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δŶ Predicted Output Deviation Vector

δx0 Initial State Offset

γ Constraints Vector
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Abstract

Nonlinear Model Predictive Control is an advanced optimisation methodology widely used for develop-
ing optimal Feedback Control Systems that use mathematical models of dynamical systems to predict
and optimise their future performance. Its popularity comes from its general ability to handle a wide
range of challenges present when developing control systems such as input/output constraints, complex
nonlinear dynamics multi-variable systems, dynamic systems with significant delays as well as handling
of uncertainty, disturbances and fault-tolerance.

One of the main and most important challenges is the computational burden associated with the
optimisation, particularly when attempting to implement the underlying methods in fast/real-time
systems. To tackle this, recent research has been focused on developing efficient real-time solutions or
strategies that could be used to overcome this problem. In this case, efficiency may come in various
different ways from mathematical simplifications, to fast optimisation solvers, special algorithms and
hardware, as well as tailored auto-generated coding tool-kits which help to make an efficient overall
implementation of these type of approaches.

This thesis addresses this fundamental problem by proposing a wide variety of methods that could
serve as alternatives from which the final user can choose from depending on the requirements specific
to the application. The proposed approaches focus specifically of developing efficient real-time NMPC
methods which have a significantly reduced computational burden whilst preserving desirable properties
of standard NMPC such as nominal stability, recursive feasibility guarantees, good performance, as
well as adequate numeric conditioning for their use in platforms with reduced numeric precision such
as “floats” subject to certain conditions being met.

One of the specific aims of this work is to obtain faster solutions than the popular ACADO toolkit,
in particular when using condensing-based NMPC solutions under the Real-Time Iteration Scheme,
considered for all practical purposes the state-of-the-art standard real-time solution to which all the
approaches will be bench-marked against. Moreover, part of the work of this thesis uses the concept
of “auto-generation” for developing similar tool-kits that apply the proposed approaches. To achieve
this, the developed tool-kits were supported by the Eigen 3 library which were observed to result in
even better computation times than the ACADO toolkit.

Finally, although the work undertaking by this thesis does not look into robust control approaches,
the developed methods could be used for improving the performance of the underlying “online” op-
timisation, eg. by being able to perform additional iterations of the underlying SQP optimisation,
as well as be used in common robust frameworks where multi-model systems must be simultaneously
optimised in real-time. Thus, future work will look into merging the proposed methods with other
existing strategies to give an even wider range of alternatives to the final user.



Chapter 1

Introduction

Nonlinear Model Predictive Control (NMPC) is an advanced optimisation methodology widely used for
developing optimal Feedback Control Systems that use mathematical models of dynamical systems to
predict and optimise their future performance. Over the recent years it has been gaining an increasing
amount of attention and has been the topic of a large amount of research with applications in a wide
range of disciplines ranging from chemical [9, 16, 75, 95, 129] to aerospace [57, 81, 89, 93, 98, 107, 137],
electronics [156], energy management [90], as well as the multi-disciplinary mechatronics robotics and
autonomous systems [104, 113, 135, 142, 157]. Its popularity comes from its general ability to handle
a wide range of challenges present when developing control systems such as input/output constraints,
complex nonlinear dynamics, multi-variable systems, dynamic systems with significant delays, as well
as handling of uncertainty, disturbances and fault-tolerance [26, 42, 68, 71, 81, 82, 87, 132].

Until now, one of the main and most important challenges since its development in the 1960s
has been that the underlying optimisation methods typically come with a significant computational
burden, particularly when implementing them in an “online” fashion, which makes their application
to real-time systems, eg. systems with very fast sampling times, a real challenge. However, given
the developments and improvements in the computational power available in general electronics over
the last two decades, its application to fast real-time systems is now looking more feasible [66]. A
popular alternative to tackle the computational burden are explicit solutions [7, 37, 93, 135] which
aim to solve the optimisation in an “offline” manner. Nonetheless, it is known that offline solutions
are typically limited to small-state dimensions [37, 135] which makes their implementation in complex
systems restricted. Moreover, there may be situations or systems in which the system has a large
amount of “external” variability which may not be able to be captured effectively using an “offline”
solution. In these scenarios, the optimisation can be shown to benefit dramatically from adjusting the
predictions using the latest real-time information. An example of this will be given in the case studies
of sections 5.4 and 5.6 from this thesis. As a result, recent research has been focused the development
of efficient real-time solutions or strategies that could be used to overcome the limitations of explicit
“offline” solutions [37]. In this case efficiency may come in various different ways from mathematical
simplifications [21, 152], to fast optimisation solvers [37, 38, 40], tailored coding based on auto-generated
tool-kits [66, 73], use of special hardware such as Field Programmable Gate Arrays (FPGA) [135], as
well as hot-starting techniques [31, 55], all of which may improve the online performance significantly.

2



Chapter 1. Introduction 3

1.1 Motivation

Coming from a background in Unmanned Aerial Vehicles (UAVs) where the systems are typically
restricted in terms of computational power, and having applied simple Linear MPC techniques based
on the popular Predictive Functional Control (PFC) methods to Quadrotors during M.Sc. studies, one
of the first research directions of this Ph.D. was on the topic of Fast NMPC for UAVs, particularly with
the objective of focusing in Fault Tolerant Control (FTC) NMPC methods for the Vertical Take-Off
and Landing (VTOL) UAV seen in (https://youtu.be/hC0i_kusMKI). These types of vehicles have
an inherent redundancy both in its actuators and flight modes which allows for a potential recovery
in case where various faults happen in the system. Moreover, the development of research in the area
of Fault Tolerant Control for UAVs was considered extremely important and relevant for the safety of
the comunity. However, due to various reasons, including real-time limitations in the existing NMPC
frameworks and solutions, this direction was only pursued for a brief initial period during the first year
of research of this Ph.D. which resulted in the UKACC 2018 publication of an Adaptive Laguerre-based
MPC for Attitude Stabilisation of Quadrotor [49] which served as a “fast” auto-tuning method giving
excellent performance as seen in (https://youtu.be/RSe35TjjBPI).

At a certain point it was realised that some of the existing state-of-the-art NMPC methods still
lacked the computational efficiency to be implemented in low cost Micro-Controlling Units (MCUs)
as the ones used by common UAVs such as simple Arduinos, Pixhawk, etc., operating at a reduced
frequency of 16− 160 MHz., with significantly limited memory as well as lacking proper floating-point
units. Indeed, most of the research papers dealing with Fast NMPC solutions obtained the “micro-
second” performance [65, 66] in the commodity of a laptop running Intel CPUs @ 3 GHz, which by no
means reflect the actual condition in which these type of systems operate. As an example, the work
from [107] presented an impressive trajectory optimisation and tracking NMPC framework where an
Hexacopter is able to execute precise way-point navigation including going through windows tilted at
30◦, at the cost of requiring the use of an expensive on-board laptop running an Intel i7 CPU. This
extra weight (or more generally speaking, requirements) could be avoided if simpler or more efficient
solutions could achieve similar performance, thus enabling the implementation of advanced solutions
using already existing hardware in these systems whilst avoiding the extra weight requirements. In our
work, it was found that the standard NMPC solution of the simple Quadrotor Attitude Stabilisation
problem of case study from section 4.3 was not computationally feasible when implementing it on the
Beaglebone Blue [13] platform; an embedded platform specifically designed for robotics running @ 1
GHz. Although a simplified solution could be obtained by changing some of the parameters of the
optimisation and using “inner” control systems as in [154], it was considered relevant to be able to obtain
alternative solutions which wouldn’t require such type of adjustments and would allow the user to have
more control on the desired objectives of the optimisation. This motivated the research direction of
this Ph.D. into the development of theoretical frameworks which would allow faster solutions with
reduced memory requirements whilst preserving desirable properties such as nominal stability of the
optimisation.

