicle’s position. Inertial sensors exhibit biases and noise that, when integrated, leads
to computed positional drift over time. The goal of the aiding system is therefore to help
estimate the errors and correct them.
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2 Will-be-set-by-IN-TECH

2.2 Reference frames

Proceeding from the sensor stratum up to more intuitively accessible reference systems, we
define the following reference frames:

• Sensor Frame (s-frame). This is the reference system in which the inertial sensors operate.
It is a frame of reference with a right-handed Cartesian coordinate system whose origin is
at the center of the instrument cluster, with arbitrarily assigned principle axes as shown in
figure 1.
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Fig. 1. IMU measurements in the s-frame

• Body Frame (b-frame). This is the reference system of the vehicle whose motions are of
interest. The b-frame is related to the s-frame through a rigid transformation (rotation
and translation). This accounts for misalignment between the sensitive axes of the IMU
and the primary axes of the vehicle which define roll, pitch and yaw. Two primary axis
definitions are generally employed: one with +y pointing toward the front of the vehicle
(+z pointing up), and the other with +x pointing toward the nose (+z pointing down). The
latter is a common aerospace convention used to define heading as a clockwise rotation in
a right-handed system (Rogers, 2003).

• Inertial Frame (i-frame). This is the canonical inertial frame for an object near the surface
of the earth. It is a non-rotating, non-accelerating frame of reference with a Cartesian
coordinate system whose x axis is aligned with the mean vernal equinox and whose z
axis is coaxial with the spin axis of the earth. The y-axis completes the orthogonal basis
and the system’s origin is located at the center of mass of the earth.

• Earth-Fixed Frame (e-frame). With some subtle differences that we shall overlook, this
system’s z axis is defined the same way as for the i-frame, but the x axis now points toward
the mean Greenwich meridian, with y completing the right-handed system. The origin is
at the earth’s center of mass. This frame rotates with respect to the i-frame at the earth’s
rotation rate of approximately 15 degrees per hour.

4 Automatic Flight Control Systems – Latest Developments Fundamentals of GNSS-Aided Inertial Navigation 3
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• Local-Level Frame (l-frame). This frame is defined by a plane locally tangent to the surface
of the earth at the position of the vehicle. This implies a constant direction for gravity
(straight down). The coordinate system used is easting, northing, up (enu), where Up is the
normal vector of the plane, North points toward the spin axis of Earth on the plane and
East completes the orthogonal system.

Finally, we remark that the implementation of the INS can be freely chosen to be formulated in
any of the last three frames, and it is common to refer to the navigation frame (n-frame) once it
is defined as being either the i-, e- or l-frames, especially when one must make the distinction
between native INS output and transformed values in another frame.

5Fundamentals of GNSS-Aided Inertial Navigation
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2.3 Geometric figure of the earth

Having defined the common reference frames, we must consider the size and shape of the
earth itself, an especially important topic when moving between the l- and e- frames or
when converting Cartesian to geodetic (latitude, longitude, height) coordinates. The earth,
though commonly imagined as a sphere, is in fact more accurately described as an ellipse
revolved around its semi-major axis, an ellipsoid. Reference ellipsoids are generally defined
by the magnitude of their semi-major axis (equatorial radius) and their flattening, which is
the ratio of the polar radius to the equatorial radius. Since the discovery of the elipticity
of the earth, many ellipsoids have been formulated, but today the most important one for
global navigation is the WGS84 ellipsoid1, which forms the basis of the WGS84 system to
which all GPS measurements and computations are tied (Hofmann-Wellenhof et al., 2001).
The WGS84 ellipsoid is defined as having an equatorial radius of 6,378,137 m and a flattening
of 1/298.257223563 centered at the earth’s center of mass with 0 degrees longitude located 5.31
arc seconds east of the Greenwich meridian (NIMA, 2000; Rogers, 2003). It is worth defining
another ellipsoidal parameter, the eccentricity e, as the distance of the ellipse focus from the
axes center, and is calculated as

e2 =
a2 − b2

a2 (1)

Figure 5 shows a cross-sectional view of the reference ellipsoid with having semi-major and
semi-minor dimensions a and b, respectively. Note that b is derivable from a and f . A point P
is located at height h normal to the surface. N is the radius of curvature in the prime vertical of
the ellipsoid at this point2. The angle between the x, y plane and the surface normal vector of
P is the geodetic latitude φ. Note that the loci of normal vectors that pass through the centroid
of the ellipsoid are constrained to the equator and the meridians. This means that, in general,
the geodetic latitude φ is not the same as the geocentric latitude ψ, as shown in figure 6. The

1 A variant of the GRS80 ellipsoid
2 This is also called the normal radius of curvature, hence the symbol N.
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value of N is obtained by

N =
a√

(1 − e2 sin2 φ)
(2)

Another radius is defined, namely the radius of curvature in the meridian, M, which is given
as

M =
a(1 − e2)

(1 − e2 sin2 φ)3/2
(3)

The two parameters N and M are necessary for calculating the linear distances and velocity
components from the geodetic coordinate system in the local-level frame. In order to relate
geodetic position changes and linear distances, we begin with the simple case of a sphere of
radius Re. Note that the linear distance between two points along a meridian (in the North
direction) is

δn = (Re + h)δψ (4)
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and the distance along a parallel (in the East direction) is

δe = (Re + h) cos ψδλ (5)

where h is the height above the sphere. In the case of the ellipsoidal earth, one radius does not
suffice to reduce both directions of motion to linear distances and the equations become

δn = (M + h)δφ (6)

δe = (N + h) cos φδλ (7)

2.4 Gravitation and gravity

Inertial navigation relies on measurements made in an inertial reference frame, i.e. one free
of acceleration or rotation. Vehicles near the earth’s surface, of course, are subjected to both
of these factors. As an accelerometer is not capable of distinguishing accelerations due to
motion and accelerations arising from reaction forces in a gravity field, we must have a priori
knowledge of the earth’s gravitation in order to subtract its effects from sensor measurements.
The gravitational field of the earth is described by its potential V at a point P such that

V(P) = G
���

earth

ρ(Q)

l
dvQ (8)

where Q is a point within the earth with mass density ρ(Q) and volume element dvQ, located
at a distance l from P and G is the gravitational constant (Hofmann-Wellenhof & Moritz, 2005).
The gravitational vector field is defined as the gradient of the potential:

ḡe = ∇Ve =
∂Ve

∂re =

⎛
⎝

Vx
Vy
Vz

⎞
⎠ (9)

where ḡe is the gravitational vector associated with the position vector re. In practice,
sensor measurements are further conditioned by the rotation of the earth. The difference of
gravitation and centripetal acceleration caused by Earth’s rotation is embodied in the gravity
vector and is more commonly used in practice. It is defined as

ge = ḡe − ΩeΩere (10)

where Ωie is the skew-symmetric representation of the earth’s rotation rate (the
skew-symmetric matrix representation is treated in section 2.6). In the local-level frame, the
gravity vector is expressed as

gl =

⎛
⎝

0
0

−(γ + σgu)

⎞
⎠ (11)

where γ is normal gravity and σgu is a disturbance in the vertical component of the vector
(Hofmann-Wellenhof & Moritz, 2005).3

3 We leave out the non-vertical deflections here for brevity, but a more detailed treatment should include
them.
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2.5 Normal gravity

Uneven mass distributions within the earth, as well as departure of its actual shape from
a perfect ellipsoid leads to a highly complex gravity field. It is therefore convenient for
navigation purposes to approximate the gravity field using the so-called normal gravity model,
computed in closed form using Somigliana’s formula (Schwarz & Wei, 1990; Torge, 2001) :

γ0 = γa
1 + k sin2 φ√
1 − e2 sin2 φ

(12)

where

k =
bγb
aγa

− 1

γa, γb = equatorial and polar gravity values

A computationally faster method to calculate gravity involves expanding (12) by power series
with respect to e2 and truncating, yielding:

γ0 = γa(1 + β sin2 φ + β1sin22φ) (13)

where γa is the gravity at the equator, β is the “gravity flattening” term (Hofmann-Wellenhof
& Moritz, 2005), defined as

β =
γb − γa

γa
(14)

The second parameter in (13) β1 is given by

β1 =
f 2

4
− 5 f ω2

e a
8γa

(15)

where ωe is the earth rotation constant. This approximation of (12) is accurate to
approximately 0.1 μg (Featherstone & Dentith, 1997), which is sufficient for navigation
purposes. Higher-accuracy approximations are given in (Hofmann-Wellenhof & Moritz, 2005;
Torge, 2001).Table 1 gives the relevant WGS84 parameters for computing normal gravity. The
first four are the defining parameters of the system, while the last two are derived for use in
computing normal gravity. Incorporating height h allows a more general formula for gravity

a 6,378,137 m
f 1/298.257223563

ωe 7.292115× 10−5 rad/s
GM 3.986004.418×1014m3/s2

γa 9.7803253359 m/s2

γb 9.8321849378 m/s2

Table 1. WGS84 parameters

away from the ellipsoidal surface:

γ = γ0 − (3.0877 × 10−6 − 4.4 × 10−9 sin2 φ)h + 0.72 × 10−12h2 (16)
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2.6 Mathematical treatment of rotations

2.6.1 Direction cosines matrix

Before proceeding to linear and rotational models of motion, we must first discuss the
formulation of the rigid-body transformations required to express vectors defined in a
particular frame in terms of another frame. These are comprised of translations and rotations,
the former being the straightforward operation of addition. We shall therefore direct our
attention to rotations and their time-derivatives. In general a rotation matrix is an operator
transforming vectors from one orthogonal basis to another. Let

�
x y z

�T be a vector pa in

some frame a and
�

x� y� z�
�T be a vector pb in frame b, then

pb = Rb
apa

=

⎛
⎝

ia · ib ja · ib ka · ib
ia · jb ja · jb ka · jb
ia · kb ja · kb ka · kb

⎞
⎠ pa (17)

where
�

ia ja ka
�

and
�

ib jb kb
�

are the orthonormal bases of a and b, respectively. Note the
use of superscripts to indicate the reference frame. The rotation matrix notation indicates a
transformation from the a-frame to the b-frame. Because the basis vectors are of unit length
the dot products in Rb

a define the cosines of the angles between the vector pairs, therefore
the rotation matrix is also commonly known as the direction cosines matrix (DCM). The two
properties of DCMs in a right-handed Cartesian system are:

1. (Rb
a)

−1 = (Rb
a)

T = Ra
b

2. det (Rb
a) = 1

DCMs in R3 are decomposable into three elemental rotations performed sequentially about a
principal axis in the originating frame, thence about the rotated and twice-rotated remaining
axes(Kuipers, 1999). The elemental rotations about the x, y and z axes are defined as

Rx(ϕ) =

⎛
⎝

1 0 0
0 cos ϕ sin ϕ
0 − sin ϕ cos ϕ

⎞
⎠ , Ry(θ) =

⎛
⎝

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎞
⎠ , Rz(ψ) =

⎛
⎝

cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

⎞
⎠

(18)

The choice of axis order is mathematically arbitrary, but while working in the ENU definition
of the l-frame we must employ a y, x, z sequence when defining the rotation from the
mechanization frame to the body frame. The transformation from the body frame to the
navigation frame is therefore composed of the inverse (Titterton & Weston, 2004) , that is

Rn
b = RbT

n = Rz(−ψ)Rx(−θ)Ry(−ϕ) (19)

where n is any of the valid mechanization frames given in section 2.2. More explicitly, the
DCM in terms of the Euler angles is

Rn
b =

⎛
⎝

cos ψ cos ϕ − sin ψ sin θ sin ϕ − sin ψ cos θ cos ψ sin ϕ + sin ψ sin θ cos ϕ
sin ψ cos ϕ + cos ψ sin θ sin ϕ cos ψ cos θ sin ψ sin ϕ − cos ψ sin θ cos ϕ

− cos θ sin ϕ sin θ cos θ cos ϕ

⎞
⎠ (20)
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The sequential angular rotations ϕ, θ, ψ are known as Euler angles; if n = l, the Euler angles
are called roll, pitch, and yaw. Given a DCM, there is no unique decomposition into Euler
angles without prior knowledge of the convention. For example, an equally valid DCM
could be constructed from the sequence z, x, z or any of a number of permutations (Pio,
1966), but we remind the reader that unless the sequence is defined uniformly for the INS
mechanization, the retrieval of heading, roll and pitch angles from a computed DCM may
well be meaningless. We therefore stress the order given in (19) and will employ it exclusively
moving forward. This being the case, we recover roll, pitch and yaw by

�
ϕ θ ψ

�T
=

�
tan−1

�
− R31

R33

�
sin−1 (R32) tan−1

�
− R12

R22

��T
(21)

The representation of rotations as discussed up to now is tied to the historical simplicity
of relating measurements of gimballed IMU axis encoders to the DCM. The careful reader
will note however that singularities exist in this method. For instance, when a vehicle is
pitched up 90 degrees, two axes respond to the same motion and a degree of freedom is lost,
leaving no unique roll and heading values that will satisfy the DCM terms. In strap-down
systems, this is mathematically equivalent to gimbal lock in gimballed INS. Mechanical and
algorithmic solutions exist to the problem, but are beyond the scope of this writing. An
alternative representation of rotations that does not suffer this problem is therefore sometimes
used employing quaternions.

2.6.2 Quaternions

Quaternions are a four-dimensional extension of complex numbers having the form

q = a + bi + cj + dk (22)

where a is the real component and b, c and d are imaginary. Quaternion multiplication is
defined as follows: let q and p be two quaternions having elements {a, b, c, d} and {e, f , g, h},
respectively, then

q · p =

⎛
⎜⎜⎝

a −b −c −d
b a −d c
c d a −b
d −c b a

⎞
⎟⎟⎠

⎛
⎜⎜⎝

e
f
g
h

⎞
⎟⎟⎠ (23)

The Euler and Cayley-Hamilton Theorems can be employed to derive multiple formulations
for rotations relying on the fact that any rotation matrix R encodes a single axis of rotation
which is the eigenvector e =

�
e1 e2 e3

�T associated with the eigenvalue +1. Along with this,
the following relation holds for a rotation φ about this axis:

cos φ =
trace(R)− 1

2
(24)

Through suitable derivation, we may define a rotation therefore by a four-parameter vector λ:

λ =
�

cos φ e1 sin φ e2 sin φ e3 sin φ
�T (25)

where the first element is the term involving the rotation and the last three define the vector of
the rotation matrix which is sufficient for a single rotation but leaves the problem of propagating

11Fundamentals of GNSS-Aided Inertial Navigation



8 Will-be-set-by-IN-TECH

2.6 Mathematical treatment of rotations

2.6.1 Direction cosines matrix

Before proceeding to linear and rotational models of motion, we must first discuss the
formulation of the rigid-body transformations required to express vectors defined in a
particular frame in terms of another frame. These are comprised of translations and rotations,
the former being the straightforward operation of addition. We shall therefore direct our
attention to rotations and their time-derivatives. In general a rotation matrix is an operator
transforming vectors from one orthogonal basis to another. Let

�
x y z

�T be a vector pa in

some frame a and
�

x� y� z�
�T be a vector pb in frame b, then

pb = Rb
apa

=

⎛
⎝

ia · ib ja · ib ka · ib
ia · jb ja · jb ka · jb
ia · kb ja · kb ka · kb

⎞
⎠ pa (17)

where
�

ia ja ka
�

and
�

ib jb kb
�

are the orthonormal bases of a and b, respectively. Note the
use of superscripts to indicate the reference frame. The rotation matrix notation indicates a
transformation from the a-frame to the b-frame. Because the basis vectors are of unit length
the dot products in Rb

a define the cosines of the angles between the vector pairs, therefore
the rotation matrix is also commonly known as the direction cosines matrix (DCM). The two
properties of DCMs in a right-handed Cartesian system are:

1. (Rb
a)

−1 = (Rb
a)

T = Ra
b

2. det (Rb
a) = 1

DCMs in R3 are decomposable into three elemental rotations performed sequentially about a
principal axis in the originating frame, thence about the rotated and twice-rotated remaining
axes(Kuipers, 1999). The elemental rotations about the x, y and z axes are defined as

Rx(ϕ) =

⎛
⎝

1 0 0
0 cos ϕ sin ϕ
0 − sin ϕ cos ϕ

⎞
⎠ , Ry(θ) =

⎛
⎝

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎞
⎠ , Rz(ψ) =

⎛
⎝

cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

⎞
⎠

(18)

The choice of axis order is mathematically arbitrary, but while working in the ENU definition
of the l-frame we must employ a y, x, z sequence when defining the rotation from the
mechanization frame to the body frame. The transformation from the body frame to the
navigation frame is therefore composed of the inverse (Titterton & Weston, 2004) , that is

Rn
b = RbT

n = Rz(−ψ)Rx(−θ)Ry(−ϕ) (19)

where n is any of the valid mechanization frames given in section 2.2. More explicitly, the
DCM in terms of the Euler angles is

Rn
b =

⎛
⎝

cos ψ cos ϕ − sin ψ sin θ sin ϕ − sin ψ cos θ cos ψ sin ϕ + sin ψ sin θ cos ϕ
sin ψ cos ϕ + cos ψ sin θ sin ϕ cos ψ cos θ sin ψ sin ϕ − cos ψ sin θ cos ϕ

− cos θ sin ϕ sin θ cos θ cos ϕ

⎞
⎠ (20)

10 Automatic Flight Control Systems – Latest Developments Fundamentals of GNSS-Aided Inertial Navigation 9

The sequential angular rotations ϕ, θ, ψ are known as Euler angles; if n = l, the Euler angles
are called roll, pitch, and yaw. Given a DCM, there is no unique decomposition into Euler
angles without prior knowledge of the convention. For example, an equally valid DCM
could be constructed from the sequence z, x, z or any of a number of permutations (Pio,
1966), but we remind the reader that unless the sequence is defined uniformly for the INS
mechanization, the retrieval of heading, roll and pitch angles from a computed DCM may
well be meaningless. We therefore stress the order given in (19) and will employ it exclusively
moving forward. This being the case, we recover roll, pitch and yaw by

�
ϕ θ ψ

�T
=

�
tan−1

�
− R31

R33

�
sin−1 (R32) tan−1

�
− R12

R22

��T
(21)

The representation of rotations as discussed up to now is tied to the historical simplicity
of relating measurements of gimballed IMU axis encoders to the DCM. The careful reader
will note however that singularities exist in this method. For instance, when a vehicle is
pitched up 90 degrees, two axes respond to the same motion and a degree of freedom is lost,
leaving no unique roll and heading values that will satisfy the DCM terms. In strap-down
systems, this is mathematically equivalent to gimbal lock in gimballed INS. Mechanical and
algorithmic solutions exist to the problem, but are beyond the scope of this writing. An
alternative representation of rotations that does not suffer this problem is therefore sometimes
used employing quaternions.

2.6.2 Quaternions

Quaternions are a four-dimensional extension of complex numbers having the form

q = a + bi + cj + dk (22)

where a is the real component and b, c and d are imaginary. Quaternion multiplication is
defined as follows: let q and p be two quaternions having elements {a, b, c, d} and {e, f , g, h},
respectively, then

q · p =

⎛
⎜⎜⎝

a −b −c −d
b a −d c
c d a −b
d −c b a

⎞
⎟⎟⎠

⎛
⎜⎜⎝

e
f
g
h

⎞
⎟⎟⎠ (23)

The Euler and Cayley-Hamilton Theorems can be employed to derive multiple formulations
for rotations relying on the fact that any rotation matrix R encodes a single axis of rotation
which is the eigenvector e =

�
e1 e2 e3

�T associated with the eigenvalue +1. Along with this,
the following relation holds for a rotation φ about this axis:

cos φ =
trace(R)− 1

2
(24)

Through suitable derivation, we may define a rotation therefore by a four-parameter vector λ:

λ =
�

cos φ e1 sin φ e2 sin φ e3 sin φ
�T (25)

where the first element is the term involving the rotation and the last three define the vector of
the rotation matrix which is sufficient for a single rotation but leaves the problem of propagating

11Fundamentals of GNSS-Aided Inertial Navigation



10 Will-be-set-by-IN-TECH

the transformation in time. A convenient relation between the elements of λ and quaternions
exists, which allows us to take advantage of some felicitous properties of quaternions . Let q
be the vector of the quaternion elements a, b, c, d as defined in (22). Then

a = ±
�

1 + λ1
2

= cos(||e||/2) (26)

b =
λ2
2a

=(e1/||e||) sin(||e||/2) (27)

c =
λ3
2a

=(e2/||e||) sin(||e||/2) (28)

d =
λ4
2a

=(e3/||e||) sin(||e||/2) (29)

The parameters of the quaternion are properly called the Euler-Rodrigues parameters (Angeles,
2003) which define a unit quaternion. The rotation matrix in (20) in terms of Euler-Rodrigues
parameters is

Rn
b =

⎛
⎝

(a2 + b2 − c2 − d2) 2(bc − ad) 2(bd + ac)
2(bc + ad) (a2 − b2 + c2 − d2) 2(cd − ab)
2(bd − ac) 2(cd + ab) (a2 − b2 − c2 + d2)

⎞
⎠ (30)

2.6.3 Time-derivative of the DCM

Let the vector ωn
nb be the rotation rates of the body axes about the navigation system axes

expressed in the n-frame given by

ωn
nb = Rn

bω
b
nb (31)

and the resulting perpendicular linear velocity is given by

ṙn = ωn
nb × rb

= Rn
bω

b
nb × rb

= Rn
b Ωb

nbrb (32)

where Ωb
nb is the skew-symmetric form of ωb

nb, with elements

Ωb
nb =

⎛
⎝

0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

⎞
⎠ (33)

We also have

ṙn = Ṙn
b rb (34)

Equating (32) and (34) yields the time derivative of the rotation matrix

Ṙn
b = Rn

b Ωb
nb (35)
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Over short periods of time for discrete measurements, the change in Rn
b can be computed

using the small angle approximation of (20), where sin ϕ ≈ ϕ, sin θ ≈ θ and sin ψ ≈ ψ, which
is

Rn
b ≈

⎛
⎝

1 −ψ θ
ψ 1 −ϕ
−θ ϕ 1

⎞
⎠ (36)

so that

Rn
b (t + δt) = Rn

b (t)R
n
b (t, t + δt) (37)

where Rn
b (t, t + δt) is the incremental rotation between the b and n-frames from time t to time

t + δt. It is worth noting that under small incremental angles, the order of the rotations is not
important.

3. Modeling

3.1 Linear motion

Using Newton’s second law, the motion of a particle in the i-frame is given as

r̈i = fi (38)

where r̈i is the second time derivative of position and fi is the specific force acting on the
particle. Incorporating the accelerations due to gravitation, we have

r̈i = fi + ḡi (39)

Equation (39) represents a set of second-order differential equations which can be rewritten as
a set of first-order equations:

ṙi = vi (40)

v̇i = fi + ḡi (41)

in which ṙ, the first time derivative of position is equated with velocity v. We now turn to the
derivation of the model equations for navigating in the i-, e- and l-frames

3.2 State models for kinematic geodesy

3.2.1 The i-frame

Because a vehicle is oriented arbitrarily with respect to the i-frame as defined above, the
measurements of specific force will not be in this frame, but rather in the body-frame.4. A
rotation matrix Ri

b is used to resolve the forces in the i-frame:

fi = Ri
bfb (42)

In this notation, superscript of the measurement vector f and subscript of the rotation
matrix cancel, yielding the representation of the vector in the desired frame. In navigation

4 after the rigid transformation between the IMU and the vehicle has been applied
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�
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2
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b =
λ2
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=(e1/||e||) sin(||e||/2) (27)

c =
λ3
2a

=(e2/||e||) sin(||e||/2) (28)

d =
λ4
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⎞
⎠ (30)
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applications, the time derivative of Ri
b is a function of the angular velocity expressed by the

vector ωb
ib between the two reference frames. Here, ωb

ib is the representation of the rotation
rate expressed in the body frame whose skew-symmetric form is the matrix Ωb

ib, giving

Ṙi
b = Ri

bΩb
ib (43)

which is, of course, a particular realization of (35), in which n = i. Assuming now that the
gravity vector is computed by (11), we must apply a transformation from the l-frame to the
i-frame to formulate (41) as

v̇ = Ri
bfb + Ri

l ḡ
l (44)

The time derivatives of position, velocity and attitude are now represented as

ẋi =

⎛
⎝

ṙi

v̇i

Ṙi
b

⎞
⎠ =

⎛
⎝

vi

Ri
bfb + Ri

l ḡ
l

Ri
bΩb

ib

⎞
⎠ (45)

The solution to (45) is the navigation state of the vehicle: position, velocity and attitude in the
inertial frame. The equations in (45) are known as the mechanization equations for the inertial
navigation system.

3.2.2 The e-frame

To arrive at the state equations in the e-frame, we begin by considering the transformation of
the position vector in the e-frame into the i-frame:

ri = Ri
ere (46)

The first and second derivatives are then

ṙi = Ri
e (ṙ

e + Ωe
iere) (47)

r̈i = Ri
e

�
r̈e + 2Ωe

ie ṙe + Ω̇
e
iere + Ωe

ieΩe
iere

�
(48)

As the rotation rate between the e and i frames is constant, we see that Ω̇
e
ie is zero leaving

r̈i = Ri
e (r̈

e + 2Ωe
ie ṙe + Ωe

ieΩe
iere) (49)

The second derivative of position in the e-frame is obtained using (10) and (39), yielding

r̈e = Re
bfb − 2Ωe

ie ṙe + ge (50)

The second term in (50) is due to the Coriolis force, whereas the last term is the gravity vector
represented in the e-frame, which can be found in (Schwarz & Wei, 1990).

Putting this together to form the state-variable equations, we have

ẋe =

⎛
⎝

ṙe

v̇e

Ṙe
b

⎞
⎠ =

⎛
⎜⎝

ve

Re
bfb − 2Ωe

ieve + ge

Re
b

�
Ωb

ie − Ωb
ib

�

⎞
⎟⎠ (51)
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3.2.3 The l-frame

Navigation states expressed in the inertial and earth-fixed frames do not lend themselves to
easy intuitive interpretation near the surface of the earth. Here, the more familiar concepts of
latitude and longitude along with roll, pitch and heading are preferable. We therefore must
mechanize the system in the l-frame, which necessitates a reformulation of the state-variable
equations. To begin with, we note

rl =
�
φ λ h

�T (52)

whose time rate is

ṙl =
�
φ̇ λ̇ ḣ

�T (53)

Rather than express velocity in terms of the geodetic coordinates, it is preferable to represent
them in the enu system:

vl =
�
ve vn vu

�T (54)

Now, the time derivative of position in φ, λ, h is related to vl through

ṙl = D−1vl (55)

or

⎛
⎝

φ̇
λ̇

ḣ

⎞
⎠ =

⎛
⎜⎝

0 1
(M+h) 0

1
(N+h) cos φ

0 0
0 0 1

⎞
⎟⎠

⎛
⎝

ve
vn
vu

⎞
⎠ (56)

The first two non-zero elements of D−1 are clearly derivable from the derivatives of equations
(6) and (7) with respect to time. Acceleration is now given by

v̇l = Rl
i r̈

i − (2Ωl
ie + Ωl

el)v
l − Ωl

ieΩl
elr

l

= Rl
bfb − (2Ωl

ie + Ωl
el)v

l + gl (57)

where Ωl
ie is the angular velocity of Earth’s rotation expressed in the l-frame, Ωl

el is the angular
velocity of the l-frame with respect to the e-frame expressed in the l-frame and gl is as defined
in (11). Finally, the transformation Rl

b is the solution to

Ṙl
b = Rl

bΩb
ib = Rl

b(Ω
b
ib − Ωb

il) (58)

The state-variable equations in the local-level reference frame are therefore

ẋl =

⎛
⎝

ṙl

v̇l

Ṙl
b

⎞
⎠ =

⎛
⎝

D−1vl

Rl
bfb − (2Ωl

ie + Ωl
el)v

l + gl

Rl
b(Ω

b
ib − Ωb

il)

⎞
⎠ (59)
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ie ṙe + Ω̇
e
iere + Ωe

ieΩe
iere

�
(48)

As the rotation rate between the e and i frames is constant, we see that Ω̇
e
ie is zero leaving

r̈i = Ri
e (r̈

e + 2Ωe
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where Ωl
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Ṙl
b = Rl

bΩb
ib = Rl

b(Ω
b
ib − Ωb

il) (58)

The state-variable equations in the local-level reference frame are therefore
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Fig. 7. Mechanization in the l-frame

3.3 Mechanization in the l-frame

Because of its wide applicability and intuitiveness, we shall focus on the mechanization of
the state-variable equations described above in the local-level frame. To begin with, an initial
position in geodetic coordinates φ, λ, h must be known, along with an initial velocity and
transformation Rb

l in order for the integration of the measurements from the accelerometers
and gyroscopes to give proper navigation parameters. We shall consider initial position and
velocity to be given by GPS, for example, and will treat the problem of resolving initial attitude
later. The block diagram in figure 7 shows the relationships among the components of the
state-variable equations in the context of an algorithmic implementation.

Given an initial attitude, velocity and the earth’s rotation rate ωe, the rotation of the l-frame
with respect to the e-frame and thence the rotation between the e-frame and the i-frame is
computed and transformed into a representation of the rotation of the l-frame with respect to
the i-frame expressed in the b-frame (ωb

il). The quantities of this vector are subtracted from the
body angular rate measurements to yield angular rates between the l-frame and the b-frame
expressed in the b-frame (ωb

lb). Given fast enough measurements relative to the dynamics of
the vehicle, the small angle approximation can be used and Rb

l can be integrated over the time
{t, t + δt} to provide the next Rb

l which is used to transform the accelerometer measurements
into the l frame. The normal gravity γ computed via Somigliana’s formula (12) is added while
the quantities arising from the Coriolis force are subtracted, yielding the acceleration in the
l-frame. This, in turn, is integrated to provide velocity and again to yield position, which are
fed back into the system to update the necessary parameters and propagate the navigation
state forward in time.
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3.4 Updating the transformation Rl
b

The solution of (35) propagates the transformation matrix Rl
b in time. As both Rl

b and Ω are
time dependent, no closed form solution exists

(Kohler & Johnson, 2006). During a small time interval δt relative to the dynamics of the
vehicle, however, we may assume a constant angular rate ω. The angular changes of the
b-frame with respect to the l-frame are expressed as α = ωδt. The skew-symmetric form Ωδt
is now constant over a short time. This presents the discrete closed form solution

Rk+1 = RkeΩδt = Rk

∞

∑
n=0

1
n!
(Ωnδtn) = Rk

∞

∑
n=0

1
n!

Ω̄
n (60)

The powers of Ω̄ are expressed as

Ω̄
3
= −||α||2Ω̄

Ω̄
4
= −||α||2Ω̄

2

Ω̄
5
= ||α||4Ω̄

Ω̄
6
= ||α||4Ω̄

2

...

which allows us to collect the terms in (60) in sine and cosine components of the series
expansion to obtain

Rk+1 = Rk

(
I +

1
||α|| sin(||α||)Ω̄ +

1 − cos(||α||)
||α||2 Ω̄

2
)

(61)

3.4.1 Quaternion update

The quaternion parametrization requires a four-element vector as we have seen. A discrete
solution to the quaternion update follows similarly to that of the DCM. The difference here is
that now the skew-symmetric representation of the rotation rate vector is 4×4. In block form,
we have

Ωq =

( −Ω ω

−ωT 0

)
(62)

Letting Ω̄q = Ωqδt, the discrete solution to (??) is

qk+1 =

(
∞

∑
n=0

1
2nn!

Ω̄
n
q

)
qk

= qk +
1
2

(
2
(

cos
||α||

2
− 1

)
I +

2
||α|| sin

||α||
2

Ω̄q

)
qk (63)

Implementation in either the DCM or the quaternion parametrizations involves employing
numerical integration techniques, which we shall not cover here.
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3.5 Initialization

As stated above, the implementation of an INS requires the knowledge of initial position,
velocity and attitude. Initial position and velocity can be provided through any appropriate
means, but most commonly are retrieved through GPS measurements. The initial attitude, on
the other hand, can be resolved using the raw measurements of the IMU and the known or
computed gravity and earth rotation rate. “““‘Initialization can be performed from a static
position or during maneuvers, the latter being more complex and beyond the scope of this
chapter.

3.5.1 Alignment of a static platform

Alignment refers to the process of determining the initial orientation of the INS body axes
with respect to the navigation frame by rotating the system until expected measurements are
observed in the transformed output. Specifically, with respect to the x and y axes, we define
the process as leveling, while the heading (about the z axis) is termed gyro-compassing. First,
we begin by noting that the measured specific forces in the body frame are related to gravity
in the local-level frame through

gl =Rl
bfb (64)

Through the orthogonality of Rl
b, we see that

⎛
⎝

R31
R32
R33

⎞
⎠ =− 1

g

⎛
⎝

fx
fy
fz

⎞
⎠ (65)

which defines one basis vector of the transformation. The sensed rotation rates are similarly
related to the earth rotation rate through

ωl
ie =Rl

bω
b
ie (66)
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It is easy to show that
⎛
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R21
R22
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⎠ =

1
ωe cos φ
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ωx
ωy
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⎞
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⎞
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from which the second basis of the transformation is found. To complete the rotation matrix,
we take advantage again of its orthogonality, arriving at

⎛
⎝
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R13

⎞
⎠ =

⎛
⎝

R21
R22
R23

⎞
⎠×

⎛
⎝
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⎞
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We have thereby resolved the planar tilt of the body frame with respect to the local-level frame
as well as the rotation about the leveled z axis in the body frame that would bring about a
zero-rate measurement along the transformed x axis of the IMU. In practice, sensor noise of
vehicle disturbance would not allow for the exact solutions presented above, leading to an
initial alignment error. One way to minimize the error is to collect stationary measurements
over an extended period of time and compute the mean values or apply another type of
low-pass filter. It is worth noting here that the estimate of this alignment step is considered
coarse and can be further improved through a fine alignment process in which external aiding,
in the form of position and/or velocity updates, are used.

3.6 Error dynamics

The state-variable equations described up to now for determining the navigation parameters
of the vehicle represent non-linear dynamic system with the general form

ẋ(t) = f(t, x(t), u(t)) (70)

where x are the physical parameters of the system and u are inputs to the system. The true
values of x are generally not known, with only an approximation available. For example, in an
INS, the approximation comes from the integration of sensor output over time. Let x̃ represent
the approximation, then the true parameters are

x̃ = x + δx (71)

where δx are the error states. Replacing x with x̃, we have

˙̃x(t) = f(t, x̃(t), u(t)) = f(t, x(t) + δx(t), u(t)) (72)

Taylor series approximation to the error term yields

δẋ(t) =
∂f
∂x

δx(t) (73)

which is the linearized form of the state equations in terms of the errors, called the error state
equations. It takes the familiar form

δẋ(t) = Fxδx(t) (74)

Where Fx is the dynamics matrix. So far, we have a model for a purely deterministic system
(one free of sensor errors). Taking the input as part of the (noisy) sensor output, the second
set of differential equations is formed:

δu̇ = Fuδu(t) + Gw(t) (75)

Where Fu is the dynamics matrix for the sensor errors, w(t) is a random Gaussian sequence
with a shaping matrix G. The general state-variable form of the error model is therefore

(
δẋ
δu̇

)

︸ ︷︷ ︸
ẋ(t)

=

(
Fx Fxu
0 Fu

)

︸ ︷︷ ︸
F

(
δx
δu

)

︸ ︷︷ ︸
x(t)

+

(
0
G

)

︸ ︷︷ ︸
G

w (76)
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3.5 Initialization
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The terms in Fxu account for the dependence of the navigational errors upon the sensor errors
and the full state vector includes the elements of u. In an INS mechanized in the l-frame, the
error state vector is explicitly written

x(t) =
�

δφ δλ δh δve δvn δvu �e �n �u dx dy dz bx by bz
�T (77)

where the first three elements are position errors, the next three are velocity errors and after
which come alignment errors, gyro drifts and accelerometer biases. We shall now derive the
equations governing each.

3.6.1 Position errors

Recall that in section 3.2.3, we preferentially expressed velocities in the l-frame in terms of
ve, vn, vu rather than directly as functions of φ, λ, h, using

vl = Dṙl (78)

where

D =

⎛
⎝

0 (N + h) cos φ 0
(M + h) 0 0

0 0 1

⎞
⎠ (79)

which, after linearization, yields the error equation

δvl = Dδṙl + δDṙl (80)

Recognizing that the first term in (80) is simply Dδvl , we see that it is the second term that
contains the position errors. We can rewrite (80) then as

δvl = Dδṙl + Drδrl (81)

where Dr is a coefficient matrix. The position error equation is then

δṙl = D−1δvl − D−1Drδrl (82)

3.6.2 Velocity errors

The approximate form of (57) is

˙̃vl = R̃l
b f̃b − (2Ω̃

l
ie + Ω̃

l
el)ṽ

l + γ̃l

= (I + El)Rl
b(f

b + δfb)− (2(Ωl
ie + δΩl

ie) + Ωl
el + δΩl

el)(v
l + δvl) + (γl + δγl) (83)

where El is the skew-symmetric form of the alignment error. After subtracting the true
acceleration and ignoring second-order terms, we have

δv̇l = ElRl
bfb − (2Ωl

ie + Ωl
el)δvl − (2δΩl

ie + δΩl
el)v

l + δγl + Rl
bδfb − δgl

= −Fl�l − (2Ωl
ie + Ωl

el)δvl + Vl(2δωl
ie + δωl

el) + δγl + Rl
bb (84)

where Fl is the skew-symmetric matrix representation of fl , �l is the misalignment vector, Vl

is the skew-symmetric form of vl and b is the vector of accelerometer biases, in which the
gravity disturbance vector δgl is also included. The terms δωl

el and δωl
ie are the errors in the

transport rate and the Earth rotation rate, respectively, both of which are dependent on errors
in position and velocity. Finally, δγl is the error in the calculation of normal gravity, which is
dependent on the position error and any errors in the model.
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3.6.3 Alignment errors

The alignment errors �l represent misalignment between the b and l frames expressed in the
l-frame. The vector �l can be expressed in skew-symmetric form as El , so that the approximate
transformation between frames is

R̃l
b = (I + El)Rl

b (85)

The differential equations for the alignment errors are

�̇l = −Ωl
il�

l − δωl
il − Rl

bd (86)

where Ωl
il is the skew-symmetric form of the angular rates ωl

il with corresponding errors δωl
il .

Here, d is the vector of gyro drift biases.

3.6.4 Gyroscope drifts and accelerometer biases

Gyroscopes and accelerometers exhibit noise behavior that is characterizeable at different time
scales such that one can generally separate errors that are long-term stable and those that
behave stochastically during the period of interest. Errors of the former type are characterized
in a laboratory setting, prior to field deployment and their effects can generally be removed
from the measurements, leaving residual errors that are modeled stochastically.

The noise in gyro and accelerometer measurements exhibit varying degrees of temporal
correlation, depending on the quality of the devices. The underlying random processes are
therefore conveniently modeled as first-order Gauss-Markov processes. Their equations are

ḋ = −αd + wd (87)

ḃ = −βb + wb (88)

where α and β are diagonal matrices whose non-zero elements are the reciprocals of the
correlation time constants and wd and wb are white noise sequences.

3.6.5 Error state equations in the l frame

Combining the derivations for the error equations of position, velocity, alignment, gyro drift
and accelerometer bias gives the state-variable equations for the navigation errors:

ẋl(t) =

⎛
⎜⎜⎜⎜⎝

δṙl

δv̇l

�̇l

ḋ
ḃ

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D−1δvl − D−1Drδrl

−Fl�l − (2Ωl
ie + Ωl

el)δvl + Vl(2ωl
ie + δωl

el) + δγl + Rl
bb

−Ωl
il�

l − δωl
il − Rl

bd

−αd + wd

−βb + wb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(89)

To derive the elements of the dynamics matrix F, we need to specify all the matrix elements in
(89).
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3.6.3 Alignment errors

The alignment errors �l represent misalignment between the b and l frames expressed in the
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where Ωl
il is the skew-symmetric form of the angular rates ωl

il with corresponding errors δωl
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Here, d is the vector of gyro drift biases.

3.6.4 Gyroscope drifts and accelerometer biases

Gyroscopes and accelerometers exhibit noise behavior that is characterizeable at different time
scales such that one can generally separate errors that are long-term stable and those that
behave stochastically during the period of interest. Errors of the former type are characterized
in a laboratory setting, prior to field deployment and their effects can generally be removed
from the measurements, leaving residual errors that are modeled stochastically.

The noise in gyro and accelerometer measurements exhibit varying degrees of temporal
correlation, depending on the quality of the devices. The underlying random processes are
therefore conveniently modeled as first-order Gauss-Markov processes. Their equations are

ḋ = −αd + wd (87)

ḃ = −βb + wb (88)

where α and β are diagonal matrices whose non-zero elements are the reciprocals of the
correlation time constants and wd and wb are white noise sequences.

3.6.5 Error state equations in the l frame

Combining the derivations for the error equations of position, velocity, alignment, gyro drift
and accelerometer bias gives the state-variable equations for the navigation errors:

ẋl(t) =
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δṙl
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ḋ
ḃ
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=
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⎜⎜⎜⎜⎜⎜⎜⎜⎝
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−Fl�l − (2Ωl
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il�
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(89)

To derive the elements of the dynamics matrix F, we need to specify all the matrix elements in
(89).
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3.6.6 Matrix formulation of position errors

Assuming M and N to be constant over small distances

δvl = Dδṙl + Drδrl

=

⎛
⎝

0 (N + h) cos φ 0
M + h 0 0

0 0 1

⎞
⎠

⎛
⎝

δφ̇
δλ̇

δḣ

⎞
⎠+

⎛
⎝
−λ̇(N + h) sin φ 0 λ̇ cos φ

0 0 φ̇
0 0 0

⎞
⎠

⎛
⎝

δφ
δλ
δh

⎞
⎠ (90)

With Dr in hand,

δṙl =

⎛
⎜⎝

0 1
M+h 0

1
(N+h) cos φ 0 0

0 0 1

⎞
⎟⎠

� �� �
F12

⎛
⎝

δve
δvn
δvu

⎞
⎠−

⎛
⎜⎝

0 0 −φ̇
M+h

λ̇ tan φ 0 −λ̇
N+h

0 0 0

⎞
⎟⎠

� �� �
F11

⎛
⎝

δφ
δλ
δh

⎞
⎠ (91)

where F11 and F12 are the first two 3×3 sub-matrices of F.

3.6.7 Matrix formulation of velocity errors

Next, we turn to the first term in the second equation of (89):

−Fl�l =

⎛
⎝

0 fu − fn
− fu 0 fe

fn − fe 0

⎞
⎠

� �� �
F23

⎛
⎝

�e
�n
�u

⎞
⎠ (92)

The second term is

−(2Ωl
ie + Ωl

el)δvl =

⎛
⎝

0 (2ωe + λ̇) sin φ −(2ωe + λ̇) cos φ
−(2ωe + λ̇) sin φ 0 −φ̇
(2ωe + λ̇) cos φ φ̇ 0

⎞
⎠

⎛
⎝

δve
δvn
δvu

⎞
⎠ (93)

The third term is as follows:

2δωl
ie + δωl

el =

⎛
⎝

−δφ̇
−(2ωe + λ̇) sin φδφ + cos φδλ̇
(2ωe + λ̇) cos φδφ + sin φδλ̇

⎞
⎠

=

⎛
⎜⎜⎝

0 0 φ̇
M+h

−2ωe sin φ 0 −λ̇ cos φ
N+h

2ωe cos φ + λ̇
cos φ 0 −λ̇ sin φ

N+h

⎞
⎟⎟⎠

⎛
⎝

δφ
δλ
δh

⎞
⎠+

⎛
⎜⎝

0 −1
M+h 0

1
N+h 0 0
tan φ
N+h 0 0

⎞
⎟⎠

⎛
⎝

δve
δvn
δvu

⎞
⎠ (94)

Multiplying by Vl yields

Vl(2δωl
ie + δωl

el) =⎛
⎜⎝

2ωe(vu sin φ + vn cos φ) + vn
λ̇

cosφ 0 0

−2ωeve cos φ − ve λ̇
cos φ 0 0

−2ωeve sin φ 0 0

⎞
⎟⎠

⎛
⎝

δφ
δλ
δh

⎞
⎠+

⎛
⎜⎝

−vu+vn tan φ
N+h 0 0

−ve tan φ
N+h

−vu
M+h 0

ve
N+h

vn
M+h 0

⎞
⎟⎠

⎛
⎝

δve
δvn
δvu

⎞
⎠ (95)
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The fourth term is

δγ l =

⎛
⎝

0
0

− ∂γ
∂h δh

⎞
⎠ =

⎛
⎝

0
0
2γ

Reδh

⎞
⎠ (96)

where Re is the mean Earth radius. The last term is the transformed accelerometer biases.
Combining all the terms, we have

δv̇l =

⎛
⎜⎜⎝

2ωe(vu sin φ + vn cos φ) + vn λ̇
cos φ 0 0

−2ωeve cos φ − ve λ̇
cos φ 0 0

−2ωeve sin φ 0 2γ
Re

⎞
⎟⎟⎠

� �� �
F21

δrl+

⎛
⎜⎝

−ḣ+φ̇ tan φ(M+h)
N+h (2ωe + λ̇) sin φ −(2ωe + λ̇) cos φ

−2(ωe + λ̇) sin φ −ḣ
M+h −φ̇

2(ωe + λ̇) cos φ 2φ̇ 0

⎞
⎟⎠

� �� �
F22

δvl+

⎛
⎝

0 fu − fn
− fu 0 fe

fn − fe 0

⎞
⎠

� �� �
F23

�l +

⎛
⎝

R11 R12 R13
R21 R22 R23
R31 R32 R33

⎞
⎠

� �� �
F25

b (97)

3.6.8 Matrix formulation of alignment errors

The third equation in (89) can be derived similarly as

�̇l =

⎛
⎝

0 (ωe + λ̇) sin φ −(ωe + λ̇) cos φ
−(ωe + λ̇)sinφ 0 −φ̇
(ωe + λ̇) cos φ φ̇ 0

⎞
⎠

� �� �
F33

�l+

⎛
⎜⎜⎝

0 0 φ̇
M+h

−ωe sin φ 0 −λ̇ cos φ
N+h

ωe cos φ + λ̇
cos φ 0 −λ̇ sin φ

N+h

⎞
⎟⎟⎠

� �� �
F31

δrl+

⎛
⎜⎝

0 −1
M+h 0

1
N+h 0 0
tan φ
N+h 0 0

⎞
⎟⎠

� �� �
F32

δvl +

⎛
⎝

R11 R12 R13
R21 R22 R23
R31 R32 R33

⎞
⎠

� �� �
F34

d (98)
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3.6.6 Matrix formulation of position errors
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With Dr in hand,
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where F11 and F12 are the first two 3×3 sub-matrices of F.

3.6.7 Matrix formulation of velocity errors

Next, we turn to the first term in the second equation of (89):
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The second term is
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The third term is as follows:
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Multiplying by Vl yields

Vl(2δωl
ie + δωl

el) =⎛
⎜⎝

2ωe(vu sin φ + vn cos φ) + vn
λ̇

cosφ 0 0

−2ωeve cos φ − ve λ̇
cos φ 0 0

−2ωeve sin φ 0 0

⎞
⎟⎠

⎛
⎝

δφ
δλ
δh

⎞
⎠+

⎛
⎜⎝

−vu+vn tan φ
N+h 0 0

−ve tan φ
N+h

−vu
M+h 0

ve
N+h

vn
M+h 0

⎞
⎟⎠

⎛
⎝

δve
δvn
δvu

⎞
⎠ (95)

22 Automatic Flight Control Systems – Latest Developments Fundamentals of GNSS-Aided Inertial Navigation 21

The fourth term is
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where Re is the mean Earth radius. The last term is the transformed accelerometer biases.
Combining all the terms, we have
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3.6.8 Matrix formulation of alignment errors

The third equation in (89) can be derived similarly as
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3.6.9 Matrix formulation of sensor errors

The matrices associated with the gyro drift and accelerometer bias equations in (89) are
diagonal, given as

F44 =
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−αx 0 0

0 −αy 0
0 0 −αz

⎞
⎠ (99)

F55 =

⎛
⎝
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0 0 −βz

⎞
⎠ (100)

where the α and β terms are the reciprocals of the time constants associated with the first-order
Gauss-Markov model of each sensor.

Finally, we can define the error dynamics matrix F in terms of the sub-matrices derived above
as

F =

⎛
⎜⎜⎜⎜⎝

F11 F12 0 0 0
F21 F22 F23 0 F25
F32 F32 F33 F34 0
0 0 0 F44 0
0 0 0 0 F55

⎞
⎟⎟⎟⎟⎠

(101)

3.7 Error analysis and Schüler oscillation

In figure 7, it is shown that the rotation rate of the l-frame with respect to the i-frame expressed
as a vector in the b-frame is subtracted from the raw gyroscope measurements when the
system is to be mechanized in the l frame. The relative rotations between the frames, or
the transport rate, itself is a function of the computed velocity and misalignment between
the l and e frames. If there is an error in the computed transformation Re

l or in the initial
values in Rb

l , the computation of Rl
b will be in error. In the simple case that the vehicle

is actually perfectly level and either stationary or at a constant velocity, but the computed
value of Rl

b indicates that it is not level, a component of the gravity vector will be resolved in
the horizontal axes of the system. This component is integrated and provides an erroneous
velocity value, which is fed back to compute ωl

il , which, in turn is transformed through Rb
l

and is subtracted from the angular rate measurements. Finally, a second integration occurs
using the “corrected” measurements to update Rl

b and the process repeats.

The dynamics of the system described above are described by the characteristic equation in
the Laplace domain as

s2 +
g

Re
= 0 (102)

where g is gravity and Re is the mean radius of the earth. This represents a simple oscillation
whose natural frequency is

ω0 =

�
g

Re
(103)
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and is called the Schüler oscillation, after Maximilian Schüler who showed that the bob of
a hypothetical pendulum whose string was the length of the Earth’s radius would not be
displaced under sudden motions of its support. The period of such a pendulum (and of
the Schüler oscillation) is 84.4 minutes. This implies that positional errors caused by either
accelerometer bias or initial velocity errors are bounded over this period. On the other hand,
positional errors due to misalignment or gyro drift are not bounded.

Characterization of INS errors in each channel (East, North, Up) can be performed analytically
in the case of a level platform traveling at a constant velocity and height where there is no
coupling between them. For example, under the conditions stated above, a derivation of
error propagation for the North channel proceeds from formulating an error dynamics matrix
composed only of terms affecting the position, velocity and error states relating to it and
deriving the state transition matrix Φ by

Φ(t) =L−1{(sI − F)−1} (104)

where L−1 denotes the inverse Laplace transform. The effect of a particular error source upon
the error state under investigation is simply the term in Φ(t) whose row index corresponds to
the index of the state whose column index corresponds to the index of the error source. For
example, the effect of a constant velocity error δv upon the North position is

δrn(t) =δv
sin ω0t

ω0
(105)

where ω0 is the Schüler frequency. Because the errors in position due to gyro drift and
misalignment are unbounded, as previously mentioned, the largest single quantity of merit in
the sensor specifications of an IMU is in the gyro drift rate. We finish by noting that for more
general trajectories, characterization of error propagation is best done through simulation.

4. Sensors

IMU measurements are made from two triads of orthogonally-mounted accelerometers and
gyros; one sensor for each degree of freedom in three-dimensional space. Accelerometers
measure specific force along a sensitive axis. Gyroscopes measure either rotations or rotation
rates along a sensitive axis. Although the current state of the art in sensor design makes use of
the principles of lasers and quantum mechanics, Newtonian mechanics gives us the tools to
design both accelerometers and gyroscopes. Presented below is a brief discussion of the basis
of such classical designs.

4.1 Accelerometers

Recalling Newton’s second law:

Fi = mr̈i (106)

where i represents the inertial frame, expresses the fact that force is proportional to the
acceleration of a constant proof mass. Conversely, the force needed to keep this mass from
accelerating is a measure of linear acceleration, a principle employed in most accelerometers.
It can be seen as a realization of the law of conservation of linear momentum:
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displaced under sudden motions of its support. The period of such a pendulum (and of
the Schüler oscillation) is 84.4 minutes. This implies that positional errors caused by either
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in the case of a level platform traveling at a constant velocity and height where there is no
coupling between them. For example, under the conditions stated above, a derivation of
error propagation for the North channel proceeds from formulating an error dynamics matrix
composed only of terms affecting the position, velocity and error states relating to it and
deriving the state transition matrix Φ by

Φ(t) =L−1{(sI − F)−1} (104)

where L−1 denotes the inverse Laplace transform. The effect of a particular error source upon
the error state under investigation is simply the term in Φ(t) whose row index corresponds to
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example, the effect of a constant velocity error δv upon the North position is
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where ω0 is the Schüler frequency. Because the errors in position due to gyro drift and
misalignment are unbounded, as previously mentioned, the largest single quantity of merit in
the sensor specifications of an IMU is in the gyro drift rate. We finish by noting that for more
general trajectories, characterization of error propagation is best done through simulation.

4. Sensors

IMU measurements are made from two triads of orthogonally-mounted accelerometers and
gyros; one sensor for each degree of freedom in three-dimensional space. Accelerometers
measure specific force along a sensitive axis. Gyroscopes measure either rotations or rotation
rates along a sensitive axis. Although the current state of the art in sensor design makes use of
the principles of lasers and quantum mechanics, Newtonian mechanics gives us the tools to
design both accelerometers and gyroscopes. Presented below is a brief discussion of the basis
of such classical designs.

4.1 Accelerometers

Recalling Newton’s second law:

Fi = mr̈i (106)

where i represents the inertial frame, expresses the fact that force is proportional to the
acceleration of a constant proof mass. Conversely, the force needed to keep this mass from
accelerating is a measure of linear acceleration, a principle employed in most accelerometers.
It can be seen as a realization of the law of conservation of linear momentum:
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Fi = ṗi = mr̈i = 0 (107)

where p is the momentum of the proof mass, i.e. the rate of change of the momentum is equal
to the applied force. The external forces acting on the system are balanced by internal forces, so
the motion of the proof mass remains constant in an inertial frame. In theory there is a problem
realizing such a sensor on Earth because the planet is undergoing constant acceleration in its
orbit around the Sun and so forth. This makes defining zero acceleration impossible in an
inertial frame, but we can simply treat any signal arising from these conditions as a constant
instrument bias and remove it from the measurements. From here on, we will only consider
this situation.

To see how (107) can be realized in a measurement device, consider the classical
spring-mass-damper system shown in figure 8. A mass m is constrained to move along the

m

C

ck

case

x

0

r

OO

Fig. 8. a spring-mass-damper system

x axis of the device (the sensitive axis). It is restrained by a spring and its motion is damped
by a damping device. Finally, there is a scale and a housing for the assembly. Point C is the
center of mass of the sensitive element and point O indicates the equilibrium position when
the device is not subjected to any external force along the sensitive axis. The output of the
device is measured along the r scale, which is made proportional to the internal signal along
x. The spring provides a restoring force proportional to the displacement of the proof mass
by Hooke’s Law:

F = −kx (108)

where k is the spring constant. The damper is present to minimize oscillations in response to
sudden changes in applied force and can be made of a viscous fluid-filled piston or the like.
The force produced by the damper is proportional to the velocity of the proof mass or −cẋ,
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where c is the damping or viscosity constant. If we assume that the sensor is located on the
Earth with the x axis facing opposite the direction of the pull of gravity, Newton’s second law
gives the second-order differential equation

mr̈C + cẋC + kxC − mg = 0 (109)

where g is present to account for the reaction force of the case against the surface of the Earth.
Letting

rC = xC + r0 (110)

we have

ẍC +
c
m

ẋC +
k
m

xC = g − r̈0 (111)

This system will therefore have an output of g − r̈0 = f , which is the specific force. This is the
observable obtained from accelerometers near the surface of Earth. In this case, without extra
applied force, the output is simply g.

It is not possible to separate the effects of inertia and gravity in a non-inertial frame,
a consequence of Einstein’s equivalence principle. In other words, forces applied to an
accelerometer through accelerations of the vehicle are indistinguishable from the acceleration
caused by the gravity field of the planet. Without knowledge of the vehicle’s acceleration at a
particular time, it is not possible to measure the local gravitational vector and vice versa. The
forces acting on the vehicle other than gravity include those induced by Earth’s rotation, so
we must be careful in how we eliminate instrument biases depending upon which reference
frame we are to work in.

Equation (109) is an open-loop mechanization of the mass-spring-damper system, where the
displacement is directly measured. Modern high-accuracy designs are by contrast closed-loop
systems, where the mass is kept at the null position by a coil in a magnetic field. The force
required to keep the mass stationary under various accelerations is then the quantity that is
measured. Several other realizations of accelerometers are possible, but most are still modeled
by similar differential equations.

