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Summary

This thesis addresses the modeling and control of interactive aerial robots in
the port-Hamiltonian paradigm, covering several research problems in both
theory and practice. The interactive aerial robots considered in this work are
distinguished by the fact that the interaction with the environment is inherent
in the modeling, analysis, and control of such dynamical systems. This class of
robots includes multi-rotor vehicles interacting physically with the environment
and flapping-wing ornithopters.

The first part of the thesis focuses on aspects of the theoretical frame-
work of the port-Hamiltonian systems paradigm. The wide applicability of the
paradigm for modeling and controlling multi-domain physical systems, both
finite- and infinite-dimensional, is highlighted by an extensive literature review
of over 150 research studies conducted in the past twenty years. Using differ-
ential geometric tools and Hamiltonian reduction theorems, port-Hamiltonian
models of rigid body motion and ideal fluid flow, both compressible and incom-
pressible, are constructed systematically starting from first principles.

The second part of the thesis focuses on the emerging field of aerial physical
interaction. An extensive survey of fully-actuated multi-rotor aerial vehicles is
presented which highlights a wide range of suitable designs for developing a
flying end-effector capable of physical interacting with the environment. Then,
it is shown how this physical interaction can be naturally described in the
port-Hamiltonian framework via energy-exchange between the aerial robot and
the environment. With this description, a motion/impedance control system
is derived via the energy-balancing passivity-based control approach. This
controller can be interpreted in the control-by-interconnection approach as a
virtual physical system interconnected to the aerial robot. This interpretation
allows developing an enhanced energy-aware impedance controller utilizing con-
cepts of energy routing and energy tanks. Finally, in a step towards achieving
autonomous aerial physical interaction, the thesis addresses the augmentation
of the impedance controller with visual-perception of the environment, leading
to a general framework for vision-based interaction of aerial robots.





Samenvatting

Dit proefschrift behandelt de modellering en besturing van interactieve vliegende
robots in het port-Hamiltoniaanse paradigma, en behandelt verschillende on-
derzoeksproblemen in zowel de theorie als de praktijk. De interactieve vliegende
robots die in dit werk aan bod komen, onderscheiden zich door het feit dat de
interactie met de omgeving inherent is aan de modellering, analyse en besturing
van dergelijke dynamische systemen. Deze klasse van robots omvat voertuigen
met meerdere rotors, die fysiek in contact staan met de omgeving, evenals
ornithopters, die vliegen door het klapperen van vleugels.

Het eerste deel van het proefschrift richt zich op aspecten van het the-
oretische kader van het port-Hamiltoniaanse systeem paradigma. De brede
toepasbaarheid van het paradigma voor het modelleren en regelen van mul-
tidomein fysische systemen, zowel eindig als oneindig-dimensionaal, wordt be-
nadrukt door een uitgebreid literatuuroverzicht van meer dan 150 onderzoeken
die in de afgelopen twintig jaar zijn uitgevoerd. Met behulp van differen-
tiaalmeetkundige instrumenten en Hamiltoniaanse reductietheorieën worden
systematisch port-Hamiltoniaanse modellen van starre lichaamsbewegingen en
ideale vloeistofstroming, zowel samendrukbaar als niet-samendrukbaar, gecon-
strueerd vanaf de basisprincipes.

Het tweede deel van het proefschrift richt zich op het opkomende veld van
de fysieke interactie in vlucht. Er wordt een uitgebreid overzicht gepresenteerd
van de volledig aangedreven multi-rotor vliegende voertuigen, waarbij een breed
scala aan geschikte ontwerpen voor de ontwikkeling van een vliegende eindef-
fector, die in staat is tot fysieke interactie met de omgeving, wordt belicht.
Vervolgens wordt getoond hoe deze fysieke interactie op natuurlijke wijze kan
worden beschreven in het port-Hamiltoniaanse kader via energie-uitwisseling
tussen de vliegende robot en de omgeving. Met deze beschrijving wordt een
bewegings-/impedantie regelsysteem afgeleid via de energie-balancerende, op
passiviteit gebaseerde regeltechniek methode. Deze regelaar kan in de regeling-
via-interconnectie aanpak worden gëınterpreteerd als een virtueel fysiek sys-
teem dat verbonden is met de vliegende robot. Deze interpretatie maakt het
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mogelijk om een verbeterde energiebewuste impedantie regelaar te ontwikkelen
die gebruik maakt van concepten van energieroutering en energietanks. Ten
slotte, in een stap in de richting van het bereiken van autonome fysieke in-
teractie in vlucht, behandelt het proefschrift de uitbreiding van de impedantie
regelaar met visuele perceptie van de omgeving, wat leidt tot een algemeen
kader voor op visie gebaseerde interactie van vliegende robots.
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CHAPTER 1

Introduction

The focus of this dissertation is on the field of aerial robotics covering research
problems from theory to practice. The paradigm that is used in this work
to address the modeling and control of aerial robots is the port-Hamiltonian
framework. In this first chapter, the problems tackled and the research ques-
tions addressed in this dissertation are formulated and clarified. Moreover, the
contributions of this work are highlighted with respect to the state of the art.
First, the chapter starts by a short introduction to aerial robotics.

1.1 Unmanned Aerial Vehicles: Now and Then

In this section, a quick glimpse of the history of Unmanned Aerial Vehicles
(UAVs) is presented to highlight how they evolved. Within the aerospace
jargon, aerial robots are usually referred to as UAVs. The definition of a UAV
according to the American Institute of Aeronautics and Astronautics [Nonami
et al., 2010] is given as “an aircraft which is designed or modified, not to carry
a human pilot and is operated through electronic input initiated by the flight
controller or by an onboard autonomous flight management control system that
does not require flight controller intervention”. Technically, an aerial robot is a
more complex system than a UAV due to the extra perceptional and decision-
making capabilities of any robot. However, nowadays most UAVs are equipped
with some form of robotic technology whether they are autonomous, semi-
autonomous, or remotely-piloted. As a result, the two terms, aerial robot and
UAV, are interchangeably used by researchers and practitioners of the field.
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Figure 1.1: Evolution of Fixed Wing UAVs: a. Wright Flyer (Public do-
main), b. Hewitt-Sperry Automatic Airplane (Public domain), c. MQ-9 Reaper
(Credit: U.S. Air Force), d. AeroVironment RQ-11 Raven (Credit: U.S. Army),
e. Parrot DISCO drone (CC-BY-2.0).

1.1.1 UAVs Then

What the Wright brothers did on the 17th of December 1903 was a stepping-
stone for humanity in its quest to conquer the skies by flying machines of
their own creation. A quest that started hundreds of years before with many
attempts of human-powered flight mimicking the flapping-behavior of birds.
After years full of trial, errors, and crashing bodies, humans converged to the
solution of fixed-wing aircrafts for sustained flight and not flapping-wing ones.

Ever since the Wright Flyer (Fig. 1.1.a) flew in 1903, fixed-wing aircrafts
have evolved at a tremendous rate motivated, unfortunately, by its hostile
capabilities. Only 11 years were enough for powered-aircrafts to become an
important branch of the armed forces in World War I. Although, aircrafts were
used initially for reconnaissance only, by the end of the war armed air-forces
included fighter and bomber aircrafts as well.

The capabilities of aerial vehicles have triggered a massive amount of mili-
tary funds to be allocated for the development of the technology which in turn
accelerated the evolution of fixed-wing aircrafts. Such funds have allowed the
increase of the maximum speed of these vehicles from 80 km/h in the begin-
ning of the war in 1914 to 240 km/h at the end of the war in 1918 [Munson,
1969]. It is also remarkable that during this early development stage, the first
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Figure 1.2: Evolution of Rotary Wing UAVs: a. De Bothezat Helicopter (Pub-
lic domain), b. Gyrodyne QH-50 DASH (Public domain), c. MQ-8 Fire Scout
(CC BY-SA 2.5 nl), d. DJI Phantom 3 (Credit: Flickr/Andri Koolme), e.
Crazyflie 2.1 (Public domain)

autopilot-controlled UAV (Fig. 1.1.b), designed by P.C. Hewitt and E. Sperry,
made its first successful flight on the 12th of September 1917 [Valavanis and
Vachtsevanos, 2015].

Most development efforts were concentrated initially on fixed-wing aerial
vehicles, which were the most suited for military purposes due to their high
endurance and long-range capabilities. However, there were many appealing
features in such vehicles such as vertical take-off and landing (VTOL), flying at
low altitudes, and hovering. This led to the advent of rotary-wing or multirotor
aerial vehicles. The first successful flight of a quad-rotor aircraft took place in
the early 1920s by the de Bothezat helicopter (Fig. 1.2.a). Thirty-nine years
later, the first unmanned helicopter developed was the QH-50 DASH (Fig.
1.2.b), which demonstrated its first flight in 1959 [Valavanis and Vachtsevanos,
2015].

The military development of fixed-wing and rotary-wing aerial vehicles,
both manned and unmanned, continued for decades. Such development yielded
a vast variety of designs at many scales. Moreover, the mathematical under-
standing of the flight dynamics and control of such vehicles evolved greatly in
the process.

On the other hand, the development of flapping-wing aerial vehicles (aka
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Figure 1.3: Evolution of Flapping Wing UAVs: a. Schmid 1942 Ornithopter
(Public domain), b. Mr. Bill’s first launch (Credit: Project Ornithopter), c.
Robird (Credit: Clear Flight Solutions), d. AeroVironment Nano Humming-
bird (Public domain photo), e. RoboBee (Credit: Wyss Institute at Harvard
University)

ornithopters) was overshadowed by the success of fixed-wing and multirotor
vehicles. Thus, flapping-wing aerial vehicles were abandoned for many years
and considered a futureless technology due to its high complexity [Goodheart,
2011]. However, the old dream of “flying like the birds” motivated a few in-
dividual visionaries to unlock the secrets of the flight dynamics of birds and
build flapping-wing aerial vehicles, but at a much slower pace compared to
fixed-wing and multirotor vehicles. The first human-powered flapping-wing ve-
hicle successfully flew in 1929 as a result of the work of A. Lippish. Seventeen
years later, in 1946, the first engine-powered flapping-flight was achieved by
A. Schmid (Fig. 1.3.a). Then after another fourty-five years, the first success-
ful engine-powered small-scale flapping-wing UAV, known as “Mr. Bill” (Fig.
1.3.b), was designed in September 1991 [Goodheart, 2011].

1.1.2 UAVs Now

Nowadays UAVs have come a very long way in becoming smaller, cheaper,
smarter, and closer to people. The advancements in the fields of miniaturized
sensors, microprocessors, electric drives, and batteries have allowed the down-
scaling of UAVs to a great extent and simultaneously with lower costs. More-
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over, the advancement in robotic technologies have allowed the development
of advanced UAVs with perception, planning, and decision-making capabili-
ties, that allowed them to accomplish complicated tasks autonomously. The
combination of UAVs and robotic technologies gave rise to the field of aerial
robotics.

The small scale and low cost of current aerial robots have been primary fac-
tors that enabled aerial robots to gain unprecedented notability in the civilian
market. Historically military applications have been the main driving force for
the development of UAV technologies. However, nowadays the market share
of civil applications is increasing at a very high pace. According to Finnegan
[2019], the commercial unmanned aerial systems (which includes UAVs and
their auxiliary equipment) market is expected to increase from $5 billion in
2019 to $14.5 billion in 2028. In addition, UAVs are allowing for commercial
services and solutions that are estimated to potentially have a market value
of over $127 billion [Mazur and Wísniewski, 2016]. These market predictions,
and others, imply that civilian applications are becoming an equally important
driving force, if not more, for the development of UAV technologies.

Multi-rotor aerial robots have gained more popularity in civilian applica-
tions as well as academic research compared to fixed-wing ones. This can be
contributed to their lower cost, versatility, portability and most importantly its
hovering and VTOL capabilities. With the wide variety of sensors that could be
mounted onboard, aerial robots enabled many companies to offer cost-effective
solutions for various civilian applications such as surveillance, visual inspec-
tion, aerial photography, search and rescue, mapping, entertainment, and law
enforcement, just to mention a few.

In recent years, there has been also an increasing interest in small-scale
flapping-wing UAVs in academic research groups and civilian companies. One
factor that helped revive interest in this class of aerial vehicles was their aerody-
namic properties at very small scales. The efficient operation of these vehicles
at low Reynolds numbers has motivated the development of insect-like micro
UAVs such as the RobobBee [Jafferis et al., 2019] as well as hummingbird-like
UAVs such as the AeroVironment Nano Hummingbird [Keennon et al., 2012],
shown in Fig. 1.3. The natural appearance of bird-like aerial robots, such
as the Robird [Folkertsma et al., 2017], has also found a niche market in the
civilian sector to be used as a deterrent for real birds at airports, harbors, and
waste management facilities. Successful companies that utilized such unique
feature of flapping-wing robots include The Drone Bird Company1 (formerly
Clear Flight Solutions) and AERIUM Analytics2.

1https://www.thedronebird.com
2https://www.aeriumanalytics.com



6 Ch 1: Introduction

1.2 Emerging Fields of Aerial Robotics

The field of aerial robotics is an interdisciplinary field that is evolving and pro-
gressing at an increasing rate. As a result there exists a wide range of emerging
research directions nowadays that could be hardly classified or counted. Out
of the tremendous number of different emerging fields of research, the work in
this thesis focuses on two fields: aerial physical interaction and bio-inspired
flapping-flight. In what follows, a brief introduction to these fields is presented
and the the challenges in these emerging topics are identified. These challenges
serve as the motivation for the research conducted in this thesis.

1.2.1 Aerial Physical Interaction

In recent years there has been an exploding interest in extending the current ap-
plications of multirotor UAVs to those that require aerial physical interaction.
Most of the currently successful applications of multirotor UAVs, mentioned
above, are exploiting UAVs as flying sensors, in the sense that are used to only
observe the environment and sense it remotely. However, there have been many
research efforts to enable UAVs to physically interact with their environment,
and thus acts as flying manipulators instead of flying sensors.

With this new class of aerial robots capable of manipulating and interact-
ing physically with their environment, the potential applications are numerous.
The most appealing one is the contact-based inspection and maintenance of
hard-to-reach sites e.g. wind turbines, power-lines, or oil/gas pipelines. Other
applications include the assembly of structures, the management of construc-
tion and demolition wastes, collaborating and assisting humans in domestic
and industrial regions, and many more new application that are waiting to be
discovered.

The aforementioned potential applications have enticed many research groups
and civilian companies to advance the field of aerial physical interaction. Con-
sequently, many synergies have been established worldwide in the past years
with the aim of creating flying manipulators. Table 1.1 presents a partial list
of such international projects within the European Union alone.

There are two common approaches in the literature for realizing a flying-
manipulator. The first approach is to endow a conventional UAV with a robotic
manipulator arm as shown in Figs. 1.4.a-c. Although the multi-degrees of free-
dom of the manipulator allow for high dexterous manipulation, these systems
suffer from several drawbacks like inertial coupling, variable center of mass, no
exertion of lateral forces, in addition to the limited payload, and force exertion.
The second approach for aerial manipulation is the use of fully-actuated UAVs
that have non-parallel propellers allowing for controlling all six degrees of free-
dom of the aerial robot. In this physical interaction paradigm, the UAV itself
is considered as a flying end-effector which can interact with its environment
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Table 1.1: Scientific Research Projects in the European Union with the aim of
aerial physical interaction.

Start Date End Date Website
AIROBOTS Feb 2010 Jan 2013 http://www.airobots.dei.unibo.it
ARCAS Nov 2011 Nov 2015 http://www.arcas-project.eu
AEROWORKS Jan 2015 Dec 2017 http://www.aeroworks2020.eu
AEROARMS Jun 2015 Aug 2019 https://www.aeroarms-project.eu
AEROBI Dec 2015 Nov 2018 https://www.aerobi.eu
SPECTORS Dec 2016 Dec 2020 https://www.spectors.eu
HYFLIERS Jan 2018 Dec 2021 https://www.oulu.fi/hyfliers
AERIAL-CORE Dec 2019 Nov 2023 https://www.aerial-core.eu

[Ryll et al., 2019]. Although a flying end-effector is mechanically simpler, more
robust, and capable of applying lateral forces, it suffers from lower efficiency
and thus lower operation time. Examples of some state of the art fully-actuated
platforms are shown in Figs. 1.4.d-e. In this thesis, we focus mainly on aerial
physical interaction using the flying end-effector approach.

This new field of aerial physical interaction adds a number of challenges in
the design, control, and analysis of such aerial robots, compared to the con-
ventional aerial robots and ground-based manipulators. The first challenge is
that a flying manipulator does not benefit from ground reaction forces as is the
case for ground-based manipulators. As a result, the aerial robot continuously
uses its propellers’ control thrusts to react the wrench (combined forces and
torques) arising during contact with the environment. At the same time, the
aerial robot should overcome the gravitational forces to remain airborne.

The second challenge is that a flying manipulator needs information about
the interaction wrench. One solution is to equip the aerial robot with a
force/torque sensor. Although such solution is very reliable, it only provides
measurement of the interaction wrench at a single predefined contact point on
the robot. Moreover, the addition of such sensors increases the cost and weight
of the robot. A second solution would be to use an observer to estimate the
interaction wrench based on a mathematical model of the robot’s dynamics.
Although such solution does not add to the weight/cost of the robot and can
estimate the interaction wrench at any point, the estimated interaction wrench
will be corrupted by aerodynamic disturbances and uncertainties in the robot’s
model.

Another challenge, specific for a flying end-effector, is the number and con-
figuration of the rotors. Unlike the conventional under-actuated multirotor
UAVs, a fully-actuated UAV has propellers that are not parallel and not in the
same plane. The optimal configuration for the rotors depends on the appli-
cation through a compromise between efficiency and the generation of lateral
forces.
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Figure 1.4: State of the art flying-manipulator platforms. a. ARCAS UAV
with manipulator [Ruggiero et al., 2018], b. AEROARMS UAV with dual-
arm manipulator [Ruggiero et al., 2018], c. DLR Suspended Aerial Manip-
ulator [Bicego, 2019], d. AEROARMS hexarotor robot [Bicego, 2019], e.
AEROARMS octarotor robot [Ollero et al., 2018]

The fourth, and most important, challenge is that a successful operation of
a flying manipulator requires the stability of the robots not only in free-flight
but also in contact with the environment. Once the robot is in contact with
the environment, the stability of the overall system depends on the dynamics
of the aerial robot’s physics, its controller as well as the environment. Since the
aerial robot is expected to interact with an unknown environment, the same
stability analysis techniques used for conventional aerial robots cannot be used
directly for a flying manipulator.

Although there are many research teams and individuals addressing the
aforementioned challenges and more, there are many open problems and abun-
dant room for further progress and advancements.

1.2.2 Bio-Inspired Flapping-Flight

The ever-expanding range of potential new applications of aerial robots calls
for novel solutions to the existing challenges in the field. Many civilian applica-
tions require a power-efficient aerial robot capable of low speed flight with high
maneuverability as well as the ability to VTOL and hover. Such aerial robots
are required in these applications to fly in urban unstructured environments
near humans, maneuver in cluttered restricted locations, and have sufficient
flight time to fulfill as many tasks as possible.
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Flapping-wing aerial robots possess numerous capabilities that make them
viable candidates for many potential new applications. Although the most
popular choice of UAV design in currently successful civilian applications is
the multirotor UAV, such vehicles have a number of fundamental limitations
that could be resolved in flapping-wing UAVs.

First, multirotor UAVs are not safe near humans due to their high-speed
rotating propellers. Second, although they are well capable of maneuvering
in constrained places, the rigidity of the rotating propellers makes them very
sensitive to any contact with the environment. One solution for these two lim-
itations is the usage of protective caging for the whole UAV, as in [Brescianini
and D’Andrea, 2018], or for the propellers, as in [Staub et al., 2018]. However,
such solution limits greatly the payload of the robot, its maximum allowable
interaction wrench, and its flight. Third, due to the usage of multiple rotors,
such UAVs consume very high power. Specially, fully-actuated multirotor vehi-
cles consume even more power, compared to conventional underactuated ones,
due to their non-parallel rotor configurations.

On the other hand, flapping-wings are usually flexible and low weight which
makes them safe to be near humans, robust to contact with the environment,
and capable of flying in cluttered spaces. Moreover, flapping-wings allow for
both long-range sustained flight and almost vertical take-off and landing, which
combines two appealing features of fixed-wing and rotary-wing UAVs. In addi-
tion, flapping-flight is more power efficient than using propellers, which implies
more flight time for the same battery capacity. Another unique feature of
flapping-wing aerial robots is the low aero-acoustic signature of such vehicles.
Such property makes them more suitable for operations near humans and in
indoor applications. However, the main drawback of realizing such flapping-
wing aerial vehicles is the increased complexity of their mechanical design,
aerodynamics and flight dynamics.

A rich source of inspiration to address the challenges of realizing flapping-
wing UAVs is present in natural flyers such as birds, bats, and insects. These
biological creatures showcase effective and optimized solutions to not only
flapping-based locomotion, but also to sensing and navigation. Consequently,
there is an emerging field of bio-inspired solutions in the robotics community,
both aerial and ground robots. Examples of such solutions are bird-inspired
perching [Doyle et al., 2011], bat-inspired echolocation [Eliakim et al., 2018],
bio-inspired artificial intelligence [Wang et al., 2012], animal-inspired geomag-
netic navigation [Liu et al., 2013], and pigeon-like flapping-wing mechanisms
[Chang et al., 2020]. In this thesis, we are mainly interested in bio-inspired
flapping locomotion, and more specifically bird-inspired flapping flight.

The understanding of the aerodynamical, structural, and behavioral pat-
terns of natural birds is essential for the development of robust and high per-
formance flapping-wing aerial robots. However, this is not an easy task! Despite
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Figure 1.5: Capabilities of Natural Flyers: a. Arctic Tern (Credit: National
Park Service/Kent Miller) , b. A falconer’s red-tailed hawk landing (CC BY-
SA 4.0) , c. Air motions caused by gliding barn owl visualized with bubbles
[Usherwood et al., 2020] , d. Whiffling Geese (Credit: Arran Birding)

the many research efforts throughout the past decades, the flight dynamics of
natural flyers are still not full understood [Floreano et al., 2009], especially that
of bats and birds [Chin and Lentink, 2016].

Natural birds have a number of outstanding features (cf. Fig. 1.5) in
their locomotion that are challenging to understand [Shyy et al., 2009]. For
example (i) they exploit multiple aerodynamic mechanisms for the generation
and enhancement of lift and thrust, (ii) they accommodate wind gusts and avoid
obstacles via variable kinematic and dynamic patterns using their wings, tail,
and body, (iii) they actively change the structural compliance of their wings
to achieve wing deformations that improve aerodynamic performance, and (iv)
they have distributed actuation and sensing biological units allover their surface
that are utilized for flight stability in extreme environment regimes.

Understanding the aforementioned features of natural birds necessitates
comprehending their highly unsteady three-dimensional aerodynamics, tran-
sition in boundary and shear layers, bilateral fluid-structure interactions, dy-
namic wing morphologies, and highly nonlinear flight dynamics [Shyy et al.,
2009]. After understanding these biological creatures, the following step would
be to abstract specific desired features and engineer them into aerial robots, a
task that is as complicated as the former. Therefore, in this thesis, the focus is
only on decoding and understanding the secrets of bio-inspired flapping flight.

In very recent years there have been a number of scientific projects in the EU
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aimed at tackling this field of bio-inspired flapping flight such as GRIFFIN 3 and
PORTWINGS4, which are both European Research Council (ERC) advanced
grants taking place from 2018 to 2023. Nevertheless, this interdisciplinary field
of understanding flapping-flight and designing flapping-wing aerial robots is
extremely fertile with discoveries and scientific achievements, and it will take
many more years and research efforts for such field to mature.

1.3 Framework for Interactive Aerial Robots

As mentioned previously, the scope of the work in this thesis focuses on two
types of emerging fields in aerial robotics, namely aerial physical interaction
and bio-inspired flapping flight. In these two fields, the focus is specifically on
two types of aerial robots, a flying end-effector and a bio-inspired robotic bird.
While the work in this thesis covers both theoretical and practical aspects of the
flying end-effector, the work on the bio-inspired robotic bird is only limited to
the theoretical understanding of flapping-flight as a prerequisite for the physical
realization of such complicated robot.

Although there are many discrepancies between these two types of aerial
robots, viewed as dynamical systems, there exists one substantial common
feature that shall be exploited in this thesis. This common feature is that
interaction with the environment is fundamental for their purpose and opera-
tion. Such aerial robots will be referred to in this work as interactive aerial
robots.

From a physical point of view, any type of mobile robot interacts with its
environment for locomotion, whether it is a ground, underwater, or aerial robot.
However, what distinguishes interactive aerial robots is that, from a system
theoretic point of view, the interaction with the environment is an essential
ingredient in the study and control of these robots and is not a “source of
disturbances” that need to be rejected by the control system.

As a definition, we say that two systems interact with each other if the
behavior of one is influenced by the behavior of the other. For the case of
a flying end-effector, its primary purpose is to interact mechanically with the
environment, in addition to flying. While in the case of a robotic-bird, its main
mechanism for generating upward and forward forces (i.e. lift and thrust) is
flapping its wings and changing their morphology. The generated forces are a
result of highly coupled fluid-structure interaction between the flexible wings
of the bird, as one dynamical system, and the air flow around it, as another
separate dynamical system. Therefore, for both aerial robots, it is important
to consider and understand the bilateral interaction with environment in the
framework used to address these dynamical systems.

3https://griffin-erc-advanced-grant.eu
4http://www.portwings.eu
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In what follows we show how the geometric port-Hamiltonian framework is
well suited for the modeling, analysis and control of interactive aerial robots.
This suitability is the primary motivation for the majority of the work pre-
sented in this dissertation. After a brief introduction to the geometric port-
Hamiltonian framework and its main features related to this work, we present
an overview of how a flying-end effector and a robotic-bird are viewed in this
framework.

1.3.1 Geometric Port-Hamiltonian Framework

The geometric port-Hamiltonian framework [Maschke and van der Schaft, 1992]
is based on two paradigms as the name suggests: the “port-based” framework
and the “Hamiltonian” framework. The port-Hamiltonian framework builds
upon the port-based modeling paradigm introduced by H. Paynter in the Bond-
Graph formalism [Montbrun-Di Filippo et al., 1991] and describes a complex
system as the interconnection of simpler sub-atomic units. Moreover, the port-
Hamiltonian framework builds upon the geometric Hamiltonian formalism of
mechanics [Marsden and Ratiu, 1999] by explicating the role of the energy of
the system and the geometry of the state space in the process of modeling and
analyzing a physical system.

At the heart of the port-Hamiltonian framework is the thermodynamical
concept of energy, which is a fundamental concept unifying many branches of
physics. An interaction between two systems is characterized by the energy
exchanged between them in the port-Hamiltonian framework. This interaction
takes place through what is called a power port. Each power port consists of
two dual variables, called an effort and flow, whose pairing (product) gives the
power flowing between the two interacting systems.

The main features of the port-Hamiltonian modeling process of a complex
physical system is that (i) it models the overall system as a collection of smaller
open subsystems interconnected via power-ports. (ii) The model separates
the overall network interconnection structure of the system describing how
power flows through it from the constitutive relations of its subsystems. (iii)
The model emphasizes and classifies its subsystems based on their energetic
behavior into energy-storing, energy-dissipating, energy-suppliers, or energy-
routing units.

Another important feature of port-Hamiltonian models is that they are
acausal, in the sense that each subsystem contains only the constitutive rela-
tions describing how its variables evolve dynamically without imposing which
is an input and which is an output. This appealing feature makes the port-
Hamiltonian framework suitable for open dynamical systems that can be in-
terconnected to one another, in contrast to the block diagram approach which
lacks compositionality [Duindam et al., 2009].

An important pillar of the geometric port-Hamiltonian framework, that is
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highly utilized in this thesis, is differential geometry. Differential geometry
is a mathematical formalism that allows describing dynamical systems in a
coordinate-free manner. Such intrinsic description allows the separation of
the physical characteristics of a dynamical system from details and artifacts
available in a specific choice of coordinates. An example of such artifacts in the
field of aerial robotics is the gimbal-lock problem of Euler angles and the double-
covering problem of quaternions that appear when representing the orientation
of rigid bodies [Selig, 2004]. The coordinate-free description of systems in
the port-Hamiltonian framework is one of the essential ingredients that allow
the framework to incorporate both lumped-parameter (finite-dimensional) and
distributed-parameter (infinite-dimensional) systems.

In addition to the systematic procedure for modeling, the port-Hamiltonian
framework also allows for a systematic procedure for analyzing and controlling
a complex physical system. The system’s interconnection structure and its total
energy (i.e. Hamiltonian) are utilized for the study of the system properties and
the design of controllers [Ortega et al., 2001]. Such systematic procedure allows
the analysis and control of both lumped- and distributed-parameter systems
using the same fundamental concepts.

One distinguishing feature of the port-Hamiltonian control approach is that
the control system can be perceived as another virtual physical system inter-
connected to the actual system via power ports [Stramigioli, 2001]. The ad-
vantages of such physical interpretation of a controller are numerous. First,
the interconnection of port-Hamiltonian systems is again a port-Hamiltonian
system [Cervera et al., 2007]. Such powerful property allows assessing the prop-
erties (e.g. passivity) of the closed loop system by properties of its comprising
smaller subsystems. Second, such interpretation may suggest simple and ro-
bust solutions for control based on how energy should flow, which led to novel
concepts in the literature such as impedance control [Hogan, 1985c,b,a], energy
routing and energy tanks [Duindam and Stramigioli, 2004]. Third, the change
in behavior introduced by the controller could also be implemented partially
by modifying the physical properties of the actual system. If possible, such
physical implementation of the controller might reduce the number of sensors
and actuators which could lead to more energy-efficient systems, which is a
fundamental requirement in the field of aerial robotics.

1.3.2 Port-Hamiltonian View of a Flying End-Effector

In the port-Hamiltonian framework, a flying end effector is modeled as the
interconnection of three main subsystems, as shown in Fig. 1.6: the robot’s
physical system, the controller’s virtual system, and the environment. The
aerial robot’s model has two main multidimensional power ports: a mechanical
port representing the energy exchange between the robot and the (unknown)
environment which the robot is physically interacting with, and an electrical
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Figure 1.6: Port-Hamiltonian View of a Flying End-Effector as the intercon-
nection of several dynamical systems. Figure shows a fully-actuated hexarotor
robot (top), a low level detailed model of the robot (middle), and a high-level
model used for control (bottom).
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port representing the energy exchange of the control system which is interacting
with the electric actuators of the robot to modify its behavior.

As for many other kinds of robots, it is common to treat a flying robot as a
multi-body system consisting of a set of bodies linked together via joints that
could be either passive or active. For a flying end-effector, the robot’s model
consists of a single rigid body that is connected to a number of propellers
via revolute joints activated by electric motors. The port-Hamiltonian models
of the robot’s main rigid body and its propellers describe how kinetic and
gravitational potential energy evolve. The interaction between each propeller
as it rotates and the surrounding air generates the aerodynamic forces that
allows the robot to fly. By controlling the electric energy supplied to the
electric motors, the aerodynamic forces can be altered such that the robot flies
in a desired manner.

For control purposes, it is a common approach to neglect the electric and
mechanical dynamics of the UAV’s propellers. This is because such dynamics
change at a faster time scale compared to the dynamics of the robot’s rigid
body. Moreover, the interaction between the propellers and the air is usually
not modeled and replaced by system identification techniques identifying the
relation between a propeller’s thrust and rotation speed, or by closed loop
speed controllers. Therefore, the high level model shown in Fig. 1.6 is usually
sufficient for designing the control system, while the low level model is more
realistic and useful for simulation purposes. The aforementioned assumptions
are usually valid in the small scale of UAVs considered for academic research
and civilian applications.

The control design process of a flying manipulator is fundamentally dif-
ferent than that of a conventional aerial robot used as a flying sensor. For a
flying manipulator in general, and a flying end-effector in particular, the port-
Hamiltonian framework is a suitable paradigm for the modeling, analysis and
control of such systems.

The primary control objective for conventional multirotor UAVs is to achieve
stability in free-flight and to reject external disturbances in order to maximize
performance. However, for a flying end-effector, in addition to free-flight stabil-
ity, it should be able to interact with an unknown environment in a stable man-
ner. When the flying end-effector is physically interacting with its environment,
the closed loop dynamics of the overall system changes, from a system theoretic
perspective. This change in dynamics is unknown in general and could also be
discontinuous in a dynamic interaction scenario when contact/non-contact sit-
uations occur. Therefore, during contact the environment should be a part of
any stability analysis conducted.

In the traditional framework of analyzing the closed-loop dynamical sys-
tem as an isolated closed system, certain assumptions are made to incorporate
a model of the environment such as using linear springs and dampers. How-
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ever, such unrealistic and simplistic models only guarantee contact stability
for very specific and limited types of real environments. On the contrary, the
port-Hamiltonian framework models the flying end-effector as an open system
that can be interconnected to any environment via a power port. By designing
controllers that guarantee that the closed loop system fulfills certain require-
ments as seen from this environment port, the contact stability can be asserted
independent of any environment model [Stramigioli, 2015].

Moreover, the traditional framework of modeling a dynamical system using
block diagrams, based on unilateral signals, is not suitable for modeling and
control of a flying end-effector. In free-flight operation, the output signal of the
robot is considered as its pose (i.e. combined position and orientation) which
is regulated by a pose controller, whereas in contact operation, the pose of
the robot can no longer be controlled as it is constrained by the environment.
Moreover, if an additional wrench controller is used to regulate the interaction
wrench between the robot and the environment during contact, such wrench
can no longer be regulated once the robot loses contact and is in a free-flight
situation.

As described in Stramigioli [2001] using the behavioral framework, control-
ling either the pose or wrench requires perfect knowledge of the environment
and when contact occurs or not, which is clearly not possible for practical
interactive robots. Instead, the behavior of the controlled robot could be mod-
ified independent of the environment. The first one to address this issue in
the field of robotics was Neville Hogan in his seminal work [Hogan, 1985c,b,a],
which led to the widely used impedance control methodology. The port-based
framework was an essential ingredient that Hogan used to formalize this control
methodology, and in the author’s point of view, impedance control can only be
understood using the port-based and port-Hamiltonian framework.

Therefore, the aforementioned reasons justify why the port-Hamiltonian
framework is the chosen paradigm to model, study, and control a flying end-
effector in this thesis.

1.3.3 Port-Hamiltonian View of a Bio-inspired Robotic
Bird

In the port-Hamiltonian framework, a flapping bird, viewed as a dynamical
system, is abstractly modeled as a number of interconnected subsystems, as
shown in Fig. 1.7. First, the main hull of the bird is modeled as a single
rigid body interconnected to two wings via joints and power ports. Second, the
two wings could be viewed as two flexible bodies with distributed stiffness and
mass corresponding to the different components of the biological wing such
as bones, muscles, and feathers. Moreover, along the wings are distributed
actuators to model mechanisms that birds utilize to actively deform their wings,
as well as distributed sensors to model mechanisms that birds for example use
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Figure 1.7: Port-Hamiltonian View of a Bio-inspired Robotic Bird viewed as the
interconnection of several dynamical systems. Figure shows a flying albatross
(top) and a detailed abstract model of a flying bird/robot.
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to sense air flow. Third, both the bird’s rigid body and flexible wing models
are interconnected to another subsystem that represents the dynamics of the
air flow. This interconnection and energy exchanged between the different
subsystems are characterized by power ports.

In the case of a robotic bird, the overall port-Hamiltonian model would
include additional subsystems (not shown in figure) such as the control system
interacting, via an electrical port, with the robot’s flapping mechanism and
distributed actuators engineered to deform the wings or change its stiffness.

The port-Hamiltonian framework has a number of significant features that
make it possible to model and decompose bird’s flapping flight into the set of
smaller subsystems described above. First, the subsystems shown in Fig. 1.7
are a combination of finite- and infinite-dimensional systems. In particular,
the rigid body model is a finite-dimensional system represented by ordinary
differential equations, whereas the airflow and flexible body models are infinite-
dimensional systems represented by partial differential equations. Thanks to its
geometric global and unified formulation, the port-Hamiltonian framework can
incorporate both finite and infinite dimensional systems. Such capability has
been demonstrated for example in modeling robotic manipulators with both
rigid and flexible links [Macchelli et al., 2009].

Second, to properly describe in a model the flapping-flight of birds, essen-
tial aerodynamic phenomena that need to be considered are viscosity of the
airflow and the generation of vortices [Chin and Lentink, 2016]. Consequently,
linear or ideal assumptions cannot be made in the mathematical modeling of
airflow and the full Navier-Stokes equations have to be used, which makes the
airflow model a nonlinear and dissipative dynamical system. Although the
traditional Hamiltonian framework, based on Poisson structures, can handle
nonlinear infinite-dimensional systems, it is only limited to conservative dy-
namical systems. On the contrary, the port-Hamiltonian framework overcomes
this limitation by exploiting Dirac structures that allow handling complex dis-
sipative systems. Therefore, the Navier-Stokes equations can be described fully
in the port-Hamiltonian framework.

Third, to describe a fluid dynamical system or flexible structural system
as open systems, that could be interconnected to other systems, the variable
(spatial) boundary conditions need to be incorporated. A major limitation
of the traditional Hamiltonian treatment of such infinite-dimensional systems
is that it handles only boundary conditions that cause zero-power exchange
through the boundary [van der Schaft and Maschke, 2002]. Thus, it only allows
modeling systems that are isolated and not part of a bigger dynamical system.
On the other hand, the port-Hamiltonian framework allows for non-zero power
exchange through the boundary and variable boundary conditions, e.g. as
demonstrated in the modeling of elastic beam theory in Macchelli et al. [2007a].

Fourth, the port-Hamiltonian framework is capable of incorporating multi-
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domain physical systems since it is based on energy-conservation principles.
As a result, the same mathematical representations and concepts can be used
for the different physical domains available in the model of flapping-flight i.e.
structural mechanics and fluid mechanics. In addition, such property is also
useful for the modeling of the distributed sensors and actuators that will in-
clude the electromagnetic domain as well. Such property has been demon-
strated previously in the modeling of complex multi-physical system such as
thermo-magento-hydrodynamics [Vu et al., 2016] with coupled fluid mechani-
cal, electromagnetic, and thermodynamic components.

In conclusion, the different properties of the port-Hamiltonian paradigm
mentioned above clearly showcase its suitability for the problem at hand and
motivates why it is chosen in this thesis to model and study the flapping-flight
of birds.

1.4 Research Goals of the Thesis

The primary goal of the research in this thesis is to apply the port-Hamiltonian
framework to specific problems related to interactive aerial robotics, namely
aerial physical interaction using a flying end-effector and bio-inspired flap-
ping flight using a robotic-bird. The work in this thesis can be divided into
theoretical-oriented objectives related to both interactive aerial robots, and
more practical-oriented objectives related to aerial physical interaction.

The specific goals of this thesis are formulated in a number of research
questions (RQ) as follows:

� RQ1: How to systematically construct the port-Hamiltonian models of
the different subsystems comprising the models of a flying end-effector
and robotic bird?

Such models include rigid-body motion, flexible-body motion, and viscous
three-dimensional airflow, as shown in Figs. 1.6 and 1.7. An important
aspect is to develop these models in a systematic manner from first prin-
ciples.

� RQ2: How to develop port-Hamiltonian control systems for the flying-
end effector model that are stable and robustly performing in both free-
flight and in contact-based tasks?

Such control and analysis methods should be able to guarantee the overall
system’s properties independent of specific models for the environment
the robot is expected to interact with.

� RQ3: How to design an autonomous control architecture that provides
a general flying-manipulator with perceptional and decision-making capa-
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bilities utilizing other paradigms outside the scope of the port-Hamiltonian
framework?

To enable autonomous accomplishment of aerial physical interaction tasks,
a flying manipulator requires additional modules based on “signal -processing”
paradigms, such machine learning and computer vision.

The research presented in this thesis has been conducted within two different
European projects: SPECTORS and PortWings.

1.4.1 SPECTORS Project

Sensor Products for Enterprises Creating Technological Opportunities in Re-
mote Sensing (SPECTORS) is a four year long innovation program funded by
INTERREG V-A Deutschland-Nederland. The project consists of more than
20 Dutch and German small-and-medium sized enterprises. The goal of the
project is to exploit the market potential of civil drone technology through
sensor innovations for remote sensing, remote monitoring, and big data cloud
computing for applications in aerial inspection, precision agriculture, nature
conservation and environmental protection.

The main role that the work of this thesis contributes to is the technological
development of an aerial robot capable of establishing a robust mechanical
surface contact for remote contact-based inspection. All the work in this thesis
related to aerial physical interaction has been within the SPECTORS project
from end of 2016 to 2020.

1.4.2 PortWings Project

PortWings is a ERC-2018 Advanced grant awarded to S. Stramigioli between
2018 and 2023. The main goal of the project is to understand the secrets of
flapping flight of birds using the port-Hamiltonian framework and validate these
understandings experimentally by building an advanced bird-inspired aerial
robot [Califano et al., 2021].

The project comprises of an interdisciplinary team of six members led by S.
Stramigioli tackling different research challenges of the project. For the theoret-
ical challenges, two members of the team work on the system theoretical prob-
lems related to the formulation and control of the port-Hamiltonian models.
Another member is responsible for the numerical discretization and simulation
of such models. For the realization challenges, one team member works on ex-
perimental fluid-dynamics validating the constructed port-Hamiltonian models
using wind-tunnel and particle image velocimetry facilities. Another member
works on the bio-mimetic mechatronic design of the robotic bird, while the
last member of the team focuses on the study and fabrication of sensors and
actuators needed for the robot.
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The main role of the work in this thesis contributes to the theoretical
development of the port-Hamiltonian framework by reframing the available
methods used in continuum mechanics in the setting of differential geome-
try and the port-based paradigm. All the work in this thesis related to the
port-Hamiltonian theory and infinite-dimensional dynamical systems has been
within the PortWings project from end of 2018 to 2020.

1.5 Contributions of the Thesis

According to the primary research goal stated previously, we now highlight in
this section the contributions of this thesis. The major contribution of this
thesis as a whole is the demonstration of the strengths of the port-Hamiltonian
paradigm in addressing complex physical problems such as aerial physical in-
teraction and bio-inspired flapping flight.

The work in this thesis is divided into two distinct parts: Part I deals with
aspects of the Theoretical Framework of port-Hamiltonian systems covering
RQ1, related to both aerial physical interaction and flapping flight at an ab-
stract level. Part II focuses only on the topic of Aerial Physical Interaction
and deals with the control systems design issues of RQ2 and the autonomy
issues of RQ3.

In what follows, the specific contributions and publications of this thesis
with respect to the three different parts are detailed. For the reader’s conve-
nience, Tables 1.2 - 1.3 summarize the main publications that comprise the
backbone on which this dissertation is built.

Part I: Theoretical Framework

The first contribution of this thesis in Part I is an extensive survey of over
150 studies related to distributed-parameter port-Hamiltonian systems. This
survey highlights the wide applicability of the framework and affirmed its suit-
ability to tackle the complex problem of flapping-flight. The survey has been
published in Rashad et al. [2020b].

An outcome of the survey is that there is a short-coming in the litera-
ture in understanding the main building block underlying the distributed port-
Hamiltonian theory i.e the “Dirac structure”. Using Hamiltonian reduction
theory for Lie groups [Marsden and Ratiu, 1999] and the underlying geometry
of the state-space, it is shown in this thesis that the Dirac structure underlying
the port-Hamiltonian theory can be systematically constructed starting from
the Poisson structure used in classical Hamiltonian theory. This exposition
led to a systematic procedure for developing port-Hamiltonian models of both
finite- and infinite-dimensional mechanical systems whose configuration space
is described by Lie groups.
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Table 1.2: Summary of publications in Part I.

Part I - Theoretical Framework

1. R. Rashad,, F. Califano, A. van der Schaft & S. Stramigioli. Twenty Years
of Distributed Port-Hamiltonian Systems: A Literature Review. IMA Journal of
Mathematical Control and Information, 2020.

2. R. Rashad,, F. Califano, F. P. Schuller & S. Stramigioli. Port-Hamiltonian
Modeling of Ideal Fluid Flow: Part I. Foundations and Kinetic Energy. Journal
of Geometry and Physics, 2021. (Under review)

3. R. Rashad,, F. Califano, F. P. Schuller & S. Stramigioli. Port-Hamiltonian
Modeling of Ideal Fluid Flow: Part II. Compressible and Incompressible Flow.
Journal of Geometry and Physics, 2021. (Under review)

The second contribution of this thesis is applying the systematic procedure
mentioned above to address RQ1. As a result, we present a port-Hamiltonian
representation of the finite-dimensional model for rigid body motion, and a
number of infinite-dimensional models for compressible and incompressible
flow. Compared to previous port-Hamiltonian models in the literature for the
rigid body [Maschke and van der Schaft, 1997] and a specific case of compress-
ible flow [van der Schaft and Maschke, 2001] , the models presented in this
thesis have several appealing features. First, these models are derived from
first principles by Hamiltonian reduction instead of being postulated or trans-
formed from other representations. Second, the port-Hamiltonian models in
this work are more disjoint and teared apart which provides more insight into
the underlying structure of these dynamical systems and their comprising units.
The work related to the modeling of fluid mechanics is currently under review
to be published as a two-parts journal article [Rashad et al., 2021b,c].

Another important contribution of this thesis is the unified formulation of
both the rigid body and fluid flow dynamical systems. This global formula-
tion using Lie groups theory has highlighted many similarities between the
two different systems. The unified formulation presented in this work is a
first step towards a theory coupling the two dynamical systems together which
contributes to the important field of fluid-structure interaction.

Part II: Aerial Physical Interaction

The second part of this thesis is more focused on aerial physical interaction
using the flying end-effector approach i.e. utilizing a fully-actuated multirotor
UAV. The first contribution of the thesis in this part is an extensive survey of
multirotor configurations in the literature achieving fully-actuated flight. This
literature survey has been published in Rashad et al. [2020c].

Based on the survey conducted, one specific type of fully-actuated UAV has
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Table 1.3: Summary of publications in Part II.

Part II: Aerial Physical Interaction

4. R. Rashad,, J. Goerres, R. G. Aarts, J. B. Engelen, & S. Stramigioli. Fully
Actuated Multirotor UAVs: A Literature Review. IEEE Robotics & Automation
Magazine, 2020.

5. R. Rashad, F. Califano, & S. Stramigioli. Port-Hamiltonian passivity-based
control on SE (3) of a fully actuated UAV for aerial physical interaction near-
hovering. IEEE Robotics and Automation Letters, 4(4), 4378-4385, 2019.

6. R. Rashad, D. Bicego, J. Zult, S. Sanchez-Escalonilla, R. Jiao, A. Franchi,
& S. Stramigioli. Energy-Aware Impedance Control of a Flying End-Effector in
the Port-Hamiltonian Framework. IEEE Transactions on Robotics, 2021. (In
preparation)

7. R. Rashad, J. B. Engelen, & S. Stramigioli. Energy tank-based
wrench/impedance control of a fully-actuated hexarotor: A geometric port-
hamiltonian approach. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2019.

8. B. Sirmacek, R. Rashad, & P. Radl. Autonomous UAV-based 3D-
reconstruction of structures for aerial physical interaction. International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.
XLII-2/W13, 2019.

9. R. Rashad,, D. Bicego, R. Jiao, S. Sanchez-Escalonilla, & S. Stramigioli. To-
wards Vision-Based Impedance Control for the Contact Inspection of Unknown
Generic Surfaces with a Fully-Actuated Aerial Robot. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
October, 2020.

been chosen as the platform to be used within this thesis for aerial physical
interaction. The platform selected is a hexarotor with canted propellers, first
proposed in Voyles and Jiang [2012], chosen mainly for its simplicity and low
mechanical complexity compared to other design concepts. Consequently, an
achievement of this thesis is the software and hardware development of a fly-
ing end-effector having the configuration of a fully-actuated hexarotor, called
“BetaX”. The BetaX aerial robot has been used in all experimental validation
work presented in this thesis.

Using the developed aerial robot and the port-Hamiltonian model of a rigid
body of RQ1 as an abstract model for the flying end-effector, the goals of RQ2
were then addressed. The contribution of this thesis in light of RQ2 consists
of two port-Hamiltonian control systems for aerial physical interaction.

The first controller is based on the energy-balancing passivity-based control
(EB-PBC) approach. The developed controller is a reformulation of the geo-
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metric impedance controller of [Fasse and Broenink, 1997; Stramigioli, 2001]
within the port-Hamiltonian framework. The controller is capable of regulating
the pose of the aerial robot as well as enabling it to interact with the environ-
ment. Moreover, the contact stability is proven using passivity analysis without
an explicit model for the environment, and the robustness of the controller has
been verified experimentally. This work has been published as a journal article
in Rashad et al. [2019a] as well as presented at the 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems(IROS).

The second controller is based on the control by interconnection approach
used to add features to the first controller and enhance its interaction capa-
bilities. The enhanced capabilities include regulating the interaction wrench
by variable stiffness control, guaranteed passivity using energy routing with
energy tanks, and contact-loss stabilization utilizing energy tanks as energy
observers. This work is currently in preparation to be published as a journal
article [Rashad et al., 2021a] and a preliminary version of it has been published
in Rashad et al. [2019b].

Finally, the goals of RQ3 were addressed where additional modules were
designed that complement the port-Hamiltonian controllers described above in
order to accomplish interactive tasks autonomously. The first contribution of
this part is an integration of computer-vision techniques with the EB-PBC con-
troller, designed previously, to add perception capabilities to the aerial robot.
As a result, the aerial robot could accomplish physical interaction without prior
knowledge of the environment’s surface geometry, as demonstrated both in sim-
ulation and experiment. This work has been published in Rashad et al. [2020a]
and a preliminary version of it has been published in Sirmacek et al. [2019].

The second contribution of this part is an integration of Bayesian-optimization
techniques with the EB-PBC controller to improve the performance of the con-
troller over time and have a consistent behavior with different environments.
Consequently, aerial physical interaction tasks without prior knowledge of the
environment’s mechanical properties have been achieved and validated in sim-
ulation. This work has been published in Khattab et al. [2019] and was the
winner of the best paper award at the 2019 IEEE SSRR conference. How-
ever, we decided to leave out this work from this thesis since we believe its level
of maturity requires substantial effort for improvement which is currently be-
ing investigated. Nevertheless, we will highlight on its research findings in the
conclusion chapter. Other works that have been co-authored and not reported
in this thesis also includes [Jiao et al., 2021; Califano et al., 2021] where the
former focuses on the interaction wrench estimation problem and its effect on
aerial physical interaction, while the latter addresses how the port-Hamiltonian
framework can address the challenges of flapping flight.
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Table 1.4: Summary of other contributions not included in the thesis

Other contributions

10. A. Khattab, R. Rashad, J. B. Engelen, & S. Stramigioli. Bayesian-
Optimized Impedance Control of an Aerial Robot for Safe Physical Interaction
with the Environment. In Proceedings of IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), 2019.

11. R. Jiao, R. Rashad, D. Bicego, W. Chou, & S. Stramigioli. Observer-
based Geometric Impedance Control of a Fully-Actuated Hexarotor for Physical
Sliding Interaction with Unknown Generic Surfaces. Journal of Intelligent &
Robotic Systems, 2021. (Under review)

12. F. Califano, R. Rashad, A. Dijkshoorn, L. Groot Koerkamp, R. Sneep, A.
Brugnoli, & S. Stramigioli. Decoding and Realising Flapping Flight with Port-
Hamiltonian System Theory. Annual Reviews in Control, 2021. (Under review)

1.6 Outline of the Thesis

The remaining chapters of the thesis are organized and structured in three
parts that include the two parts discussed in the previous section with an ad-
ditional part for general discussions. The majority of the chapters are either
slightly-adapted or extended versions of the articles listed in Tables 1.2 - 1.3.
The extensions added to some chapters include extra background preliminaries,
detailed proofs of theorems, and more elaboration on various concepts.

Part I of this thesis consists of Chapters 2-5:

Chapter 2 first introduces the port-Hamiltonian framework and its basic
concepts and terminology. Then, the chapter deals with exposing the relation
between the traditional Hamiltonian theory and the port-Hamiltonian theory.
Using Hamiltonian reduction, it is shown how to systematically derive port-
Hamiltonian models for mechanical systems with a configuration space that is
a Lie group.

Chapter 3 presents the literature survey of distributed port-Hamiltonian
systems [Rashad et al., 2020b], where the surveyed studies are classified into
different classes based on their respective research focus.

Chapter 4 deals partially with RQ1 by the port-Hamiltonian modeling of
a rigid body using the method of Chapter 2. The chapter presents a detailed
treatment of the geometric formulation of rigid body kinematics and dynamics
using the Lie group SE(3). The presented port-Hamiltonian model is one of
the basic milestones in modeling flapping-flight of birds and will be used in
later chapters for the design of control schemes for aerial physical interaction.
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Chapter 5 addresses also RQ1 by the port-Hamiltonian modeling of fluid
flow using an extension of the method presented in Chapter 2. The chapter
introduces didactically the geometric formulation of fluid mechanics using exte-
rior calculus instead of the standard vector calculus treatment used commonly
in the field. The configuration space of a fluid dynamical system is shown to
be the diffeomorphism group D(M) of the (possibly curved) space on which
the fluid flows. The developed port-Hamiltonian model is an important mile-
stone related to modeling flapping-flight of birds via separate interconnected
dynamical systems. This chapter is the most mathematically and technically
involved part of the dissertation.

Part II consists of Chapters 6-9:

Chapter 6 presents mainly the literature survey of fully-actuated multirotor
UAVs [Rashad et al., 2020c]. The survey concepts are classified into fixed- and
variable-tilt designs and their corresponding design parameters are identified.
Moreover, the chapter presents a review of the optimization criteria used in the
literature for choosing these design parameters.

Chapter 7 deals with the port-Hamiltonian control system design of a flying
end-effector using the EB-PBC approach within the view of RQ2. The port-
Hamiltonian rigid body model, developed earlier in Chapter 4, is used as an
abstraction of a fully-actuated hexarotor. The chapter presents experimental
results that validate the robustness of the controller against uncertainties and
input saturation.

Chapter 8 also addresses RQ2 by an extension of the controller devel-
oped in Chapter 7. The chapter utilizes novel concepts exclusive in the port-
Hamiltonian framework, such as energy routing using Dirac structures and
energy tanks, to enhance conventional impedance control with more enhanced
features required for high-performance aerial physical interaction.

Chapter 9 deals with RQ3 with a shifted focus to the intersection of inter-
action control and computer-vision techniques. The chapter presents a vision-
based impedance control architecture that adds more autonomy to the aerial
robot. The proposed architecture is validated in simulation and experiments.

Part III consists of Chapter 10:

Chapter 10 concludes this thesis by summarizing the main contributions of
this thesis, reflecting on the limitations of the different presented solutions, and
presenting an outlook for the future applications and extensions of the work.
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CHAPTER 2

Port-Hamiltonian Framework

This chapter is an introduction to Part I of this thesis dealing with theoretical
aspects and foundations of the port-Hamiltonian framework. The purpose of
this chapter is twofold. First, to introduce the basic concepts and terminology
of the port-Hamiltonian framework used throughout this thesis for both model-
ing and control. Second, to explicate the relation between the port-Hamiltonian
framework relying on Dirac structures and the standard Hamiltonian frame-
work relying on Poisson and symplectic structures.

There are two main messages that are conveyed in this chapter. The first one
is that finite-dimensional and infinite-dimensional systems are treated in the
geometric port-Hamiltonian framework using the SAME concepts. The second
one is that the port-Hamiltonian framework is NOT a “trivial extension” of
the standard Hamiltonian framework, but rather a paradigm shift. This is
demonstrated by comparing the modeling philosophy and approach of each
framework.

The chapter is outlined as follows: Sec. 2.1 introduces the port-Hamiltonian
framework for both finite and infinite-dimensional systems, its graphical repre-
sentation using bond graphs and block diagrams, and the implicit and explicit
forms of the dynamical equations. Sec. 2.2 discusses the relationship between
the port-Hamiltonian framework and the standard Hamiltonian framework by
showing how a Dirac structures extend Poisson structures as well as the differ-
ence in their modeling philosophies. Sec. 2.3 provides a brief summary of the
central topic of Hamiltonian reduction which will be of utmost significance in
later chapters. Finally, we conclude the chapter in Sec. 2.4.
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2.1 Foundations of Port-Hamiltonian Systems

The port-Hamiltonian systems paradigm is a framework for the modeling, anal-
ysis, design, and control of complex physical dynamical systems. The men-
tioned complexity arises due to multi-physical domains, inter-domain couplings,
nonlinearities, and distributed sensing and actuation. The port-Hamiltonian
system theory can handle successfully both lumped-parameter (finite-dimensional)
systems [Maschke et al., 1992] and distributed-parameter (infinite-dimensional)
systems [van der Schaft and Maschke, 2002].

In what follows, we introduce the basic port-Hamiltonian concepts first
for finite-dimensional systems and then we discuss how these concepts are ex-
tended for infinite-dimensional systems. For a more extensive introduction to
the subject, the reader is referred to [Duindam et al., 2009; van der Schaft and
Jeltsema, 2014; van der Schaft, 2020].

2.1.1 Finite-dimensional Systems

A core feature of the port-Hamiltonian framework is the emphasis on power
flow between subsystems and the separation of the interconnection structure
of the system from its components’ constitutive relations. A complex physical
system is modeled in the port-Hamiltonian framework as the interconnection
of several subsystems or elements, classified based on their relation to energy.
Namely, energy storage, energy dissipation1, energy supply, and energy routing
elements.

Power Ports

All subsystems are interconnected by power ports (or bonds), graphically rep-
resented by a half-arrow in bond graph notation, as shown in Fig. 2.1. Each
port is defined by the pair (e, f) with f ∈ F and e ∈ E := F∗ referred to
as the flow and effort variables, respectively. The flow and effort variables
are usually referred to as port variables. In lumped parameter systems, the
flow space F and the effort space E are both finite-dimensional vector spaces.
The duality pairing between a flow f and effort e (i.e. a vector and a covec-
tor), denoted by 〈e| f〉F := e(f), represents the power flow through the port
(e, f) at a specific instant of time. In the special case where F = Rn and
E ∼= Rn are n−dimensional Euclidean spaces, then the duality pairing is given
by 〈e| f〉F = e>f .

1From the first principle of thermodynamics, energy can neither be created nor destroyed,
but only transformed from one form to another. In this thesis, dissipation of energy refers
to the irreversible transformation of energy to the thermal domain.
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Figure 2.1: Finite-dimensional port-Hamiltonian system consisting of an energy
storage subsystem S, an energy dissipation subsystem R, an external energy
supply port (eI , fI), in addition to the Dirac structures D and DJ that act as
energy routing elements.

Energy Storage

With reference, to Fig. 2.1, the first class of subsystems of a port-Hamiltonian
model are the energy storage elements, represented by S. Physical examples
in the mechanical domain include storage of kinetic and potential energy in
inertial and elastic elements, respectively. Other examples in the electromag-
netic domain include storage of electric and magnetic energy in capacitive and
inductive elements, respectively.

The energy storage subsystem S is mathematically defined by the pair
(X , H) where the state space X is a finite-dimensional manifold and H : X → R
is called the Hamiltonian function denoting the energy stored. The state (or
energy variable) of the energy storage system is an element x of the manifold
X . The flow variable of S is given by the rate of change of the state variable
ẋ ∈ TxX , while the effort variable is given by the partial derivative of H
with respect to the state x, denoted by ∂xH(x) := ∂H

∂x (x) ∈ T ∗xX . The effort
variable ∂xH(x) is usually called the co-energy variable. The rate of change of
the energy stored is given by

Ḣ = 〈∂xH(x)| ẋ〉TxX , (2.1)

where 〈 ·| ·〉TxX denotes the duality pairing between the effort in T ∗xX and the
flow in TxX . In the special case where X = Rn, one has that TxX ∼= T ∗xX ∼= Rn
and the energy balance (2.1) can be written as

Ḣ = 〈∂xH(x)| ẋ〉Rn = ∂xH
>(x)ẋ,

where ∂xH(x) is a column vector of partial derivatives of H.
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In generalized bond graph terminology, the storage system S is graphically
represented by a so called C-element that has its Hamiltonian energy function
H(x) written beside it, as illustrated in Fig. 2.2a.

Energy Dissipation

The second class of subsystems of a port-Hamiltonian model corresponds to the
internal energy dissipation (or resistive) elements, represented by R. Physical
examples include mechanical friction, fluid viscosity, and electrical resistance.
The effort and flow variables of a resistive system R are denoted by (ẽR, f̃R) ∈
F∗R × FR, where FR is an m-dimensional vector space. To represent energy
dissipation, a resistive system is defined by a static relation between ẽR and
f̃R such that

〈 ẽR|f̃R 〉FR ≥ 0. (2.2)

This condition implies that energy only goes towards the system R which rep-
resents the irreversible transfer of energy to the thermal domain.

An important recurrent type of resistive relations is one that could be ex-
pressed as an input-output mapping. Such resistive map can be represented in
either impedance or admittance form:

ẽR = R(f̃R) (impedance), f̃R = R(ẽR) (admittance).

In the special case of a linear static impedance relation for FR = Rm and
F∗R ∼= Rm, the resistive mapping is expressed as ẽR = R̃f̃R, where R̃ ∈ Rm×m
is some symmetric positive semi-definite matrix.

In bond graph terminology, the resistive system R is graphically repre-
sented by an R-element that has its resistive map (e.g. R̃) written beside it, as
illustrated in Fig. 2.2a.

Energy Supply

The port-Hamiltonian system has an open external port (eI , fI) ∈ F∗I ×FI =: I
called the interaction port, for some finite-dimensional vector space FI . This
port is a general one used to model the interaction of the port-Hamiltonian
system with the rest of its environment. The interaction is characterized by
the energy supplied from the environment to the system, given by the duality
pairing 〈eI | fI〉FI .

Energy Routing

The last component of a port-Hamiltonian system is the Dirac structure, de-
noted by D as shown in Fig. 2.1. The Dirac structure represents the power-
continuous (power-preserving) combination of all energy routing elements link-
ing the various subsystems and their corresponding ports together. The Dirac
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structure encodes how the port variables of all its connected ports are related
to each other such that the total power associated to the port-variables is zero.

Given a k-th dimensional vector space F , a Dirac structure is mathemat-
ically defined as the k-th dimensional subspace D ⊂ F × F∗ such that all its
elements (e, f) ∈ D satisfy

〈e| f〉F = 0. (2.3)

For a more general definition of Dirac structures (that is applicable also for
infinite-dimensions), see [van der Schaft and Jeltsema, 2014, Pg. 16].

The Dirac structure D shown in Fig. 2.1 consists of three ports; a storage
port (eS , fS) ∈ T ∗xX × TxX , a resistive port (eR, fR) ∈ F∗R × FR, and an
interaction port (eI , fI) ∈ F∗I × FI . Then, D is mathematically a subspace of
FT × F∗T , the total port space (or bond space), where FT := TxX × FR × FI .
The power balance encoded by the Dirac structure is given by

〈eS | fS〉TxX + 〈eR| fR〉FR + 〈eI | fI〉FI = 0. (2.4)

Interconnection

The overall port-Hamiltonian model is then constructed by interconnecting the
storage port (eS , fS) and the resistive port (eR, fR) of the Dirac structure D
with the energy-storage system S and the resistive system R, respectively.
In most cases, we adopt the convention to define the direction of ports to be
entering each subsystem. Therefore to follow this convention, as shown in Fig.
2.1, the inversion of power-flows is achieved by junctions DJ that implement
the equalities

〈∂xH(x)| ẋ〉TxX + 〈eS | fS〉TxX = 0, 〈eR| fR〉FR + 〈 ẽR|f̃R 〉FR = 0. (2.5)

These junctions are basic examples of a Dirac structure that only serves the
purpose of power inversion [Stramigioli, 2001].

The equalities in (2.5) state that the power flowing into each of S and R is
equivalent to the power flowing out of the Dirac structure D. This implies that
we cannot simultaneously equate both port-variables of (eS , fS) to the port-
variables of (∂xH, ẋ), and similarly for the ports connecting R and D. Instead,
both ports can have either a common-flow and opposite efforts or a common-
effort and opposite flows. We will follow the common effort convention for
interconnecting ports, and thus the constraints implemented by a junction are
given by

fS = −ẋ, eS = ∂xH(x), fR = −f̃R, eR = ẽR. (2.6)

In bond graph notation, shown in Fig. 2.2a, the common-effort constraint is
implemented by a zero junction.
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(a) Bond Graph Representation

(b) Block Diagram Representation

Figure 2.2: Example of a basic port-Hamiltonian system with a chosen causal-
ity. Namely, an integral (impedance) causality for the C element, and an
impedance causality for both the R element and the external port.