Remark 1.1. This thesis uses the notion of “Nominal Stability” which coincides with the usual notion
of convergence or attractivity, ie. xk → 0 for k →∞ as defined in [28, 31]. It does not imply asymptotic
stability to the origin in the sense of Lyapunov.

https://youtu.be/hC0i_kusMKI
https://youtu.be/RSe35TjjBPI


4 1.2. Aims and Objectives

On the other hand, part of the case studies used in this thesis were based on the popular Inverted
Pendulum systems, widely used in academia for their inherent complexity. The interest in this par-
ticular type of systems was motivated mainly due to the author’s previous knowledge and experience
developing Inverted Pendulum systems, eg. as the one seen in (https://youtu.be/_buMNF5MPYE).

These kind of systems (Inverted Pendulums) were well known to be key for the development of
rocket guidance and navigation systems back in the 1970s [155], although they were typically anal-
ysed or developed only in linear (near equilibrium) conditions, which for all practical purposes sat-
isfied the requirements of common rocket trajectories. Nowadays, researchers seem to have regained
interest into more complex systems such as the impressive Triple Inverted Pendulum [45] seen in
(https://www.youtube.com/watch?v=cyN-CRNrb3E). More recently, the well known SpaceX com-
pany, developing re-usable rockets, have attempted a “flip” manoeuvre as a landing procedure for its
“Starship x9” prototype (visible in min 1:44 of https://www.youtube.com/watch?v=_qwLHlVjRyw).
What is most interesting is the surprisingly similar dynamic evolution of the aforementioned manoeu-
vre to that of Nonlinear Inverted Pendulum’s trajectories. Indeed, the author of this thesis considers
such type systems to have fascinating dynamics and properties, and therefore were considered relevant
as case studies for chapters 5, 6 and 8. Consequently, part of the experimental research work of this
Ph.D. resulted in the experimental application of the novel NMPC method of chapter 6 into the Dou-
ble Parallel Inverted Pendulum visible in (https://youtu.be/7E-SXi3YKQo) which formed part of the
main contribution of the IET Control Theory and Applications 2020 journal [47].

1.2 Aims and Objectives

Based on the aforementioned motivations, as well as the literature review presented in chapters 2 and
3, the main objective of this Ph.D. thesis is to develop a set of efficient real-time NMPC methods which
have a significantly reduced computational burden whilst preserving some of the desirable properties of
standard NMPC such as stability, recursive feasibility and good performance. The developed methods
could serve as alternatives which fix potential problems present in the standard NMPC solutions. The
user can then select from the proposed methods depending on the requirements of the application.

One of the specific aims of this work is to obtain faster solutions than the ACADO toolkit [66],
in particular when using condensing-based solutions under the Real-Time Iteration (RTI) Scheme,
considered for all practical purposes the state-of-the-art standard solution as discussed in chapter 3.
Moreover, part of the work of this thesis looks into the concept of “auto-generation” for developing
tool-kits which apply the proposed approaches. In our particular case, the developed toolkits were
based on the Eigen 3 library [15] which resulted in better computation times than the ACADO toolkit.

On the other hand, the work undertaken by this thesis focuses specifically on developing methods
that allow the reduction of the computational burden, as well as preserve the desired properties for
the optimisation, and does not look into other implications such as robust control or explicit solutions
which are typically considered “offline” tasks that can be tackled separately. The developed approaches
could be used for improving the performance of the underlying “online” optimisation methods, eg. by
being able to perform additional iterations, and could also be relevant in the context of robust control
specifically when used for solving multi-model optimisations [20, 136] frameworks in real-time.

https://youtu.be/_buMNF5MPYE
https://www.youtube.com/watch?v=cyN-CRNrb3E
https://www.youtube.com/watch?v=_qwLHlVjRyw
https://youtu.be/7E-SXi3YKQo
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Finally, although there was a preference for Inverted Pendulum systems, the thesis does not focus
on a specific system for the selected case studies, and instead will use various types of systems to discuss
the relevant properties, advantages or disadvantages of the developed methods in various contexts.

1.3 Thesis Layout and Outcome

This thesis is organised as follows: Chapter 2 presents a comprehensive literature review regarding
the main topic of efficient real-time solutions for NMPC along with various topics related to existing
variants and applications of NMPC. Chapter 3 introduces a “detailed” technical background, provided
as part of the literature review process including all the mathematical notation, algorithms and general
methodologies to be used throughout this thesis. Chapter 4 introduces two optimisation frameworks
for obtaining Input-Parameterised NMPC solutions along with a set of algorithms which allow an
efficient implementation of the proposed approaches using the RTI Scheme, and a set of 3 case stud-
ies which demonstrate its relevant properties, advantages and disadvantages. Chapter 5 proposes the
Shifting Strategy; a key contribution of this thesis which resulted in the publications of [48, 50, 59].
The developed method allows a significant reduction of the computational burden of the optimisation
using an efficient and systematic methodology that could be relevant for implementation in real-time
control systems. Moreover, the chapter comes along with an extension of the O(N)/O(N2) algorithms
from Ph.D. thesis [8], which are key for obtaining an efficient implementation, and includes a set of
algorithms required for its implementation using the RTI framework, thus forming one of the main
contributions of this Ph.D. Moreover, the chapter contains a set of 4 case studies which demonstrate the
various properties, advantages and disadvantages of the proposed approach. On the other hand, chap-
ter 6 proposes a Closed-Loop “generic” pre-stabilisation methodology for obtaining a novel Dual-Mode
NMPC approach that solves the problem of numeric conditioning present in the standard condensing-
based NMPC frameworks. The proposed approach comes along with an extension the O(N)/O(N2)

algorithms from Ph.D. thesis [8], which are key for obtaining an efficient implementation of the overall
approach, and includes a set of algorithms required for implementing the proposed approach using
the RTI frameworks, forming one of the secondary contributions of this Ph.D. The chapter uses 4 case
studies to demonstrate the various properties, advantages and disadvantages of the proposed approach,
including the aforementioned experimental work on the Double Inverted Pendulum. Afterwards, chap-
ter 7 presents an infinite horizon solution supporting the method introduced in chapter 5 which allows
one to obtain a rigorous nominal stability guarantee. The chapter comes along with an algorithm for
its implementation, as well as 1 case study which is used to demonstrate the validity of the proposed
approach. Finally, chapter 8 introduces “The Combined Approach”; a method combining the methods
of chapters 4, 5, 6 and 7 which inherits the relevant advantages (and in some cases disadvantages)
of the methods proposed in all the other chapters into one final “combined” approach, forming the
final contribution of this thesis. The chapter comes along with further extensions of the O(N)/O(N2)

algorithms from Ph.D. thesis [8], as well as 2 case studies which demonstrate the expected properties,
advantages and disadvantages inherited from the other methods. The thesis ends with a summary pre-
sented in chapter 9 along with conclusions detailing the relevance of the research work undertaken by
this Ph.D. thesis, as well as future work plans which may serve as possible extensions to the proposed
approaches.
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The work of this thesis resulted in the following publications and submissions:

• A 2018 IFAC NMPC Conference (Abstract-only) Paper [48]: “A Time-Varying Shifting Strategy
for Block Based MPC Solutions using a RTI Scheme”, related to the contents of chapter 5.

• A 2018 UKACC Conference Paper [49]: “Laguerre-based Adaptive MPC for Attitude Stabilisa-
tion of Quadrotor”, related to the contents of chapter 4 experimentally applied to the physical
Quadrotor visible in (https://youtu.be/RSe35TjjBPI).

• A 2020 IET Control Theory and Applications journal paper [50]: “Shifting Strategy for Efficient
Block-based Non-linear Model Predictive Control using Real-Time Iterations”, related to the
contents of chapter 5.

• A 2020 IET Control Theory and Applications journal paper [47]: “Fast Hybrid Dual-Mode NMPC
for a Parallel Double Inverted Pendulum with Experimental Validation”, related to the con-
tents of chapter 6 based on the experimental application of the proposed approach visible in
(https://youtu.be/7E-SXi3YKQo).

• A 2020 IFAC World Congress publication [59]: “Model Predictive Control for Wave Energy
Converters: A Moving Window Blocking Approach”, related to the contents of chapter 5.

• A 2020 IFAC World Congress publication [100]: “Towards Control of Autonomous Surface Vehi-
cles in Rough Seas”, related to the contents of chapter 4.

• A 2020 IEEE Transactions on Automatic Control submission: “Dual Mode Stable Prediction
Models for Numerically Robust Fast Nonlinear Model Predictive Control using Real-Time Iter-
ations”, related to the contents of chapter 6.

All of the aforementioned articles are provided in appendix D of this thesis.

1.4 Notation

Finally, to clarify the use of various expressions used throughout the thesis, we provide the following
notation section which enlists the most relevant notation. Other notation specific to the method/chap-
ter will be introduced were relevant. Moreover, specific nomenclature and acronyms used throughout
the thesis are given in the “Nomenclature” and “Acronyms” sections provided in the preface of the
thesis.

• x̂k+1: The x̂ notation means “predicted value”, and is used widely by the NMPC prediction
models. As an example, x̂k+1 is the predicted value of x at future time step k + 1.

• x̄k+1: The x̄ notation means “nominal” value. Used for the nominal values/guesses required for
the predicted trajectories of NMPC.

• x̂k+1|k: Predicted value of x̂k+1, calculated/predicted/obtained at time step k. This notation is
only used strictly when necessary.

https://youtu.be/RSe35TjjBPI
https://youtu.be/7E-SXi3YKQo


Chapter 1. Introduction 7

• blkdiag([x1, x2, · · · , xN ]): Block-diagonal matrix formed with the values of [x1, x2, · · · , xN ].

• diag([x1, x2, · · · , xN ]): Diagonal matrix formed with the values of [x1, x2, · · · , xN ].

• ẋ/ẍ: First and Second derivatives of x w.r.t. time.

• x̃[i]: Used to mathematically represent the value of a recursion on the ith iteration, particularly
used for definition of algorithms, eg. x̃[1] = AT x̃[0] being the value of x̃[1] obtained recursively
from the previous value x̃[0].

• x+: Alternative way of defining recursions, eg. as in the Newton-step x+ = x− + ∆x.

• x̂∗k+1: Optimal predicted value of xk+1

• ||x||: Euclidean norm of x

• ||x||2Q: Weighted squares of x, ie. ||x||2Q = xTQx

• (x)k,j : kth row/jth column element of (x).

• ûik: ith input at time-step k. Used particularly in chapter 4. Also applies to weights, eg. rik being
weight of ith input at time-step k. And applies to parameterisation matrix, eg. Nik being the
parameterisation of the ith input at time-step k. In some cases is used without specifying time
step, eg. Ri being the weights of the ith input.

• dxe: x rounded to infinity (ceil operation in Matlab). Used particularly in chapter 5.

• ∀i = [1→ Np]: For i = [1, 2, 3, · · · , Np]



Chapter 2

Literature Review

Given the complexity of some of the methods required by standard Nonlinear Model Predictive Control
(NMPC) methodologies, it was decided to separate the revision of the available literature into non-
technical and technical chapters. This will allow the reader to capture both the general picture, as
well as the specific details required to implement the approaches proposed in this thesis. Moreover,
each chapter of the contributions of this thesis contains its own introduction and discussion around the
motivations behind the proposed methods, along with discussions of relevant research works specifically
related to the contents of the chapter. As a result, some of the contents presented throughout both
technical and non-technical literature review chapters will be inevitably repeated or referred to in later
chapters, allowing to improve the recall experience for the reader.

Thus, the thesis will begin with a brief non-technical discussion of general NMPC methods provided
in this chapter, followed by a rather detailed, more technical background provided in the following
chapter (chapter 3), both of which will provide foundation for all the proposed methods of this thesis.
The chapter will focus predominantly on existing concepts and methods related (or relevant) to efficient
real-time NMPC, as well as provide overview of the current state-of-the-art approaches in the field. It
is assumed here that the reader is familiar with topics such as state space modelling, Gauss-Newton
methods, optimisation, as well as general control theory.

2.1 Nonlinear Model Predictive Control

As discussed earlier, Nonlinear Model Predictive Control (NMPC) is an advanced optimisation-based
control methodology that repeatedly uses an inner model of the system to predict and optimise its
future behaviour with respect to a set of objectives, costs, constraints and/or functions specified by
the user [19, 21, 55, 146, 154]. Once the optimisation is solved, the decision variables, ie. the first
set of controls or inputs of the system are implemented and the optimisation is solved again in the
next sampling time. This is typically referred to as the “Receding Horizon” strategy [12, 99]. Some
of the main advantages it has are its ability to explicitly handle constrained multi-variable systems
with delays, open loop unstable and non-minimum phase nonlinear dynamics. This makes it of great
interest for industry applications where a linear controller would perform poorly, eg. when the system
has highly nonlinear dynamics in the vicinity of the operating point or when the system is required to
operate in a wider range of operating points and/or subject to sudden changes/disturbances that can

8
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drive the system far away from its operation point and close to their boundaries leading to significant
performance degradation [12, 70, 81, 154]. However, given its non-convex optimisation-based nature, it
comes with a increased computational cost where at every sampling time the system must solve a non-
linear non-convex optimisation that can result in large computation times, especially on systems with
reduced computational resources [154]. Because of this, it was originally applied mostly in systems
with slow dynamics such as petrochemical plants where sampling times of minutes or even hours
were used [12, 129, 154]. Nevertheless, due to the recent progress made in the computation power of
embedded platforms, algorithms and software implementations, applications with short sampling times
such as in manufacturing, aerospace systems, robotics and autonomous vehicles are now looking more
feasible [81, 154]. As an example, works presented in [25, 55, 65, 66, 84, 107, 114, 115, 153, 154] report
applications where timings in the mili- and micro timescales were possible.