Finally, we note that though the observable we shall deal with is specific force, the actual
output of the sensor is change in velocity Δv. This is a consequence of the internal mechanisms
of modern accelerometers, where several measurements are integrated over a short period of
time (usually a few milliseconds) to smooth out measurement noise. The general form of the
measurement model of specific force from an accelerometer triad is given by the observation
equation

�a = f + b + (S1 + S2)f +Nf + γ + δg + � f (112)

where

�a is the measurement

f is the specific force

b is the accelerometer bias

S1 and S2 represent the linear and non-linear matrix of scale factor errors, respectively
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required to keep the mass stationary under various accelerations is then the quantity that is
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Finally, we note that though the observable we shall deal with is specific force, the actual
output of the sensor is change in velocity Δv. This is a consequence of the internal mechanisms
of modern accelerometers, where several measurements are integrated over a short period of
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N is a matrix representing the non-orthogonality of the sensor axes

γ is the vector of normal gravity

δg is the anomalous gravity vector

� f is noise

4.2 Gyroscopes

Gyroscopes measure angular velocity with respect to an inertial reference frame. A schematic
of a simple two-axis gyroscope is shown in figure 9. In this device, a spinning disc is mounted
within a set of gimbals which allow it to pivot in response to an applied torque, a behavior
known as precession.

spin axis
inner gimbal

inner gimbal axis
outer
gimbal
axis

outer gimbal

Base

Fig. 9. a two-axis rigid rotor gyroscope

We can analyze the behavior of this system beginning with Newton’s second law in terms of
momentum again:

Fi = ṗi (113)

The cross product with the vector r gives the moment of this force about the origin, or

ri × Fi = ri × ṗi (114)

Now, we observe that the angular momentum, L of the spinning disc is

L = ri × pi (115)

the time derivative of which is

L̇ = ṙi × pi + ri × ṗi (116)

Now, because ṙi and pi are parallel, the first cross product on the right hand side of (116) is
zero, thus

ri × Fi = L̇ (117)
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For a particle moving in a central field (i.e. any point we chose on the disc), F and r are
parallel and thus L is constant. This means that the direction of the spin axis of the rotating
disc is fixed in inertial space. In a two axis gyroscope any rotation ωt about t (the input axis)
in figure 10 would give rise to a rotation ωp about p (the output axis). This phenomenon
is known as precession. Measuring the torque about p leads us to the angular velocity
about t, which is the observable under consideration. As with accelerometers, the actual

s

t

p

F, r

ωs
s′

ωt

ωp

Fig. 10. gyroscopic precession

physical implementation of gyroscopes has taken on many forms, depending on purpose and
performance considerations. In the example given above, measurements of gimbal rotation
(in an open-loop system) are angular measurements. In a closed-loop system, motors are
used to keep the gimbals from moving and the required torque to do so is measured. These
measurements are therefore of the angular rates of the system. Sensing angular velocity
in modern strap-down navigation systems is actually accomplished through exploiting the
Sagnac effect rather than the mechanical properties of rotating masses. In this case, the
interference patterns generated by light traveling along opposing closed paths is used as a
measure of the angular rotation of the system. In any case, the measurements obtained from
a gyroscope triad can modeled by the observation equation

�ω = ω + d + Sω + Nω + �ω (118)

where

�ω is the measurement
ω is the angular velocity
d is the gyroscope bias
S is a matrix representing the gyroscope scale factor
N is a matrix representing the non-orthogonality of the axes
�ω is noise

The noise terms of both accelerometers and gyroscopes can be further decomposed as

� = �w + �c + �r + �q + �d (119)

the five terms representing white, correlated, random walk, quantization and dither noise,
respectively. Some IMU errors associated with scale factor and non-orthogonality are
characterized in the factory, while others, including bias and noise are removed by the
estimation process.
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outer
gimbal
axis

outer gimbal

Base

Fig. 9. a two-axis rigid rotor gyroscope

We can analyze the behavior of this system beginning with Newton’s second law in terms of
momentum again:

Fi = ṗi (113)

The cross product with the vector r gives the moment of this force about the origin, or

ri × Fi = ri × ṗi (114)

Now, we observe that the angular momentum, L of the spinning disc is

L = ri × pi (115)

the time derivative of which is

L̇ = ṙi × pi + ri × ṗi (116)

Now, because ṙi and pi are parallel, the first cross product on the right hand side of (116) is
zero, thus

ri × Fi = L̇ (117)
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For a particle moving in a central field (i.e. any point we chose on the disc), F and r are
parallel and thus L is constant. This means that the direction of the spin axis of the rotating
disc is fixed in inertial space. In a two axis gyroscope any rotation ωt about t (the input axis)
in figure 10 would give rise to a rotation ωp about p (the output axis). This phenomenon
is known as precession. Measuring the torque about p leads us to the angular velocity
about t, which is the observable under consideration. As with accelerometers, the actual

s
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ωs
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ωt
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Fig. 10. gyroscopic precession

physical implementation of gyroscopes has taken on many forms, depending on purpose and
performance considerations. In the example given above, measurements of gimbal rotation
(in an open-loop system) are angular measurements. In a closed-loop system, motors are
used to keep the gimbals from moving and the required torque to do so is measured. These
measurements are therefore of the angular rates of the system. Sensing angular velocity
in modern strap-down navigation systems is actually accomplished through exploiting the
Sagnac effect rather than the mechanical properties of rotating masses. In this case, the
interference patterns generated by light traveling along opposing closed paths is used as a
measure of the angular rotation of the system. In any case, the measurements obtained from
a gyroscope triad can modeled by the observation equation

�ω = ω + d + Sω + Nω + �ω (118)

where

�ω is the measurement
ω is the angular velocity
d is the gyroscope bias
S is a matrix representing the gyroscope scale factor
N is a matrix representing the non-orthogonality of the axes
�ω is noise

The noise terms of both accelerometers and gyroscopes can be further decomposed as

� = �w + �c + �r + �q + �d (119)

the five terms representing white, correlated, random walk, quantization and dither noise,
respectively. Some IMU errors associated with scale factor and non-orthogonality are
characterized in the factory, while others, including bias and noise are removed by the
estimation process.
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5. Estimation

5.1 Bayesian estimation

We now turn to the treatment of the stochastic aspects of INS design. In general, the dynamic
system derived in the previous sections which describes the navigation and error states
evolves in discrete time according to

xk =fk−1(xk−1, wk−1) (120)

where fk−1 is some (possibly nonlinear) function of the previous state and its process noise
wk−1, which accounts for errors in the model or disturbances to it. Also, generally speaking,
we have no direct knowledge of the states themselves, but can only access them through
measurements z which are related through

zk =hk(xk, vx) (121)

where hk is also a possibly nonlinear function of the state and the measurement noise vk. We
assume the process noise and the measurement noise are white and statistically independent.
The second criterion is very difficult to prove, in which case, for practical purposes we accept
that they are at least uncorrelated. Succinctly,

E{wiw
T
j } = E{viv

T
j } =

{
δ(0), ∀i = j
0, ∀i �= j (122)

E{wiv
T
j } = 0, ∀i, j (123)

where E{·} is the expectation operator and δ(·) is the Dirac delta function. At any point,
x will be a random sample associated with a particular probability density function (pdf).
More specifically, given all the measurements of the system up to time k − 1, we will have
the conditional pdf p(xk|Zk−1) where Zk−1 = {z1, z2, . . . , zk−1}. The goal is to find p(xk|Zk)
once new measurements are available. Because the current state is dependent only on the state
immediately preceding it, it is first-order Markovian and we apply the Chapman-Kolmogorov
equation (Duda et al., 2001; Ristic et al., 2004):

p(xk|Zk−1) =
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1 (124)

where p(xk|xk−1) is the transition density, which allows us to calculate the probability that
a state will evolve in a particular way from one instant to the next. The result of (124) is
essentially a prediction of the state vector given all previous information (the Bayesian prior
pdf) . Once new measurements become available, we seek to update the estimate of xk using
zk (or obtain the Bayesian posterior pdf). Using Bayes’ formula

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)

=
p(zk|xk)p(xk|Zk−1)∫

p(zk|xk)p(xk|Zk−1)dxk
(125)

We can recursively employ (124) and (125) to estimate the state pdf at any time, from which
estimates of the state vector itself can be obtained using any optimality criterion we chose.
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Initially, there will, of course, be no prior states or measurements, so we define the initial
prior as p(x0), which is simply our best estimate given what we know generally about such
systems.

5.2 Linear filters

Linear filtering attempts to find the optimal linear combination of the predicted state and the
the state implied by the measurements. In recursive form, a linear filter can be written as

x̂k|k = K�
k x̂k|k−1 + Kkzk (126)

where K�
k and Kk are weight or gain matrices to be computed at each instant k. Under

the assumption of Gaussian noise, the resulting pdf of the estimate will also be Gaussian.
The Kalman filter, which we shall describe next, is the optimal estimator under these
circumstances (Kalman, 1960).

5.3 The Kalman filter

The problem as described in its general form in section 5.1 is rarely analytically tractable
in practice. For one thing, state vectors may be very large, having high- (or infinite-)
dimensional pdfs which cannot be integrated in the denominator of (125); the well-known
“curse of dimensionality”(Duda et al., 2001). Secondly, the nonlinear models themselves may
be unavailable or too complex to deal with analytically. For this reason, the error dynamics
in 3.6 have been approximated to a linear system. We have also made many linearizing
assumptions in the state equations such as the assumption of fast sampling rates relative to
vehicle dynamics. We have also made the assumption of Gaussian-distributed noise in the
sensors and shall further assume that disturbances to the error dynamics model take the same
(though uncorrelated) form.

Under these conditions, that is linearity and Gaussianity, a realizable solution to the Bayesian
estimation problem is the Kalman filter, first described by Rudolph Kalman in 1960. Let the
discrete-time system and its measurement equation be defined as

xk = Φk,k−1xk−1 + Gk−1wk−1 (127)

zk = Hkxk + vk (128)

where Φk,k−1 is the state transition matrix, wk−1 is the zero-mean process noise with shaping
matrix Gk−1, Hk is the design matrix mapping state parameters to measurements in zk and vk
is zero-mean measurement noise (uncorrelated with process noise). Φk,k−1 and H are linear
functions, so xk and zk are Gaussian random vectors whose pdfs are completely described by
their means and covariances. In addition to the requirements of (122) and (123), we have for
the initial state x0 the following constraints:

E{x0wT
k } = 0 (129)

E{x0vT
k } = 0 (130)

We seek an efficient estimator (if it exists), which is to say it is unbiased and its covariance
attains the Cramér-Rao Lower Bound (CRLB). Such an estimator, if it exists, is both the
minimum variance unbiased estimator (MVUE) and the maximum-likelihood estimator
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(MLE), thought the converse is generally not true. An efficient estimator therefore has the
properties that its estimates x̂k and those of any other estimator x̃k satisfy

E{(x̂k − xk)
T(x̂k − xk)} ≤ E{(x̃k − xk)

T(x̃k − xk)} (131)

where (in the case that both are unbiased),

E{x̂k} = E{x̃k} = E{xk} (132)

The Gaussian likelihood function has the form

�(μ, Σ; x) = exp(−1
2
(x −μ)TΣ−1(x−μ)) (133)

where the free parameters are the mean μ and the covariance Σ and the data x is given. A
maximum likelihood estimator is one that provides μ and Σ that maximize � given a particular
sample x. In other words, it provides the parameters of the Gaussian pdf that would most
likely lead to having observed x (Papoulis, 1977). For two independent events, the joint
probability is P(a, b) = P(a)P(b). Likelihood functions obey a similar rule

�A,B(μA,B, ΣA,B; x) = �A(μA, ΣA; x)�B(μB, ΣB; x) (134)

which, for the log-likelihood reduces to the equality

log(�A,B(μA,B, ΣA,B|x, y)) = log(�A(μA, ΣA|x)) + log(�B(μB, ΣB|x))

or

− 1
2
(x −μA,B)

TΣ−1
A,B(x−μA,B) =

log(c)− 1
2
(x −μA)

TΣ−1
A (x−μA)− 1

2
(x −μB)

TΣ−1
B (x−μB) (135)

where c > 0 is an arbitrary constant. As shown in (Grewal et al., 2001), after taking the first
and second derivatives with respect to x, this further reduces to

Σ−1
A,B = Σ−1

A + Σ−1
B (136)

Furthermore, the joint MLE is given by

Σ−1
A,BμA,B = Σ−1

A μA + Σ−1
B μB (137)

⇒ μA,B = (Σ−1
A + Σ−1

B )†(Σ−1
A μA + Σ−1

B μB) (138)

where † is the generalized inverse of the matrix.

For any measurement vector z, its ML estimate μ̂z = z and its covariance Σz = E{vvT}. We
now transform the likelihood based on the measurements into likelihood of the state vector
by

μx = H†z (139)

Σ−1
x = HTΣ−1

z H (140)
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Let μA = x̂k|k−1, that is the MLE prior to update, and Σ−1
A = P−1

k|k−1 or the inverse of
covariance matrix of the MLE prior to update, whose propagation in time is given by

x̂k|k−1 = Φk,k−1x̂k−1|k−1 (141)

and

Pk|k−1 = Φk,k−1Pk−1|k−1ΦT
k,k−1 + Qk−1 (142)

where Qk−1 is the covariance of the process noise wk−1. Next, let μB = μx as defined in (139)
and Σ−1

B = Σ−1
x as defined in (140). Now, the covariance after the update Pk|k is

Pk|k = ΣA,B

= (Σ−1
A + HTΣ−1

z H)−1

= ΣA − ΣAHT(HΣAHT + Σz)
−1HΣA

= Pk|k−1 − Pk|k−1HT(HPk|k−1HT + Σz)
−1HPk|k−1 (143)

The estimate after the update is x̂k|k = μA,B, which by (138), is

x̂k|k = (Σ−1
A + Σ−1

B )†(Σ−1
A μA + Σ−1

B μB)

= Pk|k(Pk|k−1x̂k|k−1 + HTΣ−1
z HH†z)

which, after some simplification, becomes

x̂k|k = x̂k|k−1 + Pk|k−1HT(HPk|k−1HT + Σz)
−1(z − Hx̂k|k−1)

= x̂k|k−1 + K(z − Hx̂k|k−1) (144)

Where K is the Kalman gain matrix, which provides the optimal weights for combining the
predicted estimate of the state with the new measurements. After the update, the current
estimate and its covariance is propagated in time using (141) and (142)

It can be shown that the updated state covariance matrix achieves the Cramér-Rao Lower
Bound, and that x̂k|k is unbiased, meaning that the estimator is efficient and automatically
both the MLE and the MVUE. Finally, in terms of pdfs,

p(xk−1|Zk−1) = N (xk−1; x̂k−1|k−1, Pk−1|k−1) (145)

p(xk|Zk−1) = N (xk; x̂k|k−1, Pk|k−1) (146)

p(xk|Zk) = N (xk; x̂k|k, Pk|k) (147)

which provides a Bayesian interpretation of the Kalman filter.
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5.4 GNSS aiding

Because of unbounded position errors associated with misalignment and gyro drift,
along with the undesirability of having even bounded oscillations in the position due to
accelerometer and velocity errors, it is necessary for most applications using medium-grade
and commodity-grade IMUs to employ an aiding method. That is, using an external (and
independent) estimate of navigation states to limit the accumulation of errors in the INS.
For the last two decades, the preferred method has been to use measurements obtained from
global navigation satellite systems such as GPS to update the INS error estimates and improve
the navigation solution. The simplest way to achieve this, of course, is to simply use the
calculated positions and velocities from the GNSS directly in place of the results from the
mechanization as they become available. This is the so-called reset “filter”, although from the
standpoint of optimal filtering, it has many undesirable effects such as introducing sudden
jumps in the navigation states. Moreover, the complementary filter places all the weight on
the GNSS-derived values, which themselves are subject to error.

Alternatively, Kalman filtering is used to optimally estimate the error states of the INS, with
updates coming from GNSS in one of several architectures:

• Loosely-coupled integration. Here, the GNSS system acts to provide a full position and
velocity estimate independently of the INS mechanization. The measurements of the
error states arises from subtracting the GNSS states from the position and velocity arising
from the mechanization. These are then transferred through the design matrix H of
the measurement equations and used to update the error estimates, which in turn are
subtracted from the navigation states.

• Tightly-coupled integration. In this scheme, the GNSS measurements and error states are
directly incorporated into the Kalman filter, the primary benefit being that the navigation
state can be improved over the mechanization alone with fewer than four GNSS satellites
being tracked at any given time. A detailed treatment can be found in (Grewal et al., 2001).

• Deeply-coupled integration. This is a hardware-level implementation which further
incorporates the states associated with the GNSS receiver signal tracking loop. This allows
for better tracking stability under high dynamics and rapid reacquisition of GNSS signals
under intermittent visibility (Kim et al., 2006; Kreye et al., 2000).

In the loosely-coupled scheme, at each update we let

z =

⎛
⎜⎜⎜⎜⎜⎜⎝

φINS − φGNSS
λINS − λGNSS
hINS − hGNSS
veINS − veGNSS

vnINS − vnGNSS

vuINS − vuGNSS

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

δφ
δλ
δh
δve
δvn
δvu

⎞
⎟⎟⎟⎟⎟⎟⎠

(148)

The measurement equation is then

Hx̂k|k−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

x̂k|k−1 (149)
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Under the assumption of a fast sampling rate, the state transition matrix Φk,k−1 is given by

Φk,k−1 = eδtF (150)

Where F is the error dynamics matrix defined in 3.6. Using (141),(142), (143) and (144), it
becomes evident that although alignment errors and sensor biases are not directly observable,
the Kalman gain matrix K contains information about their contribution to the navigation
states. Since the error dynamics are linearized about the current state estimates, the filter
presented here is an example of extended Kalman filtering.

We finish with the remark that, in general, the assumptions of linearity, Gaussianity and
uncorrelated noise sources are not strictly justified in INS applications. Beyond employing
an extended Kalman filter (EKF) as described above, the further development and application
of nonlinear filters such as the unscented Kalman filter (UKF) and the particle filter have been
undertaken in attempts at solving the more general Bayesian formulation of the problem.

6. Conclusion

Aided inertial navigation remains an active area of research, especially with the introduction
of smaller and cheaper (but noisier) inertial sensors. Among the challenges presented by these
devices is heading initialization (Titterton & Weston, 2004), which necessitates the use of other
aiding systems, and proper stochastic modeling of their error charactertics. In addition, the
nonlinearity of the state equations has prompted much research in applied optimal estimation.
Despite this, the underlying concepts remain the same and the development presented here
should give the reader enough background to understand the issues involved, enabling him
or her to pursue more detailed aspects of INS and aided INS design as necessary.
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⎜⎜⎜⎜⎜⎜⎝

φINS − φGNSS
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veINS − veGNSS

vnINS − vnGNSS

vuINS − vuGNSS

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝
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δλ
δh
δve
δvn
δvu

⎞
⎟⎟⎟⎟⎟⎟⎠

(148)

The measurement equation is then

Hx̂k|k−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

x̂k|k−1 (149)
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1. Introduction  
Quantitative feedback theory (hereafter referred as QFT), developed by Isaac Horowitz 
(Horowitz, 1963; Horowitz and Sidi, 1972), is a frequency domain technique utilizing the 
Nichols chart in order to achieve a desired robust design over a specified region of plant 
uncertainty. Desired time-domain responses are transformed into frequency domain 
tolerances, which lead to bounds (or constraints) on the loop transmission function. The 
design process is highly transparent, allowing a designer to see what trade-offs are 
necessary to achieve a desired performance level. 

QFT is also a unified theory that emphasizes the use of feedback for achieving the desired 
system performance tolerances despite plant uncertainty and plant disturbances. QFT 
quantitatively formulates these two factors in the form of (a) the set { }R RT  of acceptable 
command or tracking input-output relationships and the set { }D DT   of acceptable 
disturbance input-output relationships, and (b) a set { }P   of possible plants which 
include the uncertainties. The objective is to guarantee that the control ratio /RT Y R is a 
member of R  and /DT Y D  is a member of D , for all plants P which are contained in 
 . QFT has been developed for control systems which are both linear and nonlinear, time-
invariant and time-varying, continuous and sampled-data, uncertain multiple-input single-
output (MISO) and multiple-input multiple-output (MIMO) plants, and for both output and 
internal variable feedback.  

The QFT synthesis technique for highly uncertain linear time-invariant MIMO plants has the 
following features: 

1. The MIMO synthesis problem is converted into a number of single-loop feedback 
problems in which parameter uncertainty, external disturbances, and performance 
tolerances are derived from the original MIMO problem. The solutions to these single-
loop problems represent a solution to the MIMO plant.  

2. The design is tuned to the extent of the uncertainty and the performance tolerances.  

This design technique is applicable to the following problem classes: 

1. Single-input single-output (SISO) linear-time-invariant (LTI) systems 
2. SISO nonlinear systems.  
3. MIMO LTI systems.  
4. MIMO nonlinear systems.  
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5. Distributed systems. 
6. Sampled-data systems as well as continuous systems for all of the preceding. 

Problem classes 3 and 4 are converted into equivalent sets of MISO systems to which the 
QFT design technique is applied. The objective is to solve the MISO problems, i.e., to find 
compensation functions which guarantee that the performance tolerances for each MISO 
problem are satisfied for all P in . 

This chapter is essentially divided into two parts. The first part, consisting of Sections 2 
through 4, presents the fundamentals of the QFT robust control system design technique for 
the tracking and regulator control problems. The second part consists of Seciton 5 which 
focuses on the application of QFT techinique to the flight control design for a certain 
Unmaned Aerial Vehicle (UAV). This is accomplished by decomposing the UAV’s MIMO 
plant to 2 MISO plants whose controllers are both synthisized using QFT techique for MISO 
systems. And the effectiveness of both controllers is verified according the digital simulation 
results. Besides, Sections 6 through 8 are about summary of whole chapter, references and 
symbols used in the chapter. 

2. Overview of QFT 
2.1 Design objective of QFT 

Objective of QFT is to design and implement robust control for a system with structured 
parametric uncertainty that satisfies the desired performance specifications. 

2.2 Performance specifications for control system 

In many control systems the output ( )y t  must lie between specified upper and lower 
bounds, ( )Uy t and ( )Ly t , respectively, as shown in Fig.1a. The conventional time-domain 
figures of merit, based upon a step input signal ( )r t  are shown in Fig.1a. They are: PM , peak 
overshoot; rt , rise time; pt , peak time; and st , settling time. Corresponding system 
performance specifications in the frequency domain are, UB  and LB , the upper and lower 
bounds respectively, peak overshoot mLm M , and the frequency bandwidth h  which are 
shown in Fig.1b. 

  
(a) time domain response specifications (b) frequency domain response specifications 

Fig. 1. Desired system performance specifications 
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Assume that the control system has negligible sensor noise and sufficient control effort 
authority, then for a stable LTI minimum-phase plant, a LTI compensator may be designed 
to achieve the desired control system performance specifications.  

2.3 Implementation of QFT design objective 

The QFT design objective is achieved by: 

 Representing the characteristics of the plant and the desired system performance 
specifications in the frequency domain. 

 Using these representations to design a compensator (controller). 
 Representing the nonlinear plant characteristics by a set of LTI transfer functions that 

cover the range of structured parametric uncertainty. 
 Representing the system performance specifications (see Fig.1) by LTI transfer functions 

that form the upper UB  and lower LB  boundaries for the design. 
 Reducing the effect of parameter uncertainty by shaping the open-loop frequency 

responses so that the Bode plots of the J closed-loop systems fall between the 
boundaries UB  and LB , while simultaneously satisfying all performance specifications. 

 Obtaining the stability, tracking, disturbance, and cross-coupling (for MIMO systems) 
boundaries on the Nichols chart in order to satisfy the performance specifications. 

2.4 QFT basics 

Consider the control system of Fig.2, where ( )G s is a compensator, ( )F s  is a prefilter, and   
is the nonlinear plant with structured parametric uncertainty. To carry out a QFT design: 

 The nonlinear plant is described by a set of J minimum-phase LTI plants, i.e., 
{ ( )}( 1,2, , )tP s t J     which define the structured plant parameter uncertainty.  

 The magnitude variation due to the plant parameter uncertainty, ( )P ij  , is depicted by 
the Bode plots of the LTI plants as shown in Fig. 3 which is for a certain plant. 

 J data points (log magnitude and phase angle), for each value of frequency, i  , are 
plotted on the Nichols chart. A contour is drawn through the data points that described 
the boundary of the region that contains all J points. This contour is referred to as a 
template. It represents the region of structured plant parametric uncertainty on the 
Nichols chart and are obtained for specified values of frequency, i  , within the 
bandwidth (BW) of concern. Six data points (log magnitude and phase angle) for each 
value of i are obtained, as shown in Fig. 4a, for a certain example to plot the templates, 
for each value of i , as shown in Fig. 4b. 

 The system performance specifications are represented by LTI transfer functions, and 
their corresponding Bode plots are shown in Fig. 3 by the upper and lower bounds UB  
and LB , respectively. 

 
Fig. 2. Compensated nonlinear system 
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Fig. 2. Compensated nonlinear system 
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Fig. 3. LTI plants 

 

  
(a)   (b)   (c) 

Fig. 4. (a) Bode plots of 6 LTI plants; (b) template construction for  =3 rad/sec; 
(c) construction of the Nichols chart plant templates 

2.5 QFT design 

The tracking design objective is to 

a. Synthesize a compensator ( )G s  of Fig. 2 that 
 results in satisfying the desired performance specifications of Fig. 1 
 results in the closed-loop frequency responses LiT shown in Fig. 5 
 results in the ( )L ij   of Fig. 5 of the compensated system, being equal to or smaller 

than ( )P ij  of Fig. 3 for the uncompensated system and that it is equal or less 
than ( )R ij  , for each value of i  of interest; that is: ( ) ( ) ( )L i R i P ij j j        

b. Synthesize a prefilter ( )F s of Fig. 2 that results in shifting and reshaping the LiT  
responses in order that they lie within the UB and LB boundaries in Fig. 5 as shown in 
Fig. 6. 
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Fig. 5. Closed-loop responses: LTI plants with G(s)  

  
Fig. 6. Closed-loop responses: LTI plants with G(s) and F(s) 

Therefore, the QFT robust design technique assures that the desired performance 
specifications are satisfied over the prescribed region of structured plant parametric 
uncertainty. 

3. Insight to the QFT technique 
3.1 Open-loop plant 

Consider a certain position control system whose plant transfer function is given by 

 ( )
( ) ( )

a
t

K KP s
s s a s s a


 

 
  (1) 

where aK K  and 1,2,...,i J . The log magnitude changes in a prescribed range due to the 
plant parameter uncertainty. The loop transmission ( )L s  is defined as 

 ( ) ( ) ( )t tL s G s P s   (2) 

3.2 Closed-loop formulation 

The control ratio LT  of the unity-feedback system of Fig. 2 is 
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  (3) 

The overall system control ratio RT  

 is given by: 

 ( ) ( )( )
1 ( )

t
R

t
t

F s L sT s
L s




  (4) 

3.3 Results of applying the QFT design technique 

The proper application of the robust QFT design technique requires the utilization of the 
prescribed performance specifications from the onset of the design process, and the selection 
of a nominal plant oP  from the J  LTI plants. Once the proper loop shaping of 

( ) ( ) ( )o oL s G s P s is accomplished, a synthesized ( )G s is achieved that satisfies the desired 
performance specifications. The last step of this design process is the synthesis of the 
prefilter that ensures that the Bode plots of RiT  all lie between the upper and lower bounds 

UB and LB . 

3.4 Benefits of QFT 

The benefits of the QFT technique may be summarized as follows: 

 It results in a robust design which is insensitive to structured plant parameter variation. 
 There can be one robust design for the full, operating envelope. 
 Design limitations are apparent up front and during the design process. 
 The achievable performance specifications can be determined in the early design stage. 
 If necessary, one can redesign for changes in the specifications quickly with the aid of 

the QFT CAD package. 
 The structure of the compensator (controller) is determined up front. 
 There is less development time for a full envelope design. 

4. QFT design for the MISO analog control system 
4.1 Introduction 

The MIMO synthesis problem is converted into a number of single-loop feedback problems 
in which parameter uncertainty, cross-coupling effects, and system performance tolerances 
are derived from the original MIMO problem. The solutions to these single-loop problems 
represent a solution to the MIMO plant. It is not necessary to consider the complete system 
characteristic equation. The design is tuned to the extent of the uncertainty and the 
performance tolerances.  

Here, we will present an in-depth understanding and appreciation of the power of the  
QFT technique through apply QFT to a robust single-loop MISO system, which has two 
inputs, a tracking and an external disturbance input, respectively, and a single output 
control system.  
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4.2 The QFT method (single-loop MISO system) 

Basic structure of a feedback control system is given in Fig.7 , in which   represents the set 
of transfer functions which describe the region of plant parameter uncertainty, G  is the 
cascade compensator, and F  is an input prefilter transfer function. The output ( )y t  is 
required to track the command input ( )r t  and to reject the external disturbances 1( )d t  and 

2( )d t  . The compensator G  in Fig. 7 is to be designed so that the variation of ( )y t  to the 
uncertainty in the plant P  is within allowable tolerances and the effects of the disturbances 

1( )d t  and 2( )d t  on ( )y t  are acceptably small. Also, the prefilter properties of ( )F s  must be 
designed to the desired tracking by the output ( )y t  of the input ( )r t  . Since the control 
system in Fig. 7 has two measurable quantities, ( )r t  and ( )y t  , it is referred to as a two 
degree-of-freedom (DOF) feedback structure. If the two disturbance inputs are measurable, 
then it represents a four DOF structure. The actual design is closely related to the extent of 
the uncertainty and to the narrowness of the performance tolerances. The uncertainty of the 
plant transfer function is denoted by the set 

   { } 1,2,...,tP where t J     (5) 

and is illustrated as follows. 

Given that the plant transfer function is 

 ( )
( )

KP s
s s a




  (6) 

where the value of K  is in the range [1, 10] and a  is in the range [-2, 2]. The design objective 
is to guarantee that ( ) ( ) / ( )RT s Y s R s  and ( ) ( ) / ( )DT s Y s D s  are members of the sets of 
acceptable R  and D  for changes of K  and a  . In a feedback control system, the principal 
challenge in the control system design is to relate the system performance specifications to 
the requirements on the loop transmission function ( ) ( ) ( )L s G s P s  in order to achieve the 
desired benefits of feedback, i.e., the desired reduction in sensitivity to plant uncertainty and 
desired disturbance attenuation. The advantage of the frequency domain is that 

( ) ( ) ( )L s G s P s  is simply the multiplication of complex numbers. In the frequency domain it 
is possible to evaluate ( )L j  at every i  separately, and thus, at each i  , the optimal 
bounds on ( )L j  can be determined. 

 
Fig. 7. A feedback structure 

4.3 QFT design procedure 

The objective is to design the prefilter ( )F s  and the compensator ( )G s  of Fig.7 so that the 
specified robust design is achieved for the given region of plant parameter uncertainty. The 
design procedure to accomplish this objective is as follows: 
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Step 1. Synthesize the desired tracking model. 
Step 2. Synthesize the desired disturbance model. 
Step 3. Specify the J  LTI plant models that define the boundary of the region of plant 

parameter uncertainty. 
Step 4. Obtain plant templates at specified frequencies that pictorially describe the region 

of plant parameter uncertainty on the Nichols chart. 
Step 5. Select the nominal plant transfer function ( )oP s . 
Step 6. Determine the stability contour ( U -contour) on the Nichols chart. 
Step 7-9. Determine the disturbance, tracking, and optimal bounds on the Nichols chart. 
Step 10. Synthesize the nominal loop transmission function ( ) ( ) ( )o oL s G s P s  that satisfies all 

the bounds and the stability contour. 
Step 11. Based upon Steps 1 through 10, synthesize the prefilter ( )F s . 
Step 12. Simulate the system in order to obtain the time response data for each of the J  

plants. 

The following sections will illustrate the design procedure step by step. 

4.4 Minimum-phase system performance specifications 

In order to apply the QFT technique, it is necessary to synthesize the desired model control 
ratio based upon the system's desired performance specifications in the time domain. For 
the minimum-phase LTI MISO system of Fig. 7, the control ratios for tracking and for 
disturbance rejection are, respectively, 

 1 2

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) with  ( ) ( ) 0
1 ( ) ( ) 1 ( )R

F s G s P s F s L sT s F s T s d t d t
G s P s L s

    
 

  (7) 

 1 2

( ) with  ( ) ( ) 0
1 ( ) ( ) 1D

P s PT r t d t
G s P s L

   
 

  (8) 

 2 1

1 1 with   ( ) ( ) 0
1 ( ) ( ) 1DT r t d t

G s P s L
   

 
  (9) 

4.4.1 Tracking models 

The QFT technique requires that the desired tracking control ratios be modeled in the 
frequency domain to satisfy the required gain mK  and the desired time domain performance 
specifications for a step input. Thus, the system's tracking performance specifications for a 
simple second-order system are based upon satisfying some or all of the step forcing 
function figures of merit (FOM) for under-damped ( , , , , )p p s r mM t t t K  and over-damped 
( , , )s r mt t K responses, respectively. These are graphically depicted in Fig. 8. The time 
responses ( )Uy t and ( )Ly t  in this figure represent the upper and lower bounds, respectively, 
of the tracking performance specifications; that is, an acceptable response ( )y t  must lie 
between these bounds. The Bode plots of the upper bound UB  and lower bound LB  for 

( )RLm T j vs.   are shown in Fig. 9.  
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It is desirable to synthesize the control ratios corresponding to the upper and lower bounds 
RUT and  RLT , respectively, so that ( )R ij  increases as i  increases above the 0-dB crossing 

frequency cf (see Fig. 9b) of RUT . This characteristic of ( )R ij  simplifies the process of 
synthesizing the loop transmission  ( ) ( ) ( )o oL s G s P s  as discussed in Sec. 4.13 of this chapter. 
To synthesize ( )oL s , it is necessary to determine the tracking bounds ( )R iB j  (see Sec. 4.9) 
which are obtained based upon ( )R ij  . This characteristic of ( )R ij   ensures that the 
tracking bounds ( )R iB j  decrease in magnitude as i  increases. 

 
Fig. 8. System time domain tracking performance specifications 

 

  
(a) Ideal simple second-order models (b) The augmented models 

Fig. 9. Bode plots of RT  

An approach to the modeling process is to start with a simple second-order model of the 
desired control ratio RUT  having the form 
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  (10) 

where 2
1 2n p p   and 4 / 4 /s s n Dt T     (the desired settling time). The control ratio 

( )RUT s  of Eq. (10) can be represented by an equivalent unity-feedback system so that 

 
( )( )( )

( ) 1 ( )
eq

R
eq

U
G sY sT s

R s G s
 


  (11) 

where  



 
Automatic Flight Control Systems – Latest Developments 

 

44

Step 1. Synthesize the desired tracking model. 
Step 2. Synthesize the desired disturbance model. 
Step 3. Specify the J  LTI plant models that define the boundary of the region of plant 

parameter uncertainty. 
Step 4. Obtain plant templates at specified frequencies that pictorially describe the region 

of plant parameter uncertainty on the Nichols chart. 
Step 5. Select the nominal plant transfer function ( )oP s . 
Step 6. Determine the stability contour ( U -contour) on the Nichols chart. 
Step 7-9. Determine the disturbance, tracking, and optimal bounds on the Nichols chart. 
Step 10. Synthesize the nominal loop transmission function ( ) ( ) ( )o oL s G s P s  that satisfies all 

the bounds and the stability contour. 
Step 11. Based upon Steps 1 through 10, synthesize the prefilter ( )F s . 
Step 12. Simulate the system in order to obtain the time response data for each of the J  

plants. 

The following sections will illustrate the design procedure step by step. 

4.4 Minimum-phase system performance specifications 

In order to apply the QFT technique, it is necessary to synthesize the desired model control 
ratio based upon the system's desired performance specifications in the time domain. For 
the minimum-phase LTI MISO system of Fig. 7, the control ratios for tracking and for 
disturbance rejection are, respectively, 

 1 2

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) with  ( ) ( ) 0
1 ( ) ( ) 1 ( )R

F s G s P s F s L sT s F s T s d t d t
G s P s L s

    
 

  (7) 

 1 2

( ) with  ( ) ( ) 0
1 ( ) ( ) 1D

P s PT r t d t
G s P s L

   
 

  (8) 

 2 1

1 1 with   ( ) ( ) 0
1 ( ) ( ) 1DT r t d t

G s P s L
   

 
  (9) 

4.4.1 Tracking models 

The QFT technique requires that the desired tracking control ratios be modeled in the 
frequency domain to satisfy the required gain mK  and the desired time domain performance 
specifications for a step input. Thus, the system's tracking performance specifications for a 
simple second-order system are based upon satisfying some or all of the step forcing 
function figures of merit (FOM) for under-damped ( , , , , )p p s r mM t t t K  and over-damped 
( , , )s r mt t K responses, respectively. These are graphically depicted in Fig. 8. The time 
responses ( )Uy t and ( )Ly t  in this figure represent the upper and lower bounds, respectively, 
of the tracking performance specifications; that is, an acceptable response ( )y t  must lie 
between these bounds. The Bode plots of the upper bound UB  and lower bound LB  for 

( )RLm T j vs.   are shown in Fig. 9.  

 
Quantitative Feedback Theory and Its Application in UAV’s Flight Control 

 

45 

It is desirable to synthesize the control ratios corresponding to the upper and lower bounds 
RUT and  RLT , respectively, so that ( )R ij  increases as i  increases above the 0-dB crossing 

frequency cf (see Fig. 9b) of RUT . This characteristic of ( )R ij  simplifies the process of 
synthesizing the loop transmission  ( ) ( ) ( )o oL s G s P s  as discussed in Sec. 4.13 of this chapter. 
To synthesize ( )oL s , it is necessary to determine the tracking bounds ( )R iB j  (see Sec. 4.9) 
which are obtained based upon ( )R ij  . This characteristic of ( )R ij   ensures that the 
tracking bounds ( )R iB j  decrease in magnitude as i  increases. 

 
Fig. 8. System time domain tracking performance specifications 

 

  
(a) Ideal simple second-order models (b) The augmented models 

Fig. 9. Bode plots of RT  

An approach to the modeling process is to start with a simple second-order model of the 
desired control ratio RUT  having the form 

 
2 2

2 2
1 2

( )
2 ( )( )

n n
R

n n
UT s

s s s p s p
 
 

 
   

  (10) 

where 2
1 2n p p   and 4 / 4 /s s n Dt T     (the desired settling time). The control ratio 

( )RUT s  of Eq. (10) can be represented by an equivalent unity-feedback system so that 

 
( )( )( )

( ) 1 ( )
eq

R
eq

U
G sY sT s

R s G s
 


  (11) 

where  



 
Automatic Flight Control Systems – Latest Developments 

 

46

 
2

( )
( 2 )

n
eq

n

G s
s s







  (12) 

The gain constant of this equivalent Type1 transfer function ( )eqG s  is 
1 0

lim[ ( )]eqs
K sG s


  

/ 2n  .  

The simplest over-damped model for ( )
RL

T s  is of the form 
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where  
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and 1 1 2 1 2/( )K       . Selection of the parameters 1 and 2  is used to meet the 
specifications for st and 1K .  

Once the ideal models ( )
RU

T j  and ( )
RL

T j  are determined, the time and frequency response 
plots of Figs. 8 and 9a, respectively, can then be drawn. The high-frequency range in Fig. 9a 
is defined as b  , where b  is the model BW frequency of UB . In order to achieve  
the desired characteristic of an increasing magnitude of R  of UB  for i cf  , an  
increasing spread between UB  and LB  is required in the high-frequency range (see Fig. 9b), 
that is, 

 hf U LB B     (14) 

must increase with increasing frequency. This desired increase in R  is achieved by 
changing UB  and LB by augmenting RUT with a zero [see Eq. (15)] as close to the origin as 
possible without significantly affecting the time response. This additional zero raises the 
curve UB  for the frequency range above cf . The spread can be further increased by 
augmenting 

RL
T  with a negative real pole [see Eq. (16)] which is as close to the origin as 

possible but far enough away not to significantly affect the time response. Note that the 
straight-line Bode plot is shown only for

RL
T . This additional pole lowers LB  for this 

frequency range. 
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      (15) 
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        (16) 

Thus, the magnitude of ( )R ij   increases as i , increases above cf . 
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In order to minimize the iteration process in achieving acceptable models for ( )
RU

T s  and 
( )

RL
T s  which have an increasing ( )R j  , the following procedure may expedite the design 
process: (a) first synthesize the second-order model of Eq. (15) containing the zero at 

1 nz a    that meets the desired FOM; and (b) then, as a first trial, select all three real 
poles of Eq. (16) to have the value of 3 3 12n Da a a       . For succeeding trials, if 
necessary, one or more of these poles are moved right and/or left until the desired 
specifications are satisfied. As illustrated by the slopes of the straight-line Bode plots in Fig. 
9b, selecting the value of all three poles in the range specified above insures an 
increasing R . Other possibilities are as follows: (c) the specified values of pt  and st  for 

RL
T may be such that a pair of complex poles and a real pole need to be chosen for the model 
response. For this situation, the real pole must be more dominant than the complex poles, 
(d) depending on the performance specifications, ( )

RU
T s  may require two real poles and a 

zero "close" to the origin, i.e., select 1z  very much less than 1p  and 2p  in order to 
effectively have an under-damped response. 

At high frequencies hf (see Fig. 9b) must be larger than the actual variation in the plant, P . 
For the case where ( )y t , corresponding to RUT , is to have an allowable “large” overshoot 
followed by a small tolerable undershoot, a dominant complex pole pair is not suitable for 

RUT . An acceptable overshoot with no undershoot for RUT  can be achieved by RUT  having 
two real dominant poles 1 2p p , a dominant real zero ( 1 1z p ) "close"' to 1p , and a far off 
pole 3 2p p . The closeness of the zero dictates the value of PM . Thus, a designer selects a 
pole-zero combination to yield the form of the desired time-domain response. 

4.4.2 Disturbance rejection models 

The simplest disturbance control ratio model specification is ( ) ( / ( ))D PT j Y j D j a    , a 
constant, [the desired maximum magnitude of the output based upon a unit-step 
disturbance input]; i.e., for 1 ( )d t : ( )p py t a , and for: 2 ( ) ( ) pd t y t a  for xt t . Thus, the 
frequency domain disturbance specification is ( )D pLm T j Lm a   over the desired specified 
BW (see Fig. 10).  

 

 
Fig. 10. Bode plots of disturbance models for ( )DT j  
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4.5 J LTI plant models 

The simple plant of Eq. (17) 
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  (17) 

where K {1,10} and a {1,10}, is used to illustrate the MISO QFT design procedure. The 
region of plant parameter uncertainty may be described by J LTI plants, where 1,2,...,i J  
which lie on its boundary.  

4.6 Plant templates of ( ), ( )t iP s P j  

With L GP , Eq. (7) yields 
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The change in RT  due to the uncertainty in P, since F is LTI, is 
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The proper design of oL L and F , must restrict this change in RT  so that the actual value of 
RLm T  always lies between UB and LB of Fig. 9b. The first step in synthesizing an oL is to make 

NC templates which characterize the variation of the plant uncertainty for various values 
of i , over a frequency range x i hR    , where x cf  . For the plant of Eq. (17) the 
values K = a = 1 represent the lowest point of each of the templates ( )iP j  and may be 
selected as the nominal plant oP  for all frequencies.  

4.7 Nominal plant 

While any plant case can be chosen, it is a common practice to select, whenever possible, a 
plant whose NC point is always at the lower left corner of the template for all frequencies 
for which the templates are obtained. 

4.8 U-contour (stability bound) 

The specifications on system performance in the time domain (see Fig. 8) and in the 
frequency domain (see Fig. 9) identify a minimum damping ratio  for the dominant roots 
of the closed-loop system which corresponds to a bound on the value of p mM M . On the 
NC this bound on p LM M  (see Fig. 11) establishes a region which must not be penetrated 
by the templates and the loop transmission functions ( )tL j  for all  . The boundary of this 
region is referred to as the stability bound, the U-contour, because this becomes the 
dominating constraint on ( )L j . Therefore, the top portion, indicated by the coordinates efa, 
of the LM  contour becomes part of the U-contour. The formation of the U -contour is 
discussed in this section. For the two cases of disturbance rejection depicted in Fig. 7 the 
control ratios are, respectively, as given in Eqs. (8) and (9). 
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Fig. 11. U-contour construction (stability contour) 

Thus, it is necessary to synthesize an ( )oL s so that the disturbances are properly attenuated. 
For the present, only one aspect of this disturbance-response problem is considered, namely 
a constraint is placed on the damping ratio  of the dominant complex-pole pair of DT  
nearest the  -axis. This damping ratio is related to the peak value of 
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Therefore, it is reasonable to add the requirement 
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where LM  is a constant for all  and over the whole range of   parameter values. This 
results in a constraint on   of the dominant complex-pole pair of DT . This constraint can 
therefore be transformed into a constraint on the maximum value maxT  of Eq. (20). This 
results in limiting the peak of the disturbance response. A value of LM can be selected to 
correspond to the maximum value of RT . Therefore, the top portion, efa as shown in Fig.11, 
of the M-contour on the NC, which corresponds to the value of the selected value of LM , 
becomes part of the U-contour. 

For a large class of problems, as  , the limiting value of the plant transfer function 
approaches 

'
lim[ ( )]

K
P j





  

where   represents the excess of poles over zeros of ( )P s .  
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4.5 J LTI plant models 

The simple plant of Eq. (17) 
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where K {1,10} and a {1,10}, is used to illustrate the MISO QFT design procedure. The 
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4.9 Tracking bounds ( )R iB j  

Consider the plot of ( )Lm P j vs. ( )P j for a plant shown in Fig. 12 (the solid curve). With 
( ) 1G s A   and ( ) 1F s   in Fig. 7, L P . The plot of ( )Lm L j  vs. ( )L j  is tangent to the  

M = 1dB curve with a resonant frequency 1.1m  . If 2mLm M  dB is specified for RLm T , 
the gain A is increased, raising ( )Lm L j , until it is tangent to the 2-dB M-curve. For this 
example the curve is raised by 4.5 ( 1.679)Lm A dB G A   and the resonant frequency is 

m = 2.09. 

Now consider that the plant uncertainty involves only the variation in gain A between the 
values of 1 and 1.679. It is desired to find a cascade compensator ( )G s , in Fig. 7, such that the 
specification 1 2mdB Lm M dB   is always maintained for this plant gain variation while the 
resonant frequency m  remains constant. This requires that the loop transmission 

( ) ( ) ( )L j G j P j   be synthesized so that it is tangent to an M-contour in the range of 
1 2dB Lm M dB   for the entire range of 1 <A <1.679 and the resultant resonant frequency 
satisfies the requirement 2.09m m    .  

 
Fig. 12. Log magnitude-angle diagram 

It is assumed for Eq. (19) that the compensators F and G are fixed (LTI), that is, they have 
negligible uncertainty. Thus, only the uncertainty in P contributes to the change in RT given 
by Eq. (19). The solution requires that the actual ( ) ( )R i R iLmT j j    dB in Fig. 9b. Thus, it 
is necessary to determine the resulting constraint, or bound ( )R iB j , on ( )iL j . The procedure 
is to select a nominal plant ( )oP s  and to derive the bounds on the resulting nominal loop 
transfer function ( ) ( ) ( )o oL s G s P s . 

As an illustration, consider the plot of ( 2) . ( 2)Lm P j vs P j for the plant of Eq. (17). As shown in 
Fig. 13, the plant's region of uncertainty ( 2)P j  is given by the contour ABCD, i.e., 

( 2)Lm P j lies on or within the boundary of this contour. The nominal plant transfer function, 
with 1oK   and 1oa  , is 
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 1( )
( 1)oP s

s s



  (22) 

and is represented in Fig. 13 by point A for  = 2 [-13.0 dB, -153.4°}. Note, once a nominal 
plant is chosen, it must be used for determining all the bounds ( )R iB j . 

 
Fig. 13. Derivation of bounds ( )R iB j  on ( )oL j for = 2 

4.10 Disturbance bounds ( )D iB j : CASE 1 

Two disturbance inputs are shown in Fig. 7. It is assumed that only one disturbance input 
exists at a time. Both cases are analyzed. 

CASE 1 [ 2 0 1 1( ) ( ), ( ) 0d t D u t d t  ] 

CONTROL RATIO. From Fig. 7 , the disturbance control ratio for input 2 ( )d t  is 

 1
( )

1DT s
L




  (23) 

Substituting 1 /L    into Eq. (23) yields 

 ( )
1DT s 




  (24) 

this equation has the mathematical format required to use the NC. Over the specified BW it 
is desired that ( ) 1DT j  , which results in the requirement, from Eq.(24), that ( ) 1L j  , i.e., 
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1
( ) ( )

( )
D

T j j
L j

 


    

DISTURBANCE RESPONSE CHARACTERISTIC. A time-domain tracking response 
characteristic based upon 1( ) ( )r t u t often specifies a maximum allowable peak 
overshoot pM . In the frequency domain this specification may be approximated by 
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( ) ( )
( )R R m P

Y j
M j T j M M

R j


 


      (25) 

The corresponding time- and frequency-domain response characteristics, based upon the 
step disturbance forcing function 2 1( ) ( )d t u t


 , are, respectively, 
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and 
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4.11 Disturbance bounds ( )D iB j : CASE 2 

CASE 2 [ 1 0 1 2( ) ( ), ( ) 0d t D u t d t  ] 

CONTROL RATIO. From Fig. 7, the disturbance control ratio for the input 1 ( )d t  is 

 ( )
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1 ( ) ( )D

P j
T j

G j P j



 




  (28) 

Assuming point A of the template represents the nominal plant oP . Eq. (28) is multiplied by 
/o oP P  and rearranged as follows: 
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  (29) 

where  

 ( / )o oW P P L    (30) 

Thus Eq.(29) with D DLm T   yields 

 o DLm W Lm P     (31) 
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DISTURBANCE RESPONSE CHARACTERISTICS. Based on Eq. (25), the time and 
frequency-domain response characteristics, for a unit-step disturbance forcing function, are 
given, respectively, by 

 
( )

( ) ( )
( )

p

D p p

y t
M t y t

d t
     (32) 

and  

 ( )
( ) ( )

( )D D m p

Y j
M j T j

D j


   


      (33) 

where pt  is the peak time. 

4.12 The composite boundary ( )o iB j  

The composite bound ( )o iB j  that is used to synthesize the desired loop transmission 
transfer function ( )oL s is obtained in the manner shown in Fig. 14. The composite 
bound ( )o iB j , for each value of i , is composed of those portions of each respective bound 

( )R iB j  and ( )D iB j  that are the most restrictive. For the case shown in Fig. 14a the bound 
( )o iB j  is composed of those portions of each respective bound ( )R iB j and ( )D iB j  that have 

the largest values. For the situation of Fig. 14b, the outermost of the two boundaries ( )R iB j  
and ( )D iB j becomes the perimeter of ( )o iB j . The situations of Fig. 14 occur when the two 
bounds have one or more intersections. If there are no intersections, then the bound with the 
largest value or with the outermost boundary dominates. The synthesized ( )o iL j , for the 
situation of Fig. 14a, must be on or just above the bound ( )o iB j . For the situation of Fig. 14b 
the synthesized ( )o iL j must not lie in the interior of the ( )o iB j  contour. 

  
Fig. 14. Composite ( )o iB j  

4.13 Shaping of ( )o iL j  

A realistic definition of optimum in an LTI system is the minimization of the high-frequency 
loop gain K while satisfying the performance bounds. This gain affects the high-frequency 
response since lim[ ( )] ( )L j K j 


  


 where   is the excess of poles over zeros assigned 
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A realistic definition of optimum in an LTI system is the minimization of the high-frequency 
loop gain K while satisfying the performance bounds. This gain affects the high-frequency 
response since lim[ ( )] ( )L j K j 
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to ( )L j . Thus, only the gain K has a significant effect on the high-frequency response, and 
the effect of the other parameter uncertainty is negligible. Also, the importance of 
minimizing the high-frequency loop gain is to minimize the effect of sensor noise whose 
spectrum, in general, lies in the high-frequency range.  

For the plant of Eq. (17), the shaping of ( )oL j  is shown by the dashed curve in Fig. 15. A 
point such as ( 2)oLm L j  must be on or above the curve labeled ( 2)oB j . Further, in order to 
satisfy the specifications, ( )oL j cannot violate the U-contour. In this example a reasonable 

( )oL j closely follows the U-contour up to 40  rad/sec and stays below it above 40   
as shown in Fig 15. Additional specifications are  = 4, i.e., there are 4 poles in excess of 
zeros, and that it also must be Type 1 (one pole at the origin).A representative procedure for 
choosing a rational function ( )oL s which satisfies the above specifications is now described. 
It involves building up the function 

  
0

( ) ( ) ( ) [ ( )]
w

o ok o k k
k

L j L j P j K G j   


     (34) 

where for k = 0, 1 0oG     , and
0

w

k
k

K K


   

In order to minimize the order of the compensator, a good starting point for "building up" 
the loop transmission function is to initially assume that 0 ( )oL j = ( )oP j  as indicated in Eq. 
(34). ( )oL j is built up term-by-term in order to stay just outside the U-contour in the NC of 
Fig. 15. The first step is to find the ( )o iB j which dominates ( )oL j .  

 
Fig. 15. Shaping of ( )oL j  on the Nichols chart for the plant of Eq. (17) 
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4.14 Design of the prefilter ( )F s  

Design of a proper ( )oL s guarantees only that the variation in ( )RT j , i.e., RT , is less than or 
equal to that allowed. The purpose of the prefilter is to position ( )Lm T j within the 
frequency domain specifications. For the example of this chapter the magnitude of the 
frequency response must be within the bounds UB and LB shown in Fig. 9b, which are 
redrawn in Fig. 16. A method for determining the bounds on ( )F s  is as follows: Place the 
nominal point A of the i  plant template on the ( )o iL j  point of the ( )oL j  curve on the NC 
(see Fig. 17). Traversing the template, determine the maximum maxLm T  and 
minimum minLm T , values of 

 ( )
( )

1 ( )
i

i

i

L j
Lm T j

L j








  (35) 

obtained from the M-contours. These values are plotted as shown in Fig. 16. The tracking 
control ratio is /[1 ]RT FL L  and 

 ( ) ( ) ( )R i i iLm T j Lm F j Lm T j      (36) 

The variations in Eqs. (35) and (36) are both due to the variation in P; thus 

 max min( )L i R U Lj Lm T Lm T B B         (37) 

 
Fig. 16. Requirements on ( )F s  

  
Fig. 17. Prefilter determination 
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If values of ( )oL j , for each value i , lie exactly on the tracking bounds ( )R iB j , then L R  . 
Therefore, based upon Eq. (36), it is necessary to determine the range in dB by which 

( )iLm T j  must be raised or lowered to fit within the bounds of the specifications by use of 
the prefilter ( )iF j . The process is repeated for each frequency corresponding to the 
templates used in the design of ( )oL j . Therefore, in Fig. 18 the difference between the 

maxRU
Lm T Lm T and the minRL

Lm T Lm T  curves yields the requirement for ( )Lm F j , i.e., from 
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Fig. 18. Frequency bounds on the prefilter ( )F s  

The procedure for designing ( )F s  is summarized as follows: 

1. Use templates in conjunction with the ( )oL j  plot on the NC to determine maxT  and minT  
for each i . This is done by placing ( )iP j  with its nominal point on the 
point ( )oLm L j . Then use the M-contours to determine max ( )iT j  and min ( )iT j  (see Fig. 
17). 

2. Obtain the values of RULm T and RLLm T  for various values of a, from Fig. 9b. 

3. From the values obtained in steps 1 and 2, plot maxRU
Lm T Lm T    and minRL

Lm T Lm T    
vs.   as shown in Fig. 18. 

4. Use straight-line approximations to synthesize an ( )F s so that ( )iLm F j lies within the 
plots of step 3. For step forcing functions the resulting ( )F s must satisfy 
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4.15 Basic design procedure for a MISO system 

The basic concepts of the QFT technique are explained by means of a design example. The 
system configuration shown in Fig. 7 contains three inputs. The first objectives are to track a 
step input 1( ) ( )r t u t with no steady-state error and to satisfy the performance 
specifications of Fig. 8. An additional objective is to attenuate the system response caused by 

 
Quantitative Feedback Theory and Its Application in UAV’s Flight Control 

 

57 

external step disturbance inputs 1( )d t and 2( )d t . An outline of the basic design procedure for 
the QFT technique, as applied to a minimum-phase plant, is as follows: 

1. Synthesize the tracking model control ratio ( )RT s in the way described in Sec. 4.4, based 
upon the desired tracking specifications (see Figs. 8 and 9b). 

2. Synthesize the disturbance-rejection model control ratios ( )DT s  in the manner described 
in Sec. 4.10 based upon the disturbance-rejection specifications. 

3. Obtain templates of ( )iP j  that pictorially describe the plant uncertainty on the Nichols 
chart for the desired pass-band frequency range. 

4. Select a nominal plant from the set of Eq. (5) and denote it as ( )oP s . 
5. Determine the U-contour based upon the specified values of ( )R ij   for tracking, LM for 

disturbance rejection, and V for the universal high frequency boundary (UHFB) in 
conjunction with steps 6 through 8. 

6. Use the data of steps 2 and 3 and the values of ( )D ij   (see Fig. 10) to determine the 
disturbance bound ( )D iB j  on the loop transmission ( ) ( ) ( )D i i o iL j G j P j   . For minimum-
phase systems this requires that the synthesized loop transmission ( )D iLm L j  must be 
on or above the curve for ( )D iLm B j  on the Nichols diagram (see Fig. 15 
assuming D oB B ). 

7. Determine the tracking bound ( )R iB j  on the nominal transmission 
( ) ( ) ( )o i i o iL j G j P j   , using the tracking model (step 1), the templates ( )iP j  (step 3), the 

values of ( )R ij   (see Fig. 9b), and LM [see Eq.(21)]. For minimum-phase systems this 
requires that the synthesized loop transmission satisfy the requirement that ( )o iLm L j  
is on or above the curve for ( )R iLm B j  on the Nichols diagram. 

8. Plot curves of ( )R iLm B j  versus ( )R R iB j   and ( )D iLm B j  versus ( )d D iB j    on the 
same NC. For a given value of i at various values of the angle , select the value of 

( )D iLm B j  or ( )R iLm B j , whichever is the largest value (termed the "worst" or "most 
severe" boundary). Draw a curve through these points. The resulting plot defines the 
overall boundary ( ) .o iLm B j vs  . Repeat this procedure for sufficient values of i . 

9. Design ( )o iL j to be as close as possible to the boundary value ( )o iB j  by selecting an 
appropriate compensator transfer function ( )G j . Synthesize an ( ) ( ) ( )o oL j G j P j    
using the ( )o iLm B j  boundaries and U-contour so that ( )o iLm L j  is on or above the 
curve for ( )o iLm B j  on the Nichols diagram.  

10. Based upon the information available from steps 1 and 9, synthesize an ( )F s  those 
results in a RLm T [Eq. (7)] vs.  that lies between UB and LB of Fig. 9b. 

11. Obtain the time-response data for ( )y t : (a) with 1( ) ( )d t u t and ( ) 0r t   and (b) with 
1( ) ( )r t u t  and ( ) 0d t   for sufficient points around the parameter space describing the 

plant uncertainty. 

5. Robust QFT flight control design for a certain UAV 
5.1 Introduction 

Unmanned Aerial Vehicles (hereafter referred as UAVs) play a very important role in 
modern war. Whereas flight stability of UAVs is easily affected by airflow, model 
perturbation and other uncertainty. To enhance flight stability and robustness of UAVs, 
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If values of ( )oL j , for each value i , lie exactly on the tracking bounds ( )R iB j , then L R  . 
Therefore, based upon Eq. (36), it is necessary to determine the range in dB by which 
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external step disturbance inputs 1( )d t and 2( )d t . An outline of the basic design procedure for 
the QFT technique, as applied to a minimum-phase plant, is as follows: 

1. Synthesize the tracking model control ratio ( )RT s in the way described in Sec. 4.4, based 
upon the desired tracking specifications (see Figs. 8 and 9b). 

2. Synthesize the disturbance-rejection model control ratios ( )DT s  in the manner described 
in Sec. 4.10 based upon the disturbance-rejection specifications. 

3. Obtain templates of ( )iP j  that pictorially describe the plant uncertainty on the Nichols 
chart for the desired pass-band frequency range. 

4. Select a nominal plant from the set of Eq. (5) and denote it as ( )oP s . 
5. Determine the U-contour based upon the specified values of ( )R ij   for tracking, LM for 

disturbance rejection, and V for the universal high frequency boundary (UHFB) in 
conjunction with steps 6 through 8. 

6. Use the data of steps 2 and 3 and the values of ( )D ij   (see Fig. 10) to determine the 
disturbance bound ( )D iB j  on the loop transmission ( ) ( ) ( )D i i o iL j G j P j   . For minimum-
phase systems this requires that the synthesized loop transmission ( )D iLm L j  must be 
on or above the curve for ( )D iLm B j  on the Nichols diagram (see Fig. 15 
assuming D oB B ). 

7. Determine the tracking bound ( )R iB j  on the nominal transmission 
( ) ( ) ( )o i i o iL j G j P j   , using the tracking model (step 1), the templates ( )iP j  (step 3), the 

values of ( )R ij   (see Fig. 9b), and LM [see Eq.(21)]. For minimum-phase systems this 
requires that the synthesized loop transmission satisfy the requirement that ( )o iLm L j  
is on or above the curve for ( )R iLm B j  on the Nichols diagram. 