In conclusion, a coordinate-free description port-Hamiltonian system is com-
pletely defined by the tuple (X , H,R, I,D) corresponding to the state manifold,
Hamiltonian energy function, the resistive relation, the interaction port space,
and the Dirac structure, respectively.

Causality

An extremely important feature of the abstract port-Hamiltonian represen-
tation of a physical system presented so far is that no predefined choice of
causality is made (i.e. a fixed choice of inputs and outputs). The abstract de-
scription of the different storage, resistive, and routing elements above defines
relations between their corresponding effort and flow variables (referred to as
constitutive relations) without a choice of what is input and what is output.
The only constraint imposed is that the flow and effort of a port have com-
plementary causality [Stramigioli, 2001, Sec. 3.2]. Therefore, if the flow is an
input, the effort is an output (called impedance causality), and if the effort is
an input, the flow is an output (called admittance causality).

This key feature of the port-based paradigm is an important distinction
with the standard block-diagram paradigm which describes a particular choice
of causality that was made a priori. It is important to realize that often, a real
physical system does not have specific imposed causality constraints which are



2.1 Foundations of Port-Hamiltonian Systems 35

merely a modeling artifact.
An illustrative example is the direct-current electric motor and direct-

current electric generator, where both correspond to the same physical device
and only differ in whether electric energy is converted to mechanical energy
or vice-versa. Furthermore, if operated as an electric motor, it can have as
an input either voltage (effort) or current (flow) and as output either torque
(effort) or speed (flow). Therefore, a block-diagram model of the motor, with
a predefined choice of input and output, represents 1 out of 4 causality combi-
nations the model could have. On the other hand, only one port-Hamiltonian
model that represents all possible causalities of the ports.

In bond graph notation, when the causality information is prescribed, it
is graphically represented by a causality stroke on either ends of a port. The
location of the stroke identifies the subsystem to which “effort enters as an
input”, as shown in Fig. 2.2. Note that in Fig. 2.2, the Dirac structure has
its 3 ports in “impedance” causality (effort-in), which is only 1 out of 23 = 8
causality possibilities.

Port-Hamiltonian Dynamics

The Dirac structure plays a central role in defining how the system’s port
variables and energy variables evolve, which in turn defines the dynamics of
the port-Hamiltonian system. The evolution of the port variables is defined by
the constraints imposed by the Dirac structure, such that

(fS(t), fR(t), fI(t), eS(t), eR(t), eI(t)) ∈ D.

Therefore, it follows from the interconnections in (2.6) that the port-Hamiltonian
dynamics are implicitly defined by(

−ẋ(t),−f̃R(t), fI(t), ∂xH(x(t)), ẽR, eI(t)
)
∈ D. (2.7)

Consequently, it follows from combining (2.1,2.2,2.4,2.5) that the Hamilto-
nian energy function H(x) satisfies the energy balance

Ḣ = −〈 ẽR|f̃R 〉FR + 〈eI | fI〉FI ≤ 〈eI | fI〉FI . (2.8)

If the Hamiltonian satisfies the extra condition of being positive semi-definite,
i.e. H(x) ≥ 0,∀x ∈ X , then (2.8) implies that the port-Hamiltonian system is
passive [van der Schaft, 2000] with respect to interaction port (eI , fI) ∈ I.

In general, the implicit port-Hamiltonian dynamics (2.7) defines algebraic
constraints on the state space (energy) variables. Such constrained dynamical
systems are represented by a mixed set of differential and algebraic equations
(DAEs). A dynamical system described implicitly as presented so far contains
only relations between the port and energy variables independent of causality.
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Such implicit description is very useful in studying intrinsic system properties
in a coordinate-free manner. In addition, it allows arbitrary interconnection to
external systems.

On the other hand, for simulation and control purposes, it is usually con-
venient to use an explicit input-output representation of the dynamics (2.7).
One important class of explicit port-Hamiltonian representations that will be
used extensively in this thesis is the input-state-output port-Hamiltonian sys-
tem expressed in local coordinates of X as

ẋ =(J(x)−R(x))∂xH(x) +G(x)u,

y =G>(x)∂xH(x),
(2.9)

where J(x) = −J>(x) is the skew-symmetric structure matrix, G(x) is the input
matrix, and R(x) corresponds to the resistive subsystem. For more details
about this form of the port-Hamiltonian dynamics, the reader is referred to
[Duindam et al., 2009].

2.1.2 Infinite-dimensional Systems

The port-Hamiltonian framework has been successfully extended in the foun-
dational work of van der Schaft and Maschke [2002] to incorporate distributed
parameter (infinite-dimensional) systems using the same generic concepts pre-
sented above. Distributed parameter systems are characterized by both time
and space as independent parameters on which the port and energy variables
are defined. In order to construct coordinate-free port-Hamiltonian models
that are globally defined on any choice of spatial domain, differential forms are
used to represent port and energy variables of the system.

The spatial manifold, on which physical quantities are defined, is repre-
sented mathematically by an n-dimensional manifold M with boundary ∂M .
Similar to lumped-parameter systems discussed previously, a distributed port-
Hamiltonian model also consists of a number of energy storing, dissipating,
supplying, and routing elements interconnected to each other by power ports,
as shown in Fig. 2.3

The flow and effort variables of each port are fields of differential forms of
complementary orders with respect to the dimension of M . In particular, if
a flow variable f ∈ F = Ωk(M) is a k-differential form on M , then an effort
variable e ∈ F∗ = Ωn−k(M) is an n− k differential form. Both F and F∗ are
considered as infinite-dimensional vector spaces over the space of real numbers.

The power flowing through the port (e, f) is given by the natural pairing
on spaces of differential forms given by

〈e| f〉Ω :=

∫
M

e ∧ f, e ∈ Ωn−k(M), f ∈ Ωk(M)
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Figure 2.3: Infinite-dimensional port-Hamiltonian system consisting of an en-
ergy storage subsystem S, an energy dissipation subsystem R, and two external
energy supply ports (eD, fD) and (e∂ , f∂). The Stokes Dirac structure Dst and
the power inverting junctions DJ are the energy routing elements.

where ∧ denotes the wedge (or exterior) product.
The energy storage subsystem S of a distributed port-Hamiltonian model

is also defined by the pair (X , H), where now the Hamiltonian energy H[x] is
a functional of the state x ∈ X given by

H[x] :=

∫
M

H(x), H : X → Ωn(M),

with H called the Hamiltonian energy density that associates to every state x
a top-form that may be integrated over the spatial domain M .

In general, the state x consists of a number of differential forms over M
corresponding to the different physical energy variables of the system. For
simplicity, consider in what follows the state x ∈ X = ΩkS (M) to correspond
to one physical quantity represented by a differential form of order kS . In that
case, the flow variable of S is given by ẋ ∈ TxX ∼= ΩkS (M). Whereas, the
effort variable is given by the variational derivative of H with respect to the
state x, denoted by δxH(x) := δH

δx (x) ∈ T ∗xX ∼= Ωn−kS (M), and defined as the
element of Ωn−kS (M) that satisfies for any x, δx ∈ X and ε ∈ R

〈δxH(x)| δx〉Ω :=
d

dε

∣∣∣∣
ε=0

H(x+ εδx), (2.10)

which is assumed to exist for a given H ∈ C∞(X ). The rate of change of the
energy stored is given by

Ḣ = 〈δxH(x)| ẋ〉Ω =

∫
M

δxH(x) ∧ ẋ. (2.11)

The energy dissipation subsystem R of a distributed port-Hamiltonian model
is very similar to the case of a finite-dimensional system, with the difference
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that the effort and flow variables (ẽR, f̃R) are now differential forms of comple-
mentary orders.

On the other hand, energy supply for infinite-dimensional systems is funda-
mentally different than in finite-dimensions. With reference to Fig. 2.3, there
are two ways a distributed port-Hamiltonian system can exchange energy with
its surroundings. The first one is through the distributed interaction port

(eD, fD) ∈ Ωn−kD (M)× ΩkD (M) =: ID,

while the second one is through the boundary interaction port

(e∂ , f∂) ∈ Ωn−k∂−1(∂M)× Ωk∂ (∂M) =: I∂ ,

where kD, k∂ ∈ {1, · · · , n} denote the order of the differential forms fD and
f∂ , respectively. The power flowing through the distributed port, given by∫
M
eD∧fD, characterizes energy supply within the spatial domain M , whereas

the power flowing through the boundary port, given by
∫
∂M

e∂ ∧ f∂ , charac-
terizes energy supply through the boundary ∂M . The boundary port variables
correspond to the boundary conditions of the PDEs represented by the port-
Hamiltonian model.

The mathematical object used to interconnect the previous components of a
distributed port-Hamiltonian system is the infinite-dimensional Dirac structure
Dst. The key result used within Dst is Stokes theorem, which allows incorporat-
ing the energy flow through the boundary along with other energy flows within
the spatial domain. Therefore, the Dirac structure used in distributed port-
Hamiltonian systems is usually referred to as a Stokes-Dirac structure [van der
Schaft and Maschke, 2002]. The power balance encoded by the Stokes-Dirac
structure, shown in Fig. 2.3, is given by

〈eS | fS〉Ω + 〈eR| fR〉Ω + 〈eD| fD〉Ω +

∫
∂M

e∂ ∧ f∂ = 0. (2.12)

Furthermore, the storage and resistive ports of the Stokes-Dirac structure are
connected to S and R, respectively, via junctions similar to (2.5) and (2.6).

In conclusion, a distributed port-Hamiltonian system is represented ab-
stractly by the tuple (M,X , H,R, ID, I∂ ,Dst). Similar to (2.7), the implicit
port-Hamiltonian dynamics in this case are then given by(

−ẋ(t),−f̃R(t), fD(t), f∂(t), δxH(x(t)), ẽR, eD(t), e∂(t)
)
∈ Dst. (2.13)

Finally, the Hamiltonian energy functional H[x] satisfies the energy balance

Ḣ ≤
∫
M

eD ∧ fD +

∫
∂M

e∂ ∧ f∂ . (2.14)
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Figure 2.4: A standard Hamiltonian system consisting of an energy storage
subsystem S and a Poisson structure J . We adopt the convention of defining
the power port associated to a Poisson structure to be directing outwards. This
choice is equivalent to defining the port to be directing inwards into a subsystem
defined by −J .

2.2 Relation to Standard Hamiltonian Theory

In this section, we address a very important topic which sometimes causes
a lot of confusion. Namely, the relation between the standard Hamiltonian
framework and the port-Hamiltonian framework.

One of the two pillars of the port-Hamiltonian framework is the standard
geometric Hamiltonian theory which has its roots in analytical mechanics. The
standard Hamiltonian theory focuses mainly on conservative closed systems,
which is suitable for analysis purposes, whereas the port-Hamiltonian theory
is applicable to non-conservative open systems, which is suitable for mod-
ular modeling and control. Therefore, the standard Hamiltonian framework
addresses the conservative dynamics only of a physical system related to the
pair (S, D) in finite-dimensions or the pair (S, Dst) in infinite-dimensions.

For unconstrained physical systems, the Dirac structure is replaced by a
Poisson (or a symplectic) structure J , which plays the same structural role
in the standard Hamiltonian framework as the Dirac structure in the port-
Hamiltonian framework. Thus, compared to the port-Hamiltonian models in
Figs. 2.1 and 2.3, a standard Hamiltonian system would be represented graph-
ically as shown in Fig. 2.4.

In what follows, we highlight the differences between the two frameworks by
exposing the relation between Poisson and Dirac structures and how the Pois-
son structure corresponds to the energy-conservation part of the Dirac struc-
ture. Furthermore, we discuss a fundamental distinction between the modeling
philosophies of the two frameworks, which clarifies how the port-Hamiltonian
approach is not a trivial extension of the classical Hamiltonian approach.

First, we start by a brief introduction to the standard Hamiltonian formal-
ism based on Poisson structures presented in local coordinates for simplicity.
For a more extensive coordinate-free treatment of the subject, the reader is
referred to [Marsden and Ratiu, 1999; Holm et al., 2009].
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2.2.1 Extending Poisson Structures

With contrast to the explicit port-Hamiltonian dynamics in (2.9), the standard
Hamiltonian formalism based on Poisson structures deals with the “conserva-
tive” part of a physical system. A finite-dimensional (generalized) Hamiltonian
system is given in local coordinates of the state space manifold X by

ẋ = J(x)∂xH(x), (2.15)

where the map J(x) : T ∗xX → TxX is a skew-symmetric matrix.
The structure matrix J(x) can be used to equip the state space manifold

X with a (generalized) Poisson bracket, uniquely determined by J(x) locally
in X , as follows. Consider any smooth function F ∈ C∞(X ). Along solutions
of the dynamical system (2.15), denoted by the curve xt := x(t), the rate of
change of F is given by

Ḟ (xt) = 〈∂xF (xt)| ẋt〉TxX = 〈∂xF (xt)| J(xt)∂xH(xt)〉TxX . (2.16)

Therefore, by defining the bilinear map {·, ·} : C∞(X )× C∞(X )→ C∞(X ) as

{F,K}(x) := 〈∂xF (x)| J(x)∂xH(x)〉TxX , F,K ∈ C∞(X ), (2.17)

then one can compactly represent (2.16) as

Ḟ (x(t)) = {F,H}(x(t)). (2.18)

The map {·, ·} is known as a generalized Poisson bracket and the pair (X , {·, ·})
is usually called a Poisson manifold. Furthermore, the Hamiltonian dynamics
(2.15) are fully defined by the pair (H, {·, ·}).

In case X = Rn is an n-dimensional Euclidean space, the Poisson bracket
(2.17) takes the well-known form

{F,K}(x) := ∂xF
>(x)J(x)∂xK(x). (2.19)

From the skew symmetry property of J(x), it follows that the generalized
Poisson bracket (2.19) is skew-symmetric:

{F,K} = −{K,F},

and satisfies for any K̃ ∈ C∞(X ) the Leibniz rule:

{F,K · K̃} = {F,K} · K̃ +K · {F, K̃}.

The standard Hamiltonian formalism presented above can be extended to
infinite-dimensional systems as well. In that case, the Hamiltonian equations
(2.15) take the form

ẋ = J (x)δxH(x), (2.20)
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where X is now an infinite-dimensional manifold, the state x ∈ X consists of
differential forms over M , H[x] is a Hamiltonian functional, δxH denotes the
variational derivative, and J (x) : T ∗xX → TxX is a skew-symmetric (matrix)
operator.

The analog of (2.18) in the infinite-dimensional case is given by

{F,K}(x) := 〈δxF (x)| J (x)δxK(x)〉TxX , F,K ∈ C∞(X ), (2.21)

which is also a skew-symmetric bracket satisfying the Leibniz rule as a con-
sequence of the skew-symmetry of the operator J (x). Similar to (2.18), one
can represent the rate of change of any functional F [x] on the state space X in
terms of the Poisson bracket (2.21).

Conservation of the Hamiltonian

An important consequence of the skew-symmetry of the structure maps J(x)
and J (x) is that the Hamiltonian is always a conserved quantity in the for-
malism above based on Poisson brackets. It follows from the skew-symmetric
property of the brackets (2.19), it follows that the rate of change of a Hamil-
tonian function (or functional) satisfies

Ḣ(x(t)) = {H,H}(x(t)) = 0, (2.22)

along solutions of the system. Therefore, the generalized Poisson brackets
(2.19) and (2.21) represent the conservative dynamics of a physical system such
that the Hamiltonian H is a conserved quantity. Consequently, the standard
Hamiltonian formulation focuses mainly on “closed isolated” physical systems.
Such systems have neither internal (free) energy dissipation nor external energy
supply.

On the other hand, by comparing the energy balance (2.22) to both (2.8)
and (2.14), it can be clearly observed that the Dirac structure, used in the
port-Hamiltonian formalism, generalizes the Poisson structure by allowing for
non-zero change of the energy function H. Therefore, port-Hamiltonian for-
mulation is applicable to physical systems that are “open for interconnection”.
In port-Hamiltonian systems, the change of energy happens via the internal
dissipation port or the external supply port, which in the case of infinite-
dimensional systems could either be within the spatial domain or through the
boundary.

In infinite-dimensional standard Hamiltonian systems, the zero energy sup-
ply through the boundary has an important implication. In order for the
Hamiltonian of the system to be conserved, the boundary conditions of the
PDEs represented by (2.20) are restricted to the ones that yield zero energy
exchange through the boundary. Whereas the port-Hamiltonian framework
allows to model systems with variable boundary conditions.
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Canonical Poisson Structure

We end the part on Poisson structures by an important special case of the
generalized Hamiltonian system (2.15). This special case is when the state
space manifold X = T ∗Q is the cotangent bundle of an n-dimensional manifold
Q, and the structure matrix is given by the constant matrix

J(x) = Js =

(
0 In
−In 0

)
,

where In ∈ Rn×n is the identity matrix. The matrix Js is known as the
symplectic structure matrix. If the state is represented by the coordinates
x = (q, p) ∈ T ∗Q, then the dynamical equations (2.15) can be expressed for a
given Hamiltonian H : T ∗Q→ R as(

q̇
ṗ

)
=

(
∂pH (q, p)
−∂qH (q, p)

)
, (2.23)

which corresponds to the classical Hamilton’s equations. A similar construction
can be made if Q is an infinite-dimensional manifold, where Js becomes a
constant matrix operator and partial derivatives are replaced by variational
ones.

A very important property of the generalized Poisson bracket associated
to the symplectic structure matrix Js is that it is canonically (intrinsically)
defined on the cotangent bundle of any manifold, whether it is finite- or infinite-
dimensional. We denote this special canonical Poisson bracket by {·, ·}c, and
the coordinates (q, p) are usually referred to as the canonical coordinates.

2.2.2 Difference in Modeling Philosophy

It is important to realize that the port-Hamiltonian formalism is not a triv-
ial extension of the standard Hamiltonian formalism that includes inputs and
outputs, which is already present and known in the literature as input-output
Hamiltonian systems [Maschke and van der Schaft, 1992]. The two frameworks
are in fact fundamentally different in their underlying modeling philosophy.

The unique characteristic of the port-Hamiltonian paradigm that separates
it from the standard Hamiltonian paradigm is that the overall physical system
is modeled as a “network” of energetic units interconnected by ports. This
fundamental characteristic is inherited from the classical port-based network
approach which is the second pillar underlying the port-Hamiltonian frame-
work. Consequently, the philosophy of the port-Hamiltonian modeling process
is based on a bottom-up approach, whereas the standard Hamiltonian mod-
eling process relies on a top-down approach. We illustrate the two modeling
approaches using Fig. 2.5.



2.2 Relation to Standard Hamiltonian Theory 43

Figure 2.5: Comparison of the bottom-up port-Hamiltonian modeling proce-
dure of a complex physical system compared to the top-down standard Hamil-
tonian procedure.

Standard Hamiltonian Approach

The standard top-down Hamiltonian approach starts from the concept of a
configuration q ∈ Q representing the degrees of freedom of the overall physical
system, as shown in Fig. 2.5. Then, a Lagrangian L : TQ→ R, as a function
of q and q̇ ∈ TqQ, is defined on the tangent bundle, which is called the velocity
phase space. Using the Legendre transformation, the conjugate momentum
variable p := ∂L /∂q̇ ∈ T ∗qQ can be calculated, and a Hamiltonian H : T ∗Q→
R can be constructed on the cotangent bundle T ∗Q, referred to as the phase
space. The equation of motion governing the dynamical system on the phase
space T ∗Q are given by the standard Hamiltonian equations (2.23), which
are in turn equivalent to the Euler-Lagrange equations on TQ derived from
Hamilton’s principle of least action. Therefore, as shown in Fig. 2.5, the
overall dynamical system is defined by the Hamiltonian H and the symplectic
structure matrix Js corresponding to the canonical Poisson bracket {·, ·}c.
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Port-Hamiltonian Approach

On the other hand, the bottom-up port-Hamiltonian modeling approach is
divided into the following stages, illustrated in Fig. 2.5:

1. Conceptual tearing: The starting point for the port-Hamiltonian ap-
proach for modeling is a conceptual tearing process to the overall phys-
ical system, viewing it as a set of interconnected energetic subsystems.
The i-th subsystem is characterized by the energy it possess, denoted
by Hi : Xi → R. This energy traverses from one subsystem to another
through an imaginary boundary dividing both of them. Furthermore,
this reasoning can be applied to both lumped-parameter and distributed-
parameter systems.

2. Hamiltonian modeling of isolated energetic subsystems: After
identifying the individual energetic subsystems, one can use the standard
Hamiltonian theory at this point to develop a Hamiltonian model for each
energetic subsystem isolated from the rest of the system. However, the
emphasis here is on physical energy variables xi ∈ Xi which do not neces-
sarily correspond to the canonical coordinates of some cotangent bundle.
In fact, energy variables that are most physically compelling [Morrison,
1998] or thermodynamically more expressive [Breedveld, 1984] are in gen-
eral non-canonical. Consequently, the outcome of this stage is a closed
Hamiltonian model for each energetic subsystem, defined by the energy
function Hi(xi) and the non-canonical Poisson structure corresponding
to Ji(xi).

3. Add interaction ports: The closed Hamiltonian model of each subsys-
tem is now extended to an open port-Hamiltonian model with interaction
ports. This corresponds to the port (eI , fI) for finite-dimensional sys-
tems, and the ports (eD, fD), (e∂ , f∂) for infinite-dimensional ones. One
then replaces the Poisson structure representing the conservation of Hi

by a Dirac structure Di(xi) that allows for non-zero energy exchange via
the interaction ports.

4. Interconnect all energetic subsystems: The overall physical system
is then constructed by interconnecting the different energetic subsystems.
This is achieved by specifying the interconnection structure of the open
port-Hamiltonian subsystems in the form of constraints on the variables
of the interaction ports of each subsystem. For the interconnection to
be power consistent, only subsystems with compatible interaction ports
are interconnected. Additional Dirac structures could be possibly used
to resolve incompatibility issues.
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Figure 2.6: Using a coordinate transformation, from the space of energy vari-
ables X to the phase space T ∗Q of the overall system, one can link the overall
models from the port-Hamiltonian approach to the standard Hamiltonian ap-
proach.

5. Compact the port-Hamiltonian model: After developing a decom-
posed model of the physical system in terms of a network of intercon-
nected subsystems, one could (optionally) compact the network into one
dynamical system by combining the energy storing elements together
and all the Dirac structures into one, denoted by D(x). The compact
port-Hamiltonian model would then have a total state space X and total
Hamiltonian H : X → R given, respectively, by

X :=
∏
i

Xi, H(x) :=
∑
i

Hi(xi),

where x ∈ X is the state of the overall system corresponding to the
combined energy variables. The compact model could be either a closed
system, or an open one with interaction ports that allows the overall
port-Hamiltonian model to be interconnected to its external environment.
This concludes the port-Hamiltonian approach modeling procedure.

In case the compact port-Hamiltonian model of the physical system is closed
and there are no algebraic constraints on the total state x ∈ X , one can re-
late this model to the one derived from the standard Hamiltonian approach, as
shown in Fig. 2.6. In such case, the combined Dirac structure D(x) degener-
ates to a (generalized) Poisson structure represented by J(x). Although the two
Hamiltonian functions H(x) and H (q, p) of the two models correspond to the
total energy of the system, the difference lies essentially in the choice of coordi-
nates representing the system. While the standard Hamiltonian approach relies
on the canonical coordinates (q, p) ∈ T ∗Q and the canonical Poisson structure
Js, the port-Hamiltonian approach hinges on the (generally) non-canonical en-
ergy variables x ∈ X , and the Poisson structure J(x) which corresponds to the
network interconnection structure of the system’s energetic components. Using
an invertible coordinate transformation from the state space X to the phase
space T ∗Q, one can convert from one model to the other.
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In conclusion, it is clear from their distinguished strategies in tackling a
modeling problem that the port-Hamiltonian framework is fundamentally dif-
ferent from the standard Hamiltonian approach. Unfortunately this unique
characteristic of the port-Hamiltonian framework with respect to the classi-
cal Hamiltonian framework, known to a broader audience of mathematicians
and physicists, is often overseen or underestimated. In the author’s opinion,
an important reason for this is that this fundamental difference is not well
communicated in the port-Hamiltonian literature.

Finally, we conclude by some general remarks.

1. Starting from the port-Hamiltonian approach, one can systematically
transform the network and the compact representations of the port-
Hamiltonian model to the standard Hamiltonian model. However, start-
ing from the Hamiltonian approach, the opposite transformation is in
general not trivial.

2. A significant advantage of the port-Hamiltonian bottom up approach
compared to the standard Hamiltonian approach is that, when needed,
the overall port-Hamiltonian model can be updated by adding a new
subsystem to its open ports without re-deriving the whole dynamical
equations.

3. Although the network-based modeling procedure of port-Hamiltonian sys-
tems, as described above, is applicable for both lumped-parameter and
distributed-parameter systems, it is more popular in the former only.
This can be contributed to the fact that the foundational work of dis-
tributed port-Hamiltonian theory in [van der Schaft and Maschke, 2002]
does not discuss the systematic derivation of the underlying Stokes-Dirac
structure and focuses instead on how it generalizes Poisson structures.
On the other hand, this approach was clearly highlighted in the founda-
tion work of port-Hamiltonian theory for lumped-parameter systems in
the earlier work of Maschke et al. [1992].

4. An immediate benefit in dividing the overall system into isolated energetic
subsystems is that one does not have to consider all physical variables of
the overall system at once during the Hamiltonian modeling process in
stage 2, provided one can separate them. Consequently, this significant
step allows one to use the powerful Hamiltonian reduction theorems.

2.3 Hamiltonian Reduction

Hamiltonian reduction plays a central role in geometric mechanics and is of
great practical significance. It refers to a general process for transforming a
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given Hamiltonian system to one of smaller dimension. However, the widely
used term reduction is usually misleading since the process does not “actually”
reduce the degrees of freedom of the system, but instead allows to exploit the
known parts of the system’s dynamics in order to construct solutions in stages
[Morrison, 1998]. In this work, Hamiltonian reduction will serve as a tool for
systematically deriving the equations of motion of dynamical systems.

Recall that a generalized Hamiltonian system is defined in terms of a Hamil-
tonian function H : X → R on a Poisson manifold (X , {·, ·}X ). The reduction
process in its essence is a transformation Φ : X → Z applied to the Hamilto-
nian system. The first part of the reduction, known as kinematic reduction,
occurs if one can transform the old Poisson bracket {·, ·}X on C∞(X ) to a new
Poisson bracket {·, ·}Z on C∞(Z) that depends solely on the new coordinates.
Similarly, the second part of the reduction, known as dynamic reduction, oc-
curs if the Hamiltonian can be also written in terms of the new coordinates
only such that

H̃(z) := H(Φ(x)) = H(x), ∀x ∈ X , z ∈ Z.

Therefore, the reduction process transforms the Hamiltonian dynamics (H, {·, ·}X )
into (H̃, {·, ·}Z).

The transformations that leave the HamiltonianH invariant are called sym-
metries, which form a group called the symmetry group of H, with the
group operation being composition of maps. The Hamiltonian reduction the-
orems formalize the basic idea of the process mentioned above. These general
theorems allows one to exploit the symmetries of the Hamiltonian and con-
stants of motion of the system. For an introduction to this sophisticated topic,
the reader is referred to [Marsden and Ratiu, 1999; Holm et al., 2009]. In this
thesis, we are interested in one specific type of reduction theorems, namely
Lie-Poisson reduction.

Lie-Poisson Reduction

An important class of dynamical systems are those whose configuration space
G has the mathematical structure of a Lie group. This rich class of systems
includes dynamics of rigid bodies on the special Euclidean group SE(3) and
dynamics of fluid flow on the diffeomorphism group D(M), which are treated
later in Ch.4 and Ch.5, respectively.

Recall that the phase space T ∗G of the configuration space G is naturally
equipped with a canonical Poisson bracket {·, ·}c that defines the Hamiltonian
dynamics of the mechanical system for a given Hamiltonian H : T ∗G→ R. By
taking advantage of the Hamiltonian’s symmetries, it is possible to “reduce”
the Hamiltonian dynamics of the system from the cotangent bundle T ∗G to the
dual space g∗ of either the left or right Lie algebra g corresponding to the Lie
group G. The dynamics are reduced to the dual of the left or right Lie algebra
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depending on whether H is left-invariant or right-invariant with respect to
the symmetry transformations, respectively.

Left Lie algebras play an important role in rigid body mechanics while right
Lie algebras appear recurrently in general continuum mechanics [Holm et al.,
1998; Marsden and Ratiu, 1999]. While the phase space T ∗G represents the
“material” or “Lagrangian” coordinates of motion of a mechanical system, the
dual of the left Lie algebra represents the “body” or “convective” coordinates,
and the dual of the right Lie algebra represents the “spatial” or “Eulerian”
coordinates of motion.

Remark 2.3.1 (Lie Bracket Sign Convention). Recall that the Lie algebra
of G consists of the tangent space TeG at the identity e ∈ G equipped with
a Lie bracket. One canonical way to construct a Lie bracket for TeG is by
extending the Jacobi-Lie bracket on XL(G), the space of left-invariant vector
fields on G. Such Lie bracket is denoted by [·, ·]L. Another way is to extend
the Jacobi-Lie bracket on XR(G), the space of right-invariant vector fields on
G. In this case, the Lie bracket is denoted by [·, ·]R.

It can be shown [Marsden and Ratiu, 1999, Pg. 270] that the right and
left brackets are related by a minus sign i.e. [·, ·]R = − [·, ·]L. Therefore,
it is conventional in the literature [Holm et al., 2009, Pg. 316] that the Lie
bracket associated to g is denoted by [·, ·]g and chosen to be the one defined
by left extension i.e. [·, ·]g = [·, ·]L = − [·, ·]R . Therefore, the left Lie algebra
corresponds to the pair (TeG, [·, ·]g) while the right Lie algebra corresponds to
(TeG,− [·, ·]g).

The Hamiltonian reduction process is achieved using the so called momen-
tum maps, which are maps from the phase space T ∗G to the dual space g∗.
The momentum maps are used to derive from the Hamiltonian dynamics on the
phase space, defined by (H , {·, ·}c), the reduced Hamiltonian dynamics,
defined by (H, {·, ·}g∗), where

� H ∈ C∞(g∗) is the reduced Hamiltonian constructed from the Hamilto-
nian H ∈ C∞(T ∗G) .

� {·, ·}g∗ : C∞(g∗)× C∞(g∗)→ C∞(g∗) is a reduced Poisson bracket con-
structed from the canonical Poisson bracket {·, ·}c.

The reduced Poisson bracket {·, ·}g∗ is called the Lie-Poisson bracket and the
whole reduction process described above is known as Lie-Poisson reduction.
For more details, the reader is referred to [Marsden and Ratiu, 1999, Ch.13].

The expressions of the reduced Poisson bracket and the corresponding
Hamiltonian dynamical equations depend on whether g is a left or right al-
gebra and whether it is finite- or infinite-dimensional.
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For the case of a left finite-dimensional Lie algebra g, the reduced Poisson
bracket is defined for any x ∈ g∗ and F,K ∈ C∞(g∗) by

{F,K}g∗(x) := −
〈
x| [∂xF, ∂xK]g

〉
g
, (2.24)

where [·, ·]g : g× g → g denotes the Lie bracket of g and 〈 ·| ·〉g : g∗ × g → R
denotes its duality pairing.

Given a Hamiltonian function H(x), the dynamical equations are then ex-
pressed by

ẋ = ad∗∂xH(x), (2.25)

where for any ω ∈ g, the map ad∗ω : g∗ → g∗ is the dual of the adjoint operator
adω : g→ g defined such that adω(·) := [ω, ·]g.

For the case of a right infinite-dimensional Lie algebra g, the reduced Pois-
son bracket takes the form

{F,K}g∗(x) :=
〈
x| [δxF, δxK]g

〉
g
, (2.26)

where the partial derivatives are replaced by variational derivatives.
Given a Hamiltonian functional H[x], the dynamical equations are now

given by
ẋ = −ad∗δxH(x), (2.27)

where in this case, the map ad∗ω is the formal dual of the adjoint operator
adω, i.e. up to a boundary term. As will be discussed in Ch.5, these boundary
terms will vanish naturally as a consequence of the skew-symmetry of the struc-
ture operator corresponding to the ad∗ω map. The inclusion of these boundary
terms will play an important role later in the construction of the Stokes-Dirac
structure of the distributed parameter systems considered.

In the less common cases of a right finite-dimensional or left infinite-dimensional
Lie algebra, equations (2.24-2.27) have opposite signs.

Finally, by comparing the form of the Hamiltonian dynamics in (2.25) and
(2.27) to the ones in (2.15) and (2.20), one can see that the map given by

ad∗(·)(x) : g→ g∗,

for any x ∈ g∗, corresponds (with an additional sign) to the structure matrix
J(x) or the structure matrix operator J (x).

2.4 Conclusion

This chapter has provided the foundations of the port-Hamiltonian paradigm
which will be used through the rest of this dissertation for the modeling and
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control of interactive aerial robots as motivated in Ch.1. The focus of the
chapter was on highlighting two important properties of the port-Hamiltonian
paradigm.

The first property is that the port-Hamiltonian framework is capable of han-
dling finite- and infinite-dimensional systems with the same tools and concepts.
This is achieved by using appropriate differential geometric tools.

The second property is that the port-Hamiltonian framework extends the
standard Hamiltonian framework in a non-trivial way by combining with it the
port-based approach for modeling physical systems viewing a complex physical
system as the network of energetic subsystems interconnected to each other by
power ports in addition to allowing for non-zero change of the system’s energy.

These two properties will be demonstrated in subsequent chapters via two
case studies to which the port-Hamiltonian theory is applied to. Namely,
modeling of rigid body motion and fluid flow on a manifold, treated in Ch.4
and Ch.5, respectively. In these two chapters, we will show how the port-
Hamiltonian procedure of Sec. 2.2.2, combined with Hamiltonian reduction
theorems and a proper geometric formulation, will lead to a systematic deriva-
tion of open port-Hamiltonian models for rigid body motion and fluid flow on
a manifold.



CHAPTER 3

Twenty Years of Distributed

Port-Hamiltonian Systems

For the past two decades, the distributed port-Hamiltonian (dpH) systems
theory underwent a huge evolution that branched in different directions and
is still an active area of research. This chapter reports the results of [Rashad
et al., 2020b] which presents a review of the research studies carried out in
the past twenty years (approximately) relying on the seminal work of van der
Schaft and Maschke [2002].

This chapter highlights the wide applicability of the port-Hamiltonian (pH)
framework to complex systems in multi-physical domains. It also highlights
one of the key benefits of the pH paradigm which is modeling a wide range of
systems in different fields with the same tools and language at all stages, start-
ing from the theoretical modeling to the practical implementation. Moreover,
it highlights the main methodologies and techniques developed in the different
subfields of pH system theory which helps identifying the existing gaps.

In this work, over a hundred and fifty studies are classified into different
classes depending on their respective research focus, as shown in Fig. 3.1.
The classes considered include modeling, analysis and control, discretization,
theoretical framework, and applications. The first research direction in the lit-
erature was in implementing the generic dpH theory for modeling distributed
parameter systems in different physical domains. The second direction was
the analysis and design of control techniques suitable for pH models by ex-
tending the well-established techniques for finite-dimensional pH systems, like
energy shaping and damping injection. Another research direction was fo-
cused on generating finite dimensional approximations of the dpH models or the
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Figure 3.1: The classification of research studies surveyed in this paper.

infinite-dimensional controllers by structure-preserving discretization methods.
Furthermore, there has been also a lot of research efforts in different theoretical
formulations of pH systems and extensions to the original framework in van der
Schaft and Maschke [2002]. Finally, the applications class includes papers that
combine other different techniques.

The rest of the chapter is organized as follows: we first start in Sec. 3.1 by
a discussion of the class of theoretical framework studies in the literature. In
Sec. 3.2, we present the modeling class which includes the implementation of
the framework to a wide range of physical domains. In Sec. 3.3, we present
the analysis and control class followed by the discretization class in Sec. 3.4.
Finally, we conclude the chapter and summarize the applications class in Sec.
3.5. All the research studies reviewed in this chapter can be accessed through
an online bibliographical database1, classified in their respective groups.

3.1 Theoretical Framework

In this section, we provide an overview of the different formulations of dpH
systems introduced in the literature. We recognize and briefly address three
main formulations of dpH systems: the Stokes-Dirac structure approach, the
functional analytic approach, and the jet bundle approach. Then we present a
collection of different results extending these approaches in different directions.

1http://dx.doi.org/10.17632/wz6h2xpvg9.1
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3.1.1 Stokes-Dirac Structure Formulation

This formulation of the dpH theory is the one presented in the the foundational
work of van der Schaft and Maschke [2002]. In this work, the power-continuous
interconnection structure of distributed parameter systems was mathematically
modeled by a Stokes-Dirac structure (SDS) denoted by Dst.

For the reader’s convenience, we provide a brief summary of the dpH for-
mulation based on a SDS described in Sec. 2.1.2. A non-dissipative distributed
port-Hamiltonian system is given by the tuple (M,X , H, ID, I∂ ,Dst), where M
is the finite-dimensional manifold representing the spatial domain, with bound-
ary ∂M . The state space X is composed by a subspace of differential forms
over M . The space I∂ is a subspace of differential forms over ∂M . Finally
H : X → R is a functional of the state x. The energy storage port of the
system is defined by (ẋ, δxH), where δxH denotes the variational derivative of
the functional H with respect to x. Energy-flow through the boundary into
the system is modeled by utilizing Stokes’ theorem which defines the boundary
port variables (f∂ , e∂) ∈ I∂ used to specify the boundary conditions freely. Dis-
tributed port-variables, that allow for energy flow within the spatial domain,
can also be included through the interaction port (fD, eD) ∈ ID.

The implicit pH system dynamics and energy balance are then given by

(−ẋ, δxH, fD, eD, f∂ , e∂) ∈ Dst, Ḣ =

∫
∂M

e∂ ∧ f∂ +

∫
M

eD ∧ fD, (3.1)

evaluated along solutions x(t) of the system.
After the seminal work of van der Schaft and Maschke [2002] some exten-

sions of dpH formulations were carried out. The work in Macchelli et al. [2004b]
was motivated by the need to find a clearer formulation for infinite-dimensional
port-Hamiltonian systems, not relying on the definition of the SDS introduced
in van der Schaft and Maschke [2002], which was introduced as fundamental
building block, but whose generalization for more complex systems was not pro-
vided. In particular the definition of a novel class of the SDS was formalized
by a proper generalization of constant (i.e. not depending on the state vari-
ables) Dirac structures of finite-dimensional pH systems. This has been done
by generalizing the matrix operators (representing interconnection, damping
and interaction) of finite-dimensional pH systems, to multivariable differential
operators suitable for the infinite-dimensional case. The key result is the con-
structive definition of a SDS starting from a formally skew-adjoint operator
acting on vector-valued smooth functions. This represents a further extension
with respect to van der Schaft and Maschke [2002] where only scalar-valued
smooth functions on the spatial manifold were described as zero differential
forms. This generalization is referred to as multi-variable dpH system in Mac-
chelli et al. [2004b]. Using Stokes theorem, a linear operator induced on the
spatial boundary is formally introduced and depends on the skew-adjoint op-
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erator. This operator-based approach has the advantage to describe broader
classes of PDEs with respect to the original formulation2, e.g. the contro-
versial example of the heat equation is described as dpH system in Macchelli
et al. [2004b] by introducing a self-adjoint differential operator representing
distributed dissipation for the diffusive process.

3.1.2 Functional Analytic Formulation

In what follows, we describe the field that puts together concepts coming from
functional analysis and dpH systems. Actually the class of dpH systems that
are considered in this framework is very small if compared to the general class
presented in van der Schaft and Maschke [2002] and therefore strictly speaking
it should not be considered as a separate formulation, but as a subclass. Nev-
ertheless the contributions and the connections with the PDE community have
been of such importance and impact, that we consider it valuable to keep this
distinction.

The seminal work for this approach is Le Gorrec et al. [2005], which had
tremendous impact on the future research and represents one of the most im-
portant contributions for dpH systems. The framework introduced in this paper
describes the connection between Dirac structures, boundary control systems
and skew adjoint-operators using functional analytic tools. This framework
would allow to handle rigorously well-posedness of the dpH system, in the sense
of existence and smoothness of solutions3. In principle this step is necessary
to make a control design based on Lyapunov-like arguments, since variations
of energy have to be computed along solutions, for which these existence and
smoothness properties must be known. The price to pay to achieve such a level
of mathematical rigour is to diminish dramatically the class of considered sys-
tems to linear, one-dimensional spatial domain. The whole approach is based
on the definition of the operator J

J e =

N∑
i=0

P (i)
die

dzi
(z), z ∈ [a, b] (3.2)

where conditions on matrices P (i) are explicitly assumed in order to make the
operator formally skew-adjoint. In this context Dirac structures have been
defined on Hilbert spaces and consequently, state variables are not more iden-
tified with differential 1-forms as in van der Schaft and Maschke [2002], but
with vector-valued L2 functions. The port variables living on the boundary of

2Nevetherless some systems (e.g. n-dimensional fluid dynamic equation) can not be de-
scribed by such operator due to their non-constant SDS.

3This is only a rough definition aiming at giving an insight of the problem to the reader.
The rigorous definition of well-posedness, often not shared among authors, needs to be care-
fully addressed in the specific framework that is considered.
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the spatial domain (introduced by means of Stokes theorem like in the previous
approach) are included in the SDS and parametrized in such a way that the
differential operator J restricted to a proper domain generates a contractive
C0- semigroup. Consequently a rich description of these systems as boundary
control systems was possible, introducing input and output variables as specific
linear combinations of state variables restricted on the boundary of the spatial
domain. In particular connection to system theoretic properties like passivity
and more in general dissipativity are formalized.

The definition of dpH systems was done by introducing a quadratic en-
ergy functional H(x) = 1

2 〈x,L(z)x〉 with L(z) a coercive, bounded operator
depending in general on the spatial variable z. In this situation the dpH can
be abstractly written as

ẋ = JLx, (3.3)

with the appropriate boundary conditions. Here the energy function is the
norm of a Hilbert space induced by L itself. The structure of the system led to
important results like the possibility of valuating properties which are complex
and abstract in principle (e.g. generation of contraction semigroup) by means
of simple matrix inequalities and the fact dpH systems of the considered class
are dissipative with respect to quadratic supply rates, by considering energy as
storage functional. Summarizing, this formulation bridged the more geometric
and physical approach started in van der Schaft and Maschke [2002] with a
more system and control-theoretic approach.

The contribution after Le Gorrec et al. [2005] grew fast in the relatively
small system theoretic community working on the subject. Later in Sec. 3.3,
we will briefly go through the main results developed within this formulation
in terms of analysis and control.

3.1.3 Jet Bundle Formulation

The SDS formulation of dpH systems in van der Schaft and Maschke [2002]
relies on a choice of proper energy variables (efforts and flows) such that the
Hamiltonian energy density does not depend on their spatial derivatives. How-
ever, this choice is not unique at all and in some cases there are convincing
arguments that suggest different choices. An important example of this differ-
ent way of thinking led to a formulation that is based on the jet-bundle struc-
ture of the distributed system [Ennsbrunner and Schlacher, 2005; Schöberl and
Siuka, 2014]. To give an exhaustive overview of this formulation is out of the
scope of this literature review but we briefly highlight the main idea behind
this approach, which makes use of differential geometric tools like jet bundles
(see e.g. Schlacher [2007] for an introduction to this topic). The main differ-
ences between the SDS formulation and the jet-bundle formulation is that in
the former differential operators appear in the interconnection map and that
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the variational derivative of the Hamiltonian plays a different role. These dif-
ferences are caused by a different choice of the independent variables for the
system, sometimes called evolutionary variables, in contrast to the energy vari-
ables. This approach bridges theory of dpH systems with classical Hamiltonian
field theory developed in physics. A detailed comparison of the two approaches
can be found in Schöberl and Siuka [2013] applied on the Mindlin plate as an
example. Moreover, the jet-bundle formulation has been extended to second
order field theories in Schöberl and Schlacher [2015a,b, 2018].

3.1.4 Theoretical Extensions

There have been many efforts in the past two decades to mathematically explore
and extend the fundamental building block in van der Schaft and Maschke
[2002] which is the SDS. We briefly list them in this section, for the sake of
completeness and in order to provide references for the interested reader.

In Vankerschaver et al. [2010], a method for systematically deriving the SDS
for a given system was presented based on symmetry reduction of a canonical
Dirac structure on the co-tangent bundle i.e. the unreduced phase space. In
Nishida et al. [2008a, 2015], the authors studied an extended SDS with dis-
tributed port variables, which makes it a boundary non-integrable structure.
Moreover, the authors show that systems with distributed energy flow can be
transformed to standard ones, without distributed energy flows. This allows
the application of boundary control techniques to the transformed system. The
work of Nishida et al. [2008a, 2015] was extended to manifolds with non-trivial
topology in Nishida and Maschke [2018].

The pH formulation in van der Schaft and Maschke [2002] was defined on a
fixed spatial domain. A relaxation of this assumption for the one-dimensional
case was presented in Diagne and Maschke [2013], where the authors studied
two systems coupled via a moving boundary interface.

A unified modeling procedure of dpH systems for field equations was pre-
sented in Nishida and Yamakita [2005] where a high-order SDS on variational
complexes of jet bundles was used. This class of dpH systems is referred to
as field port-Lagrangian systems [Nishida and Yamakita, 2005]. It has been
shown in Nishida et al. [2006] how field pL systems can be derived system-
atically from conservation laws with a variational symmetry. Moreover, the
authors of Nishida et al. [2006] present a strategy for observing and detecting
the breaking of the variational symmetry for field port-Lagrangian systems.
The practical significance of such symmetry observer have been discussed in
Nishida et al. [2009]. An extension of the work of Nishida et al. [2006] to the
case of infinite-dimensional symmetry of bi-Hamiltonian systems can be found
in Nishida et al. [2007].
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Figure 3.2: The wide variety of physical domains in which the port-Hamiltonian
paradigm was applied to in the literature.

3.2 Modeling of Distributed Parameter Systems

There have been many efforts in the pH community for the past two decades
to implement the generic dpH framework for modeling distributed-parameter
systems in a wide variety of multi-physical domains including mechanical, elec-
trical, magnetic, thermal, and chemical domains, as shown in Fig. 3.2. In this
section, we survey the different physical domains of the distributed parameter
systems modeled in the pH framework in the literature.

3.2.1 Structural Mechanics

The first class of distributed parameter systems presented is structural mechan-
ical systems with its mechanical energy comprising of kinetic and potential
elastic energy. In van der Schaft and Maschke [2002], a model of a vibrat-
ing string was presented with the energy variables chosen as the strain and
momentum. The underlying SDS of the model was a canonical one with the
exterior derivative describing effort-flow relations. In the case of higher-order
models like that of the Euler-Bernoulli [Nishida and Yamakita, 2004] or the
Timoshenko beam [Macchelli and Melchiorri, 2004], the underlying SDS of
the model describes high-order effort-flow differential-relations. The extended
structures consist of compositions of the exterior derivative and the Hodge star
operator. In Brugnoli et al. [2019a,b] a formulation of the thick plates (using
respectively Midlin and Kirchoff models) that employs tensor variables is given
for a coordinate-free pH description. Nonlinear phenomena can be easily in-
corporated in the framework through the constitutive relations, as in Trivedi
et al. [2016], where a nonlinear Euler-Bernoulli beam model was presented in-
cluding two-dimensional stress-strain relations modeling large deflections of the
beam. Another approach for modeling planar beams with large deformations
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is the work of Golo et al. [2003], in which screw theory was used. Under the
assumption of small deviations around an equilibrium configuration, the lon-
gitudinal part of the developed dpH model in Golo et al. [2003] is shown to
correspond to the rod equation, while the transversal part corresponds to the
Timoshenko beam model. The work of Golo et al. [2003] was extended in Mac-
chelli et al. [2006, 2007a] to describe flexible links with one-dimensional spatial
domain deforming in three-dimensional space, where gravity was also included
through the use of a distributed port. In Heidari and Zwart [2019] two different
port-Hamiltonian models for studying longitudinal vibrations in a nanorod are
provided.

In the context of mixed pH systems, i.e. systems merging from the intercon-
nection of finite- and infinite-dimensional pH systems, an inverted pendulum
on a cart was modeled in Trivedi et al. [2011], in which the pendulum was
described by a flexible beam with a tip mass. Moreover, the work of Mac-
chelli et al. [2007a] was extended to the case of a complete complex multi-body
system in Macchelli et al. [2009] with both rigid and flexible links connected
through kinematic pairs. An example of such systems is a robot manipula-
tor with flexible links. Along the same line, a simplified model for a rotating
flexible spacecraft was presented in Aoues et al. [2017], where the model con-
sists of a center rigid hub, two flexible (Euler-Bernoulli) beams each connected
to a tip mass. Finally, in Ramirez et al. [2013], an underactuated simplified
model for a flexible nano-gripper for DNA manipulation was presented. The
model comprised of a flexible (Timoshenko) beam connected to a network of
mass-spring-dampers modeling the DNA bundle, suspension, and actuation
mechanisms.

Several pH models of mechanical systems have been also presented using
the jet-bundle formalism including the Euler-Bernoulli beam [Schöberl and
Schlacher, 2015a], Kirchhoff plate [Schöberl and Schlacher, 2015a, 2018], Tim-
oshenko beam [Schöberl and Siuka, 2014], and Mindlin plate [Schöberl and
Siuka, 2013; Schöberl and Schlacher, 2015b].

3.2.2 Electro-Mechanics

The second class of infinite-dimensional systems presented is electro-mechanical
systems which consists of two different physical domains interacting with each
other in addition to mechanical and electrical ports defined on the boundary of
the domain. In Macchelli et al. [2004a], the dynamics of a piezoelectric material,
connected to a flexible beam, is modeled with the assumptions of quasi-static
electric field, linear behavior and negligible thermal effects. Under the same
assumptions, another model of the piezoelectric dynamics has been presented
in Schöberl et al. [2008] using jet variables. An extended model for a piezoelec-
tric Timoshenko beam has been studied in Voß and Scherpen [2014] which can
represent nonlinear beam deformations as well as dynamic electric fields. The
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model studied was used to describe inflatable space structures. Another type
of electro-mechanical system that was studied is the Ionic Polymer-Metal Com-
posite [Nishida et al., 2008b, 2011], which is a type of electro-active polymer
consisting of a mechanical flexible beam with large deformations in addition to
an electric double layer of polymer and metal electrodes. The mechanical and
electric parts are coupled through electro-stress diffusion. The presented model
incorporated the inherent nonlinearities as well as the multi-spatial-scale struc-
ture of the system. A very original example of mixed finite/infinite-dimensional
pH description of an electro-mechanical system is present in Falaize and Hélie
[2017] where a Rhodes Piano is modeled and simulated.

3.2.3 Fluid Mechanics

Fluid-dynamical systems equations are characterized by two conservation laws;
the balance of mass and momentum of the fluid. Several models of fluid-
dynamical systems have been studied in the literature. The shallow-water
equations (aka Saint-Venant equations) have been used in Pasumarthy and
van der Schaft [2006b]; Hamroun et al. [2006] for the (one-dimensional) mod-
eling of open-channel irrigation systems. An extended model is presented in
Hamroun et al. [2007] to include interconnected reaches with slopes and bed
frictions. In one of the earliest work on distributed pH systems, the dynamics
of an three-dimensional compressible inviscid isentropic fluid was presented in
van der Schaft and Maschke [2001]. The same results were also included in the
original paper of van der Schaft and Maschke [2002] with the energy variables
chosen as the mass density and Eulerian velocity field. The SDS describing
the system is nonlinear, however it was also shown that for irrotational flow,
the underlying SDS becomes the canonical one. An extended model describ-
ing the case of non-isentropic fluids is presented in Polner and van der Vegt
[2014] in terms of the vorticity-dilatation variables. Moreover for the spatial
one-dimensional case, different pH models of fluid-thermal equations can be
found in Lopezlena and Scherpen [2004b], a dpH of Navier Stokes equations for
reactive flows can be found in Altmann and Schulze [2017], while jet-bundle
formulations of the Kortweg-de Vries and Boussinesq equations can be found
in Maschke and van der Schaft [2013].

Some work on fluid-structure interaction has also been conducted in the
dpH framework. In Lequeurre and Tucsnak [2015], the one-dimensional Navier-
Stokes equation is coupled with a point mass to describe a simplified model of
a gas/piston system. Moreover, in Cardoso-Ribeiro et al. [2017], the shallow
water equations in a moving tank are coupled to a flexible beam with piezo-
electric actuators. The whole setup is a model for the fuel sloshing in a tank
connected to very flexible wings in aeronautical applications.
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3.2.4 Magneto-Hydrodynamics

Magneto-hydrodynamical systems are ones in which the fluid’s magnetic behav-
ior and electrical conductance is considered. Examples of such systems include
electrolytes, liquid metals, and plasmas. Such systems comprise of two physi-
cal domains interacting together, i.e. electromagnetism, governed by Maxwell
equations, and fluid mechanics, governed by Euler equations of ideal isentropic
fluids. The coupling term is a function of the free current density and the
magnetic field induction. pH models of the magneto-hydrodynamics equations
based on the jet-bundle formalism can be found in Siuka et al. [2010]; Nishida
and Sakamoto [2010]. Moreover, if the fluid thermal behavior is taken into
consideration, then such models are called thermo-magneto-hydrodynamical
systems. Several research studies have been conducted in Vu et al. [2012]; Vu
and Lefèvre [2013]; Vu et al. [2016] for pH modeling of plasma in nuclear fusion
reactors. The work has also been extended in Vincent et al. [2017] for modeling
burning plasma models.

3.2.5 Chemical Processes

The dpH formalism was also applied fo the modeling of chemical processes
in which heat and mass transport occurs along with chemical reactions. In
Eberard and Maschke [2004], the dpH framework was extended to included
irreversible thermodynamic processes. Then in Eberard et al. [2005], the dif-
fusion process in a heterogeneous mixture is modeled, with an example of the
pressure swing adsorption process.

In Baaiu et al. [2009a], the heat and mass transport phenomena with mul-
tiscale coupling is modeled. The hydrodynamics of the fluid is not modeled
explicitly but is handled by the introduction of a moving reference frame. Sev-
eral studies have been also devoted for reaction-diffusion systems in which there
is coupling between mass transport and chemical reactions. Different pH mod-
els can be found in Zhou et al. [2012, 2015, 2017]; Šešlija et al. [2010, 2014b]. A
different way to model multi-scale systems stemming from the combination of
hyperbolic and diffusive processes is studied in Le Gorrec and Matignon [2013],
where fractional integrals and derivatives are used.

3.3 Analysis and Control of Distributed Param-
eter Systems

In this section, we summarize the main control techniques that have been
developed for dpH systems. As a preamble, it is worth mentioning that when
dealing with infinite-dimensional systems, some intrinsic difficulties arise in the
proofs of stability of equilibria. This is mainly due to the fact that all norms
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are not equivalent in infinite-dimensional spaces. Thus in principle, a norm has
to be chosen in the specific stability argument [Jacob and Zwart, 2012].

The primary contribution of an infinite-dimensional pH model is not to
resolve the aforementioned issues, which are intrinsic in general distributed pa-
rameter systems, but rather to provide a physical understanding of the system
to be controlled. Normally, the Hamiltonian energy appearing in the system
is a good choice for a Lyapunov functional, which can be used for designing
the control law in a more intuitive way. The control techniques developed in
this context aim at generalizing the procedures of energy shaping and damping
injection established for finite-dimensional pH systems within the control by
interconnection paradigm, which is discussed next.

3.3.1 Extension of Control by Interconnection

In Macchelli and Melchiorri [2004], the damping injection technique is applied
to the dpH Timoshenko model to stabilize the beam both at the distributed
and boundary ports. In the same work, control by interconnection to perform
energy shaping of the beam is extended to the infinite-dimensional case fol-
lowing the ideas presented in Rodriguez et al. [2001]. This has been done by
introducing a finite-dimensional controller and a tip mass on the extremities of
the beam and generalizing the concept of Casimir functions for the resulting
closed-loop system. In the same spirit as in Macchelli and Melchiorri [2004], the
dpH model and damping injection control is performed to the two-dimensional
case of the Mildlin plate in Macchelli et al. [2005a].

In Macchelli and Melchiorri [2005], control by interconnection was formal-
ized for a class of mixed pH systems, in the sense of a power conserving inter-
connection between an infinite-dimensional system, ”sandwiched” between two
finite-dimensional ones, all of them in pH form. The control by interconnection
by means of Casimir generation has been extended to this class of systems, al-
lowing for a structural state feedback law able to shift the equilibrium of the
closed-loop system if appropriate conditions on the Casimirs are fulfilled. In
Macchelli et al. [2005b], the same idea was applied for closed-loop systems con-
sisting on the interconnection of two systems only, one finite-dimensional and
the other distributed. A related work is Pasumarthy and van der Schaft [2005]
where only one-dimensional systems are considered. In Pasumarthy and van der
Schaft [2007] the problem of characterizing achievable Casimirs is analysed for
systems merging form the interconnection of finite-dimensional systems at the
boundary of infinite-dimensional ones. Distributed and boundary dissipation
are included in the analysis which is substantially limited to one-dimensional
spatial domain dpH systems in which the SDS is defined on the space of differ-
ential forms. An attempt to tackle the two-dimensional case has been done in
Macchelli et al. [2015b] where control by interconnection has been applied on
dpH systems with rectangular spatial domains.
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3.3.2 Control Design Based on Spatial Discretization

Another control approach is to take advantage of the spatial discretization
algorithms for dpH systems and design the regulator on the basis of the finite-
dimensional approximation. This has been the strategy in Macchelli and Mel-
chiorri [2009]; Macchelli and Melchiorri [2010]; Macchelli [2011, 2012b] where
the Casimirs for the closed-loop system were chosen on the basis of the finite-
dimensional closed-loop approximation and where the connection with the cor-
responding infinite-dimensional Casimirs is studied. In Kotyczka [2014]; Koty-
czka and Brandst [2014], the feedforward control problem is studied for spatially
discretized dpH systems consisting in hyperbolic systems of two conservation
laws. The obtained results rely on the explicit expression of the inverse dynam-
ics, which is available since the discretized system of the considered class pos-
sesses a non zero feedthrough term. In Toledo et al. [2019], an observer-based
controller is designed on the basis of a spatial discretization of a dpH system in
the form (3.4) in such a way that it stabilizes the infinite-dimensional system as
well, avoiding spillover effects. In Cardoso-Ribeiro et al. [2019], the nonlinear
2D shallow water equations are discretized and controlled at the boundary. The
problem is tackled after a reduction to a one-dimensional system performed by
means of symmetry conditions and use of polar coordinates.

3.3.3 Other Control Methods

In Schöberl and Siuka [2011]; Schöberl and Siuka [2013]; Rams and Schöberl
[2017]; Malzer et al. [2019], control by interconnection in terms of Casimir
generation is analysed in the context of dpH systems described using the jet
bundle formulation and not using skew-adjoint operators. In Nishida et al.
[2013], optimal control for dpH systems has been used to derive passivity based
control laws in a differential geometric setting. A numerical algorithm is then
proposed to control a flexible beam with large deformations. In Macchelli
[2016a]; Kosaraju et al. [2017], a Brayton-Moser formulation is given for the
dpH systems in the form (3.4) and a boundary control algorithms is proposed
to shape the mixed-potential function to overcome the dissipation obstacle. In
Trenchant et al. [2017b]; Trang Vu et al. [2017], control by structural invariant
is extended to shape not only the energy of the closed-loop system, but also
its structure. It is shown how a one-dimensional hyperbolic dpH system of two
conservation laws can be shaped in a parabolic one. A similar idea was followed
in Vu et al. [2017a], where the IDA-PBC synthesis is explicitly addressed for a
dpH system with spatial symmetries.
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3.3.4 Interpretation as Boundary Control Systems

The following contributions rely on the functional analytic formulation of Le
Gorrec et al. [2005]. It is important to realize that the machinery connect-
ing dpH systems and boundary control systems was not yet available at the
time at which some of the previously listed control techniques were introduced.
As a consequence, in the first works extending control by interconnection to
dpH systems, the closed-loop system merging from the designed controller is
”solution free” [Macchelli and Melchiorri, 2004], in the sense that existence
of trajectories of the closed-loop system was not addressed. This does not
take away importance to these works, that in principle can be applied to more
general systems than those for which exhaustive functional analysis has been
applied on later.

As previously mentioned, the functional-analytic framework is character-
ized by the following trade-off: the control design gained more rigorously in
the sense that existence of solutions for closed-loop the system is addressed
explicitly with a dramatic decrease of the class of systems that are considered.
In fact, beside some minor variations, the plants on which controllers have been
designed are substantially represented by the PDE (3.4). An isolated exception
is represented by the work of Kurula and Zwart [2015], where well-posedness
of the linear wave equation is studied in an n-dimensional spatial domain. It
is important to cite Le Gorrec et al. [2006], where distributed dissipation was
added to the framework by means of a symmetric operator.

The work on stabilization of dpH systems by means of finite-dimensional
boundary controllers started in Villegas et al. [2005], where asymptotic stability
results based on static and dynamic feedback of boundary control systems
considered in Le Gorrec et al. [2005] were carried out by means of frequency
based arguments. It started to be clear that by restricting the class of systems
described by the differential operator (3.2) to the case N = 1 technical issues
necessary for stability were automatically satisfied, leading to the definition of
the abstract class of linear dpH systems, on one-dimensional spatial domains,
given by

ẋ = P1
∂

∂z
(L(z)x) + (P0 −G0)L(z)x, (3.4)

with P1 and G0 being symmetric matrices and P0 skew-symmetric. Here
z ∈ [a, b] and x lives in the functional space equivalent to L2([a, b],Rn) en-
dowed with the inner product that makes its induced norm equal to twice the
energy functional. It is clear that the names P1, P0 derive from the indices
of the truncated series in (3.2) and G0 is the operator describing distributed
dissipation.

In the PhD thesis of Villegas [2007], a great number of results in terms of
stability and stabilization have been formalized for systems in form (3.3)-(3.4).
Many arguments highlighting the difficulty of extending the functional analytic
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approach to higher dimensional spatial domains are present in Villegas [2007].
The key result in Villegas et al. [2009] provided an exponential stability ar-
gument for boundary control systems systems in pH form (3.4) by means of
adding dissipation on the boundary of the spatial domain. This result has been
of great importance since it provided a practical check to evaluate exponential
stability and was instrumental for future stabilizability results. In Zwart et al.
[2009], results on well-posedness of systems in the form (3.4) are carried out
even for the case in which the autonomous system does not generate a con-
traction semigroup. At this point the richness of the framework was enough to
publish the monograph Jacob and Zwart [2012], where the important results
for systems (3.4) were collected and developed.

Further important research involving exponential stabilization of bound-
ary control systems in pH form is present in Ramirez et al. [2014], where the
methodology developed in Villegas et al. [2009] has been used to study sta-
bilizability of (3.4) by means of finite-dimensional boundary controllers, con-
sidered to be finite-dimensional pH systems with non zero feedthrough term.
It is worth mentioning that practically every result in stabilizability of sys-
tems in form (3.3) or (3.4) make the assumption of a particular input-output
parametrization, e.g. impedance passivity [Le Gorrec et al., 2005]. In Macchelli
and Califano [2018], the results are extended to any possible parametrization
introduced in Le Gorrec et al. [2005] such that the autonomous boundary con-
trol systems generates a contraction semigroup and consequently the supply
rate can assume any quadratic form of the input-output pair. Here the finite-
dimensional controllers are assumed to be general linear-time-invariant systems,
and not more in pH form, in order to deal with general supply rates. This result
has been instrumental to handle more general systems of coupled PDEs and
ODEs and as result repetitive control systems [Califano et al., 2017; Macchelli
and Califano, 2018] have been cast in this rigorous framework to derive novel
stability conditions. In Jacob and Zwart [2018], the operator based analysis to
dpH systems is extended to address control theoretic properties like controlla-
bility and input-to-state stability. It is also important to cite the PhD thesis
of Augner [2018], where some stability results for the second order case are
present.