Although these works indicate that NMPC can be now be implemented in the kilo-Hertz frequency
ranges [65, 84], its implementation has been mostly investigated in systems with relatively large com-
putational resources such as laptops or PC with fast CPUs and increased RAM memory size (see
[1, 55, 61, 65, 73, 83] for a few examples). As an example, the addition of a small laptop to a medium
scale aerial robotic system was presented in [74, 107]. These type of hardware differ from embedded
platforms mainly in the support of vectorised instructions allowing parallel computing of specific op-
erations [154], CPU frequency range and support of multiple-cores. As a result, its implementation on
platforms with reduced computational resources such as the popular Arduino remains to be a challenge.
Moreover, the use of open-source hardware, already available in this type of fast real-time systems is
naturally a simpler option. This motivates the assessment and further development of these control
techniques in available off-the-shelf hardware such as the recently developed Beaglebone Blue [13], the
Xilinx Zynq [154], the famous Raspberry PI, as well as the popular Field Programmable Gate Arrays
(FPGA) [101, 135] which would allow its rapid deployment and integration in industry applications.
However, given their even more reduced computational resources, efficient solutions must be employed
to guarantee real-time feasibility of the optimisation [127, 154].

2.2 Modelling

Given that NMPC relies on a mathematical model to predict the future behaviour of the system,
modelling is an extremely important matter. According to [19, 70] there are three main types of
non-linear models that have been employed in the NMPC framework. The first one is based on
the fundamental models which are usually obtained by applying first-principles theory such as mass,
energy and momentum balances resulting in ordinary differential equations (ODE) some times coupled
through algebraic equations [70]. Within these types of models, authors from [114, 115] emphasise
the possibility of representing most systems with a frequently occurring model structure containing
one or more of the three subsystems in the specific order detailed in their work, namely linear input
systems, nonlinear systems and linear output systems. The second type of non-linear models are
those using input-output measurements attempting to replicate the dynamics of the system through
some arbitrary mathematical representation, typically referred to as empirical models [19, 70]. Many
types of empirical models exist in the literature such as polynomial Auto-Regressive Moving Average
(ARMA) polynomials, Hammerstein models, Volterra models, Weiner models [19, 70] , Non-linear
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Auto-Regressive Moving Average with exogenous inputs (NARMAX) models [52, 157], artificial neural
networks [52], fuzzy logic [132] and machine learning techniques such as support vector machines [70].
Finally, the last type of non-linear models are called hybrid non-linear models which conceptually are a
combination of both fundamental and empirical models [70], although in some cases they can be used
to represent systems subject to abrupt dynamical changes where only discrete variables are used [138].

Regardless of the type of model to be used, the same principle applies to all the NMPC approaches
where the models are used to predict and optimise the system’s future behaviour. Moreover, the
resulting models are commonly handled in discrete-time given the use of digital components for devel-
oping control systems, and will typically be arranged in one of two main forms: state-space models or
Z-transfer function models, which in most cases can be used interchangeably although modern control
systems nowadays prefer the use of state-space models given their ability to represent multi-variable
systems in a relatively straight forward manner. In any case, a discrete transfer function model can
always be exactly represented by state space model. A relatively simple approach to achieve this is
to use the so called Non-Minimal State Space (NMSS) representations described in chapter 9 of [146]
where the system is augmented as required with the states representing previous inputs and outputs
based on the standard difference equations that arise from Z-transfer function models. Lastly, in the
case of non-linear models, the resulting models will usually be required to be linearised to provide
first-order sensitivity information for the optimisation. This can typically be done in a few ways, as
described in [28] with two of the most common being: Internal Algorithmic Differentiation, where the
optimisation simply differentiates the equations of the simulation (in the case of continuous systems,
represented by the integrator method used); and External Numerical Differentiation (END), where the
optimisation just treats the model as a black box and uses finite differences.

2.3 State and Parameter Estimation

Although there exist applications in industry that have the advantage of full state feedback or vibration
free measurement allowing for explicit derivation, e.g. ([104]), it is often encountered that some form of
state estimation is required to achieve good performance [19, 24, 67, 70, 136]. Indeed, in [19] is suggested
that the use of a properly tuned observer is crucial for the performance enhancement of Generalized
Predictive Control (GPC) schemes. In the case of nonlinear systems, many estimation strategies are
available such Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), Nonlinear Moving
Horizon Estimation (NMHE) and Particle Filters (PF) [67, 70, 75, 136]. An interesting approach is
presented in [136] were the dynamics of the EFK are embedded into the optimization accounting for
future predicted innovations and correction/propagation phases of the EKF. Although the approach
seems reasonable, the inherent amount of computations could increase exponentially given the matrix
multiplications required by the propagation and correction phases of the co-variance matrix, thus
making its implementation in real-time of great difficulty. A more reasonable approach in this case
is the NMHE presented in [25, 54, 67] where the estimation and prediction are dealt separately, with
the estimation algorithm takes into account the last N samplings to estimate the current state (xk)
starting from an estimated state N samples ago (xk−N ). Finally, authors from [75, 76] make use of
multiple EFKs, ie. a bank of EKFs, for fault detection and isolation which could be used for achieving
Fault-Tolerant Control when using NMPC methods.
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On the other hand, the use of parameter estimation techniques is desirable in most systems given
the underlying uncertainty of the mathematical models used, eg. for simulations [70, 80, 137]. Work
presented in [80] makes use of a Recursive Least Squares (RLS) algorithm to estimate the parameters
of an UAV coupled with an NMPC for attitude control. Similarly, authors from [132] make use of
the forgetting factor RLS for estimating the parameters of a so called Takagi-Sugeno fuzzy model
and implement an Adaptive Predictive Functional Control (APFC) for an average cracking outlet
temperature of the ehtylene cracking furnace. The work in [70] utilises a Runge-Kutta based EKF for
both state and parameter estimation together with a Runge-Kutta based NMPC formulation that was
tested on two examples with surprisingly good results.

Both of these topics motivate the use of these kind of methods to improve the performance of the
system as well as possibly achieve a Fault-Tolerant Control as in [75, 76]. Indeed, the RLS algorithm
was used for parameter estimation as an “adaptation mechanism” in the publication of the UKACC
2018 conference paper [49], discussed later in chapter 4, and was used together with an EKF for both,
online system identification and state estimation respectively in the IET 2020 journal publication [47].