8. Plot curves of ( )R iLm B j  versus ( )R R iB j   and ( )D iLm B j  versus ( )d D iB j    on the 
same NC. For a given value of i at various values of the angle , select the value of 

( )D iLm B j  or ( )R iLm B j , whichever is the largest value (termed the "worst" or "most 
severe" boundary). Draw a curve through these points. The resulting plot defines the 
overall boundary ( ) .o iLm B j vs  . Repeat this procedure for sufficient values of i . 

9. Design ( )o iL j to be as close as possible to the boundary value ( )o iB j  by selecting an 
appropriate compensator transfer function ( )G j . Synthesize an ( ) ( ) ( )o oL j G j P j    
using the ( )o iLm B j  boundaries and U-contour so that ( )o iLm L j  is on or above the 
curve for ( )o iLm B j  on the Nichols diagram.  

10. Based upon the information available from steps 1 and 9, synthesize an ( )F s  those 
results in a RLm T [Eq. (7)] vs.  that lies between UB and LB of Fig. 9b. 

11. Obtain the time-response data for ( )y t : (a) with 1( ) ( )d t u t and ( ) 0r t   and (b) with 
1( ) ( )r t u t  and ( ) 0d t   for sufficient points around the parameter space describing the 

plant uncertainty. 

5. Robust QFT flight control design for a certain UAV 
5.1 Introduction 

Unmanned Aerial Vehicles (hereafter referred as UAVs) play a very important role in 
modern war. Whereas flight stability of UAVs is easily affected by airflow, model 
perturbation and other uncertainty. To enhance flight stability and robustness of UAVs, 



 
Automatic Flight Control Systems – Latest Developments 

 

58

H control, QFT technique, linear quadratic Gaussian (LQG) have been applied to UAVs’ 
flight control system at present. Comparatively, QFT can take uncertainty’s scopes and 
performance requirements into account, analyze and design robust controller on Nichols 
chart quantitatively in order to make the open-loop frequency curve comply with boundary 
conditions and have robust stability and performance robustness.  

QFT has been widely used in aerospace field and is mature for robust controller design  
of LTI/SISO system. But QFT design for MIMO system still faces many difficulties. In view 
of the characteristics of a certain small UAV which used in tracking and surveillance, a 
novel QFT controller design method for the UAV’s lateral motion is introduced in this 
section. 

5.2 QFT design for MIMO systems 

5.2.1 Overview 

The QFT design for MIMO systems is based upon the mathematical means which results in 
the representation of a MIMO control system by 2m MISO equivalent control systems. The 
highly structured uncertain LTT MIMO plant has the following features: 

1. The synthesis problem is converted into a number of single-loop problems, in which 
structured parameter uncertainty, external disturbance, and performance tolerances are 
derived from the original MIMO problem. The solutions to these single-loop problems 
are guaranteed to work for the MIMO plant. It is not necessary to consider the system 
characteristic equation.  

2. The design is tuned to the extent of the uncertainty and the performance tolerances. The 
design for a MIMO system, as stated previously, involves the design of an equivalent 
set of MISO system feedback loops. 

The design process for these individual loops is the same as the design of a MISO system 
described in previous sections. 

Pure mathematical transformation method used in QFT design for MIMO systems tends to 
cause a larger super-margin design and is very complicated when system is of higher order. 
Comparatively, Basically Non-interacting (hereafter referred as BNIA) is commonly used in 
practical applications. Note that principle of BNIA, which will be negligible here, can be 
found in references of this chapter. 

5.2.2 Non-interacting (BNIA) loops 

A BNIA loop is one in which the output ( )Ky s due to the input ( )jr s is ideally zero. Plant 
uncertainty and loop interaction (cross-coupling) makes the ideal response unachievable. 
Thus, the system performance specifications describe a range of acceptable responses for the 
commanded output and a maximum tolerable response for the uncommanded outputs. The 
uncommanded outputs are treated as cross-coupling effects. 

For an LTI plant having no parameter uncertainty, it is possible to essentially achieve zero 
cross-coupling effects, i.e., the output 0Ky  . This desired result can be achieved by post 
multiplying P by a matrix W  to yield: 
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[ ] 0n ijn ijnP PW p where p for i j     

resulting in a diagonal nP  matrix for P representing the nominal plant case in the set . 
With plant uncertainty the off-diagonal terms of nP  will not be zero but "very small" in 
comparison to P, for the nonnominal plant cases in . In some design problems it may be 
necessary or desired to determine a nP upon which the QFT design is accomplished. Doing 
this minimizes the effort required to achieve the desired BW and minimizes the cross-
coupling effects.  

5.3 QFT design and simulation for a certain UAV’s lateral motion 

QFT approach for MIMO system will be applied to a certain UAV’s lateral motion in this 
section.  

5.3.1 Mathematical model of the UAV 

State equation of the UAV is generally expressed as: 

 
 
( ) ( ) ( )

( )
x t Ax t Bu t
y t Cx t
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where  T

a rX p     ;  T

rc acu   ;  T

Y p   ;   is sideslip angle, p is roll 
angle rate,  is yaw angle rate,  is roll angle, 

a
 is aileron deflection angle, 

rc
 is rudder 

deflection angle, 
ac

 is rudder deflection angle command input, , ,A B C are system matrix, 
input matrix and input-output matrix respectively. By way of wind tunnel test and 
mathematic method, matrices A, B and C in eqs.(40) for the small UAV can be derived. 

5.3.2 System decomposition 

The UAV’s lateral state equation described in Eq.(40) has two inputs and four outputs. 
According to QFT approach for MIMO system, we decompose Eq.(40) into two MISO 
subsystems using BNIA, one is yaw loop (loop I) subsystem, the other is roll loop (loop II) 
subsystem. QFT control structures of both loops are given in Fig.19 and Fig.20. 

 
Fig. 19. QFT control structure of loop I 

 
Fig. 20. QFT control structure of loop II 
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where ,
c c   are sideslip angle input and roll angle input respectively; 1 2,g g are QFT 

controllers; 11 22,f f  are QFT prefilters; 11 22,c c  are disturbance inputs; 11 22,q q is controlled 
plants. 

Decomposed state equation has relationship with that of the original system as follows:  

1 0 0 0
, ,

0 0 0 1c c c CA A B B C
 

    
 

 

Transfer function matrices P  of decomposed plant can be easily derived as  

11 121

21 22

( )c c c

p p
P C sI A B p p

  
 
  

     

where 11p is the transfer function from rc to  ; 22p represents the transfer function from ac to 
 ; 12p is the transfer function from rc to  , 21p represents the transfer function from ac to  .  

Next, we adopt 5 flight states to develop the QFT controllers of both loops. 

5.3.3 QFT design for loop I  

For loop I, we ensure 
1
( )sg  and

11
( )sf  meet requirements of robust stability when 

c
 acts as 

command input and 
11

c  as disturbance input. Besides, both subsystems should own ideal 
tracking performance and preferable noise restraint capability. 

1. Selection of Performance Indices. Tracking performances indices of sideslip angle are 
overshoot % 2%  , settling time 6%

s
t  . Given the original model of upper tracking 

boundary is 
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  (41) 

According to %  and st , damping ratio   and natural oscillation frequency n  is adopted 
as 0.78 and 0.8978. Add a zero (z=-1) as close to the origin as possible without significantly 
affecting the time response(see Sec.4.4.1). This additional zero raises tracking boundary 
curve above cf , the final transfer function of tracking curve’s upper boundary is 

 
2

0.806( 1)( )
1.4 0.806RU

sT j
s s

 


 
 (42) 

the lower boundary original model of tracking curve as 

 0.9( )
0.9RLT j

s
 


  (43) 

Adding two poles (p1=-1, p2=-4), which locate in left half s-plane to ensure stability of 
RL

T and are as close to the origin as possible but far enough away not to significantly affect 
the time response (see Sec.4.4.1), to eq. (43) to make lower tracking boundary separate from 
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upper tracking boundary when upper tracking boundary cross over 0 dB line, then the final 
lower boundary transfer function is 

 
  
3.6( )

( 0.9) 1 4RLT j
s s s

 
  

  (44) 

Stability performance index and robust performance index are respectively 
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Corresponding minimum amplitude margin and phase margin are respectively 

11 1.9091=5.5155dBm uK   ╱  

and 

1 2180 , cos (0.5 / 1) 54.062m            

2. Plant Template and Border Calculation for Loop I. According to the requirements of 
performance index, generate the tracking response boundary, robust stability boundary 
and inference rejection boundary in Nichols chart.  

3. Controller and Prefilter Design for Loop I. In Fig. 21(a), the open-loop frequency 
characteristics curve (noted by black solid line) of the nominal plant (corresponding to 
G(s) =1) and the compound boundary (the region embraced by green and red solid line) 
are drawn up in Nichols chart. Apparently, the open-loop frequency curve locates 
under tracking performance boundary curve, open-loop frequency characteristics curve 
cross over the instability boundary (red solid ring line in Fig. 21(a)) which make the 
MISO system of loop I instable or unsatisfactory for corresponding performance 
requirements. So, it is necessary to enlarge the controller gain and introduce into 
dynamic compensation element to shape the open loop frequency characteristic curve 
to ensure shaped open-loop frequency characteristic meet the requirtments of stability 
and dynamic performance indics. Using MATLAB QFT toolbox, we get 
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The open-loop frequency characteristics curve with G(s) is shown in Fig.21 (b). Clearly, the 
shaped curve does not cross over the instability region (red solid ring line),i.e. the shaped 
system is stable. Besides, the characteristic of tracking boundary is met. 
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upper tracking boundary when upper tracking boundary cross over 0 dB line, then the final 
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The open-loop frequency characteristics curve with G(s) is shown in Fig.21 (b). Clearly, the 
shaped curve does not cross over the instability region (red solid ring line),i.e. the shaped 
system is stable. Besides, the characteristic of tracking boundary is met. 
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(a) Open-loop frequency response when G(s) =1 (b) Open-loop frequency response with 
controller 

Fig. 21. Open loop frequency characteristics in Nichols Chart 

4. Verification and Simulation for Loop I. Closed-loop system stability margin analysis 
curve, inference rejection boundary analysis curves and tracking boundary analysis 
curves in loop I are given in Fig.22 ,Fig.23 and Fig.24. Clearly, the stability margin 
curve, inference rejection boundary curve and tracking boundary curve are all under 
the stability performance index curve, the performance index curve and between the 
upper and lower boundaries of tracking curves. Obviously, Closed-loop control system 
satisfies the performance requirements in loop I.  
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Fig. 22. Stability margin  
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Fig. 23. Disturbance rejection boundary 
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Fig. 24. Tracking boundary 

The time-domain simulation results of closed-loop system under 5 design envelopes are shown 
in Fig.25 and Fig.26. The unit step-response of sideslip angle lies between the upper and lower 
boundary response curve; the unit step-response of disturbance input are located under the 
given boundary. Apparently, the closed-loop system satisfies the requirements of robust 
stability and tracking boundary requirements, and owns strong disturbance rejection capability. 
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Fig. 25. The unit step response of   
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Fig. 26. The unit step response of   with disturbance 

5.3.4 QFT design for loop II 

QFT design for loop II is similar to that for loop I.  

1. Selection of Performance Indices. Tracking performance indices of roll angle is 
overshoot % 5%   and settling time 12s st  , the upper and lower boundary tracking 
curve are respectively 
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Stability performance index and robust performance index are defined as  
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Minimum amplitude margin and phase margin are 5.5155B  and 54.062  respectively.  

2. Controller and Prefilter Design for Loop II.  

Similar to loop I, using MATLAB QFT toolbox, we can get  
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3. Verification and Simulation for loop II. Closed-loop system satisfies requirements of 
robust stability and tracking boundary requirements and owns strong disturbance 
rejection capability.  

5.3.5 Performance analysis of QFT controller for the UAV’s lateral motion 

QFT control structure for the UAV’s lateral motion is shown in Fig.27 .Given c  and c  are 
0, the initial value of   is 5 , the initial sideslip angle   is 1 , substitute the UAV’s lateral 
state equation, 

1 11 2 22
( ), ( ), ( ), ( )g s f s g s f s , models of rudder and ailerons into Fig.27. The simulation 

results are shown in Fig.28 and Fig.29. The overshoot of  is about 0.064   and settling time is 
about 1 second. The settling time of yaw angle rate, roll angle rate and roll angle are all 
about 0.1 second. Besides, the initial value of sideslip angle almost have no influence in roll 
angle response, the settling time of yaw angle rate, roll angle rate is no more than 1 second. 
Clearly, QFT controller for the UAV’s lateral motion satisfies the requirements of 
performance indices, own better flight stability and robustness. 

 
Fig. 27. QFT control structure for the UAV’s lateral motion 
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(c) Yaw angle rate  (d) Roll angle rate 

Fig. 28. Responses of sideslip angle, roll angle, yaw angle rate and roll angle rate when 
0 5    
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(c) Yaw angle rate  (d) Roll angle rate 

Fig. 29. Responses of sideslip angle, roll angle, yaw angle rate and roll angle rate when 
0 1    

6. Summary 
This chapter is devoted to presenting an overview and in-depth expression of QFT in order 
to enhance the understanding and appreciation of the power of the QFT technique. Then, A 
QFT design of robust controller for a certain UAV’s lateral motion, which is a MIMO system, 
is proposed base on BNIA principle in order to show how to apply QFT in flight control 
system of UAVs. Meantime, the simulation results show that the QFT controller own better 
robust stability and superior dynamic characteristics which verify the validity of presented 
method. 

7. Symbols & terminology 

RT  Acceptable command or tracking input-output responses 

R  A set of RT  

DT  Acceptable disturbance input-output responses 

D  A set of DT  
P  MISO plant with uncertainty 
  A set of P  
MIMO Multiple-input multiple-output; more than one tracking and/or external disturbance 
inputs and more than one output 
MISO Multiple-input single-output; a system having one tracking input, one or more 
external disturbance inputs, and a single output 

( ), ( ), ( )
D i K i O i

B jw B jw B jw  The disturbance, tracking, and optimal bounds on ( )
i

L j  for the MISO 
system 

h  The frequency bandwidth 
( )

P
j   The magnitude variation due to the plant parameter uncertainty 
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Lm  Log magnitude 
LTI Linear-time-invariant 
FOM figure of merit 

b  The symbol for bandwidth frequency of the models  

m  The resonant frequency 

, i 
 

 Phase margin frequency for a MISO system and for the thi  loop of a MIMO system, 
respectively 

s  Sampling frequency 
, { }

i
R R r  The tracking input for a MISO system and the tracking input vector for a MIMO 
system, respectively 

U RU
B Lm T  The Lm of the desired tracking control ratio for the upper bound of the MISO 

system 
L RL

B Lm T  The Lm of the desired tracking control ratio for the lower bound of the MISO 

system 
sB  Stability bounds for the discrete design 
( )D ij   The (upper) value of ( )D iLm T j  for MISO system 
( )hf ij   The dB difference between the augmented bounds of UB  and LB  in the high 

frequency range for a MISO system 
( )R ij   The dB difference between UB  and LB  for a given frequency , for a MISO system 

, { }ijF F f  The prefilter for a MISO system and the mxm prefilter matrix for a MIMO system 

respectively 
, { }ijG G f  The compensator or controller for a MISO system and the mxm compensator or 

controller matrix for a MIMO system, respectively. For a diagonal matrix { }ijG f  

, i   The phase margin angle for the MISO system and for the thi  loop of the MIMO system, 
respectively 
J The number of plant transfer functions for a MISO system or plant matrix for a MIMO 
system that describes the region of plant parameter uncertainty where i = 1, 2.....J denotes 
the particular plant case in the region of plant parameter uncertainty 
  The excess of poles over zeros of a transfer function 

,o oiL L  The optimal loop transmission function for the MISO system and the thi  loop of the 

MIMO system, respectively 
,L LiM M  The specified closed-loop frequency domain overshoots constraint for the MISO 

system and for the thi  loop of a MIMO system, respectively. This overshoot constraint may 
be dictated by the phase margin angle for the specified loop transmission function 

( )iP j  Script cap tee in conjunction with P denotes a template, i.e., ( )iP j  and ( )iQ j  
frequency, for a MISO and MIMO plants respectively 

RU
T  The desired MISO tracking control ratio that satisfies the specified upper bound  

FOM 
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RL
T  The desired MISO tracking control ratio that satisfies the specified lower bound  
FOM 

D
T  The desired MISO disturbance control ratio which satisfies the specified FOM 
UAV Unmanned Aerial Vehicle 
BNIA Basically Non-interacting 
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1. Introduction  
The present chapter is concerned with presenting an approach for the synthesis of a gain-
scheduled flight control law that assures compliance to trajectory tracking requirements. 
More precisely, a strategy is proposed for improving the tracking performances of a baseline 
controller, obtained by conventional synthesis techniques, by tuning its gains. The approach 
is specifically designed for atmospheric re-entry applications, in which gain scheduled flight 
control laws are typically used.  

Gain-scheduling design approaches conventionally construct a nonlinear controller by 
combining the members of an appropriate family of linear time-invariant (LTI) controllers 
(Leith & Leithead, 2000). The time-invariant feedback laws usually share the same structure, 
and differ only for the values of some tunable parameters, most notably the controller’s 
gains. These gains are generally determined taking advantage of well-assessed LTI-based 
design techniques, such as pole placement and gain/phase margin methods. However, once 
a set of LTI feedback laws is specified, the nonlinear controller must be synthesized, which 
requires an additional design step. This step is of considerable importance since the choice 
of nonlinear controller realization can greatly influence the closed loop performance (Leith 
& Leithead, 2000). Furthermore, actual mission requirements constraint quantitatively the 
time response of the augmented system (Crespo et al., 2010), e.g. by imposing tracking 
requirements of a reference trajectory or requiring relevant output variables to be enclosed 
within a limited flight envelope. As such, the final gain-scheduled controller’s performances 
are ascertained by means of numerical simulation based methods, most notably Monte 
Carlo, which can highlight limitations that were not apparent in the LTI design phase. As a 
result, in these cases one is forced to iterate the LTI design, but using analysis results that 
refer to the nonlinear controller rather than to the LTI ones, further complicating the design 
improvement task. 

Several methods have been proposed in the open literature both for taking into account 
explicitly the complex dependency of the final controller response from its gains and for 
dealing with quantitative performance requirements, such as tracking errors. Most, if not all, 
proposed approaches formulate the design task as an optimization problem, in which the 
merit function evaluation requires numerical simulation of the augmented system’s time-
response. For instance, (Crespo et al., 2008) develops optimization-based strategies for 
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control analysis and tuning at the control verification stage, which build upon numerical 
evaluation of controller’s performance metrics that require simulation of the augmented 
model. Other authors (dos Santos Coelho, 2009) suggest using chaotic optimization 
algorithms for enhancing the computational efficiency of the numerical optimization 
problem. In (Wang & Stengel, 2002), a robust control law is synthesized using probabilistic 
robustness techniques, by minimizing a cost that is a function of the probabilities that design 
criteria will not be satisfied. Monte Carlo simulation is used to estimate the likelihood of 
system instability and violation of performance requirements subject to variations of the 
probabilistic system parameters. Stochastic parameter tuning is also proposed in (Miyazawa 
& Motoda, 2001), which is a form of optimization by which the probability of the total 
mission achievement is maximized w.r.t the flight control system’s tunable parameters. 
Mission achievement probability is estimated by applying the Monte Carlo method also in 
this case.  

In this chapter, we propose a methodology for determining all combinations, within a given 
domain, of the flight control law tunable gains that comply with quantitative requirements 
expressed in the time domain, and is applicable to nonlinear control laws such as gain-
scheduled flight control ones. This approach aims at providing quantitative indications on 
the Flight Control Law (FCL) time-domain performance, taking explicitly into account the 
complex dependency given by the scheduling of the LTI control laws. As such, it is intended 
to complement the conventional LTI-based controller synthesis approaches, such as 
pole/placement and frequency domain methods, which are thus still in charge of 
addressing the system’s stability and robustness.  

The approach is based on a technique developed by the authors for tackling a different 
problem, namely the robustness analysis of a given flight control law (Tancredi et al., 2009). 
It builds upon a Practical Stability criterion, in which the allowable trajectories dispersion 
can be specified in the time-domain, in an extremely appealing manner to enforce practical 
engineering requirements. Under the assumption that the gains domain is a convex 
polytope, the method results allow distinguishing in the whole domain the gain 
combinations matching the criterion from those yielding unsatisfactory performance. This is 
done inferring the nonlinear augmented system behaviour for all gains ranging in a convex 
polytope from numerical simulations of the augmented dynamics at a limited number of 
specific points of the gains domain. A set inversion algorithm selects these points using an 
adaptive gridding strategy. The proposed technique is applied to a gain-scheduled flight 
control law of the Unmanned Space Vehicle, a re-entry technology demonstrator pursued by 
the Italian Aerospace Research Centre. Results demonstrate the method’s effectiveness in 
determining the gains combinations allowing to satisfy pre-specified trajectory tracking 
requirements. Results also show that it is computationally viable and that it allows gaining 
insight into the factors that limit the controller’s performance, thus aiding eventual 
additional LTI-based design iterations. 

2. Problem setting 
We refer in this work to atmospheric re-entry applications, and to a FCL whose gains are 
scheduled depending on the values of some specifically selected independent variables, 
either being a univocal function of the system dynamical state vector, such as air-relative 
velocity, altitude, Mach number and so on, or explicitly dependent on time. Selection of the 
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scheduling law and of the independent variables is out of the scope of the present chapter, 
because it typically involves exploiting the peculiar flight mechanics features of the 
application at hand. We assume henceforth that the FCL structure is known, and that the 
FCL is completely specified once a limited number of parameters, i.e. the FCL gains, are set 
to a constant value. As introduced in the previous section, the problem dealt with in this 
chapter is to determine the values of these gains that allow complying to trajectory tracking 
requirements.  Let us assume to have a starting design point that specifies a set of gain 
values, which typically does not allow satisfying the tracking requirements. We denote this 
initial guess as the nominal gain value, which is taken equal to zero to simplify notation. Let 
us also assume to have a finite number p of constant gains and that the gains are enclosed in 
a bounded set Π  p,  which represents the region in the gains space one wishes to analyze. 

The dynamical system we refer to shall be suitable to represent the closed-loop augmented 
dynamics of an atmospheric re-entry vehicle. The typical FCL for this application foresee a 
gain-scheduled inner-loop PID control scheme coupled with a time-varying guidance law, 
possibly dependent on the system state as well. Gain scheduling is taken into account by 
dependency on the state variables (and time if needed), and the PID action by dependencies 
on the state, on its time integral (which adds up to the open-loop system’s state) and 
derivative, respectively. Thus, let us consider the following dynamical system, in which 
x n, y w, and the feedback action is included in the f() and g() functions. 

    , , , ,x f t x y g t x    (1) 

In the case of an un-powered re-entry vehicle in steep gliding flight, due to the lack of 
stationary equilibrium solutions for Eq. (1), we refer to time-varying nominal trajectories 
rather than stationary operating conditions. In addition, these trajectories are usually 
defined on a finite-time domain, i.e. t[0,T], where the initial epoch is taken equal to zero for 
simplicity and T is a finite positive real number. The nominal trajectory is thus time varying 
on a compact time domain, and satisfies the following equations. 

      
t

0 0
x t := x + f τ,x,0 × dτ t 0,T     (2a) 

      y t := g t,x,0 t 0,T    (2b) 

For gain-scheduled FCL, the current design practice relies on the well-known theory of 
Linear Time Invariant (LTI) systems. In this approach, the original nonlinear system 
representing the augmented vehicle dynamics is linearized around a limited number of 
representative time-varying trajectories, including the nominal one. Then, the well-known 
frozen-time approach is applied (Lee & Choi, 2004), yielding multiple LTI models. In this 
way classical design techniques, such as pole placement and gain/phase margin methods, 
can be exploited. Even if the flight experience has demonstrated that this approach is indeed 
operative, it is also widely recognized as inefficient (Leith & Leithead, 2000). In fact, LTI-
based analysis may call for gain design values for counteracting poor closed-loop dynamic 
performances (for instance, low damping or even instabilities) in some of the chosen points 
on the trajectories. However, the effect of undesirable frozen-time performances on the 
overall mission objectives can be of scarce importance since the vehicle remains in a 
particular frozen time condition only for a limited amount of time. Thus, modification of the 
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FCL for improving the LTI-based dynamic performances could be un-necessary, since these 
missions typically specify time-domain criteria, such as nominal trajectory tracking 
performances, which can be satisfied also in presence of poor frozen-time dynamic 
performances. LTI-based analysis results are thus usually complemented by dedicated 
numerical-simulation based analyses, such as Monte Carlo techniques, through which the 
quantitative dispersion about the reference trajectory can be estimated. Finally, in the LTI-
based approach, the gain tuning problem shall be solved in each frozen operating condition, 
thus considerably limiting the dimension of manageable problems. 

The criterion proposed in the present work is instead based on the Practical Stability and/or 
Finite-Time Stability concepts, whose detailed description can be found in (Gruyitch et al., 
2000; Dorato, 2006). This type of stability requires only the inclusion of the system 
trajectories in a pre-specified subset of the state space, possibly time-varying, in face of 
bounded initial state displacements and disturbances. As opposed to the classical Lyapunov 
stability concept it does not require the existence of any equilibrium point, and is 
independent from Lyapunov stability, in the sense that one neither implies nor excludes the 
other. The practical stability criterion is inherently well suited to the applications of interest: 
it allows to take explicitly into account system (1) time domain finiteness, and to use criteria 
directly linked to the original mission or system requirements, which are typically expressed 
in terms of trajectory tracking performances. Indeed, the latter can be easily enforced by 
requiring the inclusion of the system trajectories in a pre-specified time-varying subset of 
the state space determined by the tracking requirements, to which we refer as the admissible 
solutions tube, SA(t). 

Let us assume the initial state to be perfectly known and equal to the nominal one. In other 
words, the perturbed output trajectory y(t;π) is defined as a trajectory of system (1) that 
starts at t = 0 in y(0) = y0, under the constant input π.  This assumption does not limit the 
scope of the problem, since initial state dispersions can be included, if necessary, as 
additional elements of the π vector with no conceptual modifications. The tracking 
requirements are used to define a Boolean property P depending on the gains, so that the 
system complies with the practical stability criterion if and only if the property is true. In 
order to gain generality in the capability to enforce admissible dispersion requirements, P is 
defined in terms of the output trajectories of system (1) (that cover the case in which the 
system state is analyzed by letting y = x). 

  
     

     
A

A

true y t;π S t t 0,T
P π =

false t 0,T : y t;π S t
   


  
 (3) 

The capability of identifying all the combinations of the gain values in Π for which the 
property is true can greatly aid the refinement of the candidate FCL design. Indeed, it allows 
analyzing the FCL performance over the whole gain domain, as opposed to classical 
analysis that identifies only a limited number of points in Π. This aids the FCL upgrade by 
simplifying the physical understanding of the causes for poor performance. This feature is 
highly desirable in a design context, in which rather than the knowledge of a certain 
requirement violation is the determination of the causes that mainly contributes to identify 
possible design refinement strategies. With this in mind, the gain tuning task is stated as 
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determining the set ΠA, subset of Π, which is made of all the admissible gains, that is, all 
gains satisfying the tracking requirements. 

   AΠ := π Π P π = true  (4) 

In this setting, the gain tuning task can be re-formulated as a practical stability analysis 
problem, as follows. 

Problem 1. Given system (1), a bounded set Π  p such that π  Π, a time-varying compact 
set SA(t) (admissible solutions tube), and the property P, determine the set ΠA. 

3. Solution approach 
In order to simplify the solution to problem 1, we introduce the following restricting 
assumptions. 

Assumption 1. The functions f() and g() are differentiable in t, x and π over relevant 
domains. 

Assumption 2. The gains range in a p–dimensional hyper-rectangle Π. 

   p1 1 pΠ := π ,π ×..× π ,π    (5) 

Assumption 3. The required solutions tube is a w–dimensional hyper-rectangle for all 
 t 0,T  

          1A w AA 1A w AS t := S t ,S t ×..× S t ,S t        (6) 

Various techniques exist being able to deal with the practical stability analysis of a nonlinear 
dynamical system (see Dorato, 2006,  for a survey). The prominent approaches are based on 
a Lyapunov-type analysis involving an auxiliary function referred to as a Lyapunov-like 
function in (Gruyitch et al., 2000; Dorato, 2006). However, to the authors’ knowledge, there 
are no systematic and operative means to find a suitable Lyapunov function when nonlinear 
time-varying systems are considered; Lyapunov-based methods are also inherently 
conservative in estimating the trajectories dispersion, depending on the selected Lyapunov-
like function. A different approach is presented in (Ryali & Moudgalya, 2005), which stems 
from the notion of positively invariant tubes. However, it does not bound nor estimates the 
results conservativeness, with a resulting limited applicability to problems of practical 
interest. Finally, for Linear Time-Varying (LTV) systems, practical stability analysis 
approaches have been developed based on operator theory (Amato et al., 2003), which yield 
only sufficient conditions in the form of a nonlinear, time-varying, differential matrix 
inequality. Generally speaking,  in spite of a wide literature on practical stability theoretical 
results, all the reported approaches suffer of significant drawbacks when considered from 
an applicability perspective, including cases where the system dynamics are linear. Indeed, 
the abundance of theoretical results on practical stability analysis methods it is not balanced 
by examples of their application to cases of practical engineering interest within the 
robustness analysis context. 
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function in (Gruyitch et al., 2000; Dorato, 2006). However, to the authors’ knowledge, there 
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The approach followed in this chapter extends the one proposed in (Tancredi et al., 2009). 
for analyzing the robustness of a given flight control law. By setting up the gain tuning task 
as in Problem 1, this approach can be adapted for being used with the problem at hand with 
only minor modifications. An overview of the method is repeated in this chapter closely 
following the one in (Tancredi et al., 2009), but providing additional details and adapting it 
for dealing with a gain tuning problem. The technique approximates the solution of the 
practical stability analysis problem for a complex system with the solutions obtained for 
simpler systems, for which an efficient solution approach can be found. Specifically, the 
proposed solution approach foresees two successive phases. First, the nonlinear vehicle 
dynamics are approximated within a pre-specified error tolerance by their time-varying 
linearizations under several off-nominal gains (approximation phase). Then, problem 1 is 
solved on the LTV systems obtained in the previous phase taking explicitly into account the 
approximation error. This is done performing numerical simulations only at suitably 
selected gains combinations and exploiting the convexity preservation property of the LTV 
dynamics (property clearance phase). For the sake of clarity, we will describe separately 
these two phases. 

3.1 Approximation 

Let us consider a partition {Πk} of the gain domain, made of hyper-rectangular blocks Πk, 
that is, a collection of subsets (blocks) that are both collectively exhaustive and mutually 
exclusive with respect to the set being partitioned. We then define a collection of LTV 
systems, each one approximating the nonlinear system in a single block. In particular, each 
LTV system is obtained linearizing the system around its trajectory obtained by setting the 
uncertainties to 

0
kπ , the geometrical centre of Πk. The dynamic equations for each one of 

such LTV systems as π ranges in the relevant Πk can be written as: 

    0 0 0
Lk k k Lk k k kx = x + A × x - x + G × π - π   (7a) 

    0 0 0
Lk k k Lk k k ky = y + C × x - x + D × π - π  (7b) 

where the Ak, Gk, Ck, and Dk matrixes are obtained applying first order expansion of the 
nonlinear functions in Eq. (1) around 0

kx , 0
kπ . Note that, being the nonlinear system’s 

trajectories time-varying, the centre trajectory and the matrices in Eq. (7) are in general time-
varying as well. 

In order to quantify the error made in approximating the nonlinear system with the LTV one 
we use the weighted L∞ norm distance between the nonlinear and linear trajectories, that is, 
for each LTV system, and thus for each block Πk of the partition, we define an 
approximation error function ek : Πk → + as  

       b

k Lke π := y t;π - y t;π


 (8) 

We search for an approximation of the nonlinear system that introduces a pre-specified 
bounded error. Equivalently, this can be seen as searching for a partition {Πk}L in which ek() 
is below a pre-specified tolerance ε for all π in Π: 
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      k k k kL L π Πk
Π : Π Π max e π ε


    (9) 

As we will discuss later on, finding such a partition allows using the solution to problem 1 
obtained for the LTV systems to approximate the one of the nonlinear system. Assumption 1 
assures that a partition complying to Eq. (9) may always be found. Indeed, for any 0

kπ Πk 
we have: 

  lim k
π π0k

e π = 0


 (10) 

Thus, by using a partition of Π with sufficiently small blocks, it is possible to approximate as 
closely as desired the nonlinear trajectories using the LTV ones. Following this fact, an 
algorithm for finding {Πk}L may be obtained by repeatedly shrinking the blocks of the 
partition for which the approximation error is higher than ε. The partition refinement is here 
obtained iteratively, by means of an isotropic bisection technique. The isotropic bisection 
procedure splits a single p-dimensional hyper-rectangle set in 2p hyper-rectangular subsets, 
collectively exhaustive and mutually exclusive with respect to the “father” set. These “sons” 
are generated bisecting in each of the p dimensions the father hyper-rectangle’s edges. At 
each iteration, the approximation error in each block Πk is analyzed. Three cases are 
possible: 

1.  kπ Πk
max e π ε


 . The error is below the tolerance. Πk is assigned to {Πk}L : {Πk}L = {Πk}L  Πk . 

2.  kπ Πk
max e π ε


 . The approximation error is higher than the tolerance. We shall split this 

condition into two further cases, depending on the volume of Πk: 
a. The volume of Πk is smaller than a predefined maximum resolution η, i.e.  

vol(Πk) ≤ η. In these blocks the system nonlinearities are so large as to prevent its 
LTV approximation within a small volume η and thus are not further considered 
for the subsequent step of the proposed algorithm. Such blocks are left 
undetermined from the gain tuning standpoint.  

b. The volume of Πk is higher than η. Πk is then partitioned into 2p sons and the 
process of evaluating the maximum approximation error is repeated for each of 
them. 

The major challenge in applying the above algorithm resides in the evaluation of the ek() 
function’s upper bound over a given Πk, that is, in determining if the distance between the 
nonlinear and linear trajectories under the same π is within the tolerance for all π  Πk, as 
discussed in the next section. 

3.1.1 Evaluation of nonlinear trajectories approximation error 

A few approaches exist that allow relating the time responses of a nonlinear system to those 
of its linearization by quantitative means. These approaches conservatively bound from 
above a certain measure of the trajectories distance by maximizing some nonlinear time-
varying test function over a vector space. They thus either solve an optimization problem, 
with related computational burden, or require prior knowledge of the test function 
maximum bound, for instance using the Lipschitz constant (Asarin et al., 2007) or the 
maximum bound of the dynamical function’s second order derivatives (Desoer & 
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vol(Πk) ≤ η. In these blocks the system nonlinearities are so large as to prevent its 
LTV approximation within a small volume η and thus are not further considered 
for the subsequent step of the proposed algorithm. Such blocks are left 
undetermined from the gain tuning standpoint.  

b. The volume of Πk is higher than η. Πk is then partitioned into 2p sons and the 
process of evaluating the maximum approximation error is repeated for each of 
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The major challenge in applying the above algorithm resides in the evaluation of the ek() 
function’s upper bound over a given Πk, that is, in determining if the distance between the 
nonlinear and linear trajectories under the same π is within the tolerance for all π  Πk, as 
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3.1.1 Evaluation of nonlinear trajectories approximation error 

A few approaches exist that allow relating the time responses of a nonlinear system to those 
of its linearization by quantitative means. These approaches conservatively bound from 
above a certain measure of the trajectories distance by maximizing some nonlinear time-
varying test function over a vector space. They thus either solve an optimization problem, 
with related computational burden, or require prior knowledge of the test function 
maximum bound, for instance using the Lipschitz constant (Asarin et al., 2007) or the 
maximum bound of the dynamical function’s second order derivatives (Desoer & 
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Vidyasagar, 1975). The latter methods, however, provide bounds on the trajectory distance 
that are typically exponentially increasing with time. This implies that in practice they can 
be used for time horizons of limited duration w.r.t. the system time-scales, which is not the 
case of re-entry applications. Alternative approaches have been proposed, which estimate 
the approximation error introducing some heuristic methods. In (Rewienski & White, 2001) 
the linear system is considered a valid approximation within a norm-ball, whose radius is 
determined depending on the linear trajectory characteristics. In (Tancredi et al., 2008) the 
approximation error over a polytope in the parameters space is estimated by its maximum 
value over the polytope’s vertices, assuming that the polytope is sufficiently smaller than 
the scale at which the system exhibits significant nonlinear behaviour so that the maximum 
error always occurs in a vertex. 

The approximation error is here evaluated in probabilistic terms, as proposed in (Tancredi et 
al., 2009). In particular, by fictitiously introducing a statistical description of the gains in the 
generic Πk, we accept the risk of the approximation error being higher than the tolerance in a 
subset of Πk having small probability measure. More precisely, we consider the nonlinear 
system to be well approximated in Πk if the risk of ek() being higher than the error tolerance 
is smaller than a threshold. The value of this threshold shall be selected sufficiently small as 
to avoid that ek() can be higher than the tolerance with significant probability. However, it 
shall also be sufficiently high as to avoid that the Πk sets have a volume smaller than the 
maximum resolution η. Preliminary numerical analyses suggest that in our problem setting 
a threshold value equal to 6% is a good compromise: 

    k k kπ Πk
Π : Pr e > ε 0.06 max e π ε


    (11) 

Without introducing any assumption on the probability distribution of ek(), we can then use 
the one-sided Chebyshev inequality to translate Eq.(11) in: 

      k k k kπ Πk
Π : E e + 4 Var e ε max e π ε


    (12) 

In order to determine the mean and variance of ek(), we use the Scaled Unscented 
Transformation (SUT), first introduced in (Julier, 2002). More specifically, let us consider a 
generic hyper-rectangle Πk := [ 1k1kπ ,π ]…[ pkpkπ ,π ]. We fictitiously assume π to be 
uniformly distributed in Πk, which results in the following mean and covariance matrix, Ek 
and Covk, respectively. 

 0
k kE = π  ;    22

k k1 k1 kp kp

1Cov = × diag π - π ,..., π - π
12

 
  

 (13) 

Using the SUT, we may estimate ek() mean and variance. Specifically, according to (Julier, 
2002), we choose a series of 2p+1 points Θki  Πk, symmetrically distributed around the 
mean 0

k , as follows: 

  

 

0
ki k

0
ki k k

i

0
ki k k

i-p

Θ = π i = 0

Θ = π + p + χ Cov i = 1,...,p

Θ = π - p + χ Cov i = p + 1,...,2p

 
 
 
 

 (14) 
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where χ = μ2(p+κ) – p is a tunable parameter. Each point has an associated weight for 
computing the mean and variance of the ek() function. The first point Θk0 has instead two 
weights, one for computing the mean and one for the variance. Denoting with Wi(m) the 
weights for computation of E(ek), and with Wi(c) the weights for computation of Var(ek), the 
following hold (Julier, 2002): 

    m
0W = χ p + χ  ;      c m 2

0 0W = W + 1 - μ + β  (15a, b) 

      m c
i iW = W = 1 2 p + χ i = 1,...,2p    (15c) 

The mean and variance of the ek() function can be then estimated as the weighted average 
and weighted outer product of the transformed points, allowing to evaluate if Eq.(12) holds 
by numerically evaluating 2p + 1 times the ek() function : 

      
2p

m
k i k ki

i=0

E e = W e Θ  (16a) 

         
2p

2c
k i k k ki

i=0

Var e = W E e - e Θ  (16b) 

The SUT has three tunable parameters, μ, β, and κ. Guidelines for tuning these parameters 
are given by (Van der Merwe et al., 2000), which suggests letting κ=0. β is a non-negative 
weighting term which can be used to incorporate knowledge of the higher order moments 
of the distribution. Preliminary numerical analyses have shown that in our problem setting 
β=0 delivers the best estimates. At last, μ controls the “size" of the Θ points distribution and 
should be 0≤ μ ≤1. We choose μ = (3/p)0.5 in order to have the Θki points in the center of Πk 
facets. This choice allows for sharing some computations between adjacent Πk sets, and thus 
to reduce the overall computational load. 

3.2 Property clearance 

Once the {Πk}L partition has been determined, one can obtain a solution to problem 1 by 
formulating a similar problem on the LTV approximating systems corresponding to {Πk}L. 
For such LTV systems, the difference between any nonlinear and linear trajectories under 
the same π is included in the closed ball in  n with respect to the norm in Eq. (8), with 
radius equal to ε, Bε. It follows that the nonlinear solutions tube is included in the 
Minkowski sum between the solutions tube of its linearization and the former ball. To 
exploit this result in achieving the problem’s solution, let us define a reduced admissible 
solution tube, obtained by shrinking SA() of an amount equal to Bε. Denoting as  the 
Minkowski sum operator, the reduced admissible solution tube reads: 

        A A ε AS t : S t B = S t t 0,T      (17) 

The S′A() complying to Eq. (17) can be easily determined since SA() is hyper-rectangular at 
each time epoch. Being the norm sphere hyper-rectangular as well by definition, S′A() can 
be obtained simply by component-wise difference of SA() and Bε. Consider now a 
modification of the P property, expressed in terms of S′A() and of the linear trajectories 
corresponding to {Πk}L: 
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2p

m
k i k ki

i=0

E e = W e Θ  (16a) 

         
2p
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k i k k ki

i=0

Var e = W E e - e Θ  (16b) 
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are given by (Van der Merwe et al., 2000), which suggests letting κ=0. β is a non-negative 
weighting term which can be used to incorporate knowledge of the higher order moments 
of the distribution. Preliminary numerical analyses have shown that in our problem setting 
β=0 delivers the best estimates. At last, μ controls the “size" of the Θ points distribution and 
should be 0≤ μ ≤1. We choose μ = (3/p)0.5 in order to have the Θki points in the center of Πk 
facets. This choice allows for sharing some computations between adjacent Πk sets, and thus 
to reduce the overall computational load. 

3.2 Property clearance 

Once the {Πk}L partition has been determined, one can obtain a solution to problem 1 by 
formulating a similar problem on the LTV approximating systems corresponding to {Πk}L. 
For such LTV systems, the difference between any nonlinear and linear trajectories under 
the same π is included in the closed ball in  n with respect to the norm in Eq. (8), with 
radius equal to ε, Bε. It follows that the nonlinear solutions tube is included in the 
Minkowski sum between the solutions tube of its linearization and the former ball. To 
exploit this result in achieving the problem’s solution, let us define a reduced admissible 
solution tube, obtained by shrinking SA() of an amount equal to Bε. Denoting as  the 
Minkowski sum operator, the reduced admissible solution tube reads: 

        A A ε AS t : S t B = S t t 0,T      (17) 

The S′A() complying to Eq. (17) can be easily determined since SA() is hyper-rectangular at 
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Lk A

Lk A

true y t;π S t t 0,T
P π :=

false t 0,T : y t;π S t

       
 (18) 

It can be easily proved that P′ implies P. Therefore, introducing a region of admissible 
uncertainties analogous to ΠA, but based on P′, as   AΠ := π Π P π = true  , it follows 
that A AΠ Π  . It will be shown later on that a technique exists to obtain a good estimate of 
Π′A. This is equivalent to obtain a conservative solution to problem 1, in the sense that the 
computed region Π′A will be included in the actual ΠA. Nonetheless, the amount of 
conservativeness in estimating ΠA is bounded, and can be reduced as required by reducing 
the approximation error tolerance, at the price of a higher computational load. 

3.2.1 Computation of  Π′A 

The computation of Π′A is obtained by exploiting the preservation of convexity in LTV 
trajectories under constant inputs and by applying a set inversion algorithm, SIVIA (Set 
Inverter Via Interval Analysis), originally developed in the framework of Interval Analysis. 
We briefly recall here the algorithm main features relevant to the present context, referring 
the interested reader to (Jaulin et al., 2001) and the references therein. 

Given the definition of Π′A and P′, the determination of Π′A may be seen as a set inversion 
problem, which is defined as follows. Let f be a possibly nonlinear function from n to m, 
and let Y be a subset of m. Set inversion is the determination of the reciprocal image: 
X={xn | f(x)Y } = f –1(Y), which in our case is Π′A itself. The SIVIA algorithm allows to 
compute two sub-partitions of Π, that is, partitions of a subset of Π, that are an inner and 
outer enclosure of Π′A, denoted as AΠ  and AΠ  respectively. 

 A A AΠ Π Π     (19) 

The algorithm is iterative, and is initially applied to the partition {Πk}L. In order to determine 
if a block Πk belongs to the enclosures, it performs an inclusion test [P′], having the following 
properties: 

     k kP Π = true π Π ,P π = true     (20a) 

     k kP Π = false π Π ,P π = false     (20b) 

More precisely, the inner enclosure AΠ  is composed of hyper-rectangular blocks Πk for 
which the inclusion test is true. Given Eq. (19), such blocks are also members of AΠ . 
Reversely, if it can be proved that [P′](Πk) = false, then the block has an empty intersection 
with Π′A, and it is thus rejected. Otherwise, no conclusion can be drawn based on the 
inclusion test, and the block Πk is called undetermined. The latter is then bisected in 2p 
subsets that are tested until their volume reaches the user-specified resolution η. Thus, such 
undetermined minimum-volume blocks are deemed small enough to be stored in the outer 
approximation AΠ  of Π′A. 
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3.2.2 Inclusion test for SIVIA 

The application of SIVIA requires defining an inclusion test, which is typically obtained by 
applying interval analysis, e.g. in (Juliana et al., 2008). However, interval computation is 
usually pessimistic, in the sense that a block Πk may be deemed undetermined by an 
inclusion test even if the property under analysis holds uniformly (i.e. attains the same 
Boolean value) over the block itself. This implies a substantial increase in the computational 
load, which is particularly critical since the algorithm computational complexity increases 
exponentially with p. In the present context, we use the inclusion test  proposed in (Tancredi 
et al., 2009), which captures exactly the blocks in which P′ is uniformly true, and also 
provide a condition which is sufficient for P′ to be uniformly false. 

The inclusion test exploits the preservation of convexity in LTV trajectories under constant 
inputs. Consider a generic hyper-rectangular Πk  {Πk}L. Πk is a convex polytope having 2p 
vertices  ν

kπ , i.e. it admits the following vertex representation: 

  
2 2

νp
k kν k kν kν

ν=1 ν=1

p p

Π = π π = λ π , λ 0 , λ = 1
    
  

   (21) 

Because the trajectory of an LTV system under a constant input π may be viewed as an 
affine transformation with respect to π, any solution of the LTV system under a generic π in 
Πk is a convex combination of the solutions under all the πk(ν). The output trajectories yLk(t;π) 
thus span the following set (tube) SLk(t) as π varies in Πk. 
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p p

S t = y t;π y t;π = λ y t;π ,λ 0 , λ = 1
    
  

   (22) 

As a consequence, the knowledge of the 2p vertex trajectories yLk(t;πk(ν)) allows to determine 
exactly the solutions tube corresponding to Πk. We exploit this property to define the 
inclusion test, which is a comparison of the two time varying polytopes SLk and S′A. More 
precisely, the condition SLk(t)  S′A(t) for all t[0,T] is equivalent to P′ being uniformly true 
in Πk, and, given SLk convexity, it is equivalent also to the 2p vertex trajectories yLk(t;πk(ν)) 
belonging to S′A(t). The condition SLk(t) ∩ S′A(t) =  for at least one t[0,T] is instead 
equivalent to P′ being uniformly false in Πk. Unfortunately, this condition may not be 
checked using only the knowledge of the vertex trajectories, but would require further 
computations to be ascertained exactly. We instead provide a condition involving only the 
vertex trajectories, which is only sufficient for SLk(t) ∩ S′A(t) = . In particular, we exploit the 
fact that S′A() is hyper-rectangular by assumption, and thus admits an easily-obtainable 
half-space representation S′A(t) = {y  w | L

AS y ≤ R
AS  (t)}, where L

AS  = ( wI , – wI )T, R
AS :[0,T] → 

2w1 ( wI  stand for the w by w identity matrix). In case at least one of the 2w inequalities 
defining S′A() is not satisfied by all the vertex trajectories, the solutions tube SLk() lies 
completely outside S′A(), implying SLk(t) ∩ S′A(t) = . We thus define the following 
inclusion test, which formally resumes the previous discussion. Its evaluation requires a 
limited (and known a priori) number of linear trajectories, which are obtained by numeric 
simulation. Note that nonlinear simulations are not needed for the evaluation of the 
inclusion test, which involves only simulation of the linear approximations. 
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It can be easily proved that P′ implies P. Therefore, introducing a region of admissible 
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3.2.1 Computation of  Π′A 
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 A A AΠ Π Π     (19) 

The algorithm is iterative, and is initially applied to the partition {Πk}L. In order to determine 
if a block Πk belongs to the enclosures, it performs an inclusion test [P′], having the following 
properties: 

     k kP Π = true π Π ,P π = true     (20a) 

     k kP Π = false π Π ,P π = false     (20b) 

More precisely, the inner enclosure AΠ  is composed of hyper-rectangular blocks Πk for 
which the inclusion test is true. Given Eq. (19), such blocks are also members of AΠ . 
Reversely, if it can be proved that [P′](Πk) = false, then the block has an empty intersection 
with Π′A, and it is thus rejected. Otherwise, no conclusion can be drawn based on the 
inclusion test, and the block Πk is called undetermined. The latter is then bisected in 2p 
subsets that are tested until their volume reaches the user-specified resolution η. Thus, such 
undetermined minimum-volume blocks are deemed small enough to be stored in the outer 
approximation AΠ  of Π′A. 
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3.2.2 Inclusion test for SIVIA 
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Applying the above procedure, Π′A is determined exactly within a prefixed resolution, and, 
due to the properties of the LTV systems defined on {Πk}L, problem 1 is solved 
conservatively for the nonlinear system (1). 

4. Application case 
This section introduces the nonlinear system describing the closed-loop longitudinal flight 
dynamics of the experimental reusable launch vehicle demonstrator USV-FTB1  currently 
operated by the CIRA. The FTB1 vehicle is the first of three planned vehicle configurations 
that CIRA is developing as part of its USV Program, whose main goal is contributing to the 
international community effort toward the development of next generation reusable space 
vehicles. This vehicle is planned to execute flight tests in subsonic, transonic and low 
supersonic flight regimes, in view of the development of upgraded vehicle configurations to 
perform sub-orbital and orbital re-entry flights. The FTB1 vehicle, described in detail in 
(Russo, 2009) and shown in Fig. 1, is unmanned and un-powered. It has a slender wing 
configuration, with two sets of aerodynamic effectors: the elevons, which provide pitch 
control when deflected symmetrically and roll control when deflected asymmetrically, and 
the rudders for yaw control.  

 

 
Fig. 1. USV-FTB1 vehicle. 

The second Dropped Transonic Flight Test (DTFT-2) of the FTB1 vehicle is specifically 
considered to show the effectiveness of the proposed technique. The mission, successfully 
executed in April 2010, foresees a drop of the vehicle from a stratospheric balloon (at nearly 
null velocity and angle of attack) to reach Mach numbers in the range of [1.2÷1.3] for 
investigating aerodynamics and advanced guidance navigation and control in the transonic 
phase of an un-powered re-entry flight. The basic operations of the mission consist of an 
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ascent phase during which the stratospheric balloon brings the FTB1 at the release altitude 
of about at about 24-26 km followed by a flight phase where the FTB1 is dropped and the 
aerodynamic controlled flight starts. The vehicle accelerates until the desired Mach number 
is reached, and then starts a Mach-hold phase in which it performs a sweep in angle of 
attack for maintaining a constant Mach number. A deceleration phase is then initiated (up to 
0.2 Mach) at the end of which a recovery parachute is deployed. The mission ends with the 
demonstrator splash down in the Mediterranean Sea.   

Because the scope of the present section is to demonstrate the effectiveness of the gain 
tuning technique on an application of practical engineering relevance, we will restrict the 
analysis to a simplified version of the longitudinal FCL of the FTB1 vehicle, which was used 
in the initial design phases for executing flight mechanics analyses. Note that the FCL 
analyzed in this section is significantly different from the ones implemented for the DTFT2 
mission (see, for instance, Morani et al., 2011, for a detailed description of the guidance law). 
Given the nonlinear augmented longitudinal dynamics of the FTB1 vehicle in the DTFT2 
mission, the aim of the present analysis is to find (a set of) the controller’s gains compliant to 
a requirement expressed as inclusion in a solution’s tube. 

The FTB1 vehicle longitudinal dynamics are modelled by means of standard nonlinear 
equations (Etkin & Reid, 1996), yielding a sixth order model. Actuator dynamics are 
included by means of a second order system and first order filters are used for modelling 
the navigation sensors for α and q. The longitudinal dynamics are augmented by a 
proportional-derivative flight control law, arranged in a cascade structure with feedback on 
the pitch rate q and angle of attack α. The augmented vehicle is driven by a time-varying 
angle of attack reference signal αref, which ramps up from zero at the vehicle release from the 
stratospheric balloon up to 8 deg. in the initial drop phase. The angle of attack is held 
constant until the desired Mach number of about 1.2 is reached. The Mach hold phase 
follows, where an α - sweep manoeuvre is performed. At the end of the Mach hold phase, 
the angle of attack increases up to 10 deg., value maintained in low subsonic conditions until 
parachute deployment. The overall feedback action is shown in Fig. 2 and has the following 
analytical expression, where ζ stands for the FCL internal state. 

    3 1 1 2- - ; -e ref refk k q k k          
  (24) 

 
Fig. 2. FCL structure. 

Two of the three gains of the controller, k1, k2, and k3 are scheduled depending on the 
dynamic pressure q∞, according to k1 = k10 , k2 = k20 + k2s q∞ , and k3 = k30 + k3s/q∞ .  
The FCL foresees thus five gains. The nominal gains setting is k′1 = 1.25 s-1 ; k′20 = –1.28 s–1 ; 
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k′2s = 4.4810 –4 m skg –1 ; k′30 = 1.7310 –1 s ; k′3s = –7.7610 3 kgs –1m –1. These gains have 
been determined applying standard LTI control synthesis techniques, and the resulting 
control law yields satisfactory LTI stability characteristics. Because of the complexity of the 
LTI based analysis when applied to these vehicles flying markedly time-varying trajectories, 
and because the focus of the present chapter is on determining the effectiveness of the 
proposed technique in dealing with time-based control performance requirements, the 
results of the stability analysis are not shown here for brevity. The reader is referred to 
(Tancredi et al., 2011) for an overview of the LTI stability analysis in a similar application. 

The nominal response is obtained applying the above gain tuning, and considering the 
system to start at t0 = 21.55 s. This is the first time epoch at which the Mach number is at 
least equal to 0.7, i.e. M ≥ 0.7, which is the threshold condition above which the actuation 
system gains sufficient command authority for controlling the angle of attack. 

The nominal response’s angle of attack and commanded elevon deflections δe are shown in 
Fig. 3. The initial oscillation in α is caused by a sharp decrease of the elevons efficiency in the 
transonic phase. However, because of the considerable uncertainty on the entity of this 
phenomenon, no dedicated feed-forward actions were implemented. 

 
Fig. 3. Nominal response time histories. 

The tuning analysis has been performed on a subset of the FCL gains. More precisely, we 
analyzed effects on the variations of the three most influential gains: the proportional α 
constant gain k1, the scheduling gain of the integral α action k2s and the scheduling gain of 
the proportional q action k3s . In other words, we analyze the effects of the three dimensional 
vector π : = ( k1  k2s  k3s )T, in the following hyper-rectangular domain K, centred about the 
nominal tuning π′. 
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     1 2s 3sΠ := 0, 2k × 0, 2k × 2k ,0    

The maximum allowed distances of the above variables for a meaningful linearization are 
set to 0.2 deg in angle of attack, 1.8 degs-1 in pitch rate and 1.5 deg in elevons deflection. 
The admissible solutions tube constrains only the angle of attack and the elevons 
deflections. Elevons deflection are required to be within [-20, 20] deg., which represent the 
limits of the actuation system. The solutions tube in α is tailored around the reference signal 
αref, enforcing the required maximum tracking error of ±0.6 deg. Because of the previously 
mentioned oscillation, the tracking requirement is relaxed to ±0.8 deg. in the transonic 
phase. The final α hold phase is treated separately from the remainder of the trajectory. 
Indeed, both tracking requirements are less stringent in this phase, increasing up to ± 2 deg., 
and the vehicle flight performances are dramatically different in these low subsonic flight 
conditions than in the remainder of the trajectory. Separating the tracking requirements in 
these two parts of the trajectory allows for a clearer understanding of the method potentials. 
Because of this setting, two admissible solution tubes are introduced: the final tube, which 
enforces requirements only on the final α-hold phase, and the tracking tube, which enforces 
tracking requirements in the remainder of the trajectory. Note that since the linearization 
error is taken into account in the admissible solutions tube definition (see section 3.2), the αref 
tracking requirements to which the linearized solutions shall comply are tighter than the 
enforced ones of ± 0.2 deg. Fig. 4 shows the two required solutions tubes in α, as well as the 
above mentioned “reduced” bounds. Note that the nominal tuning does not comply with 
any of the two tubes. 

 
Fig. 4. Admissible solution tubes. Tracking (top) and Final (bottom). 
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4.1 Results 

The approximation phase results are collected in Fig. 5, showing {Πk}L, the partition into 
which the gain domain Π has been divided to obtain a meaningful linearization. Results 
show that the original nonlinear system is successfully approximated only in a subset of the 
gain domain. In the remainder of Π, the system state vector dependency on the gains is 
highly nonlinear, and prevents the system to be approximated by its time-varying 
linearization even in Πk subsets with the minimum allowed volume η  (see section 3.1). The 
approximation phase results were obtained with a CPU time of ~ 10 hours on a standard 
personal computer. Note however, that its results do not depend on the admissible solutions 
tube, and are thus used for both the tracking and the final ones without the need of 
computing the approximation twice. The property clearance phase calls for a computational 
load that is only a fraction of the approximation one. In fact, evaluation of the inclusion test 
in Eq.(23) needs the numerical simulation only of the linear approximating systems, and 
nonlinear simulations are not involved at all. Fig. 6 collects the clearance phase results for 
the tracking tube. It can be seen how the inclusion test of Eq.(23) divides the blocks of the 
partition {Πk}L. The property clearance phase builds upon simulation of the linear 
approximations, and thus requires only about 1 hour of computation time. The region in 
which the gains comply with the tracking requirements, Π′A, is shown in Fig. 7 for both the 
tracking and final tubes. As anticipated, the compliance region of both tubes does not 
comprise the nominal tuning. Compliance to each of the two tubes calls for lower than 
nominal values of the scheduling gain of the proportional q action, k3s , coupled to higher 
proportional and integral scheduling gains of α, k1 and k2s , respectively. Requirements 
yielding to the final tube, however, are much more restrictive than those in the remainder of 
the trajectory, as can be seen by the small dimensions of the corresponding Π′A region. 

 
Fig. 5. Approximation results: {Πk}L  
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Fig. 6. Property Clearance results – Tracking tube. 

These results demonstrate one of the main advantages of the proposed approach, that is, 
the capability to support the physical understanding of all the causes for unsatisfactory 
performances of the FCL within the whole Π region, being confident of having covered all 
possible gain combinations of interest. Fig. 8 compares the compliance regions of the two 
tubes, which are disjoint by a very small offset. However, because the offset dimensions 
are comparable to the resolution at which the results have been obtained, the true 
compliance region of the tracking tube may extend as to intersect the final tube’s one. 
Even if this may in principle also not be the case, common sense suggests that a tuning 
lying near this offset would have tracking performances that do not violate significantly 
both tubes.  