Several research efforts in the literature focused on interconnecting linear
dpH systems with nonlinear controllers, ending up with the difficult task of
handling a nonlinear, infinite-dimensional closed-loop systems. This scenario
is particularly challenging and only few recent results are present in terms
of well-posedness and stabilization. In particular in Ramirez et al. [2017a],
a class of nonlinear passive systems stabilizing first asymptotically and then
exponentially dpH in form (3.4) is presented. This work has inspired Califano
et al. [2018], where stability analysis for nonlinear repetitive control schemes has
been performed for a class of systems, subsequently extended in Califano and
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Macchelli [2019]. In Augner [2018], a nonlinear semigroup approach is used to
prove exponential stability of dpH systems by means of nonlinear dissipative
feedback. In Hastir et al. [2019], a different approach is used to study the
interconnection of infinite-dimensional linear systems interconnected with a
static nonlinearity. The result can be applied in this framework to show well-
posedness of a vibrating string in pH form with a nonlinear damper at the
boundary.

Many research efforts focused on re-investigating “Casimir generation” for
systems in the form (3.4) in order to properly address well-posedness (i.e.
existence and smoothness of solutions) for the closed-loop system. In Mac-
chelli [2012a], control by interconnection by means of Casimir generation is
revisited in this framework without dissipation (i.e. G0 = 0 in (3.4)) where
the closed-loop system merges form the interconnection of the dpH and a
finite-dimensional boundary regulator in pH form. Conditions for existence
of Casimirs and asymptotic stability conditions are given. In Macchelli [2014,
2013], the class of stabilising controllers has been enlarged by relying on the
parametrisation of the system dynamics provided by the image representation
of the SDS to overcome the dissipation obstacle, i.e. the problem of steering
a dynamical system in a state that dissipates energy. In this way the bound-
ary control is not generated implicitly by means of Casimirs of the closed-loop
system but directly as feedback control law. The methodology is applied to
the whole class of (3.4) in Macchelli et al. [2015a]. In Macchelli [2015], the
dissipation obstacle is overcome in a different way: by defining a new passive
output and applying control by interconnection to the new input-output pair
of the dpH system it was shown how to overcome the dissipation obstacle by
means of Casimir generation for the new closed-loop-system. In Le Gorrec
et al. [2014], asymptotic stability for (3.4) is proven by means of a boundary
finite-dimensional pH controller and Casimir generation for the closed-loop sys-
tem. The methodology is applied to a nanotweezer DNA-manipulation device.
In Macchelli [2016b], the control by interconnection paradigm is augmented
with an output feedback control loop providing exponential stability of the
closed-loop system of the internally shaped equilibrium.

An important contribution summarizing the ideas about boundary con-
trol laws for (3.4) is Macchelli et al. [2017b], where Casimir generation, state
feedback control laws able to overcome dissipation obstacle, and asymptotic
stabilization with damping injection are extensively addressed. In Ramirez
et al. [2017b], a backstepping boundary controller is designed for a simple one-
dimensional hyperbolic lossless dpH system, showing that pH structure is able
to simplify the control design process for a target system with dissipation. In
Macchelli et al. [2017a], the same idea to map system (3.4) into a target one is
explored through a proper coordinate transformation preserving the Hamilto-
nian structure.
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Table 3.1: Structure-preserving discretization methods for port-Hamiltonian
systems.

Discretization
Method

References

Finite Element Golo et al. [2002]; Talasila et al. [2002]; Golo et al.
[2004]; Baaiu et al. [2006]; Bassi et al. [2007]; Baaiu et al.
[2009b]; Eberard et al. [2007]; Macchelli et al. [2007b];
Voß and Weiland [2011]; Pasumarthy et al. [2012]; Wu
et al. [2015],

Finite Difference Lopezlena and Scherpen [2004a],Trenchant et al.
[2018a],Trenchant et al. [2017a],Trenchant et al. [2018b]

Finite Volume Kotyczka [2016],Serhani et al. [2018]

Partitioned Fi-
nite Element

Cardoso-Ribeiro et al. [2018],Serhani et al.
[2019c],Serhani et al. [2019b],Serhani et al. [2019a]

Pseudo-spectral Harkort and Deutscher [2012],Moulla et al.
[2011],Moulla et al. [2012],Vu et al. [2013a],Vu
et al. [2017b]

Discrete Exterior
Calculus

Kotyczka et al. [2018], Šešlija et al. [2011],Šešlija et al.
[2014a],Šešlija et al. [2012]

3.4 Discretization of Distributed Parameter Sys-
tems

For numerical simulation and control synthesis, it is necessary to have fi-
nite approximations of the infinite-dimensional pH system models or infinite-
dimensional controllers discussed earlier. These finite-dimensional approxima-
tions should maintain the ”openness” property to be able to interconnect it
via its ports to other systems. The conventional numerical algorithms emanat-
ing from the numerical analysis field fail to preserve the intrinsic pH system
structure and properties, such as passivity, symplecticity, and conservation laws
[Šešlija et al., 2012].

This has motivated research for the past two decades in developing structure-
preserving discretization techniques of dpH systems, summarized in Table 3.1.
These methods, similar to traditional ones, are based either on the approxi-
mation of equations or the approximation of solutions [Baaiu et al., 2009b].
The first category includes finite-differences methods and finite-volume meth-
ods, while the second category includes weighted residual methods and finite-
element methods.
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One of the earliest works in structure-preserving discretization techniques
was the work of Golo et al. [2002, 2003, 2004] where a mixed finite-elements
method was presented. The method of Golo et al. [2004] considered the ap-
proximation of the differential forms by Whitney forms. The method was used
to discretize the telegrapher’s equation [Golo et al., 2002], wave equation [Golo
et al., 2003], chemical adsorption column [Baaiu et al., 2006], Maxwell’s equa-
tions [Eberard et al., 2007], and a vibro-acoustic system [Wu et al., 2015].

The work of Golo et al. [2004] was extended to the case of a non-constant
SDS in Pasumarthy and van der Schaft [2006a]; Pasumarthy et al. [2012] for
the shallow water equations, and extended to irreversible pH systems in Baaiu
et al. [2009b]; Voß and Weiland [2011]. Another method that was inspired by
Golo et al. [2004] is Bassi et al. [2007] which was formulated for the functional
analytic formulation of pH systems discussed in Sec. 3.1.2. The algorithm
described in Bassi et al. [2007] was implemented in Macchelli et al. [2007b] for
a flexible link.

Structure-preserving discretization methods based on finite differences and
finite volumes have also been presented in the literature. In Clemente-Gallardo
et al. [2002]; Lopezlena and Scherpen [2004a], a method based on discretizing
the spatial domain into a grid of nodes where finite differences are used to
approximate the differential form variables of the pH system. A drawback of
this method, unlike the method of Golo et al. [2004], is that only uniform grids
can be used. This problem was avoided in Trenchant et al. [2017a, 2018b] by
using staggered-grids finite differences thus allowing the use of different grids.
Rectangular grids have been used in Trenchant et al. [2017a] while cylindrical
grids have been used in Trenchant et al. [2018a]. A finite-volume scheme based
on the generalized leapfrog method has been introduce for one-dimensional
systems in Kotyczka [2016] and extended to two-dimensional systems in Serhani
et al. [2018].

A promising and very recent structure-preserving numerical method is the
Partitioned Finite Element Method (PFEM). It has been introduced in Cardoso-
Ribeiro et al. [2018], developed in Serhani et al. [2019c,b,a] and successfully
applied for discretization and simulation of thick plate models in the already
referred papers Brugnoli et al. [2019a,b]. The method consists in rewriting the
system in a weak-form where only some of the equations are integrated by parts.
As consequence the SDS and the constitutive equations are discretized sepa-
rately, preserving the power balance of the open system (including boundary
control and observation) at the discrete level.

Another class of discretization methods that has been used in the literature
includes pseudo-spectral methods, which can be considered a generalization of
mixed finite element methods when low-order polynomials are used for approx-
imation. In Moulla et al. [2011] a method based on polynomial approximation
bases, with Lagrange interpolation, is introduced and used to discretize the
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Table 3.2: Application research papers combining different aspects of the pH
framework. The aspects include Modeling, Discretization, Control, and Exper-
imental Validation.

Modeling Discretization Control Experiment

Banavar and Dey [2010] X X
Hamroun et al. [2010] X X X X
Siuka et al. [2011] X X
Voß and Weiland [2011] X X X
Nishida et al. [2012] X X X
Ramirez et al. [2013] X X
Vu et al. [2013b] X X X
Šešlija et al. [2014b] X X
Kotyczka and Blancato [2015] X X X
Trenchant et al. [2015] X X
Trivedi et al. [2016] X X
Aoues et al. [2017] X X X
Cardoso-Ribeiro et al. [2017] X X X X
Brugnoli et al. [2019a,b] X X

lossless transmission line [Moulla et al., 2011] and the shallow water equations
[Moulla et al., 2012]. The aforementioned method was extended in Vu et al.
[2013a, 2017b] using Bessel function bases and applied to a one-dimensional
Tokamak model. Another pseduo-spectral method was introduced in Harkort
and Deutscher [2012] using a generalized Galerkin projection method for dis-
cretizing linear pH systems in the functional analytic approach.

A natural approach to the structure-preserving discretization of pH systems
is to mirror the continuous exterior calculus formulation using discrete exterior
calculus. The framework replaces the smooth structures in exterior calculus
by their discrete analogues, e.g. replacing the smooth manifold by a simplicial
complex and replacing the differential forms by co-chains. The conventional
discrete exterior calculus methods were extended from the Hamiltonian setting
to the port-Hamiltonian setting in the work of Šešlija et al. [2011, 2012] in
an algebraic topology setting. The main results of Šešlija et al. [2011, 2012]
have been made more accessible in Šešlija et al. [2014a] by being rewritten
in matrix representations instead of the algebraic topology nomenclature. A
closely-related work to the discrete exterior calculus formulation is Kotyczka
et al. [2018] which was based on the weak-form of the SDS of the pH system.

3.5 Conclusion

In this survey paper we reviewed the topic of distributed port-Hamiltonian
systems that started about 20 years ago. We analyzed and classified over 150
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studies that we considered relevant. Our pedagogical classification is based
on conceptual approaches and not on chronological order. The aim of this
review is to help researchers in consulting and examining relevant references,
and also in understanding the conceptual backbone of the topic, together with
their variations. This manuscript highlights the fact that the distributed port-
Hamiltonian framework provides a deep understanding of the different multi-
physical natural phenomena by explicitly separating energetic and interconnec-
tion properties of the system.

One of the key benefits of the port-Hamiltonian framework is the unified
language and conceptual insight that can be applied for the synthesis of a
distributed parameter system; namely the modeling, discretization, analysis,
and control, in addition that these powerful techniques are directly usable at the
practical level. Table 3.2 lists the research studies that applied the distributed
port-Hamiltonian framework through the combination of the aforementioned
steps. Taking into consideration also that the pH framework can incorporate
both finite and infinite dimensional systems in a similar manner conceptually,
we believe this framework to be very fruitful in the near future.





CHAPTER 4

Port-Hamiltonian Modeling of Rigid Body
Motion

The study of rigid body modeling is central to the mathematical theories of
robotics. The topic of rigid bodies is a recurrent theme for serial and parallel
rigid manipulators as well as for ground, underwater, and aerial mobile robots.
In this chapter, we consider the problem of modeling rigid body motion in the
port-Hamiltonian framework.

The purpose of the port-Hamiltonian modeling of rigid body motion in
this chapter is threefold. First, it serves as a case study for the general port-
Hamiltonian modeling procedure described in Ch.2. Second, the derived open
port-Hamiltonian model will be used for designing control algorithms for aerial
physical interaction using a flying-end effector. Third, the model also serves as
a building block that could be interconnected to other subsystems to compose
more complex port-Hamiltonian models, e.g. fluid-structure interaction.

In this work, we follow the Lie group approach for describing rigid body
kinematics. The configuration space of a rigid body is the group of proper
isometries of Euclidean spaces, known as the special Euclidean group SE(3).
This group is indeed special and significant as evident in this quote by J. M.
Selig. [Selig, 2004] “This group is perhaps the most important one for robotics”.

Instead of starting immediately by postulating SE(3) as the configuration
space for a rigid body, we take the long route of introducing many concepts first
abstractly in a coordinate-free manner, following the approach of [Stramigioli,
2001]. This coordinate-free treatment will clarify many assumptions that are
hidden and usually forgotten in coordinate-based representations. This will be
achieved by 1) clearly differentiating between the abstract coordinate descrip-
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tion of rigid body motion and its coordinate representation using matrices, and
2) highlighting the mathematical nature of the different maps and spaces that
arise when describing rigid bodies.

After describing rigid body kinematics geometrically on SE(3), we approach
the dynamic modeling problem in the port-Hamiltonian framework. We demon-
strate how to apply the procedure described in Ch.2 combined with the Lie-
Poisson reduction method for constructing a port-Hamiltonian model for a rigid
body. The procedure will cover all stages starting from a conceptual tearing
process of rigid body motion into energetic subsystems and ending by an open
compact port-Hamiltonian model.

This chapter is organized as follows: In Sec. 4.1, we start by an introduction
to the geometric formulation for describing kinematics of rigid body motion,
explicating the Lie group structure of SE(3). Then, in Sec. 4.2, we address the
port-Hamiltonian modeling procedure of a rigid body starting by modeling its
kinetic energy and gravitational potential energy separated from each other,
and then combined together. Finally, we conclude this chapter in Sec. 4.3.

4.1 Geometric Formulation of Rigid Body Kine-
matics

In this section we present the kinematics of a rigid body in a geometric manner
using the matrix Lie group approach. As motivated in the introduction of this
chapter, we first introduce the abstract concepts related to a rigid body in a
coordinate-free manner, followed by its coordinate-based description. The aim
of the presented material is to deductively identify how SE(3) is the configu-
ration space of a rigid body.

The interesting feature of SE(3) is that being a manifold as well as a group,
it becomes a Lie group. Locally, SE(3) looks like Euclidean space Rn, but
globally it is not isomorphic to Rn and thus does not have a vector space
structure. Therefore, it requires different tools to perform calculus on it. In
addition, the rich structure of SE(3) as a matrix Lie group allows us to study
rigid body motion using its matrix Lie algebra se(3), which will play a central
role in the development of a decomposed port-Hamiltonian model.

4.1.1 Coordinate-free Formulation of the Configuration
Space

The abstract coordinate-free treatment in what follows is based on the work of
Stramigioli [2001] which goes in more depth starting from concepts of projective
geometry. This section can be considered a summary of the main points men-
tioned in Stramigioli [2001], where our starting point will be from the concept
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Figure 4.1: An example of a rigid body B, an Euclidean space E , and its
associated coordinate frame Ψ.

of Euclidean space.
An n-dimensional Euclidean space, denoted by E , is intuitively an abstrac-

tion of the physical space we are living in, and will be the fundamental math-
ematical structure postulated. Associated to E is a vector space E∗ equipped
with an inner product �,� : E∗ × E∗ → R. Elements of E are called points
and denoted by p ∈ E , while elements of E∗ are called free vectors, or trans-
lation vectors, denoted by v ∈ E∗. Mathematically, the Euclidean space E
has the structure of oriented metric space that is equipped with 1) a metric
d : E × E → R+ defining the distance between any 2 points in E , 2) an n-form
Ω : E∗ × · · · × E∗ → R specifying the orientation of the space. Intuitively in 2D,
Ω allows one to say when a cycle in E goes around clockwise or counterclock-
wise, whereas in 3D Ω defines when a figure is left-handed or right-handed.

The abstract space E is to be distinguished from a specific example of it
which is the real n-space Rn equipped with the standard inner product. Con-
cepts relying on E are coordinate-free, whereas Rn allows associating numbers
to these concepts. The passage from an n-dimensional Euclidean space E to
the real n-space Rn is achieved by introducing the concept of a coordinate
frame.

Definition 4.1.1 (Coordinate Frame). A coordinate frame for the Euclidean
space E is the 4-tuple Ψ := {o, ê1, ê2, ê3}, with o ∈ E and ê1, ê2, ê3 ∈ E∗
are linearly independent free vectors. We call Ψ a right-handed orthonormal
coordinate frame, if the basis ê1, ê2, ê3 are orthonormal and Ω(ê1, ê2, ê3) = +1.
The point o is called the origin of the frame and is the preferred point in E
representing the zero origin (i.e. identity element) of Rn.

A fact about Euclidean spaces is that all Euclidean spaces of a given dimen-
sion n are isomorphic, i.e. essentially there is only 1 unique Euclidean space of
dimension n. Therefore, any information about E is equivalently available in
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Figure 4.2: Example of a 2D- Euclidean system S3(2) = {E1, E2, E3} consisting
of an observer E1 and two rigid bodies E2 and E3.

studying Rn using coordinates because E and Rn are isomorphic through the
use of a coordinate frame Ψ. However, the drawback is that conceptually a
coordinate free treatment is more fundamental without a preferred basis and
preferred origin. In addition, using coordinates hides the abstract nature of a
given mathematical entity and causes conceptual confusion.

Now we introduce the concept of a rigid body. A rigid body is mathemat-
ically the pair (B, ρ) where B ⊂ E is the matter set which is a compact subset
of points of E where matter is present, and ρ : B → R+ is the continuous mass
density function. The mass density function will be relevant for the dynamics
considerations in Sec. 4.2.1. Fig. 4.1 illustrates the different objects introduced
so far.

Before defining the configuration of a rigid body we introduce several ab-
stract structures. We start by defining an Euclidean system.

Definition 4.1.2 (Euclidean System). An n-dimensional Euclidean system of
order m is the set Sm(n) := {E1, E2, · · · , Em} of m, n-dimensional oriented
Euclidean spaces.

A Euclidean system consists of a collection of rigid bodies and observers.
An observer is an example of an Euclidean space with the matter set being the
empty set. In practice an observer could correspond to an exterioceptive sensor
like a camera or a motion capture system. An example of a two-dimensional
Euclidean system (in the plane) is illustrated in Fig. 4.2. The material treated
is general and applicable to both 2-dimensional systems (rigid bodies in a plane)
and 3-dimensional systems (rigid bodies in a space).

In order to describe the relative pose (position and orientation) of two
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Euclidean spaces in an Euclidean system with respect to each other, we need
the concept of an isometry.

Definition 4.1.3 (Isometry). An isometry is a bijective map hji : Ei → Ej
between the metric spaces (Ei, di) and (Ej , dj) such that dj(h

j
i (p), h

j
i (q)) =

di(p, q),∀p, q ∈ Ei. If i = j we call hi := hii an auto-isometry of Ei.

Isometries are the structure preserving maps between metric spaces i.e. the
maps that preserve the metric associated to each Euclidean space. Examples of
isometries include translation, rotation, reflection, and combinations of them.
The set of isometries between the n-dimensional Euclidean spaces Ei and Ej is

denoted by Eji (n), while the set of auto-isometries of Ei is denoted by Ei(n).
As physical rigid body motions include combinations of translations and

rotations but no reflections, we should restrict to a subset of Eji (n) (and Ei(n))
to represent the configuration of a rigid body. We do that by restricting the
isometries hji that preserve the orientation Ωi of the Euclidean space, and
thus excluding isometries that include reflection. We refer to the orientation
preserving isometries as positive isometries. The set of positive isometries
from Ei to Ej is denoted by SEji (n), while the set of positive auto-isometries

of Ei is denoted by SEi(n). An element hji ∈ SE
j
i (n) represents the relative

pose of Ei with respect to Ej . Whereas an element hi ∈ SEi(n) represents the
configuration of the rigid body Bi associated to Ei, and SEi(n) represents its
configuration space.

Now the key point that is usually forgotten is that we can identify SEji (n)
and SEi(n) by choosing a specific reference configuration. With reference to
Fig. 4.3 (left), we can associate a relative pose hji ∈ SEji (n) to elements of

SEi(n) and SEj(n) using a reference relative pose rji ∈ SE
j
i (n), such that

hji = rji ◦ hi = hj ◦ rji . (4.1)

Thus, we can use hji ∈ SE
j
i (n) to represent the configuration of a rigid body Bi

in Ei. Note that SEji (n) represents the space of absolute relative poses between
two Euclidean spaces independently of any relative reference pose, thus it is
intrinsically defined, whereas the identification of a relative pose by an element
of SEi(n) or SEj(n) is not intrinsic as it depends on the preferred choice of

reference pose rji .

4.1.2 Numerical Representation of the Configuration Space

The material presented so far considers the configuration space of a rigid body
and relative poses in an abstract coordinate-free manner. As mentioned earlier,
the coordinate representation of the presented concepts in Rn is achieved by
the introduction of a coordinate frame Ψk that is associated to each Euclidean
space Ek in an Euclidean system Sm(n).
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Configuration

of Rigid Body

Reference 

Relative Pose

Relative Pose

Coordinate

Chart

Abstract Relative Pose

or Relative Pose

Coordinate Representation

Figure 4.3: Identification of the different isomorphisms related to the configu-
ration of a rigid body. Left diagram shows how to identify SEi(n) and SEj(n)

with SEji (n), while right diagram shows how to identify SEji (n) with Iso(Rn)

The coordinate representation of a point p ∈ E and a free-vector v̂ ∈ E∗ in Ψ
are given respectively by p = piêi and v̂ = v̂iêi where the Einstein summation
convention has been used. The coordinates pi, v̂i ∈ R are defined by

pi :=� (p− o), êi �, v̂i :=� v̂, êi �, i ∈ {1, · · · , n}, (4.2)

where�,� is the inner product associated to E∗, and (p−o) ∈ E∗ denotes the
vector pointing1 from the origin o to the point p.

Associated to each frame Ψk is an isomorphism ψk : Ek → Rn, called the
coordinate chart, with its component functions given by ψik : p 7→ pi for any
p ∈ Ek. With reference to Fig. 4.3 (right), we can assign an abstract relative
pose hji ∈ SE

j
i (n) to an isomorphism φhji

∈ Iso(Rn)

φhji
= ψj ◦ hji ◦ ψ

−1
i , (4.3)

which corresponds to the numerical representation of the relative pose of frame
Ψi with respect to frame Ψj . The link between the coordinate-free formulation
and the standard matrix Lie group approach on Rn is completed by choosing
the reference pose rji ∈ SE

j
i (n) of the Euclidean system in (4.1) such that all

coordinate frames coincide, i.e.

rji = ψ−1
j ◦ idRn ◦ ψi, (4.4)

where idRn denotes the identity map in Rn. The intuition behind this step
is that we identify the identity map as the standard reference(home) config-
uration. Any subsequent pose of a rigid body (or observer) in a Euclidean

1which makes sense due to the Euclidean structure via parallel transport.
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system is then described by the rigid body transformation that transforms
the reference configuration of the body to its current configuration.

Now we look in more depth at general isometries φh of Rn which preserve the
Euclidean distance, and thus represent rigid body transformations (including
reflections). It is well known that the action of any isometry φh : Rn → Rn on
a general vector v ∈ Rn can be written as a combination of a rotation and a
translation [Selig, 2004]

φh(v) = Mv+ ξ, M ∈ O(n), ξ ∈ Rn, (4.5)

where ξ is a constant translation vector, and M is an orthogonal matrix be-
longing to the set of orthogonal transformations of Rn given by

O(n) := {M ∈ Rn×n|MM> = In}. (4.6)

Therefore, we can identify any isometry φh of Rn by the pair (M , ξ) =: h ∈
E(n). We denote by E(n) the (matrix) Euclidean group that represents rigid
body transformations, which is defined as follows.

Definition 4.1.4 (Euclidean group). The Euclidean group is a group (E(n), •),
with the set E(n) := {h = (M , ξ) ∈ O(n) × Rn}, the group operation
• : E(n)× E(n)→ E(n) is defined as h2 •h1 = (M2M1,M2ξ1 + ξ2), for hi =
(Mi, ξi), i = {1, 2}, and the inverse operation defined as h−1 = (M−1,−M−1ξ).

From the previous definition, it can be seen that E(n) is isomorphic to the
direct product O(n)×Rn as sets but not as groups. Therefore, E(n) is said to
be the semi-direct product of the groups O(n) and Rn denoted as

E(n) = O(n) nRn, (4.7)

where Rn is considered as a commutative group with the group operation being
the addition operator “+”.

An orthogonal matrix M ∈ O(n) satisfies MM> = In, which implies that
det(M) = ±1. Thus, the set O(n) consists of two disconnected components:
the first corresponding to matrices with det(M) = +1, which correspond to
rotations around the origin, and the second are matrices with det(M) = −1,
which correspond to reflection. Therefore, to properly model physical rigid
body transformations, excluding reflections, we restrict O(n) to the subgroup
defined as

SO(n) := {R ∈ O(n)|det(R) = +1},

which is known as the special orthogonal group, and its elements are called
rotation matrices. Consequently, we restrict E(n) to the semidirect product

SE(n) := SO(n) nRn ⊂ E(n),
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which is known as the special Euclidean group, with an element h ∈ SE(n)
corresponding to the pair (R, ξ) ∈ SO(n) nRn.

Using concepts from projective geometry [Stramigioli, 2001], there exists a
bijective group homomorphism between SE(3) and a subspace of the general
linear group GL(n+ 1) that fortunately allows us to use standard matrix oper-
ations to perform rigid body transformations, instead of working with the pair
(R, ξ). This group homomorphism is defined by

SE(n)→ HM(n+ 1) ⊂ GL(n+ 1)

h = (R, ξ) 7→
(
R ξ
0 1

)
=: H.

(4.8)

The matrix H ∈ HM(n+ 1) is called the homogeneous representation of h ∈
SE(n) and we denote the space of homogeneous matrices by HM(n+ 1). The
homogeneous notion is due to the connection with projective transformations
[Stramigioli, 2001].

The group and inverse operations of SE(n), given in Def. 4.1.4, are now
represented by the matrix multiplication and inverse operations:

H2H1 =

(
R2 ξ2

0 1

)(
R1 ξ1

0 1

)
=

(
R2R1 R2ξ1 + ξ2

0 1

)
, (4.9)

H−1 =

(
R ξ
0 1

)−1

=

(
R> −R>ξ
0 1

)
. (4.10)

Moreover, the action of SE(n) on Rn in (4.5) is now identified by the action of
HM(n+ 1) on Rn+1, as follows. First, we assign a vector2 v ∈ Rn to a vector
V ∈ Rn+1 defined by V > := (v>, 1). Then, the action of the transformation
H ∈ HM(n+ 1) on V is represented by matrix multiplication such that

HV =

(
R ξ
0 1

)(
v
1

)
=

(
Rv+ ξ

1

)
, (4.11)

which recovers (4.5). The components of V ∈ Rn+1 are referred to as the
homogeneous coordinates of v ∈ Rn. More precisely, V is a representative of
the equivalence class that corresponds to v in the projective space.

In conclusion, we have presented four mathematical objects that correspond
to the configuration of a rigid body, summarized in Table 4.1. While the
numerical matrices are useful for calculations, the abstract maps are useful
for understanding the intrinsic properties of a rigid body (cf. [Stramigioli,
2001]), and it is extremely beneficial to distinguish between these different
mathematical objects on a conceptual level.

2which corresponds to the coordinate representation of a point in E.
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Abstract Configuration hi ∈ SEi(n)

Abstract Relative Pose hji ∈ SE
j
i (n)

Rotation Matrix & Translation Vector (Rj
i , ξ

j
i ) ∈ SE(n)

Homogeneous Matrix Hj
i ∈ HM(n+ 1)

Table 4.1: Different mathematical objects corresponding to the configuration
of a rigid body.

Remark 4.1.5. In the remaining of this chapter, we will primarily refer to
the configuration space of a rigid body as SE(n), and we will work with ho-
mogeneous matrices for calculations. For simplicity of notation, we will abu-
sively refer to the space of homogeneous matrices as SE(n), and thus write
H ∈ SE(n).

The configuration space SE(n) has been presented so far with the structure
of a group that is the semidirect product of two subgroups: SO(n) and Rn.
In fact, SE(n) has both the structure of a smooth manifold and a group.
Moreover, with the fact that the group operation (4.9) and the inverse operation
(4.10) are smooth maps, SE(n) has consequently the structure of a matrix Lie-
group. In addition, SO(n) is a Lie-subgroup of SE(n), with the group operation
of matrix multiplication and the inverse operation as the matrix transpose.

In the coming two sections, we discuss the Lie-group structure of SO(n) and
how to represent rigid body rotational motion, followed by the Lie-group struc-
ture of SE(n) and how to represent general rigid body motion. For convenience
of notations, the rest of this chapter will be presented for the three-dimensional
case (n = 3).

4.1.3 Lie-Group Structure of SO(3)

A rigid body rotational motion is represented mathematically by a curve γR :
t 7→ Rt on the smooth manifold SO(3), which provides a family of trans-
formation (rotation) matrices Rt that describe the evolution of the reference
configuration to the current configuration, as shown in Fig. 4.4.

As illustrated in Fig. 4.4, the rate of change of the rigid body rotation is
represented by the velocity of the curve γR at a point Rt which is an element
(vector) of the tangent space to SO(3) at Rt, denoted by Ṙt ∈ TRtSO(3). At
any point R ∈ SO(3) in the manifold, the tangent space TRSO(3) is defined
as

TRSO(3) := {Ṙ ∈ R3×3|ṘR = −(ṘR)>}, (4.12)

which follows from differentiating the condition RR> = I3 in (4.6).
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Figure 4.4: Illustration of rigid body rotation as a curve γR(t) on SO(3) which
represents a family of transformation (rotation) matrices on R3.

The tangent space TRSO(3) at any R ∈ SO(3) has the structure of a finite-
dimensional vector space, with dimension same as SO(3) i.e. dim(TRSO(3)) =
dim(SO(3)) = 3. Note that numerically, Ṙ is a 3× 3 matrix, whereas geomet-
rically it is a vector in the three-dimensional vector space TRSO(3).

The dual space to TRSO(3) is called the cotangent space to SO(3) at R,
and is denoted by T ∗RSO(3). The cotangent space consists of all linear maps
ΓR : TRSO(3)→ R, referred to as covectors (or 1-forms).

A recurrent example of a covector in T ∗RSO(3) is the derivative of any
smooth function F : SO(3)→ R with respect to R ∈ SO(3), given by

dF

dR
(R) ∈ T ∗RSO(3). (4.13)

Furthermore, the rate of change of such smooth function along a curve in SO(3)
is expressed by

Ḟ (Rt) =

〈
dF

dR
(Rt)

∣∣∣∣ Ṙt

〉
SO

, (4.14)

where 〈 ·| ·〉SO denotes the duality pairing on the vector space TRSO(3).
The collection of all tangent spaces at every point R ∈ SO(3) comprises

the tangent bundle TSO(3). Similarly, the collection of all cotangent spaces
at every point R ∈ SO(3) comprises the cotangent bundle T ∗SO(3). The
cotangent bundle is extremely significant in geometric mechanics and plays a
fundamental role in Hamiltonian mechanics.

The Lie-algebra so(3) of SO(3)

By utilizing the Lie-group structure of SO(3), it is possible to describe the
rotational motion of a rigid body independent of the current configuration R.
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Figure 4.5: Mapping the tangent bundle TSO(3) to the Lie-algebra so(3). The
maps π and πf represent the canonical and fiber projections, respectively.

We can map any element (R, Ṙ) of the tangent bundle TSO(3) to a unique
element of the tangent space TISO(3) at the group identity I ∈ SO(3), i.e. the
matrix Lie-algebra so(3). This element corresponds physically to the angular
velocity ω̃ ∈ so(3) of the rigid body which has a geometrical interpretation,
unlike Ṙ ∈ TRSO(3) which depends on the current rotation matrix R.

The matrix Lie algebra so(3) is given by the set of skew-symmetric matrices:

so(3) = TISO(3) = {ω̃ ∈ R3×3|ω̃ = −ω̃>},

which follows from (4.12). It can be shown that the corresponding Lie bracket
of so(3) is given by the matrix commutator:

[ω̃1, ω̃2]so = ω̃1ω̃2 − ω̃2ω̃1, ω̃1, ω̃2 ∈ so(3). (4.15)

The mapping from the tangent bundle to the Lie-algebra can be achieved
using the pushforward of two canonical maps on the Lie group SO(3): the
right-translation and the left-translation map denoted, respectively, by

RR : SO(3)→ SO(3), LR : SO(3)→ SO(3).

Let Ṙj
i ∈ SO(3) denote the instantaneous relative rotational motion of a

frame Ψi with respect to another frame Ψj . We can identify Ṙj
i with two

elements of the Lie algebra so(3) of the Lie group SO(3), as shown in Fig. 4.5.
The first element, denoted by ω̃j,ji ∈ so(3), corresponds to the mapping of Ṙj

i

using the pushforward of the right translation map at Rj
i ∈ SO(3)

(RRij )∗,Rji
: TRji

SO(3)→ TISO(3).

Whereas the second element, denoted by ω̃i,ji ∈ so(3), is achieved by using the
pushforward of the left translation map at Rj

i ∈ SO(3)

(LRij )∗,Rji
: TRji

SO(3)→ TISO(3).
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The two elements are expressed as

ω̃j,ji :=(RRij )∗,Rji
(Ṙj

i ) = Ṙj
iR

i
j ∈ so(3), (4.16)

ω̃i,ji :=(LRij )∗,Rji
(Ṙj

i ) = Ri
jṘ

j
i ∈ so(3), (4.17)

where the pushforward maps are given by matrix multiplication, since SO(3)
is a matrix Lie group [Holm et al., 2009, Ch.5].

An element of so(3) corresponds to an intrinsic, configuration-independent
representation of the rotational motion. Both angular velocities ω̃j,ji and ω̃i,ji
describe the rotational motion of Ψi with respect to Ψj , but ω̃j,ji expresses the
motion in Ψj , while ω̃i,ji expresses the motion in Ψi.

If frame Ψi =: ΨB is chosen as a frame fixed to a rigid body and frame
Ψj =: ΨI is chosen as an inertial-fixed frame, then the Lie algebra element

ω̃B,IB = ṘI
BR

B
I is usually called the body-angular velocity, whereas ω̃I,IB =

RB
I Ṙ

I
B is called the spatial (inertial) angular velocity. Note that both elements

describe the same (abstract) rotation of the rigid body, but expressed in two
different frames.

An important characteristic of so(3) is that it can be identified with R3

through the isomorphism

S : R3 → so(3)

ω :=

ω1

ω2

ω3

 7→
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 =: S(ω).
(4.18)

We will use frequently the notation ω̃ := S(ω) ∈ so(3), where elements of so(3)
will be always distinguished with a tilde. The isomorphism (4.18) is defined
such that the following identity holds

ω̃v = ω ∧ v, ∀ω, v ∈ R3, (4.19)

with ∧ denoting the vector product on R3.

The dual of the Lie algebra so(3)

Let so∗(3) denote the dual space of the Lie algebra so(3) which consists of linear
maps τ̃ ∗ : so(3)→ R. The duality pairing between a covector τ̃ ∗ ∈ so∗(3) and
a vector ω̃ ∈ so(3) is denoted by 〈 τ̃ ∗| ω̃〉so ∈ R.

The dual of the linear map (4.18) provides an isomorphism between the two
dual spaces so∗(3) and (R3)∗ ∼= R3 given by

S∗ : so∗(3)→ (R3)∗

τ̃ ∗ 7→ S∗(τ̃ ∗) =: τ ∗,
(4.20)
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defined such that

〈S∗(τ̃ ∗)|ω〉R3 = 〈 τ̃ ∗| S(ω)〉so ,

or equivalently, using (4.18),

〈τ ∗|ω〉R3 = 〈 τ̃ ∗| ω̃〉so . (4.21)

In finite dimensions, we can always identify the dual of a vector space with
the vector space itself using an inner product. This identification is beneficial
for simplifying a lot of notations and calculations e.g. for providing an explicit
expression of the duality pairings 〈 ·| ·〉so and 〈 ·| ·〉R3 . However, it is important
to conceptually distinguish between a vector space and its dual because they
change coordinates differently.

Let τ̃ ∈ so(3) be the corresponding skew-symmetric matrix that is is iden-
tified with the linear map τ̃ ∗ ∈ so∗(3). Then, one can show [Holm et al., 2009,
Pg. 176] that the duality pairing 〈 ·| ·〉so has the form

〈 τ̃ ∗| ω̃〉so =
1

2
tr(τ̃ ω̃>). (4.22)

Furthermore, let τ ∈ R3 be the corresponding (column) vector that is identified
with the linear map (row vector) τ ∗ ∈ (R3)∗. Then, the duality pairing 〈 ·| ·〉R3

has the well-known form

〈τ ∗|ω〉R3 = τ>ω. (4.23)

In the sequel, we shall usually drop the asterisk-superscript(∗) from covec-
tors, and use interchangeably the same notation for a covector and its identified
vector. Therefore, using (4.23) and (4.22), we can rewrite (4.21) as

〈 τ̃ | ω̃〉so =
1

2
tr(τ̃ ω̃>) = τ>ω = 〈τ |ω〉R3 , (4.24)

where ω̃ ∈ so(3), τ̃ ∈ so∗(3), ω ∈ R3, and τ ∈ (R3)∗.
One physical example of a covector τ ∈ (R3)∗ (or τ̃ ∈ so∗(3)) is the torque

applied to a rigid body causing it to rotate by the angular velocity ω ∈ R3

(or ω̃ ∈ so(3)). The duality pairing 〈τ |ω〉R3 (or 〈 τ̃ | ω̃〉so) corresponds then to
the mechanical power supplied to the rigid body by the entity that generates
the torque. Another physical example of a covector is the angular momentum
Pω ∈ (R3)∗ (or P̃ω ∈ so∗(3)) which when paired with the angular velocity
corresponds to twice the kinetic energy of the rotating body.

Finally, we conclude this section by showing how covectors in the cotangent
space T ∗RSO(3) can be mapped to so∗(3). With reference to the commutative
diagram in Fig. 4.6, a co-vector ΓR ∈ T ∗Rji

SO(3) is mapped to so∗(3) by using

either the pullback of the right translation map at the identity I ∈ SO(3),
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Left Lie-algebra Right Lie-algebra

Figure 4.6: Commutative diagram of isomorphisms between the tangent spaces
TRSO(3) and so(3) & the cotangent spaces T ∗RSO(3) and so∗(3).

denoted by (RRji
)∗I , or the pullback of the left translation map at the identity

I ∈ SO(3), denoted by (LRji
)∗I . Therefore, we have that

τ̃ j :=(RRji
)∗I(ΓR) ∈ so∗(3), (4.25)

τ̃ i :=(LRji
)∗I(ΓR) ∈ so∗(3), (4.26)

where the pullback maps are defined implicitly by〈
(RRji

)∗I(ΓR)
∣∣∣ ω̃j,ji 〉

so
=
〈

ΓR| (RRji )∗,I (ω̃j,ji )
〉

SO
(4.27)〈

(LRji
)∗I(ΓR)

∣∣∣ ω̃i,ji 〉
so

=
〈

ΓR| (LRji )∗,I (ω̃i,ji )
〉

SO
. (4.28)

In summary, by combining (4.27) and (4.28) with (4.16-4.17) and (4.25-
4.26), we have that〈

τ̃ j
∣∣ ω̃j,ji 〉so =

〈
ΓR| Ṙj

i

〉
SO

=
〈
τ̃ i
∣∣ ω̃i,ji 〉so .

4.1.4 Lie-Group Structure of SE(3)

Now we present the Lie group structure of SE(3) following the same line of
thought of the material presented for rotational motion on SO(3). A general
rigid body motion on SE(3) is a combination of rotational and translational
motion. The following treatment allows us to describe these two aspects using
a single mathematical object, called a twist.

A general rigid body motion is represented mathematically by a curve
γH : t 7→ Ht on the smooth manifold SE(3), which provides a family of
transformation (homogeneous) matrices Ht that describe the evolution of the
reference configuration to the current configuration. The rate of change of the
rigid body motion is represented by the velocity of the curve γH at a point Ht

which is an element (vector) Ḣt ∈ THtSE(3), as illustrated in Fig. 4.7. The
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Figure 4.7: Illustration of general rigid body motion as a curve γH(t) on SE(3)
which represents a family of homogeneous transformation matrices on a pro-
jective extension of R3.

velocity vector Ḣt ∈ THt
SE(3) is given in partitioned matrix form by

Ḣt =

(
Ṙt ξ̇t
0 0

)
∈ THt

SE(3), (4.29)

where Ṙt ∈ TRtSO(3) and ξ̇t ∈ TξtR3 ∼= R3 are the tangent vectors of the
projection curves of γH onto the submanifolds SO(3) and R3, respectively.
From (4.29) we see that we can identify Ḣ by the pair (Ṙ, ξ̇) and thus we have
that as vector spaces

THSE(3) ∼= TRSO(3)⊕ R3.

Consequently, we also have that the cotangent space

T ∗HSE(3) ∼= T ∗RSO(3)⊕ (R3)∗.

Thus, any covector ΓH ∈ T ∗HSE(3) can be identified by the pair (ΓR,ΓF ) ∈
T ∗RSO(3)×(R3)∗. Moreover, the duality pairing on THSE(3) can be expressed
as 〈

ΓH | Ḣ
〉

SE
=
〈

ΓR| Ṙ
〉

SO
+
〈

ΓF | ξ̇
〉
R3
. (4.30)

Similar to the case of SO(3) in (4.13) and (4.14), one has that the derivative
of a general function on SE(3) with respect to H ∈ SE(3) is a covector in
T ∗HSE(3) and its rate of change can be calculated using (4.30) .
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Figure 4.8: Commutative Diagram relating the Lie group SE(3) to the Lie
algebra se(3) and its dual space se∗(3). The maps π and πf represent the
canonical and fiber projections, respectively.

The Lie-algebra se(3) of SE(3)

The instantaneous relative motion Ḣj
i of a frame Ψi with respect to another

frame Ψj can be identified with two elements of the Lie algebra se(3) of the
Lie group SE(3), as shown in Fig. 4.8.

The first element, denoted by T̃ j,j
i ∈ se(3), corresponds to the mapping of

Ḣj
i using the pushforward the right translation map at Hj

i ∈ SE(3). Whereas

the second element, denoted by T̃ i,j
i ∈ se(3), is calculated by using the pushfor-

ward the left translation map at Hj
i ∈ SE(3). The two elements are expressed

using matrix multiplication as

T̃ j,j
i :=(RHi

j
)∗,Hj

i
(Ḣj

i ) = Ḣj
iH

i
j , (4.31)

T̃ i,j
i :=(LHi

j
)∗,Hj

i
(Ḣj

i ) = Hi
jḢ

j
i . (4.32)

An element of se(3) is called a twist, which corresponds to a configuration-
independent intrinsic representation of the generalized velocity of an Euclidean
space. Both twists T̃ j,j

i and T̃ i,j
i describe the general motion (translational and

rotational) of Ψi with respect to Ψj , but T̃ j,j
i expresses the motion in Ψj , while

T̃ i,j
i expresses the motion in Ψi.

Moreover, if Ψi = ΨB is a body-fixed frame and frame Ψj = ΨI is an
inertial-fixed frame, then the Lie algebra elements

T̃ B,I
B = ḢI

BH
B
I ∈ se(3), T̃ I,I

B = HB
I Ḣ

I
B ∈ se(3),

are referred to as the body-twist and the spatial-twist, respectively.

From equations (4.31) and (4.32), it can be deduced that a twist can be
represented by a 4 × 4 square matrix, i.e. se(3) ⊂ R4×4 . By expanding equa-
tions (4.31-4.32) using the partitioned matrix forms of Hi

j and Ḣj
i in (4.8) and
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(4.29) , we can express the twists T̃ j,j
i and T̃ i,j

i as

T̃ j,j
i =

(
Ṙji ξ̇ji
0 0

)(
Rij ξij
0 1

)
=

(
ṘjiR

i
j ξ̇ji + Ṙjiξ

i
j

0 0

)
, (4.33)

T̃ i,j
i =

(
Rij ξij
0 1

)(
Ṙji ξ̇ji
0 0

)
=

(
RijṘ

j
i Rij ξ̇

j
i

0 0

)
, (4.34)

which can be rewritten for k = {i, j} as

T̃ k,j
i =

(
ω̃k,j

i vk,j
i

0 0

)
, (4.35)

with ω̃k,ji ∈ so(3),vk,ji ∈ R3 defined by

ω̃j,ji :=ṘjiR
i
j , vj,ji :=ξ̇ji + Ṙji ξ

i
j , (4.36)

ω̃i,ji :=RijṘ
j
i , vi,ji :=Rij ξ̇

j
i . (4.37)

Therefore, we can identify any twist T̃ , ∈ se(3) by the pair (ω̃,v) ∈ so(3)×R3,
and thus we have that as vector spaces

se(3) ∼= so(3)⊕ R3. (4.38)

It is important to note that se(3) is isomorphic to the direct sum so(3)⊕R3

only as a vector space. The relation between se(3) and so(3)×R3 as Lie algebras
is established from inspecting their Lie brackets. The Lie bracket of se(3) is
given by the matrix commutator

[T̃1, T̃2]se = T̃1T̃2 − T̃2T̃1, (4.39)

which can be expanded using (4.35) as

[T̃1, T̃2]se =

(
ω̃1ω̃2 − ω̃2ω̃1 ω̃1v2 − ω̃2v1

0 0

)
=

(
[ω̃1, ω̃2]so ω̃1v2 − ω̃2v1

0 0

)
.

(4.40)

Thus, as a Lie algebra, se(3) is then equal to the semi-direct product

se(3) = so(3) nR3, (4.41)

where (so(3), [·, ·]so) is a Lie-subalgebra of (se(3), [·, ·]se) and R3 is an ideal of
se(3).

Using the isomorphism (4.18), one can identify the Lie algebra se(3) with
R3⊕R3 and consequently R6. This allows associating to every twist T̃ ∈ se(3)
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a pair of 3-dimensional vectors (ω,v) ∈ R3 ⊕ R3, and thus a six-dimensional
vector T ∈ R6.

For our purposes, the use of the vector representation allows performing
different operations involving twists simply by using matrix multiplication. The
vector representation of a twist is defined as

T :=

(
ω
v

)
∈ R6,

which is related to the Lie algebra element in se(3) by the vector space isomor-
phism

S̃ : R6 → se(3)

T =

(
ω
v

)
7→
(
ω̃ v
0 0

)
= T̃ .

(4.42)

With an abuse of notation, we will call both T̃ ∈ se(3) and T ∈ R6 a twist,
where elements of se(3) will always be distinguished with a tilde.

Remark 4.1.6 (Screw Representation of Twists). The pair of three-
dimensional vectors (ω,v) ∈ R3 ⊕R3 have important physical interpretations.
On one hand, the two vectors (ω,v) represent the angular and linear velocity
components of the twist. On the other hand, these vectors allow associating a
screw to the twist T̃ .

Screw theory is based on the geometry of lines in R3 and is considered an
extremely important tool for the study of mechanisms, multi-body dynamics,
and computer graphics. Intuitively, a screw is a line in R3 with a scalar quantity
called the pitch. The vector ω ∈ R3 represents the direction of the line, whereas
the vector v ∈ R3 corresponds to the moment of the line. The pair of vectors
(ω,v) are called the Plucker coordinates of the screw corresponding to the
infinitesimal rigid body motion.

For a more thorough introduction to screw theory and its relation to the Lie
group formulation presented in this sequel, the reader is referred to [Stramigioli,
2001; Selig, 2004].

The dual of the Lie algebra se(3)

Now we discuss the dual entities to twists which consists of the linear maps
W̃ ∗ : se(3)→ R. The dual space of the Lie algebra se(3) is denoted by se∗(3),
while the duality pairing on se(3) is denoted by 〈 ·| ·〉se. We can also identify

any linear map W̃ ∗ ∈ se∗(3) by an element W̃ ∈ se(3). Thus in what follows,
we shall drop the asterisk-superscript from covectors.
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The dual of the linear map (4.42) provides an isomorphism between se∗(3)
and (R6)∗ ∼= R6 given by

S̃∗ : se∗(3)→ (R6)∗

W̃ 7→ S̃∗(W̃ ) =: W ,
(4.43)

defined implicitly such that〈
S̃∗(W̃ )

∣∣∣T〉
R6

=
〈
W̃
∣∣∣ S̃(T )

〉
se
,

or equivalently, using (4.42),

〈W |T 〉R6 =
〈
W̃
∣∣∣ T̃〉

se
.

To provide an explicit expression of the duality pairing 〈 ·| ·〉se, we utilize
the fact that se(3) ∼= so(3)⊕ R3 which implies that

se∗(3) ∼= so∗(3)⊕ (R3)∗. (4.44)

Therefore, we can identify any W̃ ∈ se∗(3) by the pair (τ̃ ,f) ∈ so∗(3)⊕ (R3)∗.
The duality pairing between T̃ ∈ se(3) and W̃ ∈ se∗(3) is then expressed by〈

W̃
∣∣∣ T̃〉

se
= 〈 τ̃ | ω̃〉so + 〈f |v〉R3 = 〈τ |ω〉R3 + 〈f |v〉R3 = τ>ω + f>v,

which can be rewritten as〈
W̃
∣∣∣ T̃〉

se
= W>T , W =

(
τ
f

)
∈ R6. (4.45)

One physical example for a covector W̃ ∈ se∗(3) corresponds to the wrench
(i.e. generalized force) that is applied to a rigid body to have a general motion,
rotational and translational. Its corresponding component τ̃ ∈ so∗(3) corre-
sponds to the torque while its other component f ∈ (R3)∗ corresponds to the
force. The pairing between W̃ and T̃ corresponds to the total power that is
supplied to generate the rigid body motion. Another physical example of a cov-
ector is the generalized momentum P̃ , which when paired with T̃ corresponds
to twice the total kinetic energy of the body.

Following the same line of thought as we did before for the contangent
spaces of SO(3), we can map a co-vector ΓH ∈ T ∗HSE(3) to two elements
of the dual space se∗(3). With reference to the commutative diagram in Fig.
4.8, a co-vector ΓH ∈ T ∗

Hj
i

SE(3) is mapped to se∗(3) by using the pullback

at the identity I ∈ SE(3) of either the right translation map (RHj
i
)∗I or left
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Figure 4.9: Matrix representations of the adjoint action of SE(3) on se(3) (left)
and the coadjoint action of SE(3) on se∗(3) (right).

translation map (LHj
i
)∗I , such that

W̃ j :=(RHj
i
)∗I(ΓH) ∈ se∗(3), (4.46)

W̃ i :=(LHj
i
)∗I(ΓH) ∈ se∗(3), (4.47)

where the pullback maps are defined implicitly by〈
(RHj

i
)∗I(ΓH)

∣∣∣ T̃ j,j
i

〉
se

=
〈

ΓH | (RHj
i
)∗,I(T̃ j,j

i )
〉

SE
(4.48)〈

(LHj
i
)∗I(ΓH)

∣∣∣ T̃ i,j
i

〉
se

=
〈

ΓH | (LHj
i
)∗,I(T̃ i,j

i )
〉

SE
. (4.49)

In summary, by combining (4.48) and (4.49) with (4.31-4.32) and (4.46-
4.47), we have that〈

W̃ j
∣∣∣ T̃ j,j

i

〉
se

=
〈

ΓH | Ḣj
i

〉
SE

=
〈
W̃ i

∣∣∣ T̃ j,j
i

〉
se
.

Adjoint and Coadjoint actions of SE(3)

The change of coordinates of twists between any two frames is performed using
the adjoint action of SE(3) on se(3).

For a given H ∈ SE(3), the adjoint action AdH of the Lie group SE(3) on
the vector space se(3) is defined as AdH := (RH−1 ◦LH)∗,I . Using (4.31) and
(4.32), it follows that AdH is given by

AdH : se(3)→ se(3)

T̃ 7→HT̃H−1.
(4.50)

Therefore, the body representation of a twist T̃ B,I
B and its spatial counter-

part T̃ I,I
B are related by

T̃ I,I
B = AdHI

B
(T̃ B,I

B ) = HI
BT̃

B,I
B HB

I .
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The change of coordinates of covectors in se∗(3) (e.g. wrenches and general-
ized momenta) can be achieved by the coadjoint action Ad∗H : se∗(3)→ se∗(3).
The coadjoint action is the dual of the (4.50) and is defined implicitly by〈

Ad∗H(W̃ )
∣∣∣ T̃〉

se
=
〈
W̃
∣∣∣AdH(T̃ )

〉
se
, T̃ ∈ se(3), W̃ ∈ se∗(3). (4.51)

It follows from (4.41) and (4.44) that two expressions for the map Ad∗H can
be calculated, one for its so∗(3) component and another for its (R3)∗ component
[Holm, 2008, Pg. 145]. Alternatively, one could exploit the vector represen-
tations of twists and wrenches to implement the adjoint and coadjoint actions
above using matrix multiplication.

With reference to the commutative diagram in Fig. 4.9, the isomorphism
(4.42) allows to represent the action of the adjoint map (4.50) by the square
matrix AdH : R6 → R6 defined by

AdH := S̃−1 ◦AdH ◦ S̃. (4.52)

Similarly, one can represent the coadjoint action Ad∗H by the square matrix

Ad>H : (R6)∗ → (R6)∗ defined by

Ad>H := S̃∗ ◦Ad∗H ◦ (S̃∗)−1, (4.53)

which is simply the transpose of the one in (4.52).
The exact expressions of these matrices are given by [Stramigioli, 2001, Pg.

24-25]

AdH :=

(
R 0

ξ̃R R

)
, Ad>H :=

(
R> −R>ξ̃
0 R>

)
, (4.54)

where (R, ξ) ∈ SO(3)×R3 are the corresponding components for H ∈ SE(3).
Therefore, the body representation of the pair (WB ,T B,I

B ) is related to its
spatial counterpart (W I ,T I,I

B ) by

T I,I
B = AdHI

B
T B,I
B , WB = Ad>HI

B
W I (4.55)

Adjoint and Coadjoint actions of se(3)

The adjoint action of SE(3) on se(3) described above induces another adjoint
action of se(3) on itself. For a given T̃ ∈ se(3), this induced action3 is denoted
by adT̃ : se(3)→ se(3) and related to (4.50) by

adT̃ :=
d

dt

∣∣∣∣
t=0

AdγH(t),

3Note that the ad map is usually referred to as the adjoint action of the Lie algebra se(3),
even though it is not a group action.
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where γH is the curve with T̃ ∈ se(3) as its tangent vector at t = 0 at γH(0) = I.
The exact expression of the induced adjoint map is given by

adT̃1
(T̃2) := [T̃1, T̃2]se, T̃1, T̃2 ∈ se(3). (4.56)

The coadjoint action ad∗
T̃

: se∗(3)→ se∗(3), dual to adT̃ , will play a central
role in the dynamical equations of motion governing rigid body motion, as will
be shown later. This dual map is defined implicitly by〈

ad∗
T̃1

(W̃ )
∣∣∣ T̃2

〉
se

=
〈
W̃
∣∣∣ adT̃1

(T̃2)
〉
se
, T̃1, T̃2 ∈ se(3), W̃ ∈ se∗(3).

(4.57)
Using the isomorphism (4.42) we can also represent the adjoint action adT̃

using the matrix adT : R6 → R6 defined by

adT := S̃−1 ◦ adS̃(T ) ◦ S̃. (4.58)

Consequently, one has the matrix representation of the coadjoint action ad∗
T̃

to be the matrix transpose ad>T : (R6)∗ → (R6)∗.
The exact expressions of these matrices are given by [Stramigioli, 2001, Pg.

27]

adT =

(
ω̃ 0
ṽ ω̃

)
, ad>T =

(
−ω̃ −ṽ
0 −ω̃

)
, (4.59)

where ω̃ = S(ω) and ṽ = S(v), while ω,v ∈ R3 are the components of T ∈ R6.

Port-based Interpretation of Duality

Finally, we conclude this section by a summary of the maps presented so far
related to the Lie group structure of SE(3), as shown in Fig. 4.10.

A very important observation that should be noted in Fig. 4.10 is the du-
ality of the different maps and spaces presented. Although the pairs (ΓH , Ḣ),
(W̃ , T̃ ), and (W ,T ) belong to different spaces, their corresponding duality
pairings are all equivalent if they are related with the corresponding maps
shown in the figure.

From the physical point of view, all the duality pairings represent mechani-
cal power and the variables in the pairs above are all power-conjugate variables.
While the variables on the left correspond to the body representation and the
variables on the right correspond to the spatial representation of the rigid body
motion, the variables in the middle (combined withHI

B) represent the material
representation of the rigid body motion.

In the port-Hamiltonian framework, each pair of the aforementioned ones
defines a power port and the maps used for changing coordinates are perceived
as power-continuous transformations from one port to another. The bond
graph corresponding to the block diagram in Fig. 4.10a can be seen in Fig.
4.10b.
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(a) Block Diagram

(b) Bond Graph

Figure 4.10: Summary of all maps introduced related to the Lie-group structure
of SE(3) in block diagram and bond graph representations

4.2 Port-Hamiltonian Modeling of a Rigid Body

In the previous section, we studied how to geometrically describe rigid body
motion on its configuration space SE(3). The Lie group structure of SE(3)
allowed us to have three representations of the motion: the material represen-
tation (HI

B , Ḣ
I
B) ∈ TSE(3), the spatial representation T̃ I,I

B ∈ se(3), and the

body representation T̃ B,I
B ∈ se(3).

Now we turn attention to representing the equations of motion governing
rigid body dynamics in the port-Hamiltonian framework. As described ear-
lier in Ch.2, the port-Hamiltonian modeling procedure aims for a decomposed
model of a rigid body in terms of a network of interconnected energetic sub-
systems.

The first step in the port-Hamiltonian procedure is to conceptually tear
the rigid body, as a dynamical system, into two subsystems; one characterizing
kinetic energy and another one characterizing gravitational potential energy. In
general, the kinetic energy is a function of the configuration and the generalized
velocity, while the potential energy is a function of configuration only. However,
when represented in terms of the body twist T̃ B,I

B , the kinetic energy can be
written in terms of the generalized velocity alone. Consequently, one can model
the kinetic energy completely on the Lie algebra se(3) independently from the
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configuration space SE(3), which represents a symmetry.
In what follows, we will consider the port-Hamiltonian modeling of the

kinetic energy subsystem, first as a closed dynamical system and then as an
open one. After that we show how the potential energy subsystem is modeled
and interconnected to the kinetic energy subsystem. The result will be a port-
Hamiltonian dynamical model representing rigid body motion composed of a
network of interconnected subsystems.

4.2.1 Kinetic Co-energy of a Rigid Body

Recall from Sec. 4.1.1 that a rigid body is defined as the pair (B, ρ), with
B ⊂ E ∼= R3 as the matter set and ρ : B → R+ as the mass density function
describing the distribution of matter. Let µvol denote the standard volume
form on R3, ξ ∈ B denote a point of the rigid body, ΨI denote an inertial-
fixed frame, ΨB denote a body-fixed coordinate frame, oB denote the origin of
ΨB , and ξB ∈ R3 denote the coordinate representation of the point ξ in the
frame ΨB . By integrating over all points in B, considering ξ as the independent
variable, we can define the following properties of a rigid body:

1. Mass of the body:

m :=

∫
B
ρ(ξ)µvol ∈ R+,

2. Center of mass of the body expressed in ΨB

ξBcm :=
1

m

∫
B
ρ(ξ)ξBµvol ∈ R3,

3. Moment of inertia tensor of the body around oB expressed in ΨB

JB :=

∫
B
ρ(ξ)(ξ̃B)>ξ̃Bµvol ∈ R3×3,

By analogy with the kinetic co-energy of a system of particles, we define
the kinetic co-energy of the rigid body E∗k as

E∗k :=

∫
B
ρ(ξ)(ξ̇I)>ξ̇Iµvol ∈ R+, (4.60)

where ξ̇I ∈ R3 denotes the velocity of the point ξ ∈ B with respect to the
inertial frame ΨI and expressed in it.

The kinetic co-energy of a rigid body is given intuitively by the summation
of the velocities of its (infinitely many) comprising points. The terminology
co-energy is used in physical modeling to distinguish between the energy E
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as a function of the (thermodynamically extensive) state of a dynamic system
and the co-energy E∗ as a function of a port-variable. Since the velocity of a
point-mass is a port-variable we refer to E∗k as the kinetic co-energy. For more
discussion on the topic, cf. [Duindam et al., 2009, Sec. B.2] and [Breedveld,
1984].

The kinetic co-energy E∗k given above can be written as a quadratic function
in terms of the body twist T B,I

B ∈ R6 as given by the following result.

Proposition 4.2.1. Let ΨI be an inertially-fixed frame and ΨB be a body-fixed
frame. The total kinetic co-energy of a rigid body (4.60) can be expressed as

E∗k(T B,I
B ) =

1

2
(T B,I

B )>IBT B,I
B , (4.61)

where IB ∈ R6×6 is called the inertia tensor of the body, defined as

IB :=

∫
B
ρ(ξ)

(
(ξ̃B)>ξ̃B ξ̃B

ξ̃B)> I3

)
µvol. (4.62)

Proof. See [Duindam and Stramigioli, 2008, Pg. 38] �

If the body frame ΨB is chosen such that its origin oB coincides with the
center of mass ξBcm, and its basis {x̂B , ŷB , ẑB} is aligned with principle directions
of the inertia ellipsoid of the rigid body [Bullo and Lewis, 2005, Pg. 165], then
the inertia tensor has the form of a diagonal matrix given by

IB =

(
JB 0
0 mI3

)
, (4.63)

where the components of JB = diag(Jx, Jy, Jz) denote the moments of inertia
around the x̂B , ŷB , and ẑB axes of ΨB , respectively. We will always assume in
this work that the body-fixed frame is chosen in such manner, which is always
possible for any rigid body of any (fixed) geometry and material.

4.2.2 Closed Model of Kinetic Energy

In this section, the Hamiltonian equations of the kinetic energy subsystem will
be derived using Hamiltonian reduction. First, we will derive the Hamiltonian
dynamics on se∗(3) and then present an equivalent representation on (R6)∗.
For now on, all variables will be expressed in the body-fixed frame ΨB and
thus all indices will be dropped for simplicity.

The kinetic co-energy introduced previously in (4.61) defines a function
Lk : se(3)→ R given by

Lk(T̃ ) :=
1

2
T>IT , T = S̃−1(T̃ ) ∈ R6, (4.64)
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where T ∈ R6 denotes the body twist and I ∈ R6×6 denotes the inertia tensor
of the body given in (4.62).

The function Lk is in fact a reduced Lagrangian corresponding to the true
Lagrangian function Lk : TSE(3)→ R on the tangent bundle defined by

Lk(H, Ḣ) := Lk((LH−1)∗,H(Ḣ)), (H, Ḣ) ∈ TSE(3), (4.65)

with the push-forward map is given in (4.32).
Using the Legendre transformation, we can construct the kinetic energy

Hamiltonian Hk : se∗(3)→ R to be

Hk(P̃ ) :=
1

2
P>I−1P , P = S̃∗(P̃ ) ∈ (R6)∗, (4.66)

where P̃ := ∂Lk/∂T̃ ∈ se∗(3) is the conjugate momentum variable with respect
to the body twist T̃ ∈ se(3). Physically, P̃ ∈ se∗(3) corresponds to the body
representation of the generalized momentum of the rigid body related to
the body-twist by P = IT .

The function Hk is also a reduced Hamiltonian corresponding to the true
Hamiltonian Hk : T ∗SE(3)→ R on the cotangent bundle defined by

Hk(H,ΓH) := Hk((LH)∗I(ΓH)), (H,ΓH) ∈ T ∗SE(3), (4.67)

with the pullback map is given in (4.47).
The Lie-Poisson reduction theorem [Marsden and Ratiu, 1999, Ch.13] as-

serts that the Hamiltonian dynamical equations on se∗(3) are then given by

˙̃P = ad∗∂P̃Hk
(P̃ ), (4.68)

where the coadjoint map ad∗ is the coadjoint action of se(3) introduced earlier
in (4.56), and ∂P̃Hk ∈ se(3) denotes the partial derivative of Hk with respect

to P̃ ∈ se∗(3), which is equivalent to ∂P̃Hk = T̃ .
The Hamiltonian equation (4.68) describes the conservation of kinetic en-

ergy which, using (4.56) and (4.57), can be seen from

Ḣk =
〈

˙̃P
∣∣∣ ∂P̃Hk

〉
se

=
〈
ad∗∂P̃Hk

(P̃ )
∣∣∣ ∂P̃Hk

〉
se

=
〈
P̃
∣∣∣ ad∂P̃Hk

(∂P̃Hk)
〉
se

=
〈
P̃
∣∣∣ [∂P̃Hk, ∂P̃Hk]se

〉
se

= 0, (4.69)

which follows from the skew-symmetry of the Lie bracket [·, ·]se.
The corresponding Lie-Poisson bracket, denoted by

{·, ·} : C∞(se∗(3))× C∞(se∗(3))→ C∞(se∗(3)),

that is associated to se∗(3) and encodes the energy balance (4.69) is given by

{F,G}(x) = 〈x| [∂xG, ∂xF ]se〉se , ∀F,G ∈ C∞(se∗(3)),x ∈ se∗(3), (4.70)
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Figure 4.11: Port-based representation of the closed Hamiltonian models (4.68)
and (4.71) of the kinetic energy subsystem. The left bond graph represents the
dynamical system (4.68), while the right bond graph corresponds to its matrix
representation (4.71).

which can be shown to be related to the canonical Poisson bracket on the
cotangent bundle T ∗SE(3) [Marsden and Ratiu, 1999, Ch.13].