2.4 Robustness, Sensitivity and Offset-Free Control

Another important property to consider when designing a NMPC is its robustness and sensitivity to
noise, disturbances and model errors. The application of robust MPC approaches typically leads to
models with various descriptions of the uncertainty such as multi-model systems [20, 136], as well as
systems with bounded input-disturbances [20]. Standard robust MPC designs have been originally
based on min-max approaches where the worst case cost of the prediction is optimised enforcing the
fulfilment of constraints for all case of uncertainties [14, 20, 136]. Alternatively, tube based approaches
use two controllers, a nominal controller and an ancillary controller where the task of the latter is
to ensure the path of the system stays close to the nominal path [136]. An interesting approach is
presented in [136] where multi-stage NMPC is designed optimising all the possible scenarios of the
predicted evolution of the system. Each scenario is then given a probability based on an Interactive
Multiple Models Filter (IMMF) and the respective probability is included into the optimisation as a
weighting parameter. On the other hand, given robustness is more strongly analysed in the frequency
domain, work in [128] presents a methodology for tuning the parameters (N1, N2, ρ, α) of linear GPC,
thus allowing frequency shaping of the resulting closed loop solutions. Similarly, T-filter polynomials
have been suggested in [19, 121, 122] for increasing the robustness of the closed loop performance.
An important characteristic of this method is that it allows a two-degree of freedom design where the
tracking and robustness of the system can be dealt with separately. Finally, the use of (∆) integrated
models for offset-free control which account for potential disturbances has been shown to result in
rather sensitive solutions that typically require the use of the aforementioned T-filter polynomials to
obtain good performance [122]. Based on this, authors from [69] concluded that the use of disturbance
estimation methods for offset-free control provides the best performance when compared to (∆) models
which have been shown to be extremely sensitive, whilst also allowing a two-degree of freedom design
for disturbance rejection and trajectory tracking. This will be discussed further in chapter 3, section
3.5 where various types of offset-free control methodologies will be introduced.
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2.5 Stability and Recursive Feasibility

One of the most important things in NMPC is the stability of the underlying optimisation [19, 121].
This topic will be discussed in detail later in chapter 3, section 3.4. However, to give a general idea,
[19] identified 4 main types of solutions which guarantee stability, namely: (i) infinite horizon, where
the objective can then be considered a Lyapunov function, providing nominal stability; (ii) zero-ter-
minal constraints, which enforce the state to be at a specific points at the end of a finite horizon;
(iii) dual modes, where the system has an embedded optimal control law, typically a Linear Quadratic
Regulator (LQR) that provides optimallity and a second mode deals mainly with constraint handling
[79]; and (iv) quasi-infinite horizon which uses the idea of terminal region to add a terminal cost to the
optimisation approximating the infinite horizon. Regarding dual modes, authors from [105] designed
a sub-optimal dual mode NMPC based on dynamic inversion for a milling circuit machine. Similarly,
work presented in [88] uses a nonlinear dynamic inversion (NDI) dual-mode NMPC for initialising the
optimisation. Although dual modes represent the ideal solution given their ability to pre-stabilise the
system, the most popular are those based on terminal costs, also known as the so called Mayer terms
[82]. However, terminal costs add complexity into certain calculations related to the optimisation,
thus if possible they should be omitted as they are often not even needed when the NMPC is carefully
designed [87, 145]. A demonstration of this will be given later in example 3.2 in the following chapter.

On the other hand, recursive feasibility is another important property of the system that must be
taken into account when designing a NMPC. Moreover, this property is the foundation of the Initial
Value Embedding (IVE) strategy from the Real Time Iteration (RTI) Scheme; one of the main methods
used by this thesis (see section 2.7). Thus, making it of extreme importance. Hence, the property will
also be discussed in detail later in chapter 3, section 3.4. According to [94], an NMPC approach is
recursively feasible if and only if for a given initially feasible solution, all subsequent solutions remain
feasible for all time. In this work, they propose a methodology for invalidating the recursive feasibility
of a MPC controller, ie. detect that it has problematic states where recursive feasibility is lost, and for
finding certificates of guaranteed recursive feasibility both in the nominal and disturbed case allowing
to even calculate the range of disturbances for which the system will preserve recursive feasibility.

2.6 Optimisation Methods

So far, no regard to the optimisation methods used for NMPC has been addressed and only some
of the important aspects and concepts to consider as part of the design of NMPC systems such as
modelling, state and parameter estimation, robustness, sensitivity, offset-free control, stability and
recursive feasibility were discussed, introducing key ideas for both linear and nonlinear MPCs.

Within most of the available methods for NMPC optimisation, the same fundamental problem is
present; the inability to analytically express the future in terms of the decision variables. With the
exception of few types of simple nonlinear systems, eg. where a “virtual” variable can be used [19] or
where the future can be expressed as expanded polynomials [23], the main challenge of NMPC when
compared to MPC is to formulate the unknown future in terms of decision variables. This problem is
unique to NMPC methodologies as linear MPC models have known exact representations.
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Based on this, one of the most common techniques used in the literature are shooting methods where
the future decision variables are guessed, the system is linearised along the resulting nominal/guessed
trajectories and the optimisation improves the guess at every iteration using, eg. using the Gauss-
Newton method [115]. In general, this leads to the solution of a series of linearised Quadratic Programs
(QP), typically referred to as the Sequential Quadratic Programming (SQP) approach which is used
to obtain the solution of the underlying optimisation problems formulated by the NMPC [104, 115]. If
the system is represented in continuous time, a direct discretisation method can be used to reduce the
intractable infinite dimension Optimal Control Problem (OCP), to a tractable finite dimension Non-
linear Programming (NLP) problem [65, 115]. We will discuss this in detail in chapter 3, section 3.1.2,
where single/multiple shooting “discretisation” schemes will be introduced and thoroughly discussed.

Once a discretisation method is selected (if necessary), the optimisation can then be done using
simultaneous or sequential approaches as discussed in [57, 115] where in the simultaneous approach
the optimisation deals with both simulation and optimisation at the same time, and in the sequential
approach, these tasks are carried out separately [115]. The main advantage of sequential approaches
is that they implement the so called condensing approach to eliminate the state variables from the
optimisation allowing faster computations for small to medium scale systems [145]. In contrast, si-
multaneous approaches keep the state variables for the optimisation hence increasing the number of
decision variables whilst at the same time allowing the use of QP solvers that can exploit the sparse
structure of the underlying QP leading to faster computation times for medium to large scale opti-
misation systems [145]. It is shown in [116, 145] that sparse methods can present linear performance
w.r.t. the prediction horizon which makes them ideal for optimisations where large prediction horizons
are required although they can still present computational challenges when the number of states and
inputs are large [116], whereas condensing methods present cubic performance typically giving better
performance at smaller prediction horizons. For this reason, the condensing approach was selected as
part of the research topics for this Ph.D. thesis given the interest in relatively small systems and optimi-
sations, as well as the method being a commonly used step on standard Linear MPC theory. Moreover,
the thesis focuses on methods which rely precisely on the reduction of the number of decision variables
of the optimisation, thus decreasing them even further than that of the standard condensing approach,
making this step ideal for the developed approached. On the other hand, a potential advantage of the
simultaneous approach is that they have been shown to perform better when dealing with unstable
systems [57]. However this problem can now be tackled with the method proposed in chapter 6 of this
thesis which allows the use of sequential approaches for a wide range of unstable nonlinear systems.
Lastly, it is emphasised that the QP solver used to solve the optimisation is of great importance and
therefore efficient methods and QP solvers will be discussed in the following sections. If unconstrained
solutions are acceptable (eg. [58, 69, 92, 107, 128]), a classic way of solving the optimisation is by
solving the Discrete Algebraic Riccati Equation as suggested in [107].