At last, we present the nonlinear system’s simulation for a candidate tuning. In order to 
select this “optimal” tuning, πopt, we choose the root mean square (RMS) of the αref tracking 
error as a cost function. The so obtained optimal tuning is shown in Fig. 8 as well, and is 
compared to the nominal one in Table 1 and in Fig. 9. Results show that the optimal gain 
yields a significantly smaller RMS error in tracking αref than the nominal one, and improves 
the system behaviour in the final phase. 

 
 

Gains k1 , s-1 ; k2s ,  m skg –1 ; k3s , kgs –1m –1. RMS error, deg 
π′ 1.25 4.4810 –4 –7.7610 3 0.34 
πopt 1.81 3.2110 –4 –8.5410 3 0.15 

Table 1. Comparison of nominal and optimal gains. 
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4.1 Results 
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Fig. 5. Approximation results: {Πk}L  
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Fig. 6. Property Clearance results – Tracking tube. 

These results demonstrate one of the main advantages of the proposed approach, that is, 
the capability to support the physical understanding of all the causes for unsatisfactory 
performances of the FCL within the whole Π region, being confident of having covered all 
possible gain combinations of interest. Fig. 8 compares the compliance regions of the two 
tubes, which are disjoint by a very small offset. However, because the offset dimensions 
are comparable to the resolution at which the results have been obtained, the true 
compliance region of the tracking tube may extend as to intersect the final tube’s one. 
Even if this may in principle also not be the case, common sense suggests that a tuning 
lying near this offset would have tracking performances that do not violate significantly 
both tubes.  

At last, we present the nonlinear system’s simulation for a candidate tuning. In order to 
select this “optimal” tuning, πopt, we choose the root mean square (RMS) of the αref tracking 
error as a cost function. The so obtained optimal tuning is shown in Fig. 8 as well, and is 
compared to the nominal one in Table 1 and in Fig. 9. Results show that the optimal gain 
yields a significantly smaller RMS error in tracking αref than the nominal one, and improves 
the system behaviour in the final phase. 

 
 

Gains k1 , s-1 ; k2s ,  m skg –1 ; k3s , kgs –1m –1. RMS error, deg 
π′ 1.25 4.4810 –4 –7.7610 3 0.34 
πopt 1.81 3.2110 –4 –8.5410 3 0.15 

Table 1. Comparison of nominal and optimal gains. 



 
Automatic Flight Control Systems – Latest Developments 

 

88

 

 

 
Fig. 7. Nominal tuning vs. compliance region Π′A. Tracking tube (top) and Final Tube 
(bottom)  
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Fig. 8. Comparison between tracking and final tubes compliance regions. 

 

 
Fig. 9. Selected gains nonlinear simulations: α time history. 



 
Automatic Flight Control Systems – Latest Developments 

 

88

 

 

 
Fig. 7. Nominal tuning vs. compliance region Π′A. Tracking tube (top) and Final Tube 
(bottom)  

 
Gain Tuning of Flight Control Laws for Satisfying Trajectory Tracking Requirements 

 

89 

 
Fig. 8. Comparison between tracking and final tubes compliance regions. 

 

 
Fig. 9. Selected gains nonlinear simulations: α time history. 
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5. Conclusion 
A novel approach to gain tuning has been developed, based on previous results that were 
obtained by the authors for a different problem. The approach specifically applies to 
gliding vehicles in the terminal phases of re-entry flight, and is capable of handling gain 
scheduled control laws under trajectory tracking requirements. Its capability of 
highlighting the causes for requirement violation, being confident of having covered all 
possible combinations of the controller gains, makes the developed technique an effective 
tool for driving the control law refinement, as shown in an application of practical 
engineering significance. The adoption of practical stability as a criterion for enforcing 
trajectory tracking requirements is promising thanks to its inherent capability of handling 
the original mission or system requirements. In fact, it allows taking explicitly into 
account trajectory time-varying effects in the tuning task, which can be significant for the 
applications of interest. The practical stability approach improves the accuracy in 
evaluating the control law performances with respect to frozen-time approaches, thus 
reducing the risk of highlighting effects that were not previously disclosed when applying 
numerical verification methods, such as Monte Carlo techniques. This would avoid the 
need of upgrading a control design tuning with scarce information on the causes for 
unsatisfactory performance, as it typically occurs when applying numerical verification 
methods early in the design cycle, thus streamlining the overall design cycle. In this sense, 
the proposed approach is though to be complementary both to classical LTI-based design 
tools and to numerical verification methods. 

One important issue of the method is in the number of gains that can be simultaneously 
treated, due to the exponential increase in the computational load. Nonetheless, its 
application so far suggests that, when the method is executed on a standard desktop 
computer, the maximum dimension of manageable problems is in the order of five, 
depending on the features of the specific application case, most notably its nonlinearity in 
the whole uncertainty domain. For the application shown in the chapter, the map relating 
the system state vector to gain values was determined to be heavily nonlinear. This 
feature is thought to be distinctive of most gain tuning problems, as suggested by 
common sense and relevant literature, even though further investigations would be 
needed for ascertaining this claim. This pronounced nonlinearity further limits the 
method applicability because accurate linear approximations are valid only in small 
subsets of the gain domain, thus calling for a refined partition, which causes an increase 
in the computational load. Nonetheless, distributed computing and the use of more 
powerful computing machines substantially increase the number of gains that can be 
taken into account. 

At last, the presented approach is based on the practical stability criterion, which allows 
translating tracking requirements in terms of the maximum tracking error. However, in 
most trajectory tracking applications, the RMS tracking error is also included in the 
requirements. Note that the RMS error is a convex function of the tracked variable. As such, 
defining an opportune Boolean property being true when the RMS error is below a certain 
threshold, one should be capable of devising an inclusion test similar to the one presented in 
this chapter. This would allow extending the approach for being capable of handling 
requirements on both maximum and RMS tracking errors. Further work will concern this 
possibility. 
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1. Introduction

Active control techniques for the gust loads alleviation/flutter suppression have been
investigated extensively in the last decades to control the aeroelastic response, and improve
the handling qualities of the aircraft. Nonadaptive feedback control algorithms such as
classical single input single output techniques (Schmidt & Chen, 1986), linear quadratic
regulator (LQR) theory (Mahesh et al., 1981; Newsom, 1979), eigenspace techniques (Garrard
& Liebst, 1985; Leibst et al., 1988), optimal control algorithm (Woods-Vedeler et al., 1995), H∞
robust control synthesis technique (Barker et al., 1999) are efficient methods for the gust loads
alleviation/flutter suppression. However, because of the time varying characteristics of the
aircraft dynamics due to the varying configurations and operational parameters, such as fuel
consumption, air density, velocity, air turbulence, it is difficult to synthesize a unique control
law to work effectively throughout the whole flight envelope. Therefore, a gain scheduling
technique is necessary to account for the time varying aircraft dynamics.

An alternative methodology is the feedforward and/or feedback adaptive control algorithms
by which the control law can be updated at every time step (Andrighettoni & Mantegazza,
1998; Eversman & Roy, 1996; Wildschek et al., 2006). With the novel development of the
airborne LIght Detection and Ranging (LIDAR) turbulence sensor available for an accurate
vertical gust velocity measurement at a considerable distance ahead of the aircraft (Schmitt,
Pistner, Zeller, Diehl & Navé, 2007), it becomes feasible to design an adaptive feedforward
control to alleviate the structural loads induced by any turbulence and extend the life of the
structure. The adaptive feedforward control algorithm developed in (Wildschek et al., 2006)
showed promising results for vibration suppression of the first wing bending mode. However,
an unavoidable constraint for the application of this methodology is the usage of a high order
Finite Impulse Response (FIR) filter. As a result, an overwhelming computation effort was
needed to suppress the structural vibration of the aircraft.

In this chapter, an adaptive feedforward control algorithm where the feedforward filter
is parameterized using orthonormal basis expansions along with a recursive least square
algorithm with a variable forgetting factor is proposed for the feedforward compensation
of gust loads. With the use of the orthonormal basis expansion, the prior flexible modes
information of the aircraft dynamics can be incorporated to build the structure of the
feedforward controller. With this strategy, the order of the feedforward filter to be estimated
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can be largely reduced. As a result, the computation effort is greatly decreased, and
the performance of the feedforward controller for gust loads alleviation will be enhanced.
Furthermore, an FFT based PolyMAX identification method and the stabilization diagram
program (Baldelli et al., 2009) are proposed to estimate the flexible modes of the aircraft
dynamics.

The need for an integrated model of flight dynamics and aeroelasticity is brought about by the
emerging design requirements for slender, more flexible and/or sizable aircraft such as the
Oblique Flying Wing (OFW), HALE, Sensorcraft and morphing vehicles, etc. Furthermore, a
desirable unified nonlinear simulator should be formulated in principle by using commonly
agreeable terms from both the flight dynamics and aeroelasticity fields in a consistent manner.

A unified integration framework that blends flight dynamics and aeroelastic modeling
approaches with wind-tunnel or flight-test data derived aerodynamic models has been
developed in (Baldelli & Zeng, 2007). This framework considers innovative model updating
techniques to upgrade the aerodynamic model with data coming from CFD/wind-tunnel tests
for a rigid configuration or data estimated from actual flight tests when flexible configurations
are considered.

Closely following the unified integration framework developed in (Baldelli & Zeng, 2007), an
F/A-18 Active Aeroelastic Wing (AAW) aeroelastic model with gust perturbation is developed
in this chapter, and this F/A-18 AAW aeroelastic model can be implemented as a test-bed
for flight control system evaluation and/or feedback/feedforward controller design for gust
loads alleviation/flutter suppression of the flexible aircraft.

The outline of the chapter is as follows. In Section II, a feedforward compensation framework
is introduced. Section III presents the formulation of the orthonormal finite impulse filter
structure. A brief description of a frequency domain PolyMAX identification method is
presented in Section IV. In Section V, a recursive least square estimation method with variable
forgetting factor is discussed. Section VI includes the development of a linear F/A-18AAW
aeroelastic model and the application of the adaptive feedforward controller to F/A-18 AAW
aeroelastic model.

2. Basic idea of the feedforward controller

In order to analyze the design of the feedforward controller, F, consider the simplified block
diagram of structural vibration control of a single input signal output (SISO) dynamic system
depicted in Fig. 1. The gust perturbation, w(t), passes through the primary path, H, the body
of the aircraft, to cause the structural vibrations. Mathematically, H can be characterized as the
model/transfer function from the gust perturbation to the accelerometer sensor position. The
gust perturbation, w(t), can be measured by the coherent LIDAR beam airborne wind sensor.
The measured signal, n(t), is fed into the feedforward controller, F, to calculate the control
surface demand, u(t), for vibration compensations. The structural vibrations are measured
by the accelerometers providing the error signal, e(t). G is the model/transfer function from
the corresponding control surface to the accelerometer sensor position, and which is so called
the secondary path.

In order to apply the feedforward control algorithm for gust loads alleviation, developing
a proper sensor to accurately measure the gust perturbation is crucial for the success of the
feedforward control application. As mentioned in (Schmitt, Pistner, Zeller, Diehl & Navé,
2007), such a sensor should meet the following criteria:
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• A feedforward-looking measuring of 50 to 150 m to ensure that the measured air flow is
the one actually affecting the aerodynamics around the aircraft.

• The sensor must be able to measure the vertical wind speed.

• The standard deviation of the wind speed measurement should be small, at least in the
range of [2-4] m/s.

• The sensor must be able to produce reliable signals in the absence of aerosols.

• A good longitudinal resolution (the thickness of the air slice measured ahead).

• A good temporal resolution.

A sensor system that meets these requirements is a so-called short pulse UV Doppler LIDAR,
and was developed in (Schmitt, Pistner, Zeller, Diehl & Navé, 2007). This short pulse UV
Doppler LIDAR was successfully applied to an Airbus 340 to measure the vertical gust speed
(Schmitt, Rehm, Pistner, Diehl, Jenaro-Rabadan, Mirand & Reymond, 2007). The authors in
(Schmitt, Rehm, Pistner, Diehl, Jenaro-Rabadan, Mirand & Reymond, 2007) claimed that the
system is ready to be used to design feedforward control for gust loads alleviation.

Assuming a perfect gust perturbation signal can be measured via the LIDAR beam sensor,
that means, n(t) = w(t), the error signal, e(t), can be described by

e(t) = [H(q) + G(q)F(q)]w(t) (1)

In case the transfer functions in Eq. (1) are known, an ideal feedforward controller, F(q) =
Fi(q), can be obtained by

Fi(q) = − H(q)
G(q)

(2)

in case, Fi(q), is a stable and causal transfer function. The solution of Fi(q) in Eq. (2) assumes
full knowledge of G(q) and H(q). Moreover, the filter, Fi(q), may not be a causal or stable filter
due to the dynamics of G(q) and H(q) that dictate the solution of the feedforward controller,
Fi(q). An approximation of the feedforward filter, Fi(q), can be made by an output-error based
optimization that aims at finding the best causal and stable approximation, F(q), of the ideal
feedforward controller in Fi(q) in Eq. (2).

A direct adaptation of the feedforward controller F(q, θ) can be performed by considering the
parameterized error signal, e(t, θ),

e(t, θ) = H(q)w(t) + F(q, θ)G(q)w(t). (3)

Defining the signals
d(t) := H(q)w(t), u f (t) := −G(q)w(t) (4)
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can be largely reduced. As a result, the computation effort is greatly decreased, and
the performance of the feedforward controller for gust loads alleviation will be enhanced.
Furthermore, an FFT based PolyMAX identification method and the stabilization diagram
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dynamics.
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emerging design requirements for slender, more flexible and/or sizable aircraft such as the
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diagram of structural vibration control of a single input signal output (SISO) dynamic system
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gust perturbation, w(t), can be measured by the coherent LIDAR beam airborne wind sensor.
The measured signal, n(t), is fed into the feedforward controller, F, to calculate the control
surface demand, u(t), for vibration compensations. The structural vibrations are measured
by the accelerometers providing the error signal, e(t). G is the model/transfer function from
the corresponding control surface to the accelerometer sensor position, and which is so called
the secondary path.

In order to apply the feedforward control algorithm for gust loads alleviation, developing
a proper sensor to accurately measure the gust perturbation is crucial for the success of the
feedforward control application. As mentioned in (Schmitt, Pistner, Zeller, Diehl & Navé,
2007), such a sensor should meet the following criteria:
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• A feedforward-looking measuring of 50 to 150 m to ensure that the measured air flow is
the one actually affecting the aerodynamics around the aircraft.

• The sensor must be able to measure the vertical wind speed.

• The standard deviation of the wind speed measurement should be small, at least in the
range of [2-4] m/s.

• The sensor must be able to produce reliable signals in the absence of aerosols.

• A good longitudinal resolution (the thickness of the air slice measured ahead).

• A good temporal resolution.

A sensor system that meets these requirements is a so-called short pulse UV Doppler LIDAR,
and was developed in (Schmitt, Pistner, Zeller, Diehl & Navé, 2007). This short pulse UV
Doppler LIDAR was successfully applied to an Airbus 340 to measure the vertical gust speed
(Schmitt, Rehm, Pistner, Diehl, Jenaro-Rabadan, Mirand & Reymond, 2007). The authors in
(Schmitt, Rehm, Pistner, Diehl, Jenaro-Rabadan, Mirand & Reymond, 2007) claimed that the
system is ready to be used to design feedforward control for gust loads alleviation.

Assuming a perfect gust perturbation signal can be measured via the LIDAR beam sensor,
that means, n(t) = w(t), the error signal, e(t), can be described by

e(t) = [H(q) + G(q)F(q)]w(t) (1)

In case the transfer functions in Eq. (1) are known, an ideal feedforward controller, F(q) =
Fi(q), can be obtained by

Fi(q) = − H(q)
G(q)

(2)

in case, Fi(q), is a stable and causal transfer function. The solution of Fi(q) in Eq. (2) assumes
full knowledge of G(q) and H(q). Moreover, the filter, Fi(q), may not be a causal or stable filter
due to the dynamics of G(q) and H(q) that dictate the solution of the feedforward controller,
Fi(q). An approximation of the feedforward filter, Fi(q), can be made by an output-error based
optimization that aims at finding the best causal and stable approximation, F(q), of the ideal
feedforward controller in Fi(q) in Eq. (2).

A direct adaptation of the feedforward controller F(q, θ) can be performed by considering the
parameterized error signal, e(t, θ),

e(t, θ) = H(q)w(t) + F(q, θ)G(q)w(t). (3)

Defining the signals
d(t) := H(q)w(t), u f (t) := −G(q)w(t) (4)
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where d(t) can actually be measured, and u f (t) is called filtered input signal, Eq. (3) is reduced
to

e(t, θ) = d(t)− F(q, θ)u f (t) (5)

for which the minimization

min
θ

1
N

N

∑
t=1

e2(t, θ) (6)

to compute the optimal feedforward filter, F(q, θ), is a standard output-error (OE)
minimization problem in a prediction error framework (Ljung, 1999).

The minimization of Eq. (6) for limN→∞ can be rewritten into the frequency domain expression

min
θ

∫ −π

π
|H(ejw) + G(ejw)F(ejw, θ)|2 (7)

using Parceval’s theorem (Ljung, 1999). It can be observed that the standard output-error (OE)
minimization problem in Eq. (6) can be used to compute the optimal feedforward filter F(q, θ),
provided d(t) and u f (t) in Eq. (4) are available.
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Fig. 2. Block Diagram of the Structural Vibration Control with Adaptive Feedforward
Compensation.

For a proper derivation of the adaptation of the feedforward filter, F, an approximate model,
Ĝ, of the control path, G, is required to create the filtered signal, u f (t), for adaptive filtering
purpose. The adaptation of the feedforward filter is illustrated in Fig. 2. The filtered signal,
u f (t), and the error signal, e(t), are used for the computation of the coefficients of the
feedforward filter by the adaptive filtering. Thus, the coefficients of the feedforward filter,
F, can be updated at each time constant for structural vibration reduction.

3. ORThonormal Finite Impulse Response (ORTFIR) filter structure

In general, the feedforward filter, F, in Fig. 1 can be realized by adopting both the finite
impulse response (FIR) structure as well as the infinite impulse response (IIR) structure.
Because the FIR filter incorporates only zeros, it is always stable and it will provide a linear
phase response. It is the most popular adaptive filter widely used in adaptive filtering.
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Generally, the discrete time linear time invariant (LTI) FIR filter, F(q), can be presented as:

F(q) =
L−1

∑
k=0

βkq−k (8)

where q−1 denotes the usual time shift operator, q−1x(t) = x(t− 1). Adaptive filter estimation
using FIR filters converges to optimal and unbiased estimates irrespective of the coloring of
the noise on the output data. However, a FIR filter is usually too simple to model complex
system dynamics such as AE/ASE systems with many resonance modes being excited by
atmospheric perturbations. As a result, many tapped delay coefficients of the FIR filter are
required to approximate the optimal filter. Even though an IIR filter is appealing as an
alternative, the inherent stability and bias estimation problems limit the use of an IIR filter
for adaptive filtering in aeroservoelastic systems.

To improve the approximation properties of the adaptive filter, F, in Fig. 1, the linear
combination of tapped delay functions, q−1, in the FIR filter of Eq. (8) can be generalized
to the following form:

F(q, θ) =
L−1

∑
k=0

βkBk(q) (9)

where Bk(q) are generalized (orthonormal) basis functions (Heuberger et al., 1995) that contain
some a-priori knowledge on the desired filter dynamics. In other words, the orthonormal basis
functions that are used in the parametrization of the ORTFIR filter will be tuned on the fly by
taking full advantage of the modal information embedded in the flight data.

Construction of the Orthonormal Basis Sets

The application of orthonormal basis functions to parameterize and estimate dynamical
systems has obtained extensive attention in recent years. Different constructions of the
orthonormal basis structure has been reported in (Heuberger et al., 1995; Ninness &
Gustafsson, 1997; Zeng & de Callafon, 2006). It is assumed that the pole locations are already
known with the use of the standard open-loop prediction error system identification methods.
Suppose the poles {ξi}i=1,2,··· ,N are known, an all pass function, P(q), can be created by these
poles, and is given as

P(q) =
N

∏
i=1

[
1 − ξ∗i q
q − ξi

]
(10)

Let (A, B, C, D) be a minimal balanced realization of an all pass function, P(q), define the
input to state transfer function, B0(q) = (qI − A)−1B, then a set of functions, Bi(q), can be
obtained via

Bi(q) = B0(q)P
i(q) (11)

and Bi(q) has orthogonal property

1
2π j

∮
Bi(q)B

T
k (1/q)

dq
q

=

{
I i = k
0 i �= k (12)

The construction of the orthonormal basis function is illustrated in Fig. 3. It should be noted
that if B0(q), includes all information of a dynamical system, then only one parameter, β0,
needs to be estimated to approximate this dynamic system. It means that the parameters
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For a proper derivation of the adaptation of the feedforward filter, F, an approximate model,
Ĝ, of the control path, G, is required to create the filtered signal, u f (t), for adaptive filtering
purpose. The adaptation of the feedforward filter is illustrated in Fig. 2. The filtered signal,
u f (t), and the error signal, e(t), are used for the computation of the coefficients of the
feedforward filter by the adaptive filtering. Thus, the coefficients of the feedforward filter,
F, can be updated at each time constant for structural vibration reduction.

3. ORThonormal Finite Impulse Response (ORTFIR) filter structure

In general, the feedforward filter, F, in Fig. 1 can be realized by adopting both the finite
impulse response (FIR) structure as well as the infinite impulse response (IIR) structure.
Because the FIR filter incorporates only zeros, it is always stable and it will provide a linear
phase response. It is the most popular adaptive filter widely used in adaptive filtering.
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atmospheric perturbations. As a result, many tapped delay coefficients of the FIR filter are
required to approximate the optimal filter. Even though an IIR filter is appealing as an
alternative, the inherent stability and bias estimation problems limit the use of an IIR filter
for adaptive filtering in aeroservoelastic systems.

To improve the approximation properties of the adaptive filter, F, in Fig. 1, the linear
combination of tapped delay functions, q−1, in the FIR filter of Eq. (8) can be generalized
to the following form:
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where Bk(q) are generalized (orthonormal) basis functions (Heuberger et al., 1995) that contain
some a-priori knowledge on the desired filter dynamics. In other words, the orthonormal basis
functions that are used in the parametrization of the ORTFIR filter will be tuned on the fly by
taking full advantage of the modal information embedded in the flight data.

Construction of the Orthonormal Basis Sets

The application of orthonormal basis functions to parameterize and estimate dynamical
systems has obtained extensive attention in recent years. Different constructions of the
orthonormal basis structure has been reported in (Heuberger et al., 1995; Ninness &
Gustafsson, 1997; Zeng & de Callafon, 2006). It is assumed that the pole locations are already
known with the use of the standard open-loop prediction error system identification methods.
Suppose the poles {ξi}i=1,2,··· ,N are known, an all pass function, P(q), can be created by these
poles, and is given as

P(q) =
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∏
i=1

[
1 − ξ∗i q
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]
(10)

Let (A, B, C, D) be a minimal balanced realization of an all pass function, P(q), define the
input to state transfer function, B0(q) = (qI − A)−1B, then a set of functions, Bi(q), can be
obtained via
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The construction of the orthonormal basis function is illustrated in Fig. 3. It should be noted
that if B0(q), includes all information of a dynamical system, then only one parameter, β0,
needs to be estimated to approximate this dynamic system. It means that the parameters
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estimated will directly depend on the a-priori system information injected into the basis
functions, Bi(q). An important property and advantage of the ORTFIR filter is the knowledge
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Fig. 3. ORTFIR Filter Topology.

of the (desired) dynamical behavior can be incorporated throughout the basis functions, Bi(q).
As a result, an accurate description of the filter to be estimated can be achieved by a relatively
small number of coefficients.

Case Example: Illustration of the Advantage of Using ORTFIR Filter Over FIR Filter

A 4 degrees-of-freedom (DOF) lumped parameter system is considered to demonstrate the
advantage of using ORTFIR filter over FIR filter. An illustration of this 4-DOF lumped
parameter system is shown in Fig. 4, where ki and ci(i = 1, · · · , 5) indicate the system stiffness
and damping, respectively and mi(i = 1, · · · , 4) are the masses. The nominal values of these
parameters are given as,

Fig. 4. Lumped Parameter System.
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m1 = m2 = m3 = m4 = 1
k1 = k3 = k5 = 1750
k2 = k4 = 2000
c1 = c3 = c5 = 0.7
c2 = c4 = 0.8

(13)

A mathematical model of this lumped system can be easily derived with the use of Newton’s
second law. The natural frequencies and damping ratios of this lumped system are also
obtained. For simplicity purposes, all the units of this 4-DOF lumped system are omitted.
This mathematical model is applied in this case example as the real model, and an FIR model
and an ORTFIR model will be implemented to approximate this real model, respectively. To
facilitate the model estimation using input and output data of the 4-DOF lumped parameter
system, a band limited white noise (zero mean) is injected to the 4-DOF lumped parameter
system, and an additional band limited white noise (zero mean) is added to the output
response to simulate the measurement noise. With the collected input/output data, an FIR
filter with varying order is applied to fit the real model, the variance of the simulation error
(the difference of the measured and the simulated output) is used to indicate the performance
of the FIR filter. Furthermore, the PolyMAX identification method described in Section 4 is
applied in this case example to estimate the four physical modes. These estimated physical
modes (shown in Table 2, Section 4) are used for the basis function generation of the ORTFIR
filter. Finally, an eight order ORTFIR filter is applied to approximate the physical system. The
estimation results are shown in Table 1. From Table 1, it is clearly seen that with FIR filter,
the optimal FIR filter will be 400th order, with the smallest simulation error 36.18. However,
with the simplest eight order ORTFIR filter, the variance of the simulation error is only 13.18,
which is almost three times smaller than that of 400th order FIR filter. Fig. 5 compared the
model estimation results using 50th/400th order FIR filters and 8th order ORTFIR filter. From
Fig. 5, it is observed that with 50th order FIR filter, the essential dynamics of the physical
system can hardly be catched. With 400th order FIR filter, even though the physical system
can be correctly approximated, the estimated model has evident variation, especially in the
high frequency range. On the other hand, with 8th order ORTFIR filter, the physical system
can be perfectly approximated, no visible variation of the estimated model was found in a
wider frequency range.

Order 1000 500 400 300 200 100 50 8
Filter Type FIR FIR FIR FIR FIR FIR FIR ORTFIR

Variance of Simulation Error 42.53 36.46 36.18 36.70 40.28 52.91 70.10 13.18

Table 1. Model Estimation Results Using FIR Fiter and ORTFIR Filter.

4. Modal parameters estimation-frequency PolyMAX identification

A rather general frequency-domain identification method using the standard least squares
estimator algorithm is introduced and applied to extract the modal characteristics of a
dynamic system from a set of measured data. Consider a set of noisy complex Frequency
Response Functions (FRF) measurement data, G(ωj), (j = 1, · · · , N). The approximation of
the data by a model P(ω) is addressed by considering the following additive error,

E(ωj) = G(ωj)− P(ωj) j = 1, · · · , N (14)
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of the (desired) dynamical behavior can be incorporated throughout the basis functions, Bi(q).
As a result, an accurate description of the filter to be estimated can be achieved by a relatively
small number of coefficients.

Case Example: Illustration of the Advantage of Using ORTFIR Filter Over FIR Filter

A 4 degrees-of-freedom (DOF) lumped parameter system is considered to demonstrate the
advantage of using ORTFIR filter over FIR filter. An illustration of this 4-DOF lumped
parameter system is shown in Fig. 4, where ki and ci(i = 1, · · · , 5) indicate the system stiffness
and damping, respectively and mi(i = 1, · · · , 4) are the masses. The nominal values of these
parameters are given as,
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A mathematical model of this lumped system can be easily derived with the use of Newton’s
second law. The natural frequencies and damping ratios of this lumped system are also
obtained. For simplicity purposes, all the units of this 4-DOF lumped system are omitted.
This mathematical model is applied in this case example as the real model, and an FIR model
and an ORTFIR model will be implemented to approximate this real model, respectively. To
facilitate the model estimation using input and output data of the 4-DOF lumped parameter
system, a band limited white noise (zero mean) is injected to the 4-DOF lumped parameter
system, and an additional band limited white noise (zero mean) is added to the output
response to simulate the measurement noise. With the collected input/output data, an FIR
filter with varying order is applied to fit the real model, the variance of the simulation error
(the difference of the measured and the simulated output) is used to indicate the performance
of the FIR filter. Furthermore, the PolyMAX identification method described in Section 4 is
applied in this case example to estimate the four physical modes. These estimated physical
modes (shown in Table 2, Section 4) are used for the basis function generation of the ORTFIR
filter. Finally, an eight order ORTFIR filter is applied to approximate the physical system. The
estimation results are shown in Table 1. From Table 1, it is clearly seen that with FIR filter,
the optimal FIR filter will be 400th order, with the smallest simulation error 36.18. However,
with the simplest eight order ORTFIR filter, the variance of the simulation error is only 13.18,
which is almost three times smaller than that of 400th order FIR filter. Fig. 5 compared the
model estimation results using 50th/400th order FIR filters and 8th order ORTFIR filter. From
Fig. 5, it is observed that with 50th order FIR filter, the essential dynamics of the physical
system can hardly be catched. With 400th order FIR filter, even though the physical system
can be correctly approximated, the estimated model has evident variation, especially in the
high frequency range. On the other hand, with 8th order ORTFIR filter, the physical system
can be perfectly approximated, no visible variation of the estimated model was found in a
wider frequency range.

Order 1000 500 400 300 200 100 50 8
Filter Type FIR FIR FIR FIR FIR FIR FIR ORTFIR

Variance of Simulation Error 42.53 36.46 36.18 36.70 40.28 52.91 70.10 13.18

Table 1. Model Estimation Results Using FIR Fiter and ORTFIR Filter.

4. Modal parameters estimation-frequency PolyMAX identification

A rather general frequency-domain identification method using the standard least squares
estimator algorithm is introduced and applied to extract the modal characteristics of a
dynamic system from a set of measured data. Consider a set of noisy complex Frequency
Response Functions (FRF) measurement data, G(ωj), (j = 1, · · · , N). The approximation of
the data by a model P(ω) is addressed by considering the following additive error,

E(ωj) = G(ωj)− P(ωj) j = 1, · · · , N (14)

101Adaptive Feedforward Control for Gust Loads Alleviation



8 Will-be-set-by-IN-TECH

10
0

10
1

−50

−40

−30

−20

−10

0

10

20

30

40

50

M
ag

ni
tu

de
 [d

B
]

 

 
True 8th Order Model
50th Order FIR
400th Order FIR
8th Order ORTFIR

Fig. 5. Comparison of the Model Estimation Using the FIR and ORTFIR Filters.

Then, it is assumed that the model, P(ω), can be represented by a right polynomial fraction
matrix given by,

P(ω) = [B(ω)][A(ω)]−1 (15)

where P(ω) ∈ C p×m is the FRF matrix with p outputs and m inputs, B(ω) ∈ C p×m is the
numerator matrix polynomial, and A(ω) ∈ Cm×m is the denominator matrix polynomial.

The matrix polynomial B(ω) is parameterized by

B(ω) =
nb

∑
k=0

Bkξk(ω) (16)

where Bk ∈ Rp×m, and nb is the number of non-zero matrix coefficients in B(ω), or the order
of B(ω). ξk(ω) are the polynomial basis functions. For continuous time model, ξk(ω) = −iωk.
For discrete time model, ξk(ω) = e−iωkT (T is the sampling time).

The matrix polynomial A(ω) is parameterized by

A(ω) =
na

∑
k=0

Akξk(ω) (17)

where Ak ∈ Rm×m, and na is the number of non-zero matrix coefficients in A(ω).

Assuming that the coefficients of the denominator, A(ω), are [A0, A1, · · · , Ana ], then, a
constraint, A0 = Im, is set to obtain a stable model to fit the measured frequency-domain
data. Here, a constraint, Ana = Im, is adopted to extract physical modes from the measured
frequency-domain data (Cauberghe et al., 2004).

With, Ana = Im, the poles of the estimated model are separated into stable physical poles and
unstable mathematical poles, from which a very clean stabilization diagram can be obtained,
and the physical modal parameters of the real system can be estimated from a quick evaluation
of the generated stabilization diagram (Cauberghe et al., 2005).

The stabilization diagram assumes an increasing model order (number of poles noted in the
left ordinate axis), and it indicates where on the frequency axis the poles are located. As a
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rule, unstable poles are not considered in the plot. Physical poles will appear as stable poles,
independent of the number of the assumed model order. On the other hand, mathematical
poles that intent to model the noise embedded in the data, will change with the assumed
model order.

As an example, the 4-DOF lumped system used in the Section 3 is applied in this section to
demonstrate the PolyMAX identification method. Fig. 6 (a) depicts the stabilization diagram
for the 4-DOF lumped system where four physical modes can be easily appreciated with the
parameter constraint of Ana = I1. The estimation results can be easily extracted through the
access of the stabilization diagram, and they are shown in Table 2. However, with in An0 = I1,
the physical modes are difficult to extract from the stabilization diagram, because with this
parameter constraint, all the mathematical poles are also estimated as the stable poles. This
phenomenon is illustrated in Fig. 6 (b). In Fig. 6 (a) and (b), the solid curve indicates the
frequency response function (FRF) estimate from the input and output time domain data, the
dotted curve indicates the estimated model with the highest order 50. The right ordinate axis
is the magnitude in dB, and which is used to present in the frequency domain the magnitude
of the FRF and the estimated 50th order model. The markers indicate different damping values
of each estimated stable poles displayed in the stabilization diagram. The detailed meanings
of these damping markers are presented in Table 3.

In Table 2, the second column indicates the frequency and damping of the true modes.
The third column presents the estimated frequency and damping of the true modes using
the proposed PolyMAX identification method and stabilization diagram. Comparing the
estimated modes and real modes (calculated from the mathematical equation of motion of
4-DOF lumped system) in Table 2, it is obvious to see that the frequency, fi, and damping,
ζ i(i = 1, 2, 3, 4), of these four physical modes are estimated consistently.

Real Modes Identified Modes
f1(Hz) 4.1866 4.1868
f2(Hz) 7.8648 7.8630
f3(Hz) 11.3191 11.3303
f4(Hz) 13.1320 13.1320
ζ1(%) 0.5261 0.5622
ζ2(%) 0.9883 1.1035
ζ3(%) 1.4224 1.4836
ζ4(%) 1.6502 1.6333

Table 2. Comparison Between the Identified Modes and Real Modes.

Range of Damping Ratio Marker Sign
0 < ζ < 0.1% +

0.1% < ζ < 1% ×
1% < ζ < 2% ∗
2% < ζ < 4% ♦
4% < ζ < 6% ∇

6% < ζ �
Table 3. Damping Markers in the Stabilization Diagram
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and the physical modal parameters of the real system can be estimated from a quick evaluation
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poles that intent to model the noise embedded in the data, will change with the assumed
model order.

As an example, the 4-DOF lumped system used in the Section 3 is applied in this section to
demonstrate the PolyMAX identification method. Fig. 6 (a) depicts the stabilization diagram
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access of the stabilization diagram, and they are shown in Table 2. However, with in An0 = I1,
the physical modes are difficult to extract from the stabilization diagram, because with this
parameter constraint, all the mathematical poles are also estimated as the stable poles. This
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frequency response function (FRF) estimate from the input and output time domain data, the
dotted curve indicates the estimated model with the highest order 50. The right ordinate axis
is the magnitude in dB, and which is used to present in the frequency domain the magnitude
of the FRF and the estimated 50th order model. The markers indicate different damping values
of each estimated stable poles displayed in the stabilization diagram. The detailed meanings
of these damping markers are presented in Table 3.

In Table 2, the second column indicates the frequency and damping of the true modes.
The third column presents the estimated frequency and damping of the true modes using
the proposed PolyMAX identification method and stabilization diagram. Comparing the
estimated modes and real modes (calculated from the mathematical equation of motion of
4-DOF lumped system) in Table 2, it is obvious to see that the frequency, fi, and damping,
ζ i(i = 1, 2, 3, 4), of these four physical modes are estimated consistently.

Real Modes Identified Modes
f1(Hz) 4.1866 4.1868
f2(Hz) 7.8648 7.8630
f3(Hz) 11.3191 11.3303
f4(Hz) 13.1320 13.1320
ζ1(%) 0.5261 0.5622
ζ2(%) 0.9883 1.1035
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ζ4(%) 1.6502 1.6333

Table 2. Comparison Between the Identified Modes and Real Modes.
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Fig. 6. Illustration of Stabilization Diagram Using PolyMAX Identification Method (for the
Meaning of the Markers, See Table 3).

5. Recursive least square adaptive algorithm

The adaptive algorithm to be implemented is the Recursive Least Square (RLS) algorithm
(Haykin, 2002). Given the input and output data can be written in regressor form:

y(t) = φT(t)θ + e(t), θ = [β0, β1, ..., βL−1]
T (18)

where φT(t) = [uT
0 (t), ..., uT

L−1(t)] is the available input data vector, θ is the parameter
vector to be estimated of the ORTFIR feedforward controller, and e(t) is the residue error.
The parameters, θ, can be identified with the available input-output data up to time t by a
standard RLS algorithm. It is well known that the RLS algorithm at the steady-state operation
exhibits a windup problem if the forgetting factor remains constant, which will deteriorate the
estimation results. As a result, a variable forgetting factor (Park, 1991), is sought to prevent
this problem from occurring. The parameters, θ, can be estimated by the RLS algorithm using
a variable forgetting factor through a two steps approach at each sample time:

1. Compute the gain vector, k(t), and the parameters, θ̂(t), at the current sample time as:

θ̂(t) = θ̂(t − 1) + k(t)ξT(t) (19)
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ξ(t) = y(t)− θ̂T(t − 1)φ(t) (20)

k(t) =
P(t − 1)φ(t)

λ1(t) + φT(t)P(t − 1)φ(t)
(21)

2. Update the inverse correlation matrix, P(t), and the forgetting factor, λ(t):

P(t) = λ(t)−1
[
1 − k(t)φT(t)

]
P(t − 1) (22)

λ(t) = λmin + (1 − λmin) · 2−L(t)

L(t) = round(ρ · ξ(t)2)
(23)

where ρ is a design parameter which controls the change rate and the width of a unity
zone, ξ(t) is the estimation error which is calculated via Eq. (20). L(t) is defines as the
nearest integer of ρ · ξ(t)2 at each instant time step. λmin defines the lower bound of the λ.

In Eq. (23), it is shown that when the estimation error, ξ(t) and L(t) is small, 2−L(t) −→ 1,
and λ(t) −→ 1 at an exponential rate, and this rate is controller by ρ. When ξ(t) increases to
infinity, λ reaches its minimum value. The RLS minimization is posted as:

J(t) =
t

∑
i=1

λ(i)t−i[y(i)− θ̂(t)Tφ(i)]2 (24)

By choosing the variable forgetting factor indicated in Eq. (23), the fast decrease of the inverse
correlation matrix, P(t), can be avoided at the beginning of the estimation. In general this will
result in an accelerated convergence by maintaining a high adaptation at the beginning of the
estimation when the parameters, θ, are still far from the optimal value.

6. Application to closed loop F/A-18 AAW linear model

6.1 Linear aeroelastic solver formulation approach

A unified aeroelastic formulation to take into account the influence of aeroelastic effects on
the flight dynamic behavior of the whole aircraft has been developed in (Baldelli et al., 2006).

A general formulation of a flexible aircraft with respect to a body-fixed reference system
driven by aerodynamic, thrust, and gravity (g) forces and moments can be defined as:

m
[
V̇b + Ωb × Vb − Rbg(E) [0, 0, g]T

]
= FA + Fδ + FT + ΔF

JΩ̇b + Ωb × JΩb = MA + Mδ + MT + ΔM (25)

where, m and J are the air vehicle mass and inertia tensor, and Rbg(E) is the rotation mapping
from inertial to body-axes, (E = [ φ, θ, ψ ]).

Eq. (25) is driven by the forces and moments on its right hand side, where FA and MA are
the external aerodynamic forces and moments on the air vehicle. FA and MA are a function
of the aerodynamic flight states (V α, β, E, . . . , etc.), Mach number, body angular rates (Ωb),
and control surface deflections and are usually obtained by wind-tunnel or flight tests. In
either case, the quasi-steady influence of the deformed air-vehicle is included by considering
flexible-to-rigid ratios or Parameter Identification (PID) techniques, (Morelli, 1995; Morelli &
Klein, 1997). Fδ and Mδ are the aerodynamic forces and moments from the control surfaces
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Meaning of the Markers, See Table 3).

5. Recursive least square adaptive algorithm

The adaptive algorithm to be implemented is the Recursive Least Square (RLS) algorithm
(Haykin, 2002). Given the input and output data can be written in regressor form:

y(t) = φT(t)θ + e(t), θ = [β0, β1, ..., βL−1]
T (18)

where φT(t) = [uT
0 (t), ..., uT

L−1(t)] is the available input data vector, θ is the parameter
vector to be estimated of the ORTFIR feedforward controller, and e(t) is the residue error.
The parameters, θ, can be identified with the available input-output data up to time t by a
standard RLS algorithm. It is well known that the RLS algorithm at the steady-state operation
exhibits a windup problem if the forgetting factor remains constant, which will deteriorate the
estimation results. As a result, a variable forgetting factor (Park, 1991), is sought to prevent
this problem from occurring. The parameters, θ, can be estimated by the RLS algorithm using
a variable forgetting factor through a two steps approach at each sample time:

1. Compute the gain vector, k(t), and the parameters, θ̂(t), at the current sample time as:

θ̂(t) = θ̂(t − 1) + k(t)ξT(t) (19)
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ξ(t) = y(t)− θ̂T(t − 1)φ(t) (20)

k(t) =
P(t − 1)φ(t)

λ1(t) + φT(t)P(t − 1)φ(t)
(21)

2. Update the inverse correlation matrix, P(t), and the forgetting factor, λ(t):

P(t) = λ(t)−1
[
1 − k(t)φT(t)

]
P(t − 1) (22)

λ(t) = λmin + (1 − λmin) · 2−L(t)

L(t) = round(ρ · ξ(t)2)
(23)

where ρ is a design parameter which controls the change rate and the width of a unity
zone, ξ(t) is the estimation error which is calculated via Eq. (20). L(t) is defines as the
nearest integer of ρ · ξ(t)2 at each instant time step. λmin defines the lower bound of the λ.

In Eq. (23), it is shown that when the estimation error, ξ(t) and L(t) is small, 2−L(t) −→ 1,
and λ(t) −→ 1 at an exponential rate, and this rate is controller by ρ. When ξ(t) increases to
infinity, λ reaches its minimum value. The RLS minimization is posted as:

J(t) =
t

∑
i=1

λ(i)t−i[y(i)− θ̂(t)Tφ(i)]2 (24)

By choosing the variable forgetting factor indicated in Eq. (23), the fast decrease of the inverse
correlation matrix, P(t), can be avoided at the beginning of the estimation. In general this will
result in an accelerated convergence by maintaining a high adaptation at the beginning of the
estimation when the parameters, θ, are still far from the optimal value.

6. Application to closed loop F/A-18 AAW linear model

6.1 Linear aeroelastic solver formulation approach

A unified aeroelastic formulation to take into account the influence of aeroelastic effects on
the flight dynamic behavior of the whole aircraft has been developed in (Baldelli et al., 2006).

A general formulation of a flexible aircraft with respect to a body-fixed reference system
driven by aerodynamic, thrust, and gravity (g) forces and moments can be defined as:

m
[
V̇b + Ωb × Vb − Rbg(E) [0, 0, g]T

]
= FA + Fδ + FT + ΔF

JΩ̇b + Ωb × JΩb = MA + Mδ + MT + ΔM (25)

where, m and J are the air vehicle mass and inertia tensor, and Rbg(E) is the rotation mapping
from inertial to body-axes, (E = [ φ, θ, ψ ]).

Eq. (25) is driven by the forces and moments on its right hand side, where FA and MA are
the external aerodynamic forces and moments on the air vehicle. FA and MA are a function
of the aerodynamic flight states (V α, β, E, . . . , etc.), Mach number, body angular rates (Ωb),
and control surface deflections and are usually obtained by wind-tunnel or flight tests. In
either case, the quasi-steady influence of the deformed air-vehicle is included by considering
flexible-to-rigid ratios or Parameter Identification (PID) techniques, (Morelli, 1995; Morelli &
Klein, 1997). Fδ and Mδ are the aerodynamic forces and moments from the control surfaces
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commanded by the flight control system and pilot inputs while FT and MT includes the thrust
loads.

In addition, ΔF and ΔM are the aeroelastic incremental loads due to the structural deformation.
Usually, these loads are assumed to be quasi-statics and can be computed by a static
aeroelastic analysis. However, this quasi-static assumption may not be sufficient for a highly
reconfigurable and flexible aircraft like the new generation of Morphing UAV, HALEs, etc.,
where the interaction between the dynamic structural deformation due to unsteady flow and
rigid body motion can play an important role.

During the integration process, the aeroelastic equations of motion underwent two similarity
transformation steps, so the generalized coordinates related with the six rigid-body modes
originally defined in principle axes are mapped into the airframe states (stability-axes
definition). Specifically, for symmetric maneuvers the transformation matrix, [TA]long (Baldelli
et al., 2006), reads as: ⎧

⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Tx
Tz
Ry
Ṫx
Ṫz
Ṙy

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 −1 0 0 0 0
0 0 0 −V V 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

� �� �
[TA ]long

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x
u
h
α
θ
q

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(26)

For an anti-symmetric maneuver, [TA]lat is,
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ty
Rx
Rz
Ṫy
Ṙx
Ṙz

⎫⎪⎪⎪⎪⎪⎬
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=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 V 0 0 0 V
0 0 −1 0 0 0
0 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎦

� �� �
[TA ]lat

⎧⎪⎪⎪⎪⎪⎨
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y
β
p
r
φ
ψ

⎫⎪⎪⎪⎪⎪⎬
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(27)

For an asymmetric maneuver, the matrix [TA] ∈ R12×12 will be composed by the proper
allocation of the elements that form the rows and columns of the [TA]long and [TA]lat matrices.

In this new coordinate system, the linear aeroelastic Equations of Motion (EoM) are:
��

Mrr 0
0 Mee

�
s2 +

�
Crr 0
0 Cee

�
s +

�
Krr 0
0 Kee

���
ξas
ηe

�
=

q∞

��
Qrr(s) Qre(s)
Qer(s) Qee(s)

� �
ξas
ηe

�
+

�
Qrδ(s)
Qeδ(s)

�
δu +

�
1
V

QrG(s)
QeG(s)

�
wG

�
(28)

where wG is the gust input; the elastic generalized coordinates, ηe, input, and δu , vectors are,

ηT
e =

�
ηe1 , . . . , ηeNe

�T

δT
u =

�
δelev, δail , δrud, . . .

�T

It should be noted that the equations are only coupled via external forces and moments. In
addition, after the transformation is applied the generalized mass matrix of the finite element
model, it is no longer necessarily diagonal. In fact, the sub-matrix, Mrr, associated with the
rigid body modes is identical to the mass matrix in the flight dynamics equation; i.e. the
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off-diagonal terms contain the products of inertia,

Mrr = diag(mI3, J) (29)

Usually, the aerodynamic force coefficient matrix, Q(s), is approximated using the Rational
Function Approximation (RFA) approach as

Q(s) = [A0] + [A1]
L
V

s + [A2]
L2

V2 s2 + [D]

�
sI − V

L
[R]

�−1
[E] s (30)

where the [Ai], i = 0, 1, 2, [D] and [E] matrices are column partitioned as,

[Ai] =
�

Ar Ae Aδ

�
(31)

where i = r, e, δ are the airframe, elastic and control related states.

In this formulation, the [Ai] coefficient matrices represent the quasi-steady aerodynamic
forces, and the remanent terms are used to model the flow unsteadiness by Padé
approximation.

Using the Minimum-State approach during the RFA implemented in the ZAERO/ASE module
(Karpel, 1992), and due to the performed similarity transformation the aero-lag terms are
computed as,

{ẋL} =
V
L
[R] {xL}+

�
EL∗ ELr ELe ELδ

�
⎧⎪⎪⎨
⎪⎪⎩

ξas
ξ̇as
η̇e
δu̇

⎫⎪⎪⎬
⎪⎪⎭

(32)

zL =
�

D
� �

xL
�

(33)

By including Eqs. (30) and (32) into Eq. (28), the aeroelastic EoM can now be easily partitioned
in accordance with the airframe degrees of freedom, elastic dynamics, aerodynamic lag terms,
a set of control inputs and gust perturbation as:
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ẇG

�
(34)

where Aξas
, Aξ̇as

and EL∗ are coupling matrices due to the similarity transformation executed.
Now, the aeroelastic incremental loads, ΔF and ΔM, should be implemented in a way to
allow a seamless integration between the nonlinear flight dynamics and the linear aeroelastic
EoMs. In fact, this can be easily achieved in accordance with the partitions showed in Eq. (34)
between rigid, elastic and aerodynamic lag dynamics. Hence, the aeroelastic incremental
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commanded by the flight control system and pilot inputs while FT and MT includes the thrust
loads.

In addition, ΔF and ΔM are the aeroelastic incremental loads due to the structural deformation.
Usually, these loads are assumed to be quasi-statics and can be computed by a static
aeroelastic analysis. However, this quasi-static assumption may not be sufficient for a highly
reconfigurable and flexible aircraft like the new generation of Morphing UAV, HALEs, etc.,
where the interaction between the dynamic structural deformation due to unsteady flow and
rigid body motion can play an important role.

During the integration process, the aeroelastic equations of motion underwent two similarity
transformation steps, so the generalized coordinates related with the six rigid-body modes
originally defined in principle axes are mapped into the airframe states (stability-axes
definition). Specifically, for symmetric maneuvers the transformation matrix, [TA]long (Baldelli
et al., 2006), reads as: ⎧

⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Tx
Tz
Ry
Ṫx
Ṫz
Ṙy

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 −1 0 0 0 0
0 0 0 −V V 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

� �� �
[TA ]long

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x
u
h
α
θ
q

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(26)

For an anti-symmetric maneuver, [TA]lat is,
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ty
Rx
Rz
Ṫy
Ṙx
Ṙz

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 V 0 0 0 V
0 0 −1 0 0 0
0 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎦

� �� �
[TA ]lat

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y
β
p
r
φ
ψ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(27)

For an asymmetric maneuver, the matrix [TA] ∈ R12×12 will be composed by the proper
allocation of the elements that form the rows and columns of the [TA]long and [TA]lat matrices.

In this new coordinate system, the linear aeroelastic Equations of Motion (EoM) are:
��

Mrr 0
0 Mee

�
s2 +

�
Crr 0
0 Cee

�
s +

�
Krr 0
0 Kee

���
ξas
ηe

�
=

q∞

��
Qrr(s) Qre(s)
Qer(s) Qee(s)

� �
ξas
ηe

�
+

�
Qrδ(s)
Qeδ(s)

�
δu +

�
1
V

QrG(s)
QeG(s)

�
wG

�
(28)

where wG is the gust input; the elastic generalized coordinates, ηe, input, and δu , vectors are,

ηT
e =

�
ηe1 , . . . , ηeNe

�T

δT
u =

�
δelev, δail , δrud, . . .

�T

It should be noted that the equations are only coupled via external forces and moments. In
addition, after the transformation is applied the generalized mass matrix of the finite element
model, it is no longer necessarily diagonal. In fact, the sub-matrix, Mrr, associated with the
rigid body modes is identical to the mass matrix in the flight dynamics equation; i.e. the
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off-diagonal terms contain the products of inertia,

Mrr = diag(mI3, J) (29)

Usually, the aerodynamic force coefficient matrix, Q(s), is approximated using the Rational
Function Approximation (RFA) approach as

Q(s) = [A0] + [A1]
L
V

s + [A2]
L2

V2 s2 + [D]

�
sI − V

L
[R]

�−1
[E] s (30)

where the [Ai], i = 0, 1, 2, [D] and [E] matrices are column partitioned as,

[Ai] =
�

Ar Ae Aδ

�
(31)

where i = r, e, δ are the airframe, elastic and control related states.

In this formulation, the [Ai] coefficient matrices represent the quasi-steady aerodynamic
forces, and the remanent terms are used to model the flow unsteadiness by Padé
approximation.

Using the Minimum-State approach during the RFA implemented in the ZAERO/ASE module
(Karpel, 1992), and due to the performed similarity transformation the aero-lag terms are
computed as,

{ẋL} =
V
L
[R] {xL}+

�
EL∗ ELr ELe ELδ

�
⎧⎪⎪⎨
⎪⎪⎩

ξas
ξ̇as
η̇e
δu̇

⎫⎪⎪⎬
⎪⎪⎭

(32)

zL =
�

D
� �

xL
�

(33)

By including Eqs. (30) and (32) into Eq. (28), the aeroelastic EoM can now be easily partitioned
in accordance with the airframe degrees of freedom, elastic dynamics, aerodynamic lag terms,
a set of control inputs and gust perturbation as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ̇as
ξ̈as
η̇e
η̈e
ẋL

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

Aξas
Aξ̇as

0 0 0
Arr0 Arr1 Are0 Are1 ArL

0 0 0 I 0
Aer0 Aer1 Aee0 Aee1 AeL
EL∗ ELr 0 ELe

V
L R

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξas
ξ̇as
ηe
η̇e
xL

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎣

0 0 0
Br0 Br1 Br2

0 0 0
Be0 Be1 Be2

0 ELδ 0

⎤
⎥⎥⎥⎥⎦

⎧⎨
⎩

δu
δu̇
δü

⎫⎬
⎭+

⎡
⎢⎢⎢⎢⎣

0 0
Brw1 Brw2

0 0
Bew1 Bew2

0 ErG

⎤
⎥⎥⎥⎥⎦

�
wG
ẇG

�
(34)

where Aξas
, Aξ̇as

and EL∗ are coupling matrices due to the similarity transformation executed.
Now, the aeroelastic incremental loads, ΔF and ΔM, should be implemented in a way to
allow a seamless integration between the nonlinear flight dynamics and the linear aeroelastic
EoMs. In fact, this can be easily achieved in accordance with the partitions showed in Eq. (34)
between rigid, elastic and aerodynamic lag dynamics. Hence, the aeroelastic incremental
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loads are computed similarly to the approximation given by Eq. (30),
�

ΔF
ΔM

�
= q∞

�
A0re η̄e + A1re

L
V

η̇e + A2re

L2

V2 η̈e + DrexLe

�
(35)

Clearly to implement this algebraic equation, the generalized coordinate, η̄e = ηe − ηe0 , its
rate, η̇e, and acceleration, η̈e, vectors as well as the aerodynamic lag terms related with the
elastic modes, xLe , must be estimated at each time iteration.

Note that the Minimum-State method is formulated to only use a single set of lag states, xL, in
Eq. (32). Therefore, the following augmented equation is devised to decouple the generalized
coordinates’ aero lag terms from the airframe states, ξas and ξ̇as, related ones,

�
ẋLas

ẋLe

�
=

� V
L R 0
0 V

L R

��
xLas

xLe

�
+

�
EL∗ ELr 0 ELe

0 0 0 ELe

�
⎧⎪⎪⎨
⎪⎪⎩

ξas
ξ ȧs
ηe
η̇e

⎫⎪⎪⎬
⎪⎪⎭

+

�
0 0.5ELδ 0
0 0.5ELδ 0

� ⎧⎨
⎩

δu
δu̇
δü

⎫⎬
⎭+

�
0 0.5ErG
0 0.5ErG

� �
wG
ẇG

�
(36)

�
zLas

zLe

�
=

�
D D

� � xLas

xLe

�

In this way, only elastic lag terms are considered to avoid any possible coupling with the
rigid-body airframe related states (i.e. ξas and ξ ȧs). Now, the following differential equation
is obtained combining the lower partition of Eq. (34) with the new devised Eq. (36).

⎧
⎪⎪⎨
⎪⎪⎩

η̇e
η̈e

ẋLas

ẋLe

⎫
⎪⎪⎬
⎪⎪⎭

� �� �
ẋe

=

⎡
⎢⎢⎣

0 I 0 0
Aee0 Aee1 AeL AeL

0 ELe
V
c̄ R 0

0 ELe 0 V
c̄ R

⎤
⎥⎥⎦

� �� �
A

⎧
⎪⎪⎨
⎪⎪⎩

ηe
η̇e

xLas

xLe

⎫
⎪⎪⎬
⎪⎪⎭

� �� �
xe

+

⎡
⎢⎢⎣

0 0 0
Be0 Be1 Be2

0 0.5ELδ 0
0 0.5ELδ 0

⎤
⎥⎥⎦

� �� �
B1

⎧⎨
⎩

δu
δu̇
δü

⎫⎬
⎭

� �� �
δU

+

⎡
⎢⎢⎣

0 0
Aer0 Aer1

EL∗ ELr
0 0

⎤
⎥⎥⎦

� �� �
B2

�
δξas

δξ̇as

�

� �� �
δξ

+

⎡
⎢⎢⎣

0 0
Bew1 Bew2

0 0.5ErG
0 0.5ErG

⎤
⎥⎥⎦

� �� �
B3

�
wG
ẇG

�

� �� �
w

(37)

where δξas
and δu are defined as the incremental airframe states and inputs (perturbation from

trim values),

δξas = ξas − ξas|0 (38)

δu = u − u|0 (39)

ξas|0 and u|0 being the airframe state and input vectors computed at some specific trim
condition ab-initio of the simulation run. Using a short notation form, Eq. (37) can be expressed
as,

ẋe = A xe + B1 δU + B2 δξ + B3 w (40)
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The previous equation is used to estimate the elastic and lag states as a function of the
incremental control input, (δT

U = [ δT
u , δT

u̇ , δT
ü ]T ), and incremental airframe states, (δT

ξ =

[ δT
ξas

, δT
ξ̇as

]T ) at each time iteration.

The quasi-static elastic deformation , ηe0, is computed by static residualization of the elastic
modes, that is the η̇e = η̈e = xLe = 0 condition needs to be fulfilled. Therefore, the quasi-static
elastic influence is estimated from Eq. (40) as:

ẋe = 0 =⇒ xe = −A−1(B1 δU + B2 δxi + B3 w) (41)

and from xe the quasi-static elastic influence vector, ηe0, can be recovered.

In summary, the linear aeroelastic solver will be built based on:
1. Algebraic Eq. (35) to compute the incremental aeroelastic loads, ΔF and ΔM.
2. First-order differential Eq. (40) to compute the generalized coordinates related vectors η̄e,

η̇e, and η̈e, as well as the aerodynamic lag terms related with the elastic modes, xLe .
3. Algebraic Eq. (41) to estimate the quasi-static deformation vector ηe0 at that specific flight

condition.

Fig. 7 illustrates the interconnection of the F/A-18 AAW 6-DOF Dynamics subsystem
and the Incremental Aeroelastic Solver, Control Surface Mixer and Control
Command Transform blocks.

Fig. 7. Addition of the Incremental Aeroelastic Loads Solver to the Nonlinear Rigid-Body
6-DOF Subsystem.