When we use the matrix representation of the coadjoint map ad∗ in (4.59)
and the corresponding vector representations of elements in se(3) and se∗(3),
the Hamiltonian dynamical equation (4.68) takes the form

Ṗ = ad>∂PHk
P , (4.71)

where P ∈ (R6)∗, ∂PHk = I−1P = T ∈ R6, and the kinetic energy Hamil-
tonian Hk(P ) = Hk(P̃ ) is given by (4.66), where we abusively denote both
Hamiltonian functions on se∗(3) and (R6)∗ with Hk.

4.2.3 Port-based Representation

In the port-based paradigm, the dynamical system described in (4.68) is rep-
resented by two elements interconnected using ports, as shown in Fig. 4.11
(left). The first element corresponds to the storage of the kinetic energy (4.66)
and the second one corresponds to the interconnection structure encoded in
the Lie-Poisson bracket (4.70).

The energy storage element is defined by the state space manifold se∗(3)
with the kinetic energy Hamiltonian Hk : se∗(3) → R. The body momentum
P̃ ∈ se∗(3) represents the state variable of the element.

The variables ˙̃P ∈ TP̃ se∗(3) ∼= se∗(3) and ∂P̃Hk ∈ T ∗P̃ se
∗(3) ∼= se(3) rep-

resent the flow and effort variables of the energy storage element, respectively.
The duality pairing of the effort and flow variables correspond to the rate of

change of the Hamiltonian Ḣk =
〈

˙̃P
∣∣∣ ∂P̃Hk

〉
se
, which represents the power

entering the kinetic energy storage element at a certain instant of time.
The second element corresponds to the Lie-Poisson structure defined by the

map JP̃ : se(3)→ se∗(3) defined by

JP̃ (es) := ad∗es
(P̃ ), P̃ ∈ se∗(3), es ∈ se(3). (4.72)
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The effort and flow variables of the Lie-Poisson structure are denoted by es ∈
se(3) and fs := JP̃ (es) ∈ se∗(3), respectively.

By connecting the ports (es,fs) and (∂P̃Hk,
˙̃P ) of the two elements together

by the zero-junction (or one-junction) implementing the constraints

fs = ˙̃P , es = ∂P̃Hk,

one recovers the port-Hamiltonian representation of (4.68) given by

˙̃P = JP̃ (∂P̃Hk). (4.73)

Following the same line of thought, the dynamic system (4.73) can also
be represented as the interconnection of two elements, as shown in Fig. 4.11
(right). The port-Hamiltonian system corresponding to (4.73) is given by

Ṗ = J(P )∂PHk, (4.74)

where J(P ) = −J>(P ) ∈ R6×6 is the skew-symmetric matrix

J(P ) =

(
P̃ω P̃v
P̃v 0

)
, P =

(
Pω
Pv

)
∈ (R6)∗, (4.75)

where P̃ω, P̃v are the skew-symmetric matrices related to Pω,Pv ∈ (R3)∗ using
(4.20).

The two covectors Pω,Pv correspond physically to the angular momentum
and linear momentum of the rigid body respectively. From the expression of
the inertia tensor (4.63), one has that Pω = Jω and Pv = mv.

Remark 4.2.2. As a map, J(P ) : R6 → R6 is related to JP̃ by J(P ) :=

S̃∗ ◦ JP̃ ◦ S̃−1, with S̃ and S̃∗ given respectively by (4.42) and (4.43). The
expression for J(P ) in (4.75) can be derived by manipulating the right-hand
side of (4.71) using the identity x̃y = ỹ>x,∀x, y ∈ R3.

The skew-symmetry property of J(P ) immediately implies the conservation
of kinetic energy, that can be seen from

Ḣk = Ṗ>∂PHk = (∂PHk)>J>(P )∂PHk = 0,

which is indeed equivalent to (4.69).
In summary , the closed port-Hamiltonian models (4.73) and (4.74) , shown

graphically in Fig. 4.11, describe the kinetic energy of a rigid body isolated from
the rest of the world such that the kinetic energy Hamiltonian is a conserved
quantity.

Next, we show how to allow non-zero exchange by extending the Lie-Poisson
structure to a Dirac structure. This non-zero change of the kinetic energy will
be due to power supplied to the rigid body as a consequence of an externally
applied wrench.
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Figure 4.12: Port-based representation of the open port-Hamiltonian model
(4.76) of the kinetic energy subsystem.

4.2.4 Open Model of Kinetic Energy

Newton’s second law of motion states that the variation of momentum of a
rigid body expressed in an inertial frame is equal to the applied wrench on the
body. In a body fixed-frame, Newton’s law takes the form

˙̃P = JP̃ (∂P̃Hk) + W̃ , (4.76)

where W̃ ∈ se∗(3) corresponds to the body representation of the wrench ex-
ternally applied to the rigid body.

Along solutions of the system (4.76), the energy balance (4.69) takes the
form:

Ḣk =
〈

˙̃P
∣∣∣ ∂P̃Hk

〉
se

= 0 +
〈
W̃
∣∣∣ ∂P̃Hk

〉
se

=
〈
W̃
∣∣∣ T̃〉

se
, (4.77)

where
〈
W̃
∣∣∣ T̃〉

se
∈ R corresponds to the power supplied to the kinetic energy

subsystem from the external entity that generates the wrench applied to the
rigid body.

From the energy balance (4.77), it can be deduced that the twist T̃ ∈ se(3)
is the power conjugate variable to the external wrench W̃ ∈ se∗(3). The pair
(W̃ , T̃ ) represent the interaction port with which the kinetic energy subsystem
can be interconnected to other subsystems, as shown in Fig. 4.12.

The Dirac structure that mediates the kinetic energy stored and the exter-
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nally applied power is defined as the subspace

D̃k =

{
(fs,fi, es, ei) ∈ Fk × Ek|

(
fs

fi

)
=

(
−JP̃ −1

1 0

)(
es

ei

)}
, (4.78)

where Fk := se∗(3) × se(3) and Ek := Fk
∗ are the flow and effort spaces on

which D̃k is defined. The pair (es,fs) is called the storage port of the Dirac
structure, whereas (ei,fi) is called its interaction port, which in the case at
hand is simply (ei,fi) = (W̃ , T̃ ).

The open port-Hamiltonian model for the kinetic energy is now constructed
by connecting the storage port of the Dirac structure to the kinetic energy
storage element by

(es,fs) = (∂P̃Hk,− ˙̃P ).

Then, one recovers (4.76) along with the output equation T̃ = ∂P̃Hk. Fur-
thermore, in terms of the matrix representation, the explicit port-Hamiltonian
dynamical equations take the form

Ṗ = J(P )∂PHk +W , (4.79)

T = ∂PHk. (4.80)

Similar to the Dirac structure (4.78), one could represent the port-Hamiltonian
equations (4.79- 4.80) using another Dirac structure Dk defined by

Dk =

{
(fs,fi, es, ei) ∈ Fk × Ek|

(
fs

fi

)
=

(
−J(P ) −I6

I6 0

)(
es

ei

)}
, (4.81)

with I6 ∈ R6×6 denoting the identity matrix, and the flow space Fk is now
given by (R6)∗ × R6 and the effort space is accordingly Ek := Fk

∗.
This concludes the construction of the port-Hamiltonian model for the ki-

netic energy of a rigid body. In the coming sections, we show ho the open
interaction port (W̃ , T̃ ) (or (W ,T ) ) will be used to interconnect the kinetic-
energy subsystem, presented so far, to another storage subsystem that repre-
sents gravitational potential energy.

4.2.5 Open Model of Potential Energy

The storage of the rigid body’s gravitational potential energy is represented
by a storage subsystem with state manifold SE(3) and its corresponding state
variable H ∈ SE(3) being the configuration of the body with respect to an
inertial frame.

The gravitational potential energy Hg : SE(3)→ R is given by

Hg(H) = mξ>g, (4.82)
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where ξ ∈ R3 is the translation component of the configuration and g ∈ R3

is the inverse direction of the gravitational acceleration in the inertial frame.
For example, if the inertial frame ΨI is chosen such that gravity is aligned
with −ẑI , then g = gẑI , where g ≈ 9.81 m s−2 is the gravitational acceleration
constant.

The effort and flow variables of the potential energy storage subsystem are
given, respectively, by

∂HHg ∈ T ∗HSE(3), Ḣ ∈ THSE(3).

The duality pairing of the effort and flow variables yields the power entering
the potential energy subsystem given by

Ḣg =
〈
∂HHg| Ḣ

〉
SE
,

where 〈 ·| ·〉
SE

is the duality pairing associated to the vector space THSE(3).
Due to the semi-direct product structure of SE(3), we have from (4.30)

that〈
∂HHg| Ḣ

〉
SE

=
〈
∂RHg| Ṙ

〉
SO

+
〈
∂ξHg| ξ̇

〉
R3

=
〈
∂ξHg| ξ̇

〉
R3

= (mg)>ξ̇,

(4.83)
which follows from the fact that ∂RHg = 0 as obvious in (4.82). Therefore, we
have that ∂ξHg = mg ∈ (R3)∗.

The conservation of the potential energy Ḣg = 0 simply implies that Ḣ = 0,

since ∂HHg 6= 0 as seen from (4.82). Therefore, the trivial equation Ḣ = 0
corresponds to the Hamiltonian dynamical equations of the potential energy
subsystem isolated from the world. However, as an energetic subsystem of
the rigid body model, the change in potential energy will be caused by the
transformation of kinetic energy, as will be seen next.

4.2.6 Port-Hamiltonian Dynamics of a Rigid Body

So far we have constructed the separated port-Hamiltonian models of the two
energetic subsystems comprising a rigid body: one for kinetic energy and one for
gravitational potential energy. Now we show how the open interaction port of
the kinetic energy subsystem, denoted here by (W̃g, T̃ ), will be connected to the

gravitational potential energy subsystem such that W̃g ∈ se∗(3) corresponds
to the external wrench applied due to gravity.

The first law of thermodynamics states that energy can neither be created,
nor destroyed which implies that the change of kinetic energy has to be equiv-
alent to the inverse change of potential energy. Therefore, the power incoming
the potential energy subsystem should be equal to the power out-coming the
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Figure 4.13: Augmenting the kinetic energy subsystem (4.76) with the storage
of gravitational potential energy through the interaction port (W̃g, T̃ ). The
bond graph (left) and block diagram (right) representations are shown.

interaction port of the kinetic energy subsystem i.e.〈
∂HHg| Ḣ

〉
SE

= −
〈
W̃g

∣∣∣ T̃〉
se
. (4.84)

To interconnect the external port of the kinetic energy subsystem (W̃g, T̃ ) ∈
se∗(3) × se(3) with the port of the potential energy subsystem (∂HHg, Ḣ) ∈
T ∗HSE(3)×THSE(3) they should be compatible, which is clearly not the case.
However, using the Lie group structure of SE(3), one could then resolve this
incompatibility using a power-continuous transformation.

In the bond graph of Fig. 4.13, this transformation is achieved by the
modulated transformer element MTF that implements the map(

Ḣ

W̃g

)
=

(
0 (LH)∗,I

(LH)∗I 0

)(
−∂HHg

T̃

)
, (4.85)

where the pushforward map (LH)∗,I : se(3)→ THSE(3) and its dual (LH)∗I :
T ∗HSE(3) → se∗(3) are given by (4.32) and (4.49), respectively. The minus
sign next to ∂HHg in (4.85) is due to the one-junction in Fig. 4.13 used to
to invert the power entering the potential energy subsystem i.e. implementing
the equality 〈

∂HHg| Ḣ
〉

SE
= −

〈
−∂HHg| Ḣ

〉
SE
.
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The combination of the one-junction and the MTF represent a power-
continuous Dirac structure D̃g given by the relation corresponding to the skew-
symmetric map

J̃g : T ∗HSE(3)× se(3)→ THSE(3)× se∗(3),

as illustrated in Fig. 4.13. The Dirac structure D̃g is modulated by the con-
figuration H ∈ SE(3) and its power-continuity is a consequence of the skew-
symmetry of the map J̃g.

Now we show that the previous energy-based construction correctly models
a free rigid body moving in a gravitational field. First, we show that the
transformations (4.85) model the transfer of kinetic energy to potential energy.

Starting from the power supplied to the kinetic energy subsystem
〈
W̃g

∣∣∣ T̃〉
se

and using (4.32), (4.49) and (4.85), we have that〈
W̃g

∣∣∣ T̃〉
se

=
〈

(LH)∗I(−∂HHg)| T̃
〉
se

= −
〈
∂HHg| (LH)∗,I(T̃ )

〉
SE

= −
〈
∂HHg| Ḣ

〉
SE

= −Ḣg, (4.86)

which satisfies (4.84). Furthermore, by construction, we have that the upper
row in (4.85)

Ḣ = (LH)∗,I(T̃ ) = HT̃ , (4.87)

corresponds to the rigid body kinematics relation in (4.32), while the lower row
yields

W̃g = (LH)∗I(−∂HHg), (4.88)

which represents the externally applied wrench due to gravity as shown in the
following result.

Proposition 4.2.3. The wrench due to gravity W̃g ∈ se∗(3) expressed in the
body frame given by (4.88) has its corresponding covector Wg ∈ (R6)∗, defined
using (4.43), given by

Wg =

(
0

−mR>g

)
∈ (R6)∗. (4.89)

Proof. From (4.45), we have that〈
W̃g

∣∣∣ T̃〉
se

= 〈 τ̃g| ω̃〉so + 〈fg|v〉R3 ,

where (τ̃g,fg) ∈ so∗(3)⊕(R3)∗ are the components of W̃g ∈ se∗(3), and (ω̃,v) ∈
so(3)×R3 are the components of T̃ ∈ se(3). Therefore, using (4.86) and (4.83),
we have that〈

W̃g

∣∣∣ T̃〉
se

= 〈 τ̃g| ω̃〉so + 〈fg|v〉R3 = −
〈
∂ξHg| ξ̇

〉
R3

= −
〈
mg| ξ̇

〉
R3
,
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Figure 4.14: Augmenting the kinetic energy subsystem (4.79-4.80) with the
storage of gravitational potential energy through the interaction port (Wg,T ).
The bond graph (left) and block diagram (right) representations are shown.

which implies that τ̃g = 0. Using the relation ξ̇ = Rv from (4.37), we have
that

〈fg|v〉R3 = 〈−mg|Rv〉R3 =
〈
−mR>g

∣∣v〉R3 ,

and thus fg = −mR>g. �

In conclusion, the port-Hamiltonian model consisting of the network of
interconnected subsystems shown in Fig. 4.13 correctly represents the motion
of a free rigid body in a gravitational field. This network consists of the kinetic
energy subsystem of Sec. 4.2.4, the potential energy subsystem of Sec. 4.2.5,
and the Dirac structure D̃g that mediates the energy flow between them.

The port-Hamiltonian rigid body model can be also constructed using the
matrix representation of the kinetic energy subsystem, as shown in Fig. 4.14.
In this case, the Dirac structure Dg that resolves the incompatibility of the

ports (Wg,T ) and (∂HHg, Ḣ) is given by the relation corresponding to the
skew-symmetric map (

Ḣ
Wg

)
=

(
0 χH
−χ∗H 0

)(
∂HHg

T

)
, (4.90)

where the map χH : R6 → THSE(3) and its dual χ∗H : T ∗HSE(3)→ (R6)∗ are
defined by

χH := (LH)∗,I ◦ S̃, χ∗H := S̃∗ ◦ (LH)∗I . (4.91)

We conclude by a compact port-Hamiltonian model that combines the en-
ergy storage elements together and combines the Dirac structures together, as
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Figure 4.15: Bond graph representation of the compact port-Hamiltonian
model (4.95-4.96) for free rigid body motion in a gravitational field.

shown in Fig. 4.15. This open model will include an additional interaction port
(Wext,T ) that represents the power due to external wrenches applied to the
rigid body other than gravity. For future reference, we will present this model
directly in terms of the matrix representation.

The new storage element has its state variable x := (H,P ) ∈ SE(3)×(R6)∗

and its Hamiltonian Ht given by the sum of kinetic and gravitational potential
energy, i.e.

Ht(x) = Ht(H,P ) =
1

2
P>I−1P +mξ>g. (4.92)

The flow and effort variables of the new storage element are given by

ẋ =

(
Ḣ

Ṗ

)
∈ THSE(3)× (R6)∗, ∂xHt =

(
∂HHt

∂PHt

)
∈ T ∗HSE(3)× R6.

The explicit port-Hamiltonian dynamics of the rigid body moving in a grav-
itational field is given by(

Ḣ

Ṗ

)
=

(
0 χH
−χ∗H J(P )

)
︸ ︷︷ ︸

JRB(x)

(
∂HHt

∂PHt

)
+

(
0
I6

)
︸ ︷︷ ︸
G

Wext (4.93)

T =
(
0 I6

)︸ ︷︷ ︸
G>

(
∂HHt

∂PHt

)
, (4.94)
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or more compactly

ẋ =JRB(x)∂xHt +GWext (4.95)

T =G>∂xHt. (4.96)

Finally, the underlying Dirac structure DRB of the port-Hamiltonian dy-
namic model of the rigid body in (4.95,4.96) is given by the relation corre-
sponding to the skew-symmetric map(

−ẋ
T

)
=

(
−JRB(x) −G
G> 0

)(
∂xHt

Wext

)
. (4.97)

4.3 Conclusion

In this chapter, a systematic procedure to model rigid body motion in the
port-Hamiltonian framework was presented. The outcome was a decomposed
and open port-Hamiltonian model for a rigid body consisting of a network of
interconnected energetic elements.

We have shown that central to this network representation of a rigid body is
a Dirac structure that mediates the energy flow between the different elements.
Furthermore, we have demonstrated that using Lie-Poisson reduction and the
proper geometric formulation of the state space, the port-Hamiltonian model
of the rigid body can be derived systematically from first principles.

The geometric formulation of the rigid body kinematics on the matrix Lie
group SE(3) has allowed a straightforward construction of the port-Hamiltonian
model and a unified treatment of the rotational and translational dynamics of
the system. While most of the work in this chapter relied on the numerical rep-
resentation of a rigid body’s configuration space, the coordinate-free material
presented in the beginning has explicated several assumptions that are usually
hidden when using coordinates. This distinction between the coordinate-free
and coordinate-based treatments will be essential for extending several concepts
to infinite-dimensional mechanical systems, as will be shown in Ch.5.

An important feature of the derived port-Hamiltonian rigid body model is
that it is an open model. Using the interaction port, the rigid body model can be
extended simply by interconnection to compose more complicated mechanical
systems or for control design. In Ch.7 and Ch.8, we show how to utilize the
derived rigid body model to develop algorithms for motion and interaction
control of a flying-end effector.



CHAPTER 5

Port-Hamiltonian Modeling of Fluid Flow

Fluid mechanics is one of the most fundamental fields that has stimulated
many ideas and concepts that are central to modern mathematical sciences.
Throughout history, many research efforts have been conducted analytically,
computationally, and experimentally. However, many important achievements
in this field were established based on profound analytical studies rather than
experiments [Arnold and Khesin, 1998].

Many practitioners and researchers use coordinate-based descriptions for
modeling flow in Euclidean space using vector calculus. However, coordinate-
free descriptions of mechanical systems in general provide more insights in the
fundamental properties of such systems. These coordinate-free descriptions
are formulated using tools of differential geometry. The unfamiliar reader is
referred to Chorin and Marsden [1993] for an introduction to fluid mechanics
using vector calculus, and to Arnold and Khesin [1998] for a geometric treat-
ment of the subject.

In his foundational work [Arnold, 1966], V. Arnold described the motion of
inviscid incompressible flow as the geodesic equation of the group of volume-
preserving diffeomorphisms. Such description provided significant insights to
the nature of the problem. Consequently after three years, D.Ebin and J.
Marsden proved the local existence and uniqueness of solutions using techniques
based on such geometric formulation [Ebin and Marsden, 1970]. Moreover, the
geometric formulation by V. Arnold triggered many developments in studying
stability of fluid flows, explicit calculations of Hamiltonian structures for a large
number of distributed systems of hydrodynamic origin, and the development
of differential geometric tools for dealing with diffeomorphism groups [Khesin
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et al., 2020].

Fluid mechanics has been studied in the literature using both the La-
grangian and Hamiltonian formalism. In the classical Hamiltonian theory for
fluid dynamical systems, a fundamental difficulty arises in incorporating the
spatial boundary conditions of the system, which is also the case for general
distributed parameter systems. Previous Hamiltonian formulations of fluid flow
in the literature [Marsden and Abraham, 1970; Marsden et al., 1984a,b; Morri-
son, 1998] tend to focus on conservative systems with no energy-exchange with
its surrounding environment. Usually, this is imposed by certain assumptions
on the system variables. For example, if the spatial domain is non-compact, it
is assumed that the system variables decay at infinity. Whereas if the spatial
domain is compact, the boundary is assumed impermeable by imposing that
the velocity vector field is tangent to the boundary.

Consequently, the traditional Hamiltonian theory is limited to distributed
parameter systems on spatial manifolds without a boundary or ones with zero-
energy exchange through the boundary. While this is useful for analyzing a
system that is isolated from its surroundings, it is certainly an obstacle for
practical applications such as simulation and control. While the traditional
Hamiltonian formalism, in its generalized version on Poisson manifolds, fo-
cuses on conservative closed systems, the port-Hamiltonian formalism, based
on Dirac structures, is applicable to non-conservative open systems capable of
energy exchange with its environment.

This chapter describes how fluid dynamical systems are systematically and
completely modeled in the port-Hamiltonian framework by a small set of build-
ing blocks of open subsystems. Depending on the choice of subsystems one
composes in an energetically consistent manner, the geometric description of a
number of fluid dynamical systems can be achieved, ranging from incompress-
ible to compressible flows.

This decomposed network-based model of fluid dynamical systems comes at
a great technical advantage. Each of the subsystems is described in the struc-
turally simplest possible way, even if other subsystems require a considerably
more sophisticated formulation. The composition of such unequal subsystems
is mediated by a Dirac structure, which routes the energy flow between all
subsystems.

A second tremendous technical simplification is achieved concerning the
precise choice of state space underlying each energetic subsystem. For example
when treating the kinetic energy of the fluid, no prior assumptions are required
on the state space of fluid velocity to handle specific cases, such as imperme-
able boundaries and incompressiblity. Instead, one chooses a state space that
treats the general case of a compressible velocity field on any spatial domain
(possible curved) that is permeable. Then, a modeling assumption is imposed
by composition with a suitable type of subsystem that physically models this
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assumption and is simply coupled to the unchanged kinetic-energy system. The
equations resulting from this procedure are, in the end, of course the same as
those following from the traditional view, but their geometric description is
technically simplified and made physically more insightful at the same time.

In addition to the system theoretic advantages of modeling ideal fluid flow in
the port-Hamiltonian paradigm, the work we present here serves as a stepping
stone for modeling fluid-structure interaction in the quest of understanding the
flapping-flight of birds, as motivated in Ch.1.

In this chapter, we start the port-Hamiltonian modeling process of fluid dy-
namical systems with the construction of the energetic subsystem that stores
the kinetic energy of a fluid flowing on a general spatial domain with perme-
able boundary. The procedure to construct the port-Hamiltonian model we are
aiming for relies greatly on understanding the underlying geometric structure
of the state space of each energetic subsystem. This geometric formulation, pi-
oneered by Arnold [1966] and Ebin and Marsden [1970], will allow a systematic
derivation of the underlying Hamiltonian dynamical equations and Dirac struc-
tures, usually postulated a priori in the literature [van der Schaft and Maschke,
2001, 2002; Polner and van der Vegt, 2014; Altmann and Schulze, 2017]. Fur-
thermore, it will allow for the boundary terms, which are always absent in the
traditional Hamiltonian picture, to be easily identified and transformed into
power ports which can be used for energy exchange through the boundary of
the spatial domain.

The geometric description of ideal fluid flow is then used to develop the
port-Hamiltonian model of the kinetic energy storage subsystem and the iden-
tification of the Dirac structure that routes the energy flowing in and out of the
kinetic energy subsystem to a distributed power port (which allows the connec-
tion to subsystems that interact with the fluid within the spatial domain) and
a boundary power port (which allows the connection to subsystems that allow
the exchange of material). Then, we utilize the distributed port of the kinetic
energy port-Hamiltonian system for representing a number of fluid-dynamical
systems; by adding internal energy we model compressible flow, both adiabatic
and isentropic, and by adding constraint forces we model incompressible flow.

This chapter is organized as follows: Sec. 5.1 starts by a general introduc-
tion to the coordinate-free formulation of describing kinematics of fluid motion.
Then, Sec. 5.2 discusses the kinematics of advected quantities carried along
with the fluid, their corresponding governing equations, and the extra math-
ematical structures they add. Sec. 5.3, will discuss the first three steps of
the port-Hamiltonian modeling procedure aiming to construct the open port-
Hamiltonian model for the kinetic-energy subsystem with variable boundary
conditions and distributed stress forces. Then, we will proceed with the remain-
ing steps of the port-Hamiltonian procedure which will utilize the distributed
stress forces added to the port-Hamiltonian model of the kinetic energy to add
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(a) Eulerian vector field (b) Trajectory of fluid particle

Figure 5.1: The fluid velocity vector fields vt and its corresponding flow oper-
ator gt.

storage of internal energy for modeling compressible flow in Sec. 5.4, and to
add constraint forces to model incompressible flow in Sec. 5.5. Finally, we
conclude this chapter in Sec. 5.6.

5.1 Kinematics of Fluid Motion

In this section, the coordinate-free formulation of describing fluid flow using
manifolds and differential forms is presented. The goal is to define the config-
uration and configuration space of a fluid flow.

5.1.1 Configuration Space D(M)

We start by describing the physical space in which the fluid flows. This region is
mathematically represented by an n-dimensional compact manifold M , where
for non relativistic physically meaningful spaces we are restricted to n = {2, 3}.
We equip the manifold with a Riemannian metric M and a metric-induced
volume form µvol ∈ Ωn(M). The manifold could have a boundary ∂M or could
have no boundary (∂M = ∅), like for instance our (almost) spherical Earth.
As a special case, M could represent a bounded region in Euclidean space
(M ⊆ Rn), with the standard Euclidean inner product and volume form.

The mathematical representation of the fluid region as a manifold is a mod-
eling assumption that considers the fluid as a continuum completely filling
the whole space. Such assumption ignores the fact that the fluid is made of
molecules separated from each other in space. However, for length-scales bigger
than the inter-atomic distances, it has proved to be a valid assumption.

As the fluid flows within the domain M , the material particles are trans-
ported with the flow. Let x ∈ M be a point in the spatial domain. With
reference to Fig. 5.1a, consider the fluid particle passing through x at time t,
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Figure 5.2: Describing the configuration of the fluid using the flow map gt.

and let v(t, x) denote the velocity of that particle assumed to be smooth in its
arguments. For each time t, vt := v(t, ·) ∈ X(M) is a vector field on M i.e., a
section of the tangent bundle TM . We denote the set of smooth vector fields on
M by X(M). Similarly, v := v(·, ·) is a time-dependent vector field on M , that
can be made into a time-independent vector field on the space-time manifold
R ×M . For technical details, the reader is referred to [Abraham et al., 1988,
pg. 283-285]. We call v the Eulerian velocity field of the fluid.

In the Lagrangian perspective of fluid mechanics, each fluid particle is a
physical entity that maintains its identity during the flow. The particle identi-
fier or label could be chosen at some specific time as the particle’s position in
M or as some thermodynamic property of the particle. Labeling all particles
at a specific time defines the reference configuration of the fluid, as shown in
Fig. 5.2. Without loss of generality, we choose the particle’s position x0 ∈ M
at time t = 0 as the Lagrangian label.

The particle at x0 ∈ M at time t = 0 traverses a well defined trajectory
as the fluid flows. The evolution of the fluid particle during a fixed time t is
described by the map gt : M → M , as shown in Fig. 5.1b. Thus, the particle
starting at a point x0 reaches the point gt(x0) ∈ M after time t. The map
gt : M → M , referred to as the flow map, defines the current configuration
of the fluid at time t. Under the assumption that the fluid particles do not
overlap, collide, or merge during the flow, the flow map gt is a bijective map.
The forward map gt : x0 7→ x takes a fluid parcel from its initial position in the
reference configuration to its current spatial position in the domain. Whereas,
the inverse map g−1

t : x 7→ x0 assigns the Lagrangian labels to a given spatial
point.

The flow map gt is mathematically the flow or evolution operator of the
time dependent vector field v [Abraham et al., 1988, pg. 285]. The relationship
between v and gt is given by

d

dt
gt(x) = v(t, gt(x)) = vt(gt(x)), ∀x ∈M. (5.1)
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By the assumption that vt is a smooth vector field ∀t, we have that gt is a
diffeomorphism on M . Moreover, the map gt satisfies ∀x ∈ M (i) g0(x) = x,
(ii) gt(gs(x)) = gt+s(x). Thus, as a mathematical object, we have that

i. g0 = idM ,

ii. gt ◦ gs = gt+s,

iii. g−1
t = g−t,

where property (iii) is a consequence of the first two.
The set of all diffeomorphisms gt on M satisfying the aforementioned prop-

erties form a group, known as the diffeomorphism group D(M), with the
group operation being composition, and the identity element e := g0. This
group has a structure modeled on an infinite-dimensional Frechet space which
makes D(M) into a Lie group [Marsden and Abraham, 1970]. The Lie group
D(M) serves as the configuration space for the fluid flow.

The term Lie group here is misleading, as for D(M) right translation is
smooth, but group inversion and left translation are only continuous [Holm
et al., 1998]. Thus, the usual Lie theorems do not hold for D(M). However, it
shares many important Lie group properties and for the applications considered
in this chapter, it is safe to consider D(M) as an infinite dimensional Lie group.
Technically D(M) is a Frechet-Lie group [Modin et al., 2011]. The reader is
referred to Ebin and Marsden [1970] for a proper introduction to a functional-
analytic treatment of the subject, which is beyond the scope of this thesis.

5.1.2 Lie Group Structure of D(M)

Now we discuss in more details the structure of the configuration space D(M),
which we denote also interchangeably as G for simplicity. A fluid motion is
represented by the curve γg : t 7→ gt on G which provides a family of diffeomor-
phisms gt : M → M evolving from the reference configuration to the current
configuration in M , as shown in Fig. 5.3. The tangent vector to the curve γg
is denoted by ġt ∈ TgtG, which also defines a map on M given, for any x ∈M ,
by

ġt(x) = vt(gt(x)) ∈ Tgt(x)M. (5.2)

Specifically, for g0, we find that

ġ0(x) = vt(g0(x)) = vt(x) ∈ TxM, (5.3)

which implies that ġ0 = vt. As a result, the tangent space TeG at the identity
e ∈ G (the Lie-algebra of G) is equivalent to X(M).

The Lagrangian velocity field of the fluid is defined as ġt(x0) keeping
the particle labels x0 fixed. By comparing equations (5.2) and (5.3), it can
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Figure 5.3: Illustration of fluid motion as a curve γg on D(M) which represents
a family of diffeomorphisms on M .

be concluded that the Eulerian velocity vt is a vector field on M , while the
Lagrangian velocity ġt is not mathematically a vector field, since ġt(x0) ∈
Tgt(x0)M = TxM is not a vector at x0.

It follows from (5.2) that at any time t, the Lagrangian velocity field ġt is
a right-translation of the Lie algebra element vt. Consider the right and left
translation maps of G given by Rϕ : g 7→ g ◦ϕ and Lϕ : g 7→ ϕ◦ g, respectively.
The corresponding pushforward maps of Rϕ and Lϕ are expressed as follows:
For a point (gt, ġt) ∈ TG in the tangent bundle of G, let γg(t) be a curve in G
such that γg(a) = gt and γ̇g(a) = ġt. Then, we have that (Rϕ)∗ : TG→ TG is
given at a base point gt ∈ G by

(Rϕ)∗,gt(ġt) =
d

dt

∣∣∣∣
t=a

(γg(t) ◦ ϕ) =
d

dt

∣∣∣∣
t=a

γg(t) ◦ ϕ = ġt ◦ ϕ, (5.4)

while (Lϕ)∗ : TG→ TG is similarly given by

(Lϕ)∗,gt(ġt) =
d

dt

∣∣∣∣
t=a

(ϕ ◦ γg(t)) = ϕ∗ ◦
d

dt

∣∣∣∣
t=a

γg(t) = ϕ∗ ◦ ġt, (5.5)

where ϕ∗ denotes the pushforward map corresponding to ϕ. For notional con-
venience, we will write (Rϕ)∗(ġt) = ġt ◦ ϕ and (Lϕ)∗(ġt) = ϕ∗ ◦ ġt, when the
base point is clear from the context.

This construction legitimates to consider TeG the Lie algebra of D(M).
Indeed an element v ∈ TeG is related to the tangent vector ġ ∈ TgG by right
translation such that v = (Rg−1)∗ġ = ġ ◦ g−1. Therefore, TeG is isomorphic as
a vector space to R(G) ⊂ X(G), the space of right invariant vector fields on G,
through the isomorphism v 7→ Xv,, with Xv(g) := (Rg)∗(v) ∈ TgG. The Lie
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bracket on TeG is defined by

[u, v]X := JXu, XvKG(e), ∀u, v ∈ TeG, (5.6)

where J, KG denotes the Jacobi-Lie Bracket of vector fields on G. Therefore,
the vector space TeG with the Lie bracket [·, ·]X composes the Lie algebra of
G = D(M) which will be denoted by gv.

A more useful expression for the Lie bracket of gv than the one in (5.6) can
be obtained through the adjoint action of the Lie algebra on itself. First, we
consider the adjoint action of G on gv. Let u, v ∈ gv be the tangent vectors
at t = 0 of the two curves γ, η at γ0 = η0 = e, respectively. We use the
notation γt := γ(t) ∈ G and ηt := η(t) ∈ G and we denote by Aϕ : G → G,
with Aϕ(g) = Lϕ ◦Rϕ−1(g), the inner automorphism map. The adjoint action
Ad : G× gv → gv is defined by [Holm et al., 2009]

Adϕ(v) := (Aϕ)∗,e(v) =
d

dt

∣∣∣∣
t=0

Aϕ(ηt) =
d

dt

∣∣∣∣
t=0

ϕ◦ηt◦ϕ−1 = ϕ∗◦v◦ϕ−1 = ϕ∗v,

(5.7)
where Adϕ(v) := Ad(ϕ, v). Hence, the adjoint action of G on gv is given by
the pushforward operation of vector fields on M . The induced adjoint action
of the Lie-algebra gv on itself is defined by

adu(v) =
d

dt

∣∣∣∣
t=0

Adγt(v) =
d

dt

∣∣∣∣
t=0

(γt)∗v = −Luv = −Ju, vKM , (5.8)

where J, KM denotes the Jacobi-Lie bracket of vector fields on M , and the last
two equalities hold from the definition of the Lie derivative of a vector field. In
conclusion, we have that the Lie bracket on gv is given by minus the standard
Jacobi-Lie bracket on X(M) i.e.

[u, v]X = adu(v) = −Ju, vKM . (5.9)

5.1.3 Differential Form Representation of Lie algebra

In this work we rely greatly on representing the Lie algebra gv using the space
of differential forms on M . The differential form representation is technically
beneficial for a number of reasons. First, the related Grassmannian algebra
operators are very efficient in carrying out calculations and proving theorems.
Second, well established results like Stokes theorem will be crucial in the de-
velopment of the Dirac structures of this work. Third, the equations of mo-
tion expressed using differential forms are invariant with respect to coordinate
changes.

Using the manifold’s extra structures provided with it, there are two options
for identifying the Lie algebra of vector fields gv = X(M) with the space of
k-differential forms Ωk(M), summarized in Fig. 5.4.
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Figure 5.4: Isomorphism between vector fields and corresponding differential
forms

The first option is to use the Riemannian metric M to identify X(M) with
one-forms Ω1(M) via the isomorphism

M[ : X(M)→ Ω1(M)

v 7→M[(v) := M(v, ·).
(5.10)

While the second one is to use the volume form µvol to identify X(M) with
Ωn−1(M) via the isomorphism

Ψvol : X(M)→ Ωn−1(M)

v 7→ ιvµvol = µvol(v,−),
(5.11)

where ιv : Ωn(M)→ Ωn−1(M) denotes the interior product operator of forms,
and the dash indicates all remaining open slots of the volume form µvol.

For notational convenience we will denote the 1-form and n − 1 form cor-
responding to a vector field v ∈ X(M) by ṽ := M[(v) ∈ Ω1(M) and ωv :=
ιvµvol ∈ Ωn−1(M), respectively. Moreover, it will be useful later to represent
the vector field corresponding to an n−1 form ω ∈ Ωn−1(M) by ω̂ ∈ X(M) and
similarly the vector field corresponding to a 1-form α ∈ Ω1(M) by α̂ ∈ X(M).

Using the Hodge star operator ∗ : Ωk(M) → Ωn−k(M), it is possible to
map the 1-form representation of X(M) to the corresponding n − 1-form. In
particular, using the general identity

ιvα = (−1)(k+1)(n−k) ∗ (ṽ ∧ ∗α), ∀v ∈ X(M), α ∈ Ωk(M), (5.12)

and the fact that µvol = ∗1, it holds that

ωv = ιvµvol = ιv(∗1) = ∗ṽ, and ṽ = (−1)n−1 ∗ ωv. (5.13)

Remark 5.1.1. Note that the sign in (5.12) is positive if α is a top form or
is of an odd order, which will always be the case where this identity is used in
this work.
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Figure 5.5: Boundary cases for fluid flow on a compact manifold; no boundary
(left), impermeable boundary (middle), or permeable boundary (right).

The choice we will make in this work is to represent the Lie algebra
of D(M) using n − 1 forms. We denote the differential form representation
of the Lie algebra by g = Ωn−1(M) where its corresponding Lie bracket [·, ·]g
is constructed by

[ωu, ωv]g := Ψvol(
[
Ψ−1

vol(ωu),Ψ−1
vol(ωv)

]
X

), ∀ωu, ωv ∈ g. (5.14)

In other words, the map Ψvol in (5.11) acts as a Lie-algebra isomorphism be-
tween gv and g. The explicit expression of the Lie bracket [·, ·]g is given by the
next result.

Proposition 5.1.2. The Lie bracket [·, ·]g : g× g → g defined by (5.14) is
given by

[ωu, ωv]g = −Luωv + div(u)ωv, (5.15)

where u ∈ gv is the vector field corresponding to ωu, and div(u) ∈ C∞(M) is
called the divergence of the vector field u ∈ gv and is defined as the function
such that Luµvol = div(u)µvol.

Proof. By substituting (5.11) and (5.9) in (5.14), one has that

[ωu, ωv]g = Ψvol([u, v]X) = Ψvol(−Ju, vKM ) = −ιJu,vKMµvol

= −Lu(ιvµvol) + ιv(Luµvol) = −Luωv + ιv(div(u)µvol)

= −Luωv + div(u)ιvµvol = −Luωv + div(u)ωv,

where we used the Lie derivative property

Lu(ιvα) = ιJu,vKMα+ ιv(Luα), α ∈ Ωk(M). (5.16)

�

5.1.4 Permeable vs. Impermeable Boundaries

Before moving on, we turn attention to a fundamental issue that distinguishes
between the Hamiltonian and port-Hamiltonian treatments of fluid dynamics
with respect to the boundary of the fluid container, as shown in Fig. 5.5.
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The construction presented so far in describing the configuration of a fluid
flowing using the diffeomorphism group D(M) rests on the fundamental as-
sumption that the fluid particles always remain within the fluid container.
In case M has no boundary, this is obviously always true. However, in case
M has a boundary, the Lie algebra of D(M) is constrained to the subspace
Xt(M) ⊂ X(M) with Xt(M) defined as the subset of vector fields on M that
are tangent to ∂M . This extra condition on v is synonymous with the boundary
of M being impermeable.

The restriction of gv to vector fields that are tangent to ∂M translates to
the condition that its corresponding n− 1 form is normal to ∂M , i.e. satisfies
i∗(ωv) = 0, where i : ∂M → M is the canonical inclusion map. Differen-
tial forms normal to ∂M are said to satisfy the Dirichlet boundary condition.
Thus, in the case of impermeable boundary, the Lie algebra g for impermeable
boundaries becomes Ωn−1

D (M), which denotes the space of normal n− 1 forms
on M .

The cases for which M has no boundary or ∂M is impermeable correspond
to an isolated fluid dynamical system that cannot exchange (mass) flow with its
surrounding. Consequently, all results of the traditional Hamiltonian formalism
relying on D(M) and Poisson structures are related to such isolated systems.

In order to treat fluid dynamical systems in the port-Hamiltonian frame-
work, it is necessary to treat the fluid container with a boundary that is per-
meable by default. This is necessary, for instance, if M is to represent a control
volume inside a bigger flow domain. Fortunately, the extension of the known
geometric formulation of fluids to permeable boundaries is only obstructed at
the group level. At the Lie algebra level, this extension is simply afforded by
dropping the previously identified Dirichlet constraint from the vector space
Ωn−1
D (M), which is the algebra for impermeable boundaries, and taking in-

stead all of Ωn−1(M) as the underlying vector space.

The deceptive simplicity of this step comes with a drastic conceptual shift.
The Lie algebra (g, [·, ·]g) for permeable boundaries can no longer be the asso-
ciated Lie algebra of the diffeomorphism group D(M) or any of its subgroups.
The intuition behind it is that the flow map gt no longer becomes bijective as
the fluid particles in the spatial domain M comprising the reference configu-
ration are no longer constrained to remain in M . Therefore, the treatment of
permeable boundaries requires nothing more and nothing less than the ability
to phrase any question about the fluid in a form that can be treated entirely
at Lie algebra level.

The discussion of impermeable and permeable boundaries at this early stage
is important, because much of what follows depends on whether one deals with
impermeable or permeable boundaries. For instance, the determination of the
duals of the vector space underlying the Lie algebra g, crucially depends on
the nature of ∂M . Another consequence is that boundary terms, which all
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vanish for impermeable boundaries, must be carried through in a treatment
that aspires to be valid for the three boundary cases.

Indeed, it is precisely the surface terms that make the key difference between
the Lie-Poisson structure, underlying the traditional Hamiltonian theory, and
the Stokes-Dirac structure, underlying the port-Hamiltonian theory, and will be
of extreme importance in this work as it will rigorously reveal the corresponding
boundary ports.

5.1.5 Dual Space of Lie Algebra

The dual space g∗ to the Lie algebra g is naturally identified with the space of
1-forms Ω1(M) by means of the duality pairing

〈α|ω〉g :=

∫
M

α ∧ ω, α ∈ g∗, ω ∈ g, (5.17)

which is the natural pairing based on integration on M of differential forms of
complementary order.

An essential ingredient for deriving the equations of fluid motion in the
Hamiltonian formalism is the map ad∗ω : g∗ → g∗, which is the formal dual to
the adjoint operator of g defined by adω(·) := [ω, ·]g, for a given ω ∈ g. The
explicit expression for ad∗ω is given by the following result.

Proposition 5.1.3. For any ω ∈ g, the dual map ad∗ω of the adjoint operator
adω of g = Ωn−1(M) is given by

ad∗ω(α) = Lω̂α+ div(ω̂)α, ω ∈ g, α ∈ g∗. (5.18)

For a general manifold M with boundary ∂M , the map ad∗ω in (5.18) satisfies
for any ω, β ∈ g and α ∈ g∗,

〈ad∗ω(α)|β〉g = 〈α| adω(β)〉g +

∫
∂M

ηadω (α, β)|∂M , ω, β ∈ g, α ∈ g∗,

(5.19)
where the (n− 1)-form ηadω (α, β) ∈ Ωn−1(M) is given by

ηadω (α, β) = ιω̂(α ∧ β). (5.20)

The term η|∂M ∈ Ωk(∂M) denotes the trace of the form η ∈ Ωk(M) which is
defined as the pullback of the inclusion map i : ∂M →M , i.e. η|∂M := i∗η.

Proof. Consider any β ∈ g. By using (5.15) we have that

〈α| adω(β)〉g =

∫
M

α ∧ [ω, β]g =

∫
M

α ∧ div(ω̂)β −
∫
M

α ∧ Lω̂β. (5.21)
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Using the Leibniz rule for the Lie derivative Lω̂(α ∧ β) = Lω̂α ∧ β + α ∧ Lω̂β
and Cartan’s magic formula Lω̂ = dιω̂ + ιω̂d the second integrand in (5.21)
becomes

−α ∧ Lω̂β = Lω̂(α ∧ β)− dιω̂(α ∧ β). (5.22)

Substituting (5.22) in (5.21), using the definition of divergence and Stokes
theorem we have that

〈α| adω(β)〉g = 〈div(ω̂)α+ Lω̂α|β〉g −
∫
∂M

i∗(ιω̂(α ∧ β))

= 〈ad∗ω(α)|β〉g −
∫
∂M

(ιω̂(α ∧ β))|∂M .

�

Remark 5.1.4. Interestingly (but not surprisingly), this condition on repre-
sentatives of the Lie algebra in case of impermeable boundary, is exactly the
one that nullifies the boundary term in (5.19), which is easily verified because
the pullback in the trace distributes over the wedge. This consideration sheds
light on the fact that in classical Hamiltonian theory the state space is con-
strained such that no energy exchange can happen on the boundary of the
spatial manifold, and the surface term in the duality pairing (5.19) is conse-
quently neglected.

As will be shown in what follows, the surface terms are the key difference
between the Lie-Poisson structure, underlying the traditional Hamiltonian the-
ory, and the Stokes-Dirac structure, underlying the port-Hamiltonian theory,
and will be of extreme importance in this work. Our methodology does not rely
on constraining the state space of the fluid, but to consider duality pairings
like (5.19) in their full generality, which will reveal rigorously boundary ports
that can be used for modeling or control purposes.

5.2 Kinematics of Advected Quantities

In ideal continuum flow, the material parcels of the fluid are carried by the
flow. These parcels are transported (advected) by the ideal flow along with
extensive thermodynamic properties such as the parcels’ mass and heat. The
properties transported by the flow are referred to as advected quantities.

The presence of advected quantities adds more structure to the spaces un-
derlying the motion of fluids g and g∗. Understanding this additional structure
is crucial for the development of the decomposed model of fluid dynamics we
aim for in this work as well as the derivation of the Stokes-Dirac structure
underlying the kinetic energy subsystem.
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Next, we describe mathematically advected quantities and their governing
evolution equations. Then, we introduce the interconnection maps that will
allow relating the spaces of fluid motion and the spaces of advected quantities
to each other. Finally, we discuss the added semi-direct algebra structure that
the presence of these advected quantities introduces into the geometric picture.

5.2.1 Mathematical Description

An advected quantity at is represented mathematically, in general, as a time-
dependent tensor field. We denote the vector space of advected quantities by
V ∗ ⊂ T (M) which is usually a subspace of the space of tensor fields T (M)
on M . Specific examples include scalar fields (e.g. buoyancy,entropy), vector
fields (e.g. magnetic field), 2-forms (e.g. vorticity), and top forms (e.g. mass
form). Another example of advected quantities also includes the Lagrangian
labels x0, interpreted as passive scalars. All advected quantities that will be
considered later in this chapter will be represented by differential forms.

Let a(t, x) ∈ V ∗ denote a time-dependent advected quantity of the fluid,
expressed in terms of the spatial coordinates x of the manifold M . Thus,
a(t, x) = at(x) is an Eulerian representation of the advected quantity. The cor-
responding Lagrangian representation of the same advected quantity is denoted
by ã(t, x0) = ãt(x0) which is a function of the Lagrangian labels x0 which are
kept fixed. Due to the choice of the Lagrangian labels x0 to be the particle’s
position at t = 0, the Eulerian and Lagrangian forms of the advected quantity
coincide in the reference configuration i.e.

a0(x) = ã0(x0) ∈ V ∗. (5.23)

The relation between the tensor field at at t > 0 and its initial value a0 is given
the pullback of the flow map gt ∈ G,

a0(x0) = (g∗t at)(x0), (5.24)

and similarly, since gt is a diffeomorphism,

at(x) = ((g−1
t )∗a0)(x). (5.25)

Therefore, we have that a0 = g∗t at or at = (g−1
t )∗a0. An important observation

is that the Eulerian advected quantity at is completely determined by the flow
map gt and its initial value a0.

In the Lagrangian view, the condition for a time-dependent advected quan-
tity ã(t, x0) to be advected with the flow is given by d

dt ã(t, x0) = 0. Conversely,
in the Eulerian view, the tensor field at is advected with the flow if ∀t

(
∂

∂t
+ Lv)at = 0, (5.26)
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which is an immediate consequence of the Lie derivative formula for time-
dependent tensor fields [Abraham et al., 1988, Pg. 372],

d

dt
(g∗t at) = g∗t (

∂

∂t
at + Lvat). (5.27)

An advected quantity is also referred to as being invariant under the flow,
frozen into the fluid, or Lie dragged with the flow.

Next we consider several examples of advected quantities.

Conservation of Mass

The prototypical case of an advected quantity that occurs in all continuum
flows is the mass top-form given by µt := ρtµvol ∈ Ωn(M), where ρt ∈ C∞(M)
denotes the mass density function. We have that µt ∈ V ∗ = Ωn(M).

The mass conservation condition can be written in terms of the mass form
as g∗t µt = µ0, or equivalently

∂

∂t
µt + Lvµt = 0, (5.28)

where Lv denotes the Lie derivative operator along vector field v. Equation
(5.28) is referred to as the mass continuity equation.

To express the mass continuity in terms of the density function ρt, we
substitute µt = ρtµvol in (5.28)

∂

∂t
(ρtµvol) + Lv(ρtµvol) =

∂

∂t
(ρt)µvol + Lv(ρt)µvol + ρtLv(µvol), (5.29)

=(
∂

∂t
(ρt) + Lv(ρt) + ρtdiv(v))µvol = 0, (5.30)

which follows from the Leibniz rule of the Lie derivative and the definition of
div(v) ∈ C∞(M). Therefore, the mass continuity equation in terms of the
density function ρt ∈ C∞(M) is expressed as

∂

∂t
ρt + Lvρt + ρtdiv(v) = 0. (5.31)

By comparing the mass continuity equation in its two forms (5.28) and
(5.31), it is observed that in general, the mass form µt is an advected quantity
while the mass density function ρt is not. This observation is the main reason
why µt will be chosen as a state variable later for representing the fluid’s kinetic
energy Ekin, which depends on the density and velocity of the flow.
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Conservation of Entropy

Another quantity of interest that is associated with fluid flow is the specific
entropy function st ∈ C∞(M). The entropy in general is not an advected
quantity. However, in the case of adiabatic compressible flow, st is advected
with the flow. Thus, it satisfies g∗t st = s0, or equivalently

∂

∂t
st + Lvst = 0. (5.32)

A consequence of the entropy conservation (5.32), is that if the entropy is
homogeneous in space initially (i.e. s0(x0) = s0 is constant) then it remains
constant for all time (i.e. st(x) = s0,∀t > 0, x ∈ M). In such case, the
compressible flow is called isentropic.

In compressible flow, the total energy of the fluid consists of kinetic energy
Ekin and internal energy Eint. In adiabatic compressible flow, the internal
energy of the fluid depends on the entropy function st and the density function
ρt. Whereas, in isentropic compressible flow, Eint depends only on the density
function ρt.

Conservation of Volume

In the physical world, it is observed from experiments that the compressibility
of a fluid could be neglected when the speed of a body within the fluid is much
lower than the speed of sound. In this case, the flow is approximated to be
incompressible which is characterized mathematically by the conservation of
the volume form g∗t µvol = µvol.

Let the top-form given by g∗t µvol have a density J(gt) ∈ C∞(M) defined
such that g∗t µvol = J(gt)µvol. In the case of Euclidean space (M ⊆ Rn) with the
standard volume form, the function J(gt) corresponds to the determinant of the
Jacobian matrix associated with the diffeomorphism gt. The incompressibility
condition implies that J(gt) = 1 for all times and at all points x ∈M .

By the Lie derivative rule, we have that

d

dt
(g∗t µvol) = g∗t (Lvµvol). (5.33)

Thus, an equivalent condition for incompressible flow is Lvµvol = 0. Therefore,
in incompressible flow the time-independent volume form is also an advected
quantity, or more correctly it is frozen in the fluid.

Using properties of the Lie derivative, one also has that

Lvµvol = div(v)µvol = 0 =⇒ div(v) = 0, (5.34)

as well as
Lvµvol = dιvµvol = dωv = 0. (5.35)



5.2 Kinematics of Advected Quantities 123

Flow Type Advected Quantities Total Energy
Compressible
Adiabatic

µt, st Ekin(ρt, vt) + Eint(ρt, st)

Compressible
Isentropic

µt, st = s0 Ekin(ρt, vt) + Eint(ρt)

Incompressible
Inhomogeneous

µt, ρt, µvol Ekin(ρt, vt)

Incompressible
Homogeneous

µt = µ0, ρt = ρ0, µvol Ekin(vt)

Table 5.1: Flow types and corresponding advected quantities

Therefore, the following are all equivalent conditions for incompressible flow:
i) J(gt) = 1, ii) Lvµvol = 0, iii) div(v) = 0, iv) dωv = 0.

In the case of incompressible flow, the aforementioned conditions restricts
the configuration space of the fluid flow to a subgroup of D(M) defined by

Dvol(M) := {g ∈ D(M)|J(g) = 1}, (5.36)

This subgroup is known in the literature as the volume-preserving diffeomor-
phism group, which was shown in Ebin and Marsden [1970] to be a Lie-subgroup
of D(M). The corresponding Lie sub-algebra is given by the divergence-free
vector fields Xvol(M) defined as

Xvol(M) := {v ∈ X(M)|div(v) = 0}. (5.37)

Condition (iv) also implies that the differential form representation of the Lie
algebra Xvol(M) corresponds to the closed n− 1 forms.

As a consequence of the incompressibility condition div(v) = 0, the mass
continuity equation (5.31) becomes

∂

∂t
ρt + Lvρt = 0, (5.38)

which implies that ρt is also advected with the flow if it is incompressible.
Therefore, if the mass density is homogeneous in space initially, then it re-
mains constant for all time (i.e. ρt(x) = ρ0,∀t > 0, x ∈ M), and consequently
µt remains constant as well. In such case, the incompressible flow is called
homogeneous, while the former case with time-varying density is called inho-
mogeneous flow. In homogeneous incompressible flow, the kinetic energy Ekin

becomes a function of the fluid’s velocity only.
A summary of the previously discussed fluid types and advected quantities

is shown in Table 5.1.
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Figure 5.6: Interconnection maps relating the space of fluid motion to the space
of advected quantities.

5.2.2 Relation Between Fluid Motion and Advected Quan-
tities

In order to build a decomposed model of fluid flow, it is important to describe
the dynamics of advected quantities separately from the dynamics of fluid mo-
tion. With reference to Fig. 5.6, the dynamics of the fluid motion are defined
on the space (g× g∗), whereas the dynamics of advected quantities are defined
on (V ∗ × V ). The dual space of V ∗ = Ωk(M) is V = Ωn−k(M) with respect
to the duality pairing 〈 ·| ·〉V ∗ : V × V ∗ → R given by the integral of the wedge
product, i.e.

〈 ā| a〉V ∗ :=

∫
M

ā ∧ a, a ∈ V ∗, ā ∈ V. (5.39)

As discussed in Sec. 5.2.1, the evolution of an advected quantity depends
on the fluid motion described by ω ∈ g. On the other hand, the advected
quantity carried by the flow influences the flow motion in a power-consistent
manner through the bidirectional exchange of kinetic energy of the fluid and
the additional energy characterized by the advected quantity (e.g. potential or
magnetic energy).

The effect of the fluid motion (ω ∈ g on the advected quantity a ∈ V ∗ is
encoded in the the primary map ϕ̃a : g→ V ∗, which is defined by

ϕ̃a : g→ V ∗

ω 7→ ϕ̃a(ω) := Lω̂a.
(5.40)

In terms of this primary map, the governing equation of an advected quantity
(5.26) is rewritten as ȧt = −ϕ̃a(ω), with ω = Ψvol(v).

The reverse effect, which the advected quantities has on the fluid motion,
is characterized by the (formal) dual map of ϕ̃a given by

ϕ̃∗a : V → g∗

ā 7→ ϕ̃∗a(ā).
(5.41)



5.2 Kinematics of Advected Quantities 125

We refer to the two maps ϕ̃a, ϕ̃
∗
a as the interconnection maps (cf. Fig.

5.6) as they will serve the fundamental role of interconnecting the space of
advected quantities with the space of fluid motion in the port-Hamiltonian
model, as will be shown later in this chapter.

The explicit expression for ϕ̃∗a is given by the following result which depends
on a specific choice of V ∗. For our purpose, we only consider the cases of top-
forms and smooth functions relevant to the advected quantities of mass form
(V ∗ = Ωn(M) 3 µ) and entropy (V ∗ = Ω0(M) 3 s).

Proposition 5.2.1. For a given a ∈ V ∗, consider the map ϕ̃a defined by
(5.40) and consider its dual map ϕ̃∗a : V → g∗. For a general manifold M with
boundary ∂M , the dual map ϕ̃∗a satisfies for any ω ∈ g

〈 ϕ̃∗a(ā)|ω〉g = 〈 ā| ϕ̃a(ω)〉V ∗ +

∫
∂M

ηϕ̃a(ω, ā)|∂M , (5.42)

where ηϕ̃a(ω, ā) ∈ Ωn−1(M) is the corresponding n − 1 form representing the
surface term.

i) In case V = Ω0(M) and V ∗ = Ωn(M),

ϕ̃∗a(ā) = −(∗a)dā, ηϕ̃a(ω, ā) = −(∗a)ω ∧ ā,

ii) In case V = Ωn(M) and V ∗ = Ω0(M),

ϕ̃∗a(ā) = (∗ā)da, ηϕ̃a(ω, ā) = 0,

where ∗ denotes the Hodge star operator and d denotes the exterior derivative
operator.

Proof. i) Let ā ∈ V = Ω0(M) and a ∈ V ∗ = Ωn(M), where a can be written
as a = (∗a)µvol. Let ω ∈ g and let ω̂ ∈ X(M) be its corresponding vector
field.

Using the fact that ā ∈ C∞(M) and the Leibniz rule for the exterior
derivative, we can write

〈 ā| ϕ̃a(ω)〉V ∗ =

∫
M

ā ∧ Lω̂a =

∫
M

ā ∧ dιω̂a =

∫
M

ā ∧ d((∗a)ιω̂µvol),

=

∫
M

ā ∧ d(∗aω) =

∫
M

d(ā ∧ (∗aω))− dā ∧ (∗a)ω,

=

∫
∂M

(∗a)ω ∧ ā−
∫
M

(∗a)dā ∧ ω,

=

∫
∂M

−ηϕ̃a(ω, ā) + 〈−(∗a)dā|ω〉g ,

which concludes the proof of (i).
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Advected
Quantity (a)

Advection
Space (V ∗)

ϕ̃a(ω) ϕ̃∗a(ā) ηϕ̃ω (a, ā)

Mass form (µ) Ωn(M) Lω̂µ −(∗µ)dµ̄ −(∗µ)ω ∧ µ̄

Entropy (s) Ω0(M) Lω̂s (∗s̄)ds 0

Table 5.2: Summary of interconnection maps for the advected quantities: mass
form µ ∈ Ωn(M) and entropy function s ∈ Ω0(M). Their associated dual
elements are denoted by µ̄ ∈ Ω0(M) and s̄ ∈ Ωn(M), respectively.

ii) Let b̄ ∈ V = Ωn(M) and b ∈ V ∗ = Ω0(M), where b̄ can be written as
b̄ = (∗b̄)µvol.

Using the definition of ϕ̃b(ω) and the fact that b ∈ C∞(M), we write

〈
b̄
∣∣ ϕ̃b(ω)

〉
V ∗

=

∫
M

b̄ ∧ Lω̂b =

∫
M

b̄ ∧ ιω̂db =

∫
M

ιω̂db ∧ b̄.

Using the Leibniz rule for the interior product it holds ιω̂(db ∧ b̄) =
ιω̂(db) ∧ b̄− db ∧ ιω̂(b̄) = 0, since, as an n+ 1 form, db ∧ b̄ = 0. It follows∫

M

ιω̂db ∧ b̄ =

∫
M

db ∧ ιω̂ b̄ =

∫
M

db ∧ (∗b̄)ιω̂µvol

=

∫
M

(∗b̄)db ∧ ω =
〈
ϕ̃∗b(b̄)

∣∣ω〉
g

Moreover, from (5.42) we have that ηϕ̃b(ω, b̄) = 0.
�

For the reader’s convenience, a summary of the interconnection maps is
provided in Table 5.2. Finally, we conclude this section by the following remark.

Remark 5.2.2. It is important to distinguish in (5.40) that the map ϕ̃a is
modulated by the state a ∈ V ∗, while the image of ω under ϕ̃a belongs to the
tangent space at a ∈ V ∗, i.e.

ϕ̃a(ω) = −ȧ ∈ TaV ∗ ∼= V ∗.

Moreover, the range of the map ϕ̃∗a is the cotangent space at a ∈ V ∗, i.e.
T ∗aV

∗ ∼= V . These three spaces correspond to variables of different physical
nature. In the port-Hamiltonian formalism, presented later, this physical dif-
ference is highlighted by referring to the state a ∈ V ∗ as the energy variable,
to its rate of change ȧ ∈ V ∗ as the flow variable, and to an element of V as the
co-energy variable.
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5.2.3 Right Representation and Semidirect Product Struc-
ture

The presence of advected quantities adds more structure to the Lie algebra
structure of g that will be central for deriving the Hamiltonian dynamics in the
coming section.

On the group level (valid only for impermeable or no boundary), the pull-
back operation of a flow map gt ∈ D(M) on an advected quantity at ∈ V ∗

defines a right linear action (i.e. representation) of the group D(M) on the
vector space V ∗, which induces another representation on its dual space V ,
given also by the pullback operation [Holm et al., 2009]. Thus, both V and V ∗

are representation spaces of D(M).

On the algebra level, the representation of D(M) on V and V ∗ induces two
other representations of g on V and V ∗ that are both related to the Lie deriva-
tive operator [Holm et al., 2009]. This representation will allow constructing
the semi-direct product algebra s = g n V , where its dual will be the state
space on which the Hamiltonian dynamical equations will be represented.

In what follows next, we present the semi-direct product structure of s, but
first provide the technical details of the representations of both D(M) and g
on V and V ∗. Readers who are familiar with the action of Lie groups on vector
spaces, can freely skip the next technical subsection and continue directly to
the discussion on the semi-direct product structure.

Right Representations of G and g on V and V ∗

The action of the Lie group G on the vector space V is defined by

Φ : G× V → V

(g, ā) 7→ g∗(ā).
(5.43)

Thus, Φg :ā 7→ g∗(ā) is a linear isomorphism on V for every g ∈ G. The action
(5.43) is a right action because we have ∀ā ∈ V,∀g1, g2 ∈ G

i) Φe(ā) = e∗(ā) = ā,

ii) Φg1◦g2
(ā) = (g1 ◦ g2)∗(ā) = g∗2(g∗1 ā) = Φg2

◦ Φg1
(ā).

Let the duality pairing 〈 ·| ·〉V : V ∗ × V → R to be given by

〈a| ā〉V :=

∫
M

a ∧ ā, a ∈ V ∗, ā ∈ V. (5.44)

The induced right action of G on V ∗ is equal to the inverse of the dual map
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of Φg. The dual isomorphism Φ∗g is defined such that for any ā ∈ V and a ∈ V ∗

〈
Φ∗g(a)

∣∣ ā〉
V

= 〈a|Φg(ā)〉V =

∫
M

a ∧ g∗ā (5.45)

=

∫
M

g∗((g−1)∗a ∧ ā) =

∫
M

(g−1)∗a ∧ ā =
〈

(g−1)∗a
∣∣ ā〉

V
, (5.46)

thus, Φ∗g(a) = (g−1)∗(a). Now we define the induced action of G on V ∗ by

Φ̃ : G× V ∗ → V ∗

(g, a) 7→ Φ̃(g, a) := Φ∗g−1(a).
(5.47)

Therefore, we have that Φ̃g := Φ̃(g, ·) is given by

Φ̃g(a) = Φ∗g−1(a) = g∗a. (5.48)

In conclusion, the representation ofG on both V and V ∗ is given by the pullback
operation.