Other methods such as the Linear Parameter Varying (LPV) modelling approach presented in
[11, 12, 23, 60] use the same shooting concept of guessing the future trajectories with the main difference
being the models of the state matrices used in the optimisation. Although they prove to give efficient
and good performance [11, 23] it has been shown in [111] that this type of representation does not
guarantee the convergence to the optimum and could even lead to a phenomena called cycling where
the solution jumps back and forth forever without making progress towards the optimum [72].
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Among alternative methods we have the previously introduced “virtual variable” from [19]. In this
case, the inputs of the system are represented with an “alternative/virtual” variable that allows the use
of fully linear optimisation methodologies, and the variable is recovered afterwards using a nonlinear
mapping. This concept is widely used for “control allocation” [72]; an optimisation method commonly
used by aerospace, maritime and autonomous vehicles applications to represent the so called “virtual
forces and moments” where the idea is to consider “high-level” control signals that represent an “overall”
force or moment which can be achieved with the use of the inner actuators. A classic example of this
are quad-rotors UAVs which although they typically hold a nonlinear relationship with the body, can
usually be handled via simple control allocation techniques which allow a virtual linearisation of the
system. This method was used to define the linear models for the UKACC 2018 publication [49],
as well as for the Obstacle Avoidance problem of chapter 5, section 5.6. The main disadvantage of
this method is that it forces the optimisation to be performed on the virtual variable, hence leading
to a possible forced change in the index of optimisation (eg. see [154]). This can be relevant if the
underlying optimisation is subject to “economic” costs where the system is attempting to minimise a
given variable, eg. power or energy usage [56, 118]. Thus, in these cases, if using virtual variables
modifies the definition of “power” it would not give an optimal solution unless some obvious relation
between the minimum of the virtual variable and the real variable can be established. Naturally, if
this approach is used, the constraints will have to be modified or considered in some relation with the
virtual variable.

A similar alternative, which was one of the first methods originally developed for Dynamic Matrix
Control (DMC) is the “extended linear model” discussed in [19] which basically attempts to capture
the non-linearities of the system using an output-mismatch. This however prevents the system from
recovering the actual optimum given the assumed independence of the output-mismatch non-linearity
w.r.t to the decision variables.

Finally, a completely different set of approaches are those based on heuristic or algorithmic solutions
of the optimisation. In [102] a Particle Swarm Optimization (PSO) algorithm is used to solve the
optimisation where a set of randomly generated solutions named particles is given a random position
and velocity and the algorithm iteratively attracts all the particles towards the best solution. A similar
approach is used by [138] for the solution of a hybrid system with discrete inputs only. Work in [51]
presents an accelerated leapfrogging optimisation algorithm that has better global optimum recovery
than other methods. Although some of these methods present reasonable and simple approaches,
in most cases they represent higher computational load or worse performance than those given, for
example by efficient solutions which will be addressed in the following section.

2.7 Efficient Real-Time Solutions

The solution of NMPC problems is generally speaking a non-trivial task which can result in a significant
computational burden if a naive approach is used [145]. Because of this, efficient solutions are currently
being explored to tackle this problem, making it one of the most popular topics in the area of NMPC
[21, 23, 38, 55, 65, 66, 83, 84, 114, 127, 131, 140, 145, 149, 152]. Efficiency may come in many different
ways, from the way the optimisation is programmed [66, 145? ] and the algorithms that are used
[8], to the optimisation method that is used (eg. sequential or simultaneous [145]), the optimisation



Chapter 2. Literature Review 15

solver that is used [37, 38, 53, 84, 140], the way the optimisation is initisalised [55] and the way the
optimisation is formulated [21, 92, 131, 146, 152]. On the other hand, the implementation of the
approach will generally be limited by the available hardware and its computational resources, such as
memory, operating frequency, cache speeds, bus speeds, specialised floating-point processing units, and
so on. However, in this section we will focus only on the underlying methods, with the understanding
that some methods will be more applicable or “relevant” than others for a given hardware setup, as
well as for a given application.

Given the relation between the optimisation in time, eg. between two subsequent samples, a-priori
information can be used to warm-start the solution [55]. One of the most popular methods to do
this is the Real Time Iteration (RTI) scheme, originally developed in [32]. Because of its popularity
and underlying efficiency, this method was selected as a key part of this thesis. The method is well
documented in [55] as well as in section 3.2 of the following chapter. To give a brief overview, the
method is based on three main tasks, namely: (i) the use of an Initial Value Embedding (IVE) scheme
where the solution of the optimisation at the previous sampling is used to warm-start by using a
shifting strategy; (ii) the division of the computations into a preparation and feedback phase to avoid
having feedback delays where the preparation phase uses an estimated state to “prepare” a QP before
the next sampling is available, and the feedback phase quickly delivers an estimate once the system
is sampled; and (iii) the solution is obtained based on a single linearized QP leading to approximate
solutions that have been shown to give a reasonable estimate of the fully converged solution [55].
Additionally, work done in [145] indicates that up to 75% of the computations can be saved by using
efficiently coded libraries such as the ACADO toolkit [66], especially when condensing approaches are
used during preparation phases of the QP solver leading to timescales in the range of micro-mili seconds
[65, 115, 154]. Of particular interest are the O(N)/O(N2) algorithms from Ph.D. thesis [8] which will
be introduced later in chapter 3, section 3.3.1, and will be used extensively throughout the thesis to
propose extensions implementing the proposed approaches of chapters 5, 6 and 8.