6.2 Closed loop F/A-18 AAW linear model with gust excitation

In order to demonstrate the proposed feedforward filter design algorithm, a simplified closed
loop F/A-18 AAW linear simulink model with gust excitation is developed/implemented
for the evaluation purposes. This high-fidelity aeroelastic model was developed using the
following elements:
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loads are computed similarly to the approximation given by Eq. (30),
�

ΔF
ΔM

�
= q∞

�
A0re η̄e + A1re

L
V

η̇e + A2re

L2

V2 η̈e + DrexLe

�
(35)

Clearly to implement this algebraic equation, the generalized coordinate, η̄e = ηe − ηe0 , its
rate, η̇e, and acceleration, η̈e, vectors as well as the aerodynamic lag terms related with the
elastic modes, xLe , must be estimated at each time iteration.

Note that the Minimum-State method is formulated to only use a single set of lag states, xL, in
Eq. (32). Therefore, the following augmented equation is devised to decouple the generalized
coordinates’ aero lag terms from the airframe states, ξas and ξ̇as, related ones,

�
ẋLas

ẋLe

�
=

� V
L R 0
0 V

L R

��
xLas

xLe

�
+

�
EL∗ ELr 0 ELe

0 0 0 ELe

�
⎧⎪⎪⎨
⎪⎪⎩

ξas
ξ ȧs
ηe
η̇e

⎫⎪⎪⎬
⎪⎪⎭

+
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⎫⎬
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0 0.5ErG

� �
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zLas

zLe

�
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D D

� � xLas

xLe

�

In this way, only elastic lag terms are considered to avoid any possible coupling with the
rigid-body airframe related states (i.e. ξas and ξ ȧs). Now, the following differential equation
is obtained combining the lower partition of Eq. (34) with the new devised Eq. (36).

⎧
⎪⎪⎨
⎪⎪⎩

η̇e
η̈e
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ẋLe

⎫
⎪⎪⎬
⎪⎪⎭
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⎥⎥⎦
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⎥⎥⎦

� �� �
B1

⎧⎨
⎩

δu
δu̇
δü
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⎡
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δξ̇as

�
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⎡
⎢⎢⎣

0 0
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0 0.5ErG

⎤
⎥⎥⎦
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ẇG
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� �� �
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where δξas
and δu are defined as the incremental airframe states and inputs (perturbation from

trim values),

δξas = ξas − ξas|0 (38)

δu = u − u|0 (39)

ξas|0 and u|0 being the airframe state and input vectors computed at some specific trim
condition ab-initio of the simulation run. Using a short notation form, Eq. (37) can be expressed
as,

ẋe = A xe + B1 δU + B2 δξ + B3 w (40)
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The previous equation is used to estimate the elastic and lag states as a function of the
incremental control input, (δT

U = [ δT
u , δT

u̇ , δT
ü ]T ), and incremental airframe states, (δT

ξ =

[ δT
ξas

, δT
ξ̇as

]T ) at each time iteration.

The quasi-static elastic deformation , ηe0, is computed by static residualization of the elastic
modes, that is the η̇e = η̈e = xLe = 0 condition needs to be fulfilled. Therefore, the quasi-static
elastic influence is estimated from Eq. (40) as:

ẋe = 0 =⇒ xe = −A−1(B1 δU + B2 δxi + B3 w) (41)

and from xe the quasi-static elastic influence vector, ηe0, can be recovered.

In summary, the linear aeroelastic solver will be built based on:
1. Algebraic Eq. (35) to compute the incremental aeroelastic loads, ΔF and ΔM.
2. First-order differential Eq. (40) to compute the generalized coordinates related vectors η̄e,

η̇e, and η̈e, as well as the aerodynamic lag terms related with the elastic modes, xLe .
3. Algebraic Eq. (41) to estimate the quasi-static deformation vector ηe0 at that specific flight

condition.

Fig. 7 illustrates the interconnection of the F/A-18 AAW 6-DOF Dynamics subsystem
and the Incremental Aeroelastic Solver, Control Surface Mixer and Control
Command Transform blocks.

Fig. 7. Addition of the Incremental Aeroelastic Loads Solver to the Nonlinear Rigid-Body
6-DOF Subsystem.

6.2 Closed loop F/A-18 AAW linear model with gust excitation

In order to demonstrate the proposed feedforward filter design algorithm, a simplified closed
loop F/A-18 AAW linear simulink model with gust excitation is developed/implemented
for the evaluation purposes. This high-fidelity aeroelastic model was developed using the
following elements:

109Adaptive Feedforward Control for Gust Loads Alleviation



16 Will-be-set-by-IN-TECH

• Six-degree-of-freedom solver using Euler angles subsystem.

• The AAW flight control system.

• Actuators and sensors.

• Aerodynamic Forces and Moments subsystem using the set of non-dimensional stability
and control derivatives obtained through a set of AAW parameter identification flight tests.

• An incremental aeroelastic load solver including gust excitation generated by the ZAERO
software system using rational function approximation techniques.

For continuous vertical gust perturbation, a low pass filter followed by a Dryden vertical
velocity shaping filter is used to shape the power of the gust perturbation. The low pass
filter is used to obtain the derivative of the gust perturbation. The low pass filter is given as
TLPF(s) = a

s+a where a = 200π rad/s is chosen in the remainder of the section.

The Dryden vertical velocity shaping filter is given as

Tg(s) = σwG

√
3τ−1/2

g s + τ−3/2
g

(s + 1/τg)2

where τg = Lg/V, and Lg = 1750 f t, V is the aircraft body axis velocity; σwG = 100 f t/s.

For a more detailed development of the F/A-18 AAW simulink model with gust excitation,
please refer to the NASA SBIR Phase I final report (Zeng & de Callafon, 2008). The
implementation of the adaptive feedforward control algorithm to the linearized F/A-18 AAW
simulink model is illustrated in Fig. 8. It should be noted that during the simulation study
considered in this paper, the dynamics of airborne LIDAR turbulence sensor has not been
considered. We assumed that a perfect gust perturbation can be measured by the airborne
LIDAR turbulence sensor, i.e., the sensor dynamics has an ideal constant dynamics of 1.
However, the practical effects of the airborne LIDAR turbulence sensor on the performance of
the feedforward controller has to be addressed in the future study.

6.3 Implementation of the adaptive feedforward control

The construction of the feedforward controller can be separated into two steps, initialization
and the recursive estimation of the filter. In the initialization step, a secondary path transfer
function, G(q), is estimated, which is done by performing an experiment using an external
signal injected into the left and right trailing edge flaps as the excitation signal, and the error
signal, e(t), as the output signal. Since, Ĝ(q), is only used for filtering purposes, a high order
model can be estimated to provide an accurate reconstruction of the filtered input, û f (t), via

û f (t) = Ĝ(q)w(t) (42)

as described in Eq. (4).

To facilitate the use of the ORTFIR filter, a set of modal parameters need to be extracted to
build the ORTFIR filter, using the frequency domain PolyMAX identification methodology in
Section 4. With û f (t) given in Eq. (42) and d(t) = H(q)w(t) in place, the modal parameters
can be easily estimated using the PolyMAX method. With the signal, d(t), û f (t) and the basis
function, Bi(q), a recursive minimization of the feedforward filter is done via the recursive
least squares minimization technique described in Section 5.
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Fig. 8. Closed Loop F/A-18 AAW Linear Simulink Model.

The error signal, e(t), can be selected as the vertical accelerometer reading at the aircraft
left/right wing folder positions, i.e., Nzkm023R or Nzkm023L. An alternative choice could be

e(t) =
[

Nzkm023R + Nzkm023L
2

− Nzcg

]
(43)

In this paper, Eq. (43) is served as a feedback signal for feedforward filter design purpose. The
advantage of choosing Eq. (43) is that the rigid body dynamics can be partly removed, and
the vertical wing bending is still observed.

Upon initialization of the feedforward controller, a 20th order ORTFIR model, Ĝ(q), was
estimated in order to create the filtered signal, û f (t). The amplitude bode plot of the estimated,
Ĝ(q), is shown in Fig. 9.

The modes used to build the orthonormal basis, Bi(q) are extracted from the stabilization
diagram in Fig. 10. From Fig. 10, five elastic modes can be extracted, and they are shown in
Table 4.

PolyMAX Identification
Mode Number Frequency [Hz] Damping ζ [%]

1 5.9246 4.5311
2 10.083 4.182
3 13.602 10.072
4 18.377 2.7409
5 21.569 2.5183

Table 4. Estimated Modes of Feedforward Filter Using FFT-PolyMAX Method.
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• Six-degree-of-freedom solver using Euler angles subsystem.

• The AAW flight control system.

• Actuators and sensors.

• Aerodynamic Forces and Moments subsystem using the set of non-dimensional stability
and control derivatives obtained through a set of AAW parameter identification flight tests.

• An incremental aeroelastic load solver including gust excitation generated by the ZAERO
software system using rational function approximation techniques.

For continuous vertical gust perturbation, a low pass filter followed by a Dryden vertical
velocity shaping filter is used to shape the power of the gust perturbation. The low pass
filter is used to obtain the derivative of the gust perturbation. The low pass filter is given as
TLPF(s) = a

s+a where a = 200π rad/s is chosen in the remainder of the section.

The Dryden vertical velocity shaping filter is given as

Tg(s) = σwG

√
3τ−1/2

g s + τ−3/2
g

(s + 1/τg)2

where τg = Lg/V, and Lg = 1750 f t, V is the aircraft body axis velocity; σwG = 100 f t/s.

For a more detailed development of the F/A-18 AAW simulink model with gust excitation,
please refer to the NASA SBIR Phase I final report (Zeng & de Callafon, 2008). The
implementation of the adaptive feedforward control algorithm to the linearized F/A-18 AAW
simulink model is illustrated in Fig. 8. It should be noted that during the simulation study
considered in this paper, the dynamics of airborne LIDAR turbulence sensor has not been
considered. We assumed that a perfect gust perturbation can be measured by the airborne
LIDAR turbulence sensor, i.e., the sensor dynamics has an ideal constant dynamics of 1.
However, the practical effects of the airborne LIDAR turbulence sensor on the performance of
the feedforward controller has to be addressed in the future study.

6.3 Implementation of the adaptive feedforward control

The construction of the feedforward controller can be separated into two steps, initialization
and the recursive estimation of the filter. In the initialization step, a secondary path transfer
function, G(q), is estimated, which is done by performing an experiment using an external
signal injected into the left and right trailing edge flaps as the excitation signal, and the error
signal, e(t), as the output signal. Since, Ĝ(q), is only used for filtering purposes, a high order
model can be estimated to provide an accurate reconstruction of the filtered input, û f (t), via

û f (t) = Ĝ(q)w(t) (42)

as described in Eq. (4).

To facilitate the use of the ORTFIR filter, a set of modal parameters need to be extracted to
build the ORTFIR filter, using the frequency domain PolyMAX identification methodology in
Section 4. With û f (t) given in Eq. (42) and d(t) = H(q)w(t) in place, the modal parameters
can be easily estimated using the PolyMAX method. With the signal, d(t), û f (t) and the basis
function, Bi(q), a recursive minimization of the feedforward filter is done via the recursive
least squares minimization technique described in Section 5.
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The error signal, e(t), can be selected as the vertical accelerometer reading at the aircraft
left/right wing folder positions, i.e., Nzkm023R or Nzkm023L. An alternative choice could be

e(t) =
[

Nzkm023R + Nzkm023L
2

− Nzcg

]
(43)

In this paper, Eq. (43) is served as a feedback signal for feedforward filter design purpose. The
advantage of choosing Eq. (43) is that the rigid body dynamics can be partly removed, and
the vertical wing bending is still observed.

Upon initialization of the feedforward controller, a 20th order ORTFIR model, Ĝ(q), was
estimated in order to create the filtered signal, û f (t). The amplitude bode plot of the estimated,
Ĝ(q), is shown in Fig. 9.

The modes used to build the orthonormal basis, Bi(q) are extracted from the stabilization
diagram in Fig. 10. From Fig. 10, five elastic modes can be extracted, and they are shown in
Table 4.

PolyMAX Identification
Mode Number Frequency [Hz] Damping ζ [%]

1 5.9246 4.5311
2 10.083 4.182
3 13.602 10.072
4 18.377 2.7409
5 21.569 2.5183

Table 4. Estimated Modes of Feedforward Filter Using FFT-PolyMAX Method.
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For implementation purposes, only L = 2 parameters in the ORTFIR filter are estimated.
With a 10th order basis, Bi(q), this amounts to 20th order ORTFIR filter. To evaluate the
performance of the proposed ORTFIR filter for feedforward compensation, a 20th order Finite
Impulse Response Filter is also designed to reduce the vertical wing vibration.

For a clear performance comparison between FIR filter and ORTFIR filter, the frequency
response of the Nzkm023R, and Nzkm023L using FIR filter and ORTFIR filter are plotted in Fig. 11
and Fig. 12, respectively. The solid line in Fig. 11 (a) is the auto spectrum of the accelerometer
measurement Nzkm023R without feedforward controller integrated in the system; the dashed
line in Fig. 11(a) indicates the auto spectrum of the accelerometer measurement Nzkm023R
with the adaptive feedforward controller using FIR filter added in the system; the dotted
line in Fig. 11 shows the auto spectrum of the accelerometer measurement Nzkm023R with the
adaptive feedforward controller using ORTFIR filter added in the system. Fig. 11 (b) is the
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Fig. 11. Spectral Content Estimates of the Nzkm023R Without Control (Solid), With Control
Using 20th Order FIR Filter (Dashed), and Using 20th Order ORTFIR Filter (Dotted).

zoomed-in plot of Fig. 11 (a) in the frequency range of [4 30] Hz. It is clearly seen that with
the ORTFIR filter, a better magnitude reduction of auto spectrum of Nzkm023R can be obtained
in most of the frequency range compared to the FIR filter. Similar performance could also be
observed in regards to Nzkm023L, and which is shown in Fig. 12 (a) and (b).

The corresponding time responses are illustrated in Fig. 13 and Fig. 14. Fig. 13 (b) and Fig. 14
(b) are the zoomed-in plots of Fig. 13 (a) and Fig. 14 (a), respectively. These time responses
clearly demonstrate that with the adaptive feedforward controller using ORTFIR filter, a better
structural vibration reduction can be obtained. From these figures, it is clearly demonstrated
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For implementation purposes, only L = 2 parameters in the ORTFIR filter are estimated.
With a 10th order basis, Bi(q), this amounts to 20th order ORTFIR filter. To evaluate the
performance of the proposed ORTFIR filter for feedforward compensation, a 20th order Finite
Impulse Response Filter is also designed to reduce the vertical wing vibration.

For a clear performance comparison between FIR filter and ORTFIR filter, the frequency
response of the Nzkm023R, and Nzkm023L using FIR filter and ORTFIR filter are plotted in Fig. 11
and Fig. 12, respectively. The solid line in Fig. 11 (a) is the auto spectrum of the accelerometer
measurement Nzkm023R without feedforward controller integrated in the system; the dashed
line in Fig. 11(a) indicates the auto spectrum of the accelerometer measurement Nzkm023R
with the adaptive feedforward controller using FIR filter added in the system; the dotted
line in Fig. 11 shows the auto spectrum of the accelerometer measurement Nzkm023R with the
adaptive feedforward controller using ORTFIR filter added in the system. Fig. 11 (b) is the
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Fig. 11. Spectral Content Estimates of the Nzkm023R Without Control (Solid), With Control
Using 20th Order FIR Filter (Dashed), and Using 20th Order ORTFIR Filter (Dotted).

zoomed-in plot of Fig. 11 (a) in the frequency range of [4 30] Hz. It is clearly seen that with
the ORTFIR filter, a better magnitude reduction of auto spectrum of Nzkm023R can be obtained
in most of the frequency range compared to the FIR filter. Similar performance could also be
observed in regards to Nzkm023L, and which is shown in Fig. 12 (a) and (b).

The corresponding time responses are illustrated in Fig. 13 and Fig. 14. Fig. 13 (b) and Fig. 14
(b) are the zoomed-in plots of Fig. 13 (a) and Fig. 14 (a), respectively. These time responses
clearly demonstrate that with the adaptive feedforward controller using ORTFIR filter, a better
structural vibration reduction can be obtained. From these figures, it is clearly demonstrated
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Fig. 12. Spectral Content Estimates of the Nzkm023L Without Control (Solid), With Control
Using 20th Order FIR Filter (Dashed), and Using 20th Order ORTFIR Filter (Dotted).

that both FIR filter and ORTFIR filter are efficient to reduce the normal acceleration at the left
wing folder position and right wing folder position. With the use of the both the ORTFIR
filter and FIR filter, the spectral content of the Nzkm023R and Nzkm023L have been reduced
significantly in the frequency range from 2Hz to 20Hz. However, with the use of the ORTFIR
filter, more efficient vibration reduction performances are expected compared to the FIR filter.
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Fig. 13. Time domain Response of the Nzkm023R Without Control (Solid), With Control Using
20th Order FIR Filter (Dashed), and Using 20th Order ORTFIR Filter (Dotted).
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that both FIR filter and ORTFIR filter are efficient to reduce the normal acceleration at the left
wing folder position and right wing folder position. With the use of the both the ORTFIR
filter and FIR filter, the spectral content of the Nzkm023R and Nzkm023L have been reduced
significantly in the frequency range from 2Hz to 20Hz. However, with the use of the ORTFIR
filter, more efficient vibration reduction performances are expected compared to the FIR filter.
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Fig. 14. Time Domain Response of the Nzkm023L Without Control (Solid) and Using 20th
Order FIR Filter (Dashed), and With Control Using 20th Order ORTFIR Filter (Dotted).
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7. Conclusions

In this chapter, an adaptive feedforward control methodology has been proposed for the active
control of gust loads alleviation using an ORTFIR filter. The ORTFIR filter has the same linear
parameter structure as a taped delay FIR filter that is favorable for (recursive) estimation. The
advantage of using the ORTFIR filter is that it allows the inclusion of prior knowledge of the
flexible mode information of the aircraft dynamics in the parametrization of the filter for better
accuracy of the feedforward filter.

In addition, by combining the flight dynamics model for rigid body dynamics and an
aeroelastic solver for aeroelastic incremental loads to accurately mimic in-flight recorded
dynamic behavior of the air vehicle, a unified integration framework that blends flight
dynamics and aeroelastic model is developed to facilitate the pre-flight simulation.

The proposed methodology in this chapter is implemented on an F/A-18 AAW aeroelastic
model developed with the unified integration framework. The feedforward filter is updated
via the recursive least square technique with the variable forgetting factor at each time step.
Compared with a traditional FIR filter and evaluated on the basis of the simulation data from
the F/A-18 AAW aeroelastic model, it demonstrates that applying the adaptive feedforward
controller using the ORTFIR filter yields a better performance of the gust loads alleviation of
the aircraft.
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years due to their important contributions and cost-effective applications in several tasks
such as surveillance, search and rescue missions, geographic studies, as well as various
military and security applications. Due to the requirements of autonomous flight under
different flight conditions without a pilot onboard, control of UAV flight is much more
challenging compared with manned aerial vehicles since all operations have to be carried
out by the automated flight control, navigation and guidance algorithms embedded on the
onboard flight microcomputer/microcontroller or with limited interference by a ground pilot
if needed.

As an example of UAV systems, the quadrotor helicopter is relatively a simple, affordable
and easy to fly system and thus it has been widely used to develop, implement and test-fly
methods in control, fault diagnosis, fault tolerant control as well as multi-agent based
technologies in formation flight, cooperative control, distributed control, mobile wireless
networks and communications. Some theoretical works consider the problems of control
(Dierks & Jagannathan, 2008), formation flight (Dierks & Jagannathan, 2009) and fault
diagnosis (Nguyen et al., 2009; Rafaralahy et al., 2008) of the quadrotor UAV. However, few
research laboratories are carrying out advanced theoretical and experimental works on the
system. Among others, one may cite for example, the UAV SWARM health management
project of the Aerospace Controls Laboratory at MIT (SWARM, 2011), the Stanford Testbed of
Autonomous Rotorcraft for Multi-Agent Control (STARMAC) project (STARMAC, 2011) and
the Micro Autonomous Systems Technologies (MAST) project (MAST, 2011).
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Development Canada (DRDC) and Laval University, have been working on a research
and development project on fault-tolerant and cooperative control of multiple UAVs since
2007 (see the Networked Autonomous Vehicles laboratory (NAV, 2011)). In addition to
the work that has been carried out for the multi-vehicles case, many fault-tolerant control
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accommodate as much as possible the fault effects on the system performance. The proposed
methods have been tested either in simulation, experimental or both frameworks where
the experimental implementation has been carried out using a cutting-edge quadrotor UAV
testbed known also as Qball-X4. The developed approaches include the Gain-Scheduled
PID (GS-PID), Model Reference Adaptive Control (MRAC), Sliding Mode Control (SMC),
Backstepping Control (BSC), Model Predictive Control (MPC) and Flatness-based Trajectory
Planning/Re-planning (FTPR), etc. Some of these methods require an information about the
time of occurrence, the location and the amplitude of faults whereas others do not. In the
former case, a fault detection and diagnosis (FDD) module is needed to detect, isolate and
identify the faults which occurred.

Table 1 summarizes the main fault-tolerant control methodologies that have been developed
and applied to the quadrotor helicopter UAV. The table shows which methods require an
FDD scheme and whether they have been tested in simulation or experimentally. In the
case of experimental application, one can also distinguish between two categories of faults:
a simulated fault and a real damage. In the first case, a fault has been generated in an actuator
by multiplying its control input by a gain smaller than one, thus simulating a loss in the control
effectiveness. In the second case, the fault/damage has been introduced by breaking the tip
of a propeller of the Qball-X4 UAV during flight.

Strategy Passive/Active Need for FDD Simulation Experiment Real damage

GS-PID Active � � � X

MRAC Active X X � �
SMC Passive X � � �
BSC Passive X � X X

MPC Active � � X X

FTPR Active � � � X

Table 1. Fault-tolerant control methods (Note: (�) Yes/Done; (X) No/Not done yet).

These methods will be discussed in the subsequent sections. The remainder of this chapter
is then organized as follows. Section 2 introduces the quadrotor UAV system that is used
as a testbed for the proposed methods. Section 3 presents the FTC methods summarized in
Table 1. The simulation as well as the experimental flight results are given and discussed in
Section 4. Some concluding remarks together with future work are finally given. Note that
due to space consideration, only some of the developed control methods will be included in
this chapter. Interested readers can refer to the website of the NAV Lab on ‘http://users.
encs.concordia.ca/~ymzhang/UAVs.htm’ for more information.

2. Description and dynamics of the quadrotor UAV system

The quadrotor UAV of the Department of Mechanical and Industrial Engineering of Concordia
University is the Qball-X4 testbed (Figure 1(a)) developed by Quanser Consulting Inc. The
quadrotor UAV is enclosed within a protective carbon fiber round cage (therefore a name
of Qball-X4) to ensure safe operation of the vehicle and protection to the personnel who
is working with the vehicle in an indoor research and development environment. It uses
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four 10-inch propellers and standard RC motors and speed controllers. It is equipped
with the Quanser Embedded Control Module (QECM), which is comprised of a Quanser
HiQ aero data acquisition card and a QuaRC-powered Gumstix embedded computer where
QuaRC is Quanser’s Real-time Control software. The Quanser HiQ provides high-resolution
accelerometer, gyroscope, and magnetometer IMU sensors as well as servo outputs to drive
four motors. The on-board Gumstix computer runs QuaRC, which allows to rapidly develop
and deploy controllers designed in MATLAB/Simulink environment to real-time control the
Qball-X4. The controllers run on-board the vehicle itself and runtime sensors measurement,
data logging and parameter tuning is supported between the host PC and the target vehicle
(Quanser, 2010).

(a) The Quanser Qball-X4 quadrotor UAV
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(b) Qball-X4 schematic representation

Fig. 1. The Quanser Qball-X4 quadrotor UAV and its schematic representation.

The block diagram of the entire UAV system is illustrated in Figure 2. It is composed of three
main parts:

• The first part represents the Electronic Speed Controllers (ESCs) + the motors + the
propellers in a set of four. The input to this part is u = [u1 u2 u3 u4]

T which are Pulse
Width Modulation (PWM) signals. The output is the thrust vector T = [T1 T2 T3 T4]

T

generated by four individually-controlled motor-driven propellers.
• The second part is the geometry that relates the generated thrusts to the applied lift and

torques to the system. This geometry corresponds to the position and orientation of the
propellers with respect to the system’s center of mass.

• The third part is the dynamics that relate the applied lift and torques to the position (P),
velocity (V) and acceleration (A) of the Qball-X4.

The subsequent sections describe the corresponding mathematical model for each of the
blocks of Figure 2.

2.1 Qball-X4 dynamics

The Qball-X4 dynamics in a hybrid coordinate system are given hereafter where the position
dynamics are expressed in the inertial frame and the angular dynamics are expressed in the
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Fig. 1. The Quanser Qball-X4 quadrotor UAV and its schematic representation.

The block diagram of the entire UAV system is illustrated in Figure 2. It is composed of three
main parts:

• The first part represents the Electronic Speed Controllers (ESCs) + the motors + the
propellers in a set of four. The input to this part is u = [u1 u2 u3 u4]

T which are Pulse
Width Modulation (PWM) signals. The output is the thrust vector T = [T1 T2 T3 T4]

T

generated by four individually-controlled motor-driven propellers.
• The second part is the geometry that relates the generated thrusts to the applied lift and

torques to the system. This geometry corresponds to the position and orientation of the
propellers with respect to the system’s center of mass.

• The third part is the dynamics that relate the applied lift and torques to the position (P),
velocity (V) and acceleration (A) of the Qball-X4.

The subsequent sections describe the corresponding mathematical model for each of the
blocks of Figure 2.

2.1 Qball-X4 dynamics

The Qball-X4 dynamics in a hybrid coordinate system are given hereafter where the position
dynamics are expressed in the inertial frame and the angular dynamics are expressed in the
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Fig. 2. The UAV system block diagram.

body frame (Bresciani, 2008):

mẍ = uz (cosφ sinθ cosψ + sinφ sinψ)− kx ẋ
mÿ = uz (cosφ sinθ sinψ − sinφ cosψ)− kyẏ
mz̈ = uz (cosφ cosθ)− mg − kzż
Jx ṗ = up +

�
Jy − Jz

�
qr − JTq Ω − kp p

Jyq̇ = uq + (Jz − Jx) pr − JT p Ω − kqq
Jzṙ = ur +

�
Jx − Jy

�
pq − krr

(1)

where x, y and z are the coordinates of the quadrotor UAV center of mass in the inertial frame.
m is the system mass and Jx, Jy and Jz are the moments of inertia along y, x and z directions
respectively. θ, φ and ψ are the pitch, roll and yaw Euler angles and p, q and r are the angular
velocities in the body-fixed frame. kx, ky, kz, kp, kq and kr are drag coefficients and are constant.
JT is the moment of inertia for each motor and Ω is the overall speed of propellers:

Ω = −Ω1 − Ω2 + Ω3 + Ω4 (2)

where Ωi is the ith propeller speed.

The angular velocities in the inertial frame (Euler rates) can be related to those in the body
frame as follows: ⎡

⎢⎢⎢⎣

p

q

r

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 −sinθ

0 cosφ cosθsinφ

0 −sinφ cosθcosφ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

φ̇

θ̇

ψ̇

⎤
⎥⎥⎥⎦ (3)

Close to hovering conditions, the matrix in the above equation is close to identity matrix and
therefore the angular velocities in the body frame can be seen as the angular velocities in the
inertial frame. The model (1) can then be written as:

mẍ = uz (cosφ sinθ cosψ + sinφ sinψ)− kx ẋ
mÿ = uz (cosφ sinθ sinψ − sinφ cosψ)− kyẏ
mz̈ = uz (cosφ cosθ)− mg − kzż

Jx θ̈ = uθ +
�

Jy − Jz
�

φ̇ψ̇ − JT φ̇ Ω − kθ θ̇

Jyφ̈ = uφ + (Jz − Jx) θ̇ψ̇ − JT θ̇ Ω − kφφ̇

Jzψ̈ = uψ +
�

Jx − Jy
�

θ̇φ̇ − kψψ̇

(4)
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where up, uq, ur, kp, kq and kr have been respectively changed to uθ , uφ, uψ, kθ , kφ, kψ for
notation convenience. At low speeds, one can obtain a simplified nonlinear model of (4) by
neglecting drag terms and gyroscopic and Coriolis-centripetal effects:

mẍ = uz (cosφ sinθ cosψ + sinφ sinψ)

mÿ = uz (cosφ sinθ sinψ − sinφ cosψ)

mz̈ = uz (cosφ cosθ)− mg

Jx θ̈ = uθ

Jyφ̈ = uφ

Jzψ̈ = uψ

(5)

A further simplified linear model can be obtained by assuming hovering conditions (uz ≈ mg
in the x and y directions) with no yawing (ψ = 0) and small roll and pitch angles as follows:

ẍ = θg; Jx θ̈ = uθ

ÿ = −φg; Jyφ̈ = uφ (6)

z̈ = uz/m − g; Jzψ̈ = uψ

The nonlinear model (4) will be used later on in the design of fault-tolerant control strategies
such as the BSC, the MPC and the SMC. The simplified model (6) will be used for the MRAC
design as well as for the trajectory planning and re-planning approach.

2.2 ESCs, motors and propellers

The motors of the Qball-X4 are outrunner brushless motors. The generated thrust Ti of the ith

motor is related to the ith PWM input ui by a first-order linear transfer function:

Ti = K
ω

s + ω
ui ; i = 1, ..., 4 (7)

where K is a positive gain and ω is the motor bandwidth. K and ω are theoretically the same
for the four motors but this may not be the case in practice and therefore, this can be one
of sources of modeling errors/uncertainties for fault-tolerant control design and trajectory
planning/re-planning.

2.3 Geometry

A schematic representation of the Qball-X4 is given in Figure 1(b). The motors and propellers
are configured in such a way that the back and front (1 and 2) motors spin clockwise and the
left and right (3 and 4) spin counter-clockwise. Each motor is located at a distance L from
the center of mass o and when spinning, a motor produces a torque τi. The origin of the
body-fixed frame is the system’s center of mass o with the x-axis pointing from back to front
and the y-axis pointing from right to left. The thrust Ti generated by the ith propeller is always
pointing upward in the z-direction in parallel to the motor’s rotation axis. The thrusts Ti and
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neglecting drag terms and gyroscopic and Coriolis-centripetal effects:

mẍ = uz (cosφ sinθ cosψ + sinφ sinψ)

mÿ = uz (cosφ sinθ sinψ − sinφ cosψ)

mz̈ = uz (cosφ cosθ)− mg

Jx θ̈ = uθ

Jyφ̈ = uφ

Jzψ̈ = uψ

(5)

A further simplified linear model can be obtained by assuming hovering conditions (uz ≈ mg
in the x and y directions) with no yawing (ψ = 0) and small roll and pitch angles as follows:

ẍ = θg; Jx θ̈ = uθ

ÿ = −φg; Jyφ̈ = uφ (6)

z̈ = uz/m − g; Jzψ̈ = uψ

The nonlinear model (4) will be used later on in the design of fault-tolerant control strategies
such as the BSC, the MPC and the SMC. The simplified model (6) will be used for the MRAC
design as well as for the trajectory planning and re-planning approach.

2.2 ESCs, motors and propellers

The motors of the Qball-X4 are outrunner brushless motors. The generated thrust Ti of the ith

motor is related to the ith PWM input ui by a first-order linear transfer function:

Ti = K
ω

s + ω
ui ; i = 1, ..., 4 (7)

where K is a positive gain and ω is the motor bandwidth. K and ω are theoretically the same
for the four motors but this may not be the case in practice and therefore, this can be one
of sources of modeling errors/uncertainties for fault-tolerant control design and trajectory
planning/re-planning.

2.3 Geometry

A schematic representation of the Qball-X4 is given in Figure 1(b). The motors and propellers
are configured in such a way that the back and front (1 and 2) motors spin clockwise and the
left and right (3 and 4) spin counter-clockwise. Each motor is located at a distance L from
the center of mass o and when spinning, a motor produces a torque τi. The origin of the
body-fixed frame is the system’s center of mass o with the x-axis pointing from back to front
and the y-axis pointing from right to left. The thrust Ti generated by the ith propeller is always
pointing upward in the z-direction in parallel to the motor’s rotation axis. The thrusts Ti and
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the torques τi result in a lift in the z-direction (body-fixed frame) and torques about the x, y
and z axis. The relation between the lift/torques and the thrusts is:

uz = T1 + T2 + T3 + T4

uθ = L(T1 − T2)

uφ = L(T3 − T4)

uψ = τ1 + τ2 − τ3 − τ4

(8)

The torque τi produced by the ith motor is directly related to the thrust Ti via the relation of
τi = KψTi with Kψ as a constant. In addition, by setting Ti ≈ Kui from (7), the relation (8)
reads:

uz = K(u1 + u2 + u3 + u4)

uθ = KL(u1 − u2)

uφ = KL(u3 − u4)

uψ = KKψ(u1 + u2 − u3 − u4)

(9)

where uz is the total lift generated by the four propellers and applied to the quadrotor UAV in
the z-direction (body-fixed frame). uθ , uφ and uψ are respectively the applied torques in θ, φ
and ψ directions (see Figure 1(b)).

3. Fault-tolerant control algorithms

Modern technological systems rely on sophisticated control systems to replace or reduce the
intervention of human operators. In the event of malfunctions in actuators, sensors or other
system components, a conventional feedback control design may result in an unsatisfactory
performance or even instability of the controlled system. To prevent such situations, new
control approaches have been developed in order to tolerate component malfunctions while
maintaining desirable stability and performance properties. This is particularly important
for safety-critical systems, such as aircrafts, spacecrafts, nuclear power plants, and chemical
plants processing hazardous materials. In such systems, the consequences of a minor fault in
a system component can be catastrophic. It is necessary then to design control systems which
are capable of tolerating potential faults in these systems in order to improve the reliability
and availability while providing a desirable performance. These types of control systems
are often known as fault-tolerant control systems (FTCS). More precisely, FTCS are control
systems which possess the ability to accommodate component failures automatically. They
are capable of maintaining overall system stability and acceptable performance in the event
of such failures (Zhang & Jiang, 2008).

Generally speaking, FTCS can be classified into two types: passive (PFTCS) and active
(AFTCS). In PFTCS, controllers are fixed and are designed to be robust against a class of
presumed faults. This approach needs neither FDD schemes nor controller reconfiguration,
but it has limited fault-tolerant capabilities. In contrast to PFTCS, AFTCS react to the
system component failures actively by reconfiguring control actions so that the stability
and acceptable performance of the entire system can be maintained (Zhang & Jiang, 2008).
An overall structure of a typical AFTCS is shown in Figure 3. In the FDD module,
faults must be detected and isolated as quickly as possible, and fault parameters, system
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state/output variables, and post-fault system models need to be estimated on-line in
real-time. Based on the on-line information on the post-fault system model, the controller
must be automatically reconfigured to maintain stability, desired dynamic performance
and steady-state performance. To avoid potential actuator saturation and to take into
consideration the degraded performance after fault occurrence, a command/reference
governor may also need to be designed to adjust command input or reference trajectory
automatically. Interested readers about FTCS may refer to the bibliographical review (Zhang
& Jiang, 2008) and the recently published books (Noura et al., 2009) and (Edwards et al., 2010).
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Fig. 3. A general structure of AFTCS (Zhang & Jiang, 2008).

The subsequent sections consider some of the FTC methods that have been developed for the
quadrotor UAV. Some of these are classified as passive FTC methods where the fault tolerance
is achieved thanks to the controller’s robustness without changing the controller gains. Others
are active FTC methods where control gains are updated in function of the occurring faults.

3.1 Gain-scheduled PID (GS-PID)

The Proportional-Integral-Derivative (PID) controller is the most widely used among
controllers in industry. This is due to its unique features such as the simple structure, the
ease of use and tunning. Its main advantages over other control strategies is that it does
not require a mathematical model of the process/system to be controlled and thus allows to
save time and effort by skipping the modeling phase. PID controllers are reliable and can be
used for linear and nonlinear systems with certain level of robustness to model uncertainties
and disturbances. Although one single PID controller can handle a wide range of system
nonlinearities, better performance can be obtained when using multiple PIDs to cover the
entire operation range of a nonlinear process/system. This is known as gain-scheduled PID
(GS-PID) (Sadeghzadeh et al., 2011).

The operating principle of GS-PID is shown in Figure 4(a) where the controlled system
may have varying dynamic properties as for example a varying gain (Haugen, 2004). The
adjustment/scheduling of the PID controller gains is performed by using a gain scheduling
variable GS. This is some measured process variable which at every instant of time expresses
or represents the dynamic properties of the process.
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the torques τi result in a lift in the z-direction (body-fixed frame) and torques about the x, y
and z axis. The relation between the lift/torques and the thrusts is:

uz = T1 + T2 + T3 + T4

uθ = L(T1 − T2)

uφ = L(T3 − T4)

uψ = τ1 + τ2 − τ3 − τ4

(8)

The torque τi produced by the ith motor is directly related to the thrust Ti via the relation of
τi = KψTi with Kψ as a constant. In addition, by setting Ti ≈ Kui from (7), the relation (8)
reads:

uz = K(u1 + u2 + u3 + u4)

uθ = KL(u1 − u2)

uφ = KL(u3 − u4)

uψ = KKψ(u1 + u2 − u3 − u4)

(9)

where uz is the total lift generated by the four propellers and applied to the quadrotor UAV in
the z-direction (body-fixed frame). uθ , uφ and uψ are respectively the applied torques in θ, φ
and ψ directions (see Figure 1(b)).

3. Fault-tolerant control algorithms

Modern technological systems rely on sophisticated control systems to replace or reduce the
intervention of human operators. In the event of malfunctions in actuators, sensors or other
system components, a conventional feedback control design may result in an unsatisfactory
performance or even instability of the controlled system. To prevent such situations, new
control approaches have been developed in order to tolerate component malfunctions while
maintaining desirable stability and performance properties. This is particularly important
for safety-critical systems, such as aircrafts, spacecrafts, nuclear power plants, and chemical
plants processing hazardous materials. In such systems, the consequences of a minor fault in
a system component can be catastrophic. It is necessary then to design control systems which
are capable of tolerating potential faults in these systems in order to improve the reliability
and availability while providing a desirable performance. These types of control systems
are often known as fault-tolerant control systems (FTCS). More precisely, FTCS are control
systems which possess the ability to accommodate component failures automatically. They
are capable of maintaining overall system stability and acceptable performance in the event
of such failures (Zhang & Jiang, 2008).

Generally speaking, FTCS can be classified into two types: passive (PFTCS) and active
(AFTCS). In PFTCS, controllers are fixed and are designed to be robust against a class of
presumed faults. This approach needs neither FDD schemes nor controller reconfiguration,
but it has limited fault-tolerant capabilities. In contrast to PFTCS, AFTCS react to the
system component failures actively by reconfiguring control actions so that the stability
and acceptable performance of the entire system can be maintained (Zhang & Jiang, 2008).
An overall structure of a typical AFTCS is shown in Figure 3. In the FDD module,
faults must be detected and isolated as quickly as possible, and fault parameters, system
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state/output variables, and post-fault system models need to be estimated on-line in
real-time. Based on the on-line information on the post-fault system model, the controller
must be automatically reconfigured to maintain stability, desired dynamic performance
and steady-state performance. To avoid potential actuator saturation and to take into
consideration the degraded performance after fault occurrence, a command/reference
governor may also need to be designed to adjust command input or reference trajectory
automatically. Interested readers about FTCS may refer to the bibliographical review (Zhang
& Jiang, 2008) and the recently published books (Noura et al., 2009) and (Edwards et al., 2010).

System SensorsActuators

Fault Detection
and Diagnosis

(FDD)

r u

Reconfiguration
Mechanism

z

w v Sensor 
Faults

Actuator 
Faults

System 
Faults

Command
(Reference)
Governor

Reconfigurable 
Feedforward

Controller

Reconfigurable 
Feedback
Controller

System SensorsActuators

Fault Detection
and Diagnosis

(FDD)

r u

Reconfiguration
Mechanism

z

w v Sensor 
Faults

Actuator 
Faults

System 
Faults

Command
(Reference)
Governor

Reconfigurable 
Feedforward

Controller

Reconfigurable 
Feedback
Controller

Fig. 3. A general structure of AFTCS (Zhang & Jiang, 2008).

The subsequent sections consider some of the FTC methods that have been developed for the
quadrotor UAV. Some of these are classified as passive FTC methods where the fault tolerance
is achieved thanks to the controller’s robustness without changing the controller gains. Others
are active FTC methods where control gains are updated in function of the occurring faults.

3.1 Gain-scheduled PID (GS-PID)

The Proportional-Integral-Derivative (PID) controller is the most widely used among
controllers in industry. This is due to its unique features such as the simple structure, the
ease of use and tunning. Its main advantages over other control strategies is that it does
not require a mathematical model of the process/system to be controlled and thus allows to
save time and effort by skipping the modeling phase. PID controllers are reliable and can be
used for linear and nonlinear systems with certain level of robustness to model uncertainties
and disturbances. Although one single PID controller can handle a wide range of system
nonlinearities, better performance can be obtained when using multiple PIDs to cover the
entire operation range of a nonlinear process/system. This is known as gain-scheduled PID
(GS-PID) (Sadeghzadeh et al., 2011).

The operating principle of GS-PID is shown in Figure 4(a) where the controlled system
may have varying dynamic properties as for example a varying gain (Haugen, 2004). The
adjustment/scheduling of the PID controller gains is performed by using a gain scheduling
variable GS. This is some measured process variable which at every instant of time expresses
or represents the dynamic properties of the process.
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Fig. 4. The operating principle of GS-PID and two rules for the interpolation of the
proportional gain Kp.

There are several ways to express the PID parameters as functions of the GS variable such
as the piecewise constant controller parameters and the piecewise interpolation. In the former
method, an interval is defined around each GS value and the controller parameters are kept
constant as long as the GS value is within the interval (see Figure 4(b) for an example of
the proportional gain Kp). When the GS variable changes from one interval to another, the
controller parameters are changed abruptly (Haugen, 2004). The same idea applies for the
Integrator and Derivative gains. In the second method also shown in Figure 4(b), a linear
function is found relating the controller parameter (output variable) and the GS variable
(input variable). For the proportional gain, the linear function is of the form Kp = aGS + b
where a and b are two constants to be calculated.

Since faults can be seen as varying parameters, GS-PID can also be used to deal with possible
fault conditions that may take place in the actuators or the system components. Some research
works consider this problem: a GS-PID control strategy is proposed in (Bani Milhim, 2010a)
and (Bani Milhim et al., 2010b) in simulation framework to achieve fault-tolerant control for
the quadrotor helicopter UAV in the presence of actuator faults. In (Johnson et al., 2010), the
authors investigate this technique for a Georgia Tech Twinstar fixed-wing research vehicle
in the presence of partial damage of the wing. As continuation of the work presented in
(Bani Milhim et al., 2010b), GS-PID has been considered for further investigation and most
importantly for experimental implementation and application to the Qball-X4 UAV testbed
for fault-tolerant trajectory tracking control (Sadeghzadeh et al., 2011). The GS-PID has been
implemented for different sections of the entire flight envelope by properly tuning the PID
controller gains for both normal and fault conditions. A set of PID controllers is then designed
for the fault-free situation and each possible fault situation. The switching from one PID to
another is then based on the actuator’s health status (hence, the scheduling variable GS is
the actuator’s health status). A Fault Detection and Diagnosis (FDD) scheme is then needed
to provide the time of fault occurrence as well as the location and the magnitude of the
fault during the flight. Based on the information provided by the FDD module, the GS-PID
controller will switch the controller gains under normal flight conditions to the pre-tuned and
fault-related gains to handle the faults during the flight of the UAV. One of the main issues
to consider in GS-PID is how fast to switch from the nominal PID gains to the pre-tuned
fault-related gains after fault occurrence. This issue does not represent a problem when
the scheduling variable GS is a measured variable since in most cases it is instantaneously
provided by the sensors. However, when the GS is the health status of the actuators then
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clearly, the switching time and gains depend on how fast and precise the FDD module
is in detecting, isolating and identifying the faults. It is shown in Section 4 and through
experimentations how the switching time affects the behavior of the system in handling the
occurring faults.

3.2 Model reference adaptive control (MRAC)

Many adaptive control techniques for preserving stability have been proposed to deal with
disturbances, unmodeled dynamics and time delays. Particularly, the concept of model
reference adaptive control (MRAC) has gained significant attention and is now part of
many standard textbooks on nonlinear and adaptive control. Two basic approaches for
MRAC can be distinguished: the direct and the indirect approaches. In the direct method,
the controller parameters are adjusted based on the error between the reference model
describing the desired dynamics and the closed-loop dynamics of the physical plant. In the
indirect approach, the parameters of the plant are estimated by updating them based on the
identification error between the measured states and those provided by the estimation model.
In this work, three MRAC techniques are implemented and applied to the Qball-X4, namely
the MIT rule-based MRAC, the conventional MRAC and the modified MRAC (Chamseddine
et al., 2011a).

3.2.1 MIT rule

This MRAC approach has been developed around 1960 at the Massachusetts Institute of
Technology (MIT) for aerospace applications (Ioannou & Sun, 1995). For illustration, consider
the plant:

ÿ(t) = −a1ẏ(t)− a2y(t) + bu(t) (10)
where a1, a2 and b are the unknown plant parameters. The reference model to be matched by
the closed-loop plant is:

y(3)m (t) = −am1 ÿm(t)− am2 ẏm(t)− am3 ym(t) + bmr(t) (11)

where r(t) is the reference command and ami (i = 1, 2, 3) and bm are constant and are chosen
according to performance specifications. Let the control input u(t) be defined as follows:

u(t) = −k1ẏ(t)− k2y(t)− k3

∫ t

0
(y(τ)− r(τ)) dτ (12)

By replacing (12) in (10) and differentiating with respect to time, one obtains:

y(3)(t) = − (a1 + bk1) ÿ(t)− (a2 + bk2) ẏ(t)− bk3y(t) + bk3r(t) (13)

It is obvious that one can achieve perfect model following if k1, k2 and k3 are chosen such that:

a1 + bk1 = am1 , a2 + bk2 = am2 and bk3 = am3 = bm (14)

The control signal given by (12) cannot be implemented since the system parameters a1, a2
and b are assumed to be unknown. Nevertheless, one can use the following:

u(t) = −k̂1(t)ẏ(t)− k̂2(t)y(t)− k̂3(t)
∫ t

0
(y(τ)− r(τ)) dτ (15)
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There are several ways to express the PID parameters as functions of the GS variable such
as the piecewise constant controller parameters and the piecewise interpolation. In the former
method, an interval is defined around each GS value and the controller parameters are kept
constant as long as the GS value is within the interval (see Figure 4(b) for an example of
the proportional gain Kp). When the GS variable changes from one interval to another, the
controller parameters are changed abruptly (Haugen, 2004). The same idea applies for the
Integrator and Derivative gains. In the second method also shown in Figure 4(b), a linear
function is found relating the controller parameter (output variable) and the GS variable
(input variable). For the proportional gain, the linear function is of the form Kp = aGS + b
where a and b are two constants to be calculated.

Since faults can be seen as varying parameters, GS-PID can also be used to deal with possible
fault conditions that may take place in the actuators or the system components. Some research
works consider this problem: a GS-PID control strategy is proposed in (Bani Milhim, 2010a)
and (Bani Milhim et al., 2010b) in simulation framework to achieve fault-tolerant control for
the quadrotor helicopter UAV in the presence of actuator faults. In (Johnson et al., 2010), the
authors investigate this technique for a Georgia Tech Twinstar fixed-wing research vehicle
in the presence of partial damage of the wing. As continuation of the work presented in
(Bani Milhim et al., 2010b), GS-PID has been considered for further investigation and most
importantly for experimental implementation and application to the Qball-X4 UAV testbed
for fault-tolerant trajectory tracking control (Sadeghzadeh et al., 2011). The GS-PID has been
implemented for different sections of the entire flight envelope by properly tuning the PID
controller gains for both normal and fault conditions. A set of PID controllers is then designed
for the fault-free situation and each possible fault situation. The switching from one PID to
another is then based on the actuator’s health status (hence, the scheduling variable GS is
the actuator’s health status). A Fault Detection and Diagnosis (FDD) scheme is then needed
to provide the time of fault occurrence as well as the location and the magnitude of the
fault during the flight. Based on the information provided by the FDD module, the GS-PID
controller will switch the controller gains under normal flight conditions to the pre-tuned and
fault-related gains to handle the faults during the flight of the UAV. One of the main issues
to consider in GS-PID is how fast to switch from the nominal PID gains to the pre-tuned
fault-related gains after fault occurrence. This issue does not represent a problem when
the scheduling variable GS is a measured variable since in most cases it is instantaneously
provided by the sensors. However, when the GS is the health status of the actuators then
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clearly, the switching time and gains depend on how fast and precise the FDD module
is in detecting, isolating and identifying the faults. It is shown in Section 4 and through
experimentations how the switching time affects the behavior of the system in handling the
occurring faults.

3.2 Model reference adaptive control (MRAC)

Many adaptive control techniques for preserving stability have been proposed to deal with
disturbances, unmodeled dynamics and time delays. Particularly, the concept of model
reference adaptive control (MRAC) has gained significant attention and is now part of
many standard textbooks on nonlinear and adaptive control. Two basic approaches for
MRAC can be distinguished: the direct and the indirect approaches. In the direct method,
the controller parameters are adjusted based on the error between the reference model
describing the desired dynamics and the closed-loop dynamics of the physical plant. In the
indirect approach, the parameters of the plant are estimated by updating them based on the
identification error between the measured states and those provided by the estimation model.
In this work, three MRAC techniques are implemented and applied to the Qball-X4, namely
the MIT rule-based MRAC, the conventional MRAC and the modified MRAC (Chamseddine
et al., 2011a).

3.2.1 MIT rule

This MRAC approach has been developed around 1960 at the Massachusetts Institute of
Technology (MIT) for aerospace applications (Ioannou & Sun, 1995). For illustration, consider
the plant:

ÿ(t) = −a1ẏ(t)− a2y(t) + bu(t) (10)
where a1, a2 and b are the unknown plant parameters. The reference model to be matched by
the closed-loop plant is:

y(3)m (t) = −am1 ÿm(t)− am2 ẏm(t)− am3 ym(t) + bmr(t) (11)

where r(t) is the reference command and ami (i = 1, 2, 3) and bm are constant and are chosen
according to performance specifications. Let the control input u(t) be defined as follows:

u(t) = −k1ẏ(t)− k2y(t)− k3

∫ t

0
(y(τ)− r(τ)) dτ (12)

By replacing (12) in (10) and differentiating with respect to time, one obtains:

y(3)(t) = − (a1 + bk1) ÿ(t)− (a2 + bk2) ẏ(t)− bk3y(t) + bk3r(t) (13)

It is obvious that one can achieve perfect model following if k1, k2 and k3 are chosen such that:

a1 + bk1 = am1 , a2 + bk2 = am2 and bk3 = am3 = bm (14)

The control signal given by (12) cannot be implemented since the system parameters a1, a2
and b are assumed to be unknown. Nevertheless, one can use the following:

u(t) = −k̂1(t)ẏ(t)− k̂2(t)y(t)− k̂3(t)
∫ t

0
(y(τ)− r(τ)) dτ (15)
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where k̂i are the estimates of ki and are updated according to the MIT rule. The objective of
the MIT rule is to adjust the parameters k1, k2 and k3 so as to minimize a cost function J. This
cost function can be chosen for example as follows:

J =
1
2

e2 (16)

where e is the tracking error between the system and the reference model, i.e. e = y − ym. It is
reasonable to adjust the parameters in the direction of the negative gradient of J:

dk̂i
dt

= −γ
∂J
∂k̂i

= −γe
∂e
∂k̂i

= −γe
∂y
∂k̂i

(17)

where γ > 0 is the adaptation rate. ∂e/∂k̂i is called the sensitivity derivative of the system
and is evaluated under the assumption that k̂i varies slowly. To calculate ∂y/∂k̂i in (17) one
can use (13) to obtain:

∂y(3)

∂k̂1
= −a1

∂ÿ
∂k̂1

− a2
∂ẏ
∂k̂1

− bk̂3
∂y
∂k̂1

− bÿ(t)− bk̂1
∂ÿ
∂k̂1

− bk̂2
∂ẏ
∂k̂1

∂y(3)

∂k̂2
= −a1

∂ÿ
∂k̂2

− a2
∂ẏ
∂k̂2

− bk̂3
∂y
∂k̂2

− bẏ(t)− bk̂1
∂ÿ
∂k̂2

− bk̂2
∂ẏ
∂k̂2

(18)

∂y(3)

∂k̂3
= −a1

∂ÿ
∂k̂3

− a2
∂ẏ
∂k̂3

− bk̂3
∂y
∂k̂3

− by(t)− bk̂1
∂ÿ
∂k̂3

− bk̂2
∂ẏ
∂k̂3

+ br(t)

With the assumption that the rate of adaptation is slow, i.e. k̂i are small and the changes of
y(3), ÿ and y with respect to k̂1, k̂2 and k̂3 are also small, one can interchange the order of
differentiation to obtain:

d3

dt3
∂y
∂k̂1

= −(a1 + bk̂1)
d2

dt2
∂y
∂k̂1

− (a2 + bk̂2)
d
dt

∂y
∂k̂1

− bk̂3
∂y
∂k̂1

− bÿ(t)

d3

dt3
∂y
∂k̂2

= −(a1 + bk̂1)
d2

dt2
∂y
∂k̂2

− (a2 + bk̂2)
d
dt

∂y
∂k̂2

− bk̂3
∂y
∂k̂2

− bẏ(t) (19)

d3

dt3
∂y
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= −(a1 + bk̂1)
d2

dt2
∂y
∂k̂3

− (a2 + bk̂2)
d
dt

∂y
∂k̂3

− bk̂3
∂y
∂k̂3

− by(t) + br(t)

These latter equations can be written as:

∂y
∂k̂1

=
−b

p3 + (a1 + bk̂1)p2 + (a2 + bk̂2)p + bk̂3
ÿ(t)

∂y
∂k̂2

=
−b

p3 + (a1 + bk̂1)p2 + (a2 + bk̂2)p + bk̂3
ẏ(t) (20)

∂y
∂k̂3

=
−b

p3 + (a1 + bk̂1)p2 + (a2 + bk̂2)p + bk̂3
(y(t)− r(t))

where p is the differential operator. Because a1, a2 and b are unknown, the above sensitivity
functions cannot be used. Using the MIT rule, we replace a1, a2 and b with their estimates â1,
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â2 and b̂ in the matching condition (14), i.e. we relate the estimates â1, â2 and b̂ with k̂1, k̂2 and
k̂3 using

â1 + b̂k̂1 = am1 , â2 + b̂k̂2 = am2 and b̂k̂3 = am3 = bm (21)

and obtain the approximate sensitivity functions as:

∂y
∂k̂1

≈ −b
p3 + am1 p2 + am2 p + am3

ÿ(t)

∂y
∂k̂2

≈ −b
p3 + am1 p2 + am2 p + am3

ẏ(t) (22)

∂y
∂k̂3

≈ −b
p3 + am1 p2 + am2 p + am3

(y(t)− r(t))

Finally, the adaptation of k̂1, k̂2 and k̂3 is:

dk̂1
dt

= γe
1

p3 + am1 p2 + am2 p + am3

ÿ(t)

dk̂2
dt

= γe
1

p3 + am1 p2 + am2 p + am3

ẏ(t) (23)

dk̂3
dt

= γe
1

p3 + am1 p2 + am2 p + am3

(y(t)− r(t))

where the unknow parameter b in the numerator is absorbed by the gains k̂i.

The equations given by (22) are known as the sensitivity filters or models, and can be easily
implemented to generate the approximate sensitivity functions for the adaptive law (23). It
should be noted that the MRAC based on the MIT rule is locally stable provided the adaptive
gain γ is small, the reference input signal r has a small amplitude and sufficient number of
frequencies, and the initial conditions k̂i(0) are close to the nominal values of ki. For large
γ and k̂i(0) away from the nominal values of ki, the MIT rule may lead to instability and
unbounded signal response.

3.2.2 Conventional MRAC

Consider a multi-input multi-output (MIMO) uncertain linear system (Stepanyan &
Krinshnakumar, 2010a):

ẋ(t) = Ax(t) + B [u(t)− f (t)] , x(0) = x0 (24)

where x ∈ �n and u ∈ � are the state and the control input of the system respectively. f (t) ∈
� is a bounded and piece-wise continuous external disturbance. A ∈ �n×n and B ∈ �n×p are
unknown constant matrices satisfying the following matching conditions.

Assumption 1. Given a Hurwitz matrix Am ∈ �n×n and a matrix Bm ∈ �n×p of full column
rank, there exists a matrix K1 ∈ �p×n and a sign definite matrix Λ ∈ �p×p such that the following
equations hold

B = BmΛ

A = Am − BK1

(25)
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where k̂i are the estimates of ki and are updated according to the MIT rule. The objective of
the MIT rule is to adjust the parameters k1, k2 and k3 so as to minimize a cost function J. This
cost function can be chosen for example as follows:

J =
1
2

e2 (16)

where e is the tracking error between the system and the reference model, i.e. e = y − ym. It is
reasonable to adjust the parameters in the direction of the negative gradient of J:

dk̂i
dt

= −γ
∂J
∂k̂i

= −γe
∂e
∂k̂i

= −γe
∂y
∂k̂i

(17)

where γ > 0 is the adaptation rate. ∂e/∂k̂i is called the sensitivity derivative of the system
and is evaluated under the assumption that k̂i varies slowly. To calculate ∂y/∂k̂i in (17) one
can use (13) to obtain:

∂y(3)

∂k̂1
= −a1

∂ÿ
∂k̂1

− a2
∂ẏ
∂k̂1

− bk̂3
∂y
∂k̂1

− bÿ(t)− bk̂1
∂ÿ
∂k̂1

− bk̂2
∂ẏ
∂k̂1

∂y(3)

∂k̂2
= −a1

∂ÿ
∂k̂2

− a2
∂ẏ
∂k̂2

− bk̂3
∂y
∂k̂2

− bẏ(t)− bk̂1
∂ÿ
∂k̂2

− bk̂2
∂ẏ
∂k̂2

(18)

∂y(3)

∂k̂3
= −a1

∂ÿ
∂k̂3

− a2
∂ẏ
∂k̂3

− bk̂3
∂y
∂k̂3

− by(t)− bk̂1
∂ÿ
∂k̂3

− bk̂2
∂ẏ
∂k̂3

+ br(t)

With the assumption that the rate of adaptation is slow, i.e. k̂i are small and the changes of
y(3), ÿ and y with respect to k̂1, k̂2 and k̂3 are also small, one can interchange the order of
differentiation to obtain:

d3

dt3
∂y
∂k̂1

= −(a1 + bk̂1)
d2

dt2
∂y
∂k̂1

− (a2 + bk̂2)
d
dt

∂y
∂k̂1

− bk̂3
∂y
∂k̂1

− bÿ(t)

d3

dt3
∂y
∂k̂2

= −(a1 + bk̂1)
d2

dt2
∂y
∂k̂2

− (a2 + bk̂2)
d
dt

∂y
∂k̂2

− bk̂3
∂y
∂k̂2

− bẏ(t) (19)

d3

dt3
∂y
∂k̂3

= −(a1 + bk̂1)
d2

dt2
∂y
∂k̂3

− (a2 + bk̂2)
d
dt

∂y
∂k̂3

− bk̂3
∂y
∂k̂3

− by(t) + br(t)

These latter equations can be written as:

∂y
∂k̂1

=
−b

p3 + (a1 + bk̂1)p2 + (a2 + bk̂2)p + bk̂3
ÿ(t)

∂y
∂k̂2

=
−b

p3 + (a1 + bk̂1)p2 + (a2 + bk̂2)p + bk̂3
ẏ(t) (20)

∂y
∂k̂3

=
−b

p3 + (a1 + bk̂1)p2 + (a2 + bk̂2)p + bk̂3
(y(t)− r(t))

where p is the differential operator. Because a1, a2 and b are unknown, the above sensitivity
functions cannot be used. Using the MIT rule, we replace a1, a2 and b with their estimates â1,
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â2 and b̂ in the matching condition (14), i.e. we relate the estimates â1, â2 and b̂ with k̂1, k̂2 and
k̂3 using

â1 + b̂k̂1 = am1 , â2 + b̂k̂2 = am2 and b̂k̂3 = am3 = bm (21)

and obtain the approximate sensitivity functions as:

∂y
∂k̂1

≈ −b
p3 + am1 p2 + am2 p + am3

ÿ(t)

∂y
∂k̂2

≈ −b
p3 + am1 p2 + am2 p + am3

ẏ(t) (22)

∂y
∂k̂3

≈ −b
p3 + am1 p2 + am2 p + am3

(y(t)− r(t))

Finally, the adaptation of k̂1, k̂2 and k̂3 is:

dk̂1
dt

= γe
1

p3 + am1 p2 + am2 p + am3

ÿ(t)

dk̂2
dt

= γe
1

p3 + am1 p2 + am2 p + am3

ẏ(t) (23)

dk̂3
dt

= γe
1

p3 + am1 p2 + am2 p + am3

(y(t)− r(t))

where the unknow parameter b in the numerator is absorbed by the gains k̂i.