The induced actions of the Lie algebra gv = X(M) on V and on V ∗, are
given respectively by the maps φ : gv × V → V and φ̃ : gv × V ∗ → V ∗, defined
such that

φv(ā) := φ(v, ā) :=
d

dt

∣∣∣∣
t=0

Φg(t)(ā), φ̃v(a) := φ̃(v, a) :=
d

dt

∣∣∣∣
t=0

Φ̃g(t)(a),

where g(t) ∈ G is the curve with g(0) = e and ġ(0) = v.

Therefore, for the representations (5.43) and (5.48), we have that

φv(ā) =
d

dt

∣∣∣∣
t=0

g∗(t)(ā) = Lvā, φ̃v(a) =
d

dt

∣∣∣∣
t=0

g∗(t)(a) = Lva,

which follows from the definition of the Lie-derivative.

Using the isomorphism Ψvol in (5.11), it is possible to construct an action
of the differential form representation of the Lie algebra g on V and V ∗ as
follows. For a given ω ∈ g, we define the maps

ϕω : V → V

ā 7→ ϕω(ā) := φ(ω̂, ā),

ϕ̃ω : V ∗ → V ∗

a 7→ ϕ̃ω(a) := φ̃(ω̂, a),
(5.49)

where ω̂ = Ψ−1
vol(ω). Thus, we explicitly have that ϕω(ā) = Lω̂ā and ϕ̃ω(a) =

Lω̂a.

Finally, a summary of the aforementioned maps is presented in Table 5.3.
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G gv g

V Φg = g∗ φv = d
dt |t=0Φg(t) = Lv ϕω = φ(Ψ−1

vol(ω), ·) = Lω̂

V ∗ Φ̃g = Φ∗g−1 = g∗ φ̃v = d
dt |t=0Φ̃g(t) = Lv ϕ̃ω = φ̃(Ψ−1

vol(ω), ·) = Lω̂

Table 5.3: Summary of notations for Actions on V and V ∗

Semidirect Product Structure

Given the group D(M), vector space V = Ωk(M), and the right representation
given by the pullback operation, we define the semi-direct product Lie group
S as the group with underlying manifold D(M) × V and group operation • :
S × S → S defined by

(g1, ā1) • (g2, ā2) = (g1 ◦ g2, g2
∗(ā1) + ā2). (5.50)

Usually S is denoted by D(M) n V . The Lie algebra of S is then given by
the semi-direct product algebra s = g n V , with its corresponding bracket
[·, ·]s : s× s → s, is defined using the Lie bracket on g in (5.15) and the
induced action of g on V as

[(ω1, ā1), (ω2, ā2)]s := ([ω1, ω2]g ,Lω̂2
ā1 − Lω̂1

ā2). (5.51)

The dual space s∗ = g∗ × V ∗ to the Lie algebra s will serve as the Poisson
manifold on which the dynamical equations of motion will be formulated later.
The duality pairing between an element (α, a) ∈ s∗ and an element (ω, ā) ∈ s
is given by

〈 (α, a)| (ω, ā)〉s := 〈α|ω〉g + 〈a| ā〉V =

∫
M

α ∧ ω + a ∧ ā. (5.52)

As usual we define the adjoint operator ad(ω,ā) : s→ s for a given (ω, ā) ∈ s
by ad(ω,ā) := [(ω, ā), ·]s . Note that the bold notation for ad(ω,ā) is to dis-
tinguish it from the adω operator of the Lie algebra g. Then the dual map
ad∗(ω,ā) : s∗ → s∗ is given by the following result, which is an extension of
Prop. 5.1.3 for the case of the semi-direct product s.

Theorem 5.2.3. For a given (ω, ā) ∈ s, the formal dual ad∗(ω,ā) of the adjoint
operator ad(ω,ā) and (5.51) is given explicitly by

ad∗(ω,ā)(α, a) = (ad∗ω(α) + ā � a,Lω̂a), (α, a) ∈ s∗, (5.53)

where ad∗ω : g∗ → g∗ is given by Prop. 5.1.3, and the diamond map � :
V × V ∗ → g∗ is given by

ā � a := (−1)c+1ϕ̃∗a(a), ā ∈ V = Ωk(M), a ∈ V ∗ = Ωn−k(M),
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where c = k(n− k) ∈ R.
For a general n-dimensional manifold M with boundary ∂M , the map ad∗(ω1,ā1)

satisfies the following equality for any (ω1, ā1), (ω2, ā2) ∈ s and (α, a) ∈ s∗〈
ad∗(ω1,ā1)(α, a)

∣∣∣ (ω2, ā2)
〉
s

=
〈

(α, a)|ad(ω1,ā1)(ω2, ā2)
〉
s

+

∫
∂M

ηad(ω1,ā1)
(α, a, ω2, ā2)|∂M ,

(5.54)

where the surface term ηad(ω1,ā1)
(α, a, ω2, ā2) ∈ Ωn−1(M) is expressed as

ηad(ω1,ā1)
(α, a, ω2, ā2) =ηadω1

(α, ω2) + (−1)c+1ηϕ̃a(ω2, ā1)

− ιω2(a ∧ ā1) + ιω1(a ∧ ā2),
(5.55)

where the expressions of the surface terms are given in (5.20) and in Prop.
5.2.1.

Proof. Consider (ω1, ā1), (ω2, ā2) ∈ s. Using the definition of the bracket in
(5.51), the duality pairing in (5.52), and the identity∫

M

a ∧ Lω̂ā+ Lω̂a ∧ ā =

∫
∂M

ιω̂(a ∧ ā),

we have that〈
(α, a)|ad(ω1,ā1)(ω2, ā2)

〉
s

=
〈

(α, a)| ([ω1, ω2]g ,Lω̂2
ā1 − Lω̂1

ā2

〉
s

= 〈α| adω1(ω2)〉g + 〈a| Lω̂2 ā1〉V − 〈a| Lω̂1 ā2〉V
= 〈α| adω1(ω2)〉g − 〈Lω̂2a| ā1〉V + 〈Lω̂1a| ā2〉V

+

∫
∂M

ιω̂2(a ∧ ā1)|∂M −
∫
∂M

ιω̂1(a ∧ ā2)|∂M .

Let c := k(n− k) ∈ R. Using the wedge product properties and (5.42), the
term −〈Lω̂2

a| ā1〉V can be expressed as

−
∫
M

Lω̂2a ∧ ā1 =

∫
M

(−1)c+1ā1 ∧ Lω̂2a = (−1)c+1 〈 ā1| ϕ̃a(ω2)〉V ∗

= (−1)c+1

(
〈 ϕ̃∗a(ā1)|ω2〉g −

∫
∂M

ηϕ̃a(ω2, ā1)|∂M
)

= 〈 ā1 � a|ω2〉g −
∫
∂M

(−1)c+1ηϕ̃a(ω2, ā1)|∂M . (5.56)
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Using the pairing equalities (5.19) and (5.56), we have that〈
(α, a)|ad(ω1,ā1)(ω2, ā2)

〉
s

=
〈
ad∗ω1

(α)
∣∣ω2

〉
g
−
∫
∂M

ηadω1
(α, ω2)|∂M + 〈 ā1 � a|ω2〉g

−
∫
∂M

(−1)c+1ηϕ̃a(ω2, ā1)|∂M + 〈Lω̂1
a| ā2〉V

+

∫
∂M

ιω̂2(a ∧ ā1)|∂M −
∫
∂M

ιω̂1(a ∧ ā2)|∂M

=
〈
ad∗ω1

(α) + ā1 � a
∣∣ω2

〉
g

+ 〈Lω̂1
a| ā2〉V −

∫
∂M

[ηadω1
(α, ω2)

+ (−1)c+1ηϕ̃a(ω2, ā1)− ιω̂2
(a ∧ ā1) + ιω̂1

(a ∧ ā2)]|∂M ,

=
〈
ad∗(ω1,ā1)(α, a)

∣∣∣ (ω2, ā2)
〉
s
−
∫
∂M

ηad(ω1,ā1)
(α, a, ω2, ā2)|∂M ,

which concludes the proof.
�

Remark 5.2.4. The diamond operator � : V × V ∗ → g∗ in (5.53) is usually
introduced in the Hamiltonian mechanics literature, e.g. [Marsden et al., 1984a;
Holm et al., 1998; Modin et al., 2011], as a short-hand notation for the dual
map (5.41) and it describes the effect that the advected quantities impose on
the motion of the fluid.

5.3 Port-Hamiltonian Modeling of the Kinetic
Energy Subsystem

Now we start the port-Hamiltonian modeling procedure of a fluid dynamical
system flowing on an arbitrary spatial manifold. Unlike the standard top-down
approach in classical Hamiltonian theory for modeling a fluid system starting
from the configuration space D(M), the philosophy of the port-Hamiltonian
modeling process is based on a bottom-up approach, as discussed in Ch.2.

For the fluid dynamical system at hand, the first step of the port-Hamiltonian
modeling procedure, i.e. the conceptual tearing process, yields two energetic
subsystems; One for storage of kinetic energy and another for storage of inter-
nal energy (for the general case of compressible flow). In this section, we will
only focus on the application of the second and third steps for modeling the
kinetic energy subsystem. Indeed, we will derive it as a closed Hamiltonian
model and then extend it to an open port-Hamiltonian model.

The non-canonical coordinates we choose to develop the Hamiltonian model
belong to the dual space s∗ = g∗×V ∗ of the semi-direct Lie-algebra s = gnV .
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In the classical fluid dynamics literature, these coordinates are referred to as
the Eulerian representation of the fluid motion, in contrast to the Lagrangian
representation corresponding to the canonical coordinates on the cotangent
bundle of D(M).

Using the semi-direct product reduction theorem [Marsden et al., 1984a,b],
we will show in the coming section that the Hamiltonian dynamical equations
in terms of the Eulerian variables is derivable from the canonical symplectic
Hamiltonian dynamics in terms of the Lagrangian variables. This procedure
will yield the Hamiltonian dynamics on the dual space s∗ = g∗ × V ∗ of the
semi-direct Lie-algebra s = g n V . It is important to note that this is the
only stage where the diffeomorphism group is used, which is possible since we
will deal with an isolated closed dynamical system. Moreover, the material
presented in this work will be a mere reproduction of the results of [Marsden
et al., 1984a,b] with a slight difference that the algebra considered here is n−1
differential forms.

Afterwards, we will show the derived Hamiltonian model and its correspond-
ing Lie-Poisson structure are extended to an open port-Hamiltonian model
based on a Stokes-Dirac structure. In this open model, the group structure
will be no longer valid, but all the constructions on the algebra will be ex-
tended directly to incorporate the permeable boundaries.

5.3.1 Semidirect Product Reduction Theorem

In order to derive the Hamiltonian dynamics of the kinetic energy subsystem
in terms of the Eulerian variables we will use the semi-direct product reduction
theorem [Marsden et al., 1984a,b], which requires an extension of the configu-
ration space to incorporate also advected quantities. This procedure will yield
the Hamiltonian dynamics on the dual space s∗ = g∗ × V ∗ of the semi-direct
Lie-algebra s = gn V .

The main reason why one needs the semi-direct product reduction theorem
is that the kinetic energy Hamiltonian on the phase space, i.e. the cotangent
bundle T ∗D(M), depends parametrically on a variable corresponding to the
static reference value of the mass form, which becomes dynamic when reduction
is performed.

For the reader’s convenience, we provide a very brief overview of the pro-
cedure, without technical details.

� Let Ha0 : T ∗G→ R be a Hamiltonian function on the phase space T ∗G
that depends parametrically on a variable a0 ∈ V ∗.

� Let H : T ∗G× V ∗ → R, defined for (g, π) ∈ T ∗G by H(g, π, a0) :=
Ha0

(g, π), be invariant on T ∗G under the action of G on T ∗G× V ∗.
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� Consequently we have on the semi-direct product group S that the func-
tion H is invariant on T ∗S = T ∗(G × V ) ∼= T ∗G × V × V ∗ which is
extended to be constant in V under the action of the semi-direct product.

� The semi-direct product reduction theorem ensures that the dynamics of
Ha0

reduced by the symmetry group Ga0
(i.e. the stabilizer group of

a0) is symplectically equivalent to the Lie-Poisson dynamics on the dual
space s∗ = g∗ × V ∗ of the semi-direct product Lie algebra s = g × V in
terms of an induced Hamiltonian H : s∗ → R.

Although the semidirect product reduction theorem has been shown in the
literature to be applicable to a wide range of finite-dimensional systems(e.g.,
heavy-top) and infinite-dimensional systems (e.g. compressible flow and magneto-
hydrodynamics), the theorem is usually applied backwards. The reason is that
starting from the cotangent bundle T ∗G, it is not obvious a priori what the
representation space V and its corresponding action (similar to (5.43)) should
be [Marsden et al., 1984a]. Next, we illustrate how the theorem is applied for
the kinetic energy Hamiltonian defined on s∗.

5.3.2 Closed Model of Kinetic Energy

The kinetic co-energy1 of the fluid flow can be used to construct a (reduced)
Hamiltonian functional on s∗ = g∗ × V ∗. By analogy with the kinetic co-
energy of a system of particles, we define the co-energy of the fluid flowing on
a manifold M to be

E∗k(v, ρ) :=

∫
M

1

2
ρM(v, v)µvol, (5.57)

where M is the Riemannian metric on M .
Now we wish to represent the kinetic co-energy of the fluid in terms of the

Lie algebra g and the space of advected quantities V ∗, which is expressed as

Lk(ωv, µ) =

∫
M

1

2
(∗µ)ωv ∧ ∗ωv, (5.58)

which follows from ρ = ∗µ and the equalities

M(v, v)µvol = ιv ṽµvol = ṽ ∧ ∗ṽ = (−1)n−1 ∗ ωv ∧ ωv = ωv ∧ ∗ωv, (5.59)

where the second equality follows from identity (5.12). Thus, Lk : g× V ∗ → R
is a (reduced Lagrangian) functional on the Lie algebra of D(M) that depends
parametrically on µ ∈ V ∗. Using a partial Legendre transformation, we can
thus of course represent the kinetic energy as a functional on g∗×V ∗ as follows.

1For the motivation behind using the co-energy and energy terminologies, see [Duindam
et al., 2009, Sec. B.2].



134 Ch 5: Port-Hamiltonian Modeling of Fluid Flow

Theorem 5.3.1. The Legendre transformation of Lk : g× V ∗ → R, as given
by (5.58), is the functional Hk : g∗ × V ∗ → R given by

Hk(α, µ) =

∫
M

1

2(∗µ)
α ∧ ∗α, (5.60)

where α := (−1)n−1(∗µ) ∗ ωv ∈ g∗ denotes the momentum of the fluid.
The variational derivatives δαHk ∈ T ∗αg

∗ ∼= g = Ωn−1(M) and δµHk ∈
T ∗µV

∗ ∼= V = Ω0(M) with respect to the states α ∈ g∗ and µ ∈ V ∗, respectively,
are given by

δαHk =
∗α
∗µ
, δµHk = − 1

2(∗µ)2
ια̂α, (5.61)

where α̂ ∈ X(M) denotes the vector field corresponding to the 1-form α.

Proof. First we start by the variational derivatives of (5.58) with respect to its
variables. The variational derivative δµLk := δLk

δµ of Lk with respect to µ ∈ V ∗
is the element of V that satisfies for any δµ ∈ V ∗,

〈δµLk| δµ〉V ∗ = 〈δµ| δµLk〉V =
d

dε

∣∣∣∣
ε=0

Lk(ωv, µ+ εδµ).

By rewriting (5.58) as

Lk(ωv, µ) =

∫
M

1

2
(∗µ) ∧ ωv ∧ ∗ωv =

∫
M

1

2
∗ (ωv ∧ ∗ωv) ∧ µ,

then one has that

δµLk =
1

2
∗ (ωv ∧ ∗ωv),

by definition of the variational derivative.
The variational derivative δωvLk := δLk

δωv
of Lk with respect to ωv ∈ g is the

element of g∗ that satisfies for any δω ∈ g

〈δωvLk| δω〉g =
d

dε

∣∣∣∣
ε=0

Lk(ωv + εδω, µ).

By rewriting (5.58) as

Lk(ωv, µ) =

∫
M

1

2
(∗µ)ωv ∧ ∗ωv =

∫
M

1

2
(−1)n−1(∗µ) ∗ ωv ∧ ωv,

and the observation that Lk is quadratic in ωv, it follows, again simply by
definition of the variational derivative, that

δωvLk = (−1)n−1(∗µ) ∗ ωv.
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Now define the conjugate momentum variable α ∈ g∗ by α := δωvLk =
(−1)n−1(∗µ) ∗ ωv. The partial Legendre transform of Lk is by definition the
change of variables, and its corresponding inverse,

(ωv, µ) 7→ (α, µ) = ((−1)n−1(∗µ) ∗ ωv, µ), (α, µ) 7→ (ωv, µ) = (
∗α
∗µ
, µ).

Using (5.13), we have that physically α = (∗µ)ṽ = ρṽ is the 1-form correspond-
ing to the momentum of the fluid.

Since the Legendre transformation is a diffeomorphism, then Lk is hyper-
regular, and one can define the Hamiltonian Hk : g∗ × V ∗ → R

Hk(α, µ) := 〈α|ωv〉g − Lk(ωv, µ), (5.62)

which could be expressed as

Hk(α, µ) =

∫
M

α ∧ ωv −
1

2
(−1)n−1(∗µ) ∗ ωv ∧ ωv,

=

∫
M

(α− 1

2
(−1)n−1(∗µ) ∗ ωv) ∧ ωv,

=

∫
M

(α− 1

2
α) ∧ ∗α

∗µ
,

=

∫
M

1

2(∗µ)
α ∧ ∗α.

The variational derivative of H with respect to α follows immediately by
applying the chain rule to the construction in (5.62)

δHk

δα
= ωv +

〈
α| δωv

δα

〉
g

−
〈
δLk
δωv

∣∣∣∣ δωvδα
〉

g

= ωv =
∗α
∗µ
. (5.63)

Similarly, the variational derivative of H with respect to µ is given by

δHk

δµ
= −δLk

δµ
= −1

2
∗ (ωv ∧ ∗ωv) = − 1

2(∗µ)2
∗ (α ∧ ∗α) = − 1

2(∗µ)2
ια̂α,

where identity (5.12) was used. This concludes the proof. �

One of the benefits of the previous systematic construction of the (reduced)
Hamiltonian Hk is that the correct conjugate momentum variable with respect
to ωv ∈ g is chosen, and all variational derivatives are correctly derived.

As for the governing equations of motion, the semi-direct product reduction
theorem asserts that the Hamiltonian dynamics on s∗ = g∗ × V ∗ is given as
follows.
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Theorem 5.3.2. The Hamiltonian dynamical equations of fluid flow in terms
of Eulerian variables on the dual space s∗ = g∗ × V ∗ are given by(

α̇
µ̇

)
= −ad∗(δαHk,δµHk)(α, µ) =

(
−ad∗δαHk(α)− δµHk � µ

−L(δαHk)∧(µ)

)
, (5.64)

where the Hamiltonian Hk(α, µ) and its corresponding variational derivatives
are given by Theorem 5.3.1.

The corresponding Lie-Poisson bracket underlying these dynamical equa-
tions is given by

{F,G} (α, µ) =
〈
α| [δαF, δαG]g

〉
g

+
〈
µ| L(δαG)∧δµF − L(δαF )∧δµG

〉
V
, (5.65)

where F,G ∈ C∞(s∗) are smooth functions on s∗.

Proof. To derive the Hamiltonian dynamics using the semidirect product re-
duction theorem, we need the Hamiltonian Ha0 described on the phase space
T ∗D(M). The goal is to extend the Hamiltonian functional Hk : g∗ × V ∗ → R
in (5.60) to one on T ∗D(M). Consider the isomorphism Γ : T ∗D(M)× V ∗ →
g∗ × V ∗ defined by

Γ(g, π, µ0) = ((Rg)
∗(π), (g−1)∗µ0), (5.66)

which physically represents the map from the space (T ∗D(M) × V ∗) of La-
grangian coordinates to the space (g∗ × V ∗) of Eulerian coordinates. The
action of Γ on (g, π) ∈ T ∗D(M) is given by the pullback of the right transla-
tion map Rg : D(M)→ D(M), whereas the action of Γ on µ0 ∈ V ∗ is given by
the pullback operator. Then, by construction, the functional

H(g, π, µ0) := Hk ◦ Γ(g, π, µ0) = Hk(α, µ)

is a Hamiltonian on T ∗D(M) × V ∗. Moreover, define the Hamiltonian Ha0 :
T ∗D(M) → R by Hµ0(g, π) = H(g, π, µ0). By construction, Ha0 is right-
invariant under the action of the stabilizer group Gµ0

of µ0 ∈ V ∗ given by

Gµ0 := {g ∈ D(M)|(g−1)∗µ0 = µ0}.

As a consequence of the previous construction, the semi-direct product re-
duction theorem asserts that, for a given Hamiltonian functional H : s∗ → R,
the Hamiltonian dynamics on s∗ = g∗ × V ∗ are given by

ẋ = −ad∗δxH(x),

where δxH ∈ s is the variational derivative of H with respect to x, and ad∗δxH
is the dual of the adjoint operator adδxH of s given in (5.53).
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The corresponding Lie-Poisson bracket associated to s∗ is defined by

{F,G} (x) :=

〈
x|
[
δF

δx
,
δG

δx

]
s

〉
s

, (5.67)

for any F,G ∈ C∞(s∗) and x ∈ s∗ . �

A key advantage of the equations of motion in the Hamiltonian form (5.64)
is that the structure of the equations clearly separates the kinetic energy func-
tional Hk(α, µ) from the underlying interconnection structure governing the
evolution of the energy variables (α, µ). Note that the second equation in
(5.64) represents the advection law for the conservation of mass, whereas the
term with the diamond operator in the first equation corresponds to the ef-
fect of advection on the momentum balance. Next, we present the port-based
interpretation of the Hamiltonian system (5.64).

5.3.3 Port-based Representation

In what follows, Bond graphs will be exploited to graphically represent the dif-
ferent models and constructions performed. For readers unfamiliar with bond
graphs, we also accompany most of the bond graphs by their corresponding
block diagrams.

In the port-based paradigm, the system described by the equations (5.64)
is represented by two subsystems that are connected together using ports. The
first subsystem corresponds to the storage property of the system’s energy
(5.60), while the second subsystem corresponds to the interconnection structure
encoded in the Lie-Poisson bracket (5.65).

In general, an energy-storage system (or element) in the port-Hamiltonian
framework is defined by the smooth state space manifold X with a Hamiltonian
functional H : X → R representing the stored energy, and x ∈ X is called the
energy variable. The rate of change of the energy is given by Ḣ = 〈δxH| ẋ〉X ,
where (δxH, ẋ) ∈ T ∗xX × TxX are referred to as the effort and flow variables of
the energy storage element, respectively. The duality pairing between an effort
in T ∗xX and a flow in TxX corresponds to the power entering the energy-storage
element at a certain instant of time.

For the case of the kinetic energy Hamiltonian Hk in (5.60), the state space
manifold is given by X = s∗, the energy variables are given by x = (α, µ), while
the effort variable δxHk and flow variable ẋ are given by

δxHk =(δαHk, δµHk) ∈ T ∗(α,µ)s
∗ ∼= g× V, (5.68)

ẋ =(α̇, µ̇) ∈ T(α,µ)s
∗ ∼= g∗ × V ∗. (5.69)
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The energy balance is expressed by

Ḣk = 〈 ẋ| δxHk〉s = 〈 (α̇, µ̇)| (δαHk, δµHk)〉s

= 〈 α̇| δαHk〉g + 〈 µ̇| δµHk〉V =

∫
M

α̇ ∧ δαHk + µ̇ ∧ δµHk.
(5.70)

Thus, this represents the first subsystem corresponding to the storage of the
kinetic energy Hk in (5.60).

The second subsystem corresponds to the Lie-Poisson structure defined by
the map

Jx : T ∗x s
∗ ∼= s→ Txs

∗ ∼= s∗

esk 7→ Jx(esk) =: fsk.
(5.71)

For the energy variables, x = (α, µ) ∈ g∗×V ∗, we have that esk = (eα, eµ) and
fsk = (fα, fµ). Then we can express the Lie-Poisson structure as

Jx(eα, eµ) =

(
−ad∗eα(α)− eµ � µ

−Lêα(µ)

)
, (eα, eµ) ∈ s = g× V. (5.72)

By substituting the expressions of ad∗ in Prop. 5.1.3 and the diamond operator
in Prop. 5.2.1 (case 1), we can rewrite the Lie-Poisson structure (5.72) as

Jx(eα, eµ) =

(
−Lêα(α)− div(êα)α− (∗µ)deµ

−d((∗µ)eα)

)
, (5.73)

where the second row in (5.73) follows from Lêα(µ) = dιêα(µ) = d((∗µ)ιêαµvol) =
d((∗µ)eα), using identity ιω̂µvol = ω for any ω ∈ g, and the fact that µ is a
top form. Thus, this represents the second subsystem corresponding the inter-
connection structure of the system. Since the Lie-Poisson structure (5.73) is
defined in terms of the momentum variable α, we refer to it as the momentum
representation of the Lie-Poisson structure.

The port-Hamiltonian representation of the system (5.64) is now given by

ẋ = Jx(δxHk), (5.74)

which is constructed by connecting the two ports (esk, fsk) and (δxHk, ẋ) to-
gether:

fsk = ẋ = (α̇, µ̇), esk = δxHk = (δαHk, δµHk).

Graphically, the port-based representation of the Hamiltonian dynamics
(5.64) is shown in Fig. 5.7, where the left figure is represented using bond
graphs and the right figure is represented using block diagrams, explicating
causality. The kinetic energy storage subsystem is denoted in generalized bond
graphs [Breedveld, 1984] by a C-element with its energy functional Hk. The
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Figure 5.7: Port-based representation of the Hamiltonian dynamics (5.64) cor-
responding to the system’s kinetic energy.

storage subsystem is connected to the Lie-Poisson structure Jx through a port
denoted by a double half-arrow. The flow and effort variables are indicated on
the right and left of the port, respectively.

At any instant of time, the duality pairing between the flow ẋ and the effort
δxH equals the power (rate of change of kinetic energy). The conservation of
energy can be seen from

Ḣk = 〈 ẋ| δxHk〉s = 〈Jx(δxHk)| δxHk〉s =
〈
−ad∗δxHk(x)

∣∣ δxHk

〉
s

=− 〈x|adδxHkδxHk〉s = −〈x| [δxHk, δxHk]s〉s = 0, (5.75)

which follows from the skew-symmetry of the Lie bracket of s. Consequently,
the Lie-Poisson structure Jx is a skew-symmetric operator, which corresponds
to it being a power-continuous element in port-based terminology. It is ex-
tremely important to note that in the energy balance (5.75), the surface terms
(5.54) that should appear in the fourth equality naturally disappear for the
closed system (5.64).

In summary, the closed port-Hamiltonian system shown in Fig. 5.7 describes
the conservation of kinetic energy Hk and the corresponding evolution of the
energy variables (α, µ). The conservation of energy follows from the skew-
symmetry of the Lie-Poisson structure. The aforementioned port-Hamiltonian
system is still equivalent to the standard Hamiltonian one that describes a
conservative system that is isolated from any energy-exchange with the external
world. Next, we discuss how to allow non-zero energy exchange by replacing
the underlying Lie-Poisson structure with a Stokes-Dirac structure.

5.3.4 Open Model of Kinetic Energy

There are two ways in which the port-Hamiltonian system (5.74) can interact
and exchange energy with the world; either through the boundary ∂M of the
spatial manifold M or within the domain itself through a distributed port that
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allows energy exchange at every point in M . The former allows exchange of
kinetic energy by mass inflow or outflow, while the latter allows transformation
of kinetic energy to another form in a reversible (or irreversible) way.

To add a distributed port based on Newton’s second law, a distributed force
field fs ∈ g∗ = Ω1(M) is added to the momentum balance equation such that
the port-Hamiltonian system (5.64) is rewritten, using (5.73) as(

α̇
µ̇

)
=

(
−L(δαHk)∧(α)− div((δαHk)∧)α− (∗µ)dδµHk + fs

−d((∗µ)δαHk)

)
, (5.76)

Hk(α, µ) =

∫
M

1

2(∗µ)
α ∧ ∗α. (5.77)

It is worth noticing how our previous choice of the Lie algebra g as Ωn−1(M)
effects the external force field fs on the dual algebra g∗ to be a co-vector field,
which is the correct geometrical representation of a force field. We can write
(5.76) more compactly as

ẋ = Jx(δxHk) +Gfs, (5.78)

with Jx given by (5.73) and G : g∗ → g∗ × V ∗, G = (1 0)> representing the
input map. The force one-form (co-vector field) fs will be used later in Part
II to model stress forces due to pressure. In general, the distributed force can
be used for modeling other stress forces due to viscosity, as well as any body
(external) forces on the continuum (e.g. due to magnetic fields or gravity and
electrostatic accelerations).

The Hamiltonian energy (5.77), as a functional Hk : s∗ → R, admits its
rate of change such that along trajectories x(t), parameterized by time t ∈ R,
it holds that

Ḣk = 〈 ẋ| δxHk〉s =

∫
M

ẋ ∧ δxHk. (5.79)

As shown in (5.75), for an isolated fluid system on a closed manifold (corre-
sponding to G = 0, and either ∂M = ∅ or ∂M is impermeable) the kinetic
energy is always conserved. However, for a general open fluid system, the
expression for the kinetic energy balance (5.79) is given by the following result.

Theorem 5.3.3. The rate of change of the Hamiltonian (5.77) along trajec-
tories of the port-Hamiltonian system (5.78) is given by

Ḣk =

∫
∂M

e∂k ∧ f∂k +

∫
M

ed ∧ fd, (5.80)

where the boundary port variables e∂k, f∂k ∈ Ω0(∂M) × Ωn−1(∂M) and dis-
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tributed port variables ed, fd ∈ Ω1(M)× Ωn−1(M) are defined by

e∂k :=

(
ι(δαHk)∧(α)

∗µ
+ δµHk

)
|∂M , ed := fs,

f∂k := −(∗µ)δαHk|∂M , fd := δαHk,

where η|∂M ∈ Ωk(∂M) denotes the trace of the form η ∈ Ωk(M).

Proof. For notational simplicity, we denote (eα, eµ) = (δαHk, δµHk). By sub-
stituting (5.78) in (5.79), we have that

Ḣk = 〈Jx(eα, eµ)| (eα, eµ)〉s + 〈Gfs| (eα, eµ)〉s
=−

〈
ad∗(eα,eµ)(α, µ)

∣∣∣ (eα, eµ)
〉
s

+
〈

fs|G>(eα, eµ)
〉
s

=−
〈

(α, µ)|ad(eα,eµ)(eα, eµ)
〉
s︸ ︷︷ ︸

=0

−
∫
∂M

ηad(eα,eµ)
(α, µ, eα, eµ)|∂M + 〈 fs| eα〉g ,

where (5.54) was used, and the first term in the last equality vanishes due to
the skew-symmetry property of the Lie bracket ad = [, ]s. Using (5.55),(5.20),
and Prop. 5.2.1 (case i), we can express the surface term as

ηad(eα,eµ)
(α, µ, eα, eµ) = ηadeα (α, eα)− ηϕ̃µ(eα, eµ)− ιêα(µ ∧ eµ) + ιêα(µ ∧ eµ),

= ιêα(α ∧ eα)− (−(∗µ)eα ∧ eµ) + 0.

Using the interior product properties, we have that

ιêα(α ∧ eα) = ιêα(α) ∧ eα − α ∧ ιêα(eα)

= ιêα(α) ∧ eα − α ∧ ιêα ◦ ιêα(µvol) = ιêα(α) ∧ eα,

where the nil-potency property of the interior product was used in the last
equality. Therefore, finally we have that

Ḣk =

∫
∂M

(
ιêα(α)

∗µ
+ eµ

)
|∂M ∧ −(∗µ)eα|∂M +

∫
M

fs ∧ eα, (5.81)

which concludes the proof. �

It is interesting to note the physical interpretation of the boundary flow
variable f∂k. Using (5.61) we have that

f∂k = −(∗µ)δαHk|∂M = −∗α|∂M = −(∗µ)ωv|∂M = −ιvµ|∂M ,

which represents the incoming mass flow through the boundary. As discussed
before in Sec. 5.1.4, the condition ωv|∂M = 0 corresponds to an impermeable
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(a) Bond Graph
(b) Block Diagram

Figure 5.8: Graphical Representation of the Kinetic Energy Subsystem (5.76)
in terms of the state variables: momentum one-form α and the mass top-form
µ.

boundary ∂M which implies that f∂k = 0 and thus results in no exchange of
power through the boundary, as seen in (5.80). The physical interpretation of
the boundary effort variable e∂k will be discussed later.

With reference to Fig. 5.8, the port-Hamiltonian system now has 3 ports;
an energy storage port (esk, fsk), a boundary port (e∂k, f∂k), and a distributed
port (ed, fd). The port (e∂k, f∂k) represents the power incoming to the system
through the boundary, while the port (ed, fd) represents the power flow from
an external distributed source in the spatial domain. The 3 ports are connected
together through a power-conserving structure Dk that encodes the power bal-
ance equation (5.80). Such mathematical structure is called a Stokes-Dirac
structure defined as

Dk = {(fsk,f∂k, fd, esk, e∂k, ed) ∈ Bk|(
fα
fµ

)
=

(
Lêα(α) + div(êα)α+ (∗µ)deµ

d((∗µ)eα)

)
−
(

1
0

)
ed,

fd =
(
1 0

)(eα
eµ

)
,(

e∂k
f∂k

)
=

((
ιêα (α)
∗µ + eµ

)
|∂M

−(∗µ)eα|∂M

)
},

(5.82)

where the storage port variables are given by fsk = (fα, fµ) ∈ s∗ = Ω1(M) ×
Ωn(M) and esk = (eα, eµ) ∈ s = Ωn−1(M) × Ω0(M). The bond-space Bk =
Fk × Ek is the product space of the flow space Fk = Ω1(M) × Ωn(M) ×
Ωn−1(∂M)×Ωn−1(M) and the effort space Ek = Ωn−1(M)×Ω0(M)×Ω0(∂M)×
Ω1(M), represented by smooth differential forms of the appropriate degree.

The Dirac structure (5.82) is a modulated one, in the sense that it depends
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on the state variables x = (α, µ). In the absence of the distributed force (ed = 0)
and in case of an impermeable (or no) boundary (f∂k = 0), the Stokes-Dirac
structure degenerates to the Lie-Poisson structure (5.73) which encodes the
conservation of kinetic energy (Ḣk = 0). The sign difference between the Lie-
Poisson structure in (5.73) and its counterpart in (5.82) is due to the choice of
having all power ports entering the Dirac structure. This can be clearly seen
in the graphical representation of the port-Hamiltonian system in Fig. 5.8 in
terms of bond graph and block diagram notation.

It is interesting to note that the three power ports shown in Fig. 5.8 are of
different natures and result from different duality pairings. The power in the
storage port is expressed by the pairing 〈esk| fsk〉s, the power in the distributed
port is expressed by the pairing 〈ed| fd〉g, while the power in the distributed

port is expressed by
∫
∂M

e∂k ∧ f∂k.
The port-Hamiltonian system (5.76) can be recovered from the Stokes-Dirac

structure (5.82) by imposing

esk =

(
eα
eµ

)
=

(
δαHk

δµHk

)
, fsk =

(
fα
fµ

)
=

(
−α̇
−µ̇

)
,

ed = fs, fd =δαHk,

where the minus sign is due to the choice of having the storage port entering the
Dirac structure, as shown in Fig. 5.8. Therefore the implicit port-Hamiltonian
dynamics are governed by

((−α̇,−µ̇), f∂k, δαHk, (δαHk, δµHk), e∂k, fs) ∈ Dk. (5.83)

5.3.5 Change of Coordinates to the Velocity Representa-
tion

In the work of van der Schaft and Maschke [2002], the port-Hamiltonian model
for compressible isentropic flow was given in terms of the velocity 1-form ṽ ∈
Ω1(M) and the mass top-form µ ∈ Ωn(M) as the underlying energy variables.
The arguments behind this choice of coordinates where not connected to the
geometric structure underlying the state space, as we presented so far in this
work. Instead, in [van der Schaft and Maschke, 2002] the authors defined a
canonical version of a Stokes Dirac structure based on exterior derivatives, that
is representative of a number of physical systems based on conservation laws
of different nature. Then, the authors modified this canonical Dirac structure
to represent the fluid dynamical system with the velocity and mass forms as
energy variables.

One of the contributions of this article is to present a rigorous derivation
of the Stokes Dirac structure presented in [van der Schaft and Maschke, 2002],
starting from (5.82) based on semi-direct product theory. We will represent
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the port-Hamiltonian system in (5.76) in terms of the same energy variables
in [van der Schaft and Maschke, 2002] by means of a change of coordinates,
recovering the Dirac structure which was introduced there without a formal
derivation.

The following change of coordinates procedure was introduced by Vanker-
schaver et al. [2010] for the Lie-Poisson structure only. In this work we extend
the coordinate change for the full Stokes-Dirac structure and emphasize its
port-based interpretation. It will turn out that in terms of the new variables,
the expression of the Dirac structure will be simpler than the momentum rep-
resentation in (5.73). In addition, this description yields further advantages
such as a trivial derivation of the vorticity equation.

Consider the (nonlinear) diffeomorphism

Φ : (α, µ) 7→ (ṽ, µ̃) := (
α

∗µ
, µ). (5.84)

We denote the new state variables (ṽ, µ̃) by x̃ ∈ s∗, i.e. Φ : x 7→ x̃. Consider
the pushforward map (Φ∗)x and pullback map (Φ∗)x of Φ at a point x ∈ s∗

(Φ∗)x : Txs
∗ → Tx̃s

∗

(α̇, µ̇) 7→ ( ˙̃v, ˙̃µ),

(Φ∗)x : T ∗x̃ s
∗ → T ∗x s

∗

(eṽ, eµ̃) 7→ (eα, eµ),
(5.85)

Now we consider the coordinate change for the Lie-Poisson part (5.73) of
the Stokes-Dirac structure. The velocity representation of the Lie-Poisson
structure is the map J̃x̃ : T ∗x̃ s

∗ → Tx̃s
∗, defined by

J̃x̃ := (Φ∗)x ◦ Jx ◦ (Φ∗)x. (5.86)

The change of coordinates described above can be represented graphically in
an elegant way in the port-based framework as shown in the Fig. 5.9.

The exact expressions for the maps (Φ∗)x, (Φ
∗)x, and J̃x̃ are given by the

following theorem [Vankerschaver et al., 2010].

Proposition 5.3.4. The pushforward (Φ∗)x and pullback map (Φ∗)x of the
diffeomorphism (5.84) at a point x = (α, µ) ∈ s∗ are given respectively by

(Φ∗)x(α̇, µ̇) =

(
α̇− (∗µ̇)ṽ

∗µ̃
, µ̇

)
=: ( ˙̃v, ˙̃µ), (5.87)

(Φ∗)x(eṽ, eµ̃) =

(
eṽ
∗µ̃
, eµ̃ −

∗(ṽ ∧ eṽ)
∗µ̃

)
=: (eα, eµ), (5.88)

where (ṽ, µ̃) = Φ(α, µ). The velocity representation of the Lie-Poisson structure
defined by (5.86) is expressed as

J̃x̃(eṽ, eµ̃) =

(
−deµ̃ − 1

∗µ̃ ιêṽdṽ

−deṽ

)
. (5.89)
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Figure 5.9: Graphical representation of change of coordinates from the
momentum-representation Jx to the velocity representation J̃x̃ of the Lie-
Poisson structure.

Proof. For notational simplicity in this proof we denote ∗µ = ∗µ̃ by ρ when
needed. The derivation of the pushforward map (Φ∗)x follows from the rate of
change of α = ρṽ

α̇ = ρ̇ṽ + ρ ˙̃v =⇒ ˙̃v =
α̇− ρ̇ṽ
ρ

=
α̇− (∗µ̇)ṽ

∗µ̃
, (5.90)

where ρ̇ is the density of the top-form µ̇ = ˙̃µ. This concludes the proof of
(5.87).

The pullback map (Φ∗)x is defined implicitly by

〈 (α̇, µ̇)| (Φ∗)x(eṽ, eµ̃)〉s = 〈 (Φ∗)x(α̇, µ̇)| (eṽ, eµ̃)〉s =
〈

( ˙̃v, ˙̃µ)
∣∣ (eṽ, eµ̃)

〉
s
.

Using the duality pairing definition (5.52), we have that

〈 (α̇, µ̇)| (eα, eµ)〉s =

∫
M

˙̃v ∧ eṽ + ˙̃µ ∧ eµ̃ =

∫
M

(
α̇− (∗µ̇)ṽ

ρ

)
∧ eṽ + µ̇ ∧ eµ̃

=

∫
M

α̇

ρ
∧ eṽ − ∗µ̇

ṽ

ρ
∧ eṽ + µ̇ ∧ eµ̃

=

∫
M

α̇ ∧ eṽ
ρ
− ∗µ̇ ∧ ṽ ∧ eṽ

ρ
+ µ̇ ∧ eµ̃

=

∫
M

α̇ ∧ eṽ
ρ
− µ̇ ∧ ∗(ṽ ∧ eṽ)

ρ
+ µ̇ ∧ eµ̃

=

〈
(α̇, µ̇)|

(
eṽ
ρ
, eµ̃ −

∗(ṽ ∧ eṽ)
ρ

)〉
s

,

which concludes the proof of (5.88).
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Finally the proof of the Lie-Poisson structure (5.86) is as follows. Let
(eα, eµ) be given by (5.88). Then using (5.73) one has that(

α̇
µ̇

)
= Jx(eα, eµ) =

(
−LXṽ (α)− div(Xṽ)α− ρd(eµ̃ − ∗(ṽ∧eṽ)

ρ )

−d(ρ eṽρ )

)
, (5.91)

where Xṽ := ( eṽρ )∧ is the vector field corresponding to the n− 1 form eṽ
ρ = eα

which is defined such that ιXṽµvol = eṽ
ρ = ∗X̃ṽ.

The first row in (5.91) could be massaged as follows

α̇ = −LXṽ (ρṽ)− div(Xṽ)ρṽ − ρdeµ̃ + ρd ∗ (ṽ ∧ eṽ
ρ

)

= −ρLXṽ ṽ − LXṽ (ρ)ṽ − div(Xṽ)ρṽ − ρdeµ̃ + ρd ∗ (ṽ ∧ ∗X̃ṽ)

= −ρdιXṽ ṽ − ριXṽdṽ − (LXṽρ+ div(Xṽ)ρ)ṽ − ρdeµ̃ + ρd ∗ (X̃ṽ ∧ ∗ṽ)

= −ριXṽdṽ − (LXṽρ+ div(Xṽ)ρ)ṽ − ρdeµ̃, (5.92)

where the Leibniz rule for the Lie derivative and Cartan’s homotopy formula
were used, and the last equality follows from −ιXṽ ṽ + ∗(X̃ṽ ∧ ∗ṽ) = −ιXṽ ṽ +
ιXṽ ṽ = 0, using identity (5.12). The second row in (5.91), and consequently
the second row in (5.89), can be written simply as

µ̇ = −deṽ = ˙̃µ. (5.93)

By substituting the expressions (5.92) in the expression of ˙̃v in (5.87), we
have that

˙̃v =
1

ρ
(α̇− ρ̇ṽ) = −ιXṽdṽ− 1

ρ
(ρ̇+ LXṽρ+ div(Xṽ)ρ)︸ ︷︷ ︸

=0

ṽ− deµ̃ = −ιXṽdṽ− deµ̃,

where the term in the parenthesis vanishes as a consequence of the mass con-
tinuity equation (5.31). Thus, finally using ιXṽdṽ = ι( eṽρ )∧dṽ = 1

ρ ιêṽdṽ, the

proof of (5.89) is concluded. �

In terms of the new energy variables, the kinetic energy Hamiltonian func-
tional and its variational derivatives are given by the following result.

Proposition 5.3.5. The kinetic energy Hamiltonian given by (5.60) in terms
of the velocity 1-form ṽ and the mass top-form µ is given by

Hk(ṽ, µ) =

∫
M

1

2
(∗µ)ṽ ∧ ∗ṽ. (5.94)

The variational derivatives δṽHk ∈ T ∗ṽ g∗ ∼= g = Ωn−1(M) and δµHk ∈ T ∗µV ∗ ∼=
V = Ω0(M) with respect to the states ṽ ∈ g∗ and µ ∈ V ∗, respectively, are
given by

δṽHk = (∗µ) ∗ ṽ = ιvµ, δµHk =
1

2
ιv ṽ, (5.95)
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Proof. The new functional H̃k(ṽ, µ) is defined by H̃k = Hk ◦ Φ−1. By substi-
tuting Φ−1(ṽ, µ) = ((∗µ̃)ṽ, µ) in (5.60) as

H̃k(ṽ, µ) = Hk(Φ−1(ṽ, µ)) =

∫
M

1

2(∗µ)
(∗µ)ṽ ∧ ∗(∗µ)ṽ =

∫
M

1

2
(∗µ)ṽ ∧ ∗ṽ.

For notational simplicity, we drop the tilde from the mass form µ = µ̃ ∈ V ∗ as
well as the tilde over the new energy functional and denote it by Hk(ṽ, µ).

The variational derivative of Hk with respect to ṽ ∈ g∗ can be found out
by rewriting (5.94) as

Hk(ṽ, µ) =

∫
M

1

2
ṽ ∧ ((∗µ) ∗ ṽ),

where we have that δṽHk = (∗µ) ∗ ṽ from the fact that Hk is quadratic in ṽ.
Furthermore, we can express δṽHk as

δṽHk = (∗µ) ∗ ṽ = (∗µ)ιvµvol = ιv(∗µµvol) = ιvµ.

Similarly, the variational derivative of Hk with respect to µ ∈ V ∗ can be
found out by rewriting (5.94) as

Hk(ṽ, µ) =

∫
M

1

2
(∗µ) ∧ (ṽ ∧ ∗ṽ) =

∫
M

µ ∧ 1

2
∗ (ṽ ∧ ∗ṽ),

where an immediate consequence of the definition of the variational derivative
is that

δµHk =
1

2
∗ (ṽ ∧ ∗ṽ).

Using identity (5.12) allows one to write δµHk as in (5.95), which concludes
the proof. �

The new energy balance for the kinetic energy Hamiltonian (5.94) instead of
(5.80) can be now calculated using the pullback map (Φ∗)x in (5.88) as follows.

Theorem 5.3.6. The rate of change of the kinetic energy Hamiltonian (5.94)
in terms of the new state variables (ṽ, µ) is given by

Ḣk =

∫
∂M

e∂k ∧ f∂k +

∫
M

ed ∧ fd, (5.96)

where the boundary port variables e∂k, f∂k ∈ Ω0(∂M) × Ωn−1(∂M) and the
distributed port variables (ed, fd) ∈ Ω1(M)×Ωn−1(M) are expressed using the
new coordinates (ṽ, µ) by

e∂k = δµHk|∂M =
1

2
ιv ṽ|∂M , ed = fs,

f∂k = −δṽHk|∂M = −ιvµ|∂M , fd =
δṽHk

∗µ
= ωv,
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where the variational derivatives of Hk in (5.94) are given by (5.95), and ωv =
ιvµvol ∈ Ωn−1(M).

Proof. In this proof we denote by (eα, eµ) = (δαHk, δµHk) and by (eṽ, eµ̃) =
(δṽHk, δµ̃Hk). By substituting (eα, eµ) defined by (5.88) and (α, µ) = (∗µṽ, µ)
in the energy balance expression in terms of (α, µ) given by (5.81)

Ḣk =

∫
∂M

(
ιXα(α)

∗µ
+ eµ

)
|∂M ∧ −(∗µ)eα|∂M +

∫
M

fs ∧ eα,

=

∫
∂M

(
ιXα(ṽ) + eµ̃ −

∗(ṽ ∧ eṽ)
∗µ

)
|∂M ∧ −eṽ|∂M +

∫
M

fs ∧
eṽ
∗µ
,

where Xα is defined such that ιXαµvol = eα = eṽ
∗µ . Consequently, we have that

eṽ
∗µ = ∗X̃α. The term ∗(ṽ∧eṽ)

∗µ can be rewritten using identity (5.12) as

∗(ṽ ∧ eṽ)
∗µ

= ∗(ṽ ∧ eṽ
∗µ

) = ∗(ṽ ∧ ∗X̃α) = ∗(X̃α ∧ ∗ṽ) = ιXα ṽ.

Therefore, we have that

Ḣk =

∫
∂M

(
ιXα(ṽ) + eµ̃ −

∗(ṽ ∧ eṽ)
∗µ

)
|∂M ∧ −eṽ|∂M +

∫
M

fs ∧
eṽ
∗µ
,

=

∫
∂M

eµ̃|∂M ∧ −eṽ|∂M +

∫
M

fs ∧
eṽ
∗µ
.

Therefore, eṽ = δṽHk and eµ̃ = δµ̃Hk are given in (5.95) (where µ̃ = µ is used).
Moreover, the term eṽ

∗µ could be rewritten using (5.95) as

eṽ
∗µ

=
δṽHk

∗µ
=

1

∗µ
ιvµ = ιv(

µ

∗µ
) = ιvµvol,

which concludes the proof.

�

As mentioned before, the boundary flow variable f∂k is physically the in-
coming mass flow through the boundary. On the other hand, the boundary
effort variable e∂k is physically the dynamic pressure (modulo the density)
which is the only pressure that exists related to the kinetic energy of the fluid
since we have not modeled yet any thermodynamic potential.

The new Stokes-Dirac structure D̃k in terms of the state variables (ṽ, µ) can
now be constructed using the velocity representation of the Lie-Poisson struc-
ture (5.89) and the definitions of the boundary and distributed port variables
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(a) Bond Graph
(b) Block Diagram

Figure 5.10: Graphical Representation of the Kinetic Energy Subsystem (5.98)
in terms of the state variables: velocity one-form ṽ and the mass top-form µ.

in Theorem 5.3.6. The expression for D̃k is given by

D̃k = {(fsk,f∂k, fd, esk, e∂k, ed) ∈ Bk|(
fṽ
fµ

)
=

(
deµ + 1

∗µ ιêṽdṽ

deṽ

)
−
( 1
∗µ
0

)
ed,

fd =
( 1
∗µ 0

)(eṽ
eµ

)
,(

e∂k
f∂k

)
=

(
0 1
−1 0

)(
eṽ|∂M
eµ|∂M

)
},

(5.97)

where the storage port variables are now given by fsk = (fṽ, fµ) ∈ s∗ =
Ω1(M) × Ωn(M) and esk = (eṽ, eµ) ∈ s = Ωn−1(M) × Ω0(M). The bond-
space Bk is the same as the one defined before for Dk in (5.82).

By excluding the distributed port (ed, fd), the Stokes-Dirac structure (5.97)
coincides with the one postulated in [van der Schaft and Maschke, 2002] for
an ideal fluid and considered as an extended version of with respect to the one
containing only exterior derivative operators.

To summarize, the explicit port-Hamiltonian dynamical model in terms of
the kinetic energy state variable xk := x̃ = (ṽ, µ) ∈ X = s∗ is given by(

˙̃v
µ̇

)
=

(
−d(δµHk)− ιvdṽ
−d(δṽHk)

)
+

( 1
∗µ
0

)
fs, (5.98)

ωv =
( 1
∗µ 0

)(δṽHk

δµHk

)
, (5.99)

Hk(xk) =Hk(ṽ, µ) =

∫
M

1

2
(∗µ)ṽ ∧ ∗ṽ, (5.100)



150 Ch 5: Port-Hamiltonian Modeling of Fluid Flow

where the variational derivatives are given by Prop. 5.3.5. The term ιvdṽ is
equivalent to 1

∗µ ιêṽdṽ = ι(êṽ/∗µ)dṽ in (5.89), which follows from

êṽ
∗µ

=
(δṽHk)∧

∗µ
=

(∗µ ∗ ṽ)∧

∗µ
= (∗ṽ)∧ = v.

Moreover, the port-Hamiltonian dynamics (5.98-5.100) are recovered from the
Dirac structure D̃k in (5.97) by

((− ˙̃v,−µ̇), f∂k, ωv, (δṽHk, δµHk), e∂k, fs) ∈ D̃k. (5.101)

The graphical representation of the kinetic energy port-Hamiltonian system
(5.98-5.100) is shown in Fig. 5.10.

This concludes the port-Hamiltonian modeling procedure of the kinetic en-
ergy subsystem. In the coming sections, we show how to utilize the distributed
stress forces for modeling internal energy to represent compressible flow, and
modeling constraint forces to represent incompressible flow.

5.4 Port-Hamiltonian Modeling of Compress-
ible Flow

The distributed force fs present in the model (5.98) originates physically from
the random motion and collisions of the molecules that comprise the fluid. The
force fs is defined through averaging the momentum transfer of a large group
of molecules over a short time scale, compared to the macroscopic motion of
the fluid encoded by the vector field v. Thus, the transfer of momentum on the
microscopic scale is equivalent to the continuous force fs acting at each point
in the spatial domain M at the macroscopic scale.

There are two types of basic forces due to the microscopic motion of the
fluid; pressure forces and viscous friction forces. Both pressure and viscous
forces are forces of stress. In this work, we will consider ideal flow, and thus
model pressure forces only, while modeling the viscous forces is an issue of
future work.

The molecular kinetic and vibration energy is encoded, at the macroscopic
scale, as a continuous function Ū := ρU ∈ C∞(M), called the internal energy
density, where ρ is the mass density function, and U is the specific internal
energy (i.e. per unit mass). The first law of thermodynamics states that the
internal energy Ū is conserved only if the system is isolated, i.e. does not
interact with its surrounding. The internal energy of a system changes if there
is transfer of mass and heat to or from the system, and by work done on or by
the system.

The specific internal energy U(ν, s) depends on the fluid’s specific volume
ν = 1/ρ ∈ C∞(M) and the fluid’s specific entropy s ∈ C∞(M). The differential
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of the internal energy dU ∈ Ω1(M) is given by the famous Gibbs equation

dU(ν, s) = −pdν + Tds, (5.102)

where Tds corresponds to the heat exchanged per unit mass, and pdν corre-
sponds to the mechanical work done by the fluid system due to pressure forces.
Note that from (5.102) we have that

∂U

∂ν
= −p, ∂U

∂s
= T, (5.103)

are the components of the one-form dU .
A more convenient form of Gibbs equation is given by

dU(ρ, s) =
p

ρ2
dρ+ Tds, (5.104)

which follows from the chain rule ∂U
∂ρ = ∂U

∂ν
∂ν
∂ρ = p/ρ2. The relation between

the pressure p, specific internal energy U and the mass density, given by

p = ρ2 ∂U

∂ρ
, (5.105)

is known as the equation of state of the fluid, which should be specified for a
choice of fluid.

Another useful thermodynamic variable is the specific enthalpy h ∈ C∞(M),
related to the internal energy by the Legendre transformation. The enthalpy
can be expressed as

h = U +
p

ρ
= U + ρ

∂U

∂ρ
=

∂

∂ρ
(ρU), (5.106)

where the second equality follows from (5.105), while the last equality follows
from the chain rule. In terms of the enthalpy, the Gibbs equation becomes

dh = dU + d(
p

ρ
) = dU + d(pν) = −pdν + Tds+ dpν + pdν = dpν + Tds,

thus we have that

dh(ρ, s) =
dp

ρ
+ Tds. (5.107)

In the case of isentropic flow, one has that the entropy s is constant in space
throughout the fluid for all time, and thus ds = 0. In this case, the specific
internal energy U(ρ) depends on the density ρ only, and thus the two forms of
Gibbs equations (5.102) and (5.107) become

dU(ρ) =
p

ρ2
dρ, dh(ρ) =

dp

ρ
. (5.108)
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Next, we show how to systematically represent the pressure forces using the
distributed force fs in (5.98) acting on an infinitesimal fluid element at a point
in M . For ease of presentation, we first consider the case of isentropic flow,
followed by the slightly more general case of adiabatic flow, describing a fluid
with no irreversible thermodynamic phenomena, but in which the advected
entropy function st, might not be constant in space.

5.4.1 Isentropic Compressible Flow

In the port-Hamiltonian system (5.98) in which only kinetic energy is present,
the distributed port (ed, fd) could be used to add storage of internal energy of
the fluid. The storage of the fluid’s total internal energy Hi(µ) is represented by
a storage element with state manifold Xi = V ∗ = Ωn(M) and its corresponding
state variable xi = µ being the mass form. The internal energy Hamiltonian
Hi : Xi → R is given by

Hi(µ) =

∫
M

U(∗µ)µ, (5.109)

where U(∗µ) = U(ρ) is the specific internal energy introduced earlier.
The effort and flow variables of the internal energy storage element are given

by

δµHi ∈ T ∗xiXi ∼= V = Ω0(M), µ̇ ∈ TxiXi ∼= V ∗ = Ωn(M), (5.110)

where δµHi is given by the following result.

Proposition 5.4.1. The variational derivative of the Hamiltonian functional
Hi : V ∗ → R in (5.109) with respect to µ ∈ V ∗ = Ωn(M), denoted by δµHi ∈
V = Ω0(M), is equal to the enthalpy function (5.106):

δµHi = h ∈ C∞(M). (5.111)

Proof. The variational derivative δµHi ∈ C∞(M) is defined implicitly as the
function satisfying

〈δµHi| δµ〉V ∗ =
d

dε

∣∣∣∣
ε=0

Hi(µ+ εδµ), (5.112)

for any ε ∈ R and δµ ∈ Ωn(M). For notational simplicity, we introduce µε :=
µ+εδµ ∈ Ωn(M), ρ := ∗µ ∈ C∞(M), and δρ := ∗δµ ∈ C∞(M) . Consequently,
we have that ρε := ρ+ εδρ = ∗µε, as well as

d

dε

∣∣∣∣
ε=0

µε = δµ. (5.113)
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Using (5.109), (5.113), and the Leibniz rule, we can rewrite (5.112) as∫
M

δµHi ∧ δµ =

∫
M

d

dε

∣∣∣∣
ε=0

(U(∗µε) ∧ µε),

=

∫
M

d

dε

∣∣∣∣
ε=0

U(∗µε) ∧ µε + U(∗µε) ∧
d

dε

∣∣∣∣
ε=0

µε,

=

∫
M

d

dε

∣∣∣∣
ε=0

U(∗µε) ∧ µε + U(∗µ) ∧ δµ. (5.114)

Since U : C∞(M) → C∞(M) is a function on C∞(M), its derivative dU
dρ (ρ) ∈

C∞(M) is defined implicitly as the function satisfying

dU

dρ
(ρ) · δρ =

d

dε

∣∣∣∣
ε=0

U(ρε). (5.115)

By substituting (5.115) into (5.114), we get∫
M

δµHi ∧ δµ =

∫
M

dU

dρ
(ρ) · δρ ∧ µ+ U(ρ) ∧ δµ. (5.116)

Using the equality δρ∧µ = δρ · ρ∧µvol = ρ · δρ∧µvol = ρ · ∧δµ, we can rewrite
(5.116) as ∫

M

δµHi ∧ δµ =

∫
M

(
dU

dρ
(ρ) · ρ+ U(ρ)) ∧ δµ. (5.117)

Therefore, using the chain rule, we have that

δµHi =
dU

dρ
(ρ) · ρ+ U(ρ) =

d

dρ
(ρ · U(ρ)), (5.118)

which is equal to the enthalpy as defined by (5.106). Note that in case U is
a multi-variable function of ρ, the derivative dU

dρ in this proof is replaced by a
partial derivative. �

The Hamiltonian Hi satisfies the power balance

Ḣi = 〈δµHi| µ̇〉V ∗ . (5.119)

Since the flow does not exchange heat with its surrounding, any change in
the internal energy of the system is caused by the transformation of kinetic
energy ( if we assume there is no mass-flow through the boundary). The power
incoming the internal energy storage element 〈δµHi| µ̇〉V ∗ is then equal to the
power outcoming the distributed port of the kinetic energy subsystem, i.e.

〈δµHi| µ̇〉V ∗ = −〈ed| fd〉g = 〈 fs| − ωv〉g , (5.120)
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Figure 5.11: Augmenting the kinetic energy system (5.98) with the storage of
internal energy through the distributed port (ed, fd). The model corresponds
to isentropic compressible flow on a manifold without boundary. The Bond
graph (top) and block diagram (bottom) representations are shown.

as shown in Fig. 5.11.
However, to interconnect the internal energy storage port to the kinetic

energy distributed port they should be compatible. Their incompatibility lies in
the fact that (δµHi, µ̇) ∈ V ×V ∗ while (ed, fd) ∈ g×g∗ by their definitions. The
key to connecting these two ports is related to the semi-direct product structure
of g and V , and more precisely the interconnection maps introduced earlier in
Sec. 5.2.2. For simplicity, we first introduce the idea of interconnecting the two
ports assuming M has no boundary, then we consider the general case with the
boundary port variables.

The two ports are made compatible by the use of a power-conserving trans-
formation that relates the efforts of the two ports to each other, and relates
the flows of the two ports to each other. In the bond graph in Fig. 5.11, the
modulated transformer element MTF implements the map(

ed
µ̇

)
=

(
0 ϕ̃∗µ
ϕ̃µ 0

)(
−fd
δµHi

)
, (5.121)

where the map ϕ̃µ : g→ V ∗ and its dual ϕ̃∗µ : V → g∗ are given in Table 1 for
µ as the advected parameter (i.e, a = µ ∈ V ∗). The minus sign next to fd in
(5.121) is due to the zero junction in Fig. 5.11, used to represent the power
inversion (from inflow to outflow) given by

〈ed| fd〉g = −〈ed| − fd〉g . (5.122)

Both the zero-junction and the MTF combined represent a power-conserving
Dirac structure Dis, given by the relation corresponding to the map Jis : s →
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Figure 5.12: Augmenting the kinetic energy system (5.98) with the storage of
internal energy through the distributed port (ed, fd). The model corresponds
to compressible isentropic flow on a general manifold with permeable boundary.

s∗, as illustrated in Fig. 5.11. The Dirac structureDis is modulated by the mass
form µ (as a state of advected quantity), and its power-preserving property is
clearly visible by the skew-symmetry of the map Jis.

Now we show that the previous energy-based construction correctly models
compressible isentropic flow. Consider the following equalities

〈 fs| − ωv〉g =
〈
ϕ̃∗µ(δµHi)

∣∣− ωv〉g = 〈δµHi| ϕ̃µ(−ωv)〉V ∗ = 〈δµHi| µ̇〉V ∗ = Ḣi,

(5.123)

which follows using (5.121) and the port variables definitions. Therefore, using
the expressions of ϕ̃µ and ϕ̃∗µ in Table 5.2, we have that

µ̇ = ϕ̃µ(−ωv) = −ϕ̃µ(ωv) = −Lω̂vµ = −Lvµ, (5.124)

fs = ϕ̃∗µ(δµHi) = −(∗µ)d(δµHi) = −(∗µ)dh = −dp. (5.125)

Therefore, (5.124) correctly represents the evolution of µ as being advected
with the flow, while (5.125) correctly represents the stress forces due to pressure
applied within M [Abraham et al., 1988, pg. 588].