Among efficient methods for the RTI scheme, the Inexact NMPC Scheme from [152] proposed using
incorrect/approximated derivative information allowing complete reduction of the computations related
to the preparation phases, leading to efficient solutions with stability guarantees for non-negligible
regions of the state space. In [21, 149], a so called Adjoint-based numerical method (adj-RTI) is
proposed using approximated constraint Jacobians and modified gradients which are less expensive
than the general ones [21]. A multi-level method for the RTI (ml-RTI) is discussed in [21] where the
computations are divided into several components running at different sampling rates. In this method,
the sensitivities are updated every m > 1 sampling times while the QP solver uses inexact derivatives
until the next sensitivity update is done. Similarly, the recently proposed Curvature-like Measure
of Nonlinearity for the RTI from [21] uses the so called Curvature Measure of Nonlinearity (CMoN)
to trigger the sensitivity updates in specific points of the predicted trajectory, and sensitivities from
previous sampling are used as long as they are considered reliable. Although this method is surprisingly
intuitive and the results indicate a method 10 times faster than the original RTI, it is restricted to
simultaneous optimisation give that it is exploiting the diagonal structure of the prepared QP to
update individual sensitivities. Lastly, another recently proposed method which uses a stabilising
partially tightened strategy that replaces the constraints in future stage costs with logarithmic barriers
such as those used in interior point methods and a Ricatti-like Recursion is used to approximate the
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terminal cost in the early stage of the optimisation is presented in [153]. Although the method is
shown to perform up to 20 times faster, it is once again restricted to simultaneous approaches where
the structure of the QP can be exploited, thus having a slightly different focus to the one pursued
by the work undertaken by this thesis. Nonetheless, some of the proposed methods of this thesis,
particularly that of the Shifting Strategy of chapter 5 and the Pre-stabilisation method of chapter 6
are based on generic concepts which could potentially be merged with the aforementioned methods.

Although not very popular, some of the alternative efficient methods are the Continuation/Gener-
alized Minimal Residual (C/GMRES) and Advanced-Step NMPC, discussed in [36, 131]. The benefit
of the C/GMRES method relies on avoiding the calculation of Hessian inverses by taking the advantage
of the numerical continuation method presented in [131] that view the optimisation as a dynamical
system governed by a differential equation where the user can specify some desired stable dynamics.
On the other hand, the benefits of the Advanced-Step (or in general Advanced-multi-step) method
presented in [36] is that it focuses on solving a problem one or multiple steps ahead, thus solving
the optimisation multiple times in advance and quickly delivering feedback when measurements are
available. Although, the authors don’t relate this to the RTI scheme, it is obviously a similar approach.
Indeed, a recent work from [108] proposed an Advanced Step RTI framework which combines the ideas
of the RTI Scheme with those of the Advanced Step NMPC as well as with the aforementioned Multi-
level iteration method discussed in [21]. However, it is questionable whether solving the optimisation
multiple times in advance would lead to rather slow feedback against fast impulse disturbances, and
could lead to potentially unstable optimisations due to the use of inexact sensitivities.

Other types of efficient methods are those that aim to reduce the number optimisation variables such
as Laguerre and Move Blocking [18, 79, 92, 130, 135, 146], hereafter referred as input-parameterised
solutions both of which formed the main motivations behind the contents of chapters 4 and 5. In
the case of Laguerre-based input-parameterisations, various applications were found for linear MPC in
[79, 92, 146] whereas only one instance was found for NMPC in [33], with no regard to the computational
or algorithmic aspects of it. On the other hand, although it has been mainly investigated and properly
referenced for linear MPC, move blocking is rather common among NMPC schemes (eg. [67, 85, 86]).
However, an important problem of all these works is that they disregard the fundamental recursive
feasibility problem that this method presents, in some cases attempting to compensate with the use
of additional slack variables [86]. To solve this problem, work from [18] proposed a “Moving-Window-
Blocking (MWB)” strategy that yields stability and recursive feasibility guarantees, although in the
author’s opinion the scheme has some deficiencies given that it does not embed a “constant” performance
along the horizon because of the nature of the admissible set of matrices blocking matrices it uses
(eg. see matrices that result from the use of algorithm 1), and the fact that it uses a time-varying
prediction horizon. Other works such as [46] proposed a least-restrictive approach where inputs and
state constraints where “minimally increased” or “relaxed” from the actual state/input constraints
such that the move-blocking MPC problem was feasible. However, this method lacked any a-priori
stability guarantees as the ones offered by the work from [18]. Based on this, chapter 4 focused on
obtaining a general input-parameterisation framework which would allow the user to embed any desired
parameterisation using the proposed algorithms. Additionally, chapter 5 proposed a novel time-varying
Shifting Strategy supported by the aforementioned MWB Scheme which is shown to lead to significant
computational gains whilst preserving stability and recursive feasibility of the optimisation.
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Finally, a quite popular topic, particularly for linear MPC are those of explicit solutions where
the optimisation solves a multi-parametric QP and the solution is converted to a look-up table where
efficient algorithms such as the binary search tree can be used [135]. However, this is usually not a
straightforward approach for NMPC and it is usually limited to small-state dimensions [37]. Never-
theless, work in [135] proposes a method where the NMPC is fully-solved offline generating a grid of
25,000 solutions and the solution is then approximated by using interpolating polynomials between the
solutions. A similar approach is presented in [52].

2.8 Auto-generation Tool-kits and QP Solvers

As mentioned earlier, the use of appropriate (possibly auto-generated) algorithms for the solution of
NMPC problems can lead significant computation savings [145] which has led to the development
of a variety of tool-kits. In [66], a tutorial-style article for using the popular ACADO toolkit with
Matlab is presented. This toolkit has the advantages of supporting a wide number of options from
single/multiple shooting to Runge-Kutta Integrators, implicit integration schemes as well as a number
of different QP solvers embedded into the toolkit. The tool-kit comes along with a code-generation
tool, designed specifically to export optimised C-code tailored to the optimisation setup specified by
the user. Among the available QP solvers, QPOASES [38] is one of the most popular ones giving its
efficiency for small-medium scale optimisations [145]. Other QP solvers such as FORCES, qpDUNES,
HPMPC and CVXGEN which are sparse interior-point based methods that allow exploitation of the
problem’s structure, have also been shown to give excellent results [55, 115, 145]. Given the popularity
and impressive performance of this ACADO tool-kit, one of the main objectives of this thesis was to
achieve better performance by using tailored auto-generation routines based on the Eigen 3 library.
The resulting codes were benchmarked against the ACADO using QPOASES given its efficiency for
small-medium scale optimisations, as well as its ability to solve dense QP programs.

Although not so popular, other tool-kits exist such as VIATOC, CasADi and GRAMPC, as well
as the more recently proposed ACADOS [73, 143] which were not considered for comparisons.

2.9 Summary

This chapter presented a brief initial discussion around the main topics of NMPC, in particular those
related to efficient real-time NMPC solutions which are relevant to the contents of this thesis. The
chapter introduced important concepts and ideas related to various modelling approaches, state and
parameter estimation techniques, common methods for achieving robustness, as well as sensitivity,
offset-free control, stability and recursive feasibility of the NMPC optimisation methodologies. More-
over, it included a discussion around some of the state-of-the-art efficient real-time solutions for the
popular Real-Time Iteration (RTI) Scheme which was found to be one of the most popular, intuitive
and efficient, thus making it one of the main methodologies to be used throughout this thesis. Finally,
the chapter ended with a brief discussion around the available tool-kits which allow a straightforward
implementation of various NMPC approaches, from which the ACADO tool-kit was selected based on
its popularity, support, reliability and impressive performance.
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We remind the reader that given the decision to divide the literature review into both, non-technical
and technical chapters, some of the concepts and ideas will be inevitably repeated in the following
chapter where the overall methodologies will be discussed in significantly more detail to provide a clear
set of notation and methods that will support the rest of the thesis.