The equations given by (22) are known as the sensitivity filters or models, and can be easily
implemented to generate the approximate sensitivity functions for the adaptive law (23). It
should be noted that the MRAC based on the MIT rule is locally stable provided the adaptive
gain γ is small, the reference input signal r has a small amplitude and sufficient number of
frequencies, and the initial conditions k̂i(0) are close to the nominal values of ki. For large
γ and k̂i(0) away from the nominal values of ki, the MIT rule may lead to instability and
unbounded signal response.

3.2.2 Conventional MRAC

Consider a multi-input multi-output (MIMO) uncertain linear system (Stepanyan &
Krinshnakumar, 2010a):

ẋ(t) = Ax(t) + B [u(t)− f (t)] , x(0) = x0 (24)

where x ∈ �n and u ∈ � are the state and the control input of the system respectively. f (t) ∈
� is a bounded and piece-wise continuous external disturbance. A ∈ �n×n and B ∈ �n×p are
unknown constant matrices satisfying the following matching conditions.

Assumption 1. Given a Hurwitz matrix Am ∈ �n×n and a matrix Bm ∈ �n×p of full column
rank, there exists a matrix K1 ∈ �p×n and a sign definite matrix Λ ∈ �p×p such that the following
equations hold

B = BmΛ

A = Am − BK1

(25)
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The sign definiteness of Λ corresponds to the conventional sign condition of the high
frequency gain matrix of MIMO systems. Without loss of generality, we assume that Λ is
positive definite. The rest of the conditions for the existence of an adaptive controller are
given by (25).

The control objective is to design a control signal u(t) such that the system tracks the reference
model:

ẋm(t) = Amxm(t) + Bm Nr(t), xm(0) = x0 (26)
Am and Bm are chosen according to performance specifications and satisfy Assumption 1 and

r(t) is a bounded and smooth external reference command. The matrix N = − (
CA−1

m B−1
m

)−1

is chosen such that the output ym(t) = Cxm(t) perfectly tracks the reference command r(t).
By using (25) and (26), one can note that system (24) can be written in the form:

ẋ(t) = Amx(t) + Bm Nr(t) + BmΛ [u(t)− K1x(t)− K2r(t)− f (t)] (27)

where K2 = Λ−1N. Hence, choosing the control input u(t) as:

u(t) = K1x(t) + K2r(t) + f (t) (28)

translates the system (24) into the reference model (26). The reference model (26) can always
be specified from the performance perspective, however the control signal (28) cannot be
implemented since the matrices K1 and K2 and the vector-function f (t) are assumed to be
unknown. Thus, the adaptive control is designed according to the MRAC architecture as:

u(t) = K̂1(t)x(t) + K̂2(t)r(t) + f̂ (t) (29)

where K̂1(t) and K̂2(t) are the estimates of the ideal control gains K1 and K2, and f̂ (t) is the
estimate of a constant vector f̄ that can be referred to as an average value of f (t). These
estimates are updated online according to robust adaptive laws:

˙̂K1(t) = −γBT
mP e(t)xT(t) + Ψ1

(
x(t), e(t), K̂1(t)

)

˙̂K2(t) = −γBT
mP e(t)rT(t) + Ψ2

(
r(t), e(t), K̂2(t)

)

˙̂f (t) = −γBT
mP e(t) + Ψ3

(
e(t), f̂ (t)

) (30)

where γ > 0 is the adaptation rate, P = PT > 0 is the solution of the Lyapunov equation:

AT
mP + PAm = −Q (31)

for some Q = QT > 0. The terms Ψ1, Ψ2 and Ψ3 represent the robust modifications such as
σ-modification, e-modification, projection operator or dead-zone modification (Stepanyan &
Krinshnakumar, 2010a). Here e(t) = x(t) − xm(t) is the tracking error between the system
and the reference model.

3.2.3 Modified MRAC

The Modified MRAC (M-MRAC) is proposed in (Stepanyan & Krinshnakumar, 2010a;b). This
approach is motivated by the fact that the initial large error in the control gains generates
large transient excursions both in system’s control and output signals. Therefore, driving the
reference model toward the system proportional to the tracking error prevents the system’s
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attempt to aggressively maneuver toward the reference model. In this case, the modified
reference model is defined as follows:

ẋm(t) = Amxm(t) + Bm Nr(t) + λ(x(t)− xm(t)), xm(0) = x0 (32)
where λ > 0 is a design parameter that specifies the tracking error feedback into the reference
model. As the tracking error approaches zero, the reference model (32) approaches its original
form, which is called an ideal reference model:

ẋ0(t) = Amx0(t) + Bm Nr(t), x0(0) = x0 (33)
The control input u as well as the adaptive laws for K̂1, K̂2 and f̂ are the same as in the
previous section. It has been shown that the error feedback term λ(x(t)− xm(t)) determines
the damping in the control signal. Increasing this term makes it possible to increase the
learning rate for better transient performance without generating high frequency oscillations
in the adaptive system.

3.3 Sliding mode control (SMC)

Closed-loop systems can have some fault-tolerance when the controller gains are carefully
chosen to take care of effects of both faults and system uncertainties. Such systems are called
passive fault-tolerant control (PFTC) systems. Passive approaches make use of robust control
techniques to ensure that a closed-loop system remains insensitive to certain faults using
constant controller parameters and without use of on-line fault information. In the case of
PFTC, systems continue to operate with the same control gains and structures and the scheme
effectiveness depends upon the robustness of the nominal (fault-free) closed-loop system.
Systems are made robust to faults by assuming a restrictive repertoire of likely faults and
the way in which they affect the control function.

Sliding mode control (SMC) techniques have a strong capability in handling uncertainties
and disturbances, which makes them an excellent candidate for passive fault tolerant control
system. The design of the SMC for the Qball-X4 starts by expressing the system model (4) in
state-space representation (Li, 2011a), (Li et al., 2011b):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9

ẋ10

ẋ11

ẋ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x7

x8

x9

x10

x11

x12

uz (cosx5 sinx4 cosx6 + sinx5 sinx6) /m − kxx7/m

uz (cosx5 sinx4 sinx6 − sinx5 cosx6) /m − kyx8/m

uz (cosx5 cosx4) /m − g − kzx9/m
�
uθ +

�
Jy − Jz

�
x11x12 − JT x11 Ω − kθ x10

�
/Jx�

uφ + (Jz − Jx) x10x12 − JT x10 Ω − kφx11
�

/Jy�
uψ +

�
Jx − Jy

�
x10x11 − kψx12

�
/Jz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)
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The sign definiteness of Λ corresponds to the conventional sign condition of the high
frequency gain matrix of MIMO systems. Without loss of generality, we assume that Λ is
positive definite. The rest of the conditions for the existence of an adaptive controller are
given by (25).

The control objective is to design a control signal u(t) such that the system tracks the reference
model:

ẋm(t) = Amxm(t) + Bm Nr(t), xm(0) = x0 (26)
Am and Bm are chosen according to performance specifications and satisfy Assumption 1 and

r(t) is a bounded and smooth external reference command. The matrix N = − (
CA−1

m B−1
m

)−1

is chosen such that the output ym(t) = Cxm(t) perfectly tracks the reference command r(t).
By using (25) and (26), one can note that system (24) can be written in the form:

ẋ(t) = Amx(t) + Bm Nr(t) + BmΛ [u(t)− K1x(t)− K2r(t)− f (t)] (27)

where K2 = Λ−1N. Hence, choosing the control input u(t) as:

u(t) = K1x(t) + K2r(t) + f (t) (28)

translates the system (24) into the reference model (26). The reference model (26) can always
be specified from the performance perspective, however the control signal (28) cannot be
implemented since the matrices K1 and K2 and the vector-function f (t) are assumed to be
unknown. Thus, the adaptive control is designed according to the MRAC architecture as:

u(t) = K̂1(t)x(t) + K̂2(t)r(t) + f̂ (t) (29)

where K̂1(t) and K̂2(t) are the estimates of the ideal control gains K1 and K2, and f̂ (t) is the
estimate of a constant vector f̄ that can be referred to as an average value of f (t). These
estimates are updated online according to robust adaptive laws:

˙̂K1(t) = −γBT
mP e(t)xT(t) + Ψ1

(
x(t), e(t), K̂1(t)

)

˙̂K2(t) = −γBT
mP e(t)rT(t) + Ψ2

(
r(t), e(t), K̂2(t)

)

˙̂f (t) = −γBT
mP e(t) + Ψ3

(
e(t), f̂ (t)

) (30)

where γ > 0 is the adaptation rate, P = PT > 0 is the solution of the Lyapunov equation:

AT
mP + PAm = −Q (31)

for some Q = QT > 0. The terms Ψ1, Ψ2 and Ψ3 represent the robust modifications such as
σ-modification, e-modification, projection operator or dead-zone modification (Stepanyan &
Krinshnakumar, 2010a). Here e(t) = x(t) − xm(t) is the tracking error between the system
and the reference model.

3.2.3 Modified MRAC

The Modified MRAC (M-MRAC) is proposed in (Stepanyan & Krinshnakumar, 2010a;b). This
approach is motivated by the fact that the initial large error in the control gains generates
large transient excursions both in system’s control and output signals. Therefore, driving the
reference model toward the system proportional to the tracking error prevents the system’s
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attempt to aggressively maneuver toward the reference model. In this case, the modified
reference model is defined as follows:

ẋm(t) = Amxm(t) + Bm Nr(t) + λ(x(t)− xm(t)), xm(0) = x0 (32)
where λ > 0 is a design parameter that specifies the tracking error feedback into the reference
model. As the tracking error approaches zero, the reference model (32) approaches its original
form, which is called an ideal reference model:

ẋ0(t) = Amx0(t) + Bm Nr(t), x0(0) = x0 (33)
The control input u as well as the adaptive laws for K̂1, K̂2 and f̂ are the same as in the
previous section. It has been shown that the error feedback term λ(x(t)− xm(t)) determines
the damping in the control signal. Increasing this term makes it possible to increase the
learning rate for better transient performance without generating high frequency oscillations
in the adaptive system.

3.3 Sliding mode control (SMC)

Closed-loop systems can have some fault-tolerance when the controller gains are carefully
chosen to take care of effects of both faults and system uncertainties. Such systems are called
passive fault-tolerant control (PFTC) systems. Passive approaches make use of robust control
techniques to ensure that a closed-loop system remains insensitive to certain faults using
constant controller parameters and without use of on-line fault information. In the case of
PFTC, systems continue to operate with the same control gains and structures and the scheme
effectiveness depends upon the robustness of the nominal (fault-free) closed-loop system.
Systems are made robust to faults by assuming a restrictive repertoire of likely faults and
the way in which they affect the control function.

Sliding mode control (SMC) techniques have a strong capability in handling uncertainties
and disturbances, which makes them an excellent candidate for passive fault tolerant control
system. The design of the SMC for the Qball-X4 starts by expressing the system model (4) in
state-space representation (Li, 2011a), (Li et al., 2011b):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9

ẋ10

ẋ11

ẋ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x7

x8

x9

x10

x11

x12

uz (cosx5 sinx4 cosx6 + sinx5 sinx6) /m − kxx7/m

uz (cosx5 sinx4 sinx6 − sinx5 cosx6) /m − kyx8/m

uz (cosx5 cosx4) /m − g − kzx9/m
�
uθ +

�
Jy − Jz

�
x11x12 − JT x11 Ω − kθ x10

�
/Jx�

uφ + (Jz − Jx) x10x12 − JT x10 Ω − kφx11
�

/Jy�
uψ +

�
Jx − Jy

�
x10x11 − kψx12

�
/Jz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)
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where [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12]
T =

[
x, y, z, θ, φ, ψ, ẋ, ẏ, ż, θ̇, φ̇, ψ̇

]T and uz, uθ ,
uφ and uψ are defined in (9). In order to achieve tracking for the system, the tracking errors
need to be defined as following where xd

i is the desired path for the ith state xi:

ei = xd
i − xi ; i = 1, ..., 6 (35)

To guarantee the robustness of the passive fault tolerant control in both fault-free case and
fault case, the faults need to be considered during the phase of controller design. Therefore,
to design a controller that can handle both fault-free and fault situations, an integral sliding
mode technique is employed to further enhance the robustness and to ensure a faster and
smoother convergence. The sliding surface is then designed as:

si = ėi + λiei + ki

∫
eidt ; i = 1, ..., 6 (36)

Consider the Lyapunov functions:

Vi =
1
2

s2
i ; i = 1, ..., 6 (37)

The objective now is to design the control laws so that the time derivatives of the Lyapunov
functions are negative. That is:

V̇i = ṡisi < 0 ; i = 1, ..., 6 (38)

This latter condition states that the squared distance to the switching surface as measured by
s2 decreases along all system trajectories. However, this condition is not feasible in practice
because the switching of real components is not instantaneous and this leads to an undesired
phenomenon known as chattering in the direction of the switching surface. Thus, condition
(38) is expanded by a boundary layer in which the controller switching is not required as:

ṡisi < −η |s| ; i = 1, ..., 6 (39)

The control inputs should be chosen so that trajectories approach the sliding surface and then
stay on it for all future time instants. Thus, the control inputs are expressed as the sum of two
terms (Singh & Holé, 2004). The first one, called the equivalent control, is chosen so as to make
ṡi = 0 when si = 0. Taking the time derivative of (36), the dynamics of the sliding surfaces
can be obtained as following:

ṡ1 = ẍd
1 − uzux + kxx7/m + λ1 ė1 + k1e1

ṡ2 = ẍd
2 − uzuy + kyx8/m + λ2 ė2 + k2e2

ṡ3 = ẍd
3 − uz (cosx5 cosx4) /m + g + kzx9/m + λ3 ė3 + k3e3

ṡ4 = ẍd
4 −

(
uθ +

(
Jy − Jz

)
x11x12 − JT x11 Ω − kθ x10

)
/Jx + λ4 ė4 + k4e4

ṡ5 = ẍd
5 −

(
uφ + (Jz − Jx) x10x12 − JT x10 Ω − kφx11

)
/Jy + λ5 ė5 + k5e5

ṡ6 = ẍd
6 −

(
uψ +

(
Jx − Jy

)
x10x11 − kψx12

)
/Jz + λ6 ė6 + k6e6

(40)

where ux = (cosx5 sinx4 cosx6 + sinx5 sinx6) /m and uy =
(cosx5 sinx4 sinx6 − sinx5 cosx6) /m are defined as virtual inputs. By setting ṡi = 0 in

132 Automatic Flight Control Systems – Latest Developments Fault Tolerant Flight Control Techniques with Application to a Quadrotor UAV Testbed 15

(40) the equivalent control inputs can be derived as:

ueq
x =

1
uz

(
ẍd

1 + kxx7/m + λ1 ė1 + k1e1

)

ueq
y =

1
uz

(
ẍd

2 + kyx8/m + λ2 ė2 + k2e2

)

ueq
z = m

(
ẍd

3 + g + kzx9/m + λ3 ė3 + k3e3

)
/ (cosx5 cosx4)

ueq
θ = Jx

(
ẍd

4 + λ4 ė4 + k4e4

)
− (

Jy − Jz
)

x11x12 + JT x11 Ω + kθ x10

ueq
φ = Jy

(
ẍd

5 + λ5 ė5 + k5e5

)
− (Jz − Jx) x10x12 + JT x10 Ω + kφx11

ueq
ψ = Jz

(
ẍd

6 + λ6 ė6 + k6e6

)
− (

Jx − Jy
)

x10x11 + kψx12

(41)

The second term of the control inputs is chosen to tackle uncertainties in the system and to
introduce reaching law. One can achieve a proportional (lisi) plus constant (misign(si)) rate
reaching law by selecting the second term as:

u∗
x =

1
uz

(l1s1 + m1sign(s1))

u∗
y =

1
uz

(l2s2 + m2sign(s2))

u∗
z =

m
(cosx5 cosx4)

(l3s3 + m3sign(s3))

u∗
θ = Jx (l4s4 + m4sign(s4))

u∗
φ = Jy (l5s5 + m5sign(s5))

u∗
ψ = Jz (l6s6 + m6sign(s6))

(42)

where li and mi (i = 1, ..., 6) are positive control gains. The total control inputs u = ueq + u∗
are then (Li, 2011a), (Li et al., 2011b):

ux =
1
uz

(
ẍd

1 + kxx7/m + λ1 ė1 + k1e1 + l1s1 + m1sign(s1)
)

uy =
1
uz

(
ẍd

2 + kyx8/m + λ2 ė2 + k2e2 + l2s2 + m2sign(s2)
)

uz =
m

(cosx5 cosx4)

(
ẍd

3 + g + kzx9/m + λ3 ė3 + k3e3 + l3s3 + m3sign(s3)
)

uθ = Jx

(
ẍd

4 + λ4 ė4 + k4e4 + l4s4 + m4sign(s4)
)
− (

Jy − Jz
)

x11x12 + JT x11 Ω + kθ x10

uφ = Jy

(
ẍd

5 + λ5 ė5 + k5e5 + l5s5 + m5sign(s5)
)
− (Jz − Jx) x10x12 + JT x10 Ω + kφx11

uψ = Jz

(
ẍd

6 + λ6 ė6 + k6e6 + l6s6 + m6sign(s6)
)
− (

Jx − Jy
)

x10x11 + kψx12

(43)

It is straightforward to verify the negativity of condition (39). For illustration purpose, taking
for example ux of (43) and plugging it into ṡ1 of (40) gives:

ṡ1 = −l1s1 − m1sign(s1) (44)
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where [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12]
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x, y, z, θ, φ, ψ, ẋ, ẏ, ż, θ̇, φ̇, ψ̇

]T and uz, uθ ,
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need to be defined as following where xd
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phenomenon known as chattering in the direction of the switching surface. Thus, condition
(38) is expanded by a boundary layer in which the controller switching is not required as:

ṡisi < −η |s| ; i = 1, ..., 6 (39)

The control inputs should be chosen so that trajectories approach the sliding surface and then
stay on it for all future time instants. Thus, the control inputs are expressed as the sum of two
terms (Singh & Holé, 2004). The first one, called the equivalent control, is chosen so as to make
ṡi = 0 when si = 0. Taking the time derivative of (36), the dynamics of the sliding surfaces
can be obtained as following:

ṡ1 = ẍd
1 − uzux + kxx7/m + λ1 ė1 + k1e1

ṡ2 = ẍd
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ṡ3 = ẍd
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ṡ6 = ẍd
6 −

(
uψ +
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/Jz + λ6 ė6 + k6e6

(40)

where ux = (cosx5 sinx4 cosx6 + sinx5 sinx6) /m and uy =
(cosx5 sinx4 sinx6 − sinx5 cosx6) /m are defined as virtual inputs. By setting ṡi = 0 in
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z =
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where li and mi (i = 1, ..., 6) are positive control gains. The total control inputs u = ueq + u∗
are then (Li, 2011a), (Li et al., 2011b):
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ẍd
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)

uy =
1
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ẍd

2 + kyx8/m + λ2 ė2 + k2e2 + l2s2 + m2sign(s2)
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m

(cosx5 cosx4)
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ẍd

3 + g + kzx9/m + λ3 ė3 + k3e3 + l3s3 + m3sign(s3)
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uθ = Jx
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4 + λ4 ė4 + k4e4 + l4s4 + m4sign(s4)
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Jy − Jz
)

x11x12 + JT x11 Ω + kθ x10

uφ = Jy

(
ẍd

5 + λ5 ė5 + k5e5 + l5s5 + m5sign(s5)
)
− (Jz − Jx) x10x12 + JT x10 Ω + kφx11

uψ = Jz

(
ẍd

6 + λ6 ė6 + k6e6 + l6s6 + m6sign(s6)
)
− (

Jx − Jy
)

x10x11 + kψx12

(43)

It is straightforward to verify the negativity of condition (39). For illustration purpose, taking
for example ux of (43) and plugging it into ṡ1 of (40) gives:

ṡ1 = −l1s1 − m1sign(s1) (44)
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Multiplying both sides of the previous equation by s1:

s1 ṡ1 = −l1s2
1 − m1 |s1| (45)

and properly choosing control gains l1 and m1 allows to verify (39). The same procedure can
be followed for the other control inputs.

The elimination of the chattering effect produced by the discontinuous function sign can be
attained by using a saturation function sat instead of the sign function. This saturation function
is defined as follows:

sat(si) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

δb if si ≥ δb

si if −δb < si < δb

−δb if si ≤ −δb

(46)

where δb is the boundary of the saturation function and is set small enough.

3.4 Backstepping control (BSC)

Backstepping design refers to "step back" to the control input, and a major advantage of
backstepping design is its flexibility to avoid cancellation of useful nonlinearities and pursue
the objectives of stabilization and tracking, rather than those of linearization. Recursively
constructed backstepping controller (BSC) employs the control Lyapunov function to
guarantee the global stability (Krstic et al., 1995).

In order to illustrate the BSC techniques, consider the following nonlinear system:

ẋ = f (x) + g(x)ξ

ξ̇ = u
(47)

where x is the state vector and ξ is the control input. As a first step, define the tracking error
between the actual value x and its desired value xd as follows:

e = xd − x (48)

As a second step, define the following states:

x1 = x
x2 = ẋ1 = ẋ

z1 = e = xd − x = xd − x1

(49)

The key idea of BSC is to choose certain variables as virtual controls. Assuming x2 is the
virtual control variable and a(z1) is the function which makes z1 → 0, define z1 as:

z1 = a(z1)− x2 (50)

The time derivative of z1 is:

ż1 = ẋd − ẋ1 = ẋd − x2 = ẋd + z1 − a(z1) (51)

Let us choose a(z1) as a(z1) = ẋd + k1z1 with k1 > 0 and define the Lyapunov function:

V1 =
1
2

z2
1 (52)
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One can see that the time derivative of V1 is:

V̇1 = z1 ż1 = z1

(
ẋd + z1 − a(z1)

)
= z1 (z1 − k1z1) = −k1z2

1 + z1z1 (53)

Clearly if z1 = 0, then V̇1 = −k1z2
1 and z1 is guaranteed to converge to zero asymptotically.

Then, the next step is to define a Lyapunov function so as to make z1 → 0:

V2 = V1 +
1
2

z2
1 (54)

The time derivative of V2 is:

V̇2 = V̇1 + z1 ż1 = −k1z2
1 + z1z1 + z1

(
ẍd + k1 ż1 − ẋ2

)
(55)

To obtain V̇2 < 0, ẋ2 is chosen as:

ẋ2 = ẍd +
(

1 − k2
1

)
z1 + (k1 + k2) z1 (56)

with k1 > 0, k2 > 0, z1 = xd − x1 and z1 = ẋd + k1z1 − x2.

The application of the method above to the state-space representation (34) of the Qball-X4
model gives the control inputs (Zhang, 2010a), (Zhang et al., 2010b):

ux =
1
uz

(
ẍd

1 + kxx7/m +
(

1 − k2
1

)
z1 + (k1 + k2) z1

)

uy =
1
uz

(
ẍd

2 + kyx8/m +
(

1 − k2
1

)
z2 + (k1 + k2) z2

)

uz =
m

(cosx5 cosx4)

(
ẍd

3 + g + kzx9/m +
(

1 − k2
1

)
z3 + (k1 + k2) z3

)

uθ = Jx

(
ẍd

4 +
(

1 − k2
1

)
z4 + (k1 + k2) z4

)
− (

Jy − Jz
)

x11x12 + JT x11 Ω + kθ x10

uφ = Jy

(
ẍd

5 +
(

1 − k2
1

)
z5 + (k1 + k2) z5

)
− (Jz − Jx) x10x12 + JT x10 Ω + kφx11

uψ = Jz

(
ẍd

6 +
(

1 − k2
1

)
z6 + (k1 + k2) z6

)
− (

Jx − Jy
)

x10x11 + kψx12

(57)

with ux = (cosx5 sinx4 cosx6 + sinx5 sinx6) /m and uy = (cosx5 sinx4 sinx6 − sinx5 cosx6) /m
defined as virtual inputs and zi = xd

i − xi and zi = ẋd
i + k1zi − ẋi (i = 1, ..., 6).

3.5 Model predictive control (MPC)

Model Predictive Control (MPC) is a promising tool for fault tolerant control applications
(Maciejowski & Jones, 2003) due to its prominent capabilities such as constraint handling,
flexibility to changes in the process dynamics and applicability to nonlinear dynamics. Since
MPC recalculates the control signal at each sampling time, any change in the process dynamics
can be reflected simply into the control signal calculation. Also, the constraint handling
capability of MPC allows system working close to the boundaries of the tight post-failure
operation envelope. The drawback of MPC is that similarly to most of the control techniques,
it needs an almost explicit model of the system to calculate a stabilizing control signal. On the
other hand, the abrupt changes in the model parameters, due to failure, cannot be predicted
beforehand and an online data-driven parameter estimation methodology is required to
extract the post-failure model parameters from online input/output data. In other words,
an FDD module is required to provide information about the occurring faults to allow MPC
to consider faults.
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Multiplying both sides of the previous equation by s1:

s1 ṡ1 = −l1s2
1 − m1 |s1| (45)

and properly choosing control gains l1 and m1 allows to verify (39). The same procedure can
be followed for the other control inputs.

The elimination of the chattering effect produced by the discontinuous function sign can be
attained by using a saturation function sat instead of the sign function. This saturation function
is defined as follows:

sat(si) =

⎧
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δb if si ≥ δb

si if −δb < si < δb

−δb if si ≤ −δb

(46)

where δb is the boundary of the saturation function and is set small enough.

3.4 Backstepping control (BSC)

Backstepping design refers to "step back" to the control input, and a major advantage of
backstepping design is its flexibility to avoid cancellation of useful nonlinearities and pursue
the objectives of stabilization and tracking, rather than those of linearization. Recursively
constructed backstepping controller (BSC) employs the control Lyapunov function to
guarantee the global stability (Krstic et al., 1995).

In order to illustrate the BSC techniques, consider the following nonlinear system:

ẋ = f (x) + g(x)ξ

ξ̇ = u
(47)

where x is the state vector and ξ is the control input. As a first step, define the tracking error
between the actual value x and its desired value xd as follows:

e = xd − x (48)

As a second step, define the following states:

x1 = x
x2 = ẋ1 = ẋ

z1 = e = xd − x = xd − x1

(49)

The key idea of BSC is to choose certain variables as virtual controls. Assuming x2 is the
virtual control variable and a(z1) is the function which makes z1 → 0, define z1 as:

z1 = a(z1)− x2 (50)

The time derivative of z1 is:

ż1 = ẋd − ẋ1 = ẋd − x2 = ẋd + z1 − a(z1) (51)

Let us choose a(z1) as a(z1) = ẋd + k1z1 with k1 > 0 and define the Lyapunov function:

V1 =
1
2

z2
1 (52)
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One can see that the time derivative of V1 is:

V̇1 = z1 ż1 = z1

(
ẋd + z1 − a(z1)

)
= z1 (z1 − k1z1) = −k1z2

1 + z1z1 (53)

Clearly if z1 = 0, then V̇1 = −k1z2
1 and z1 is guaranteed to converge to zero asymptotically.

Then, the next step is to define a Lyapunov function so as to make z1 → 0:

V2 = V1 +
1
2

z2
1 (54)

The time derivative of V2 is:
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1 + z1z1 + z1

(
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)
(55)

To obtain V̇2 < 0, ẋ2 is chosen as:

ẋ2 = ẍd +
(
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)
z1 + (k1 + k2) z1 (56)

with k1 > 0, k2 > 0, z1 = xd − x1 and z1 = ẋd + k1z1 − x2.

The application of the method above to the state-space representation (34) of the Qball-X4
model gives the control inputs (Zhang, 2010a), (Zhang et al., 2010b):
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ẍd

4 +
(

1 − k2
1

)
z4 + (k1 + k2) z4

)
− (

Jy − Jz
)

x11x12 + JT x11 Ω + kθ x10

uφ = Jy

(
ẍd
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with ux = (cosx5 sinx4 cosx6 + sinx5 sinx6) /m and uy = (cosx5 sinx4 sinx6 − sinx5 cosx6) /m
defined as virtual inputs and zi = xd

i − xi and zi = ẋd
i + k1zi − ẋi (i = 1, ..., 6).

3.5 Model predictive control (MPC)

Model Predictive Control (MPC) is a promising tool for fault tolerant control applications
(Maciejowski & Jones, 2003) due to its prominent capabilities such as constraint handling,
flexibility to changes in the process dynamics and applicability to nonlinear dynamics. Since
MPC recalculates the control signal at each sampling time, any change in the process dynamics
can be reflected simply into the control signal calculation. Also, the constraint handling
capability of MPC allows system working close to the boundaries of the tight post-failure
operation envelope. The drawback of MPC is that similarly to most of the control techniques,
it needs an almost explicit model of the system to calculate a stabilizing control signal. On the
other hand, the abrupt changes in the model parameters, due to failure, cannot be predicted
beforehand and an online data-driven parameter estimation methodology is required to
extract the post-failure model parameters from online input/output data. In other words,
an FDD module is required to provide information about the occurring faults to allow MPC
to consider faults.
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3.5.1 Notation and terminology

In the MPC, also known as Receding Horizon Control (RHC), a cost function is minimized
over a future prediction horizon time step denoted by N, subject to the dynamical constraints.
The first control input in the sequence is applied to the plant until the next update is available.
The discrete timing is shown by k where k ∈ N. The state vectors are introduced as follows:

• x(k) : actual state vector at time step k.
• xk(j) : predicted state vector at time step k + j computed at time step k (j ∈ {0, 1, ..., N}).
Similar notation is used for the control input vector u. Also the sequence of the state/input
vector over the prediction horizon is called the state/input trajectory and is shown as follows:

xk(.) = {xk(j)|j = 0, 1, 2, ..., N}
uk(.) = {uk(j)|j = 0, 1, 2, ..., N − 1} (58)

3.5.2 Fault-free MPC formulation

The cost function at time step k is defined as follows:

J(xk(.), uk(.)) =
N−1

∑
j=0

(
�xk(j)− xd�2

Q + �uk(j)�2
R

)
+ �xk(N)− xd�2

P (59)

where �x�2
Q = xTQx, and P > 0, Q > 0 and R > 0 are symmetric matrices. xd is the desired

or reference state of x. Then the MPC problem at each step time k is defined as follows:

Problem 1. Calculate:
J∗(x(k)) = min

{uk(.),xk(.)}
J(xk(.), uk(.)) (60)

Subject to:

xk(j + 1) = f (xk(j), uk(j)) ; xk(0) = x(k) (61)

xk(j) ∈ X (62)

uk(j) ∈ U (63)

xk(N) ∈ Xt (64)

for j = 0, 1, ..., N − 1.

X ⊆ Rn, U ⊆ Rm and Xt ⊆ X denote the set of admissible states, inputs and terminal
states (terminal region) respectively. J∗ denotes the optimal value of the cost function J. This
MPC formulation is based on the quasi-infinite model predictive control (Chen & Allgower,
1998). At each time step k, MPC generates the input and state trajectories, by solving Problem
1. After generating these trajectories, MPC controller applies only the first computed control
input, i.e. uk(0) to the system. The following algorithm presents the online implementation
of Problem 1 (Izadi, 2009a), (Izadi et al., 2011b).

Algorithm 1. Given x(0) and xd, do:

1. k = 0.
2. Measure x(k).
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3. Solve Problem 1 and generate uk(.) and xk(.).
4. Apply uk(0) to the system.
5. Set k = k + 1 and GOTO Step #2.

This algorithm is repeated for k = 0, 1, ..., ∞. In step #2, if full state measurement is not
available, then a state estimator (observer) can be used to provide the state estimate.

3.5.3 Fault-tolerant MPC

In the presence of an actuator fault, the system dynamics can be rewritten as follows:

x(k + 1) = f (x(k), α(k)u(k)) (65)

where α captures the fault information and is called the fault parameter matrix which
determines the fault severity. α is a diagonal matrix, i.e. α = diag(α1, α2, ..., αm) where m
is the number of inputs (m = 4 for the quadrotor helicopter) and the scalar αi denotes the
amplitude of the fault in the ith actuator. αi = 1 denotes a healthy actuator, αi = 0 denotes
a complete loss of actuator effectiveness and 0 < αi < 1 represents a partial loss. Taking
into consideration the model representation (65) after fault occurrence, the fault-tolerant MPC
problem can be defined as follows (Izadi et al., 2011b):

Problem 2. Calculate:
J∗(x(k)) = min

{uk(.),xk(.)}
J(xk(.), uk(.)) (66)

Subject to:

xk(j + 1) = f (xk(j), αuk(j)) ; xk(0) = x(k) (67)

xk(j) ∈ X (68)

uk(j) ∈ U (69)

xk(N) ∈ Xt (70)

for j = 0, 1, ..., N − 1.

One can see that the difference between Problem 1 and Problem 2 resides in the consideration
of the fault matrix α in (67). Clearly, solving Problem 2 requires an FDD module for fault
identification and thus the algorithm for solving Problem 2 is similar to Algorithm1 except
that an FDD module is needed to run parallelly to provide an estimation of α.

3.6 Flatness-based trajectory planning/re-planning (FTPR)

This section does not present an FTC method but a trajectory planning/re-planning approach
that can be combined with any FTC module to provide a better management of the system
resources after fault occurrence. This is achieved by redefining the reference trajectories to be
followed by the damaged system depending on the fault severity. This approach is equivalent
to the reconfiguration of command governor block in Figure 3.
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3.5.1 Notation and terminology
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N−1

∑
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�xk(j)− xd�2

Q + �uk(j)�2
R

)
+ �xk(N)− xd�2

P (59)
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1. After generating these trajectories, MPC controller applies only the first computed control
input, i.e. uk(0) to the system. The following algorithm presents the online implementation
of Problem 1 (Izadi, 2009a), (Izadi et al., 2011b).

Algorithm 1. Given x(0) and xd, do:
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3. Solve Problem 1 and generate uk(.) and xk(.).
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where α captures the fault information and is called the fault parameter matrix which
determines the fault severity. α is a diagonal matrix, i.e. α = diag(α1, α2, ..., αm) where m
is the number of inputs (m = 4 for the quadrotor helicopter) and the scalar αi denotes the
amplitude of the fault in the ith actuator. αi = 1 denotes a healthy actuator, αi = 0 denotes
a complete loss of actuator effectiveness and 0 < αi < 1 represents a partial loss. Taking
into consideration the model representation (65) after fault occurrence, the fault-tolerant MPC
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for j = 0, 1, ..., N − 1.

One can see that the difference between Problem 1 and Problem 2 resides in the consideration
of the fault matrix α in (67). Clearly, solving Problem 2 requires an FDD module for fault
identification and thus the algorithm for solving Problem 2 is similar to Algorithm1 except
that an FDD module is needed to run parallelly to provide an estimation of α.

3.6 Flatness-based trajectory planning/re-planning (FTPR)

This section does not present an FTC method but a trajectory planning/re-planning approach
that can be combined with any FTC module to provide a better management of the system
resources after fault occurrence. This is achieved by redefining the reference trajectories to be
followed by the damaged system depending on the fault severity. This approach is equivalent
to the reconfiguration of command governor block in Figure 3.
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3.6.1 Flatness notion

The flatness can be defined as follows. A dynamic system:

ẋ = f (x, u)

y = h(x)
(71)

with x ∈ �n and u ∈ �m, is flat if and only if there exist variables F ∈ �m called
the flat outputs such that: x = Ξ1(F, Ḟ, ..., F(n−1)), y = Ξ2(F, Ḟ, ..., F(n−1)) and u =

Ξ3(F, Ḟ, ..., F(n)). Ξ1, Ξ2 and Ξ3 are three smooth mappings and F(i) is the ith derivative of F.
The parameterization of the control inputs u in function of the flat outputs F plays a key role
in the trajectory planning problem: the nominal control inputs to be applied during a mission
can be expressed in function of the desired trajectories. Thus allowing to tune the profile of
the trajectories for keeping the applied control inputs below the actuator limits (Chamseddine
et al., 2011b).

For the quadrotor UAV simplified model given in (6), one can see that the outputs to be
controlled can be chosen as flat outputs. Thus, system (6) is flat with flat outputs F1 = z,
F2 = x, F3 = y and F4 = ψ. In addition to x, y, z and ψ, the parameterization of θ and φ in
function of the flat outputs is:

θ =
F̈2
g

;

φ = − F̈3
g

(72)

The parameterization of the control inputs in function of the flat outputs is:

uz = m
(

F̈1 + g
)

;

uθ = Jx
F(4)

2
g

;

uφ = −Jy
F(4)

3
g

;

uψ = Jz F̈4

(73)

3.6.2 Reference trajectory design

Let’s define F∗
i as the reference trajectories for the flat output Fi. Several methods can be

used to design F∗
i . In this work we employ the Bézier polynomial function. A general Bézier

polynomial function of degree n is:

F = antn + an−1tn−1 + ... + a2t2 + a1t + a0 (74)

where t is the time and ai (i = 0, ..., n) are constant coefficients to be calculated in function
of the initial and final conditions. It is clear that the larger is n, the smoother is the reference
trajectory. However, calculations for trajectory planning become heavier as n increases. For

the quad-rotor UAV, it can be seen in (73) that uz is function of F̈1, uθ of F(4)
2 , uφ of F(4)

3 and
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uψ of F̈4. The relative degrees are then r1 = 2, r2 = 4, r3 = 4 and r4 = 2. Smooth control

inputs can be obtained if one can impose F(0)
i up to F(ni)

i at the initial and final time (i.e. up to

F(ni)
i (t0) and F(ni)

i (t f )) where ni = 2 for i = 1, 4 and ni = 4 for i = 2, 3. To this end, we employ
a Bézier polynomial function of degree 5 for F1 and F4 and a Bézier polynomial function of
degree 9 for F2 and F3. The reference trajectories are then:

F∗
i = ai

5t5 + ai
4t4 + ai

3t3 + ai
2t2 + ai

1t + ai
0 ; (i = 1, 4) (75)

and
F∗

i = ai
9t9 + ai

8t8 + · · ·+ ai
2t2 + ai

1t + ai
0 ; (i = 2, 3) (76)

The coefficients ai
j (i = 1, 4 and j = 0, ..., 5) are calculated to verify the initial conditions Fi(t0),

Ḟi(t0), F̈i(t0) and the final conditions Fi(t f ), Ḟi(t f ), F̈i(t f ). The coefficients ai
j (i = 2, 3 and

j = 0, ..., 9) are calculated to verify the initial conditions Fi(t0), Ḟi(t0), F̈i(t0), F(3)
i (t0), F(4)

i (t0)

and the final conditions Fi(t f ), Ḟi(t f ), F̈i(t f ), F(3)
i (t f ), F(4)

i (t f ). t0 and t f are respectively the
initial and the final instants of the mission.

3.6.3 Trajectory planning

The trajectory planning consists in driving the quadrotor from an initial to a final position. The
initial and final conditions as well as the initial time t0 are all known and the only unknown
is the final time of the mission t f . Thus, the trajectory planning tends to tune the profile of
the trajectory (by tuning t f ) so that to drive the system along the desired trajectory without
violating actuator constraints. Thanks to flatness, it is possible to find the relation between the
applied control inputs and the reference trajectories. According to (73) the nominal control
inputs to be applied along the reference trajectories are:

u∗
z = m

(
F̈∗

1 + g
)

;

u∗
θ = Jx

F(4)∗
2
g

;

u∗
φ = −Jy

F(4)∗
3
g

;

u∗
ψ = Jz F̈∗

4

(77)

Since the quadrotor is assumed to have a zero yaw angle (ψ = 0), then F̈∗
4 = 0 ∀ t ∈ [t0, t f ]. It

is also assumed that the quadrotor is not changing altitude and thus F̈∗
1 = 0 ∀ t ∈ [t0, t f ]. In

this case, the nominal control inputs are:

u∗
z = mg;

u∗
θ = Jx

F(4)∗
2
g

;

u∗
φ = −Jy

F(4)∗
3
g

;

u∗
ψ = 0

(78)
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can be expressed in function of the desired trajectories. Thus allowing to tune the profile of
the trajectories for keeping the applied control inputs below the actuator limits (Chamseddine
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For the quadrotor UAV simplified model given in (6), one can see that the outputs to be
controlled can be chosen as flat outputs. Thus, system (6) is flat with flat outputs F1 = z,
F2 = x, F3 = y and F4 = ψ. In addition to x, y, z and ψ, the parameterization of θ and φ in
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where t is the time and ai (i = 0, ..., n) are constant coefficients to be calculated in function
of the initial and final conditions. It is clear that the larger is n, the smoother is the reference
trajectory. However, calculations for trajectory planning become heavier as n increases. For
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i up to F(ni)
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i (t f ). t0 and t f are respectively the
initial and the final instants of the mission.

3.6.3 Trajectory planning

The trajectory planning consists in driving the quadrotor from an initial to a final position. The
initial and final conditions as well as the initial time t0 are all known and the only unknown
is the final time of the mission t f . Thus, the trajectory planning tends to tune the profile of
the trajectory (by tuning t f ) so that to drive the system along the desired trajectory without
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applied control inputs and the reference trajectories. According to (73) the nominal control
inputs to be applied along the reference trajectories are:

u∗
z = m

(
F̈∗

1 + g
)

;

u∗
θ = Jx

F(4)∗
2
g
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3
g
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Since the quadrotor is assumed to have a zero yaw angle (ψ = 0), then F̈∗
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is also assumed that the quadrotor is not changing altitude and thus F̈∗
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this case, the nominal control inputs are:
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The system is required to move from an initial position Fi(t0) = 0 with initial conditions

Ḟi(t0) = F̈i(t0) = F(3)
i (t0) = F(4)

i (t0) = 0 to a final position Fi(t f ) �= 0 with final conditions

Ḟi(t f ) = F̈i(t f ) = F(3)
i (t f ) = F(4)

i (t f ) = 0 (i = 2, 3). Without loss of generality, by setting
t0 = 0 one can write (76) as

F∗
i = 70Fi(t f )

t9

t9
f
− 315Fi(t f )

t8

t8
f
+ 540Fi(t f )

t7

t7
f
− 420Fi(t f )

t6

t6
f
+ 126Fi(t f )

t5

t5
f

; (i = 2, 3) (79)

Thus, it is possible to calculate u∗
θ = JxF(4)∗

2 /g and u∗
φ = −JyF(4)∗

3 /g since

F(4)∗
i = c1Fi(t f )

t5

t9
f
− c2Fi(t f )

t4

t8
f
+ c3Fi(t f )

t3

t7
f
− c4Fi(t f )

t2

t6
f
+ c5Fi(t f )

t
t5

f
; (i = 2, 3) (80)

where cj (j = 1, ..., 5) are constants that can be easily derived from (79) and are not given here
for simplicity. From (9), (78) and (80), it is possible to determine the nominal PWM inputs to
be applied along the references trajectories, which are:

u∗
1/2 =

mg
4K

± F2(t f )JxΔ

2gKLt9
f

and u∗
4/3 =

mg
4K

± F3(t f )JyΔ

2gKLt9
f

(81)

where Δ =
(

c1t5 − c2t f t4 + c3t2
f t3 − c4t3

f t2 + c5t4
f t
)

. Since F2(t f ) and F3(t f ) are known, one
must find the minimal t f so that u∗

i < umax where umax is the maximal PWM that corresponds
to the maximal thrust that can be generated by a rotor. One way to determine t f is to
analytically calculate when the extrema of u∗

i take place and what are their values (where
the extrema collectively denote the maxima and the minima of a function). For this purpose,
it is necessary to calculate the derivative of u∗

i in (81) with respect to time and then solve for t
the following equation:

du∗
i

dt
= 0 ; (i = 1, ..., 4) (82)

For a fixed i (i = 1, ..., 4), each equation du∗
i /dt is a polynomial function of fourth degree and

thus has four extrema which take place at:

t f

2

(
1 ±

√
3
7
− 2

35

√
30

)
and

t f

2

(
1 ±

√
3
7
+

2
35

√
30

)
(83)

The values of the four extrema can be obtained by replacing t of (81) by the values obtained in
(83). As an example, the values of the four extrema of u∗

1 of the first rotor are:

u∗
1Ext

=

(
mg
4K

± c6
F2(t f )Jx

gKLt4
f

;
mg
4K

± c7
F2(t f )Jx

gKLt4
f

)
(84)

with c6 and c7 two constants. The determination of t f consists finally in solving (84) so that
the extrema of the nominal PWM input verifies:

u∗
1Ext

≤ ρumax (85)
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Since the above study is based on the simplified model (6), the constant 0 ≤ ρ ≤ 1 is
introduced to create some safety margin and to robustify the obtained solution with respect
to model uncertainties. Four solutions can then be obtained:

t f ≥

⎛
⎜⎝
⎛
⎝±c6

F2(t f )Jx

gKL
�

ρumax − mg
4K

�
⎞
⎠

1/4

;

⎛
⎝±c7

F2(t f )Jx

gKL
�

ρumax − mg
4K

�
⎞
⎠

1/4
⎞
⎟⎠ (86)

The four extrema of u∗
2, u∗

3 and u∗
4 have the same structure as for u∗

1 with different values
for the constants c6 and c7. In conclusion, the quadrotor UAV will have 16 extrema (four per
motor) and therefore 16 solutions are obtained and the maximal one among them is to be
considered.

3.6.4 Trajectory re-planning

As for the fault-free case, the trajectory re-planning consists in determining the minimal time
of the mission t f so that the actuator constraints are not violated. For the damaged UAV, this
is written as:

u∗
i ≤ ρ(1 − δi)umax ; (i = 1, ..., 4) (87)

where δi represents the loss of effectiveness in the ith rotor. δi = 0 denotes a healthy rotor,
δi = 1 denotes a complete loss of the rotor and 0 < δi < 1 represents a partial loss of control
effectiveness. Clearly, trajectory re-planning in the fault case requires the knowledge of the
fault amplitude δi. Thus, a fault detection and diagnosis module is needed to detect, isolate
and identify the fault. Unlike trajectory planning, the initial conditions are not zero at the

re-planning instant i.e. Ḟi(trep) �= 0, F̈i(trep) �= 0, F(3)
i (trep) �= 0 and F(4)

i (trep) �= 0 where trep
is the re-planning time. Therefore, it is difficult to analytically calculate t f as in the previous
section since the expressions are much more complicated and thus another method is needed
to solve the problem. Starting from the idea that the larger t f is, the smaller are the PWM
inputs ui, we propose the following algorithm to calculate t f :

1. Develop the expressions of u∗
i (t) (similar to the procedure in the previous section) with

nonzero initial conditions.
2. Start with an initial guess of the mission time t f .
3. For t = 0 : Te : t f calculate u∗

i (t) and determine the maximum value u∗
imax

among all the
u∗

i (t). Te is a sampling period.
4. Determine the error Ei between u∗

imax
and the maximal allowable PWM input (ρumax for the

healthy UAVs and ρ(1 − δi)umax for the damaged one).
5. If the error is smaller than a predefined threshold, exit the algorithm and the solution is

the current t f . If not, update the current t f as follows t f ← t f + t f E/ν with ν is a positive
constant.

6. Repeat from Step #3.

As can be seen in Step #5, if the error Ei is positive then u∗
imax

is larger than the maximal
allowable PWM input and thus it is necessary to increase t f . If the error is negative then u∗

imax
is smaller than the maximal allowable PWM input and thus it is necessary to decrease t f . The
constant ν must be carefully selected since it affects the convergence speed of the algorithm.
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t2

t6
f
+ c5Fi(t f )

t
t5

f
; (i = 2, 3) (80)

where cj (j = 1, ..., 5) are constants that can be easily derived from (79) and are not given here
for simplicity. From (9), (78) and (80), it is possible to determine the nominal PWM inputs to
be applied along the references trajectories, which are:

u∗
1/2 =

mg
4K

± F2(t f )JxΔ

2gKLt9
f

and u∗
4/3 =

mg
4K

± F3(t f )JyΔ

2gKLt9
f

(81)

where Δ =
(

c1t5 − c2t f t4 + c3t2
f t3 − c4t3

f t2 + c5t4
f t
)

. Since F2(t f ) and F3(t f ) are known, one
must find the minimal t f so that u∗

i < umax where umax is the maximal PWM that corresponds
to the maximal thrust that can be generated by a rotor. One way to determine t f is to
analytically calculate when the extrema of u∗

i take place and what are their values (where
the extrema collectively denote the maxima and the minima of a function). For this purpose,
it is necessary to calculate the derivative of u∗

i in (81) with respect to time and then solve for t
the following equation:

du∗
i

dt
= 0 ; (i = 1, ..., 4) (82)

For a fixed i (i = 1, ..., 4), each equation du∗
i /dt is a polynomial function of fourth degree and

thus has four extrema which take place at:

t f

2

(
1 ±

√
3
7
− 2

35

√
30

)
and

t f

2

(
1 ±

√
3
7
+

2
35

√
30

)
(83)

The values of the four extrema can be obtained by replacing t of (81) by the values obtained in
(83). As an example, the values of the four extrema of u∗

1 of the first rotor are:

u∗
1Ext

=

(
mg
4K

± c6
F2(t f )Jx

gKLt4
f

;
mg
4K

± c7
F2(t f )Jx

gKLt4
f

)
(84)

with c6 and c7 two constants. The determination of t f consists finally in solving (84) so that
the extrema of the nominal PWM input verifies:

u∗
1Ext

≤ ρumax (85)
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Since the above study is based on the simplified model (6), the constant 0 ≤ ρ ≤ 1 is
introduced to create some safety margin and to robustify the obtained solution with respect
to model uncertainties. Four solutions can then be obtained:

t f ≥

⎛
⎜⎝
⎛
⎝±c6

F2(t f )Jx

gKL
�

ρumax − mg
4K

�
⎞
⎠

1/4

;

⎛
⎝±c7

F2(t f )Jx

gKL
�

ρumax − mg
4K

�
⎞
⎠

1/4
⎞
⎟⎠ (86)

The four extrema of u∗
2, u∗

3 and u∗
4 have the same structure as for u∗

1 with different values
for the constants c6 and c7. In conclusion, the quadrotor UAV will have 16 extrema (four per
motor) and therefore 16 solutions are obtained and the maximal one among them is to be
considered.

3.6.4 Trajectory re-planning

As for the fault-free case, the trajectory re-planning consists in determining the minimal time
of the mission t f so that the actuator constraints are not violated. For the damaged UAV, this
is written as:

u∗
i ≤ ρ(1 − δi)umax ; (i = 1, ..., 4) (87)

where δi represents the loss of effectiveness in the ith rotor. δi = 0 denotes a healthy rotor,
δi = 1 denotes a complete loss of the rotor and 0 < δi < 1 represents a partial loss of control
effectiveness. Clearly, trajectory re-planning in the fault case requires the knowledge of the
fault amplitude δi. Thus, a fault detection and diagnosis module is needed to detect, isolate
and identify the fault. Unlike trajectory planning, the initial conditions are not zero at the

re-planning instant i.e. Ḟi(trep) �= 0, F̈i(trep) �= 0, F(3)
i (trep) �= 0 and F(4)

i (trep) �= 0 where trep
is the re-planning time. Therefore, it is difficult to analytically calculate t f as in the previous
section since the expressions are much more complicated and thus another method is needed
to solve the problem. Starting from the idea that the larger t f is, the smaller are the PWM
inputs ui, we propose the following algorithm to calculate t f :

1. Develop the expressions of u∗
i (t) (similar to the procedure in the previous section) with

nonzero initial conditions.
2. Start with an initial guess of the mission time t f .
3. For t = 0 : Te : t f calculate u∗

i (t) and determine the maximum value u∗
imax

among all the
u∗

i (t). Te is a sampling period.
4. Determine the error Ei between u∗

imax
and the maximal allowable PWM input (ρumax for the

healthy UAVs and ρ(1 − δi)umax for the damaged one).
5. If the error is smaller than a predefined threshold, exit the algorithm and the solution is

the current t f . If not, update the current t f as follows t f ← t f + t f E/ν with ν is a positive
constant.

6. Repeat from Step #3.

As can be seen in Step #5, if the error Ei is positive then u∗
imax

is larger than the maximal
allowable PWM input and thus it is necessary to increase t f . If the error is negative then u∗

imax
is smaller than the maximal allowable PWM input and thus it is necessary to decrease t f . The
constant ν must be carefully selected since it affects the convergence speed of the algorithm.

141Fault Tolerant Flight Control Techniques with Application to a Quadrotor UAV Testbed



24 Will-be-set-by-IN-TECH

4. Simulation and experimental testing results

The approaches that have been experimentally tested on the Qball-X4 are built using
Matlab/Simulink and downloaded on the Gumstix emdedded computer to be run on-board
with a frequency of 200 Hz. The experiments are taking place indoor in the absence of GPS
signals and thus the OptiTrack camera system from NaturalPoint is employed to provide the
system position in the 3D space. Some photos of the NAV Lab of Concordia University are
shown in Figure 5 and many videos related to the above approaches as well as other videos
can be watched online on http://www.youtube.com/user/NAVConcordia.

Fig. 5. The NAV Lab of Concordia University.

4.1 GS-PID experimental results

Starting with the GS-PID, an 18% loss of overall power of all motors is considered where the
Qball-X4 is requested to track a one meter square trajectory tracking. The fault-free case is
shown in the left-hand side plot of Figure 6 whereas the middle one shows a deviation from
the desired trajectory after the fault occurrence when the switching between the PID gains is
taking place after 0.5 s of fault occurrence. Better tracking performance can be achieved with
shorter switching time which requires fast and correct fault detection. The right-hand plot of
Figure 6 demonstrates better performance when the switching is done without time delay.

Fig. 6. Fault-free case and 18% loss in the total thrust with and without time delay.

4.2 MRAC experimental results

As for the MRAC, a partial effectiveness loss of 30% and 40% are simulated in the total thrust
uz. The faults are injected at t = 40 s and the experimental results are illustrated in Figure
7. This kind of fault induces a loss in the height z without significant effect on x, y or ψ
directions. One can see that all the three MRAC techniques give better performance than the
baseline LQR controller and that the conventional MRAC (C-MRAC) is the best among the
MRAC techniques.
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Fig. 7. System behavior with a simulated fault of 30% and 40% loss in the total thrust.

The MRAC has been also tested in the presence of a partial damage of the 4th propeller. This
type of faults is more realistic than the simulated faults given above. To accommodate a partial
damage of the propeller, the controller tries to speed up the 4th rotor so that to produce the
same lift as for the fault-free case. Thus, the maximal speed that a rotor can reach is a critical
factor that does not play a role in simulated faults. Figure 8 shows the system behavior along
the z and y directions where the first row corresponds to 12% damage and the second to 16%.
One can see that the performance obtained with the C-MRAC is better than that of the LQR.
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Fig. 8. System behavior with a damage of 12% and 16% of the fourth propeller.

4.3 SMC experimental results

The objective in the SMC is to track a square trajectory of 1.5 m × 1.5 m. Figure 9 shows the
system evolution along the x, y and z directions when the SMC-based PFTC is experimentally
applied to the Qball-X4. The SMC-based PFTC is giving good performance where very small
deviation in position z can be observed at 20 s due to a partial damage in the 4th propeller.
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Fig. 9. Qball-X4 evolution along the x, y and z directions using SMC-based PFTC.
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4.1 GS-PID experimental results

Starting with the GS-PID, an 18% loss of overall power of all motors is considered where the
Qball-X4 is requested to track a one meter square trajectory tracking. The fault-free case is
shown in the left-hand side plot of Figure 6 whereas the middle one shows a deviation from
the desired trajectory after the fault occurrence when the switching between the PID gains is
taking place after 0.5 s of fault occurrence. Better tracking performance can be achieved with
shorter switching time which requires fast and correct fault detection. The right-hand plot of
Figure 6 demonstrates better performance when the switching is done without time delay.

Fig. 6. Fault-free case and 18% loss in the total thrust with and without time delay.

4.2 MRAC experimental results

As for the MRAC, a partial effectiveness loss of 30% and 40% are simulated in the total thrust
uz. The faults are injected at t = 40 s and the experimental results are illustrated in Figure
7. This kind of fault induces a loss in the height z without significant effect on x, y or ψ
directions. One can see that all the three MRAC techniques give better performance than the
baseline LQR controller and that the conventional MRAC (C-MRAC) is the best among the
MRAC techniques.
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The MRAC has been also tested in the presence of a partial damage of the 4th propeller. This
type of faults is more realistic than the simulated faults given above. To accommodate a partial
damage of the propeller, the controller tries to speed up the 4th rotor so that to produce the
same lift as for the fault-free case. Thus, the maximal speed that a rotor can reach is a critical
factor that does not play a role in simulated faults. Figure 8 shows the system behavior along
the z and y directions where the first row corresponds to 12% damage and the second to 16%.
One can see that the performance obtained with the C-MRAC is better than that of the LQR.
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4.3 SMC experimental results

The objective in the SMC is to track a square trajectory of 1.5 m × 1.5 m. Figure 9 shows the
system evolution along the x, y and z directions when the SMC-based PFTC is experimentally
applied to the Qball-X4. The SMC-based PFTC is giving good performance where very small
deviation in position z can be observed at 20 s due to a partial damage in the 4th propeller.
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4.4 BSC simulation results

In the BSC approach, the system is required to follow a circular trajectory and the the actuator
faults are injected at time t = 5 s. Simulations are carried out with different control gains
k1 = 1, k2 = 3 and k1 = 5, k2 = 30. Figures 10(a) and 10(b) show a comparison between
the fault-free case and the fault-case of 50% loss of control effectiveness for both position and
angle tracking errors. The control gains used in Figures 10(a) and 10(b) are k1 = 1 and k2 = 3.
One can see that in the fault case, the position tracking errors in the x and y directions change
slightly whereas the z tracking error is greatly affected. The roll, pitch and yaw tracking errors
are also affected as can be seen in Figure 10(b). With higher control gains k1 = 5 and k2 = 30,
it is possible to reduce fault effects on tracking errors as can be seen in Figures 10(c) and 10(d).
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Fig. 10. Position and angle error comparison between fault-free and 50% control effectiveness
loss in first actuator, with control gains k1 = 1/k2 = 3 and k1 = 5/k2 = 30.