Now in case M has a permeable boundary, the pairing equality (5.123) is
no loner valid and should be augmented with a surface term ηϕ̃µ from (5.42).
In this case, using the expression of ηϕ̃µ in Table 5.2, (5.123) is rewritten as

〈 fs| − ωv〉g =
〈
ϕ̃∗µ(δµHi)

∣∣− ωv〉g
= 〈δµHi| ϕ̃µ(−ωv)〉V ∗ +

∫
∂M

−(∗µ)(−ωv)|∂M ∧ δµHi|∂M

= 〈δµHi| µ̇〉V ∗ +

∫
∂M

h|∂M ∧ (∗µ)ωv|∂M

= Ḣi +

∫
∂M

h|∂M ∧ ιvµ|∂M . (5.126)
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By defining the boundary port variables e∂i := h|∂M = δµHi|∂M and f∂i :=
ιvµ|∂M , the pairing equality (5.126) becomes

〈 fs|ωv〉g + Ḣi +

∫
∂M

e∂i ∧ f∂i = 0. (5.127)

Therefore, as shown in Fig. 5.12, the interconnection to model isentropic
flow is achieved by the Dirac structure Dis given by

Dis = {(fsi,f∂i, fd, esi, e∂i, ed) ∈ Bis|(
ed
fsi

)
=

(
0 ϕ̃∗µ
−ϕ̃µ 0

)(
fd
esi

)
,(

e∂i
f∂i

)
=

(
1 0
0 ∗µ|∂M

)(
esi|∂M
fd|∂M

)
},

(5.128)

where the bond-space Bis = Fis × Eis is the product space of the flow space
Fis = Ωn(M) × Ωn−1(∂M) × Ωn−1(M) and the effort space Eis = Ω0(M) ×
Ω0(∂M)×Ω1(M). The Dirac structure (5.128) is modulated by the mass form
µ ∈ V ∗, and encodes the power balance

〈ed| fd〉g + 〈esi| fsi〉V ∗ +

∫
∂M

e∂i ∧ f∂i = 0,

which is equivalent to (5.127) by setting the ports of Dis by

(µ̇, ιvµ|∂M , ωv, δµHi, h|∂M , fs) ∈ Dis,

as illustrated in Fig. 5.12, and thus restoring (5.124) and (5.125).
In conclusion, the port-Hamiltonian model for compressible isentropic flow

consists of two storage elements for kinetic and internal energy, two boundary
ports (e∂k, f∂k) and (e∂i, f∂i) representing power through the boundary of M
due to mass inflow, and all the remaining power conserving elements that allow
the interconnection of the aforementioned ports, shown in Fig. 5.12.

It is interesting to combine all the energy storage elements into one as well
as combine all the power conserving elements to a new Stokes Dirac structure
Dc,i, as shown in Fig. 5.13. The new storage element has its state variables
xt = (ṽ, µ) and its Hamiltonian Ht given by the total energy of the system (the
sum of kinetic and internal), i.e,

Ht(ṽ, µ) = Hk(ṽ, µ) +Hi(µ) =

∫
M

1

2
(∗µ)ṽ ∧ ∗ṽ + U(∗µ)µ, (5.129)

with flow and effort variables

ẋt =

(
˙̃v
µ̇

)
, δxtHt =

(
δṽHt

δµHt

)
=

(
ιvµ

1
2 ιv ṽ + h

)
. (5.130)

The new energy balance for Ht is given by the following result.
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Proposition 5.4.2. The rate of change of the total Hamiltonian Ht, given by
(5.129), along trajectories of its state variables xt = (ṽ, µ) is expressed as

Ḣt =

∫
∂M

e∂ ∧ f∂ , (5.131)

where the new boundary port variables (e∂ , f∂) ∈ Ω0(∂M) × Ωn−1(∂M) are
defined by

e∂ := δµHt|∂M = (
1

2
ιv ṽ + h)|∂M , f∂ := −δṽHt|∂M = −(ιvµ)|∂M . (5.132)

Proof. By starting from the energy balance for Ḣk in (5.96) and using the
equality (5.127), we have that

Ḣk =

∫
∂M

e∂k ∧ f∂k +

∫
M

ed ∧ fd

=

∫
∂M

1

2
ιv ṽ|∂M ∧ −ιvµ|∂M + 〈 fs|ωv〉g

=

∫
∂M

1

2
ιv ṽ|∂M ∧ −ιvµ|∂M − 〈δµHi| µ̇〉V ∗ −

∫
∂M

e∂i ∧ f∂i

=

∫
∂M

1

2
ιv ṽ|∂M ∧ −ιvµ|∂M − Ḣi −

∫
∂M

h|∂M ∧ ιvµ|∂M

=

∫
∂M

(
1

2
ιv ṽ + h)|∂M ∧ −ιvµ|∂M − Ḣi.

Thus, we have that

Ḣt = Ḣk + Ḣi =

∫
∂M

(
1

2
ιv ṽ + h)|∂M ∧ −ιvµ|∂M ,

which concludes the proof using (5.132). �

Physically the boundary effort variable e∂ is known as the stagnation or
total enthalpy at the boundary, while the boundary flow variable f∂ represents
the mass inflow through the boundary. The power in the port (e∂ , f∂) represent
the energy change due to the exchange of mass flow between the isentropic
compressible flow system and its surroundings.

The overall Stokes-Dirac structure Dc,i for isentropic compressible flow that
implements the power balance in (5.131) is given by

Dc,i = {(fs, f∂ , es, e∂) ∈ Bc,i|(
fṽ
fµ

)
=

(
deµ + 1

∗µ ιêṽdṽ

deṽ

)
,(

e∂
f∂

)
=

(
0 1
−1 0

)(
eṽ|∂M
eµ|∂M

)
},

(5.133)
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Figure 5.13: Port-based representation of Euler Equation (5.134) of compress-
ible isentropic flow.

where the total storage port variables are given by fs = (fṽ, fµ) ∈ s∗ and
es = (eṽ, eµ) ∈ s. The bond-space is now given by Bc,i = Fc,i × Ec,i, with
the flow space Fc,i = Ω1(M) × Ωn(M) × Ω0(∂M) and the effort space Ec,i =
Ωn−1(M)× Ω0(M)× Ωn−1(∂M).

The port-Hamiltonian dynamics for compressible isentropic flow is then
recovered by setting ((− ˙̃v,−µ̇), f∂ , (δṽHt, δµHt), e∂) ∈ Dc,i, which yields(

˙̃v
µ̇

)
=

(
−d(δµHt)− ιvdṽ
−d(δṽHt)

)
, (5.134)

Ht(xt) =Ht(ṽ, µ) =

∫
M

1

2
(∗µ)ṽ ∧ ∗ṽ + U(∗µ)µ. (5.135)

where the variational derivatives of Ht are given by (5.130), and the bound-
ary conditions are specified by the boundary port-variables (e∂ , f∂) given by
(5.132).

Finally we conclude by some remarks about the Dirac structure (5.133)
derived in this section. First, this is exactly the Dirac structure which was
just defined as a fundamental object in [van der Schaft and Maschke, 2002].
Here the geometrical structure that underpins this object has been rigorously
explicated.

Second, the Dirac structure Dc,i given by (5.133) is modulated by the state
variables (ṽ, µ). An interesting case occurs when the 2-form dṽ =: ω ∈ Ω2(M) is
zero ∀t. In such case, the term ιvdṽ in (5.133) vanishes and the Dirac structure
becomes a constant one in the bond space Bc,i. The 2-form ω is known as the
vorticity form which is also advected with the flow in ideal fluid flow [Abraham
et al., 1988, Pg. 596]. Therefore, if the vorticity form is zero at t = 0, it
remains zero for all t > 0. Such type of fluid flow is called irrotational flow2.

2In van der Schaft and Maschke [2002] it is erroneously remarked that the term ιvdṽ also
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Third, compared to the Dirac structure of the kinetic subsystem in (5.97),
the overall Dirac structure (5.133) is exactly the same (if we exclude the dis-
tributed port). This equivalence is due to the fact that both systems have the
same state variables (ṽ, µ), but only differ in the Hamiltonian function which
is independent from the underlying structure of the system. This underlying
structure composed of the external boundary port variables combined with the
Lie-Poisson structure which governs the evolution equations of (ṽ, µ) indepen-
dent of the Hamiltonian energy function.

5.4.2 Adiabatic Compressible Flow

Following the same line of thought as for the isentropic case, we can also extend
the kinetic energy port-Hamiltonian system using the distributed port (ed, fd)
to model adiabatic flow. The exact same procedure is applied for the internal
energy storage element but for the extended state variable xi = (µ, s) ∈ Xi =
V ∗. Both the energy variables (µ, s) are advected quantities of the fluid. Thus
the space of advected quantities in this case is V̄ ∗ = Ωn(M)× Ω0(M).

The internal energy Hamiltonian Hi : Xi → R is now given by

Hi(µ, s) =

∫
M

U(∗µ, s)µ, (5.136)

where the specific internal energy U(∗µ, s) = U(ρ, s) depends now on entropy
as well.

The effort and flow variables of the internal energy storage element are given
by

δxiHi =

(
δµHi

δsHi

)
∈ T ∗xiXi ∼= V̄ = Ω0(M)× Ωn(M),

ẋi =

(
µ̇
ṡ

)
∈ TxiXi ∼= V̄ ∗ = Ωn(M)× Ω0(M).

(5.137)

The variational derivative of Hi with respect to µ is given by Prop. 5.4.1 while
the variational derivative of Hi with respect to s is given by

δsHi =
∂U

∂s
µ = Tµ, (5.138)

using (5.103). The internal energy Hi satisfies now the power balance

Ḣi = 〈δxiHi| ẋi〉V̄ ∗ = 〈δµHi| µ̇〉V ∗ + 〈δsHi| ṡ〉V ∗ . (5.139)

With reference to Fig. 5.14, the Dirac structure Dad used for connecting
the internal energy port (δxiHi, ẋi) to the distributed port (ed, fd) is given by

vanishes in two-dimensional flow, which is not the case.
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Dad = {(fsi,f∂i, fd, esi, e∂i, ed) ∈ Bad|(
ed
fsi

)
=

(
0 ϕ̃∗(µ,s)

−ϕ̃(µ,s) 0

)(
fd
esi

)
,

(
e∂i
f∂i

)
=

(
1 0 0
0 0 ∗µ|∂M

)eµ|∂Mes|∂M
fd|∂M

},
(5.140)

where fsi := (fµ, fs) ∈ V̄ ∗ = Ωn(M) × Ω0(M) and esi := (eµ, es) ∈ V̄ =
Ω0(M) × Ωn(M), (f∂i, e∂i) ∈ Ω0(∂M) × Ωn−1(∂M), and (ed, fd) ∈ Ω1(M) ×
Ωn−1(M). The bond-space Bad is then given by the product of the aforemen-
tioned spaces of forms.

The map ϕ̃(µ,s) : g → V̄ ∗ and its dual ϕ̃∗(µ,s) : V̄ → g∗ are defined, respec-

tively, for any ω ∈ g and (eµ, es) ∈ V̄ as

ϕ̃(µ,s)(ω) :=

(
ϕ̃µ(ω)
ϕ̃s(ω)

)
, ϕ̃∗(µ,s)(eµ, es) = ϕ̃∗µ(eµ) + ϕ̃∗s(es), (5.141)

which allows one to rewrite the first equation in (5.140) as

edfµ
fs

 =

 0 ϕ̃∗µ ϕ̃∗s
−ϕ̃µ 0 0
−ϕ̃s 0 0

fdeµ
es

 . (5.142)

For the choice of µ and s as the advected parameters, the maps ϕ̃µ, ϕ̃s and
ϕ̃∗µ, ϕ̃

∗
s are given in Table 5.2.

The power balance that the Dirac structure Dad encodes is given by the
following result.

Proposition 5.4.3. The Dirac structure Dad given by (5.140) is a power con-
tinuous structure, such that

〈ed| fd〉g + 〈esi| fsi〉V̄ ∗ +

∫
∂M

e∂i ∧ f∂i = 0. (5.143)
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Proof. Using (5.140 - 5.142), we have that

〈ed| fd〉g =
〈
ϕ̃∗µ(eµ)

∣∣ fd〉g + 〈 ϕ̃∗s(es)| fd〉g

= 〈eµ| ϕ̃µ(fd)〉V ∗ +

∫
∂M

ηϕ̃fd (µ, eµ)

+ 〈es| ϕ̃s(fd)〉V ∗ +

∫
∂M

ηϕ̃fd (s, es)

= 〈eµ| − fµ〉V ∗ −
∫
∂M

(∗µfd)|∂M ∧ eµ|∂M + 〈es| − fs〉V ∗ + 0,

= −〈esi| fsi〉V̄ ∗ −
∫
∂M

e∂i ∧ f∂i,

which follows from (5.42) and the interconnection map expressions (and their
corresponding surface terms) in Table 5.2. �

With reference to Fig. 5.14, the Dirac structure Dad is used to model
adiabatic compressible flow by setting its ports to

((µ̇, ṡ), ιvµ|∂M , ωv, (δµHi, δsHi), h|∂M , fs) ∈ Dad.

Therefore, following exactly the steps shown in (5.124), the evolution of s
is given by

ṡ = −ϕ̃s(ωv) = −Lvs, (5.144)

and the evolution of µ is the same as the isentropic case in (5.124). Moreover,
using (5.125) and the definition of ϕ̃∗s we have that

fs = ϕ̃∗µ(δµHi) + ϕ̃∗s(δsHi) = −(∗µ)dh+ ∗(δsHi)ds

= −(∗µ)dh+ ∗(Tµ)ds = −(∗µ)dh+ T (∗µ)ds = −dp,
(5.145)

where the fourth equality follows from the commutativity of the Hodge star with
functions, and the final results follows from Gibbs equation (5.107). Therefore,
both (5.144) and (5.124) correctly represent the evolution of the entropy s
and the mass form µ as being advected with the flow, while (5.145) correctly
represents the stress forces due to pressure consistent with the thermodynamics
of the system.

Finally we conclude by a more compact port-Hamiltonian model for adia-
batic compressible flow, as shown in Fig. 5.14. The new storage element has
its state variables x̄t := (ṽ, µ, s) and the total Hamiltonian H̄t given by

H̄t(ṽ, µ, s) =

∫
M

1

2
(∗µ)ṽ ∧ ∗ṽ + U(∗µ, s)µ, (5.146)
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Figure 5.14: Compressible adiabatic flow on a general manifold with permeable
boundary. Top figure shows how to augment the kinetic energy system (5.98)
with the storage of internal energy, while the bottom figure shows a compact
model with a combined storage element, Dirac structure, and boundary port.
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with flow and effort variables

˙̄xt =

 ˙̃v
µ̇
ṡ

 , δx̄tH̄t =

δṽH̄t

δµH̄t

δsH̄t

 =

 ιvµ
1
2 ιv ṽ + h
Tµ

 . (5.147)

Interestingly, the new energy balance for H̄t is given by the same power balance
as for the isentropic case as will be proven in the following.

Proposition 5.4.4. The rate of change of the total Hamiltonian H̄t, given by
(5.146), along trajectories of its state variables x̄t = (ṽ, µ, s) is expressed as

˙̄Ht =

∫
∂M

e∂ ∧ f∂ , (5.148)

where the same boundary port variables defined before in (5.132).

Proof. The proof follows exactly the one of Prop. 5.4.2, where the pairing
〈ed| fd〉g = 〈 fs|ωv〉g is substituted by the power balance given by Prop. 5.4.3.

�

Remark 5.4.5. The reason why the energy balance (5.148) for adiabatic flow
is equivalent to the one for isentropic flow in (5.131) is mainly due to the
vanishing of the surface term ηϕ̃fd (s, es) in the proof of Prop. 5.4.3, which
follows from Table 5.2. The physical intuition behind this observation is the fact
that adiabatic flow corresponds to conservation of entropy due to no exchange
of heat with the surroundings. Thus, it is natural that no increase of internal
energy occurs due to heat exchange through the boundary, and the only way
for internal energy to increase is due to mass flow through the boundary.

The overall Stokes-Dirac structure Dc,a for adiabatic compressible flow that
implements the power balance in (5.148) is given by

Dc,a = {(ēs, f̄s, e∂ , f∂) ∈ Bc,a|fṽfµ
fs

 =

deµ + 1
∗µ ιêṽdṽ − ∗es∗µ ds

deṽ
1
∗µ ιêṽds

 ,

(
e∂
f∂

)
=

(
0 1 0
−1 0 0

)eṽ|∂Meµ|∂M
es|∂M

},
(5.149)

where the total storage port variables are given by f̄s = (fṽ, fµ, fs) ∈ Ω1(M)×
Ωn(M) × Ω0(M) and ēs = (eṽ, eµ, es) ∈ Ωn−1(M) × Ω0(M) × Ωn(M). The
bond-space is given by Bc,a = Fc,a ×Ec,a, with the flow space Fc,a = Ω1(M)×
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Ωn(M) × Ω0(M) × Ω0(∂M) and the effort space Ec,a = Ωn−1(M) × Ω0(M) ×
Ωn(M)× Ωn−1(∂M).

Finally, the port-Hamiltonian dynamics for compressible adiabatic flow
is then recovered by setting ((− ˙̃v,−µ̇,−ṡ), f∂ , (δṽH̄t, δµH̄t, δsH̄t), e∂) ∈ Dc,a,
which yields ˙̃v

µ̇
ṡ

 =

−d(δµH̄t)− ιvdṽ + (∗δsH̄t/ ∗ µ)ds
−d(δṽH̄t)
−ιvds

 , (5.150)

H̄t(x̄t) =H̄t(ṽ, µ, s) =

∫
M

1

2
(∗µ)ṽ ∧ ∗ṽ + U(∗µ, s)µ, (5.151)

where the following equality was used

−ṡ = Lvs = dιvs+ ιvds = ιvds =
1

∗µ
ιêṽds. (5.152)

The variational derivatives of H̄t are given by (5.147), and the boundary con-
ditions are specified by the boundary port-variables (e∂ , f∂) given by (5.132).

5.5 Port-Hamiltonian Modeling of Incompress-
ible Flow

As discussed before in Sec. 5.2, for low speed flows it is possible to neglect the
compressibility of the fluid and assume incompressible flow. Such flow is known
as incompressible subsonic flow and usually identified when the ratio of the flow
speed compared to the speed of sound (the Mach number) is approximately less
than 0.3.

In incompressible flow, the fluid is characterized only by kinetic energy and
no internal energy is present. The pressure function in incompressible flow no
longer has its thermodynamic nature as in compressible flow, but rather acts as
a Lagrange multiplier that enforces the incompressiblity of the flow. Therefore,
an incompressible flow system is classified as a constrained mechanical system,
not a thermodynamic system.

To represent incompressible flow in the port-Hamiltonian framework, the
kinetic energy subsystem (5.98-5.100) already contains all the energy stored,
its energy variables, and its corresponding interconnection structure. The dif-
ference now is that the system (5.98) no longer has the state space X = s∗ =
g∗×V ∗ = Ω1(M)×Ωn(M), but instead the constrained state space Xc defined
by

Xc := g∗c × V ∗ = C̃1(M)× Ωn(M), (5.153)



5.5 Port-Hamiltonian Modeling of Incompressible Flow 165

where g∗c := C̃1(M) ⊂ Ω1(M) denotes the space of co-closed 1-forms defined
by

C̃1(M) := {ṽ ∈ Ω1(M)|d ∗ ṽ = 0}.

The incompressiblity constraint d∗ṽ = dωv = 0 is equivalent to the conservation
of the volume form, as discussed in Sec. 5.2.

For the port-Hamiltonian system (5.98) to correctly represent incompress-
ible flow, the distributed port (ed, fd) = (fs, ωv) needs to be adapted to model
stress forces that impose the incompressiblity constraint. Following the exact
same manner as in the previous section, the key point that allows building the
port-based model of incompressible flow is that the volume form µvol is frozen
in the fluid (i.e. an advected quantity).

With reference to Fig. 5.15, the interconnection to model incompressible
flow is achieved by the Dirac structure Dinc given by

Dinc = {(f∂i,fdi, e∂i, edi) ∈ Binc|(
edi
0

)
=

(
0 ϕ̃∗µvol

−ϕ̃µvol
0

)(
fd
p

)
,(

e∂i
f∂i

)
=

(
1 0
0 1

)(
p|∂M
fdi|∂M

)
},

(5.154)

where the bond-space Binc = Finc×Einc is the product space of the flow space
Finc = Ωn−1(∂M)× Ωn−1(M) and the effort space Einc = Ω0(∂M)× Ω1(M).

The power continuity of Dinc is given by the following result.

Proposition 5.5.1. The Dirac structure Dinc given by (5.154) is a power
continuous structure, such that

〈edi| fdi〉g +

∫
∂M

e∂i ∧ f∂i = 0. (5.155)

Proof. Using (5.42) and (5.154), we have that

〈edi| fdi〉g =
〈
ϕ̃∗µvol

(p)
∣∣ fd〉g = 〈p| ϕ̃µvol

(fd)〉V ∗ +

∫
∂M

ηϕ̃fd (µvol, p)

= 〈p| 0〉V ∗ −
∫
∂M

fd|∂M ∧ p|∂M = −
∫
∂M

e∂i ∧ f∂i,

which follows from the definition of ϕ̃∗µvol
and ηϕ̃fd given in Table 5.2 with µvol

instead of µ as the advected quantity. �

Remark 5.5.2. A special feature of the Dirac structure Dinc is that it has
three ports, one of which, namely (p, 0), does not affect the power balance
(5.155). The power flowing through the port (p, 0) is always zero such that the
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Figure 5.15: Incompressible inhomogeneous flow on a general manifold with
permeable boundary. Top figure shows how to augment the kinetic energy
system (5.98) with the pressure as a Lagrange multiplier, while the bottom fig-
ure shows a compact model with a combined storage element, Dirac structure,
boundary port, and constraint distributed port.
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pressure function acts as a Lagrange multiplier enforcing the incompressiblity
constraint. A direct consequence is that the Dirac structure Dinc is defined as
a subspace on the two ports (e∂i, f∂i) and (edi, fdi) only, as shown in (5.154).

The Dirac structure (5.154) is then used to model incompressible flow by
setting its ports to (ιvµ|∂M ,−ωv, p|∂M , fs) ∈ Dinc. Therefore from (5.154) it
follows that

0 = −ϕ̃µvol
(−ωv) = Lvµvol = dιvµvol = d ∗ ṽ, (5.156)

and similarly

fs = ϕ̃∗µvol
(p) = −dp. (5.157)

Thus, both the incompressiblity constraint and the forces due to pressure are
properly modeled in (5.156) and (5.157), respectively.

Remark 5.5.3. From the power balance (5.155) it is worth noticing that if
we neglect the surface term, the power flow through distributed port (ed, fd) =
(fs, ωv) is equal to zero, which is a consequence that the work done due to
the pressure 〈p| 0〉V ∗ is equal to zero. The pressure p acts as a Lagrange
multiplier that only enforces the incompressiblity constraint, and no longer has
its thermodynamic nature in incompressible flow, which is considered a limit
case of the general compressible flow.

To summarize, the explicit port-Hamiltonian dynamical model of (inhomo-
geneous) incompressible flow in terms of the constrained state variable xc :=
(ṽ, µ) ∈ Xc = g∗c × V ∗ is given by(

˙̃v
µ̇

)
=

(
−d(δµHk)− ιvdṽ
−d(δṽHk)

)
−
( 1
∗µ ◦ d

0

)
p, (5.158)

0 =
(
d ◦ 1

∗µ 0
)(δṽHk

δµHk

)
, (5.159)

Hk(xc) =Hk(ṽ, µ) =

∫
M

1

2
(∗µ)ṽ ∧ ∗ṽ. (5.160)

where the variational derivatives are given by (5.95), and the pressure function
p ∈ C∞(M) is a distributed Lagrange multiplier. The energy balance for Hk

is given by the following result.

Proposition 5.5.4. The rate of change of the total Hamiltonian Hk, given by
(5.160), along trajectories of (5.158) is expressed as

Ḣk =

∫
∂M

e∂c ∧ f∂c, (5.161)
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where the boundary port variables e∂c, f∂c ∈ Ω0(∂M)× Ωn−1(∂M) are defined
by

e∂c :=δµHk|∂M +

(
p

∗µ

)
|∂M =

(
1

2
ιv ṽ +

p

∗µ

)
|∂M ,

f∂c :=− δṽHk|∂M = −(ιvµ)|∂M .
(5.162)

Proof. By starting from the energy balance for Ḣk in (5.96) and using the
equality (5.155) with 〈edi| fdi〉g = 〈 fs| − ωv〉g , we have that

Ḣk =

∫
∂M

e∂k ∧ f∂k +

∫
M

ed ∧ fd

=

∫
∂M

1

2
ιv ṽ|∂M ∧ −ιvµ|∂M − 〈 fs| − ωv〉g

=

∫
∂M

1

2
ιv ṽ|∂M ∧ −ιvµ|∂M +

∫
∂M

e∂i ∧ f∂i

=

∫
∂M

1

2
ιv ṽ|∂M ∧ −ιvµ|∂M +

∫
∂M

p|∂M ∧ −ωv|∂M

=

∫
∂M

1

2
ιv ṽ|∂M ∧ −ιvµ|∂M +

∫
∂M

(
p

∗µ

)
|∂M ∧ −ιvµ|∂M

=

∫
∂M

(
1

2
ιv ṽ +

p

∗µ

)
|∂M ∧ −ιvµ|∂M .

�

Finally, the Stokes-Dirac structureDi that encodes the power balance (5.161)
is given by

Di = {(fsc, f∂c, esc, e∂c) ∈ Bi|(
fṽ
fµ

)
=

(
deµ + 1

∗µ ιêṽdṽ

deṽ

)
+

( 1
∗µ ◦ d

0

)
p,

0 =
(
d ◦ 1

∗µ 0
)(eṽ

eµ

)
,(

e∂c
f∂c

)
=

(
0 1
−1 0

)(
eṽ|∂M
eµ|∂M

)
+

( 1
∗µ
0

)
p|∂M},

(5.163)

where the boundary port variables e∂c, f∂c ∈ Ω0(∂M) × Ωn−1(∂M) and total
storage port variables are given by fsc = (fṽ, fµ) ∈ C̃1(M) × Ωn(M) and
esc = (eṽ, eµ) ∈ Cn−1(M)× Ω0(M), where Cn−1(M) ⊂ Ωn−1(M) is the space
of closed n− 1 forms. The bond-space Bi is given accordingly by the product
of the aforementioned spaces, as usual.
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Figure 5.16: Graphical representation of compressible and incompressible Euler
Equations on a closed manifold (∂M = ∅) showing modularity of the port-
Hamiltonian framework. For a general permeable manifold, the interconnection
is achieved using Dirac structures.

Remark 5.5.5. For inhomogeneous incompressible flow, one can derive the
Lie-Poisson part of the Dirac structure (5.163) by semi-direct product reduction
(cf. [Marsden, 1976]) starting from the configuration space Dvol(M)nV , where
Dvol(M) represents the volume preserving diffeomorphisms on M . However, in
the modular approach we presented, a re-derivation of the underlying structure
is unnecessary as the open ports of the system (5.100) were used to constraint
the state space to the dual of the Lie algebra of Dvol(M) n V .

For the case of homogeneous incompressible flow, one no longer has the semi-
direct product structure as the mass form becomes constant in space and is no
longer advected. In this case, the standard Hamiltonian reduction theorems
can be used to derive the Lie-Poisson structure as in [Ebin and Marsden, 1970;
Arnold and Khesin, 1998; Modin et al., 2011].

5.6 Conclusion

In this chapter, a systematic procedure to model a variety of fluid dynamical
systems on general Riemannian manifolds was presented. The procedure was
demonstrated for developing decomposed and open port-Hamiltonian models
for (ideal) compressible and incompressible flow with variable boundary con-
ditions. The models presented are all geometric and thus are globally defined
independently of a choice of coordinates on the spatial manifold M , thanks to
the formulation of the equations using exterior calculus.

Using the geometric nature and the semi-direct product algebra structure of
the state space underlying the energy variables of the kinetic energy subsystem,
we showed that its Stokes-Dirac structure could be systematically constructed
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in two steps. First one uses Poisson reduction [Marsden et al., 1984a,b] to con-
struct the underlying Lie-Poisson structure and its corresponding bracket. The
second step then extends the Lie-Poisson structure to a Stokes-Dirac structure
that allows non-zero exchange of kinetic energy within the spatial domain and
through its boundary. All the surface terms were easily identified thanks to
the duality pairings of the different maps constructed on the algebra s.

This systematic two-step procedure coincide with the Stokes-Dirac struc-
ture of compressible isentropic flow heuristically obtained in [van der Schaft
and Maschke, 2001, 2002] based on the velocity of the flow as the energy vari-
able. We also presented an alternative Stokes-Dirac structure based on the
momentum of the flow, and showed how to relate both representations.

We have highlighted in this chapter that the philosophy of port-Hamiltonian
modeling is different from the classic approach of deriving Hamiltonian equa-
tions using variational principles [Arnold and Khesin, 1998; Marsden et al.,
1972, 1984a]. The philosophy of the latter approach is a top-down procedure
starting from the total energy (Hamiltonian) defined on the cotangent bundle
of the system’s configuration space and then deriving the total equations of mo-
tion governing the system. Whereas, the philosophy of the port-Hamiltonian
framework is a bottom-up procedure starting from subsystems that are inter-
connected together to form the complex total system. The straightforward
advantage compared to the variational approach, is that simply the model is
updated by adding a new subsystem without re-deriving the whole dynamical
equations. This has been demonstrated by extending the subsystem corre-
sponding to kinetic energy storage to three models, shown in Fig. 5.16.

One advantage of our presented decomposed models is that they are open
models. Using the open boundary port or an extra distributed port, the derived
models can be extended to more complicated fluid systems with (potentially)
other physical domains, like e.g. structural mechanics or electromagnetism.
The only constraint when coupling subsystems of different nature is that one
finds the physical reason for why they can be coupled in the first place. If sys-
tems of different complexity are to be coupled (such as a fluid and a structure)
a physical condition must be present that effects the suitable complexity re-
duction of the ports of the more complex system (such as the no-slip condition
for coupling fluids and structures) so that they can be coupled.

Another advantage of our work is that our framework allows to decompose
a fluid domain into several imaginary subdomains whose equally imaginary
boundaries of course do not prevent the flow between these subdomains. But
since the thus constituted subsystems must now be connected through a Dirac
structure that routes the energy, between adjoining domains, we obtain control
over precisely this energy flow. This promises an avenue to ensure compatibility
of our energy-aware decomposition with correspondingly designed structure-
preserving numerical schemes, e.g. [Šešlija et al., 2011, 2012].
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CHAPTER 6

Fully-Actuated UAVs

This chapter reports the results of [Rashad et al., 2020c] which is an extensive
literature survey of UAVs capable of full-actuation. These fully-actuated vehi-
cles are suitable candidates to be used as a flying-end effector for the purpose
of aerial physical interaction.

Conventional multirotor UAV designs, like the quadrotor or hexarotor, are
optimized for maximum flight time. As a result, all rotors of such UAVs have
parallel directions to collectively counteract gravity. Consequently, conven-
tional multirotor UAVs have underactuated dynamics due to the coupling be-
tween horizontal translational dynamics and rotational dynamics.

For many applications, the underactuation property of conventional designs
has been alleviated by the use of gimbals to mount sensors onboard. However,
the applicability of multirotor UAVs can be extended if full actuation of these
UAVs could be achieved. One example of such applications is the field of aerial
physical interaction addressed in this thesis.

Several fully-actuated multirotor platforms have been introduced in the past
decade to overcome the underactuation property of conventional multirotors.
Full-actuation has been mainly realized by two techniques; either by having
fixed propellers with dissimilar orientations, which we refer to as fixed-tilt con-
cepts, or by actively tilting propellers using extra actuators, which we refer to
as variable-tilt concepts.

The problem with fully-actuated UAV concepts is that the optimal ro-
tor configuration is application-dependent, contrary to underactuated concepts
which usually have the orientation of their rotors to be vertical in an in-plane
symmetric configuration. To achieve full-actuation, the orientation and loca-
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tion of the rotors needs to be altered, which results in a wide range of possible
rotor configurations. Depending on the requirements of the application, this
results in a vast variety of different possible concepts.

In this chapter we present a review of the available concepts in the aerial
robotics literature suggested for achieving fully-actuated flight. The focus is
mainly on fully-actuated multi-rotor UAVs using propellers only for propulsion
since they are more popular in the aerial robotics literature. The surveyed con-
cepts are divided into fixed-tilt multirotors and variable-tilt multirotors. This
work also includes a review of the optimization criteria used in the literature
for optimizing the design parameters of fixed-tilt multirotor UAVs. Moreover,
a static wrench analysis has been utilized to systematically derive the control
allocation matrix in a unified frame of reference for all the surveyed concepts.

The rest of the chapter is organized as follows: in Sec. 6.1, we present some
background preliminaries of the fully-actuated wrench generation of multiro-
tors. We present the surveyed concepts in Sec. 6.2 and Sec. 6.3, which include
the fixed-tilt and variable-tilt designs, respectively. Finally, we conclude in
Sec. 6.4 with some remarks on the optimization criteria and control-system
architecture used in the literature.

6.1 Mechanical Design of Fully-Actuated UAVs

6.1.1 Static Control Wrench Analysis

In this section, we show how to derive the control allocation matrix, which
maps the control inputs of the UAV, i.e. the propellers’ thrusts, to the total
aerodynamic wrench applied to the UAV’s body. This is done first by defin-
ing the reference frames used, followed by a static wrench analysis and the
classification of multirotor UAVs based on the mapping matrix. For a more
comprehensive introduction to the topic, the reader is referred to textbooks
like Austin [2011]; Valavanis and Vachtsevanos [2015].

Coordinate Frames

First we introduce the notion of a coordinate frame which is represented by
the quadruple {Ψi : oi, x̂i, ŷi, ẑi}, where oi represents the origin of the frame
and (x̂i, ŷi, ẑi) is a triad of (right) mutually orthonormal basis vectors. Let
{ΨB : oB , x̂B , ŷB , ẑB} denote a body-fixed frame with oB attached to the
center-of-mass (CoM), ẑB is chosen such that gravity acts oppositely when the
UAV is rested on a flat ground, and x̂B represents the UAV’s forward direction
such that when aligned to point North, ŷB would point West, as shown in
Fig.6.1.

Associated to the i-th propeller is the frame {Ψpi : opi , x̂pi , ŷpi , ẑpi} with
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Figure 6.1: Schematic view of the reference frames used, illustrated on a fully-
actuated hexarotor.

the origin opi coinciding with the CoM of the i-th rotor, and ẑpi is oriented
with the direction of generated thrust (i.e. normal to the spinning disk area).
As for the axis x̂pi , it is chosen such that it is collinear to the line connecting
oB to opi , while ŷpi completes the right-oriented triad as shown in Fig.6.1.
The propeller frame Ψpi does not rotate with the propeller’s spinning i.e. it is
also a body-fixed frame for the case of fixed-tilt concepts. However, for variable
tilt-concepts ẑpi is always aligned with the variable thrust generation direction.

With the aforementioned definitions of the coordinate frames used, the con-
figuration of each rotor/propeller now can be determined by the displacement
vector ξi ∈ R3 and the orientation vector ui ∈ S2 given by

ξi := ξBpi , ui(t) := RB
pi(t)ẑ, (6.1)

where ξBpi ∈ R3,RB
pi ∈ SO(3) denote the position and orientation of Ψpi with

respect to ΨB , respectively, and ẑ = (0, 0, 1)>. The explicit time-dependence
in (6.1) is for the case of variable-tilt UAVs, whereas for fixed-tilt UAVs both
ξi and ui are constants.

In the case of a planar multirotor, i.e. a design with coplanar rotor positions,
it is possible to parametrize the orientation matrix RB

pi by three angles such
that

RB
pi = Rz(ψi)Ry(βi)Rx(αi), (6.2)

where Rk(·) is the standard rotation matrix around the k-th axis, while the
angles αi and βi uniquely define the direction of the thrust generation axis
ẑpi in ΨB . The angle ψi denotes the heading, while αi, βi will be referred to,
respectively, as the cant and dihedral angles.
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Static Analysis

The aerodynamic wrench produced by the rotors can be derived based on a
static wrench analysis. A wrench represents the generalized force acting on
a rigid body, consisting of a linear force component f ∈ R3 and a rotational
torque component τ ∈ R3. A wrench applied to the origin of Ψi with its

components specified in Ψi is denoted by W i = (τ i
>
,f i
>

)>. The change of
coordinates of a wrench between any two frames Ψi and Ψk can be performed
by

W k = Ad>Hi
k
W i, Ad>Hi

k
=

(
Rk
i ξ̃kiR

k
i

0 Rk
i

)
, (6.3)

where ξki ,R
k
i denote the position and orientation of Ψi with respect to Ψk,

respectively. The skew-symmetric matrix ξ̃ in (6.3) is defined such that ξ̃x =
ξ ∧ x,∀x ∈ R3, where ∧ denotes the cross product on R3. In differential
geometric terms as discussed in Ch.4, the matrix Ad>Hi

k
corresponds to the

coadjoint operator of SE(3), while the components of W i correspond to the
Plucker coordinates of the wrench screw.

It is well known from the aerial robotics literature that, in quasi-static
flights, the aerodynamic thrust and drag torque of a propeller are both approx-
imately proportional to the square of the propeller’s spinning velocityMahony
et al. [2012]. This simple aerodynamic wrench model neglects many high-
order effects such as blade-flapping and induced drag, which induce forces in
the x̂pi -ŷpi plane. However, for the scale of multi-rotor UAVs used in robotics,
these effects cause minor perturbations and are usually neglected in the control
design processMahony et al. [2012]. Thus, the aerodynamic wrench generation
direction is only along ẑpi .

The thrust magnitude generated by the i-th propeller in Ψpi will be de-
noted by λi, while the drag torque will be expressed as τd,i = γσiλi, where γ is
the propeller’s drag-to-thrust ratio, and σi ∈ {−1, 1} specifies the propeller’s
rotation direction (with σi = 1 for clockwise rotation). The individual aerody-
namic wrench generated from the i-th propeller, applied to the UAV’s body at
the origin of Ψpi , is expressed in Ψpi as

W pi
c = λi(0, 0, γσi, 0, 0, 1)>. (6.4)

By summing over i, the cumulative aerodynamic control wrench W B
c from the

total number of rotors Np, expressed in ΨB , can be written as

W B

c =

Np∑
i

Ad>Hpi
B
W pi

c , (6.5)
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which can be expanded as(
τBc
fBc

)
=

Np∑
i

λi

(
RB
pi ξ̃iR

B
pi

0 RB
pi

)(
γσiẑ
ẑ

)
=

Np∑
i

λi

(
γσiui + ξi ∧ ui

ui

)
, (6.6)

where the definitions in (6.1) have been used. We can rewrite (6.6) in a compact
form as

W B

c = Mλ, (6.7)

where λ = (λ1, · · · , λNp)> ∈ Λ is the rotors thrust vector, and M ∈ R6×Np is
the control allocation/distribution matrix.

6.1.2 Classification of Multi-rotor UAVs

As shown in (6.7), the UAV’s rotors configuration defines the mapping matrix
M which maps the allowable propellers’ thrust space Λ to the allowable aero-
dynamic control wrench space W. For fixed-tilt UAV designs, M is a constant
matrix, while for variable-tilt designs, it is a function of Na angles representing
the number of additional actuators used to actively-tilt the propellers.

For the case of a fixed-tilt design concept, the UAV can be classified as fol-
lows: if rank(M) < 6, then the UAV is said to be underactuated, if rank(M) =
6 and Np = 6, then the UAV is fully-actuated, and if rank(M) = 6 and
Np > 6, then the UAV is over-actuated, i.e fully-actuated with redundancy.
The variable-tilt concepts have the advantage of converting from one class to
another as the rotors are actively-tilted and consequently rank(M) changes.

The structure of the allowable thrust space Λ depends on the type of pro-
pellers used in the UAV’s design; whether the propeller has unidirectional or
bidirectional thrust generation capability. In general, Λ can be expressed as

Λ = {λ ∈ RNp | 0 ≤ λi ≤ λmax or |λi| ≤ λmax}, (6.8)

depending on whether the i-th propeller is unidirectional or bidirectional, for
1 ≤ i ≤ Np, with the assumption that all propellers have the same thrust
generation capabilities and that bidirectional rotors are symmetric in their
maximum thrust produced, which is common in practice. The allowable aero-
dynamic wrench space W is simply the image of Λ under the map M . In the
case that W is large enough such that the UAV is able to produce an aerody-
namic wrench that fully counteracts gravity in any direction in ΨB , the UAV
is classified as an omnidirectional vehicle.

6.2 Survey of Fixed-Tilt Concepts

In this section, we present the survey of fixed-tilt multirotor UAV designs
which have been classified into nine different concepts, listed in Table 6.1.
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Table 6.1: The abbreviations of the fixed-tilt UAV concepts described in Sec.
6.2.

Concept Abbreviation

Quadrotor with four horizontal rotors Quad4Hor

Hexarotor with canted rotors HexC

Hexarotor with canted and dihedral rotors HexCD

Coaxial Hexagon with 12 canted rotors CoHexC

Double tetrahedron hexarotor HexDTet

Heptarotor with minimized frame HeptF

Heptarotor with maximized wrench HeptW

Octarotor cube OctCu

Octarotor beam OctB

Each fixed-tilt concept is also displayed in Fig. 6.2, along with an illustrative
plot of its rotor configurations. Moreover, in Table 6.2, the mapping matrix
variables of the concepts are presented, which include the rotor displacements
ξi, orientations ui, rotation direction σi, as well as the design parameters
selected differently in different versions of the concept.

Quadrotor with four horizontal rotors

The first concept is an extension of the conventional quadrotor which achieves
full-actuation by adding four (unidirectional) horizontal rotors (indexed 5-8).
There have been two different implementations of this concept in the literature.
In the work of von Frankenberg and Nokleby [2017], the additional rotors are
positioned between the quadrotor rotor arms, as shown in Fig. 6.2a. As a result,
these added rotors do not create a moment around the CoM and the airflow
interference between the rotors is minimized. The other implementation is by
Salazar et al. [2009] with the horizontal rotors are located under the vertical
rotors. However, the interference of airflow in the design of [Salazar et al.,
2009] has negative effects on the controllability of the UAV. It is also worth
mentioning that the work [Salazar et al., 2009] was one of the earliest attempts
to obtain horizontal actuation with a multirotor UAV.

Hexarotor with Canted Rotors

The HexC concept (Fig. 6.2b) can be considered the simplest modification to
conventional multirotors in order to achieve fully actuated flight. The rotor
positioning is the same as the conventional hexarotor, with all six rotors placed
on the vertices of a planar hexagon. Full actuation is achieved by tilting the
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(a) Quad4Hor [von
Frankenberg and Nokleby,
2017]

(b) HexC [Jiang and
Voyles, 2013]

(c) HexCD [Rajappa et al.,
2015]

(d) CoHexC [Lei et al.,
2017]

(e) HexDTet [Toratani,
2012]

(f) HeptF [Nikou et al.,
2015]

(g) HeptW [Tognon and
Franchi, 2018]

(h) OctCu [Brescianini and
D’Andrea, 2016]

(i) OctB [Park et al., 2018]

Figure 6.2: The Fixed-Tilt Concepts surveyed in this thesis.
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(b) HexC
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(c) HexCD
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(d) CoHexC
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(e) HexDTet
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(f) HeptF
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(g) HeptW
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Figure 6.3: Illustration of the top/side view of the rotor configuration for
each fixed-tilt concept. Clockwise rotating rotors are colored yellow, while
the counter-clockwise ones are displayed in green.
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Concept Index
(i)

Rotation
Direction (σi)

Orientation (ui) Displacement (ξi) Fixed
Parameters

Quad4Hor 1 - 4 σ1 = σ3 = 1, ui = (0, 0, 1) ξi = (Lcψi , Lsψi , 0) ψi = (i− 1)π2

σ2 = σ4 = −1

5 - 8 σ5 = σ6 = 1, ui = (cψi , sψi , 0) ξi = (L̃cψi , L̃sψi , 0) ψi = (i− 1)π2 + ψ̃

σ7 = σ8 = −1

HexC 1 - 6 σi = (−1)i+1 ui = (sψisαi ,−cψisαi , cαi) ξi = (Lcψi , Lsψi , 0) ψi = (i− 1)π3 + π
6 ,

αi = α̃(−1)i+1

HexCD 1 - 6 σi = (−1)i+1 ui = (cψisβi + sψisαicβi , ξi = (Lcψi , Lsψi , 0) ψi = (i− 1)π3 + π
6 ,

sψisβi − cψisαicβi , αi = α̃(−1)i+1

cαicβi) βi = β̃

CoHexC 1 - 12 σi = (−1)i+1 ui = (sψisαi ,−cψisαi , cαi) ξi = (Lcψi , Lsψi , 0) ψi = (i− 1)π3 + π
6 ,

αi = α̃(−1)i+1

HexDTet 1 - 6 σi = (−1)i ui = (cψicη, sψicη, sη) ξi = (Lcψi , Lsψi , (−1)i+1Lsη) ψi = (i− 1)π3

HeptF 1 - 7 σi = 1 u1 = (0.08, 0.39, 0.92) ξ1 = (0.43,−0.15,−0.44)

u2 = (−0.33,−0.90, 0.29) ξ2 = (0.08,−0.22,−0.14)

u3 = (0.13,−0.87,−0.48) ξ3 = (0.1,−0.9,−0.2)

u4 = (0.56, 0.08, 0.82) ξ4 = (−0.34, 0.25, 0.006)

u5 = (0.83, 0.11,−0.55) ξ5 = (0.184, 0.359,−0.254)

u6 = (−0.66, 0.57,−0.49) ξ6 = (−0.22,−0.44,−0.04)

u7 = (−0.59, 0.62,−0.51) ξ7 = (0.51, 0.79,−0.06)

HeptW 1 - 7 σi = (−1)i+1 u1 = (−0.71, 0.67, 0.11) ξi = (Lcψi , Lsψi , 0) ψi = (i− 1) 2π
7

u2 = (0.11, 0.04,−0.98)

u3 = (0.41, 0.85, 0.31)

u4 = (0.44,−0.35, 0.81)

u5 = (0.57,−0.38,−0.72)

u6 = (−0.64,−0.58,−0.48)

u7 = (−0.17,−0.26, 0.94)

OctCu 1 - 8 σi = 1 u1 = u8 = (−a, b, c) ξ1 = −ξ8 = (d, d, d) a = 1/2 + 1/
√

12

u2 = u7 = (b, a,−c) ξ2 = −ξ7 = (−d, d, d) b = 1/2− 1/
√

12

u3 = u6 = (−b,−a, c) ξ3 = −ξ6 = (d,−d, d) c = 1/
√

3

u4 = u5 = (a,−b, c) ξ4 = −ξ5 = (−d,−d, d) d = 0.577m

OctB 1 - 8 σ1 = σ6 = 1 u1 = u5 = (a, b, a) ξ1 = −ξ5 = (L1,−L2, L2) a = 0.68

σ7 = σ8 = 1 u2 = u6 = (a, b,−a) ξ2 = −ξ6 = (L1, L2, L2) b = 0.28

σ2 = σ3 = −1 u3 = u7 = (a,−b, a) ξ3 = −ξ7 = (L1,−L2,−L2) L1 = 0.4m

σ4 = σ5 = −1 u4 = u8 = (a,−b,−a) ξ4 = −ξ8 = (L1, L2,−L2) L2 = 0.17m

Table 6.2: Variables of the Mapping Matrix for Fixed-Tilt Concepts
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rotors around the axis collinear with the rotor arm. This tilting, denoted by
α, is referred to as canting as discussed in Sec. 6.1.1. By canting the rotors,
they will not only produce thrust vertically, but also horizontally. The canting
angle of all rotors are equal and the canting direction and rotation direction
of the rotors is alternating (cf. Table 6.2), resulting in three symmetric rotor
pairs with opposite rotation direction. Due to the design’s symmetry, the drag
torque of the rotors is counteracted. The amount of canting depends on the
application: a large cant angle leads to high horizontal forces, while a small
cant angle leads to higher flying efficiency. The angle is limited by the minimum
required upward thrust for overcoming gravity.

This concept has been first proposed by Voyles and Jiang [2012] and suc-
cessfully demonstrating experiments of fully-actuated flight with a cant angle
α = 20°. The same authors have shown in [Jiang and Voyles, 2013, 2014] that
the HexC concept has better disturbance rejection capabilities to lateral wind
gusts compared to the conventional hexarotor. A higher cant angle of 47° has
been used by Rashad et al. [2019b] in order to maximize the horizontal force
applied in a contact-based scenario. An experimental demonstration of a 2kg
HexC platform was able to apply 1kg of force to a vertical surface without
pitching. Omnidirectional versions of the HexC concept have been proposed
in [Roque and Ventura, 2016; Kaufman et al., 2014]. In [Roque and Ventura,
2016] a version, with a cant angle optimized for maximum wrench, has been
proposed as a cobot for space applications. Due to the absence of gravity in
the intended application, the optimal cant angle is higher: 55° instead of 47° of
[Rashad et al., 2019b]. Finally, another omnidirectional version was proposed
in [Kaufman et al., 2014], which utilized variable-pitch propellers in order to
generate bidirectional thrust, unlike all previously presented designs which use
fixed-pitch unidirectional propellers.

Hexarotor with canted and dihedral rotors

The HexCD concept, shown in Fig. 6.2c, is considered an extension of the
HexC concept. In its design, the rotors of the hexarotor are not only canted
but also tilted along the axis perpendicular to the rotor’s arm, which called
a dihedral angle (β), as discussed in Sec. 6.1.1. This concept is the most
studied/used design in the literature so far with different angles optimized
for different criteria. The concept was originally proposed by Rajappa et al.
[2015] who chose α and β in order to minimize the required total thrust for
full-pose UAV controllability for a given trajectory. The optimal angles are
shown to depend heavily on the trajectory, for instance for an in-hover pitching
maneuver, the optimal dihedral angle was shown to be nonzero. Moreover, it
was shown in [Rajappa et al., 2015] that the direction of the dihedral angle
(positive or negative) does not influence the performance of the UAV. However,
the maximum dihedral angle is more limited by the UAV’s frame when the rotor
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is tilted inward (β < 0), thus all rotors are tilted outward (β > 0).
The HexCD concept was also used for physical interaction in [Staub et al.,

2018; Ryll et al., 2017] with angles α = 30° and β = 10°. Another study in
[Mehmood et al., 2016] analyzed how different angles change the maximum
achievable lateral-accelerations as well as the dynamic maneuverability of the
UAV. Moreover, in [Jiang et al., 2017, 2018], a multi-objective optimization
was performed for determining the cant and dihedral angles for a physical
interaction application. The objective function was chosen as a weighted sum of
three criteria; the maximum lateral forces, the flying efficiency, and the dihedral
effect. The interesting result in [Jiang et al., 2017, 2018] is that the optimal
set of angles can be chosen in most cases such that β = 0. A similar result was
shown in [Tadokoro et al., 2017] by using the dynamic maneuverability as the
optimization criteria. In such a case, the HexCD concept becomes equivalent
to the HexC discussed previously.

The reason for favoring β = 0 is related to the fact that a non-zero dihedral
angle causes part of the generated thrust to be transformed into internal stresses
in the x̂pi axis. Consequently, this reduces the torque contribution of the rotor
(mainly around the ẑB axis) and thus the UAV’s maneuverability. This implies
that the HexC concept has higher maneuverability compared to the HexCD
concept. However, a recent study in [Michieletto et al., 2018] has proved that a
non-zero β provides the HexCD concept with robustness against rotor failure,
a feature which a HexC UAV does not have.

Coaxial Hexagon with Twelve Canted Rotors

This concept (Fig. 6.2d), by Lei et al. [2017], consists of twelve rotors that are
positioned in pairs of two in a hexagonal configuration. These pairs are called
coaxial rotor pairs, because the rotors rotate around the same axis. Both rotors
rotate at the same speed but in opposite directions, such that the drag torque
from one rotor is counteracted by the other. The advantage of coaxial rotor
pairs is that the amount of thrust that can be produced increases compared to
a single rotor. As for the interference of airflow between the top and bottom
rotor, the drawbacks are less severe in this design (and for coaxial rotors in
general) compared to the Quad4Hor design of [Salazar et al., 2009] as both
rotors have the same speed. Finally, some preliminary experiments on a test-
rig have been carried out in [Lei et al., 2017], but unfortunately the cant angle
by which the rotors were tilted was not provided by the authors.

Double Tetrahedron Hexarotor

This concept, proposed by Toratani [2012], can be considered the first attempt
to produce a hexarotor with non-coplanar rotors. The design consists of six
rotors restricted to the shape of two opposite tetrahedrons as shown in Fig.
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6.2e. Both tetrahedrons have a common base, which lies in the x̂B-ŷB plane.
Each one of the six rotors is attached on an edge of the two tetrahedrons and
the design parameter of this concept is the elevation angle η, which is the angle
between the common base and the edge containing a rotor. All rotors have
the same elevation angle as seen in the rotor configuration in Fig. 6.2e. As
mentioned in Table 6.2, the elevation angle η was chosen in [Toratani, 2012]
as 75°. This choice of angle was based on an optimization process, however
the authors in [Toratani, 2012] didn’t provide any details on the optimization
criteria. The work of designing non-coplanar hexarotors was also studied in
[Kiso et al., 2015], in which the dynamic maneuverability and maximum lateral-
translations measures were used to compute the optimal configurations of the
three rotor-pairs.

Heptarotor with Minimized Frame

The UAV concept, proposed by Nikou et al. [2015] and shown in Fig. 6.2f,
was one of the first attempts in the literature to create an omnidirectional
UAV with unidirectional rotors only. It was shown mathematically that a
minimum of seven rotors is required to achieve this. The rotor configurations
have been optimized to minimize the volume of the frame. The airflow in-
terference between rotors has been taken into account in the optimization by
imposing a minimum distance between the rotors such that airflow interference
is avoided. The aforementioned distance was determined empirically based
on CFD-analysis (computational fluid dynamics). Since no symmetry require-
ments were imposed on the UAV, all rotors were designed to rotate clockwise.

Heptarotor with Maximized Wrench

The concept (Fig. 6.2g), proposed by Tognon and Franchi [2018], is another
omnidirectional UAV with seven unidirectional rotors, similar to the HeptF
concept presented in the previous section. The rotors are placed on the vertices
of a heptagon in the horizontal plane and rotate in alternating direction. The
orientation of the rotors is optimized for maximum omnidirectional wrench
generation. The UAV concept was only introduced in [Tognon and Franchi,
2018] and an operational prototype has been presented in [Hamandi et al.,
2020].

Octarotor Cube

The concept (Fig. 6.2h), designed by Brescianini and D’Andrea [2016], is con-
sidered the first multirotor UAV to successfully perform omnidirectional flight.
The rotor positions are fixed to the vertices of a cube, while the orientation of
the rotors are optimized for maximizing the vehicle’s agility which is measured
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by the maximum attainable omnidirectional wrench. All rotors are designed
to rotate in the same direction and symmetric propellers have been used to
provide bidirectional thrust. The UAV is surrounded by a cage-like frame to
allow human-robot interaction without risk of injury from collision with the
propellers. A detailed analysis of the proposed UAV concept and prototype
can be found in [Brescianini and D’Andrea, 2018].

Octarotor Beam

The concept by Park et al. [2018], shown in Fig. 6.2i, is an omnidirectional
octarotor UAV, with a beam-like shape. The UAV was designed for aerial
physical-interaction tasks that require full wrench generation. This concept
is considered a second-generation version of the authors’ previously designed
beam-like hexarotor in [Park et al., 2016]. Each side of the beam contains four
rotors placed on the vertices of a square with rotors 1 and 6-8 rotating clock-
wise and rotors 2-5 rotating counterclockwise. The rotor configurations are
optimized for omnidirectional wrench generation, while imposing the minimum
rotor distance such that airflow interference is avoided. The UAV achieves om-
nidirectional flight by the use of bi-directional rotors. The bidirectional thrust
generation is achieved by stacking two unidirectional propellers in the opposite
direction. Thus, the OctB design proposed contains 16 propellers. Contrary to
the preliminary work in [Park et al., 2016], the authors presented a technique
in [Park et al., 2018] to shape the wrench generation by weighing the different
wrench generation directions. Finally, the OctB concept has been utilized to
create a serial-chain of multiple fully-actuated UAVs connected by spherical
joints in [Yang et al., 2018]. The highly-complex system was shown to perform
several experimental dexterous manipulation tasks.

6.3 Survey of Variable-Tilt Concepts

In the same style of the previous section, here we present the survey of six
variable-tilt multirotor concepts. The figures of the concepts can be found in
Fig. 6.4, while the mapping matrix variables can be found in Table 6.4.

Quadrotor with Variable Cant Rotors

The concept, shown in Fig. 6.4a, was introduced by Ryll et al. [2012]. The
full-actuation is achieved by adding four tilting actuators to the rotors of a
conventional quadrotor. These actuators actively cant each rotor individually
around the x̂pi axis. Since the rotors used were unidirectional and the tilt-
ing actuators had maximum limits, the maximum UAV’s achievable pitch/roll
angle during hovering was limited to approximately 30 degrees.
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Table 6.3: The abbreviations of the variable-tilt UAV concepts described in
Sec. 6.3.

Concept Abbreviation

Quadrotor with variable cant rotors QuadvC

Quadrotor with variable dihedral rotors QuadvD

Quadrotor with variable cant and dihedral rotors QuadvCD

Quadrotor with coupled variable cant and dihedral rotors QuadvCDc

Hexarotor with variable cant rotors HexvC

Hexarotor with coupled variable cant rotors HexvCc

Table 6.4: Variables of the Mapping Matrix for Variable-Tilt Concepts

Concept Index
(i)

Rotation
Direction (σi)

Orientation (ui) Displacement (ξi) Fixed
Parameters

Active
Tilt

QuadvC 1 - 4 σi = (−1)i+1 ui = (sψisαi ,−cψisαi , cαi) ξi = (Lcψi , Lsψi , 0) ψi = (i− 1)π2 αi

QuadvD 1 - 4 σ1 = σ2 = 1 ui = (cψisβi , sψisβi , cβi) ψi = (i− 1)π2 βi

σ3 = σ4 = −1

QuadvCD 1 - 4 σi = (−1)i+1 ui = (cψisβi + sψisαicβi , ψi = (i− 1)π2 αi

sψisβi − cψisαicβi βi

cαicβi)

QuadcCDc 1 - 4 ψi = (i− 1)π2 αm

α1 = −α3 = αm βm

α2 = −α4 = βm

β1 = −β3 = βm

β2 = −β4 = −αm

HexvC 1 - 6 σi = (−1)i+1 ui = (sψisαi ,−cψisαi , cαi) ξi = (Lcψi , Lsψi , 0) ψi = (i− 1)π3 αi

HexvCc 1 - 6 ψi = (i− 1)π3 αm

αi = αm(−1)i+1
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(a) QuadvC [Ryll et al.,
2015]
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(b) QuadvD [Badr et al.,
2016]
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(c) QuadvCD [Segui-Gasco
et al., 2014]

-2 -1 0 1 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

2

13

4

(d) QuadvCDc [Odelga
et al., 2016]
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(e) HexvC [Kamel et al.,
2018]
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(f) HexvCc [Ryll et al.,
2016]

Figure 6.4: Figures of Variable-Tilt Concepts. Each concept is complemented
with an illustration of the top view of the rotor configuration. Clockwise ro-
tating rotors are colored yellow, while the counter-clockwise ones are displayed
in green, and that double arrows indicate the active tilt-axis.
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Quadrotor with Variable Dihedral Rotors

This concept (Fig. 6.4b), by Badr et al. [2016], resembles the QuadvC concept
presented in the previous section. Instead of the cant angle, the dihedral angle
is actively tiled by an extra actuator. Contrary to the cant angle, the inward
dihedral angle is limited by the frame, which interferes with the rotor blades
at large dihedral angles. Another difference with variable cant rotors is that
dihedral angle does not contribute to the yaw torque, effectively reducing the
total torque.

Quadrotor with Variable Cant and Dihedral Rotors

This concept (Fig. 6.4c), by Segui-Gasco et al. [2014], is a combination of
the last two concepts. The UAV has two actuators added to each rotor of a
conventional quadrotor to actively tilt the rotors around that cant and dihedral
angle. Thus, the UAV has 8 actuators for the thrust vectoring. For the dihedral
tilt actuation, a push pull mechanism was used, which limits the maximum
achievable dihedral angle. However, an alternative actuation method for the
cant and dihedral tilting was proposed by Ryll et al. [2015] that can be used
to extend the range of achievable cant and dihedral angles.

Quadrotor with Coupled Variable Cant and Dihedral Rotors

This concept (Fig. 6.4d) is by Odelga et al. [2016], who proposed to actuate
the angle of all quadrotor propellers with a single actuator using parallelogram
linkage mechanism, instead of actuating each rotor separately. This linkage
mechanism tilts all rotors in the same direction. For a second rotation direction
another similar linkage is used. In this way all rotors always have the same
orientation and cannot be orientated individually contrary to the QuadvCD
concept. A drawback of such coupling feature is that the maximum tilting
angle of all rotors in all directions is now limited by the maximum inward
dihedral angle. The main advantage however is that this actuation method
reduces the amount of actuators required for cant and dihedral actuation from
eight to two. In [Odelga et al., 2016] only a conceptual proposition of the design
has been provided and a working prototype has not yet been reported.

Hexarotor with Variable Cant Rotors

The concept shown in Fig. 6.4e and presented in [Kamel et al., 2018] is the first
variable-tilt concept to achieve successful omnidirectional flight. The concept
contains a canting actuator added to each rotor of a conventional hexarotor to
achieve omnidirectional flight with unidirectional thrust generation. The UAV
was developed by a group of students from Swiss Federal Institute of Technol-
ogy (ETH Zurich) and Zurich University of the Arts. A modified version of
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Table 6.5: Table of optimization criteria for designing fixed-tilt concepts

Optimization Criteria References

Max. allowed wrench [Rashad et al., 2017], [Roque and Ventura,
2016], [Jiang et al., 2017],[Jiang et al., 2018],
[Tognon and Franchi, 2018],[Brescianini and
D’Andrea, 2018],[Park et al., 2018]

Max. allowed accelerations [Mehmood et al., 2016],[Kiso et al., 2015]

Min. control effort [Rajappa et al., 2015]

Max. flying efficiency [Jiang et al., 2017],[Jiang et al., 2018]

Min. dihedral effect [Jiang et al., 2018]

Max. dynamic maneuverability [Tadokoro et al., 2017], [Kiso et al., 2015]

Min. volume of vehicle [Nikou et al., 2015]

this concept has been proposed in [Bodie et al., 2018] for contact-based aerial
inspection applications. The UAV design used in [Bodie et al., 2018] had coax-
ial rotors in order to increase the thrust generation capabilities of the UAV,
with all other design aspects kept the same.

Hexarotor with Coupled Variable Cant Rotors

Finally, the concept (Fig. 6.4f), by Ryll et al. [2016], uses a single actuator to
cant all rotors of a hexarotor. This coupled rotor tilting is achieved using a wire
mechanism. The cant angle is alternating, similar to the HexC concept, while
the maximum achievable cant angle is limited by the frame. The advantage of
a single actuator instead of six actuators to cant the rotors is that the energy
consumption and total mass of the system is greatly reduced compared to the
parallel mechanism of the QuadvCDc concept. However, the maneuverability
of the UAV is reduced by the lower bandwidth of the tilting mechanism using
wires.

6.4 Conclusion

In this chapter we presented a review of multirotor UAV concepts that have
been proposed in the literature for the past decade. The concepts were clas-
sified into fixed-tilt and variable tilt UAVs in which the mapping matrix is
structurally different. Moreover, all design variables for reconstructing the
mapping matrix of all the concepts were provided as well. We conclude with
some remarks on different issues related to the work.

First, the HexC and HexCD concepts are the most widely used ones in
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the literature, which is a consequence of their mechanical simplicity and the
ease of transforming the (already existing) conventional hexarotor into a fully-
actuated vehicle. Moreover, the mechanical simplicity of these concepts is also
translated into reduced effort for optimizing the design for a given application
due to the low number of design parameters.

Second, different fixed-tilt designs were optimized based on a variety of
criteria summarized in Table 6.5. The most used measure is maximizing the
generated control wrench (6.7), either in specific directions or in all directions
(for omnidirectional UAVs). However, it is important to know that equation
(6.7) is based on a static analysis and does not take the UAV’s inertia param-
eters into account like the dynamic maneuverability measure or the generated
control accelerations measure. As an example of the false intuition this crite-
ria can provide, the maximum wrench of the CoHexC concept would be twice
that of the HexC design (assuming identical propellers and cant angle). How-
ever, taking into account that the CoHexC has (roughly) double the inertia
parameters as the HexC, the maximum accelerations is (roughly) the same.

Finally, we close with a remark about the control-system architecture of
the presented UAVs. In most of the works surveyed in this paper, a two stage
control-architecture is used where first the control wrench (6.7) is considered
as a virtual input to the rigid body model of the UAV. Then the mapping
matrix is used to compute the desired propeller thrusts. For fixed-tilt concepts,
this involves computing the inverse/pseudo-inverse of the M matrix, which is
guaranteed to exist as shown in Sec. 6.1.2. However, for variable-tilt designs,
the control allocation problem is more involved as the rank of the M matrix
might change during operation and the UAV might operate in an underactuated
configuration. This calls for nonlinear control allocation techniques in addition
to control algorithms that can handle the different UAV operating conditions,
like e.g. [Franchi et al., 2018].