4.5 MPC simulation results

To illustrate the MPC approach, the quadrotor is assumed to be on the ground initially and it
is required to reach a hover height of 4 m and stay in that height while stabilizing the pitch
and roll angles. The xd, yd and ψd are xd = 2 m, yd = 3 m and ψd = 0. The upper left plot of
Figure 11 shows the time history of states for fault-free condition (the desired position values
are dotted and the velocities are dashed lines).

The fault is designed to happen at time t = 5 s. At this time it is assumed that actuator faults
occur which lead to multiple simultaneous partial loss of effectiveness of three actuators as
follows: α1 = 0.9, α2 = 0.7, α3 = 0.8 and α4 = 1.0 (i.e. 10% loss of control effectiveness in the
first motor, 30% in the second, 20% in the third and no fault in the fourth one). The upper right
plot of Figure 11 shows the time history of the states when no fault estimation is performed.
In fact in this case Algorithm 1 is used without any information about the occurred fault. One
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Fig. 11. MPC in fault-free and fault conditions without and with fault estimation.

can see that system states do not converge to their desired values and therefore it exhibits
poor performance. The figure also shows that interestingly MPC exhibits some degree of fault
tolerance inherently; all the linear and angular velocities are stabilized and there is only some
error in the positions and orientations.

For the fault-tolerant MPC, Problem 2 is used where fault parameters estimation is provided
by employing the Moving Horizon Estimator (MHE) Izadi et al. (2011b). The two lower
plots of Figure 11 show fault parameters estimates as well as system states. It is clear
that fault-tolerant MPC improves the system performance compared to the case without
fault-tolerance.

4.6 FTPR simulation results

To illustrate the FTPR approach, let us assume that the quadrotor system is required to move
from an initial position to a final one with F2(t0) = 0 and F3(t0) = 0, F2(t f ) = 20 m and
F3(t f ) = 30 m. It is also assumed that the maximal thrust that can be generated by each motor
is Tmax = 8 N. ρ is set to 0.1 and the approach described is Section 3.6.3 gives the solution of
t f = 6.81 s. The simulation results for this scenario are given in Figure 12 which shows the
system trajectories along the x and y directions. The figure also shows that the four applied
thrusts do not exceed ρTmax.

For the fault scenario, it is assumed that the Qball-X4 loses 25% of the control effectiveness
of its fourth rotor at the time instant t = 2 s. In this case and without trajectory re-planning,
Figure 13(a) shows that the damaged system is not able anymore to reach the final desired
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In the BSC approach, the system is required to follow a circular trajectory and the the actuator
faults are injected at time t = 5 s. Simulations are carried out with different control gains
k1 = 1, k2 = 3 and k1 = 5, k2 = 30. Figures 10(a) and 10(b) show a comparison between
the fault-free case and the fault-case of 50% loss of control effectiveness for both position and
angle tracking errors. The control gains used in Figures 10(a) and 10(b) are k1 = 1 and k2 = 3.
One can see that in the fault case, the position tracking errors in the x and y directions change
slightly whereas the z tracking error is greatly affected. The roll, pitch and yaw tracking errors
are also affected as can be seen in Figure 10(b). With higher control gains k1 = 5 and k2 = 30,
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Fig. 10. Position and angle error comparison between fault-free and 50% control effectiveness
loss in first actuator, with control gains k1 = 1/k2 = 3 and k1 = 5/k2 = 30.

4.5 MPC simulation results

To illustrate the MPC approach, the quadrotor is assumed to be on the ground initially and it
is required to reach a hover height of 4 m and stay in that height while stabilizing the pitch
and roll angles. The xd, yd and ψd are xd = 2 m, yd = 3 m and ψd = 0. The upper left plot of
Figure 11 shows the time history of states for fault-free condition (the desired position values
are dotted and the velocities are dashed lines).

The fault is designed to happen at time t = 5 s. At this time it is assumed that actuator faults
occur which lead to multiple simultaneous partial loss of effectiveness of three actuators as
follows: α1 = 0.9, α2 = 0.7, α3 = 0.8 and α4 = 1.0 (i.e. 10% loss of control effectiveness in the
first motor, 30% in the second, 20% in the third and no fault in the fourth one). The upper right
plot of Figure 11 shows the time history of the states when no fault estimation is performed.
In fact in this case Algorithm 1 is used without any information about the occurred fault. One
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Fig. 11. MPC in fault-free and fault conditions without and with fault estimation.

can see that system states do not converge to their desired values and therefore it exhibits
poor performance. The figure also shows that interestingly MPC exhibits some degree of fault
tolerance inherently; all the linear and angular velocities are stabilized and there is only some
error in the positions and orientations.

For the fault-tolerant MPC, Problem 2 is used where fault parameters estimation is provided
by employing the Moving Horizon Estimator (MHE) Izadi et al. (2011b). The two lower
plots of Figure 11 show fault parameters estimates as well as system states. It is clear
that fault-tolerant MPC improves the system performance compared to the case without
fault-tolerance.

4.6 FTPR simulation results

To illustrate the FTPR approach, let us assume that the quadrotor system is required to move
from an initial position to a final one with F2(t0) = 0 and F3(t0) = 0, F2(t f ) = 20 m and
F3(t f ) = 30 m. It is also assumed that the maximal thrust that can be generated by each motor
is Tmax = 8 N. ρ is set to 0.1 and the approach described is Section 3.6.3 gives the solution of
t f = 6.81 s. The simulation results for this scenario are given in Figure 12 which shows the
system trajectories along the x and y directions. The figure also shows that the four applied
thrusts do not exceed ρTmax.

For the fault scenario, it is assumed that the Qball-X4 loses 25% of the control effectiveness
of its fourth rotor at the time instant t = 2 s. In this case and without trajectory re-planning,
Figure 13(a) shows that the damaged system is not able anymore to reach the final desired
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Fig. 12. System evolution in the x and y directions and the applied thrusts.
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Fig. 13. Trajectories and control inputs without and with re-planning.

position. Figure 13(c) shows how the applied thrusts saturate when the system is forced
to follow the pre-fault nominal trajectory. For the trajectory re-planning, once the fault is
detected, isolated and identified, the trajectories are re-planned at t = 2.5 s where 0.5 s is
the time assumed to be taken by the FDD module. The solution obtained from Section 3.6.4
is t f = 13.3 s. Figure 13(b) shows that after re-planning, the UAV is able to reach the final
desired position. The applied thrusts are illustrated in Figure 13(d) where it can be seen that
the thrusts remain smaller than their maximal allowable limits. Thus, trajectory planning can
help in keeping system stability by redefining the desired trajectories to be followed by taking
into consideration the post-fault actuators limits.

5. Conclusion

This chapter presents some of the work that have been carried out at the Networked
Autonomous Vehicles Laboratory of Concordia University. The main concern is to propose
approaches that can be effective, easy to implement and to run on-board the UAVs. Many
of the proposed methods have been implemented and tested with the Qball-X4 testbed and
current work aims to propose and implement more advanced and practical techniques. As
one of functional blocks in an AFTCS framework, FDD plays an important role for successful
fault-tolerant control of systems (see Figure 3). Development on FDD techniques could not be
included in the chapter due to space limit. Interested readers can refer to our recent work in
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(Ma & Zhang, 2010a), (Ma & Zhang, 2010b), (Ma, 2011), (Gollu & Zhang, 2011), (Zhou, 2009)
and (Amoozgar et al., 2011) for information on FDD techniques applied to UAV and satellite
systems. Research work on fault-tolerant attitude control for spacecraft in the presence of
actuator faults could not also be included but can be found in (Hu et al., 2011a), (Hu et al.,
2011b), (Xiao et al., 2011a) and (Xiao et al., 2011b). Current and future work will focus more
on the multi-vehicles cooperative control where preliminary works on cooperative control
have been presented in (Izadi et al., 2009b), (Izadi et al., 2011a), (Sharifi et al., 2010), (Sharifi
et al., 2011), (Mirzaei et al., 2011) and (Qu & Zhang, 2011).
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Fig. 12. System evolution in the x and y directions and the applied thrusts.
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Fig. 13. Trajectories and control inputs without and with re-planning.

position. Figure 13(c) shows how the applied thrusts saturate when the system is forced
to follow the pre-fault nominal trajectory. For the trajectory re-planning, once the fault is
detected, isolated and identified, the trajectories are re-planned at t = 2.5 s where 0.5 s is
the time assumed to be taken by the FDD module. The solution obtained from Section 3.6.4
is t f = 13.3 s. Figure 13(b) shows that after re-planning, the UAV is able to reach the final
desired position. The applied thrusts are illustrated in Figure 13(d) where it can be seen that
the thrusts remain smaller than their maximal allowable limits. Thus, trajectory planning can
help in keeping system stability by redefining the desired trajectories to be followed by taking
into consideration the post-fault actuators limits.

5. Conclusion

This chapter presents some of the work that have been carried out at the Networked
Autonomous Vehicles Laboratory of Concordia University. The main concern is to propose
approaches that can be effective, easy to implement and to run on-board the UAVs. Many
of the proposed methods have been implemented and tested with the Qball-X4 testbed and
current work aims to propose and implement more advanced and practical techniques. As
one of functional blocks in an AFTCS framework, FDD plays an important role for successful
fault-tolerant control of systems (see Figure 3). Development on FDD techniques could not be
included in the chapter due to space limit. Interested readers can refer to our recent work in
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(Ma & Zhang, 2010a), (Ma & Zhang, 2010b), (Ma, 2011), (Gollu & Zhang, 2011), (Zhou, 2009)
and (Amoozgar et al., 2011) for information on FDD techniques applied to UAV and satellite
systems. Research work on fault-tolerant attitude control for spacecraft in the presence of
actuator faults could not also be included but can be found in (Hu et al., 2011a), (Hu et al.,
2011b), (Xiao et al., 2011a) and (Xiao et al., 2011b). Current and future work will focus more
on the multi-vehicles cooperative control where preliminary works on cooperative control
have been presented in (Izadi et al., 2009b), (Izadi et al., 2011a), (Sharifi et al., 2010), (Sharifi
et al., 2011), (Mirzaei et al., 2011) and (Qu & Zhang, 2011).
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1. Introduction 
One of the major helicopter attributes is its ability to transport cargo externally in the form 
of external slung loads (see Fig. 1). Commercial and military operators accept the fact that 
using a helicopter for external load transportation is usually expensive in terms of both 
money and time. However, helicopters still have the significant advantage of accessing 
unreachable sites. Operations of helicopters with external loads impose limitations to the 
use of the helicopter, as for example: helicopter maximum forward speed is usually severely 
reduced because of the danger on dynamic instabilities of the load; due to external load the 
aerodynamic drag can become excessive, resulting in power and control limitations on the 
helicopter. The problem addressed in this chapter concerns the behaviour of a helicopter 
following the premature breakdown of one of its cables sustaining the slung load. As a 
specific example, the Chinook helicopter CH-47B with an external load will be considered. 
The CH-47 (Chinook) is a twin-engine tandem rotor helicopter (see Fig. 1) designed for all-
weather, medium-sized transport type operations. The three bladed rotors are driven in 
opposite directions (front rotor rotates anticlockwise, rear rotor rotates clockwise) through 
interconnecting shafts which enable both rotors to be driven by either engine. The rotor 
heads are fully articulated, with pitch, flapping, and lead-lag hinges. 

 
Fig. 1. Chinook helicopter transporting single and multiple loads (Courtesy of the Royal 
Netherlands Air Force) 
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The goal of the chapter will be to implement the advanced automatic flight control system 
AFCS of the Chinook CH-47 (analogue in Chinook D-version and digital in the latest version 
F) into a generic Chinook model developed at Delft University of Technology (Van der 
Kamp et. Al (2005), Reijm, Pavel&Bart (2006), Pavel(2007), Pavel(2010)) and investigate the 
effects that AFCS may have on the recovery prospects of the Chinook helicopter after a  
failure scenario of its load. In other words, this chapter proposes to analyse how the 
advanced AFCS, implemented in general in order to improve the handling qualities 
characteristics, may improve/degrade the CH-47 behaviour during emergency situations 
such as failure scenarios of its suspended load(s). Searching in the specialist literature for 
research on this particular area of load failures and the AFCS effects on assisting/hindering 
the pilot during load failure recovering revealed that the subject has not been really 
investigated. A few publications have been identified dealing with load failure scenarios - 
they address mainly a rather different problem, i.e. the situation in which a load is moving 
within an aircraft before being dropped - and none considers the effects that AFCS may 
have on helicopter behaviour during such emergency situations. Some relevant publications 
for understanding the problems related to the dynamics of a helicopter with a slung load are 
given below.  

(Lucasen and Sterk, 1965) developed a first theoretical study of the dynamics of a single 
rotor helicopter carrying a slung load in hovering flight using a 3-dof longitudinal helicopter 
model including translation and attitude of the helicopter and load displacement w.r.t. the 
helicopter. They demonstrated that the phugoid stability depended on the cable length, 
decreasing with increasing cable length. (Dukes, 1973a) studied the stability characteristics 
of a single rotor helicopter with slung load near hover showing that with large pitch 
damping, the translational motion is only weakly coupled to the attitude and load motions. 
In a second study (Dukes, 1973b) concentrated on the stability of the load during different 
manoeuvres (acceleration-deceleration, changing the hover location and arresting a 
pendulous load motion) identifying some fundamental features of load control which can be 
utilized as basis for an open loop control strategy. (Feaster, Poli & Kirchhoff, 1977) studied 
the stability in forward flight of a single-rotor helicopter carrying a container, showing that 
long cables, high speeds and low weights increased the stability of the loads. Their results 
were contradicted by (Cliff&Bailey,1975) who obtained that longer cables were 
destabilizing, this probably due to different load aerodynamics considered. Both last papers 
underlined the importance of the load aerodynamics in studying the stability of helicopter-
slung load systems, where dynamic instabilities can be triggered by unsteady load 
aerodynamics. The most dominant form of load aerodynamic instability is a yawing 
divergence that couples with the load lateral modes. (Gabel, 1968) studied the slung load 
“vertical bounce” phenomenon, i.e. a resonant condition inherent to elastic sling load 
systems that occurs when the natural frequency of the sling load is close to one of the rotor 
frequencies. This mode can be exacerbated by the pilot’s inertial reaction to vertical 
accelerations, leading to a vertical force being transmitted to the collective stick. To account 
for vertical bounce phenomenon one has to consider elastic suspensions. The author 
proposed several solutions to the pilot induced vertical bounce problem, the most promising 
being a low gain boost system which was meant to produce very low output for small pilot 
inputs and normal output for normal pilot inputs. For forwards speeds above 40 knots, the 
author showed that the effects of rotor downwash on the load aerodynamics are not 
important. (Nagabhushan, 1985) developed a non-linear body-flap model of a single rotor-
helicopter and studied the stability characteristics of the helicopter-slung load system. He 
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found that operating with a long sling cable damps out the sling-load pendulum mode 
lateral oscillation and the helicopter longitudinal phugoid; however, the associated sling-
load pitch oscillation and the helicopter Dutch roll mode become unstable. Suspending the 
sling load from a point ahead of the helicopter centre of gravity was found to stabilize the 
helicopter lateral oscillation; suspending it from a point aft of the centre of gravity caused 
instability. (Sheldon, 1978) concluded from experiments that a large number of instabilities 
are initiated by load yawing motions. A relatively easy way of obtaining an increased yaw 
resistance is to use a multipoint suspension system rather than a single point suspension. 
His experiments have shown that an inverted ‘V’ suspension system provides significant 
yaw resistance, while also minimizing the load trail angle. (Prabhakar, 1978)  developed a 
non-linear single rotor helicopter-slung load model in multipoint suspension showing that 
the number, spacing and placement of the suspension points and the topology of the 
suspension cables are all important. The load is capable of changing almost completely the 
helicopter rigid body modes, generally destabilizing. Also, there exists significant coupling 
between the load and the helicopter lateral modes. The helicopter longitudinal modes on the 
other hand are affected little by the presence of the load. Dynamic coupling between the 
Dutch roll and a lateral load mode has been shown to decrease the Dutch role damping. A 
more recent study of (Cicolani, Kanning& Synnestvedt, 1995) developed a comprehensive 
approach for slung-load modelling where generic simulation models for a tandem 
helicopter capable of carrying load in single or multiple points with one, two or more 
helicopters were investigated. (Fusato, Guglieri & Celi, 2001) developed a body-flap-lag 
model to study the flight dynamics of a single-rotor helicopter carrying a single-point 
suspended load, showing that the load affects trim primarily through the overall increase in 
the weight of the aircraft; the influence of cable length was negligible. (Stuckey, 2002), using 
the equations of motions developed by (Cicolani, Kanning& Synnestvedt, 1995) and an 
open-loop control for pilot modelling, developed a piloted simulation model for a tandem 
helicopter capable of carrying a mixed density slung loads. (Tyson.1999) developed a slung-
load simulation model composed on the GenHel UH-60 model and validated against flight 
test data. (Chen, 1998) built a non-linear simulation model for one rotor helicopter-slung 
system and investigated the sudden load movement causing the cables to slacken or 
collapse. (Kendrick&Walker, 2006), using the motion simulator at The University of 
Liverpool, investigated the stability and handling qualities of a single-rotor helicopter 
carrying a slung load showing that at hover and low speed the pilot found easier to fly the 
helicopter with external load due to the increased damping in pitch provided by the load. 
(Bisgaard, 2006) developed an intuitive and easy-to-use way of modelling and simulating 
different slung load suspension types by using a redundant coordinate formulation based 
on Gauss’ principle of Least Constraint using the Udwadia-Kalaba equation. 

(Van der Kamp et. Al, 2005) (Reijm, Pavel&Bart, 2006) and (Pavel, 2010) investigated 
whether the three-strop suspension system – usually used to transport large loads (see right-
hand side in Fig. 1) can be safely replaced by a two-strop suspension. A three-strop 
suspension system is actually a two-strop suspension backed up by a third point, the so-
called ‘redundant HUSLE’. The redundant HUSLE is a redundant set of slings which comes 
into action if one of the normal strops fails. However, such a system is expensive in terms of 
both money and time. Therefore, questioning how reliable the two-strop suspension was 
when compared to the three-point suspension; the above references concluded that 
although, in general, flying with the redundant HUSLE resulted in less violent helicopter 
reactions after load failure, redundant HUSLE did not necessarily mean safer. More 
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specifically, they demonstrated that loads up to only two tonnes could be safely suspended 
only in two-points without the need of using redundant HUSLE. 

One of the many features of the CH-47 is its automatic flight control system AFCS. The goal 
of this chapter is to implement an advanced flight control system (AFCS) replicating the 
longitudinal axis AFCS of a Chinook CH-47D and use this system switched on to determine 
how the AFCS influences the recovery prospects of the Chinook helicopter after a front 
suspension failure. The chapter is structured as follows:  

 The first section describes the AFCS characteristics;  
 The second section develops the control laws for a longitudinal AFCS with pitch 

attitude hold and airspeed hold; 
 The third section simulates an example of a failure scenario flown and determines the 

AFCS effects for recovering;   
 The fourth section defines safety envelopes as boundaries of the maximum helicopter 

forward velocity achievable when recovery is possible after a load failure as a function 
of the load mass that can be safely transported; 

 Finally, general conclusions and potential further extension of this work are discussed. 

1.1 Tandem helicopter control 

The pilot controls of a tandem helicopter are essentially the same as those for normal 
helicopters. A pilot has a stick to control longitudinal and lateral motion, a collective stick 
for thrust and pedals to control the yaw motion. However, the connections between controls 
and rotor hub angles are different. Collective input moves both swash plates equally up and 
down. Whereas a normal helicopter longitudinal control input tilts the swash plate 
longitudinally, this input results in differential collective in a tandem helicopter. Lateral 
motion is achieved by tilting both front and rear rotor in the same direction. The tail rotor 
that is used for yaw control, is missing. This function is replaced by lateral cyclic in opposite 
direction for front and rear rotor disc. It should be noted that pitch attitude is not only 
controlled by differential collective of the front and rear rotor heads. In the past many tests 
have been conducted in order to achieve acceptable pitch control. The first Piasecki tandem 
helicopter and the Bristol 173 (see Fig. 2) had longitudinal cyclic, both were either 
uncontrollable or could only fly backwards (Prouty, 2001). Therefore a later Piasecki model, 
the HRP-1 used differential collective for longitudinal control. 

 

 
Fig. 2. Bristol 173 with cyclic pitch longitudinal control, Piasecki HRP-1 with differential 
pitch, www.aviastar.org   
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This type of helicopter control implies that with increased velocity the thrust of both 
rotors has to be tilted forward to compensate for the higher helicopter body drag. The lack 
of longitudinal cyclic in the HRP-1 forced the pilot to apply initially more differential 
thrust. This introduced an increase in nose down pitch angle. As a result of this forward 
helicopter pitch angle, the drag of the helicopter increases dramatically (see Fig. 3 from 
(Prouty, 2001)) To compensate for the large pitch angle, the longitudinal stick of the 
Chinook CH47-D controls differential thrust. Longitudinal cyclic is controlled separately 
by airspeed, keeping the helicopter body in acceptable pitch angles, thus minimizing 
helicopter body drag. 

 
Fig. 3. Tandem helicopter with only differential pitch (top) and with differential collective 
and longitudinal cyclic pitch (bottom), (Prouty, 2001) 

2. Description of the Chinook Automatic Flight Control System 
An Advanced or Automatic Flight Control System (AFCS) employs the aerodynamic 
control surfaces to manipulate the forces and moments of an aircraft to control its 
velocity, attitude and position. The AFCS can do this with or without assistance from the 
pilot. The performance of the AFCS is largely governed by its flight control laws that 
translate the input of various sensors to control surface output. Just like the complete 
system, the design of these control laws, especially for military aircraft, is determined by 
the requirement to provide good handling qualities, over a wide range of operating 
conditions (including cargo transport), with a low pilot workload, while being easy to 
expand or modify.  

For the Chinook helicopter, pilot control is done by varying the pitch of the blades either 
cyclically or collectively. This is done with the thrust control lever (collective), a cyclic 
control stick and the directional pedals, which are all coupled between the pilot and the co-
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Fig. 2. Bristol 173 with cyclic pitch longitudinal control, Piasecki HRP-1 with differential 
pitch, www.aviastar.org   
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This type of helicopter control implies that with increased velocity the thrust of both 
rotors has to be tilted forward to compensate for the higher helicopter body drag. The lack 
of longitudinal cyclic in the HRP-1 forced the pilot to apply initially more differential 
thrust. This introduced an increase in nose down pitch angle. As a result of this forward 
helicopter pitch angle, the drag of the helicopter increases dramatically (see Fig. 3 from 
(Prouty, 2001)) To compensate for the large pitch angle, the longitudinal stick of the 
Chinook CH47-D controls differential thrust. Longitudinal cyclic is controlled separately 
by airspeed, keeping the helicopter body in acceptable pitch angles, thus minimizing 
helicopter body drag. 

 
Fig. 3. Tandem helicopter with only differential pitch (top) and with differential collective 
and longitudinal cyclic pitch (bottom), (Prouty, 2001) 

2. Description of the Chinook Automatic Flight Control System 
An Advanced or Automatic Flight Control System (AFCS) employs the aerodynamic 
control surfaces to manipulate the forces and moments of an aircraft to control its 
velocity, attitude and position. The AFCS can do this with or without assistance from the 
pilot. The performance of the AFCS is largely governed by its flight control laws that 
translate the input of various sensors to control surface output. Just like the complete 
system, the design of these control laws, especially for military aircraft, is determined by 
the requirement to provide good handling qualities, over a wide range of operating 
conditions (including cargo transport), with a low pilot workload, while being easy to 
expand or modify.  

For the Chinook helicopter, pilot control is done by varying the pitch of the blades either 
cyclically or collectively. This is done with the thrust control lever (collective), a cyclic 
control stick and the directional pedals, which are all coupled between the pilot and the co-
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pilot’s position. The stick and pedal movements are transferred with a system of bell-cranks, 
push-pull tubes and actuators to a control mixing closet, located in the small hallway 
connecting the cabin to the cockpit. In this mixing unit, the pilot control inputs are combined 
with the signals from the AFCS computers and then mixed to result in the required lateral 
cyclic and collective pitch of the two rotors.  

Earlier models of the CH-47 only had a Stability Augmentation System (SAS) installed to 
assist the pilot in attitude stabilization. With the D-version, the AFCS was added, which 
brought a number of modifications and additions to the SAS. Still, the main objective 
remains attitude stabilization, including rate damping, of the helicopter about all three axes. 
However, it is extended with a number of features, that for example maintain the desired 
value of certain flight parameters such as airspeed, pitch attitude and bank angle. The CH-
47F is to be the first of the Chinook family equipped with a digital AFCS (DAFCS), granting 
it Level I handling qualities and meeting the stringent ADS-33 requirements for operation in 
degraded visual environments. A few of its impressive features include position adjustment 
with 30 cm increments, automatic hover capture when the cyclic stick is released below 8 kts 
ground speed and an altitude hold mode that eliminates drift (Einthoven et. Al., 2006). Since 
the flight control actuation on the F-version remains unchanged from the D-version, the 
control system still contains mechanically linked actuators. Hence it does not qualify for the 
term fly-by-wire: this notion originated from the replacement of mechanical linkages by 
electric signalling. 

The main features of the  AFCS system as implemented in the Chinook version D consist of 
(Boeing Helicopters, 2004): 

 Pitch attitude and long term airspeed hold, taking the position of the longitudinal cyclic 
stick as a reference; 

 Long term bank angle and heading hold in level flight, bank angle hold in turning flight 
(performing coupled turns); 

 A stable positive longitudinal stick gradient throughout the entire flight envelope; 
 Fine adjustment of bank angle and airspeed trim (Vernier beep trim); 
 Altitude hold by means of barometer or radar signals (this mode is valid in the CH 47D 

of the US Army; the Royal Netherlands Air Force replaced this mode by Flight 
Director); 

 Improved manoeuvrability with the use of control position transducers for all cockpit 
controls; 

 Electronic detent switching on lateral stick and pedals based on signals supplied by the 
AFCS; 

 Longitudinal cyclic trim scheduling and automatic LCT positioning to ground mode 
when the aft wheels touch the ground; 

 Use of the HSI bug error (error between actual and desired heading, indicated by a 
small token on the HSI instrument) for heading select (only in the CH 47D of the US 
Army; the Royal Netherlands Air Force replaced this mode by Flight Director); 

Fig. 4 presents the cockpit interior of a CH-47D. Looking at this figure one can identify: 1) 
the AFCS control panel; 2) co-pilot  pitch-roll control (cyclic stick); 3) pilot thrust control; 4) 
AFCS computer; 5) co-pilot multifunction display MMFD; 6) instrument panel; 7) centre 
console; 8) pilot pitch-roll control (cyclic stick); 9) multifunction display (AVMFD).  
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Fig. 4. Cockpit interior of a CH-47D, (Boeing Helicopters, 2004) 

Regarding the AFCS of a CH-47D, this consists of the following parts: 

 A cockpit control panel 
 Two AFCS computers 
 Three integrated lower control actuators (ILCA’s) 
 Two differentials airspeed hold actuators (DASH) 
 Two Longitudinal Cyclic Trim actuators (LCT) 
 Attached to the cockpit controls are 2 magnetic brakes for yaw and roll, a longitudinal 

cockpit control driver actuator (CCDA) and a collective CCDA 
 Three control position transducers (CPT’s) 

The AFCS cockpit control panel (number 1 in Fig. 4) contains 7 switches to control the many 
AFCS functions (see Fig. 5). On top, the flight director coupling switches that when pressed 
engage the coupling between the AFCS and the Flight Director. Only one flight director may 
be coupled at a time. The left lower side contains the switches that control the cyclic trim 
actuators. Normally the longitudinal cyclic trim (LCT) actuators are automatically operated 
by the AFCS computers, with computer 1 controlling the forward LCT and computer 2 
governing the aft LCT actuator according to the LCT trim schedule. When the switch is 
flipped to manual setting, the pilot is able to independently direct the extension or retraction 
of both actuators. The AFCS system select switch can be found on the lower right side of the 
display. Usually both AFCS systems will be selected. When one AFCS system is switched 
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off, the Flight Director coupling and LCT functions continue to operate. The latter even 
keeps working with neither AFCS in operation. 

 
Fig. 5. AFCS control panel scheme, (Boeing Helicopters, 2004)  

Two AFCS computers are located in the avionics compartment. Since the AFCS is a 
redundant system, in normal operation, each computer controls half of the input to the 
flight controls. This is described as “operation at half gain and half authority”. Failure of one 
of the computers results in the other computer taking over at ¾ gain but like regular 
operation, it has only up to half of the maximum travel of the working system available. In 
that case the remaining system is said to function at ¾ gain and half authority (Anon., 2002). 
When operational, the computers receive flight data from sensors and convert this into 
command signals that are fed to the actuators. Each unit directs its signals to the actuators 
according to a different path. Each actuator provides a position feedback signal to the 
related AFCS computer.  

The Integrated Lower Control Actuators (ILCA) (see Fig. 6(a)) span 3 channels: pitch, roll, 
yaw. They separate the pilot control forces from the forces required to move the 
swashplates, which are generated by the upper controls. The ILCA’s consist of two parts: a 
lower boost actuator and a dual extensible link. The hydromechanical lower boost actuators 
assist the pilot in controlling the helicopter. They are mechanically linked to the cockpit 
controls and will extend or retract in response to pilot inputs. The hydroelectrical dual 
extensible links incorporate an upper link, controlled by AFCS computer 1, and a lower link, 
driven by computer 2. This means that for full travel (full authority) both computers have to 
supply input. The actuating cylinders move solely based on AFCS commands without any 
corresponding cockpit controller motion. In the case none of the AFCS computers are 
working, the extensible links act as rigid links. The thrust input is enhanced with a lower 
boost actuator without extensible links, thereby assisting the pilot in moving the thrust 
control without providing a hydroelectrical input for the AFCS. 
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(a) Integrated Lower Control Actuator   (b) Differential Airspeed Hold Actuator  

Fig. 6. Chinook actuators connected in series to cockpit controls (Anon, 2002) 

The differential airspeed hold (DASH) actuator (see Fig. 6(b)) is installed between the cyclic 
stick and the pitch ILCA. The actuator is in fact a combination of two electro-mechanical 
linear actuators mounted end to-end inside a tube. Like an ILCA, the upper half is 
controlled by AFCS No. 1, the lower half by No. 2, so again both AFCS computers are 
required for full authority, which is equal to 50% of the longitudinal control range, taking 
about 5 seconds to complete full travel. The DASH extends and retracts with the purpose of 
long term stabilization of the pitch axis, arranging a positive stick gradient and maintaining 
airspeed about a fixed stick position. Its performance depends on the mode of operation, of 
which there are three: 

 A normal mode in which it stabilizes 1) the airspeed when flying faster than 40 kts and 
2) the pitch attitude at speeds below 40 kts. 

 A Differential Collective Pitch Trim (DCPT) mode. This is turned on in special 
conditions such as high cyclic stick rate, large pitch attitude or on the ground. This is to 
prevent an exaggerated response from the actuator that would occur in these instances 
with the DASH in normal mode. 

 The transition mode. This mode is entered when the DCPT conditions do not apply 
anymore and the AFCS is engaged. The system switches to a low rate driver (20% of the 
normal rate), forcing the DASH actuator to return to its normal position corresponding 
to the airspeed. This avoids a step-like control input when the DASH resumes normal 
operation. 

The two longitudinal cyclic trim (LCT) actuators installed under the swashplate have as 
primary task to minimize fuselage drag by reducing the nose down attitude as airspeed and 
altitude build up. To manage this, the AFCS transmits signals to the LCT actuators which in 
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turn increase the longitudinal cyclic pitch angle of the fore and aft rotor. This way blade 
flapping is also reduced, lowering stresses on the rotor shafts. The pilot can also manually 
select the LCT actuator positions. 

3. Modelling the Chinook tandem helicopter and its Automatic Flight Control 
System 
3.1 Modelling the Chinook tandem helicopter with external load 

A general non-linear six degree-of-freedom (6-dof) rigid body model for a generic tandem 
helicopter was first developed for piloted simulations ((Van der Kamp et. Al, 2005, Pavel, 
2010). In a general non-linear 6-dof model the helicopter motion is represented by three 
translations and three rotations around the body axes-system  centred on the helicopter 
centre of gravity, see Figure A 1 in Appendix A. The helicopter is modelled by dividing it 
into main components (front rotor, rear rotor, fuselage, horizontal stabilizer, vertical fin) and 
summing up the contribution of each part to the general system of forces and moments. The 
following main assumptions were made: 1) Aerodynamic forces and moments are 
calculated using the blade element theory and integrating along the radius and azimuth to 
obtain their average effect; 2) The fuselage is modelled with linear aerodynamics; 3) Rotor 
disc-tilt dynamics (the so-called ‘flapping dynamics’) are neglected and only steady-state 
rotor disc-tilt motion is considered; 4) The dynamic inflows of both front and rear rotors are 
included in the model as state variables and can be described as a quasi-steady dynamic 
inflow by means of time constants of a value 0.1 sec; 5) The rotors are modelled with a 
centrally flapping hinge; 6) There are no pitch-flap or pitch-lag couplings; 7) The lead-lag 
motion of the blades is neglected; 8) The blades are rectangular; 9) There are no tip losses; 
10) Gravitational forces are small compared to aerodynamic, inertial and centrifugal forces; 
11) The flapping and flow angles are small; 12) The front rotor angular velocity is constant 
and anticlockwise, the rear rotor angular velocity is constant and clockwise; 13) No reverse 
flow regions are considered; 14) The flow is incompressible; 15) The blades have a uniform 
mass distribution; 16) The blade elastic axis, aerodynamic axis, control axis and centre of 
mass axis coincide; 17) The blades are linearly pre-twisted twist= - 9.14 deg. For the 
expressions of the forces and moments acting on the helicopter components, the reader is 
referred to APPENDIX A. The equations of motion describing the motion of the helicopter 
in the 6-dof model are presented in APPENDIX A. To this model, a 6-dof model for the load 
has been added. The helicopter has three suspension points i=1,2,3 underneath its floor as 
seen in Figure A6, the tension force in one cable j being Sij. The slings are modelled as linear 
springs without mass and it is assumed that they have small internal damping. The 
damping coefficient is set large enough to prevent the oscillating load from inducing a 
pendulum-like motion. In APPENDIX A more detail is given on the calculation of load sling 
forces (see eqns. (24) and (25)). The load is modelled as a 6-dof body, the helicopter slings 
being connected to the load as seen in Figure A7. The slings are modelled as linear 
weightless springs with a small internal damping. Appendix B presents the Chinook data 
for the helicopter and load. 

3.2 Developing control laws for the longitudinal AFCS 

Next, AFCS control laws for operating the Chinook helicopter are added to the presented 
flight mechanics model. In a classical AFCS, the computation of signals for stabilization, 
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control decoupling and automatic control of the helicopter take place. Generally, an AFCS 
comprises the sensors, the filters, the stability and control augmentation system (SCAS) and 
the autopilot which can completely take over the pilot in order to execute certain control 
tasks.  

Fig. 7 (Reijm, Pavel & Bart, 2006) displays for example the pitch control laws connected to 
the generic helicopter model. Generally, the pitch control laws have 6 input paths: pitch 
attitude, pitch rate, yaw rate, bank angle, limited airspeed and the longitudinal control 
position. These signals arrive from the gyros, CPT and pressure sensor and are manipulated 
to steer the pitch ILCA extensible links to provide pitch rate damping and the DASH 
actuator to maintain airspeed and a positive stick gradient. The actuation system is quite a 
complicated mechanism with its own feedback control designed to ensure that the response 
and stability to control inputs has good performance. Helicopters fitted with an AFCS 
usually incorporate a limited authority series SCAS actuators, The SCAS authority, i.e. the 
amount in which a SCAS can overrule the pilot is limited to amplitudes of ±10% of the full 
actuator throw. For this work, it is assumed that each actuation element can be represented 
as a first order lag, although this assumption is a crude approximation of the complex 
behaviour of the servo-elastic system. 

 
 

 
Fig. 7. Pitch control laws for the longitudinal AFCS (Reijm, Pavel & Bart, 2006) 

Looking at Fig. 7, one can distinguish the various parts of the control laws. Starting with 
location 1, this is the primary input for the ILCA path: the pitch rate. It passes through 
washout functions which act like a sink and filter the signal for certain frequencies. These 
washout transfer functions can be tuned to select a desired filter strength and a frequency that 
should be eliminated from the signal. Moving to location 2, the filtered pitch rate signal is 
compensated by the yaw rate and roll attitude, presumable to cater for the effects of the 
coupling between the longitudinal and lateral flight dynamics. In location 3 the compensated 
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signal passes through a feedforward loop; the combination of a feedback and feedforward 
loop increase the responsiveness of a system, decreasing the time to return to the desired state 
after a disturbance. The longitudinal control position (location 4 in the figure) also contributes 
to the ILCA signal with the purpose of control augmentation. The CPT signals pass via a direct 
path and high gain path, which incorporates a rate limiter. The rate limiter constricts the 
appliance of the CPT signal to repress the effects of rapid stick movement, which could 
otherwise result in overreaction of the system. The direct and rate limited signals are summed 
and together form the resulting longitudinal CPT signal to be used for the ILCA and DASH 
actuator. Before the CPT signal reaches the ILCA, it is modified by a special construction 
involving the regular signal subtracted by the signal that has been filtered by a lag function. 
Generally, the task of a lag function is to cancel high frequency throughput to prevent 

saturation. They are defined by the transfer function 1
1s 

 in which  is the time constant 

that defines the effectiveness of the filter. The higher the time constant, the better is the 
capacity of filtering high frequencies. The time constant  is typically between 25 and 100ms, 
giving actuation bandwidths between 40 and 10 rad/s/. For this study a time constant of 
100ms was chosen, resulting in a system with lower actuation bandwidth which  shows that 
the actuation inhibits pilot rapid control actions. Then at location 5 one can see the washout 
circuit designed to only produce output during the transient period, cancelling the steady-state 
throughput. This behaviour is exactly what is required for control augmentation: the assistance 
by the boost actuators should be generated only when the pilot is moving the stick, not when 
keeping it steady. The resulting longitudinal CPT signal not only directs ILCA extension, but 
also controls the DASH actuator. The signal is supplemented with the pitch attitude that 
enables pitch attitude hold (location 6). The pitch attitude also works as input for the velocity 
control circuit in location 7. This velocity control circuit enables the DASH system to provide a 
positive stick gradient, but also includes feedback and feedforward loops to act on attitude 
changes caused by gusts. 

4. Simulating front cable failure scenarios 
The generic control scheme of Fig. 7 is next implemented in the generic tandem helicopter + 
load model.  

The generic helicopter/slung load model as presented above is used next to simulate failure 
scenarios of the front cable. A tandem V-shape suspended load is assumed to hang 
underneath the helicopter so that failure of the front hook means actually failure of the two 
front cables.  

In analysing the pilot recovery chances after a front cable failure without dropping the 
external load, the following question arose: what happens if the remaining cables are not 
strong enough to carry the load and they snap so that the pilot looses the load. Therefore the 
tension in the remaining cables was analysed to determine the cases in which the pilot 
would loose the load. After a cable failure the tension in the remaining cables increases 
rapidly and may cause them to snap. The snapping of the other cables may cause extra 
piloting problems, even loss of control and a possible destruction of the rotor above. 
Generally, generic sling specifications demand a guaranteed life of four years. At the 
Beginning Of Life (BOL) they must withstand 7 times the designed tensile strength. At the 
end of their service or End Of Life (EOL) this number has dropped to a minimum of 4.2 
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times design strength, which is equal to the design strength of suspension points on the 
external loads. For the Chinook, the tensile strength are calculated with a design load of 
17000lb (7.6x104 N) for each cable/hook and 25000lb (11.1x104N ) for a combined fore and 
aft cable/hook (31). During the failure simulations it became clear that the tension in the 
cables is very high when recovering to normal flight. On many occasions the EOL strength 
was exceeded and sometimes the BOL strength as well. As it was difficult to decide when a 
sling reaches its ultimate/breaking strength and snaps, the actual snapping point was set to 
the BOL strength as this represented a worst-case scenario. 

First, to fly the helicopter/slung load system in the front cable failure scenario, simple PID 
controllers have been developed to generate all control positions. Generally, in a PID 
controller, it is considered that the collective controls the altitude, the longitudinal cyclic 
controls pitch attitude, the lateral cyclic controls the roll motion and the pedal controls the 
sideslip, i.e.: 

   int_z req z req wcoll K z z K z z dt K w      

    int_req req qlong K K dt K q          (1) 

   int_req req plat K K dt K p          

 int_fus fus rpedal K K dt K r        

At the guidance level, the required pitch attitude is controlled by an altitude hold controller 
and the required roll angle is controlled by a lateral position hold controller.  

    int_req h req h req hdotK h h K h h dt K h        (2) 

   int_req y req y req ydotK y y K y y dt K y        

The longitudinal and lateral pilot inputs are mixed at the level of swashplate as given in 
(Ostroff, Downing and Rood, 1976). 
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Next, the initial PID controlled model is replaced with the longitudinal AFCS controlled 
system of Fig. 7, the other inputs remaining still PID controlled. This new pilot model is 
used to simulate different failure scenarios of the front cable. The following steps are taken 
to complete a failure scenario with the longitudinal AFCS switched on: 

 Calculate the trim state for a desired airspeed; 
 Use Bilinear Transformation to map the continuous time transfer functions to the 

discrete domain; 
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signal passes through a feedforward loop; the combination of a feedback and feedforward 
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to the ILCA signal with the purpose of control augmentation. The CPT signals pass via a direct 
path and high gain path, which incorporates a rate limiter. The rate limiter constricts the 
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otherwise result in overreaction of the system. The direct and rate limited signals are summed 
and together form the resulting longitudinal CPT signal to be used for the ILCA and DASH 
actuator. Before the CPT signal reaches the ILCA, it is modified by a special construction 
involving the regular signal subtracted by the signal that has been filtered by a lag function. 
Generally, the task of a lag function is to cancel high frequency throughput to prevent 
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positive stick gradient, but also includes feedback and feedforward loops to act on attitude 
changes caused by gusts. 

4. Simulating front cable failure scenarios 
The generic control scheme of Fig. 7 is next implemented in the generic tandem helicopter + 
load model.  

The generic helicopter/slung load model as presented above is used next to simulate failure 
scenarios of the front cable. A tandem V-shape suspended load is assumed to hang 
underneath the helicopter so that failure of the front hook means actually failure of the two 
front cables.  

In analysing the pilot recovery chances after a front cable failure without dropping the 
external load, the following question arose: what happens if the remaining cables are not 
strong enough to carry the load and they snap so that the pilot looses the load. Therefore the 
tension in the remaining cables was analysed to determine the cases in which the pilot 
would loose the load. After a cable failure the tension in the remaining cables increases 
rapidly and may cause them to snap. The snapping of the other cables may cause extra 
piloting problems, even loss of control and a possible destruction of the rotor above. 
Generally, generic sling specifications demand a guaranteed life of four years. At the 
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times design strength, which is equal to the design strength of suspension points on the 
external loads. For the Chinook, the tensile strength are calculated with a design load of 
17000lb (7.6x104 N) for each cable/hook and 25000lb (11.1x104N ) for a combined fore and 
aft cable/hook (31). During the failure simulations it became clear that the tension in the 
cables is very high when recovering to normal flight. On many occasions the EOL strength 
was exceeded and sometimes the BOL strength as well. As it was difficult to decide when a 
sling reaches its ultimate/breaking strength and snaps, the actual snapping point was set to 
the BOL strength as this represented a worst-case scenario. 

First, to fly the helicopter/slung load system in the front cable failure scenario, simple PID 
controllers have been developed to generate all control positions. Generally, in a PID 
controller, it is considered that the collective controls the altitude, the longitudinal cyclic 
controls pitch attitude, the lateral cyclic controls the roll motion and the pedal controls the 
sideslip, i.e.: 
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At the guidance level, the required pitch attitude is controlled by an altitude hold controller 
and the required roll angle is controlled by a lateral position hold controller.  
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Next, the initial PID controlled model is replaced with the longitudinal AFCS controlled 
system of Fig. 7, the other inputs remaining still PID controlled. This new pilot model is 
used to simulate different failure scenarios of the front cable. The following steps are taken 
to complete a failure scenario with the longitudinal AFCS switched on: 

 Calculate the trim state for a desired airspeed; 
 Use Bilinear Transformation to map the continuous time transfer functions to the 

discrete domain; 
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 Compute the new pilot input value for smooth transition; 
 Simulate the first 25 seconds with a full PID control. This is done because when the 

AFCS is turned on in flight after it has been switched off, or it leaves ground mode, a 
DASH error signal could exist. This means that DASH actuator operation and the 
longitudinal stick position are out of sync, requiring a small period of time for the 
actuator to cancel the error signal after which it is able to resume normal operation. This 
is done with the Transition Mode of the DASH. Discussions with RNLAF test pilots 
provided the indication that approximately 25 seconds is a realistic value;  

 At 25 seconds, switch to longitudinal AFCS with all other inputs (collective, lateral and 
pedal) PID controlled; 

 At t = 26 seconds, a cable failure will be introduced. The control laws will keep 
operating, immediately responding to the changing helicopter states. 

 From the start of the failure until the specified pilot reaction time of either 0, 1 or 2 
seconds, the PID controllers will enter a stick-fixed mode, remaining at the position 
they were in at t = tfailure. 

 When the reaction time period has expired, the PID controllers will kick in and the 
simulation will again run in mixed mode until it is finished, covering the same 5 
seconds from t = tfailure. 

To determine the limits within which the pilot can control the recovery, the ADS-33 
standard (ADS-33, 2000), section 3.1.14.4 ‘Transients Following Failures’ has been used. 
According to ADS-33, for rotorcraft without failure warning and cueing devices, the 
perturbations encountered shall not exceed the limits as given in Table 1 (equivalent with 
Table III from ADS-33). Also, according to pilot experience it appeared that the pilot can 
react within 1 or 2 seconds after the load failure. Therefore, the pilot reaction time in the 
simulations performed in this paper has been adjusted to 1 and maximum 2 seconds. 

 

Level 

Flight condition 

Hover and Low speed 
Forward Flight 

Near-Earth Up-and-away 

1 
3o roll, pitch, yaw 
0.05g nx, ny, nz  

No recovery action for 3.0 sec 

Both Hover and Low 
Speed and Forward 
Flight Up-and-Away 
requirements apply 

Stay within OFE. No 
recovery action for 
10 sec 

2 
10o attitude change 
0.2g acceleration  

No recovery action for 3.0 sec 

Both Hover and Low 
Speed and Forward 
Flight Up-and-Away 
requirements apply 

Stay within OFE. No 
recovery action for 
5.0 sec 

3 
24o attitude change 
0.4g acceleration  

No recovery action for 3.0 sec 

Both Hover and Low 
Speed and Forward 
Flight Up-and-Away 
requirements apply 

Stay within OFE. No 
recovery action for 
10 sec 

Table 1. Transients following failures (ADS-33, 2000) 
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A typical failure simulation can be seen in Fig. 8. The case considered is the helicopter flying 
forward at 50 kts when a front failure occurs with a 2-point suspended load of 2 tonnes. It is 
considered that the pilot reaction starts 1 sec after the failure. The controls remain 
unchanged from the moment of failure to the moment of pilot reaction (i.e. for 1 second). 
Looking at this figure it appears that the pilot can control this failure, being close to the 
upper limit for the longitudinal controller and well within the limits for the collective and 
lateral controllers. 
 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
  

Fig. 8. Helicopter and load snapshot to a front cable failure scenario from 50 kts initial 
velocity, 2-point suspension, 2000 kg load, 1 sec delay in pilot reaction 
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A typical failure simulation can be seen in Fig. 8. The case considered is the helicopter flying 
forward at 50 kts when a front failure occurs with a 2-point suspended load of 2 tonnes. It is 
considered that the pilot reaction starts 1 sec after the failure. The controls remain 
unchanged from the moment of failure to the moment of pilot reaction (i.e. for 1 second). 
Looking at this figure it appears that the pilot can control this failure, being close to the 
upper limit for the longitudinal controller and well within the limits for the collective and 
lateral controllers. 
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(e) (f) (g) (h) 
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Fig. 8. Helicopter and load snapshot to a front cable failure scenario from 50 kts initial 
velocity, 2-point suspension, 2000 kg load, 1 sec delay in pilot reaction 
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Concerning the time responses of the servo commands control actions, Fig. 9 displays the 
pitch control law of the actuator servo commands during a 30-second level flight at 50 kts. 

 
Fig. 9. Pitch control low for the DASH and SAS actuator command during the 50 kts 
forward flight 

Looking at this figure, one can see that there is a 25-second settling time that the DASH 
actuator requires before reaching a steady state value of about 6.3 cm.. Such behaviour 
seems to agree with the RNLAF CH-47D flight manual ((Anon, 2004),section 8.3). The 
manual states that when the AFCS is turned on in flight after it has been switched off, or it 
leaves ground mode, a DASH error signal could exist. This means that DASH actuator 
operation and the longitudinal stick position are out of sync, requiring a small period of 
time for the actuator to cancel the error signal after which it is able to resume normal 
operation. This is done with the Transition mode of the DASH as described above. The 
manual does not mention how long this period actually lasts, but, from discussions with 
Chinook pilots, it appears that this period it would amount to approximately 25 seconds, 
value similar to the one encountered in Fig. 9. 

Furthermore, the following scenarios are considered:  

 the load is suspended on two-point or three-point suspension systems. In the three-
point suspension the redundant set of slings (between the front and rear hook) come 
into action when the front cables fail.  

 the load can be suspended either in a nose-down position (so-called ‘nose-down rigged 
load’) or in a horizontal position (so-called ‘level rigged load’).  

 the helicopter is flying initially in level flight at velocities varying between 10 and 100 kts 
 the helicopter can carry three different container of 2 tonnes, 6 tonnes or 10 tonnes.  
 the pilot reaction time to failure varies from instantaneously reaction (ideal case) to a 

delay in response of 1 and 2 seconds. 
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Fig. 10 shows the helicopter pitch rate, attitude and velocities after a cable failure in the case 
of a PID controlled helicopter (left hand side of the figure) and an AFCS controlled 
helicopter (right hand side). The case considered is the helicopter flying forward at 50 kts 
when a front failure occurs with a 2-point suspended load of 2000 kg. It is considered that 
the pilot PID control will start to react at 1 sec after the front suspension point has failed. 
The controls remain unchanged from the moment of failure to the moment of pilot reaction 
(i.e. for 1 second). It is interesting to discuss how the AFCS affects the simulation. While the 
PID controller is restrained by the pilot reaction time, the AFCS control laws immediately 
start reacting to the change in helicopter pitch attitude caused by the swinging of the load. 
This should result in a lower maximum pitch rate, an expectation confirmed by the results. 
The maximum pitch rate qmax of the PID controlled helicopter is equal to 8.6 deg/sec (27th 
second), whereas the qmax resulting from AFCS control comes to 7.6 deg/sec (2nd second), 
an 11% attitude reduction. Concerning the pitch attitude, one can see that the AFCS 
controller clearly has trouble to maintain the trimmed pitch attitude, allowing it to increase 
to 8 degrees. This immediately has its effect on the forward velocity that begins to decline as 
soon as the pitch angle starts to build up at about 27 seconds. The filtering of the pitch 
attitude control also has its effect on the vertical velocity, but this is neither vital to the 
survival of the helicopter nor relevant to the ADS-33 handling limits. Simulating different 
scenarios it was observed that the DASH control circuit fails to maintain airspeed when 
flying faster than 40 kts. Though it appears more and more likely that the implementation of 
the DASH control circuit does not wholly agree with the real-life situation, the pitch ILCA is 
still doing its job just as intended, keeping the pitch rate within handling limits and making 
recovery possible. 
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Fig. 10. Helicopter motion after front suspension load failure, 50kts, two-point suspension, 
2 tonne mass load 
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Concerning the time responses of the servo commands control actions, Fig. 9 displays the 
pitch control law of the actuator servo commands during a 30-second level flight at 50 kts. 
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into action when the front cables fail.  
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delay in response of 1 and 2 seconds. 
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Fig. 10 shows the helicopter pitch rate, attitude and velocities after a cable failure in the case 
of a PID controlled helicopter (left hand side of the figure) and an AFCS controlled 
helicopter (right hand side). The case considered is the helicopter flying forward at 50 kts 
when a front failure occurs with a 2-point suspended load of 2000 kg. It is considered that 
the pilot PID control will start to react at 1 sec after the front suspension point has failed. 
The controls remain unchanged from the moment of failure to the moment of pilot reaction 
(i.e. for 1 second). It is interesting to discuss how the AFCS affects the simulation. While the 
PID controller is restrained by the pilot reaction time, the AFCS control laws immediately 
start reacting to the change in helicopter pitch attitude caused by the swinging of the load. 
This should result in a lower maximum pitch rate, an expectation confirmed by the results. 
The maximum pitch rate qmax of the PID controlled helicopter is equal to 8.6 deg/sec (27th 
second), whereas the qmax resulting from AFCS control comes to 7.6 deg/sec (2nd second), 
an 11% attitude reduction. Concerning the pitch attitude, one can see that the AFCS 
controller clearly has trouble to maintain the trimmed pitch attitude, allowing it to increase 
to 8 degrees. This immediately has its effect on the forward velocity that begins to decline as 
soon as the pitch angle starts to build up at about 27 seconds. The filtering of the pitch 
attitude control also has its effect on the vertical velocity, but this is neither vital to the 
survival of the helicopter nor relevant to the ADS-33 handling limits. Simulating different 
scenarios it was observed that the DASH control circuit fails to maintain airspeed when 
flying faster than 40 kts. Though it appears more and more likely that the implementation of 
the DASH control circuit does not wholly agree with the real-life situation, the pitch ILCA is 
still doing its job just as intended, keeping the pitch rate within handling limits and making 
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Fig. 10. Helicopter motion after front suspension load failure, 50kts, two-point suspension, 
2 tonne mass load 
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Fig. 10 clearly shows the advantage of the running AFCS: the pitch ILCA picks up on the 
increasing pitch rate right after the cable failure, resulting in a lower maximum pitch rate 
compared to PID control with a one second reaction time delay. The PID controlled  
pitch rate ranges from -4 to +8 deg/s, the AFCS improves on this with a range of -2.5 to  
+7.5 deg/s.  

The difference in helicopter motions result in a small difference in the way the load swings. 
But surprisingly, the change is not to be found in the axis in which the controller actually 
differs. Fig. 11 presents the pitch, roll and yaw motions of the container. Apart from the 
deviation in shape, the longitudinal AFCS controller causes an increased negative load roll 
rate and larger overall yaw rate amplitude. The swinging of the load may even result in a 
destructive collision between the container and helicopter hull before the load can be safely 
detached. This danger should be investigated in future research. 
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Fig. 11. Load motion after front suspension cable failure 

5. Defining safety envelopes for the load failures 
The numerous failure scenarios simulated have been plotted in safety envelopes giving the 
velocity when recovery was possible as a function of load mass carried. Fig. 12 and Fig. 13 
present the envelopes for a two- and respectively three-point suspension level rigged 
container after the front suspension point failed as a function of pilot reaction time to 
recover. Two controls are analysed: (a) a PID controller and (b) an AFCS controller. Looking 
at Fig. 12 one can see that in case of a two-point suspension, the PID control covers a larger 
envelope area than the partial AFCS control when the pilot reacts instantaneously to the 
failure (= 0 sec). However, in case of a three-point suspension this difference is not present. 
Fig. 12(b) shows a kind of inverse trend in safety when switching on the AFCS: if the pilot 
reacts instantaneously to the failure (=0 dotted line envelope) he has less chances to recover 
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than if he reacts one second later ( =1sec point dotted line). This can be explained as 
follows: the AFCS is actually first attempting to converge to reference (trim) values. If the 
pilot reacts immediately to the failure, the AFCS has difficulties in combining pilot inputs 
with its own convergence algorithm. But as soon as the circumstances favour the AFCS 
controller, i.e. the pilot reaction time becomes 1 or 2 seconds, the advantage of its 
application becomes clear. 
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Fig. 13. Safety envelopes for a three-point suspension  

Especially with a 2 second reaction time the contribution of the AFCS to the helicopter 
recovery emerges as invaluable. This can be seen when comparing Fig. 12(a) with Fig. 12(b), 
showing even more than doubling the envelope area when =2 sec and when instead of using 
PID controller the AFCS is switched on. This means that, when compared to a basic PID 
controlled helicopter, the AFCS is offering a much broader flight regime in which under slung 
loads can be transported. While the PID only stabilizes the helicopter motions by limiting the 
rate at which the attitude changes, the AFCS is attempting to converge to trim values. 

Comparing the two-point and three-point suspension for an AFCS controlled helicopter (i.e. 
Fig. 12(b) with Fig. 13(b)) it appears that a three-point suspension is safer. However, this 
does not mean that the two-point suspension is not safe for a certain condition. For example, 
if a 6 tone load needs to be transported, one can choose for a two-point suspension with the 
condition of not exceeding 70 kts in level flight. Above this velocity the chance to recover in 
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Fig. 10 clearly shows the advantage of the running AFCS: the pitch ILCA picks up on the 
increasing pitch rate right after the cable failure, resulting in a lower maximum pitch rate 
compared to PID control with a one second reaction time delay. The PID controlled  
pitch rate ranges from -4 to +8 deg/s, the AFCS improves on this with a range of -2.5 to  
+7.5 deg/s.  

The difference in helicopter motions result in a small difference in the way the load swings. 
But surprisingly, the change is not to be found in the axis in which the controller actually 
differs. Fig. 11 presents the pitch, roll and yaw motions of the container. Apart from the 
deviation in shape, the longitudinal AFCS controller causes an increased negative load roll 
rate and larger overall yaw rate amplitude. The swinging of the load may even result in a 
destructive collision between the container and helicopter hull before the load can be safely 
detached. This danger should be investigated in future research. 
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Fig. 11. Load motion after front suspension cable failure 

5. Defining safety envelopes for the load failures 
The numerous failure scenarios simulated have been plotted in safety envelopes giving the 
velocity when recovery was possible as a function of load mass carried. Fig. 12 and Fig. 13 
present the envelopes for a two- and respectively three-point suspension level rigged 
container after the front suspension point failed as a function of pilot reaction time to 
recover. Two controls are analysed: (a) a PID controller and (b) an AFCS controller. Looking 
at Fig. 12 one can see that in case of a two-point suspension, the PID control covers a larger 
envelope area than the partial AFCS control when the pilot reacts instantaneously to the 
failure (= 0 sec). However, in case of a three-point suspension this difference is not present. 
Fig. 12(b) shows a kind of inverse trend in safety when switching on the AFCS: if the pilot 
reacts instantaneously to the failure (=0 dotted line envelope) he has less chances to recover 
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than if he reacts one second later ( =1sec point dotted line). This can be explained as 
follows: the AFCS is actually first attempting to converge to reference (trim) values. If the 
pilot reacts immediately to the failure, the AFCS has difficulties in combining pilot inputs 
with its own convergence algorithm. But as soon as the circumstances favour the AFCS 
controller, i.e. the pilot reaction time becomes 1 or 2 seconds, the advantage of its 
application becomes clear. 
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Fig. 13. Safety envelopes for a three-point suspension  

Especially with a 2 second reaction time the contribution of the AFCS to the helicopter 
recovery emerges as invaluable. This can be seen when comparing Fig. 12(a) with Fig. 12(b), 
showing even more than doubling the envelope area when =2 sec and when instead of using 
PID controller the AFCS is switched on. This means that, when compared to a basic PID 
controlled helicopter, the AFCS is offering a much broader flight regime in which under slung 
loads can be transported. While the PID only stabilizes the helicopter motions by limiting the 
rate at which the attitude changes, the AFCS is attempting to converge to trim values. 

Comparing the two-point and three-point suspension for an AFCS controlled helicopter (i.e. 
Fig. 12(b) with Fig. 13(b)) it appears that a three-point suspension is safer. However, this 
does not mean that the two-point suspension is not safe for a certain condition. For example, 
if a 6 tone load needs to be transported, one can choose for a two-point suspension with the 
condition of not exceeding 70 kts in level flight. Above this velocity the chance to recover in 
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case of a load failure is questionable. In case of a 10 tones load, the AFCS for a two-point 
suspension cannot contribute to the pilot efforts to recover the load if the failure occurs 
above 30 kts. In this case it is safer to choose a three-point suspension for load 
transportation. 

6. Conclusion 
The purpose of this chapter is to determine how the AFCS influenced the recovery prospects 
of a Chinook helicopter with an external sling load when one of its cables brakes. This can 
be of vital importance for deciding whether to replace the safer three-point redundant 
suspension to a two-point suspension during Royal Netherlands Air Force operations. The 
chapter presented the flight control laws for a longitudinal automatic flight control system 
(AFCS). The general conclusion that could be drawn was that the assistance of the AFCS 
expanded the number of occasions at which the helicopter motions stayed within the 
handling limits during recovery of a cable failure. In many cases, the AFCS cancelled the 
negative effect of a delayed pilot response, supporting the supposition that the combination 
of active pilot control and AFCS backup could push the flight envelope boundaries even 
further. The chapter proposed safety envelopes covering the areas that define the conditions 
at which a cable failure at a suspension point could happen without presumable fatal 
consequences. It was demonstrated that since the longitudinal part of the AFCS was 
operating continuously, it was not bound by the obstruction of the imposed pilot reaction 
time. For this reason, partial AFCS control gained an advantage when the pilot reaction was 
delayed. Flying with a two-point suspension is just as safe as a three-point suspension 
stipulating that the safety envelope boundaries are obeyed.  

7. Appendix A 
7.1 Derivation of the equations of motion in a six degree-of-freedom model  

In a general 6-dof non-linear body model the helicopter motion is represented by three 
translations and three rotations around the body axes-system  B B B BE X Y Z centred in the 
helicopter centre of gravity, see Fig. A1. 

 
Fig. A1. System of coordinates used to express the helicopter motion in the 6-dof model 
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The system of equations describing completely the motion of the helicopter in an inertial 
system are:  
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In order to describe completely the helicopter motion w.r.t. the Earth system, the equations 
of trajectory can be added: 
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To these systems of equations, two differential equations are added for the dynamic inflow 
of the front main and rear rotors, describing the dynamic inflow as a “quasi-steady inflow” 
by means of time constants: 
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where CT,elem and CT,Glau are the rotor thrust coefficients as expressed in blade element 
theory and respectively Glauert theory. The total forces and moments acting on the 
helicopter centre of gravity consist of the sum of front and rear rotors (with indices Rf and 
Rr), rotor torque (Q) and helicopter body aerodynamics (B). For the load, a suspension point 
component (S) is considered which is added when the load is attached underneath the 
helicopter model.  
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case of a load failure is questionable. In case of a 10 tones load, the AFCS for a two-point 
suspension cannot contribute to the pilot efforts to recover the load if the failure occurs 
above 30 kts. In this case it is safer to choose a three-point suspension for load 
transportation. 

6. Conclusion 
The purpose of this chapter is to determine how the AFCS influenced the recovery prospects 
of a Chinook helicopter with an external sling load when one of its cables brakes. This can 
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helicopter centre of gravity, see Fig. A1. 
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The system of equations describing completely the motion of the helicopter in an inertial 
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where CT,elem and CT,Glau are the rotor thrust coefficients as expressed in blade element 
theory and respectively Glauert theory. The total forces and moments acting on the 
helicopter centre of gravity consist of the sum of front and rear rotors (with indices Rf and 
Rr), rotor torque (Q) and helicopter body aerodynamics (B). For the load, a suspension point 
component (S) is considered which is added when the load is attached underneath the 
helicopter model.  
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The rotor forces and moments consist of front and rear vertical thrust components Tf and Tr, 
drag forces HXf and HX,r, lateral forces HYf, and HYr and rotor shaft torques MQf and MQr as 
seen in Fig. A2. 
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Fig. A2. Forces and Moments on the rotors 

The model uses the following sign conventions (see Fig. A3 and Fig. A4): 1) Longitudinal 
disc tilt for front and rear rotors a1f and a1r are assumed positive for backward tilted rotor 
disc plane; 2) Lateral disc tilt for front and rear rotor b1f and b1r are positive for rotor disc 
plane tilted in the direction of azimuth angle =90(i.e. b1f >0 to the right and b1r>0 to the 
left, backside view); 3) Collective pitch for front and rear rotor 0f and 0r are positive when 

 
Effects of Automatic Flight Control System on Chinook Underslung Load Failures 

 

173 

the pilot moves the collective up; 4) Longitudinal cyclic for front and rear rotor1sf and 1sr 
are assumed positive when the pilot moves the stick forward; 5) Lateral cyclic for front and 
rear rotors 1cf and 1cr are assumed positive when the pilot moves the stick to the right for 
cyclic pitch to the right. 

 

 
Fig. A3. Longitudinal axis Chinook control (side view) 
 

 
Fig. A4. Lateral axis Chinook control (front view) 
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the pilot moves the collective up; 4) Longitudinal cyclic for front and rear rotor1sf and 1sr 
are assumed positive when the pilot moves the stick forward; 5) Lateral cyclic for front and 
rear rotors 1cf and 1cr are assumed positive when the pilot moves the stick to the right for 
cyclic pitch to the right. 

 

 
Fig. A3. Longitudinal axis Chinook control (side view) 
 

 
Fig. A4. Lateral axis Chinook control (front view) 
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The contributions of these components to the front rotor thrust and the horizontal and side 
forces in the helicopter body system are: 
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For the rear rotor, these components are (note the opposite direction of the lateral flapping 
angle b1r with respect to the front rotor equations): 
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The front and the rear rotor thrust (Tf and Tr), horizontal force (drag force) (HXf, HXr),  
lateral forces (HYf, HYr) and torque (MQf, MQr) are expressed by their non-dimensional 
coefficients: 
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The non-dimensional coefficients for rotor thrust, horizontal and lateral forces and torque 
can be calculated using the blade element theory by integration of the lift and drag forces on 
each blade element along the blade and around the azimuth. Their non-dimensional 
coefficients w.r.t. the disc plane (non-dimensionalized by    2 2R R  ), for the front and 
rear rotors, are: 
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The main rotor thrust coefficient in Glauert theory is: 

 2 2
, , , , ,2 +( - ) )T Glau if r xf r if r zf rC      (15) 

The rotor torque coefficient can be expressed as: 
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         (16) 

The advance ratios of front/rear rotors xf,r, xf,r, xf,r are calculated by projecting helicopter 
velocity vector (u,v,w) on the plane of front/rear rotor hub as (uf,r, vf,r, wf,r): 
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 (17) 

and then by non-dimensionalizing (uf,r, vf,r, wf,r) by R while neglecting the yaw rate r. This 
leads to the following expressions for the front/rear rotor advance ratios:  
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The blade drag coefficient Cdf,r of front/rear rotors is calculated as: 

 2
, 0 ,df r d dt Tf rC C C C   (19) 
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The contributions of these components to the front rotor thrust and the horizontal and side 
forces in the helicopter body system are: 
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For the rear rotor, these components are (note the opposite direction of the lateral flapping 
angle b1r with respect to the front rotor equations): 
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The front and the rear rotor thrust (Tf and Tr), horizontal force (drag force) (HXf, HXr),  
lateral forces (HYf, HYr) and torque (MQf, MQr) are expressed by their non-dimensional 
coefficients: 
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The non-dimensional coefficients for rotor thrust, horizontal and lateral forces and torque 
can be calculated using the blade element theory by integration of the lift and drag forces on 
each blade element along the blade and around the azimuth. Their non-dimensional 
coefficients w.r.t. the disc plane (non-dimensionalized by    2 2R R  ), for the front and 
rear rotors, are: 
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and then by non-dimensionalizing (uf,r, vf,r, wf,r) by R while neglecting the yaw rate r. This 
leads to the following expressions for the front/rear rotor advance ratios:  
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The blade drag coefficient Cdf,r of front/rear rotors is calculated as: 

 2
, 0 ,df r d dt Tf rC C C C   (19) 
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with the values Cd0 and Cdt defined in Appendix B. The rotor interference is considered 
through interference factors expressed as in (Ostroff, Downing and Rood, 1976):  
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 (20) 

where If, Ir are the inflow angles of front and rear rotors defined as in Figure A5 and 
equation (21) and fr and rr are rotor sideslip angles defined in equation (22) and (17). 

 

 
Fig. A5. Rotor inflow angle used to calculate front and rear rotor interferences  
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The interference factors are used to compute a new inflow ratio in the Glauert formula (15): 
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The fuselage forces and moments are calculated through flat plate theory using (Ostroff, 
Downing and Rood, 1976): 
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where the fuselage angle of attack fus and fuselage sideslip fus are defined as seen as: 
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The helicopter has three suspension points i=1,2,3 underneath its floor as seen in Fig. A6, the 
tension force in one cable j being Sij. The total forces on the slings are: 
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 (26) 

where ij and ij are the angles that the sling cable makes with the X and Z direction;  fs1,2,3 
and hs1,2,3 are the hook distances to the helicopter centre of gravity. The slings are modelled 
as linear springs without mass and have small internal damping. The tension force in each 
cable is determined by comparing the actual sling length lij to the zero tension sling length 
l0ij, see equation (27), where j is the cable number on the ith suspension point. The zero 
tension cable length as well as the cable stiffness are known, the actual length of each cable 
is computed by measuring the distance between the specific helicopter suspension point and 
the suspension point on the load. 

   0max 0,ij ij ijS k l l   (27) 

The damping forces inside the slings are determined using equation (28). In this equation dV 
is the relative velocity between the endpoints of a cable, in the direction of that cable. This 
requires that both endpoint velocities are known in the same axis system. The damping 
coefficient is set just large enough to prevent the load from increase in pendulum motion 
when the load is oscillating around a fixed point. 

 ,damp ij dampijlS dV c  (28) 
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The interference factors are used to compute a new inflow ratio in the Glauert formula (15): 
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The fuselage forces and moments are calculated through flat plate theory using (Ostroff, 
Downing and Rood, 1976): 
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where the fuselage angle of attack fus and fuselage sideslip fus are defined as seen as: 
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The helicopter has three suspension points i=1,2,3 underneath its floor as seen in Fig. A6, the 
tension force in one cable j being Sij. The total forces on the slings are: 
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where ij and ij are the angles that the sling cable makes with the X and Z direction;  fs1,2,3 
and hs1,2,3 are the hook distances to the helicopter centre of gravity. The slings are modelled 
as linear springs without mass and have small internal damping. The tension force in each 
cable is determined by comparing the actual sling length lij to the zero tension sling length 
l0ij, see equation (27), where j is the cable number on the ith suspension point. The zero 
tension cable length as well as the cable stiffness are known, the actual length of each cable 
is computed by measuring the distance between the specific helicopter suspension point and 
the suspension point on the load. 

   0max 0,ij ij ijS k l l   (27) 

The damping forces inside the slings are determined using equation (28). In this equation dV 
is the relative velocity between the endpoints of a cable, in the direction of that cable. This 
requires that both endpoint velocities are known in the same axis system. The damping 
coefficient is set just large enough to prevent the load from increase in pendulum motion 
when the load is oscillating around a fixed point. 

 ,damp ij dampijlS dV c  (28) 
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Fig. A6. Hooks and slings loads 

7.2 Load model  

The load is modelled as a 6-dof body, the helicopter slings being connected to the load as 
seen in Fig. A7.  

 
Fig. A7. Container load with local axes and sling numbering 

The forces and moments acting on the load centre of gravity, besides load gravitational 
forces, consist of cable forces indexed with C and aerodynamic forces, which are determined 
using flat plate theory, indexed Bl. The summation of these forces and moments is given by 
equation (29). 
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 (29) 

The contributions of each cable and of the load aerodynamics are given in equations (30) 
and (31) respectively. Note that the cable component is valid only for a V-suspension. 

  
 

1 1

1 1 2 2

1 1 2 21

1 1 1 2

cos sin
sin sin

cos

sin sin cos cos

cos sin cos cos

sin sin co

C ij lij lij

C ij lij i

C ij lij

C ij lij lij cgl i li cgl i li l cgl

C ij lij lij cgl j l j cgl j l l cgl

C j l j l j cgl j

X S
Y S
Z S

L S h S w S w w

M S h S l S l l

N S l S

 
 


   

   

 





 

   

    

    
 

2 2

1 1 1 2 2 2

s sin

cos sin cos sin
l j l j l cgl

i li li cgl i li li l cgl

l l

S w S w w

 

   



  

 (30) 

The magnitude of the sling forces is given by equation (27). The load aerodynamics are 
taken from the flat plate theory, using the empirical equations of reference (Ostroff, 
Downing and Rood, 1976), see equation (31). 

 
 

 

21
2

21
2

21
2

21
2

21
2

21
2

sin
sin
sin cos 1 sin

sin cos
sin cos 0.94sin 0.342 cos

Bl FEl l

Bl Y l l sl

Bl L l l sl

Bl L l l sl sl sl

Bl M l sl sl

Bl N l sl sl sl sl

X C V
Y C V
Z C V
L C V

M C V
N C V












 

 

   

  
    

 

 

 

  



  

 (31) 

8. Appendix B  
Data for the helicopter and load used in the simulation model 

Chinook dimensions (see Fig. B1) 
hf 2.093 m 
hr 3.527 m 
lf 6.425 m 
lr 5.450 m 
f1 0 m 
fs1 2.28092 m 
fs2 1.78308 m
fs3 0.19812 m 
hs1,2 1.309 m 
hs3 1.509 m  
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The contributions of each cable and of the load aerodynamics are given in equations (30) 
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The magnitude of the sling forces is given by equation (27). The load aerodynamics are 
taken from the flat plate theory, using the empirical equations of reference (Ostroff, 
Downing and Rood, 1976), see equation (31). 
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Fig. B1. Chinook dimensions 

 

Rotor characteristics 
mbl 161 kg 
 0.08459 
N 3 
if 9 deg 
ir 4 deg
 23.562 rad/s
 12.8 
twist - 9.14 deg 
R 9.144 m 
c 0.81m 
Cl 5.75 rad-1 
Cdo 0.0098 
Cdt 38.66

 

 

Chinook mass and moments of inertia 
m 14968.6 kg 
x 50386.3 kg m2 
y  273536 kg m2 
z 257685 kg m2 
xz  19838.3 kg m2 
Ibl 3110.2 kg m2 

 

 

Chinook CH-47B aerodynamics 
CFE 3.5 m2 
CLfus 32.5 m2 
CL 6.57 m3 
CM  142 m3 
CN 51.5 m3 
CY  43.4 m2 
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Blade control angle to stick displacement conversion factors 
Collective front rotor 0.734 deg/cm 
Collective rear rotor 0.734 deg/cm 
Longitudinal front rotor  0.242 deg/cm 
Longitudinal rear rotor -0.242 deg/cm 
Lateral front rotor 0.752 deg/cm 
Lateral rear rotor -0.752 deg/cm 
Pedal front rotor 1.25 deg/cm 
Pedal rear rotor - 1.25 deg/cm 
Collective front/rear neutral  7.85 deg 

 

 

 

Blade control system limits                                        deg                   cm stick 
Collective range front rotor 0 – 16 deg 0 – 21.8 cm 
Collective range rear rotor 0 – 16 deg   
Longitudinal cyclic range front rotor  - 0.5 – 2 deg -2 – 10.33 cm 
Longitudinal cyclic range rear rotor - 0.5 – 2.5 deg   
Lateral cyclic angle front rotor - 10 – 10 deg -13 – 13 cm 
Lateral cyclic angle rear rotor - 10 – 10 deg  

 

 

 

Container load mass and dimensions 
ml 2000, 6000 and 10000 kg 
ll 6.058 m 
wl  2.438 m 
hl 2.591 m 
lCG l (½ ll) m 
wCG l (½ wl) m 
hCGl (½ hl) m 

 

 

 

Load moments of inertia 
Ixx l  2 21

12 l l lm w h  

Iyy l  2 21
12 l l lm h l  

Izz l   2 21
12 l l lm w l  

Ixz l 0 
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Sling aerodynamics 
k 7.25 105 N/m 
kred 1 105 m2/rad 
Inormal ij  4 m 
Ired 5.2 m 
cdamp 10 kg/s  
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1. Introduction 
A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle 
Emergency Return RECOVER) has been developed within the European GARTEUR Flight 
Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004-2008) for the 
integrated evaluation of fault detection, identification (FDI) and reconfigurable flight control 
systems. The benchmark includes a suitable set of assessment criteria and failure cases, 
based on reconstructed accident scenarios, to assess the potential of new adaptive control 
strategies to improve aircraft survivability. The application of reconstruction and modeling 
techniques, using accident flight data for validation, has resulted in high fidelity non-linear 
aircraft and fault models to evaluate new Fault Tolerant Flight Control (FTFC) concepts and 
their real-time performance to accommodate in-flight failures (Edwards et al., 2010). 

This chapter will give an overview of advanced flight control developments and pilot 
training related initiatives to reduce the amount of in-flight loss-of-control (LOC-I) 
accidents. The GARTEUR RECOVER benchmark, validated with accident flight data and 
used during the GARTEUR FM-AG(16) program, will be described. The modular features of 
the benchmark will be outlined that address the need for tool-based design of modern 
resilient flight control systems that mitigate potentially catastrophic (mechanical) failures 
and aircraft upsets. 

2. Program overview 
Fault tolerant flight control (FTFC) enables improved survivability and recovery from 
adverse flight conditions induced by faults, damage and associated upsets. This can be 
achieved by “intelligent” utilisation of the control authority of the remaining control 
effectors in all axes consisting of the control surfaces and engines or a combination of both. 
In this technique, control strategies are applied to restore stability and maneuverability of 
the vehicle for continued safe operation and a survivable landing.  
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From 2004-2008, a research group on Fault Tolerant Control, comprising a collaboration of 
thirteen European partners from industry, universities and research institutions, was 
established within the framework of the Group for Aeronautical Research and Technology 
in Europe (GARTEUR) co-operation program (Table 1). The aim of the research group, 
Flight Mechanics Action Group FM-AG(16), is to demonstrate the capability and potential of 
innovative reconfigurable flight control algorithms to improve aircraft survivability. The 
group facilitated the proliferation of new developments in fault tolerant control design 
within the European aerospace research and academic community towards practical and 
real-time operational applications. This addresses the need to improve the resilience and 
safety of future aircraft and aiding the pilot to recover from adverse conditions induced by 
(multiple) system failures, damage and (atmospheric) upsets that would otherwise be 
potentially catastrophic. Up till now, faults or damage on board of aircraft have been 
accommodated by hardware design using duplex, triplex or even quadruplex redundancy 
of critical components. The approach of the GARTEUR research focussed on providing 
redundancy by means of new adaptive control law design methods to accommodate 
(unanticipated) faults and/or damage that dramatically change the configuration of the 
aircraft. These methods take into account a novel combination of robustness, reconfiguration 
and (real-time) adaptation of the control laws (Edwards et al., 2010; Lombaerts et al., 2009).  

 
Table 1. GARTEUR Flight Mechanics Action Group 16 (FM-AG(16)) Fault Tolerant Control 
consortium 

The group addressed the need for high-fidelity nonlinear simulation models, relying on 
accurate failure modelling, to improve the prediction of reconfigurable system performance 
in degraded modes. As part of this research, a simulation benchmark was developed, based 
on the Boeing 747-100/200 large transport aircraft, for the assessment of fault tolerant flight 
control methods. The test scenarios that are an integral part of the benchmark were selected 
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to provide challenging assessment criteria to evaluate the effectiveness and potential of the 
FTFC methods being investigated (Lombaerts et al., 2006) The simulation model of the 
benchmark was earlier applied in an investigation of the 1992 Amsterdam Bijlmermeer 
airplane accident (Flight 1862) (Netherlands Aviation Safety Board, 1994; Smaili, 1997, 2000) 
and has been validated against data from the Digital Flight Data Recorder (DFDR) of the 
accident flight. 

The potential of the developed fault tolerant flight control methods to improve aircraft 
survivability, for both manual and automatic flight, has been demonstrated in 2008 during a 
piloted assessment in the SIMONA research flight simulator of the Delft University of 
Technology (Edwards et al., 2010; Stroosma et al., 2009). 

3. Fault tolerant flight control systems  
An increasing number of measures are currently being taken by the international aviation 
community to prevent Loss Of Control In-Flight (LOC-I) accidents due to failures, damage 
and upsets for which the pilot was not able to recover successfully despite the available 
performance and control capabilities. Recent airliner accident and incident statistics (Civil 
Aviation Authority of the Netherlands (CAA-NL), 2007) show that about 16% of the 
accidents between the 1993 and 2007 period can be attributed to LOC-I, caused by a piloting 
mistake, technical malfunction or unusual upsets due to external (atmospheric) 
disturbances. However, worldwide civil aviation safety statistics indicate that today ‘in-
flight loss of control’ has become the main cause of aircraft accidents (followed by 
‘controlled flight into terrain’ (CFIT)). Data examined by the international aviation 
community shows that, in contrast to CFIT, the share of LOC-I occurrences is not 
significantly decreasing. The actions taken by the aviation community to lower the number 
of LOC-I occurrences not only include improvements in procedures training and human 
factors, but also finding measures to better mitigate system failures and increase aircraft 
survivability in case of an accident or degraded flight conditions.  

Reconfigurable flight control, or “intelligent flight control”, is aimed to prevent aircraft 
loss due to multiple failures when the aircraft is still flyable given the available control 
power. Motivated by several aircraft accidents at the end of the 1970’s, in particular the 
crash of an American Airlines DC-10 (Flight 191) at Chicago in 1979, research on “self-
repairing”, or reconfigurable fault tolerant flight control (RFTFC), was initiated to 
accommodate in-flight failures. Reconfigurable control aims to utilise all remaining 
control effectors on the aircraft after a (unanticipated) mechanical or structural failure to 
recover the performance of the original system by automatic redesign of the flight control 
system. The first objective of reconfiguration is to guarantee system stability while the 
original performance is reconstructed as much as possible. Due to limitations of the 
control allocation scheme caused by, for instance, actuator position and rate limits, the 
system performance of the unfailed aircraft may not be fully achieved. In this case, the 
failed aircraft would be flown in a degraded mode but with sufficiently acceptable 
handling qualities for a successful recovery. Reconfigurable flight control systems have 
been successfully flight tested and evaluated in manned simulations (Burcham & 
Fullerton, 2004; Corder, 2004; Ganguli et al., 2005; The Boeing Company, 1999; Wright 
Laboratory, 1991). 



 
Automatic Flight Control Systems – Latest Developments 

 

186 

From 2004-2008, a research group on Fault Tolerant Control, comprising a collaboration of 
thirteen European partners from industry, universities and research institutions, was 
established within the framework of the Group for Aeronautical Research and Technology 
in Europe (GARTEUR) co-operation program (Table 1). The aim of the research group, 
Flight Mechanics Action Group FM-AG(16), is to demonstrate the capability and potential of 
innovative reconfigurable flight control algorithms to improve aircraft survivability. The 
group facilitated the proliferation of new developments in fault tolerant control design 
within the European aerospace research and academic community towards practical and 
real-time operational applications. This addresses the need to improve the resilience and 
safety of future aircraft and aiding the pilot to recover from adverse conditions induced by 
(multiple) system failures, damage and (atmospheric) upsets that would otherwise be 
potentially catastrophic. Up till now, faults or damage on board of aircraft have been 
accommodated by hardware design using duplex, triplex or even quadruplex redundancy 
of critical components. The approach of the GARTEUR research focussed on providing 
redundancy by means of new adaptive control law design methods to accommodate 
(unanticipated) faults and/or damage that dramatically change the configuration of the 
aircraft. These methods take into account a novel combination of robustness, reconfiguration 
and (real-time) adaptation of the control laws (Edwards et al., 2010; Lombaerts et al., 2009).  

 
Table 1. GARTEUR Flight Mechanics Action Group 16 (FM-AG(16)) Fault Tolerant Control 
consortium 

The group addressed the need for high-fidelity nonlinear simulation models, relying on 
accurate failure modelling, to improve the prediction of reconfigurable system performance 
in degraded modes. As part of this research, a simulation benchmark was developed, based 
on the Boeing 747-100/200 large transport aircraft, for the assessment of fault tolerant flight 
control methods. The test scenarios that are an integral part of the benchmark were selected 

 
Tool-Based Design and Evaluation of Resilient Flight Control Systems 

 

187 

to provide challenging assessment criteria to evaluate the effectiveness and potential of the 
FTFC methods being investigated (Lombaerts et al., 2006) The simulation model of the 
benchmark was earlier applied in an investigation of the 1992 Amsterdam Bijlmermeer 
airplane accident (Flight 1862) (Netherlands Aviation Safety Board, 1994; Smaili, 1997, 2000) 
and has been validated against data from the Digital Flight Data Recorder (DFDR) of the 
accident flight. 

The potential of the developed fault tolerant flight control methods to improve aircraft 
survivability, for both manual and automatic flight, has been demonstrated in 2008 during a 
piloted assessment in the SIMONA research flight simulator of the Delft University of 
Technology (Edwards et al., 2010; Stroosma et al., 2009). 

3. Fault tolerant flight control systems  
An increasing number of measures are currently being taken by the international aviation 
community to prevent Loss Of Control In-Flight (LOC-I) accidents due to failures, damage 
and upsets for which the pilot was not able to recover successfully despite the available 
performance and control capabilities. Recent airliner accident and incident statistics (Civil 
Aviation Authority of the Netherlands (CAA-NL), 2007) show that about 16% of the 
accidents between the 1993 and 2007 period can be attributed to LOC-I, caused by a piloting 
mistake, technical malfunction or unusual upsets due to external (atmospheric) 
disturbances. However, worldwide civil aviation safety statistics indicate that today ‘in-
flight loss of control’ has become the main cause of aircraft accidents (followed by 
‘controlled flight into terrain’ (CFIT)). Data examined by the international aviation 
community shows that, in contrast to CFIT, the share of LOC-I occurrences is not 
significantly decreasing. The actions taken by the aviation community to lower the number 
of LOC-I occurrences not only include improvements in procedures training and human 
factors, but also finding measures to better mitigate system failures and increase aircraft 
survivability in case of an accident or degraded flight conditions.  

Reconfigurable flight control, or “intelligent flight control”, is aimed to prevent aircraft 
loss due to multiple failures when the aircraft is still flyable given the available control 
power. Motivated by several aircraft accidents at the end of the 1970’s, in particular the 
crash of an American Airlines DC-10 (Flight 191) at Chicago in 1979, research on “self-
repairing”, or reconfigurable fault tolerant flight control (RFTFC), was initiated to 
accommodate in-flight failures. Reconfigurable control aims to utilise all remaining 
control effectors on the aircraft after a (unanticipated) mechanical or structural failure to 
recover the performance of the original system by automatic redesign of the flight control 
system. The first objective of reconfiguration is to guarantee system stability while the 
original performance is reconstructed as much as possible. Due to limitations of the 
control allocation scheme caused by, for instance, actuator position and rate limits, the 
system performance of the unfailed aircraft may not be fully achieved. In this case, the 
failed aircraft would be flown in a degraded mode but with sufficiently acceptable 
handling qualities for a successful recovery. Reconfigurable flight control systems have 
been successfully flight tested and evaluated in manned simulations (Burcham & 
Fullerton, 2004; Corder, 2004; Ganguli et al., 2005; The Boeing Company, 1999; Wright 
Laboratory, 1991). 



 
Automatic Flight Control Systems – Latest Developments 

 

188 

Adaptive or reconfigurable flight control strategies might have prevented the loss of two 
Boeing 737s due to a rudder actuator hardover and of a Boeing 767 due to inadvertent 
asymmetric thrust reverser deployment. The 1989 Sioux City DC-10 incident is an example 
of the crew performing their own reconfiguration using asymmetric thrust from the two 
remaining engines to maintain limited control in the presence of total hydraulic system 
failure. Following the Sioux City incident in 1989, during which the engines were used as 
only remaining control effectors after loss of all hydraulics, a program was initiated at the 
NASA Dryden Flight Research Center on Propulsion Controlled Aircraft (PCA) (Burcham 
2004). The system aims to provide a safe landing capability using only augmented engine 
thrust for flight control. Throughout the 1990’s, the system has been successfully tested on 
several aircraft, including both commercial and military (Figure 1). 

 
 

 
Fig. 1. McDonnell Douglas MD-11 landing at Dryden Flight Research Center equipped 
with a computer-assisted engine control landing system developed by NASA (NASA 
Dryden photo collection) 

The crash of a Boeing 747 freighter in 1992 near Amsterdam, the Netherlands, following the 
separation of the two right-wing engines, was potentially survivable given adequate 
knowledge about the remaining aerodynamic capabilities of the damaged aircraft (Smaili, 
1997, 2000). New kinds of threats within the aviation community have recently been 
introduced by deliberate hostile attacks on both commercial and military aircraft. For 
instance, a surface-to-air missile (SAM) attack has recently been demonstrated to be 
survivable by the crew of an Airbus A300B4 freighter performing a successful emergency 
landing at Baghdad International Airport after suffering from complete hydraulic system 
failures and severe structural wing damage (Figure 2). 

 
 

 
Fig. 2. Emergency landing sequence using engines only and left wing structural damage due 
to surface-to-air missile impact, DHL A300B4-203F, Baghdad, 2003 
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Apart from system failures and hostile actions against commercial and military aircraft, 
recent incident cases also show the destructive impact of hazardous atmospheric weather 
conditions on the structural integrity of the aircraft. In some cases, clear air turbulence has 
resulted in aircraft incurring substantial structural damage and loss of engines due to clear 
air turbulence (CAT).  

A number of new fault detection and isolation methods have been proposed in the literature 
(Patton, 1997; Zhang & Jiang, 2003, Zhang, 2005) together with methods for reconfiguring 
flight control systems. To assess these new methods for aerospace applications, they need to 
be integrated and applied to realistic operational scenarios that include representative levels 
of non-linearity, noise and disturbance. This will then allow the benefits of these new flight 
control technologies to be evaluated in terms of functionality and performance. 

Studies of airliner LOC-I accidents (Edwards, 2010; Smaili, 1997, 2000) show that better 
situational awareness or guidance would have recovered the impaired aircraft and 
improved survivability if unconventional control strategies were used. In some of the cases 
studied, the crew was able to adapt to the unknown degraded flying qualities by applying 
control strategies (e.g. using the engines effectors to achieve stability and control 
augmentation) that are not part of any standard airline training curriculum. 

The results of a LOC-I study concerning the 1992 Amsterdam accident case (Smaili, 1997, 
2000), in which a detailed reconstruction and simulation of the accident flight was 
conducted based on the recovered Digital Flight Data Recorder (DFDR), formed the basis for 
realistic and validated aircraft accident scenarios as part of the GARTEUR FM-AG(16) 
aircraft simulation benchmark. The study resulted in high fidelity non-linear fault models 
for a civil large transport aircraft that addresses the need to improve the prediction of 
reconfigurable system performance in degraded modes. 

4. Flight 1862 aircraft accident case 
On October 4th, 1992, a Boeing 747-200F freighter aircraft, Flight 1862 (Figure 3), went down 
near Amsterdam Schiphol Airport after the separation of both right-wing engines. In an 
attempt to return to the airport for an emergency landing, the aircraft flew several right-hand 
circuits in order to lose altitude and to line up with the runway as intended by the crew. 
During the second line-up, the crew lost control of the aircraft. As a result, the aircraft crashed, 
13 km east of the airport, into an eleven-floor apartment building in the Bijlmermeer, a suburb 
of Amsterdam. Results of the accident investigation, conducted by several organisations 
including the Netherlands Accident Investigation Bureau and the aircraft manufacturer, were 
hampered by the fact that the actual extent of the structural damage to the right-wing, due to 
the loss of both engines, was unknown. The analysis from this investigation concluded that 
given the performance and controllability of the aircraft after the separation of the engines, a 
successful landing was highly improbable (Smaili, 1997, 2000). 

In 1997, the division of Control and Simulation of the Faculty of Aerospace Engineering of 
the Delft University of Technology (DUT), in collaboration with the Netherlands National 
Aerospace Laboratory NLR, performed an independent analysis of the accident (Smaili, 
1997, 2000). In contrast to the analysis performed by the Netherlands Accident Investigation 
Bureau, the parameters of the DFDR were reconstructed using comprehensive modelling, 
simulation and visualisation techniques. In this alternative approach, the DFDR pilot control 
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Adaptive or reconfigurable flight control strategies might have prevented the loss of two 
Boeing 737s due to a rudder actuator hardover and of a Boeing 767 due to inadvertent 
asymmetric thrust reverser deployment. The 1989 Sioux City DC-10 incident is an example 
of the crew performing their own reconfiguration using asymmetric thrust from the two 
remaining engines to maintain limited control in the presence of total hydraulic system 
failure. Following the Sioux City incident in 1989, during which the engines were used as 
only remaining control effectors after loss of all hydraulics, a program was initiated at the 
NASA Dryden Flight Research Center on Propulsion Controlled Aircraft (PCA) (Burcham 
2004). The system aims to provide a safe landing capability using only augmented engine 
thrust for flight control. Throughout the 1990’s, the system has been successfully tested on 
several aircraft, including both commercial and military (Figure 1). 

 
 

 
Fig. 1. McDonnell Douglas MD-11 landing at Dryden Flight Research Center equipped 
with a computer-assisted engine control landing system developed by NASA (NASA 
Dryden photo collection) 

The crash of a Boeing 747 freighter in 1992 near Amsterdam, the Netherlands, following the 
separation of the two right-wing engines, was potentially survivable given adequate 
knowledge about the remaining aerodynamic capabilities of the damaged aircraft (Smaili, 
1997, 2000). New kinds of threats within the aviation community have recently been 
introduced by deliberate hostile attacks on both commercial and military aircraft. For 
instance, a surface-to-air missile (SAM) attack has recently been demonstrated to be 
survivable by the crew of an Airbus A300B4 freighter performing a successful emergency 
landing at Baghdad International Airport after suffering from complete hydraulic system 
failures and severe structural wing damage (Figure 2). 
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to surface-to-air missile impact, DHL A300B4-203F, Baghdad, 2003 
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attempt to return to the airport for an emergency landing, the aircraft flew several right-hand 
circuits in order to lose altitude and to line up with the runway as intended by the crew. 
During the second line-up, the crew lost control of the aircraft. As a result, the aircraft crashed, 
13 km east of the airport, into an eleven-floor apartment building in the Bijlmermeer, a suburb 
of Amsterdam. Results of the accident investigation, conducted by several organisations 
including the Netherlands Accident Investigation Bureau and the aircraft manufacturer, were 
hampered by the fact that the actual extent of the structural damage to the right-wing, due to 
the loss of both engines, was unknown. The analysis from this investigation concluded that 
given the performance and controllability of the aircraft after the separation of the engines, a 
successful landing was highly improbable (Smaili, 1997, 2000). 

In 1997, the division of Control and Simulation of the Faculty of Aerospace Engineering of 
the Delft University of Technology (DUT), in collaboration with the Netherlands National 
Aerospace Laboratory NLR, performed an independent analysis of the accident (Smaili, 
1997, 2000). In contrast to the analysis performed by the Netherlands Accident Investigation 
Bureau, the parameters of the DFDR were reconstructed using comprehensive modelling, 
simulation and visualisation techniques. In this alternative approach, the DFDR pilot control 
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inputs were applied to detailed flight control and aerodynamic models of the accident 
aircraft. The purpose of the analysis was to acquire an estimate of the actual flying 
capabilities of the aircraft and to study alternative (unconventional) pilot control strategies 
for a successful recovery. The application of this technique resulted in a simulation model of 
the impaired aircraft that could reasonably predict the performance, controllability effects 
and control surface deflections as observed on the DFDR. The analysis of the reconstructed 
model of the aircraft, as used for the GARTEUR FM-AG(16) benchmark, indicated that from 
a flight mechanics point of view, the Flight 1862 accident aircraft was recoverable if 
unconventional control strategies were used (Smaili, 1997, 2000). 
 

 
Fig. 3. Cargo accident aircraft prior to takeoff at Amsterdam Schiphol Airport (left). 
Reconstructed loss of control based on flight data following separation of the right-wing 
engines (right), EL AL Flight 1862, B747-200F, Amsterdam, 1992 (copyright Werner 
Fischdick, NLR) 

4.1 Aircraft damage configuration 

The Flight 1862 damage configuration to both the aircraft’s structure and onboard systems, 
after the separation of both right-wing engines, is illustrated in Figure 4. An analysis of the 
engine separation dynamics concluded that the sequence was initiated by the detachment of 
the right inboard engine and pylon (engine no. 3) from the main wing due to a combination 
of structural overload and metal fatigue in the pylon-wing joint. Following detachment, the 
right inboard engine struck the right outboard engine (engine no. 4) in its trajectory also 
rupturing the right-wing leading edge up to the front spar. The associated loss of hydraulic 
systems resulted in limited control capabilities due to unavailable control surfaces 
aggravated by aerodynamic disturbances caused by the right-wing structural damage. 

The crew of Flight 1862 was confronted with a flight condition that was very different from 
what they expected based on training. The Flight 1862 failure mode configuration resulted 
in degraded flying qualities and performance that required adaptive and unconventional 
(untrained) control strategies. Additionally, the failure mode configuration caused an 
unknown degradation of the nominal flight envelope of the aircraft in terms of minimum 
control speed and manoeuvrability. For the heavy aircraft configuration at a relative low 
speed of around 260 knots IAS, the DFDR indicated that flight control was almost lost 
requiring full rudder pedal, 60 to 70 percent maximum control wheel deflection and a high 
thrust setting on the remaining engines. 
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Fig. 4. Failure modes and structural damage configuration of the Flight 1862 accident 
aircraft suffering right-wing engine separation, partial loss of hydraulics and change in 
aerodynamics 

4.2 Aircraft survivability assessment 

Figure 5 presents the performance capabilities of the Flight 1862 accident aircraft after 
separation of both right-wing engines, reconstructed via the methods described in (Edwards 
et al., 2010; Smaili, 1997, 2000), as a function of thrust and aircraft weight. The reconstructed 
model indicates that in these conditions and at heavy weight (700,000 lbs / 317,460 kg), level 
flight capability was available between Maximum Continuous Thrust (MCT) and Take-
Off/Go Around thrust (TOGA). At or above approximately TOGA thrust, the aircraft had 
limited climb capability. Analysis shows that adequate control capabilities remained 
available to achieve the estimated performance capabilities. Figure 5 indicates a significant 
improvement in available performance and controllability at a lower weight if more fuel had 
been jettisoned. 

Simulation analysis of the accident flight using the reconstructed model (Edwards et al., 
2010; Smaili, 1997, 2000) predicts sufficient performance and controllability, after the 
separation of the engines, to fly a low-drag approach profile at a 3.5 degrees glide slope 
angle for a high-speed landing or ditch at 200/210 KIAS and at a lower weight. Note again 
that this lower weight could have been obtained by jettisoning more fuel. The lower thrust 
requirement for this approach profile results in a significant improvement in lateral control 
margins that are adequate to compensate for additional thrust variations. The above 
predictions have been confirmed during the piloted simulator campaign later in the 
GARTEUR FM-AG(16) program. 
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Off/Go Around thrust (TOGA). At or above approximately TOGA thrust, the aircraft had 
limited climb capability. Analysis shows that adequate control capabilities remained 
available to achieve the estimated performance capabilities. Figure 5 indicates a significant 
improvement in available performance and controllability at a lower weight if more fuel had 
been jettisoned. 

Simulation analysis of the accident flight using the reconstructed model (Edwards et al., 
2010; Smaili, 1997, 2000) predicts sufficient performance and controllability, after the 
separation of the engines, to fly a low-drag approach profile at a 3.5 degrees glide slope 
angle for a high-speed landing or ditch at 200/210 KIAS and at a lower weight. Note again 
that this lower weight could have been obtained by jettisoning more fuel. The lower thrust 
requirement for this approach profile results in a significant improvement in lateral control 
margins that are adequate to compensate for additional thrust variations. The above 
predictions have been confirmed during the piloted simulator campaign later in the 
GARTEUR FM-AG(16) program. 
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Fig. 5. Flight 1862: Effect of engine thrust and weight on maximum climb performance for 
straight flight at 260 KIAS 

5. GARTEUR RECOVER benchmark 
For the assessment of novel fault tolerant flight control techniques, the GARTEUR FM-AG 
(16) research group developed a simulation benchmark, based on the reconstructed Flight 
1862 aircraft model (REconfigurable COntrol for Vehicle Emergency Return RECOVER). The 
benchmark simulation environment is based on the Delft University Aircraft Simulation and 
Analysis Tool DASMAT. The DASMAT tool was further enhanced with a full nonlinear 
simulation of the Boeing 747-100/200 aircraft (Flightlab747 / FTLAB747), including flight 
control system architecture, for the Flight 1862 accident study as conducted by Delft 
University. The simulation environment was subsequently utilised and further enhanced as 
a realistic tool for evaluation of fault detection and fault tolerant control schemes within 
other research programmes (Marcos & Balas, 2001). Reference (Edwards et al., 2010) 
provides details on the model reconstruction and validation based on the Flight 1862 
accident data and simulation model implementations. For the application of the benchmark 
model, reference (Edwards et al., 2010) also provides a description regarding the benchmark 
model architecture, mathematical models and user examples. 

The GARTEUR RECOVER benchmark has been developed as a Matlab®/Simulink® 
platform for the design and integrated (real-time) evaluation of new fault tolerant control 
techniques (Figure 6, 7 and 8). The benchmark consists of a set of high fidelity simulation 
and flight control design tools, including aircraft fault scenarios. For a representative 
simulation of damaged aircraft handling qualities and performances, the benchmark aircraft 
model has been validated against data from the Digital Flight Data Recorder (DFDR) of the 
EL AL Flight 1862 Boeing 747-200 accident aircraft that crashed near Amsterdam in 1992 
caused by the separation of its right-wing engines. 
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Fig. 6. GARTEUR RECOVER Benchmark main model components for closed-loop 
simulations 

 
Fig. 7. GARTEUR RECOVER Benchmark functional model for open-loop nonlinear off-line 
(interactive) simulations 
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Fig. 6. GARTEUR RECOVER Benchmark main model components for closed-loop 
simulations 

 
Fig. 7. GARTEUR RECOVER Benchmark functional model for open-loop nonlinear off-line 
(interactive) simulations 
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Fig. 8. GARTEUR RECOVER Benchmark component library 

 
Fig. 9. GARTEUR RECOVER Benchmark graphical user interface for the selection of 
simulation and analysis tools 
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The GARTEUR RECOVER benchmark software package is equipped with several 
simulation and analysis tools, all centered around a generic non-linear aircraft model for 
six degrees-of-freedom non-linear aircraft simulations. For high performance computation 
and visualisation capabilities, the package has been integrated as a toolbox in the 
computing environment Matlab®/Simulink®. The benchmark is operated via a Matlab® 
graphical user interface (Figure 9) from which the different benchmark tools may be 
selected. The user options in the main menu are divided into three main sections allowing 
to initialise the benchmark, run the simulations and select the analysis tools. The tools of 
the GARTEUR RECOVER benchmark include trimming and linearisation for (fault 
tolerant) flight control law design, nonlinear off-line (interactive) simulations, simulation 
data analysis and flight trajectory and pilot interface visualisations (Figure 10). The 
modularity of the benchmark makes it customisable to address research goals in terms of 
aircraft type, flight control system configuration, failure scenarios and flight control law 
assessment criteria.  

The test scenarios that are an integral part of the GARTEUR RECOVER benchmark were 
selected to provide challenging (operational) assessment criteria, as specifications for 
reconfigurable control, to evaluate the effectiveness and potential of the FTFC methods 
being investigated in the GARTEUR program. Validated against data from the DFDR, the 
benchmark provides accurate aerodynamic and flight control failure models, realistic 
scenarios and assessment criteria for a civil large transport aircraft with fault conditions 
ranging in severity from major to catastrophic.  

The geometry of the GARTEUR RECOVER benchmark flight scenario (Figure 11) is 
roughly modelled after the Flight 1862 accident profile. The scenario consists of a number 
of phases. First, it starts with a short section of normal flight after which a fault occurs, 
which is in turn followed by a recovery phase. If this recovery is successful, the aircraft 
should again be in a stable flight condition, although not necessarily at the original 
altitude and heading. After recovery, an optional identification phase is introduced 
during which the flying capabilities of the aircraft can be assessed. This allows for a 
complete parameter identification of the model for the damaged aircraft as well as the 
identification of the safe flight envelope. The knowledge gained during this identification 
phase can be used by the controller to improve the chances of a safe landing. In principle, 
the flight control system is now reconfigured to allow safe flight. The performance of the 
reconfigured aircraft is subsequently assessed in a series of five flight phases. These 
consist of straight and level flight, a right-hand turn to a course intercepting the localizer, 
localizer intercept, glideslope intercept and the final approach. During the final approach 
phase, the aircraft is subjected to a sudden lateral displacement just before the threshold, 
which simulates the effect of a low altitude windshear. The landing itself is not part of the 
benchmark, because a realistic aerodynamic model of the damaged aircraft in ground 
effect is not available. However, it is believed that if the aircraft is brought to the 
threshold in a stable condition, the pilot will certainly be able to take care of the final flare 
and landing. 

The GARTEUR RECOVER benchmark simulation model, as applied within this research 
program, is available via the website of the project after registration 
(www.faulttolerantcontrol.nl). 
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Fig. 10. GARTEUR RECOVER Benchmark high resolution aircraft visualisation tool for 
interactive (real-time) simulation and validation of new fault tolerant flight control 
algorithms. Tool features include pilot interface displays, environment modeling, aircraft 
flight path animation and detailed renditions of Amsterdam Schiphol airport as part of the 
benchmark approach and landing scenario 
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Fig. 11. GARTEUR RECOVER Benchmark flight scenario for qualification of fault tolerant 
flight control systems for safe landing of a damaged large transport aircraft (Edwards et al., 
2010; Lombaerts et al., 2006) 

6. Flight simulator integration and piloted assessment 
The developed fault tolerant flight control schemes in this project have been evaluated in a 
piloted simulator assessment using a real-time integration of the GARTEUR RECOVER 
benchmark model, including reconstructed accident scenarios (Edwards et al., 2010; 
Stroosma et al., 2009). The evaluation was conducted in the SIMONA Research Simulation 
(SRS) facility, a full 6 degrees of freedom motion research simulator, of the Delft University 
of Technology (Figure 12). 

       
Fig. 12. Evaluation of GARTEUR FM-AG(16) FTFC techniques in the Delft University 
SIMONA Research Simulator based on reconstructed accident scenarios (Left: Boeing 747 
cockpit configuration. Right: visual system dome) 
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SIMONA Research Simulator based on reconstructed accident scenarios (Left: Boeing 747 
cockpit configuration. Right: visual system dome) 
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Several validation steps were performed to assure the benchmark model was implemented 
correctly. This included proof-of-match validation and piloted checkout of the baseline 
aircraft, control feel system and Flight 1862 controllability and performance characteristics. 
To accurately replicate the operational conditions of the reconstructed Flight 1862 accident 
aircraft in the simulator, the experiment scenario was aimed at a landing on runway 27 of  
Amsterdam Schiphol airport. The SIMONA airport scenery was representative of 
Amsterdam Schiphol airport and its surroundings for flight under visual flight rules (VFR). 

The GARTEUR FM-AG(16)  piloted simulator campaign provided a unique opportunity to 
assess pilot performance under flight validated accident scenarios and operational 
conditions. Six professional airline pilots, with an average experience of about 15.000 flight 
hours, participated in the piloted simulations. Five pilots were type rated for the Boeing 747 
aircraft while one pilot was rated for the Boeing 767 and Airbus A330 aircraft. 

In general, the results show, for both automatic and manual controlled flight, that the 
developed FTFC strategies were able to cope with potentially catastrophic failures in case of 
flight critical system failures or if the aircraft configuration has changed dramatically. In 
most cases, apart from any slight failure transients, the pilots commented that aircraft 
behaviour felt conventional after control reconfiguration following a failure, while the 
control algorithms were successful in recovering the ability to control the damaged aircraft. 
Manual controlled flight under fault reconfiguration was assessed for both a runaway of the 
rudder to the blow-down limit and a separation of both right-wing engines (Figure 13). Part 
of the FTFC strategies that were evaluated in the piloted simulation campaign consisted of a 
combination of real-time aerodynamic model identification and adaptive nonlinear dynamic 
inversion for control allocation and reconfiguration (Edwards et al., 2010; Lombaerts et al., 
2009). The simulation results have shown that the handling qualities of the reconfigured 
damaged aircraft with a fault tolerant control system degrade less, indicating improved task 
performance. For both the Flight 1862 and rudder hardover case, as part of the scenarios 
surveyed in this research program, the pilots demonstrated the ability to fly the damaged 
aircraft, following control reconfiguration, back to the airport and conduct a survivable 
approach and landing (Edwards et al., 2010). 

          
Fig. 13. Left: GARTEUR FM-AG(16) piloted simulation showing the reconstructed Flight 
1862 accident aircraft with separated right-wing engines. Right: Piloted simulation showing 
a sudden hardover of the rudder inducing a large roll upset of the aircraft without 
reconfigurable control laws (flight animation by Rassimtech AVDS©) 
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7. Developments in aircraft loss-of-control prevention 
The NASA Aviation Safety Program (NASA, 2011), which is a partnership between NASA 
and the Federal Aviation Administration (FAA), the Department of Defense (DoD) and the 
aviation industry, aims to further reduce the observed worldwide trends in aviation 
accidents by means of new loss-of-control prevention, mitigation and recovery techniques. 
These techniques, currently being investigated by the AvSP program apart from other 
measures, should assure to meet the demands of the transition to the Next Generation Air 
Transportation System (NextGen).  

Future requirements from a flight deck system safety point of view include a more 
integrated design of information systems available to the pilot including displays and 
interactions, flight decision support systems (e.g. advisories during adverse and/or upset 
conditions including automatic recovery) and the allocation of functions between the pilot 
and automatic systems during nominal and degraded flight conditions. This new 
“intelligent” flight deck should be able to sense onboard (flight control) system and 
environmental-induced hazards in real-time and provide the necessary and timely actions to 
prevent or recover from any adverse condition (Figure 14).  

Part of the technology strategies of the AvSP program include methods for improvements 
of vehicle system health-monitoring and survivability rate through “self-repairing” 
mechanisms in case of system failures. Within the AvSP Integrated Resilient Aircraft 
Control (IRAC) program (NASA, 2011), multidisciplinary integrated aircraft control 
design tools and techniques are investigated and developed to allow safe aircraft 
operation in the event of flight into adverse conditions (e.g. loss-of-control or upsets due 
to onboard control system failures, environmental factors or aerodynamic degradation 
caused by damage or icing). Adaptive flight control, as discussed in this chapter and 
investigated by the GARTEUR program, is provided within the IRAC program as a 
design option (in support of pilot training) to mitigate in-flight loss-of-control by 
enhancing the stability and maneuverability margins of the (damaged) aircraft for a safe 
and survivable landing. Additional applications of adaptive flight control might include 
the prevention or recovery of aircraft departures following inadvertent stall or unusual 
attitudes. These developments require accurate modeling of the dynamics involved in 
loss-of-control caused by failures or (post-departure) upset conditions in terms of system 
behaviour and aerodynamic characteristics. This requirement will allow representative 
simulation of dynamic flight conditions, based on wind tunnel data in combination with 
computational fluid dynamic (CFD) techniques (Figure 14), for adaptive control law 
design and evaluation. 

Within the Active Management of Aircraft System Failures (AMASF) project, as part of the 
AvSP program, several issues in the area of FTFC technology have been addressed. These 
include detection and identification of failures and icing, pilot cueing strategies to cope with 
failures and icing and control reconfiguration strategies to prevent extreme flight conditions 
following a failure of the aircraft. In this context, a piloted simulation was conducted early 
2005 of a Control Upset Prevention and Recovery System (CUPRSys). Despite few 
limitations, CUPRSys provided promising fault detection, isolation and reconfiguration 
capabilities (Ganguli, et al., 2005). 
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Fig. 14. Left: Future integrated “intelligent” flight deck for safe and efficient operation in 
nominal and adverse conditions. Mid and right: application of wind tunnels and CFD to 
acquire accurate aerodynamic estimates for simulation of flight outside the normal 
envelope, aircraft damage and icing to mitigate in-flight loss-of-control 

7.1 Pilot training 

A significant part of LOC-I accidents have been attributed to a lack of the crew’s awareness 
and experience in extreme flight conditions. In the course of loss-of-control events, the 
aircraft often enters unusual attitudes or other types of upsets (Figure 15). To prevent or 
timely recover from a loss-of-control or unusual attitude situation, it is essential that the 
pilot rapidly recognizes the condition, initiate recovery actions and follows appropriate 
recovery procedures. Inadequate recovery may exacerbate the situation and lead to the loss 
of the aircraft. 

Aviation authorities recognize the need to educate pilots on upset recovery techniques to 
reduce the amount of LOC-I accidents. As in-flight training with large aircraft is expensive 
and unsafe, ground-based flight simulators are applied as an alternative to in-flight training 
of loss-of-control scenarios. Ground-based full flight simulators (FFS) that are capable 
enough of accurately representing extreme flight conditions would significantly improve the 
effectiveness of upset recovery training while being part of the standard airline training 
program.  

 
Fig. 15. Aircraft showing unusual attitude typical during in-flight loss-of-control or upset 
conditions 
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Current flight simulators, however, are considered inadequate for the simulation of many 
upset conditions as the aerodynamic models are only applicable to the normal flight 
envelope. Upset conditions can take the aircraft outside the normal envelope where aircraft 
behaviour may change significantly, and the pilot may have to adopt unconventional 
control strategies (Burks, 2009). Furthermore, standard hexapod-based motion systems are 
unable to reproduce the high accelerations, angular rates, and sustained G-forces occurring 
during upsets and the recovery from adverse conditions.  

The European Seventh Framework Program Simulation of Upset Recovery in Aviation 
(SUPRA, 2009-2012) aims to improve the aerodynamic and the motion envelope of ground-
based flight simulators required for conducting advanced upset recovery simulation. The 
research not only involves hexapod-type flight simulators but also experimental centrifuge-
based simulators (Figure 16). The aerodynamic modeling within the SUPRA project employs 
a unique combination of engineering methods, including the application of validated CFD 
methods and innovative physical modeling to capture the major aerodynamic effects that 
occur at high angles of attack. The flight simulator motion cueing research within SUPRA 
aims to extend the envelope of standard FFSs by optimizing the motion cueing software. In 
addition, the effectiveness of the application of a new-generation centrifuge-based 
simulations are investigated for the simulation of G-loads that are typically present in upset 
conditions. Information on the SUPRA program can be found in reference (Groen et al., 
2011) and is also available via the website of the project (www.supra.aero). 

 

 
Fig. 16. SUPRA simulation facilities for conducting advanced upset recovery simulation 
research to improve pilot training in upset recovery and reduce LOC-I accident rates. 
Left: NLR Generic Research Aircraft Cockpit Environment (GRACE). Mid: TsAGI PSPK-102. 
Right: TNO/AMST Desdemona 

8. Summary and conclusion 
A benchmark for the integrated evaluation of new fault detection, isolation and 
reconfigurable control techniques has been developed within the framework of the 
European GARTEUR Flight Mechanics Action Group FM-AG(16) on Fault Tolerant Control. 
Validated against data from the Digital Flight Data Recorder (DFDR), the benchmark 
addresses the need for high-fidelity nonlinear simulation models to improve the prediction 
of reconfigurable system performance in degraded modes. The GARTEUR RECOVER 
benchmark is suitable for both offline design and analysis of new fault tolerant flight control 
system algorithms and integration on simulation platforms for piloted hardware in the loop 
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testing. In conjunction with enhanced graphical tools, including high resolution aircraft 
visualisations, the benchmark supports tool-based advanced flight control system design 
and evaluation within research, educational or industrial framework. 

The GARTEUR Action Group FM-AG(16) on Fault Tolerant Control has made a significant 
step forward in terms of bringing novel “intelligent” self-adaptive flight control techniques, 
originally conceived within the academic and research community, to a higher technology 
readiness level. The research program demonstrated that the designed fault tolerant control 
algorithms were successful in recovering control of significantly damaged aircraft.  

Within the international aviation community, urgent measures and interventions are being 
undertaken to reduce the amount of loss-of-control accidents caused by mechanical failures, 
atmospheric events or pilot disorientation. The application of fault tolerant and 
reconfigurable control, including aircraft envelope protection, has been recognised as a 
possible long term option for reducing the impact of flight critical system failures, pilot 
disorientation following upsets or flight outside the operational boundaries in degraded 
conditions (e.g. icing). Fault tolerant flight control, and the (experimental) results of this 
GARTEUR Action Group, may further support these endeavours in providing technology 
solutions aiding the recovery and safe control of damaged aircraft or in-flight upset 
conditions. Several organisations within this Action Group currently conduct in-flight loss 
of control prevention research within the EC Framework 7 program Simulation of Aircraft 
Upsets in Aviation SUPRA (www.supra.aero). The experience obtained by the partners in 
this Action Group will be utilised to study future measures in mitigating the problem of in-
flight loss-of-control and upset recovery and prevention. 

           
Fig. 17. The GARTEUR FM-AG(16) Fault Tolerant Flight Control project website provides 
information on the project, links to ongoing research, publications and software registration 
(www.faulttolerantcontrol.nl) 
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The results of the GARTEUR research program on fault tolerant flight control, as described 
in this chapter, have been published in the book 'Fault Tolerant Flight Control - A 
Benchmark Challenge' by Springer-Verlag (2010) under the Lecture Notes in Control and 
Information Sciences series (LNCIS-399) (Edwards et al., 2010). The book provides details of 
the RECOVER benchmark model architecture, mathematical models, modelled fault 
scenarios and examples for both offline and piloted simulation applications. The GARTEUR 
RECOVER benchmark simulation model, which accompanies the book, is available via the 
project’s website (www.faulttolerantcontrol.nl) after registration. The website (Figure 17) 
provides further access to contact information, follow-on projects and future software 
updates. 
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