CHAPTER 7

Energy-Balancing Passivity-Based Control

of a Flying End-Effector

There is an increasing interest in the aerial robotics community to transition
the use of unmanned aerial vehicles (UAVs) from passive tasks, like visual in-
spection and remote sensing, to active interaction tasks, like contact-based in-
spection and manipulation. Compared to ground-based manipulators, control
of physical interaction using UAVs is more challenging as the controller is re-
quired to constantly overcome gravity, stabilize the UAV’s inherently unstable
dynamics, comply with the environment’s constraints, and exert the required
forces and torques on the environment.

This chapter reports the results of [Rashad et al., 2019a] which addresses the
interaction control problem of a fully-actuated UAV in the port-Hamiltonian
framework. Compared to other approaches for aerial interaction, like endowing
conventional UAVs with a robotic manipulator arm (cf. Ch.1), a fully-actuated
UAV has the ability to exert lateral forces and is mechanically simpler as it does
not suffer from inertial coupling and variations in its center of mass. Therefore,
a fully-actuated UAV is controlled simply as a flying end-effector.

There are several methods that have been applied in the robotics literature
for the interaction control problem of both ground and aerial manipulators.
One method is to use pure motion-controllers, which in general are not suited
for interaction as they are designed for minimizing tracking errors and rejecting
disturbances. Another method is to use hybrid pose/wrench controllers, which
control the interaction wrench in certain directions and control the pose in other
“orthogonal” directions. From a practical point of view, such control approach
requires an accurate model of the aerial robot and the contact properties of
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Figure 7.1: The fully-actuated UAV used for experimental validation of the
proposed controller. The photo shows the UAV hovering at a non-zero pitch
and roll angle in free-flight.

the environment, which usually limits its applications. From a mathematical
point of view, hybrid pose/wrench control techniques suffers from a geometric
inconsistency problem related to the orthogonality of wrenches and twists Duffy
[1990].

The interaction behavior of an aerial robot can be modeled effectively and
elegantly by power ports in port-Hamiltonian systems theory. In this paradigm
the interaction is perceived as an exchange of energy between the aerial robot
and the environment, instead of an independent control of pose or wrench.
Thus, the control system of a robot is no longer perceived as a signal processor,
but as a virtual physical system that is connected to the aerial robot via power
ports. This is the underlying basic idea of the widely used impedance control
technique introduced in Hogan [1985c].

The concepts considered in this work are presented in a geometrically con-
sistent manner by modeling the flying-end effector as a floating rigid body with
the special Euclidean group SE(3) as its configuration manifold. Therefore, the
designed motion and interaction controllers will be invariant to changes of the
inertial coordinate frame, as we do not treat the rotational dynamics and the
translational dynamics of the UAV separately [Bullo and Murray, 1999].

Our work is inspired by Fasse and Broenink [1997]; Fasse [1997]; Strami-
gioli [2001] in which the geometric impedance control problem of ground ma-
nipulators is studied. In Fasse and Broenink [1997], a geometric impedance
controller was designed in the Lagrangian framework for a rigid manipulator,
which only allowed diagonal stiffness and damping parameters. The work of
Fasse and Broenink [1997]; Fasse [1997] was generalized in Stramigioli [2001]
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in the port-Hamiltonian framework as an interconnection of mechanical struc-
tures, for robot grasping. The impedance controller of Stramigioli [2001] en-
abled achieving arbitrary stiffness control and was invariant to changes of the
inertial coordinate frame.

The main contribution of this chapter is the reformulation of the geometric
impedance controller of Stramigioli [2001] as an energy-balancing passivity-
based control (EB-PBC) problem for a fully-actuated UAV modeled geomet-
rically on SE(3). We extend the work of Stramigioli [2001] by applying it for
both the motion and interaction control of a UAV, in addition to a rigorous
mathematical derivation and analysis of the closed loop system in free-flight and
during contact. Moreover, we validate the presented controller experimentally
on a fully-actuated hexarotor to show that its passivity-based nature allows
full exploitation of the UAV’s capabilities. This is demonstrated by controlling
the UAV near its control input limits without losing stability.

This chapter is outlined as follows: Sec. 7.1 presents a literature survey of
the different interaction control methods implemented for flying manipulators.
Sec. 7.2 discusses the port-Hamiltonian dynamic model of the UAV that will be
used for the control system design. In Sec. 7.3, we present the derivation of the
controller using the EB-PBC method along with the stability analysis of the
closed-loop system. Then, in Sec. 7.4 we present the experimental validation
results of the derived controller on a physical aerial robot, and we conclude this
chapter in Sec. 7.5.

7.1 Survey of Aerial Interaction Control Meth-
ods

In this section, a literature review of the different control approaches used for
physical interaction in the context of aerial robotics will be presented. For an
introduction to the subject, the reader is referred to [Villani and De Schutter,
2016] for the topic of interaction using ground-based manipulators, to [Ollero
and Merino, 2004] for a review of control and perception techniques of aerial
robots, and to [Ruggiero et al., 2018] for a review of interaction using aerial
manipulators.

7.1.1 Hybrid Pose/Wrench and Motion Control

In the context of hybrid pose/wrench control of UAVs, Bellens et al. [2012]
applied this approach to control a quadrotor UAV. The pose controller con-
sisted of a standard cascaded PID, while another PI algorithm was adopted
for the interaction wrench regulation. The interaction wrench was estimated
based on an offline mapping to the quadrotor’s control inputs, which is only
valid when the UAV is in contact. In [Darivianakis et al., 2014; Alexis et al.,
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2016], a controller based on hybrid model predictive control was proposed .
The approach was validated experimentally through an aerial writing appli-
cation using an underactuated quadrotor. In [Nguyen and Lee, 2013; Nguyen
et al., 2015], the authors proposed a hybrid interaction control algorithm and
studied the internal dynamics of the interactive quadrotor due to its underac-
tuation. The authors in Papachristos et al. [2014] utilized a hybrid approach
where switching between the motion control mode and wrench control mode
was achieved through a finite state machine. The switching between modes
is conducted based on contact feedback from tactile switches in the end effec-
tor. Furthermore, in [Nava et al., 2019], a hybrid force-motion control system
was designed by formulating the controller design as a quadratic programming
problem that is solved online.

Other works in the literature which used motion-controllers for interaction
include [Suseong Kim et al., 2013; Korpela et al., 2014b; Orsag et al., 2014,
2017]. In [Suseong Kim et al., 2013], an adaptive sliding mode controller was
implemented on a quadrotor with a 2 DOF manipulator. The external in-
teraction wrench was considered a disturbance to be rejected by the robust
controller. In [Korpela et al., 2014b; Orsag et al., 2014], the yaw motion con-
troller of a quadrotor with a 2 DOF arm was used to address the problem of
valve turning.

7.1.2 Impedance and Admittance Control

In the context of indirect force control of UAVs, Lippiello and Ruggiero [2012a,b]
presented a Cartesian impedance controller for the dynamic model of a quadro-
tor equipped with a 3-DOF manipulator in the Euler-Lagrange framework.
The followed approach was not geometric and this complicates the tuning of
the impedance parameters and the generalization of the results. Forte et al.
[2012] applied an impedance controller for a ducted-fan UAV. Separate con-
trol laws for the manipulator, vertical, and lateral dynamics were designed and
validated in simulation. Similarly, in [Fumagalli et al., 2012; Fumagalli and
Carloni, 2013; Fumagalli et al., 2014], an impedance controller for a quadrotor
was implemented and validated experimentally for contact-based inspection ap-
plications using a compliant delta manipulator. Mersha et al. [2014] presented
a variable impedance controller for aerial interaction of a quadrotor. A force
regulator is implemented as an outer loop of the variable impedance controller.
The external force is estimated by the position information and stiffness of the
environment, which is assumed to be a linear spring. In [Suarez et al., 2018],
a physical-virtual impedance controller was implemented by incorporating a
compliant robotic arm with a multi-rotor platform. In [Korpela et al., 2014a]
a stiffness control algorithm was used for interaction based on a linear motion
controller. The stiffness mapping between the position error and interaction
force was chosen as a linear map, which is not geometrically consistent. Cataldi
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et al. [2016] followed a multi-layer control admittance control approach for a
quadrotor/manipulator system. In addition to representing orientation in lo-
cal coordinates, the approach depends on an inverse kinematics algorithm that
uses null space projectors to resolve redundancy, which yields a non-passive
controller.

In [Tomic and Haddadin, 2014; Tomić et al., 2017], the authors presented a
unified passivity-based framework for impedance and admittance control. The
desired interactive behavior is imposed by cancellation of the nonlinear dynam-
ics of the system and a feedback of the external wrench through an estimation
algorithm, while the UAV’s rotation was represented using quaternions. The
passivity proof of the closed loop system and modifications for underactuated
vehicles were presented. In [Ryll et al., 2017, 2019], an admittance controller
with an external wrench observer was implemented on a fully-actuated hexaro-
tor platform. The approach relied on the geometric trajectory tracking con-
troller introduced by Lee et al. [2010], in which the controllers for the rotational
and translational dynamics are designed separately.

In contrast to our proposed framework, the approaches followed in [Tomic
and Haddadin, 2014; Tomić et al., 2017; Ryll et al., 2019] lack consistency in re-
specting the geometric structure of the configuration space SE(3). Controllers
designed in this manner has been shown to suffer from not being invariant to
coordinate changes [Bullo and Murray, 1999]. Such geometric inconsistency
could lead to many practical problems particularly for interactive robots, cf.
e.g. [Villani and De Schutter, 2016].

7.1.3 Port-Hamiltonian Control

In recent years there has been an increasing interest in port-Hamiltonian con-
trol approaches. The first use of port-based modeling and control concepts in
the aerial robotics literature was in Mersha et al. [2011], where stabilization
and tracking controllers were derived for generic underactuated vehicles and
simulated for a ducted-fan UAV. Although the controllers were designed by
standard passivity-based techniques, the presented approach included compen-
sation of the UAV dynamics, non-passive projection, and added robustness by
using integral action, which destroyed the passivity of the motion controller.
In [Yuksel et al., 2014b,a], the authors used the interconnection and damp-
ing assignment PBC (IDA-PBC) approach to change the interactive behavior
of a quadrotor. The presented controller, combined with an external wrench
observer, was derived in Euler angles and tested in simulations with a passive
environment. In [Acosta et al., 2014, 2016], Acosta et al. utilized the IDA-PBC
approach for the decentralized control of a quadrotor/manipulator system. The
approach was validated through some free-flight simulations.
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Figure 7.2: Schematic view of the reference frames used to model the UAV.

7.2 Port-Hamiltonian Model of a Flying End-
Effector

7.2.1 Vehicle Description

The flying-end effector used in this work is a fully-actuated hexarotor with
canted rotors, similar to the work of Ryll et al. [2017]; Jiang et al. [2018]. This
specific platform was chosen due to its mechanical simplicity compared to other
designs, as surveyed in Ch.6. A conventional hexarotor consists of six parallel
propellers placed at the vertices of a planar hexagon, thus it can only generate
thrust normal to the rotating plane of the propellers. To modify a traditional
hexarotor in order to be fully-actuated, the six rotors should point in different
directions. Each rotor’s orientation is fixed and parameterized by a cant angle.

The reference frames used to describe the configuration of the UAV are
depicted in Fig. 7.2. Let {ΨI : oI , x̂I , ŷI , ẑI} denote an orthonormal inertial
frame and {ΨB : oB , x̂B , ŷB , ẑB} denote a body-fixed frame attached to the
vehicle’s center of mass and aligned with its principal axes of inertia. We denote
the frame associated with the k-th rotor by {Ψpk : opk , x̂pk , ŷpk , ẑpk}, with ẑpk
chosen as the direction of the generated thrust, and its origin opk coinciding
with the center of mass of the rotor. We denote the displacement vector of the
k-th rotor in the body-frame ΨB by

ξk := Rz(ψk)[L, 0, 0]> ∈ R3,

where Rz(·) ∈ SO(3) is the standard rotation matrix about the z-axis, L ∈ R+

is the distance from the hexarotor’s central axis ẑB to each rotor, and ψk :=
(k−1)π3 denotes the heading angle. Moreover, we denote the thrust generation
direction of the k-th rotor by uk := RB

pk
ê3 ∈ S2, where êj is a vector of zeros
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with one at the j-th element, and RB
pk
∈ SO(3) denotes the orientation of Ψpk

with respect to ΨB given by

RB
pk

= Rz(ψk)Rx(αk),

where αk denotes the cant angle of the k-th rotor and Rx(·) ∈ SO(3) is the
standard rotation matrix about the x-axis.

The cant angles of the rotors are chosen to maximize the aerodynamic
wrench that can be generated laterally by the propellers on the body of the
UAV. This in turn will maximize the agility of the UAV, the maximum angle
the UAV can hover at, and the interaction wrench that the UAV can apply to
the environment in physical contact. However, the hovering efficiency of the
UAV deteriorates as a consequence. In case of particular requirements on the
aforementioned properties of the UAV, the cant angles can be computed from
an optimization process as described in Ch.6. However, the main focus of this
work is the design of interaction controllers and thus the cant angles are chosen
based on the work of [Jiang et al., 2017] as αk = (−1)k+1α∗, where α∗ = 47°,
while the rotation directions of the rotors are given by σk = (−1)k.

7.2.2 Dynamic Model

From a dynamical point-of-view, the fully-actuated hexarotor is considered as
a rigid body connected to six propellers via revolute joints that are activated
by electric motors. The interaction between the rotating propellers and the air
generates the aerodynamic forces that are controlled to move the UAV in space
as desired. Due to the low speed nature of of multirotor UAVs in general and
flying manipulators in particular, it is a conventional assumption to neglect
the electric and mechanical dynamics of an UAV’s propellers. Therefore, for
control purposes, we treat the fully-actuated aerial robot as a controlled rigid
body floating in a gravitational field.

The port-Hamiltonian dynamical model of a floating rigid body has been
studied in details in Ch.4. The state of the dynamical system comprised
of the UAV’s pose HI

B ∈ SE(3) and its generalized momentum1 given by
P B := IT B,I

B ∈ (R6)∗, where I ∈ R6×6 denotes the generalized inertia tensor
expressed in ΨB . We will denote in what follows the state of the rigid body by

x̄ := (HI
B ,P

B) ∈ SE(3)× (R6)∗. (7.1)

The Hamiltonian of the system is given by the sum of the UAV’s kinetic and
potential energies:

H(x̄) = Hk(P B) +Hg(HI
B) =

1

2
(P B)>I−1P B +m(ξIB)>g, (7.2)

1Although we have that (R6)∗ ∼= R6, we denote the space of generalized momenta and
wrenches by (R6)∗ to stress their covector nature.
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Figure 7.3: Commutative Diagram relating the Lie group SE(3) to the Lie
algebra se(3) and its dual space se∗(3). The maps π and πf represent the
canonical and fiber projections, respectively.

where m is the UAV’s mass, g := gẑI ∈ R3 is the inverse of gravity vector, and
g ≈ 9.81 m s−2 is the gravitational acceleration constant.

The explicit port-Hamiltonian model of a floating rigid body, repeated here
for convenience, is given by

d

dt

(
HI

B

P B

)
=

(
0 χHI

B

−χ∗
HI
B

Jk(P B)

)(
∂H/∂HI

B

∂H/∂P B

)
+

(
0
I6

)
W B,

T B,I
B =

(
0 I6

)(∂H/∂HI
B

∂H/∂P B

)
,

(7.3)

where the skew-symmetric matrix Jk(P B) is given by

Jk(P ) :=

(
P̃ω P̃v
P̃v 0

)
, P =

(
Pω
Pv

)
∈ (R6)∗.

The map χHI
B

: R6 → THSE(3) its dual χ∗
HI
B

: T ∗HSE(3) → (R6)∗ are given

by the compositions in (4.91) and illustrated in the commutative diagram of
Fig 7.3. Furthermore, W B ∈ (R6)∗ denotes the total wrench applied to the
UAV’s rigid body, given by the sum

W B = W B

c +W B

int, (7.4)

with W B
c ∈ (R6)∗ denoting the aerodynamic control wrench and W B

int ∈ (R6)∗

denoting the physical interaction wrench applied to the UAV by the environ-
ment.

The control wrench produced by the rotors can be derived based on a static
wrench analysis, as described in Ch.6. The wrench generated from each pro-
peller on the UAV’s body is expressed in ΨB as

WB
pk

= λkAd
>
H
pk
B

(0, 0, γσk, 0, 0, 1)>,
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Figure 7.4: Illustration of the center-of-stiffness frame ΨCS and the desired
frame ΨD. The relative pose between these two frames HD

CS corresponds to
the new state of the system.

where λk ∈ R+ denotes the unidirectional thrust force generated by the k-th
propeller in Ψpk , γ is the propeller’s drag-to-thrust ratio, and σk ∈ {−1, 1}
specifies the propeller’s rotation direction (with σk = 1 for clockwise rotation).
By summing over k, the cumulative aerodynamic control wrench W B

c expressed
in ΨB can be written as

W B

c =

(
τBc
fBc

)
=
∑
k

λk

(
ξ̃kuk + γσkuk

uk

)
, (7.5)

which can be rewritten as

W B

c = Mλ, (7.6)

where λ = [λ1, · · · , λ6]> corresponds to the combined rotor thrusts, and M ∈
R6×6 is referred to as the control allocation matrix.

7.3 Port-Hamiltonian Control System Design

Using the port-Hamiltonian rigid body model (7.3), we will design a stabiliza-
tion control that will be used for two purposes: motion and interaction control.
The control approach used is the Energy-Balancing Passivity-Based Control
(EB-PBC) approach [Ortega et al., 2001]. The formulation of the UAV geo-
metric control design as an EB-PBC problem is one of the contributions of this
work.
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7.3.1 Change of Coordinates

We first start by a useful change of coordinates for the dynamical system (7.3).
With reference to Fig. 7.4, let ΨD be the (virtual) desired frame of the UAV,
and let ΨCS be another body-fixed frame, called the center of stiffness frame,
which has the same orientation as ΨB but a different location, i.e.

HB
CS =

(
I3 ξBCS
0 1

)
∈ SE(3). (7.7)

The location of ΨCS will vary according to the control task2. For motion
control ΨCS coincides with ΨB (i.e. ξBCS = 0), while for interaction control
ΨCS coincides with the end-effector frame ΨE .

The new state of the system

x := (HD
CS ,P

B) ∈ SE(3)× (R6)∗,

is related to the old state x̄ by

(HD
CS ,P

B) = (HD
I H

I
BH

B
CS ,P

B), (7.8)

where HB
CS ∈ SE(3) is given by (7.7) and HD

I ∈ SE(3) denotes the relative
configuration of the desired frame ΨD with respect to the inertial frame. In
this work, we consider only stabilization (set-point) control, i.e. ḢI

D = 0 for
all time. Therefore, we have that the aforementioned change of coordinates
is time-invariant. However, in practice the virtual set-point is changed in a
piece-wise manner to achieve the desired behavior of the UAV.

In terms of the rotation and translation components of the homogeneous
matrices, it is straightforward to check that the change of coordinates in (7.8)
can be expressed

RD
CS = RD

I R
I
B , ξDCS = ξDI +RD

I ξ
I
B +RD

I R
I
Bξ

B
CS , (7.9)

whereas its inverse can be expressed as

RI
B = RI

DR
D
CS , ξIB = ξID +RI

Dξ
D
CS +RI

DR
D
CSξ

CS
B . (7.10)

The port-Hamiltonian system (7.3) can be written in terms of the new
coordinates as follows. First, we have that the twist of ΨCS with respect to
ΨD is equivalent to the twist of ΨB with respect ΨI :

T ∗,DCS = T ∗,ICS − T ∗,ID︸︷︷︸
=0

= T ∗,BCS︸︷︷︸
=0

−T ∗,BI = T ∗,IB , (7.11)

2In general, the ΨCS frame can also be made variable, see e.g. [Stramigioli, 2001].
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where T ∗,ID = 0 follows from the stabilization control assumption and T ∗,BCS = 0
follows from the fact that both ΨB and ΨCS are fixed to the same body.

Using (7.11), the kinematics relation ḢD
CS = χHD

CS
(T CS,D

CS ) can be rewritten
as

ḢD
CS =χHD

CS
(T CS,D

CS ) = χHD
CS

(AdHCS
B
T B,D
CS )

=χHD
CS

(AdHCS
B
T B,I
B ) = χHD

CS
◦AdHCS

B
(∂H/∂P B), (7.12)

with ◦ denoting the composition of maps.
By rewriting the time derivative of P B in the new coordinates using the

dual of the last map in (7.12), the open-loop port-Hamiltonian system (7.3)
can be rewritten now as

ẋ = J(x)
∂H(x)

∂x
+GW B,

T B,I
B = G>

∂H(x)

∂x
,

(7.13)

where W B is given by (7.4), while the skew-symmetric structure matrix oper-
ator J(x) and the input matrix G are given by

J(x) =

(
0 χHD

CS
◦AdHCS

B

−Ad>
HCS
B
◦ χ∗

HD
CS

Jk(P B)

)
, G =

(
0
I6

)
. (7.14)

The Hamiltonian total energy of the system (7.2) is given in terms of the new
coordinates x = (HD

CS ,P
B) by

H(x) =Hk(P B) +Hg(HD
CS)

=
1

2
(P B)>I−1P B +m(ξID +RI

Dξ
D
CS +RI

DR
D
CSξ

CS
B )>g, (7.15)

which follows from substituting (7.10) in (7.2).

7.3.2 Control Objective of EB-PBC

Considering the port Hamiltonian system (7.13) without the interaction wrench
W B

int, the control objective of the EB-PBC approach is to find a control law
that consists of the sum of an energy shaping termW B

es and a damping injection
term W B

di i.e.
W B

c = W B

es(x) +W B

di, (7.16)

such that the closed loop system will retain the port-Hamiltonian structure:

ẋ = J(x)
∂Hcl(x)

∂x
+GW B

di,

T B,I
B = G>

∂Hcl(x)

∂x
.

(7.17)
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The closed loop system is chosen such that it has the same interconnection
structure (defined by J(x) and G) but with a different energy function Hcl(x)
that has a desired strict minimum at x∗ = (I4,0), which corresponds to the
stabilization of ΨCS to coincide with ΨD.

The first wrench W B
es of the control law (7.16) is the state feedback com-

ponent responsible for the energy shaping, while the wrench W B

di is the output
feedback component responsible for injecting damping such that asymptotic
stabilization is achieved in free-flight. This can be achieved by choosing the
damping injection control law as

W B

di = −KdT B,I
B , (7.18)

where Kd ∈ R6×6 is a symmetric positive definite matrix.

7.3.3 Energy Shaping Control Procedure

Now we present the procedure by which the energy shaping control wrenchW B
es

is calculated. For system’s that do not have internal dissipation, such as the
UAV’s model (7.13), the closed loop energy Hcl(x) can be chosen as

Hcl(x) = H(x) +Ha(x), (7.19)

where H(x) is the original total energy of the system, whereas Ha(x) is the
energy added by the controller to the system. By substituting (7.16) in (7.13)
and (7.19) in (7.17), then comparing both systems together, we get the partial
differential equation

J(x)
∂Ha(x)

∂x
= GW B

es(x), (7.20)

which should be solved to find the energy shaping control term W B
es, given a

desired energy function Ha(x). Equation (7.20) is usually referred to as the
matching equation.

Using the expressions for J(x) and G in (7.14), it can be shown that the
matching equation (7.20) takes the form

∂Ha/∂P B = 0, (7.21)

−Ad>HCS
B
◦ χ∗HD

CS
(∂Ha/∂H

D
CS) = W B

es. (7.22)

The solution of (7.21) implies that the added energy function should be inde-
pendent of P B, i.e. Ha(x) = Ha(HD

CS). Therefore, the control problem has
been reduced to solving (7.22), which will be discussed next.

From the definition of χ∗
HD
CS

, we can refactor (7.22) as

W B

es = Ad>HCS
B
W CS

es , (7.23)

W̃
CS

es = −(LHD
CS

)∗(dHa(HD
CS)), (7.24)
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where ∂Ha/∂H
D
CS ∈ T ∗HD

CS
SE(3) will be denoted in what follows as dHa(HD

CS),

highlighting that it is the differential of the smooth function Ha : SE(3)→ R
at HD

CS , as illustrated in Fig. 7.3.
The action of the pullback in (7.24) is defined as〈
(LHD

CS
)∗(dHa(HD

CS))
∣∣∣ δT̃ CS,D

CS

〉
se

=
〈
dHa(HD

CS)
∣∣ (LHD

CS
)∗(δT̃ CS,D

CS )
〉

SE
,

(7.25)
where δT̃ CS,D

CS ∈ se(3) is an infinitesimal twist displacement, 〈 ·| ·〉se denotes the
duality pairing on se(3), and 〈 ·| ·〉SE denotes the duality pairing on THD

CS
SE(3).

By defining dHD
CS ∈ THD

CS
SE(3) as

dHD
CS = (LHD

CS
)∗(δT̃ CS,D

CS ) = HD
CSδT̃

CS,D
CS = −HD

CSδT̃
CS,CS
D , (7.26)

and using (7.24), we can rewrite (7.25) as〈
W̃

CS

es

∣∣∣ δT̃ CS
D

〉
se

=
〈
dHa(HD

CS)
∣∣ dHD

CS

〉
SE
, (7.27)

where δT̃ CS
D ∈ se(3) is introduced as a shorthand notation for δT̃ CS,CS

D ∈ se(3).

Remark 7.3.1. Note that the pairing in (7.27) represents infinitesimal virtual
work, in contrast to the pairing in (4.49) which represents mechanical power,
which is the first-order time-derivative of the energy. Similar to Fasse [1997],
we choose to follow the variational approach which will simplify the controller
derivation.

The right-hand side of (7.27) can be calculated by〈
dHa(HD

CS)
∣∣ dHD

CS

〉
SE

= Ha(HD
CS + dHD

CS)−Ha(HD
CS). (7.28)

As a consequence of the product structure of se(3), we can express the left-hand
side of (7.27) as〈

W̃
CS

es

∣∣∣ δT̃ CS
D

〉
se

=
〈
τ̃ CS

es | δθ̃CSD
〉
so

+ 〈f CS

es | δξCSD 〉R3 (7.29)

where δθ̃CSD ∈ so(3) and δξCSD ∈ R3 are the components of the infinitesimal
twist displacement δT̃ CS

D ∈ se(3), while τ̃ CS

es ∈ so∗(3) and f CS

es ∈ (R3)∗ are the

components of the wrench W̃
CS

es ∈ se∗(3).
The components of δT̃ CS

D ∈ se(3) are related to the components of dHD
CS ∈

THD
CS
SE(3) by

dRD
CS = −RD

CSδθ̃
CS
D , dξDCS = −RD

CSδξ
CS
D . (7.30)
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Therefore, using the expressions for the duality pairings 〈 ·| ·〉so and 〈 ·| ·〉R3

in Ch.4, we can rewrite (7.29) either in the form〈
W̃

CS

es

∣∣∣ δT̃ CS
D

〉
se

= (τ CS

es)>δθCSD + (f CS

es)>δξCSD , (7.31)

or in the form〈
W̃

CS

es

∣∣∣ δT̃ CS
D

〉
se

= −1

2
tr(τ̃ CS

esδθ̃
CS
D )− 1

2
tr(f̃

CS

esδξ̃
CS
D ). (7.32)

In summary, the expression for the energy shaping control wrench (7.24) will
be derived by comparing the expressions in the right-hand side of the pairing
equality (7.27), given by (7.28), to its left-hand side, given by (7.31) or (7.32).

7.3.4 Control Law Derivation

In this work, the controller’s added energy Ha is chosen to comprise of an
elastic potential energy Hp and to compensate for the gravitational potential
energy Hg of the system. Thus, we have that

Ha(HD
CS) = Hp(HD

CS)−Hg(HD
CS), (7.33)

with Hg is given by (7.15) and Hp chosen based on the work of Stramigioli
[2001] to be

Hp(R, ξ) = Ht,1(ξ) +Ht,2(R, ξ) +Ho(R)

=
1

4
ξ>Ktξ +

1

4
ξ>RKtR

>ξ − tr(Go(R− I3)).
(7.34)

The potential energy function (7.34) is parameterized by the translational
stiffness matrixKt ∈ R3×3 and the orientational co-stiffness matrixGo ∈ R3×3.
Stiffness and co-stiffness matrices are related to each other by

Kx = tr(Gx)I3 −Gx, Gx =
1

2
tr(Kx)I3 −Kx, (7.35)

for x ∈ {t, o}. Both Kx,Gx are symmetric and their eigenvectors coincide with
one another i.e.

Kx = RxΛxR
>
x , Gx = RxΓxR

>
x , (7.36)

where Rx = (ex1
, ex2

, ex3
) ∈ SO(3) represents the principal axes of stiffness,

while Γx = diag(γx1
, γx2

, γx3
) and Λx = diag(λx1

, λx2
, λx3

) represent the prin-
cipal stiffness and co-stiffness values along the axes, respectively. We assume
that the principal stiffness gains γxi , for i = {1, 2, 3}, are strictly positive and
chosen such that the principal costiffness gains λxi are distinct.
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Remark 7.3.2. Note that in (7.34), the first term is the usual potential en-
ergy considered for a translational spring, while the third term represents a
misalignment of R from the identity [Bullo and Murray, 1999]. The second
term in (7.34) is the term that allows for arbitrary non-diagonal stiffness Kt

such that the controller maintains invariance to changes of the inertial coor-
dinate frame ΨI [Stramigioli, 2001; Bullo and Murray, 1999]. This term can
be only included by considering the dynamics fully on SE(3) without splitting
the rotational and translational dynamics.

The exact expression for the energy shaping control law is given by the
following result.

Theorem 7.3.3. For the choice of the added energy (7.33), the energy shaping
control law defined by (7.22) can be expressed as

W B

es = Ad>HCS
B

(W CS

p −W
CS

g ), (7.37)

where W CS

p ,W
CS

g ∈ (R6)∗ are the control wrenches defined by

W CS

p = −χ∗HD
CS

(dHp(HD
CS)), W CS

g = −χ∗HD
CS

(dHg(HD
CS)), (7.38)

with Hp given by (7.34) and Hg given by (7.15). Furthermore, let

W CS

p =

(
τ CS

p

f CS

p

)
, W CS

g =

(
τ CS

g

f CS

g

)
, (7.39)

then we have that

τ̃ CS

p = −2sk(GoR
D
CS)− sk(GtR

CS
D ξ̃DCS ξ̃

D
CSR

D
CS), (7.40)

f̃
CS

p = −RCS
D sk(Gtξ̃

D
CS)RD

CS − sk(GtR
CS
D ξ̃DCSR

D
CS), (7.41)

τ CS

g = −mξ̃CSB RCS
D RD

I g, (7.42)

f CS

g = −mRCS
D RD

I g, (7.43)

where τ̃ CS

p , f̃
CS

p ∈ so∗(3) are the skew-symmetric matrices related to the covec-
tors τ CS

p ,f
CS

p ∈ (R3)∗ by (4.20).

Proof. We present the derivation of the energy-shaping control law for each
separate energy term in (7.33).

For the orientational energy Ho(RD
CS),from the definition of Ho and (7.28),

we get〈
dHo(RD

CS)|dRD
CS

〉
=− tr(Go(R

D
CS + dRD

CS − I3)) + tr(Go(R
D
CS − I3)),

=− tr(GodR
D
CS) = tr(GoR

D
CSδθ̃

CS
D ),

= tr(sk(GoR
D
CS)δθ̃CSD ), (7.44)
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where the second equality results from the linearity of the trace map, the third
equality results from (7.30), and the last equality results from identity

tr(AB) = tr(sym(A)sym(B)) + tr(sk(A)sk(B)). (7.45)

By comparing equations (7.44) and (7.32), we conclude that the correspond-
ing control wrench for Ho(RD

CS) is given by

τ̃ CS

o = −2sk(GoR
D
CS), f̃

CS

o = 0. (7.46)

By following the same steps for the first term of the translational energy
Ht,1(ξ), we get〈

dHt,1(ξDCS)|dξDCS
〉

=
1

4
(RD

CSδξ
CS
D )>Kt(R

D
CSδξ

CS
D )

− 1

4
(RD

CSδξ
CS
D )>Ktξ

D
CS −

1

4
(ξDCS)>KtR

D
CSδξ

CS
D ,

where the first can be neglected since it is a second order term [Fasse, 1997],
thus we get 〈

dHt,1(ξDCS)|dξDCS
〉

= −1

2
(δξCSD )>(RD

CS)>Ktξ
D
CS .

By comparison to (7.31), we conclude that

f CS

t,1 = −1

2
RCS
D Ktξ

D
CS , τ CS

t,1 = 0. (7.47)

By using (7.35) and the identities

v = (tr(A)I3 −A>)w ⇔ ṽ = 2sk(Aw̃), (7.48)

(Rv)∼ = RṽR>, (7.49)

we can show that (Ktξ
D
CS)∼ = 2sk(Gtξ̃

D
CS), which allows us to rewrite (7.47)

as
f̃

CS

t,1 = −RCS
D sk(Gtξ̃

D
CS)RD

CS , τ̃ CS

t,1 = 0. (7.50)

To simplify the control derivation for the second term of the translational en-
ergy Ht,2(ξ), it is useful to rewrite it as [Stramigioli, 2001]

Ht,2(HD
CS) = Ht,2(RD

CS , ξ
D
CS) = −1

4
tr(ξ̃DCSR

D
CSGtR

CS
D ξ̃DCS).

By following the same line of thought and some lengthy calculations [Strami-
gioli, 2001], we can express the infinitesimal work as〈

dHt,2(HD
CS)|dHD

CS

〉
=

1

2
tr(sk(GtR

CS
D ξ̃DCS ξ̃

D
CSR

D
CS)δθ̃CSD )

+
1

2
tr(sk(GtR

CS
D ξ̃DCSR

D
CS)δξ̃CSD ).
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By comparison to (7.32), we conclude that

f̃
CS

t,2 = −sk(GtR
CS
D ξ̃DCSR

D
CS), τ̃ CS

t,2 = −sk(GtR
CS
D ξ̃DCS ξ̃

D
CSR

D
CS). (7.51)

By using the identity
ṽw = −w̃v = w̃>v, (7.52)

in addition to (7.48) and (7.35), we can rewrite the force component as

f CS

t,2 = −1

2
KtR

CS
D ξDCS . (7.53)

Therefore, using the fact that

τ CS

p = τ CS

o + τ CS

t,1 + τ CS

t,2, f CS

p = f CS

o + f CS

t,1 + f CS

t,2,

the derivation of the control wrench W CS

p is complete.
Finally, by evaluating the infinitesimal work (7.28) for the gravitational

energy Hg(HD
CS) and using identity (7.52), one has that〈

dHg(ξDCS)|dξDCS
〉

= −m[(RI
DR

D
CSδξ

CS
D )> + (RI

DR
D
CSδθ̃

CS
D ξ

B
CS)>]g

= −m(δξCSD )>RCS
D RD

I g −m(δθCSD )>ξ̃CSB RCS
D RD

I g.

By comparison to (7.31), we get

f CS

g = −mRCS
D RD

I g, τ CS

g = ξ̃CSB f CS

g . (7.54)

This concludes the derivation of the energy shaping control law (7.37). �

To summarize, the total EB-PBC control law is given by

W B

c = Ad>HCS
B

(W CS

p −W
CS

g ) +W B

di, (7.55)

combined with (7.18) and (7.39-7.43).

7.3.5 Closed Loop System Behavior

In this section, we examine the closed loop system’s behavior. Using the control
law (7.55) we can write the closed loop system as

ẋ = (J(x)−R)
∂Hcl(x)

∂x
+GW B

int, (7.56)

with the damping matrix R given by

R =

(
0 0
0 Kd

)
, (7.57)
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and the closed loop Hamiltonian given by Hcl = Hkin +Ht,1 +Ht,2 +Ho. In
what follows, we present the almost3 global asymptotic stability of the system
in free flight (W B

int = 0,HB
CS = I4), followed by the contact stability and

impedance behavior of the system in contact (W B

int 6= 0,HB
CS = HB

E).

Free-flight Stability

The boundedness of Hcl can be proven by the fact that its first three terms
are quadratic in P B, ξDCS , and (RCS

D ξDCS) respectively, thus are bounded from
below. As for Ho, due to its smoothness and the compactness of SO(3) as a
topological space, Ho is also bounded from below [Bullo and Lewis, 2005].

As a consequence of the stiffness and co-stiffness matrices as in (7.35), the
closed loop system has four isolated equilibrium points x∗i = (H∗i ,P

∗
i ), where

for all four points ξ∗i = 0 and P ∗i = 0. The equilibrium orientations are given
by [Bullo and Lewis, 2005]

R∗i = exp(πẽoi), i = {1, 2, 3}, R∗4 = I3, (7.58)

where eoi are the principal axes of Ko, as shown in (7.36).
The time derivative of Hcl is given by

Ḣcl =
∂Hcl

∂x

>
(J(x)−R)

∂Hcl

∂x
= −(P B)>I−>KdI−1P B ≤ 0, (7.59)

which follows from the skew-symmetry of J(x), and the positive definiteness
of Kd and I. Thus, we conclude the system’s passivity using Hcl as a storage
function.

By applying LaSalle’s invariance principle, it can be shown that the largest
invariance set consists of the union of all equilibrium points x∗i , which results
from

Ḣcl = 0 ⇒ P B = 0 ⇒ ṖB = 0 ⇒ W CS

p (HD
CS) = 0.

Thus, all solutions of the system (7.56), converge to one of the four equilib-
rium points. However, it will turn out that only the equilibrium x∗4 = (I4,0)
is asymptotically stable, while the rest are unstable. This can be shown by
examining the local linearized behavior of the control term W CS

p (HD
CS) around

the equilibrium points. By substituting

RD
CS = R∗i −R∗i δθ̃CSD , ξDCS = 0−R∗i δξCSD ,

in equations (7.46,7.47,7.51,7.53), and discarding high order terms, we get

τ̃ CS

o = 2sk(GoR
∗
i δθ̃

CS
D ), τ̃ CS

t,2 = 0,

f CS

t,1 =
1

2
(R∗i )

>KtR
∗
i δξ

CS
D , f CS

t,2 =
1

2
KtδξCSD ,

3As is it impossible topologically to achieve global asymptotic stability on SO(3) and
consequently SE(3).
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which allows rewriting the equivalent wrench in (7.40,7.41) as

W CS

p = W B

p = −K∗i δT B,I
B = K∗i δT

CS
D , (7.60)

with K∗i ∈ R6×6 given by

K∗i =

(
tr(GoR

∗
i )I3 − (GoR

∗
i )
> 0

0 1
2 [(R∗i )

>KtR
∗
i +Kt]

)
.

By evaluating the stiffness matrix K∗i at R∗4 = I3, we get the positive
definite matrix

Ks := K∗4 =

(
Ko 0
0 Kt

)
, (7.61)

which shows that the potential control term (7.60) resembles a linear elastic
wrench near the equilibrium R∗4. Similar to the analysis in Fasse and Broenink
[1997], it can be shown that the stiffness matrix evaluated at the remaining
equilibrium points is not positive definite. Finally, this concludes the almost
global asymptotic stability of the equilibrium point x∗4 = (I4,0) with respect
to the closed loop system (7.56).

Interaction behavior

In the interaction control mode, the passivity of the system with respect to the
interaction power port (T B,I

B ,W B

int) can be analyzed by rewriting (7.59) as

Ḣcl = −(P B)>I−>KdI−1P B + (I−1P B)>W B

int ≤ (W B

int)
>T B,I

B . (7.62)

This guarantees the contact stability of the UAV with any passive arbitrary
environment.

The impedance behavior of the UAV’s end effector with respect to the
environment can be calculated by representing all terms of the momentum
dynamics in (7.56) in frame ΨE . The linearized impedance behavior in terms
of an infinitesimal twist displacement δT E,D

E can be shown to be

IEδT̈ E,D
E +KE

d δṪ
E,D
E +KsδT E,D

E = W E

int, (7.63)

where the apparent inertia IE and damping KE
d matrices are given, respec-

tively, by

IE = Ad>HB
E
IAdHB

E
, KE

d = Ad>HB
E
KdAdHB

E
,

while the stiffness matrix Ks is given by (7.61).
To conclude, during contact with the environment, the EB-PBC control law

(7.55) acts as an impedance controller with the impedance behavior (7.63).
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Remark 7.3.4. Note that the passivity result in (7.62) actually holds for any
external power port to the system. Consider the actual control wrench in (7.4)
which is equal to the desired control wrench in (7.55) only if (∆Wc = 0) which
represents the wrench due to modeling uncertainties like unmodeled dynamics
or input constraints. In case ∆Wc 6= 0, the closed loop system (7.56) would
have an additional term (G∆Wc), and the system’s passivity can be easily
shown as in (7.62).

7.4 Experimental Validation

The experimental setup used to validate the proposed control approach consists
of a fully-actuated hexarotor UAV with unidirectional rotors. Details of the
hardware and software architecture used to implement the control law (7.55)
can be found in [Rashad et al., 2019b]. The experiments are conducted in
an indoor lab with a motion-capture system. The experiments consist of two
scenarios, one for interaction control and the other for motion control. The
controller gains in both experiments are chosen as Kt = diag(12, 12, 12), Ko =
diag(0.8, 0.8, 0.5), andKd = diag(3.6, 3.5, 2.1, 7, 7, 7). The results are presented
next, while recordings of the experiments can be found in the supplementary
video.

7.4.1 Exp.1: Robust Interaction with Rigid Surface

The first experiment comprises of the UAV applying a normal force to a vertical
surface rigidly connected to an ATI mini40 force/torque sensor (ATI Industrial
Automation), as shown in Fig 7.5. The measured normal force and commanded
rotor PWM signals are displayed in Figs. 7.6 and 7.7, respectively. The applied
force is increased by slowly increasing ξDE , until its maximum allowed normal
force is achieved, as shown by the force measurement in Fig. 7.6. In Fig. 7.7,
it can be seen that this maximum force is achieved with λ2 at its lower limit.
Therefore, there are instants in which the hexarotor interacts while hovering
with its second motor turned off, as shown in the snapshot in Fig. 7.5.

7.4.2 Exp.2: Robust Hovering at Maximum Roll

The second experiment consists of the UAV hovering at different roll angles.
In Fig. 7.8, snapshots of the UAV hovering at an angle of 0, 15, and 25 deg
are shown. The UAV is commanded to hover at the roll angle φB = 25 deg for
t ≥ 130s, as shown in Fig. 7.9. In order for the UAV to hover at this maximum
angle, λ4 is commanded to be zero for an interval about 40 seconds, as shown
in Fig. 7.10. Thus, the UAV hovers at this maximum angle with five rotors
only. However, due to the inability of the UAV to maintain its desired position
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Figure 7.5: Experiment 1: Snapshot (t = 215s) showing the UAV hovering
with one rotor off and applying an ≈ 10 N force to a vertical surface rigidly
connected to a force/torque sensor.
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Figure 7.6: Experiment 1: Measured normal force applied by the UAV to the
vertical surface. The applied force is gradually increased until its reaches its
maximum allowed value due to the actuator limits.
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Figure 7.7: Experiment 1: The commanded rotor PWM signals during the
interaction where the second rotor hits its lower limit.

against wind disturbances, the UAV drifts which then requires a non-zero λ4

to be able to reduce the position error.
The main feature of the controller that the two aforementioned experiments

demonstrate is its robustness to the actuator limits and in general any uncer-
tainties in the model. This is implied mathematically from the system’s pas-
sivity in (7.62) against any disturbances to the UAV’s model and not only the
interaction wrench, as discussed in Remark 7.3.4. Therefore, near the UAV’s
maximum physical capabilities, the nonlinear saturation of the motor inputs
did not destabilize the system.

7.5 Conclusion

In this work, we presented a geometric port-Hamiltonian controller for a fully-
actuated UAV suitable for both motion and interaction control. The controller
was designed using the EB-PBC approach and was shown to provide almost
global asymptotic stability (in the absence of uncertainties) in free-flight as well
as guaranteed contact stability with any passive environment.

The main feature of the presented controller is that it is formulated re-
specting the geometric structure of the underlying state space. Furthermore,
the geometric formulation allowed for a compact derivation and rigorous math-
ematical analysis of the control system. Although the port-Hamiltonian control
of fully-actuated mechanical systems is a well studied topic, the problem con-
sidered in this work was not trivial, due to the non-symplectic structure of the
dynamic model. The experiments showed the validity and robustness of the
control approach especially to unmodeled uncertainties such as input satura-
tion, aerodynamic disturbances, and communication delays.
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(a) φB = 0° , t = 20 s

(b) φB = 15° , t = 68 s

(c) φB = 25° , t = 141 s

Figure 7.8: Experiment 2: Snapshots of the UAV hovering at different roll
angles φB . Snapshot (c) shows the UAV hovering at its maximum allowed
angle with one of its rotors off.
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Figure 7.9: Experiment 2: The UAV’s roll angle increasing gradually while
hovering in free-flight until it reaches its maximum allowed value due to the
actuator limits.
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Figure 7.10: Experiment 2: The commanded rotor PWM signals during hov-
ering at a non-zero roll angle where the fourth rotor hits its lower limit.



CHAPTER 8

Energy-Aware Impedance Control of a
Flying End-effector

We have shown in Ch.7 that the impedance control problem of a flying end-
effector can be formulated in the port-Hamiltonian framework as an energy-
balancing passivity-based control (EB-PBC) problem. Compared to signal-
based techniques, such as hybrid pose/wrench control, our proposed energy-
based controller is more suited for physical interaction with uncertain envi-
ronments. By using the passivity property of the closed loop system as the
criterion for stability, the contact stability of the aerial robot interacting with
any conceivable passive environment was shown to be guaranteed.

Generally in impedance control, the interaction wrench applied by the aerial
robot to the environment depends on the values chosen for the controller’s gains
and the relative configuration between the virtual desired frame and the end-
effector frame. For the application of a specific desired interaction wrench, a
priori knowledge of the contact target’s geometrical and mechanical properties
is required. However, such knowledge is difficult to acquire in practice and
in fact this contradicts the key advantage of impedance control to work in
uncertain environments.

A solution for the aforementioned drawback is to utilize information about
the interaction wrench, either using force/torque measurements or model-based
estimation, for modulating the stiffness of the impedance controller in order to
regulate the interaction wrench to a desired value. However, the interaction
wrench regulation comes at the cost of violating the passivity of the closed-loop
system and as a consequence, the contact stability is no longer guaranteed.

The work of this chapter focuses on enhancing the basic geometric impedance
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control approach with wrench regulation capabilities while maintaining passiv-
ity using the concept of an energy-tank. The concept of energy tanks has been
often used in various sub-domains of robotics, e.g. bilateral tele-manipulation
[Franken et al., 2011; Secchi et al., 2012] and impedance control of ground-
based manipulators [Schindlbeck and Haddadin, 2015; Ferraguti et al., 2013,
2015; Kronander and Billard, 2016; Dietrich et al., 2017; Raiola et al., 2018;
Shahriari et al., 2018]. Control by energy tanks and energy-routing, first pro-
posed in Duindam and Stramigioli [2004], is an example of the wider concept
of energy-aware robotics [Stramigioli, 2015].

The intuitive idea of an energy-tank is that it stores the “free energy dis-
sipated” by the control system and uses it to implement control actions that
could violate the passivity of the closed-loop system, for instance the regulation
of the interaction wrench in our case. With this simple idea, energy is routed
from one subsystem to another within the controller and the total energy of the
closed loop system does not increase. Hence, passivity is guaranteed. On top
of that, energy tanks allow the energy flow within the system to be observed
and possibly used for high-level purposes, thus the controller becomes more
energy-aware[Stramigioli, 2015].

In this chapter, we present an energy-aware impedance control approach for
aerial physical interaction in the port-Hamiltonian framework. A unique fea-
ture of the presented controller is that it relies on the control-by-interconnection
principle in which the control system is treated as a virtual physical system con-
nected to the actual physical robot via power-ports. Furthermore, the controller
itself will be constructed as a network of energetic subsystems interconnected
to each other in a power-preserving manner.

The first advantage of this control-by-interconnection approach is that the
designer can physically interpret the control system which in turn greatly sim-
plifies the tuning process of its design parameters. Second, using the intuitive
fact that two passive systems connected by a power-preserving interconnection
is again a passive system, the stability analysis of the overall closed loop system
can be divided into simpler passivity checks of each energetic subsystem. In
addition, these checks do not have to be repeated if extra modules are added.
Third, by exploiting bond graphs for graphically representing the different dy-
namical systems, the passivity analysis becomes an even easier task that can be
performed by inspection. Thus, eliminating the need for lengthy calculations
encountered in analytical analysis of passivity.

The work in this chapter is based on the work of Zult [2020] which is also
used in preparation of a journal paper to be submitted soon. A preliminary
version of it has already been published in Rashad et al. [2019b]. The work
presented here reformulates many of the concepts in [Zult, 2020; Rashad et al.,
2019b] in the port-Hamiltonian framework utilizing Dirac structures which
highlights the energy-based nature of the proposed concepts to a big extent.
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Figure 8.1: Port-based representation of the aerial robot’s port-Hamiltonian
model connected to its controller and the environment via power ports charac-
terizing the energy exchange between them.

The rest of this chapter is outlined as follows: Sec. 8.1 addresses the control-
by-interconnection interpretation of the impedance controller derived in Ch.7.
In this point of view, the controller is represented by a number of energetic
subsystems that are interconnected to each other via power ports. In Sec.
8.2, we present how the impedance controller can be augmented with wrench
regulation capabilities by varying the stiffness of the controller and show how
this comes at the cost of losing the passivity of the closed-loop system. Sec. 8.3
presents the details of the energy-aware impedance controller that will utilize
energy routing and an energy tank to allow the implementation of the wrench
regulation without violating the passivity of the system. Finally, we conclude
with some remarks in Sec. 8.4.

8.1 Control-By-Interconnection Interpretation

In this section, we will present the control-by-interconnection representation
of the impedance controller designed in Ch.7 by interpreting the controller as
a network of energetic subsystems interconnected via power ports. First, we
start by the port-based representation of the aerial robot interacting physically
with its environment, acting as a flying-end effector.

8.1.1 Flying-end Effector

In the port-Hamiltonian framework, the aerial robot is modeled dynamically
as a rigid body interacting with its controller and the environment via power
ports, as shown in Fig. 8.1. The aerial robot’s port-Hamiltonian model consists
of i) an energy storage C-element that characterizes the kinetic energy and
gravitational potential energy of the robot, and ii) a Dirac structure DRB that
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characterizes the exchange of energy between the robot and the external world
including the impedance controller and the environment.

Recall from Sec. 4.2.6, that the energy storage element has its state variable
x := (HI

B ,P
B) ∈ SE(3) × (R6)∗ and its Hamiltonian H(x) given by the sum

of kinetic and gravitational potential energy, i.e.

H(x) = Hk(P B) +Hg(HI
B) =

1

2
(P B)>I−1P B +m(ξIB)>g. (8.1)

Furthermore, the flow and effort variables of the energy storage element are
given, respectively, by

ẋ =

(
ḢI
B

ṖB

)
∈ THI

B
SE(3)× (R6)∗, ∂xH =

(
∂HI

B
H

∂PBH

)
∈ T ∗HI

B
SE(3)× R6.

The Dirac structure DRB is defined as the relation corresponding to the
skew-symmetric map

−ḢI
B

−ṖB

T B,I
B

T B,I
B

 =


0 −χHI

B
0 0

χ∗
HI
B
−Jk(P B) −I6 −I6

0 I6 0 0
0 I6 0 0



∂HI

B
H

∂PBH
W B

c

W B

int

 , (8.2)

which is a reformulation of the UAV’s port-Hamiltonian dynamic model pre-
sented in (7.3-7.4). The Dirac structure DRB encodes the energy balance given
by 〈

∂HI
B
H
∣∣∣ ḢI

B

〉
SE

+
〈
∂PBH| Ṗ

B
〉
R6

= 〈W B

c |T B,I
B 〉R6 + 〈W B

int|T B,I
B 〉R6 ,

or equivalently

Ḣg + Ḣk = (W B

c )>T B,I
B + (W B

int)
>T B,I

B , (8.3)

which simply states that the rate of change in the total energy H = Hg +Hk

stored by the UAV along solutions of the dynamical system represented in
(8.2) is equal to the power supplied by the controller and the environment, as
illustrated in the bond graph of Fig. 8.1.

It is useful to describe the interaction between the robot and the environ-
ment in a frame ΨT fixed to the target to be physically contacted by the aerial
robot. The robot’s body twist T B,I

B and the interaction wrench applied to the
robot W B

int are related to their counterparts in the target frame ΨT by the
skew-symmetric map(

W B

int

T T ,BI

)
=

(
0 Ad>

HTB
−AdHTB 0

)(
T B,I
B

W T
int

)
. (8.4)
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Figure 8.2: Control-by-interconnection interpretation of the impedance con-
troller as a virtual spring and a virtual damper attached to the aerial robot
with gravity-compensated.

The Dirac structure Denv, given by the relation corresponding to the map
(8.4), states that the power supplied by the environment to the aerial robot is
equivalent to minus the power supplied by the robot to the environment, i.e.

(W B

int)
>T B,I

B = −(W T
int)
>T T ,BI . (8.5)

8.1.2 Impedance Controller

Now we turn attention to the control-by-interconnection interpretation of the
impedance controller. Recall that the impedance control lawW B

c given in (7.55)
comprised of an energy shaping term W B

es and a damping injection term W B

di.
The energy shaping wrench corresponded to the added energy by the controller
which was chosen as the sum of an elastic potential energy Hp and minus the
gravitational potential energy Hg to compensate for the aerial robot’s gravity.

With reference to Fig. 8.2, the impedance controller derived in Ch.7 emu-
lates a virtual spring and a virtual damper attached to the aerial robot with
the gravity being compensated by the controller. The virtual spring is con-
nected between the center of stiffness frame ΨCS (placed at the robot’s end
effector frame ΨE) and the desired frame ΨD. Whereas, the virtual damper is
connected between the robot’s body frame ΨB and the inertial frame ΨI .

Virtual spring

A virtual spring with constant stiffness is represented in the port-Hamiltonian
framework by the combination of an energy storage element and a transfor-
mation, as shown in Fig. 8.3. The energy storage element, denoted by C,
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Figure 8.3: Port-based representation of the impedance controller as a number
of energetic subsystems.

is characterized by the state variable HD
CS ∈ SE(3) and the elastic potential

energy Hamiltonian Hp : SE(3)→ R given by

Hp(HD
CS) =

1

4
(ξDCS)>Ktξ

D
CS +

1

4
(ξDCS)>RD

CSKt(R
D
CS)>ξDCS − tr(Go(RD

CS − I3)),

(8.6)

where Kt ∈ R3×3 is the constant translation stiffness matrix, Go ∈ R3×3 is the
constant orientation co-stiffness matrix, and RD

CS ∈ SO(3) and ξDCS ∈ R3 are
the rotation and translation components of HD

CS ∈ SE(3). The flow and effort

variables of the storage element are given respectively by ḢD
CS ∈ THD

CS
SE(3)

and ∂HD
CS
Hp ∈ T ∗HD

CS
SE(3), with their dual product corresponding to the rate

of change of energy stored, i.e.

Ḣp =
〈
∂HD

CS
Hp

∣∣∣ ḢD
CS

〉
SE
. (8.7)

The modulated transformer MTF implements the map(
ḢD

CS

W CS

spr

)
=

(
0 χHD

CS

χ∗
HD
CS

0

)(
∂HD

CS
Hp

T CS,D
CS

)
, (8.8)

where the first equation corresponds to the kinematics relation between ḢD
CS

and T CS,D
CS ∈ R6 which is the relative twist between the two ends of the spring

(i.e. ΨCS and ΨD). The second equation in (8.8) relates the differential of
the potential function (8.6) to W CS

spr ∈ (R6)∗ which corresponds to the wrench
applied to the spring by the body it is attached to at ΨCS (i.e. the aerial



8.1 Control-By-Interconnection Interpretation 221

robot). The exact expression of the wrench is given by Theorem 7.3.3 (with a
sign difference) as

W CS

spr =

(
τ CS

spr

f CS

spr

)
, (8.9)

τ̃ CS

spr =2sk(GoR
D
CS) + sk(GtR

CS
D ξ̃DCS ξ̃

D
CSR

D
CS), (8.10)

f̃
CS

spr =RCS
D sk(Gtξ̃

D
CS)RD

CS + sk(GtR
CS
D ξ̃DCSR

D
CS). (8.11)

where Gt ∈ R3×3 is the translation co-stiffness matrix corresponding to Kt,

and τ̃ CS

spr, f̃
CS

spr ∈ so∗(3) are the skew-symmetric matrices related to the covectors
τ CS

spr,f
CS

spr ∈ (R3)∗ by (4.20).
Using (8.8), one can rewrite the energy balance (8.7) as

Ḣp =
〈
∂HD

CS
Hp

∣∣∣χHD
CS

(T CS,D
CS )

〉
SE

=
〈
χ∗HD

CS
(∂HD

CS
Hp)

∣∣∣T CS,D
CS

〉
R6

= (W CS

spr)
>T CS,D

CS .
(8.12)

Remark 8.1.1. Note that the sign difference between W CS

spr in (8.9) and W CS

p

in (7.38) is simply because the latter is the spring wrench applied to the body
and the former is its reaction.

Gravity compensation

Similar to the virtual spring, the gravity compensation is also represented by
a combination of an energy storage element and a transformation, as shown in
Fig. 8.3. The storage element is characterized by the state HI

B ∈ SE(3) and
minus the gravitational potential energy Hamiltonian −Hg : SE(3)→ R given
by

−Hg(HI
B) = −m(ξIB)>g. (8.13)

The rate of change of the stored energy is given by

−Ḣg =
〈
−∂HI

B
Hg

∣∣∣ ḢI
B

〉
SE
, (8.14)

where ḢI
B ∈ THI

B
SE(3) and −∂HI

B
Hg ∈ T ∗

HI
B
SE(3) are the flow and effort

variables of the energy storage element, respectively.
The modulated transformer associated to the storage element implements

the map (
ḢI

B

W B
g

)
=

(
0 χHI

B

χ∗
HI
B

0

)(
−∂HI

B
Hg

T B,I
B

)
, (8.15)

where the first equation is a kinematics relation and the second corresponds
to the wrench W B

g ∈ (R6)∗ applied to the aerial robot due to gravity, and
T B,I
B ∈ R6 is the robot’s body twist.
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Similar to (8.12), one can rewrite the energy balance (8.14) as

−Ḣg = (W B

g )>T B,I
B . (8.16)

Virtual damper

The virtual damper is represented in the bond graph of Fig. 8.3 by an energy
dissipation element, denoted by R, which is characterized by the static relation
between its flow T B,I

B ∈ R6 and effort W B

dmp ∈ (R6)∗ defined as

W B

dmp = KdT B,I
B , (8.17)

where Kd ∈ R6×6 is a symmetric positive semi-definite matrix. This static
relation implies that power always flows towards the dissipation element, i.e.〈

W B

dmp

∣∣T B,I
B

〉
R6 = (T B,I

B )>KdT B,I
B ≥ 0, (8.18)

which represents the “free energy” dissipated by the controller emulating a
virtual damper.

External power ports

The impedance controller depicted in Fig. 8.3 has two power ports that are
open for interconnection to external systems. The first port (W B

c ,T
B,I
B ) char-

acterizes the power supplied to the aerial robot for control. The causality of
this port is such that the body twist T B,I

B is directed from the aerial robot to
the impedance controller, whereas the control wrench W B

c is directed from the
impedance controller to the aerial robot.

The second port (W D
spr,T

D,I
D ) characterizes the power flowing between the

impedance controller and the entity connected to the virtual desired frame ΨD.
This entity should provide the twist of ΨD with respect to ΨI as an input to the
impedance controller, which in our case is a trajectory or set-point generation
algorithm. However, it is important to note that changing the desired virtual
set-point affects the energy stored of the controller as a dynamical system.
This can be clearly seen in Fig. 8.2 since ΨD corresponds to one end of the
virtual spring. Thus, changing the virtual set-point will affect the passivity of
the closed-loop system, as will be discussed later.

Dirac structure

Central to the control-by-interconnection interpretation of the impedance con-
troller in Fig. 8.3 is the Dirac structure Dimp given by the relation correspond-
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ing to the skew-symmetric map
T CS,D
CS

T B,I
B

T B,I
B

W D
spr

W B
c

 =


0 0 0 −AdHCS

D
AdHCS

B

0 0 0 0 I6

0 0 0 0 I6

Ad>
HCS
D

0 0 0 0

−Ad>
HCS
B

−I6 −I6 0 0



W CS

spr

W B
g

W B

dmp

TD,I
D

T B,I
B

 .

(8.19)
The first equation in (8.19) corresponds to the twist relation

T CS,D
CS = AdHCS

B
T B,I
B −AdHCS

D
TD,I
D = T CS,I

B − T CS,I
D = T CS,D

B ,

which is true since ΨB and ΨCS are both attached to the same body. The
fourth equation corresponds to the change of coordinates of the spring wrench
from ΨCS to ΨD. Finally, the last equation corresponds to the impedance
control law

W B

c = −Ad>HCS
B
W CS

spr −W B

g −W B

dmp, (8.20)

which is equivalent to the EB-PBC law in (7.55) using the fact that W CS

spr =
−W CS

p and W B

dmp = −W B

d as per the sign difference in their definitions.
It is straightforward to check that the Dirac structure Dimp corresponding

to (8.19) encodes the power balance given by

(W CS

spr)
>T CS,D

CS +(W B

g )>T B,I
B +(W B

dmp)>T B,I
B +(W D

spr)
>TD,I

D +(W B

c )>T B,I
B = 0.

(8.21)
Therefore, the power supplied by the controller (W B

c )>T B,I
B can be expressed,

using (8.12, 8.16, 8.18), as

(W B

c )>T B,I
B = −Ḣp + Ḣg − (T B,I

B )>KdT B,I
B − (W D

spr)
>TD,I

D . (8.22)

In conclusion, the network of interconnected elements depicted in Fig. 8.3
is the control by interconnection interpretation of the impedance controller
derived by EB-PBC in Ch.7. This controller emulates a virtual spring and
virtual damper attached to the gravity-compensated aerial robot.

8.1.3 Passivity Analysis of Closed-loop System

Now we turn attention to analyzing the passivity of the closed-loop system,
that includes the aerial robot and the impedance controller, with respect to
the interaction port (W B

int,T
B,I
B ) characterizing the power supplied by the en-

vironment, as shown in Fig. 8.4. Intuitively speaking, a passive system is a
system that can only dissipate or store energy, thus its total stored power is
always non-increasing.
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Figure 8.4: Port-based representation of the closed-loop system consisting of
the impedance controller, the aerial robot, and the environment.

In the context of physical interaction, guaranteeing passivity of the closed-
loop system is an effective way to ensure stable physical contact with an un-
known passive environment without assuming a specific structure or model for
it. In fact, it has been shown in Stramigioli [2015] that for any non-passive
closed-loop system, one can always construct a passive environment that re-
sults in unstable behavior during interaction.

Thanks to the port-Hamiltonian formulation of the overall system presented
above, the passivity analysis is easily performed by combining the energy bal-
ances of the Dirac structures shown in Fig. 8.4. By substituting the energy
supplied by the controller (8.22) in the aerial robot’s energy balance (8.3), one
has that

Ḣg + Ḣk = −Ḣp + Ḣg − (T B,I
B )>KdT B,I

B − (W D

spr)
>TD,I

D + (W B

int)
>T B,I

B ,

which can be rewritten as

Ḣk + Ḣp = −(T B,I
B )>KdT B,I

B − (W D

spr)
>TD,I

D + (W B

int)
>T B,I

B , (8.23)

under the assumption that the gravitational energy of the aerial robot has been
perfectly compensated by the controller.

Now we take a closer look at the energy balance (8.23) to assess passivity.
The left-hand-side of (8.23) corresponds to the rate of change of the total energy
stored by the closed-loop system. Whereas the right-hand-side consists of the
sum of the power dissipated by the virtual damper, the power due to changing
the virtual spring’s end connected to ΨD, and the power exchanged with the
environment during interaction.

First, the power dissipated by the virtual damper (T B,I
B )>KdT B,I

B is always
non-negative and thus contributes positively to the passivity of the system. As
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for the power due to changing ΨD, by the subsystem named virtual set-point
in Fig. 8.4, its power is indefinite. Thus, it is a non-passive action that could
inject energy into the virtual spring. However, under the assumption that ΨD

changes during interaction in a piece-wise constant or quasi-static manner such
that

(W D

spr)
>TD,I

D < (T B,I
B )>KdT B,I

B , (8.24)

then changing the virtual set-point does not violate the passivity.
Another factor that could potentially violate the passivity of the closed-loop

system is imperfect gravity compensation. In that case, the right-hand side of
(8.23) would have an extra sign-indefinite term given by (δW B

g )>T B,I
B where

δW B
g ∈ (R6)∗ corresponds to the error in estimating the gravitational wrench

applied on the aerial robot. However, from (8.13) it can be seen that this error
depends on the parametric uncertainty of the robot’s mass and gravitational
acceleration which in practice could be easily identified empirically. Therefore,
the power injected due to imperfect gravity compensation could be assumed to
be negligible compared to the power dissipated by the virtual damper. In fact,
this should also be assumed for other uncertainties such as modeling errors and
communication delays.

To summarize, under the aforementioned assumptions, we can express the
energy balance (8.23) as

Ḣk + Ḣp ≤ (W B

int)
>T B,I

B , (8.25)

which ensures the closed-loop system’s passivity with respect to the interaction
port (W B

int,T
B,I
B ). Thus, contact stability of the impedance-controlled aerial

robot interacting with any conceivable passive environment is guaranteed.

8.2 Interaction Wrench Regulation

The basic impedance controller presented above does not allow regulating the
interaction wrench with the environment to a desired value. In practice, such
missing feature is certainly a prerequisite for high-precision interaction tasks.

In this section, we show how the interaction wrench can be regulated by
modulating the stiffness of an additional virtual spring. Thus, the proposed
impedance controller will comprise of two virtual springs, one with constant
stiffness and another with variable stiffness, as shown in Fig. 8.5.

The choice of adding a new virtual spring with modulated stiffness has
the advantage of separation of concerns. On one hand, the constant stiffness
spring can be tuned for optimized motion control as well as shaping the general
impedance behavior of the robot, for instance when establishing initial contact.
On the other hand, the variable stiffness can be designed focusing on the goal
of wrench regulation which will be shown to be a passivity-violating action.
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Figure 8.5: Port-based representation of the closed-loop system showing the
added variable stiffness virtual spring used for regulating the interaction wrench
applied by the aerial robot to the environment.

Next, we present the details of the variable-stiffness controller starting by
the wrench observer used to estimate the interaction wrench between the aerial
robot and the environment.

8.2.1 Interaction Wrench Observer

Consider the momentum dynamics of the aerial robot given by the second
equation in (8.2), which can be rewritten as

Ṗ B = Jk(P B)I−1P B +W B

g +W B

c︸ ︷︷ ︸
=:f(PB ,W B

c )

+W B

int, (8.26)

which includes the interaction wrench W B

int applied to the aerial robot that we
wish to estimate.

Similar to De Luca and Mattone [2005]; De Luca et al. [2006]; Kim et al.
[2010], a constant wrench observer that provides an estimate ŴB

int ∈ (R6)∗ of
the interaction wrench applied to the aerial robot has the form

ŴB
int = Ko(P B − P̂ ), (8.27)

˙̂P = f(P B,WB
c ) +Ko(P B − P̂ ), (8.28)

where P̂ ∈ R6 is an auxiliary observer variable, and Ko ∈ R6×6 is a positive
diagonal matrix of observer gains.

The relation between the actual interaction wrench W B

int and the estimated

one ŴB
int can be derived by substituting (8.26,8.28) into the time derivative of
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(8.27) which yields

˙̂W
B

int +KoŴ
B
int = KoW

B
int, (8.29)

which represents six first-order filters for each component of the interaction
wrench, since Ko is a diagonal matrix by construction.

In practice, the actual momentum dynamics (8.26) includes other external
wrenches e.g. aerodynamic disturbances, unmodeled dynamics, and parametric
uncertainties. The wrench computed from the observer (8.27,8.28) will actually
be an estimate of all the external disturbances of the system and not just the
interaction wrench.

8.2.2 Stiffness Modulation

Using the estimate of the interaction wrench applied to the aerial robot ŴB
int,

we will modulate the stiffness of the virtual spring in order to regulate the
interaction wrench to a desired value W T

des, which is assumed, without loss
of generality, to be specified in the task frame ΨT . In this way, the desired
interaction wrench can be defined independent from the orientation of the end-
effector’s (body-fixed) frame which is subject to aerodynamic disturbances.

Let K̄T ∈ R6×6 denote the time-varying diagonal stiffness matrix of the
variable spring expressed in ΨT . In order to achieve regulation of the interac-
tion wrench, the six components of K̄T are calculated such that the wrench
regulation error is steered to zero. For this purpose, we employ the simple
proportional controller

˙̄KT = Kp,w(W T
des −Ad>HB

T
ŴB

int), (8.30)

where Kp,w ∈ R6×6 is a diagonal matrix of positive proportional gains and the

term Ad>
HB
T
ŴB

int corresponds to the estimated interaction wrench applied to

the aerial robot expressed in the task frame ΨT .
In order to use the stiffness matrix K̄T for calculating the corresponding

spring wrench, we should represent it in the center-of-stiffness frame ΨCS . We
denote this representation of the stiffness matrix by K̄CS ∈ R6×6 and it is
calculated by the following coordinate transformation

K̄CS = Ad>HTCS
K̄TAdHTCS . (8.31)

While K̄T was designed to be a diagonal stiffness matrix, its counterpart K̄CS

will not be diagonal in general. Instead, the stiffness matrix K̄CS will be a
symmetric matrix of the form

K̄CS =

(
K̄o K̄c

K̄>c K̄t

)
, (8.32)
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with K̄o, K̄c, K̄t ∈ R3×3 denoting the orientation, coupling, and translation
parts of the time-varying stiffness matrix K̄CS , respectively.

8.2.3 Variable-Stiffness Spring

With reference to Fig. 8.5, the wrench component W CS

spr of the impedance
controller originates from two springs; one with constant stiffness and another
with variable stiffness. The total wrench due to both springs is given by

W CS

spr = χ∗HD
CS

(∂HD
CS
Hp)

= χ∗HD
CS

(∂HD
CS
Hp,c) + χ∗HD

CS
(∂HD

CS
Hp,v) =: W CS

spr,c +W CS

spr,v,
(8.33)

where Hp,c,Hp,v denote the potential energy functions of the constant and
variable springs, respectively, and W CS

spr,c,W
CS

spr,v ∈ (R6)∗ denotes their corre-
sponding wrenches.

The potential function Hp,c of the constant spring has HD
CS as its state

variable and is identical to (8.6). Thus, similar to (8.12), it satisfies the energy
balance

Ḣp,c =
〈
W CS

spr,c

∣∣T CS,D
CS

〉
R6 . (8.34)

On the other hand, the potential functionHp,v has two differences compared
to (8.6). First, it depends on the pair (HD

CS , K̄
CS) as state variables. Second,

its expression includes an additional term that models the effect of the coupling
part of the stiffness matrix (8.32) such that it is expressed by [Stramigioli, 2001,
Pg. 168]

Hp,v(HD
CS , K̄

CS) =
1

4
(ξDCS)>K̄tξ

D
CS +

1

4
(ξDCS)>RD

CSK̄t(R
D
CS)>ξDCS

− tr(Ḡo(RD
CS − I3)) + tr(Ḡc(RD

CS)>ξDCS), (8.35)

where Ḡo, Ḡc ∈ R3×3 are the co-stiffness matrices corresponding to the stiffness
matrices K̄o and K̄c, respectively.

The spring wrench corresponding to (8.35) will consequently contain extra
terms compared to (8.9) which can be shown to be equal to [Stramigioli, 2001]

W CS

spr,v =

(
τ CS

spr,v

f CS

spr,v

)
, (8.36)

τ̃ CS

spr,v =2sk(ḠoR
D
CS) + sk(ḠtR

CS
D ξ̃DCS ξ̃

D
CSR

D
CS) + 2sk(Ḡcξ̃

D
CSR

D
CS), (8.37)

f̃
CS

spr,v =RCS
D sk(Ḡtξ̃

D
CS)RD

CS + sk(ḠtR
CS
D ξ̃DCSR

D
CS) + 2sk(ḠcR

D
CS), (8.38)

where Ḡt ∈ R3×3 is the translation co-stiffness matrix corresponding to K̄t.
The potential function of the variable-stiffness spring Hp,v satisfies the en-

ergy balance

Ḣp,v =
〈
W CS

spr,v

∣∣T CS,D
CS

〉
R6 +

〈
∂K̄CSHp,v| ˙̄KCS

〉
R6×6

, (8.39)
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where the second term corresponds to the change in energy due to varying
the stiffness of the spring by the proportional law (8.30-8.31). In bond graph
notation, the storage of the potential energy Hp,v is represented by a 2-port
C-element, as shown in Fig. 8.5.

By repeating the passivity analysis in Sec. 8.1.3 for the new impedance
controller with stiffness modulation, one can easily show that the second term in
(8.39) violates the passivity of the closed-loop system since it is a sign indefinite
term. This can also be concluded easily by graphically inspecting the bond
graph in Fig. 8.5 since the direction of the power supplied by the “stiffness

modulation” module via the port (∂K̄CSHp,v,
˙̄KCS) is indefinite.

In conclusion, although the variable-stiffness impedance controller has the
ability to regulate the interaction wrench, the contact stability is no longer
guaranteed. In the next section, we present an alternative implementation of
the variable-stiffness impedance controller utilizing energy tanks and energy
routing without compromising the passivity of the closed-loop system.

8.3 Energy-Aware Impedance Controller

A way to restore the passivity, violated because of regulating the interaction
wrench, is by using energy routing and energy tanks [Duindam and Stramigioli,
2004; Stramigioli, 2015]. The basic idea behind energy routing is that energy
within the controller is directed from certain parts and stored in a virtual tank.
This stored energy can then be used to implement the non-passive control
action of wrench regulation, In this way, the total energy content of the closed-
loop system remains unaffected. Thus, the contact stability of the aerial robot
interacting with a passive environment is guaranteed again.

In what follows, we present the details of augmenting the impedance control
with energy tanks and the effect it has on the overall closed-loop system’s
passivity.

8.3.1 Idea of Energy Routing

In the modified controller augmented with an energy tank, the total spring
wrench W CS

spr of the impedance control law (8.20) will not be designed as in
(8.33). Instead, the inclusion of the variable spring wrench W CS

spr,v will depend
on whether there is enough energy in the virtual tank to implement this non-
passive control action or not. Therefore, instead of (8.33), the total spring
wrench W CS

spr is calculated by

W CS

spr = W CS

spr,c +W CS

reg, (8.40)



230 Ch 8: Energy-Aware Impedance Control of a Flying End-effector

where W CS

reg ∈ (R6)∗ denotes the control wrench for regulating the interaction
wrench, which is chosen as

W CS

reg = αW CS

spr,v, (8.41)

where 0 ≤ α ≤ 1 is referred to as the valve gain which is regulated by the
energy tank.

In normal operation when there is sufficient energy in the virtual tank avail-
able for wrench regulation, we have that α = 1. Consequently, W CS

reg is then
equal to W CS

spr,v in (8.36) and the controller emulates the virtual spring with
variable-stiffness. The power Preg that is required for regulating the interaction
wrench is given by

Preg = (W CS

reg)>T CS,D
CS = α(W CS

spr,v)>T CS,D
CS . (8.42)

This power is drawn from the energy tank, which is initialized by the control
designer with a certain energy budget that is known a priori to be sufficient for
achieving the desired interaction task. Once the energy tank depletes, it sets
the valve gain α to zero and hence it follows that W CS

reg = 0. In this situation,
the wrench regulation stops and the variable-stiffness spring is de-attached from
the aerial robot.

If the depletion of the energy tank occurs before the interaction goal has
been completely fulfilled, there could be two possibilities. One one hand, there
could exist some sort of uncertainty during the interaction with the unknown
environment that caused the depletion. In this case, the valve-based energy
tank prevents the instabilities that could potentially occur due to continuation
of the wrench regulation. On the other hand, it could be that the allocated
energy budget was insufficient for the interaction task. In this case, a high-level
strategy can be designed to analyze whether it is safe or not to allocate more
energy in the tank to allow further regulation of the interaction wrench.

An important source of internal power that could be used to increase the
energy stored in the virtual tank is the power dissipated by the virtual damper
given by

Pdmp = (W B

dmp)>T B,I
B , (8.43)

which is always positive by construction. Instead of “throwing away” all of this
power, only a certain portion of it Pdis can be dissipated, which is given by

Pdis = (1− η)Pdmp, 0 < η ≤ 1, (8.44)

while the remainder, given by ηPdmp can be routed to the virtual tank to be
stored. In this way, the energy dissipated by the virtual damper is exploited
for implementing the wrench regulation.

Note that it is not advantageous to route all of the damper’s energy to the
virtual tank (i.e. choose η = 1) since this will result in a lossless closed-loop



8.3 Energy-Aware Impedance Controller 231

Figure 8.6: Port-based representation of the closed-loop system showing the
energy-aware impedance controller which supplies the power needed for wrench
regulation using an energy tank and the Dirac structure DeTank for energy
routing.

system. Since a lossless system is on the border of passivity, choosing η < 1
allows for some passivity margin which could be beneficial in the presence of
other passivity violation sources, such as modeling uncertainties and changing
the virtual set-point during interaction.

8.3.2 Energy Routing using a Dirac Structure

The energy routing concept described above is implemented mathematically by
the Dirac structure DeTank which mediates energy between four power ports,
as shown in Fig. 8.6. The first port is (W B

dmp,−T B,I
B ) which corresponds

to −Pdmp, while the second port is (W B

dis,T
B,I
B ) which corresponds to the

dissipated power Pdis, with its effort and flow variables related by the static
relation

W B

dis = (1− η)KdT B,I
B . (8.45)

The third port is (W CS

reg,−T CS,D
CS ) which corresponds to −Preg, while the fourth

port is (xt, ft) with xt, ft ∈ R denoting the effort and flow variables of the
energy tank and their product

Pt := xtft, (8.46)

denoting the power entering the energy tank subsystem.
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The Dirac structure DeTank connecting the aforementioned ports is defined
as the relation corresponding to the skew-symmetric map given by
W CS

reg

W B

dmp

T B,I
B

ft

 =


0 0 0 α

xt
W CS

spr,v

0 0 I6
η
xt
KdT B,I

B

0 −I6 0 0
− α
xt

(W CS

spr,v)> − η
xt

(KdT B,I
B )> 0 0



−T CS,D

CS

−T B,I
B

W B

dis

xt

 .

(8.47)
The first equation in (8.47) implements the wrench regulation control law

(8.41). The second equation can be expressed using (8.45) as

W B

dmp = W B

dis + ηKdT B,I
B = (1− η)KdT B,I

B + ηKdT B,I
B = KdT B,I

B , (8.48)

which recovers the virtual damper’s wrench (8.17). The last equation in (8.47)
corresponds to the flow entering the energy tank system, which can be expressed
as

ft =
α

xt
(W CS

spr,v)>T CS,D
CS +

η

xt
(KdT B,I

B )>T B,I
B . (8.49)

The energy balance encoded in the Dirac structure corresponding to (8.47)
is given by

xtft + (W B

dis)
>T B,I

B = (W CS

reg)>T CS,D
CS + (W B

dmp)>T B,I
B , (8.50)

which can be rewritten using (8.42-8.46) as

Pt =Preg + Pdmp − Pdis

=Preg + Pdmp − (1− η)Pdmp

=Preg + ηPdmp. (8.51)

The expression (8.51) states that the power flowing into the energy tank is the
sum of the power needed for regulating the interaction wrench and a portion
of the virtual damper’s energy. While the direction of Pdmp is always flowing
from the damper to the tank, the flow of Preg can be in both directions.

In conclusion, the power-preserving Dirac structure corresponding to (8.47)
implements the desired energy routing concept which directs the power required
to implement the wrench regulation control action from the energy tank, while
exploiting a portion of the virtual damper’s energy to fill the energy tank and
dissipate the remainder. As long as the energy tank includes sufficient energy,
the wrench regulation is equivalent to the action of a variable-stiffness virtual
spring.

8.3.3 Design of the Energy Tank

With reference to Fig. 8.7, the energy tank is represented by a storage element
C with its state xt ∈ R and energy function Et given by

Et(xt) =
1

2
x2

t . (8.52)
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Figure 8.7: Port-based representation of the energy tank.

By construction, one has that the effort and flow variables of the storage ele-
ment are given by (xt, ẋt) ∈ R× R.

The energy tank is designed such that, in addition to energy storage, it
adheres to two important behaviors. First, the level of energy in the tank
should never reach zero as this implies that xt = 0 which would create a
singularity in (8.49) and (8.41). Therefore, the tank energy should never drop
below a pre-specified lower limit E−t . This can be enforced by setting the valve
gain α = 0 when Et ≤ E−t and α = 1 otherwise. To avoid discontinuities in in
(8.49) and (8.41) and the consequent chattering in the robot’s control signals,
the transition between 0 and 1 can be made smooth, as suggested by [Shahriari
et al., 2018]:

α =


0 if Et ≤ E−t
1
2

[
1− cos

(
Et−E−t
δE π

)]
if E−t < Et < (E−t + δE)

1 otherwise,

(8.53)

for some δE > 0.
Second, the maximum level of energy in the tank should be limited to avoid

a steady increase of Et. In this way, the energy budget allocated to perform
the wrench regulation can be kept under control. This maximum energy level
allowed in the tank E+

t can be enforced by the use of an overflow valve and sink
implemented using a modulated transformer and modulated resistive element,
as shown in Fig. 8.7.

The flow variables of the three ports connected by the zero-junction in Fig.
8.7 satisfy the condition

ẋt = ft − β2ft = (1− β2)ft. (8.54)
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By multiplying both sides of (8.54) we have that the power stored in the tank
(i.e. Ėt = xtẋt) and the power directed from DeTank (i.e.Pt = xtft) are related
by

Ėt = (1− β2)Pt, (8.55)

where β ∈ {0, 1} is a scalar that represents the state of the overflow valve
calculated by

β =

{
1 if Et ≥ E+

t & Pt > 0,

0 otherwise.
(8.56)

In this way, all the power that is routed from DeTank is stored in the energy tank
when β = 0. Whereas, when when β = 1, all the power routed is dissipated
by the modulated resistor and the maximum of Et is ensured to be E+

t . Thus,
the MTF emulates a virtual overflow valve.

Remark 8.3.1. Note that the discontinuity of β in (8.56) will only affect the
power stored in the C-element and will cause no chattering to the control signals
of the robot.

8.3.4 Passivity Analysis of the Closed-loop System

Finally, we conclude this section with an analysis of the passivity of the closed
loop system shown in Fig. 8.6. Recall that the passivity of the closed loop
system is assessed by ensuring that the total energy stored in the system is
non-increasing. Such assessment is straightforward by graphical inspection of
the bond graph in Fig. 8.6, which eliminates the need of an analytic proof of
passivity.

The closed-loop system (excluding the environment) consists of five dynami-
cal systems that are interconnected together: 1) the gravity compensated aerial
robot, 2) the constant virtual spring, 3) the resistive element, 4) the virtual set-
point generator, and 5) the energy tank. Other modules in the system consists
of the power ports, junctions, Dirac structures, and the signal processing parts
of the controller that include the interaction wrench regulation and observer
algorithms.

All the power ports, junctions, and Dirac structures are power-preserving
by construction. In other words, they only route the power flowing through
them without increasing or decreasing the total power. As for the signal-
processing modules, they are connected such that they do not inject energy
into system but instead modulate the Dirac structure DeTank. Therefore, the
overall system’s passivity is guaranteed if each of the individual dynamical
subsystems is passive.

By construction, we have that the constant spring, the resistive element, and
the energy tank are all passive dynamical systems, whereas the environment
is passive by assumption. As for the gravity compensated aerial robot, it is
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passive under the assumption of perfect gravity compensation. As for the
virtual set-point generator, similar to Sec. 8.1.3, under the assumption that
the virtual set-point ΨD changes during physical interaction in a piece-wise
constant or quasi-static manner such that the power injected is less than that
dissipated i.e.

(W D

spr)
>TD,I

D < (1− η)(T B,I
B )>KdT B,I

B , (8.57)

then the it does not violate the passivity.
In conclusion, with the above graphical inspection of Fig. 8.6, the contact

stability between any passive environment and the aerial robot controlled by
the proposed energy-aware impedance controller is guaranteed.

8.4 Conclusion

This chapter presented an enhanced impedance control system capable of reg-
ulating the interaction wrench of a flying end-effector while ensuring stable
physical interaction with the environment.

Although the passivity of the control system was a major goal in the de-
sign process, the proposed controller relies more on the concept of “energy-
awareness” rather than passivity [Stramigioli, 2015]. The addition of an en-
ergy tank did not allow the interaction wrench to be regulated passively in any
circumstance. Instead, it allowed for means to be aware of the energy used to
regulate the interaction wrench by exploiting the dissipated free energy in the
controller and the estimated energy budget allowed for accomplishing the task.
Therefore, the energy tank acts in fact as a safety mechanism that prevents
injecting an uncontrolled amount of energy into the system that could lead to
instability.

Furthermore, the advantages of the energy aware control approach pre-
sented goes beyond standard passivity-based control techniques in ensuring
both stable and safe physical interaction. From a system-theoretic point of
view, a passive system only stores or dissipates energy which implies stability.
From a practical point of view, if the stored energy is huge, it could possi-
bly be transformed into high kinetic energy of the robot leading subsequently
to high-impact collisions. However, by utilizing the awareness of the energy
flow within the controller, high-level algorithms could be designed to ensure
additional safety requirements. Examples of these extensions can be found in
[Schindlbeck and Haddadin, 2015; Raiola et al., 2018; Zult, 2020].

Finally, the simulation and experimental results validating the controller
presented in this chapter can be found in [Zult, 2020] and [Rashad et al.,
2021a], respectively.





CHAPTER 9

Vision-Based Impedance Control of an
Aerial Robot

In impedance control, the contact force between the UAV’s end-effector and
the environment is directly related to the controller’s stiffness and damping
parameters, as discussed in Ch.7. However, achieving a consistent performance
of the UAV during interaction tasks requires a-priori knowledge of the environ-
ment’s geometry and contact properties. This contradicts the main advantage
of impedance control to effectively work with unmodeled environments, as well
as hinders autonomous operation in unstructured environments.

In this chapter, the results of [Rashad et al., 2020a] are reported, where
we present a solution combining computer-vision with impedance control such
that the aerial robot is be able to perceive the environment it will interact with.

The topic of vision-based interaction control is already known in the liter-
ature of industrial ground manipulators and its study has led to the accom-
plishment of a wide spectrum of interesting tasks. In the view of automatizing
labor-intensive works, the authors in Zhou et al. [2019] proposed a combina-
tion of vision-based and impedance control to perform polishing of flat surfaces
like, e.g., walls. A similar approach has been fostered also in Bonilla et al.
[2010], where the authors achieved the tracking of a desired force on a non-
planar surface of unknown geometry. Following the same line of thoughts, a
semi-autonomous robotic pen-drawing system has been presented in Song et al.
[2018].

On the other hand, despite the compelling breakthroughs recently delivered
by the research related to computer vision and state estimation (cf. Cadena
et al. [2016] for a broad overview) considerable effort has still to be made to
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Figure 9.1: Photo of our fully-actuated aerial robot scanning an unknown
curved surface prior to interaction.

integrate these techniques with interaction control in the field of aerial robotics.
As a matter of fact, impressive experimental results of aerial robots interacting
with the environment have been demonstrated in Alexis et al. [2016]; Staub
et al. [2018]; Tognon et al. [2019]; Ryll et al. [2019], which however rely on
partial a priori knowledge of the interaction target. Towards the direction
of vision-aided interaction, the authors in Bodie et al. [2019] exploit depth
servoing to locally reconstruct the normal directions of a ceiling vault and use
an impedance-controlled omni-directional UAV to perform punctual interaction
tasks.

Driven by the aim to exploit vision algorithms in more global way with
respect to the object and to extend the nice results presented in Bodie et al.
[2019], the work in this chapter consists of a novel vision-based interaction
framework which allows to design a complete desired trajectory for the robot
end-effector on the surface of unknown objects endowed, naturally or artificially,
with features.

In this chapter, we consider the challenging task of inspecting by contact the
surface of an unknown physical object by means of a flying end-effector endowed
with a simple rigid tool. The accomplishment of this operation represents a
proof of concept towards the tackling of a wide set of meaningful use-case
applications like, e.g., the remote detection of cracks on a gas pipeline or on
the blade of a wind-mill, referring to an industrial scenario, or the autonomous
cleaning/painting of tall buildings, in an civil context. Differently from other
approaches in the field of aerial interaction, we do not require any a priori
model of the object, apart from an initial guess of its position and bounding
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dimensions. More specifically, the contributions presented in this work are the
following:

� the integration of a computer graphics algorithm for the projection of any
2D desired path specified by the user onto an unknown generic interaction
surface without the need to analytically reconstruct it, and of an energy-
based impedance controller for exerting a force;

� realistic numerical simulations in ROS/Gazebo, showing the effectiveness
of our approach in different scenarios;

� preliminary experimental validation tests with a fully-actuated aerial
robot interacting with planar and curved surfaces.

The chapter outline is structured as follows: In Sec. 9.1 we provide the
details of the vision based interaction methodology. To validate our approach,
we present the results of both numerical simulations and real experiments in
Sec. 9.2 and in Sec. 9.3, respectively. In Sec. 9.4, the limitations of our proposed
system are discussed, and finally we conclude this chapter in Sec. 9.5.

9.1 Vision Based Interaction Framework

9.1.1 Problem Formulation

In this work, we consider the problem of an aerial robot physically interacting
with a single target of unknown pose and geometry, as shown in Figs. 9.1–
9.2. The interaction task of the aerial robot consists in sliding over the target’s
surface. The task is defined in terms of a desired curve and wrench profile to be
tracked by the UAV along the target surface. With reference to Fig. 9.2, this
desired path is a parameterized curve γd defined in the end-effector’s frame.
The goal is then to project this desired curve in a desired normal direction n̂
onto the target’s surface, as shown in Fig. 9.2. The interaction planner then
commands the UAV’s end-effector to the projected curve γp on the surface and
aligns the end-effector axis with the surface normal along the curve.

With the assumption that the target surface is endowed with enough visual
features, we use images from an on-board camera to perceive the object, instead
of relying on an a priori computer-aided design (CAD) model. To recover
information about the 3D structure of the target, one could use simultaneous
localization and mapping (SLAM)-algorithms to approximately gain a spatial
representation of the target as well as an estimate of the UAV’s pose relative
to it. For this purpose, we employ the ORB-SLAM2 algorithm [Mur-Artal
and Tardós, 2017] due to its robust properties identified in the comparative
study [Gaspar et al., 2017], and its support for stereo and RGB-D cameras.
The ORB-SLAM2 algorithm extracts visual features (referred to as ORBs)
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Figure 9.2: An Illustration of the curve projection idea, showing the desired
curve γd(θ) in blue and the projected curve γp(θ) in orange, where θ is the
curve parameter.

from the camera images and locates their relative position with respect to the
estimated camera pose. The output of ORB-SLAM2 is an estimated pose of the
camera and a point-cloud, where each point corresponds to the ORB features
identified on the surface of the target object.

The key problem now is projecting the desired curve γd onto the ORB-
SLAM2 point-cloud representing the point-sampled surface of the target object.
In addition, we also need to estimate the normal directions to the surface.

9.1.2 Proposed Method

The problem of projecting a point/curve onto a parametric or implicit sur-
face is a well studied problem in the computer-graphics community. Using
the point-cloud generated by ORB-SLAM2, one possible solution is to recon-
struct the surface from the sampled points and then use one of the traditional
techniques to project the desired curved onto the reconstructed surface and
estimate its normals. However, there are several practical limitations for the
implementation of the aforementioned solution on point clouds generated vi-
sually on an aerial robot. First, the errors introduced due to the surface re-
construction methods of the noisy point cloud will affect the projected curve
and consequently, the precision of the interaction task. Second, traditional
surface reconstruction methods often fail for large and complex point clouds.
Moreover, it requires high computational power and memory space which are
usually scarce in small-scale UAVs.

An alternative solution is to project the curve directly to the point cloud
without reconstructing the surface. In fact, point-projection algorithms onto
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point clouds are used as a lower-level modules in some surface reconstruction
algorithms [Liu et al., 2006]. We opt for this curve-projection method in our
architecture and use for that purpose the directed projection (DP) algorithm
proposed by Azariadis and Sapidis [2005] with a slight modification for in-
creasing computational efficiency for the considered interaction application, cf.
Sec. 9.2.1.

The overall interaction planning architecture is depicted in Fig. 9.3. The
desired curve γd(θ) ∈ R2 and desired normal force profile fd(θ) ∈ R are spec-
ified by the user, where θ ∈ [a, b] is the curve parameter for some a, b ∈ R.
The user also is required to specify the desired normal direction n̂ ∈ S2 for
which the curve is to be projected, as shown in Fig. 9.2. Let CN = {ξi ∈
R3|i ∈ {1, · · · , N}} denote the set of unorganized data points representing the
sampling of the target object’s surface generated through ORB-SLAM2. We
suppose the point cloud CN to have a non-uniform distribution with possibly
noise.

The curve γd is projected by discretizing it to a sequence of points Nc
where we denote the k-th point by ξdes,k for k ∈ {1, · · · , Nc}. The set of points
corresponding to the discretized curve is given by

{ξdes,1, · · · , ξdes,Nc} = {γd(a), · · · , γd(b)}. (9.1)

For each point ξdes,k in (9.1), the corresponding projection point along the
desired projection direction n̂ onto the point-cloud CN is computed by the DP
algorithm. This projected point is referred to as the foot-point of ξdes,k and
the set of all foot-points comprise the projected curve γp.

9.1.3 Curve Projection Algorithm

In what follows, we present a summary of the DP algorithm [Azariadis and Sa-
pidis, 2005] used for finding the foot-point of each point in (9.1) corresponding
to the desired curve γd.

Consider the test point ξtest := ξdes,k that we wish to project along the
direction n̂ onto the point-cloud CN . Each point ξi ∈ CN in the point-cloud is
associated with a positive weight αi that takes into account both its distance
from the test point ξtest as well as its deviation from the projection direction
n̂. The corresponding footpoint ξproj of ξtest is expressed as

ξproj(t̃) = ξtest + t̃n̂, (9.2)

where the parameter t̃ ∈ R is chosen to minimize the weighted sum

E(t̃) =

N∑
i=1

αi ‖ ξproj(t̃)− ξi ‖2 . (9.3)
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The optimal parameter t̃∗ is given by [Azariadis and Sapidis, 2005]

t̃∗ =
β − ξ>testn̂

‖ n̂ ‖2
, β =

c>n̂

c0
, (9.4)

where

c0 =
N∑
i=1

αi ∈ R+, c =
N∑
i=1

αiξi ∈ R3. (9.5)

The choice of the weights αi affects significantly the performance of the
projection algorithm. We used the same weight function suggested by Azariadis
and Sapidis [2005], i.e.

αi =
1

1+ ‖ ei ‖2‖ ei ∧ n̂ ‖2
, ei := ξi − ξtest ∈ R3, (9.6)

with ∧ denoting the vector product in R3. Intuitively, the weight function (9.6)
is maximum (i.e. αi = 1) if ξtest is on the point cloud (i.e. ei = 0) or when ξi
lies onto the projection axis n̂ (i.e. ei ∧ n̂ = 0).

Due to the noise inherent in the point cloud CN , calculating the footnote
corresponding to ξtest by (9.2) might be erroneous. Therefore, the projection
process is achieved through an iterative procedure described next and summa-
rized in Algorithm 1.

In each iteration, a working point cloud Ck is constructed (which is initially
equal to CN in [Azariadis and Sapidis, 2005]), and gradually reduced by re-
moving from it points that have low weights. After the weight αi is calculated
for each point in Ck, the mean (αmean) and maximum (αmax) weight of the
point cloud Ck is computed. The points that are removed in the j-th iteration
are the ones with corresponding weights less than αlim which is calculated as
[Azariadis and Sapidis, 2005]

αlim =


αmean +

αmax − αmean
10− j

j < 9,

αmean +
αmax − αmean

2
otherwise.

(9.7)

The algorithm iterates until the distance between the current projection es-
timation ξproj and the current test point ξtest is less than a threshold ε or
αmax = 1. In the opposite case, the test point is moved to the current esti-
mation ξproj and the new iteration starts with the smaller working point cloud
that includes points with weights smaller than αlim. When the algorithm ter-
minates, it returns the foot-point ξproj of the desired point ξdes,k we started
with. The process is then repeated for each point of the desired curve to be
projected.
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In our work, we introduce a slight modification of the algorithm presented
above in terms of the initialization of the working point Ck. In the original DP
algorithm in Azariadis and Sapidis [2005], the working point cloud is initially
equal to CN . However, in our case we initialize Ck in a different way that
utilizes knowledge of the desired projection direction n̂. The details of this
initialization will be presented in Sec. 9.2.1.

Finally, after the projected curve γp is identified, the surface normals n̂p

along the curve are estimated using the work of Rusu [2009] by estimating
the normal of the tangent plane on the surface. The plane is constructed by
least-square fitting of a specified number of cloud points near each point of γp.
Note that for our purpose of physical interaction, only the normals along γp are
needed which eliminates the need to compute the normals of the whole point
cloud, and consequently saves a considerable amount of computational power.

Algorithm 1: Point Projection Algorithm onto Point Cloud

1 Get point cloud CN , projection direction n̂, selection cylinder radius
ρcyl, and desired curve point ξdes,k

2 for i = 1, · · · , N do
3 Select ξi that lies within the selection cylinder
4 Build working point cloud Ck with Nk points

5 ξtest = ξdes,k

6 for j = 1, · · · , jmax do
7 for i = 1, · · · , Nk do
8 Calculate αi by (9.6)

9 Calculate ξproj by (9.2,9.4,9.5)
10 Calculate αmax, αmean, and αlim (9.7)
11 if ‖ ξtest − ξproj ‖≤ ε or αmax = 1 then
12 return

13 for i = 1, · · · , Nk do
14 if αi < αlim then
15 remove ξi from Ck

16 ξtest = ξproj

9.1.4 Impedance Controller and Control Allocation

The methodology used in this work for the UAV to interact with the environ-
ment is the geometric impedance controller of Ch.7. For the reader’s conve-
nience, we provide a summary of the controller in what follows.

The impedance control law W B
c consists of the sum of an energy shaping
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wrench W B
es and a damping injection wrench W B

di. The control wrench compo-
nent W B

di is added to implement a virtual linear damper connected between the
UAV’s frame ΨB and the inertial frame ΨI such that energy of the closed-loop
system is damped in free-flight. The role of W B

es is to add energy to the UAV
to compensate the gravitational potential energy and to implement a virtual
spatial nonlinear spring connected between the end-effector frame ΨE and the
virtual desired frame ΨD. For small deviations between ΨE and ΨD, the spring
control law behaves as a linear spring, decoupled in its axes.

The control for the robot is derived such that it outputs the desired control
wrench WB

c on the vehicle’s body. Then, in a model-based manner, the desired
propellers’ thrust λ are computed by the inverse of the mapping M (i.e. λ =
M−1WB

c ), where the platform specific map M , known as allocation map (cf.
Ch.7), is invertible in our case thanks to the full-actuation of the robot.

Using the projected curve γp(θ) ∈ R3 and the surface normal directions
along the curve n̂p(θ) ∈ S2 calculated as discussed above, the desired (virtual)
pose ΨD is computed as follows. First, the user specifies a function θ(t) that
is used to convert the projected curve γp(θ) and surface normals n̂p(θ) to the
time-trajectories γp(t) and n̂p(t), respectively.

Then, the end-effector’s desired (virtual) orientation is denoted by RI
D(t) ∈

SO(3). By choosing the x̂D axis of RI
D to be aligned with the surface normal, a

degree of freedom is remaining to be specified by the user in choosing a desired
roll angle φdes. Then we can compute RI

D(t) by

RI
D = (x̂D, ẑD ∧ x̂D, ẑD),

x̂D(t) = −n̂p(t),

ẑD(t) =
x̂D(t) ∧ ŷD(t)

‖ x̂D(t) ∧ ŷD(t) ‖
,

ŷD(t) = (0, cos(φdes(t)), sin(φdes(t)))
>.

The end-effector’s desired (virtual) position ξID(t) ∈ R3 is calculated by

ξID(t) = γp(t)− δoff (t)n̂p(t), (9.8)

where δoff ∈ R+ is a positive offset specified into the target object which causes
a force to be exerted by the aerial robot to the target object. Let Kt,x denotes
the translational stiffness gain along the x̂D axis, choosing the offset δoff (t) by

δoff (t) =
fd(t)

Kt,x
, (9.9)

could (ideally) change the force exerted by the UAV on the environment. Fur-
thermore, if a regulation of the desired force fd(t) is necessary for the interac-
tion task, then the energy-aware impedance controller of Ch.8 can be used.
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Figure 9.4: Projection algorithm tested with different trajectories and hetero-
geneous surfaces.

9.2 Simulation Results

9.2.1 Matlab Results

In order to improve the performance and the robustness of the original DP
algorithm presented in Sec. 9.1.3 before integrating it in our vision-based inter-
action framework, we performed preliminary tests in a Matlab environment. In
order to decrease the computational load of the algorithm when dealing with
big point clouds, we observed that to project a sampled point ξdes,k of γd, it is
not needed to take into account the entire point cloud CN but it is possible to
consider just a subset Ck of it, which should intuitively depend on ξdes,k and on
the direction n̂. Our choice has been to define Ck as the set of points obtained
intersecting CN with a virtual cylinder centered on ξdes,k and aligned with n̂.
The radius ρcyl of the cylinder is a function of the point cloud, i.e., it should
guarantee that Ck is not empty. If this happens, Ck can be re-initialized with
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CN . Fig. 9.5 depicts the execution of the modified projection algorithm.
It is worth to remark that this shrewdness does not only decrease the com-

putational time of the algorithm, but also improves its robustness. As a matter
of fact, by limiting the query set in this way, only the point closed to the “true”
projection are considered, thus guaranteeing a better outlier rejection and, as
a consequence, a more precise projection. However, when dealing with a pre-
scanned 3D object, it could still happen that some points on the backside
surface are considered, as shown in Fig. 9.5 (cf. the red points). To deal with
this side effect, we further modify the algorithm in order to discard the furthest
points based on an adaptive threshold. The resulting algorithm was extensively
tested in different scenarios providing good results, as shown in Fig. 9.4.

9.2.2 Gazebo Results

In order to assess the validity our approach upon unknown surfaces in a more
realistic scenario, the overall vision-based interaction framework was imple-
mented and extensively tested in a simulation environment based on Gazebo [Koenig
and Howard, 2004], the RotorS plugin [Furrer et al., 2016], and a software-in-
the-loop (SITL) version of the PX4 software [Meier et al., 2015]. The SITL
receives the same commands through through ROS, as the real experimental
setup. This significantly reduces the time required to validate the theory with

Figure 9.5: Our modified version of the projection algorithm during execution.
For each of the point to be projected, only a subset of entire point cloud is used
(cf. the green points).
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(a)

(b)

Figure 9.6: The aerial robot and the target object in the simulated environment
in Gazebo (a) and a snapshot of the successful execution of the vision-based
interaction planner obtained using RVIZ (b).
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real experiments and helps with tuning the different gains present in the control
system. The simulated robot is a fully-actuated hexarotor, cf. Rashad et al.
[2019b], also employed in the experimental validation. In the aforementioned
scenario, we modeled the interaction target as a cylindric solid object whose
surface is endowed with multiple features, cf. Fig. 9.6a.

At the beginning of the presented simulation, the aerial robot starts from a
stationary initial configuration and is manually moved around the object of in-
terest, whose position and bounding-box are supposed to be known, in order to
scan the target object (phase 1). The implicit surface reconstruction is achieved
from a stereo camera attached to the hexarotor’s frame by extracting a dense
point cloud of the environment using ORB-SLAM2 [Mur-Artal and Tardós,
2017]. To obtain the point cloud of projected curve and the estimated nor-
mal directions on the interaction surface, the interaction planning algorithm
module is activated and the desired path for the robot end-effector, defined
by the user in its frame, is projected on the extracted point cloud along the
specified direction (phase 2). As the path is parameterized in time, the result-
ing trajectory is autonomously tracked by the robot under the energy-based
impedance controller. The correct execution of the projection algorithm can
be appreciated from the snapshot of Fig. 9.6b, which depicts the scene in the
ROS 3D visualization tool RVIZ, showing the aerial robot’s frame, the desired
trajectory and its projection on the surface, and the associated normal vectors
necessary to define the robot orientation during the interaction.

9.3 Preliminary Experimental Results

In this section, we experimentally validate the proposed vision-based inter-
action framework using the BetaX aerial robot. The results of two different
validation tests are presented and discussed. The interested reader can find the
footage of such experiments in the supplementary video.

The validation scenario for our vision-based framework is an interaction
experiment with a textured surface, as shown in Fig. 9.7 and in Fig. 9.8.
In particular, as inspection targets we used both a planar-tilted board and
a curved-panel with cylindrical shape.

The experimental setup used differs from the simulation for what concerns
the sensor source used by ORB-SLAM2 for the point cloud extraction. Instead
of a stereo camera, it uses an Intel RealSense D435 RGB-D camera. Apart
from this hardware detail, the rest of the architecture remain unchanged.

Although ORB-SLAM2 provides an estimate of the camera pose (which
can be related to the UAV pose), we do not use this information for the UAV
control. As a matter of fact, we use the Optitrack motion capture system both
in the state estimation and as a ground-truth for our vision-based framework
at this preliminary stage, focusing only on indoor scenarios. We accomplish
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that by comparing the estimated camera pose and the measured camera pose
(by Optitrack). Consequently, an error in the camera pose will also affect the
estimation of the target surface.

The interaction planner executes two phases; the first is scanning the un-
known target to get a dense point cloud. A series of snapshots showing the
robot scanning the target surfaces and the generated point cloud can be seen
in Figs. 9.7 and 9.8. The assumption of high density features is needed for
a correct operation of ORB-SLAM2, but might be alleviated by choosing an-
other SLAM algorithm. The scanning phase is done by manual operation of
the UAV, while extending it to autonomous scanning is a topic of future work.

The second phase is projecting the desired curve, namely the (sampled)
circle shown in Fig. 9.6b, using the aforementioned DP algorithm. After that,
the normal directions along the curve are calculated. The results of the curve
projection in Fig. 9.9 shows the robustness of our framework to the incom-
pleteness and noise of the sampled surface. In addition, a significant feature
of our approach is that it eliminates the need to explicitly reconstruct the
target’s surface, which is a challenging task to perform relying only on-board
computational capabilities.

In order to indirectly validate the accuracy of the constructed point cloud,
we compare the 3D position of the camera estimated by ORB-SLAM2 with the
one measured by the motion capture system, as shown in Fig. 9.10 Initially
the estimation error was zero, as ORB-SLAM2 was initialized with the actual
camera pose. The UAV takes off at about t = 20s in case of the planar surface
(cf. Fig. 9.10a) and t = 30s in case of the curved surface (cf. Fig. 9.10b).
Then, the UAV is manually controlled to scan the surface until a sufficiently
representative point cloud is generated signaled by a convergence of the esti-
mation error of the camera’s position. As shown in Fig. 9.11, the norm of the
estimation error decreases with time to an average norm of 10 cm after some
loop closure is detected by ORB-SLAM2.

9.4 Discussion

This section describes some of the limitations present in our vision-based in-
teraction framework and lists some possible adverse scenarios that might cause
loss in the performance.

Following the block diagram in Fig. 9.3, the three main building modules of
the framework can be observed: the vision-based perception module (left), the
interaction planner (middle) and the geometric impedance controller (right).
Each of these blocks influence the final result of the presented approach and,
therefore, its own limitations are inherited in the overall solution. The percep-
tion module chosen for our experiments consists of an Intel RealSense D435
RGB-D camera feeding Orbslam 2, the go-to algorithm for localization and
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(a) t = 24 s

(b) t = 35 s

(c) t = 96 s

(d) t = 146 s

Figure 9.7: Experiment 1: Snapshots of the UAV scanning a planar-tilted
surface (left) in addition to the generated point cloud and the RGB-D camera
view visualized in RVIZ (right)
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(a) t = 27 s

(b) t = 51 s

(c) t = 113 s

(d) t = 156 s

Figure 9.8: Experiment 2: Snapshots of the UAV scanning a curved surface
(left) in addition to the generated point cloud and the RGB-D camera view
visualized in RVIZ (right)
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(a) Planar tilted surface

(b) Curved half-cylinder surface

Figure 9.9: Exp. Result: Validation of the Interaction Planner for two target
surfaces, showing the desired curve (green) in a plane fixed to the UAV’s end-
effector (black line). The projected curve (blue) onto the point cloud and the
surface normals (red) are aslo shown.
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(a) Planar tilted surface
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(b) Curved half-cylinder surface

Figure 9.10: Exp. Results: The Cartesian components of the estimated camera
position (dashed red) by ORB-SLAM2 and the ground truth position (solid
blue) captured by OptiTrack.
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Figure 9.11: Exp. Results: Norm of estimation error of the camera position
during the scanning phase for two target surfaces

point-cloud building. This type of system uses the visible features present in
the environment for mapping and localization purposes. As a consequence,
environments that are poor in features would not suffice our intention. This
limitation can be circumvented by adding permanent or temporal artificial fea-
tures to the surface of interest (cf. Fig. 9.1). An additional pitfall of RGB-D
cameras are surfaces that are highly or poorly reflective, which can cause false
readings in the depth sensor.

The proposed interaction planner algorithm presented in Sec. 9.1 assumes
the viability of the curve projection on the surface and a perfect disturbance
rejection to satisfy both pose and force profiles. Some situations in which this
algorithm might fail are, e.g., projection on surfaces which cannot contain the
target curve or with projection vector parallel to the surface of concern, and
scenarios with strong external disturbances jeopardizing the interaction.

Lastly, the employed geometric impedance controller (Sec. 9.1.4) could in
principle be used to interact with any surface geometry as long as it satisfies
the maximum roll and pitch angles of the UAV. Moreover, the controller adopts
the assumption of interaction with a passive environment. A violation of this
assumption will not guarantee the contact-stability peculiar to this kind of
controller.

All in all, the main contribution of this work should be considered the
interaction planner module in addition to the vision-based interaction control
framework as a whole, whereas some modules can be replaced by alternatives,
e.g. different SLAM or interaction control algorithms.
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9.5 Conclusion

In this paper, we have presented a vision-based impedance control framework
for the accomplishment of aerial interaction tasks which involve the physical
contact with unknown textured surfaces. Thanks to our approach, an user-
defined trajectory for the robot end-effector can be projected on an arbitrarily-
shaped target surface, which can subsequently be inspected by the exertion of
a contact force using impedance control. The presented results obtained in pre-
liminary experimental validations with a fully-actuated hexarotor validate our
approach and open the way to new research questions, which call for solutions
to more advanced problems towards autonomous aerial physical interaction.
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CHAPTER 10

Conclusions

10.1 Research Findings

The primary goal of this thesis was to apply the port-Hamiltonian framework
for the modeling and control of a class of aerial robots that inherently interact
physically with their environment. In this section, we reflect on the main
findings of this thesis in light of the research questions formulated in Sec. 1.4.

The Port-Hamiltonian and Hamiltonian paradigms

Chapter 2 highlighted two fundamental differences between the port-Hamiltonian
paradigm and the classic Hamiltonian paradigm. The first one was that the
port-Hamiltonian framework is more suited for open dynamical systems that
are essential for control. The second one was that even for a closed dynamical
system, a port-Hamiltonian network-based model explicates the structure of the
system more than a Hamiltonian model. This “object-oriented” property of the
port-Hamiltonian paradigm is conceptually beneficial, for the modular model-
ing of dynamical systems, as well as practically beneficial, for the development
of software tools that utilize this inherent composability. While commercial
tools already exit for modeling lumped-parameter systems, e.g. 20-sim1, so far
there are no similar tools for simulating distributed-parameter systems.

Another point that was highlighted in Chapter 2 is that the well-established
Hamiltonian theory can be used within the port-Hamiltonian modeling proce-
dure for deriving the equations of motion of the individual subsystems com-

1https://www.20sim.com/
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prising the complex physical system isolated from one another. With this
procedure, in light of RQ1, a port-Hamiltonian model of a system can be sys-
tematically derived and not constructed in an ad-hoc manner by manipulating
equations.

Chapter 3 highlighted the wide applicability of the port-Hamiltonian frame-
work to multi-physical infinite-dimensional dynamical systems by surveying
over 150 research studies. The first outcome of this survey is that the major-
ity of the research studies utilize the fact that, unlike Hamiltonian theory, the
port-Hamiltonian theory allows for modeling systems with energy flow through
the boundary or within the spatial domain. However, only a few number of
studies apply the port-based network modeling approach when constructing
port-Hamiltonian models. This is partly attributed to the presentation of the
foundational work of van der Schaft and Maschke [2002] that did not high-
light this network approach in infinite-dimensional systems compared to their
presentation for finite-dimensional systems [Maschke et al., 1992].

The second outcome of the survey is that the Stokes-Dirac structure un-
derlying the port-Hamiltonian models of infinite-dimensional systems is usually
not derived from first principles but rather constructed by manipulating partial-
differential equations. However, by understanding the relation between Dirac
structures and Poisson structures, as highlighted in Chapter 2, one can use
Hamiltonian-reduction techniques to systemically construct the Stokes-Dirac
structure.

Rigid body motion and ideal fluid flow

Chapter 4 and 5 presented two case studies that demonstrate the systematic
port-Hamiltonian modeling approach addressing RQ1. At first sight, a rigid
body floating in a gravitational field seem to have very little in common with the
flow of liquid or air on a (possible curved) surface. However, from a geometric
and energetic point of view, the two systems have a lot of similarities which are
usually hidden in coordinate representations using Euler angles or quaternions,
in the case of rigid body motion, or using vector calculus, in the case of fluid
dynamics.

The treatment presented in Chapters 4 and 5 emphasizes the fundamental
fact that both a rigid body and a fluid flowing have infinitely many mass
particles that move in space. For a rigid body all the particles are constrained
to remain within the same distance from each other at all times, and thus this
reduces the degrees of freedom to only six. On the other hand, the particles
in fluid dynamics do not have this constraint and thus have infinite degrees
of freedom. Consequently, the configuration space of rigid body motion was
six-dimensional, while the configuration space of ideal fluid flow was infinite-
dimensional.

The key common feature of rigid body motion and fluid flow that was ex-
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ploited for deriving the equations of motion, is that they both have a state
space that is a Lie algebra. Therefore, the port-Hamiltonian model of the
kinetic energy-subsystem of both systems was derived using Lie-Poisson reduc-
tion. Furthermore, the addition of gravitational potential energy, for rigid body
motion, and internal energy, for fluid flow, was easily achieved by understand-
ing the underlying geometric structure of the state space. This understand-
ing is of uttermost importance for the port-Hamiltonian modeling of general
infinite-dimensional systems since it allows a straightforward identification of
the boundary ports.

Interaction control of aerial robots

Chapter 6 surveyed a wide range of fully-actuated UAV designs that serve
as candidates for developing aerial robots capable of physical interaction with
the environment. Compared to other aerial manipulation solutions, such as
equipping an underactuated UAV with a robotic arm, fully-actuated UAVs are
mechanically simpler, which is the main motive for the popularity of multi-rotor
UAVs in general.

Chapters 7 and 8 addressed RQ2 and highlighted that physical interaction
can be understood and described naturally in the port-Hamiltonian framework
via energy-exchange and not by unilateral signal flow of position or force. We
have shown in Chapter 7 that the motion control and impedance control prob-
lems can be formulated in terms of the effect on the system’s energy caused
by the controller. In this point of view, the control system is treated as a vir-
tual dynamical system rather than a signal processor. Using passivity as the
criterion for stability, the proposed control system was shown to be robust in
free-flight and during interaction even when the actuators are saturated.

Chapter 8 advanced the aforementioned controller one step further by in-
terpreting it as an interconnection of virtual physical systems. Unlike the
treatment in Chapter 7 which had a more system-theoretic flavor, the work in
Chapter 8 utilized deeply the port-based and energy-based paradigm. This in-
terpretation of the impedance controller has permitted the enhancement of its
capabilities using energy routing and energy tank concepts that are exclusively
understood in the port-Hamiltonian paradigm. The graphical representation
of the control system and the aerial robot in bond graphs allowed the visualiza-
tion of the interconnection structure leading consequently to a straightforward
intuition of energy tanks and energy routing.

The passivity analysis of the proposed control systems was shown to be very
compact and easy. This is accredited to the port-Hamiltonian formulation
which resulted in all power flow due to the interconnection structure of the
system to vanish from the analysis, no matter how complex the network is. This
result is a powerful well known theorem in network theory known as Tellegen’s
theorem. Furthermore, the passivity analysis becomes an even easier process
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that can be accomplished by graphical inspection of bond graphs representing
the port-Hamiltonian model.

Perception and machine-learning for aerial robots

In this thesis, RQ3 addressed the augmentation of an impedance controlled
aerial robot with signal-processing modules that are complementary to the
port-Hamiltonian control system. The complement is in the sense that these
modules are driven by performance optimization, whereas the goal of the port-
Hamiltonian controller is to achieve stable and safe control. The work in Chap-
ter 9 focused on the design of a module for visually perceiving the environment,
whereas the work in [Khattab et al., 2019], which was not reported in this the-
sis, focused on enhancing the interaction performance over-time using machine
learning.

Chapter 9 highlighted a general framework for vision-based aerial interac-
tion that includes a visual-perception module and an interaction planner aug-
mented to the impedance controller. During the integration of this framework,
it was observed that visual perception solutions for mobile robots in general
have evolved tremendously. This has lead to many light-weight, power-efficient,
and modular solutions that can be easily integrated to aerial robots.

On the other hand, this was not the case for integrating machine learning
algorithms with aerial robots due to several challenges. First, aerial robots are
inherently unstable systems. Therefore, for safe operation and legislation is-
sues, it is a necessity that a control system has 100% guaranteed stability, from
a system-theoretic point of view. Consequently, end-to-end machine learn-
ing algorithms are ill-suited for the control of aerial robots, even with very
high success rates. Second, due to their origin in data science, machine learn-
ing algorithms are mainly oriented to find correlations in sensory data and
thus do not exploit the physical nature of robots that obey certain physical
laws and causality constraints. Third, training algorithms experimentally is
an extremely expensive process for aerial robots because of their high energy
consumption2 and intolerance for crashes that cost a lot of maintenance time.

The work in [Khattab et al., 2019] addressed the first and second challenges
by employing machine learning as a high-level module that selects the design
parameters of the impedance controller. In this way, the stability of the con-
trolled aerial robot is guaranteed, the theoretical limits of the control gains are
considered, and the knowledge of the physical system is exploited. As for the
third challenge, the proposed learning module relied on Bayesian-optimization
which has demonstrated sample-efficient behavior.

2The electrical power required for hovering the 2 kg fully-actuated hexarotor used in this
thesis was ≈ 410 W.
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10.2 Future Work

It is the nature of any scientific endeavor to not only answer specific research
questions, but to also formulate new questions that are quite often more in-
teresting than the original ones. In this section, some of these questions are
discussed and indicated.

Modeling of flapping-wings

One of the main motivations for the study of rigid body motion and fluid flow
in this thesis was to apply this knowledge in understanding the aerodynamic
mechanisms used by flapping-wing creatures for flying. Such understanding
would then be used to abstract specific design principles that are used to engi-
neer flapping-wing aerial robots within the ongoing Portwings project.

The next steps to be founded on the work of Chapters 4 and 5 are the
following:

i) Adding viscous effects: The treatment in Chapter 5 considered only
ideal fluid flow that contains stress forces due to pressure but not viscosity,
which is known from experiments to be a crucial component for thrust
generation in birds. For the addition of viscous effects, an important
question arises: how to incorporate the Cauchy stress tensor, which is a
symmetric 2-rank tensor, into the covariant formulation presented using
differential forms?

Through ongoing investigations to this question, it was discovered that
vector-valued forms are needed to geometrically describe viscous effects
which, through a power-preserving interconnection, can be added to the
ideal flow port-Hamiltonian model which was formulated in Chapter 5
using scalar-valued forms.

ii) Coupling fluid flow with rigid bodies: Another interesting prerequi-
site for modeling flapping wings is to know how to couple the rigid body
model of Chapter 4 to the fluid flow model of Chapter 5 through their
open power ports. The new questions then are: how should the fluid’s
model be modified to allow for a time-varying spatial domain? What is
the power-preserving interconnection needed to relate the boundary port
variables of the fluid model to those of the rigid body model? Does the
combined fluid-body model coincide with ones in the literature derived
by traditional Hamiltonian theory?

iii) Modeling flexibility: The next milestone is modeling flexibility effects
which are naturally present in an actual bird’s wing. One interesting
question that arises is that whether an infinite-dimensional elastic model
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is needed to capture the dynamics of a bird’s wing or is it possible to do
so by a network with a finite number of rigid bodies and spatial springs?

Structure-preserving simulation tool

In order to understand the behavior of the fluid-structure models mentioned
above, it is necessary to have finite-approximations of the infinite-dimensional
port-Hamiltonian models for simulation purposes. A drawback of conventional
simulation tools, focusing only on numerical aspects, is that they fail in pre-
serving the intrinsic properties of the models, such as passivity and conserved
quantities. This created a need for structure-preserving discretization methods
which is an active research direction in the port-Hamiltonian community.

A natural way of discretizing the distributed port-Hamiltonian models pre-
sented in Chapter 5 is to use discrete exterior calculus [Hirani, 2003]. By
mirroring many concepts of the continuous exterior calculus formulation using
chains and co-chains, such discreteization methods allows a natural transfer of
knowledge between analytical and computational results. Important questions
that arise include: how do such structure preserving algorithms compare to the
well-established conventional methods in terms of accuracy and performance
and what are their limitations?

Energy-aware interaction framework

As a continuation of the energy-aware interaction framework proposed in Chap-
ter 8, an important question that has not been tackled is: how should the energy
budget allocated to the virtual tank be determined? This design parameter of
the energy-aware controller has a significant effect on its behavior. If a low en-
ergy budget is allocated, then the interaction task can not be fulfilled, whereas
a high energy budget could potentially lead to an unsafe interaction.

One potential solution is to rely on simulation-based approximations of the
environment to estimate the required budget for normal operation. In general,
this topic requires further investigation.

Autonomous outdoor aerial interaction

All of the aerial physical interaction experiments in this thesis were conducted
by manual operation of the aerial robot in an indoor environment relying
on high-accuracy exteroceptive sensors. Repeating the same experiments au-
tonomously in an outdoor scenario adds tremendous challenges and opens the
door for many questions.

Luckily enough, there are many research efforts in the robotics community
at large that aim for the development of generic solutions for autonomous
outdoor navigation and operation. However, further investigation is needed to
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evaluate the applicability of these generic solutions to aerial physical interaction
scenarios. One instance of such scenarios is the contact-based inspection of
wind turbine blades. In this situation, navigation solutions relying on visual-
perception are expected to fail due to the absence of visual-features in the
environment. Thus, research into more specialized navigation solutions might
be needed.

10.3 Final Word

In the end, the work in this thesis has clearly demonstrated the strengths of
the geometric port-Hamiltonian paradigm, however “there ain’t no such thing
as a free lunch”3. The learning process involves a considerable amount of time
and effort that should be invested in understanding many known concepts in a
different, but equivalent, way based on energy. It is only through this paradigm
shift process that one can utilize the full capabilities of the port-Hamiltonian
framework. The real compensation for the time and effort spent occurs when
one crosses the borders of physical domains and dimensionality using a few
abstract energetic concepts. From this point onward, one realizes that...

Energy is a powerful ally, even though we
don’t know what it really is.

Ramy Rashad.

3Robert Heinlein (1966), “The Moon is a Harsh Mistress”
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infinie et ses applications à l’hydrodynamique des fluides parfaits. In Annales
de l’institut Fourier, volume 16, pages 319–361.

Arnold, V. I. and Khesin, B. A. (1998). Topological Methods In Hydrodynamics,
volume 24. Springer-Verlag New York.



268 Bibliography

Augner, B. (2018). Stabilisation of infinite-dimensional port-Hamiltonian sys-
tems via dissipative boundary feedback. PhD thesis, Universität Wuppertal,
Fakultät für Mathematik und Naturwissenschaften.

Austin, R. (2011). Unmanned aircraft systems: UAVS design, development and
deployment, volume 54. John Wiley & Sons.

Azariadis, P. N. and Sapidis, N. S. (2005). Drawing curves onto a cloud of
points for point-based modelling. Computer-Aided Design, 37(1):109–122.

Baaiu, A., Couenne, F., Eberard, D., Jallut, C., Lefevre, L., Le Gorrec, Y., and
Maschke, B. (2009a). Port-based modelling of mass transport phenomena.
Mathematical and Computer Modelling of Dynamical Systems, 15(3):233–
254.

Baaiu, A., Couenne, F., Lefevre, L., Le Gorrec, Y., and Tayakout, M. (2006).
Energy based discretization of an adsorption column. IFAC Proceedings Vol-
umes, 39(2):753–758.

Baaiu, A., Couenne, F., Lefevre, L., Le Gorrec, Y., and Tayakout, M. (2009b).
Structure-preserving infinite dimensional model reduction: Application to
adsorption processes. Journal of Process Control, 19(3):394–404.

Badr, S., Mehrez, O., and Kabeel, A. E. (2016). A novel modification for a
quadrotor design. In International Conference on Unmanned Aircraft Sys-
tems (ICUAS), pages 702–710. IEEE.

Banavar, R. and Dey, B. (2010). Stabilizing a flexible beam on a cart: A dis-
tributed approach Port-Hamiltonian approach. Journal of Nonlinear Science
and Applications, 20(2):131–151.

Bassi, L., Macchelli, A., and Melchiorri, C. (2007). An Algorithm to Discretize
One-Dimensional Distributed Port Hamiltonian Systems. In Lagrangian and
Hamiltonian Methods for Nonlinear Control 2006, pages 61–73. Springer.

Bellens, S., De Schutter, J., and Bruyninckx, H. (2012). A hybrid pose /
wrench control framework for quadrotor helicopters. In IEEE International
Conference on Robotics and Automation (ICRA), pages 2269–2274. IEEE.

Bicego, D. (2019). Design and Control of Multi-Directional Thrust Multi-Rotor
Aerial Vehicles with applications to Aerial Physical Interaction Tasks. PhD
thesis, Institut national des sciences appliquées de Toulouse.

Bodie, K., Brunner, M., Pantic, M., Walser, S., Pfändler, P., Angst, U., Sieg-
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Šešlija, M., van der Schaft, A., and Scherpen, J. M. (2010). Reaction-diffusion
systems in the port-Hamiltonian framework. IFAC Proceedings Volumes,
43(14):837–842.
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Staub, N., Bicego, D., Sablé, Q., Arellano, V., Mishra, S., and Franchi, A.
(2018). Towards a flying assistant paradigm: The othex. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 6997–
7002. IEEE.

Stramigioli, S. (2001). Modeling and IPC Control of Interactive Mechanical
Systems - A Coordinate-Free Approach. Springer-Verlag London.



Bibliography 291

Stramigioli, S. (2015). Energy-aware robotics. In Mathematical Control Theory
I, pages 37–50. Springer.

Suarez, A., Heredia, G., and Ollero, A. (2018). Physical-Virtual Impedance
Control in Ultralightweight and Compliant Dual-Arm Aerial Manipulators.
IEEE Robotics and Automation Letters, 3(3):2553–2560.

Suseong Kim, Seungwon Choi, and Kim, H. J. (2013). Aerial manipulation
using a quadrotor with a two DOF robotic arm. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 4990–
4995. IEEE.

Tadokoro, Y., Ibuki, T., and Sampei, M. (2017). Maneuverability analysis of a
fully-actuated hexrotor uav considering tilt angles and arrangement of rotors.
IFAC-PapersOnLine, 50(1):8981 – 8986. 20th IFAC World Congress.

Talasila, V., Golo, G., and van der Schaft, A. J. (2002). The wave equation
as a port-Hamiltonian system and a finite-dimensional approximation. In
Proceedings of the 15th International Symposium on Mathematical Theory
of Networks and Systems, pages 1–15.
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Vu, N. M. T., Lefèvre, L., and Nouailletas, R. (2017a). Distributed and back-
stepping boundary controls for port-Hamiltonian systems with symmetries.
Mathematical and Computer Modelling of Dynamical Systems, 23(1):55–76.

Vu, N. M. T., Lefevre, L., Nouailletas, R., and Bremond, S. (2013a). Geomet-
ric discretization for a plasma control model. IFAC Proceedings Volumes,
46(2):755–760.

Vu, N. M. T., Lefèvre, L., Nouailletas, R., and Brémond, S. (2017b). Symplectic
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