Chapter 3

Technical Background

Having reviewed the available literature in the general topic of Nonlinear Model Predictive Control
(NMPC), it was found that the notation used varied quite significantly from author to author which
ultimately can lead to problems of interpretation and generalisation of the procedures involved. More-
over, given the lack of space available in regular papers, the introduction or discussion of basic/standard
NMPC methodologies or algorithms is often found in a rather compressed or “too mathematical” for-
mat as it is an “obvious” or “well known” methodology, and often skips important details or concepts
that provide key insights which could allow a more solid understanding of the basic principles and
methodologies at hand. Both of this problems combined can prove the simplest understanding of the
basic methods to be quite a challenging feat for anyone unfamiliar with the topic, or anyone who
doesn’t have a Degree in Mathematics. Therefore, this chapter is written as part of a “detailed” liter-
ature review with the purpose of establishing the foundational set of notation and methodologies to
be used throughout the thesis in the hopes that it could serve as an entry point for the new student,
as well as to establish a clear connection with Linear MPC and allow the contents of this thesis to be
self-contained. The thesis follows the notation used in [146] for Linear MPC (now extended to NMPC)
closely, in particular the use of variables such as (E,M, γ) for the Hessian, Constraints Matrix, and
constraints vectors, respectively, of the general Quadratic Program (QP).

The chapter is organised as follows: Section 3.1 presents the derivation of the condensing-based
multiple/single shooting NMPC methodology, and is divided into 3 main subsections which describe
precise topics required to successfully understand and implement the general approach. Within this
section, a couple of interesting theorems are given along the way which will be referred to in later
chapters. Section 3.2 introduces the Real-Time Iteration (RTI) scheme which serves as the core method
used by this thesis to achieve real-time performance, and ultimately represents the “state of the art”
method to which the contributions of future chapters will be bench-marked against. Section 3.3 presents
a set of algorithms, including a re-derivation of the “state of the art” O(N2) and O(N) from Ph.D.
thesis [8], all of which are ultimately used by the ACADO toolkit to implement the RTI Scheme.
Section 3.4 discusses the general convergence, as well as nominal stability and recursive feasibility
properties and methodologies used for NMPC. Section 3.5 contains a discussion around 3 of the main
available methodologies for offset-free control in the literature for Linear MPC, and their possible
implications when using them in a NMPC framework. Finally, the chapter ends with a brief summary
of the contents in section 3.6.
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3.1 Direct Optimal Control: Condensing-based Multiple/Single Shoot-
ing Nonlinear Model Predictive Control

Coming from a background on Linear MPC where the systems are typically handled in discrete time,
and the decision variables of the optimisation are typically the future input trajectories as in [121, 122,
146], the natural step from this was to look into the so-called topic of “direct multiple shooting for
nonlinear model predictive control” based on the condensing approach which essentially pose discrete-
time Optimal Control Problems (OCPs) [83] that perform a “condensing” step to eliminate the states
from the decision variables of the optimisation (as performed in Linear MPC, though not referred to
this step as such), resulting in a small but dense QPs which have been shown to give better results for
small to medium sized problems [145]. Thus, in this section we will introduce the required theory and
methodologies to implement this approach.

Let us begin by formulating the basic Optimal Control Problem of interest given by:

min
X̂,Û

J =
1

2

(
Xr − X̂

)T
Q
(
Xr − X̂

)
+

1

2

(
Û − Ur

)T
R
(
Û − Ur

)
(3.1a)

s.t. x̂k+i = f(xk+i−1, uk+i−1) ∀i = [1→ Np] (3.1b)

x̂k = x0 (3.1c)

Xmin ≤ X̂ ≤ Xmax (3.1d)

Umin ≤ Û ≤ Umax (3.1e)

where Np is typically referred as the “prediction horizon”; X̂ = [x̂Tk+1, x̂
T
k+2, · · · , x̂Tk+Np

]T ∈ RNpnx

is a column-vector of Np “predicted states” of size nx; Û = [ûTk , û
T
k+1, · · · , ûTk+Np−1]T ∈ RNpnu is

a column-vector of Np “predicted inputs” of size nu; Xr = [xTrk+1
, xTrk+2

, · · · , xTrk+Np ]T ∈ RNpnx is

a column-vector of Np “state references” of size nx; Ûr = [ûTrk , û
T
rk+1

, · · · , ûTrk+Np−1
]T ∈ RNpnu is a

column-vector of Np “input references” of size nu; Q = blkdiag([qk+1, qk+2, · · · , qk+Np ]) ∈ RNpnx×Npnx

is a positive-semi-definite “state error weighting matrix”, typically selected as a block diagonal matrix;
R = diag([rk, rk+2, · · · , rk+Np−1]) ∈ RNpnu×Npnu is a positive-definite “input error weighting matrix”,
typically selected as a diagonal matrix; equation (3.1b) are the state dynamics describing the state
evolution from one step to the next, considered for all practical purposes controllable, observable and
twice-continuously-differentiable; equation (3.1c) is the initial condition; equation (3.1d) are the state
constraints of the optimisation, with Xmax/Xmin ∈ RNpnx being column-vectors containing the limits
of the states as appropriate; and equation (3.1d) are the input constraints of the optimisation, with
Umax/Umin ∈ RNpnu being column-vectors containing the limits of the inputs.

Remark 3.1. Note that in some cases, only certain states or inputs may be required to be constrained
which can be done by “selecting” the respective rows of the state prediction models discussed in subsection
3.1.2, in particular model (3.17a). We will discuss this further in subsection 3.1.3.

Remark 3.2. The special case where the state dynamics (3.1b) are expressed in continuous-time instead
of discrete-time will be discussed in subsection 3.1.1 where a set of common discretisation by integration
methodologies will be introduced.
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In addition to the basic cost function (3.1), it is often required to optimise a set of “outputs”
of the system which may be different from the states themselves, and may even involve non-linear
relationships with the states. Such an optimisation can be obtained simply by reformulating the cost
function (3.1) to include the output function (3.2c), as well as the output constraints (3.2f), and the
output errors cost (3.2a), resulting in the general output cost function (3.2) given by:

min
X̂Û Ŷ
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Û − Ur

)T
R
(
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(3.2a)

s.t. x̂k+i = f(xk+i−1, uk+i−1) ∀i = [1→ Np] (3.2b)

ŷk+i = g(xk+i) (3.2c)

x̂k = x0 (3.2d)

Xmin ≤ X̂ ≤ Xmax (3.2e)

Ymin ≤ Ŷ ≤ Ymax (3.2f)

Umin ≤ Û ≤ Umax (3.2g)

where Ŷ = [ŷTk+1, ŷ
T
k+2, · · · , ŷTk+Np

]T ∈ RNpny is a column-vector of Np “predicted outputs” of size
ny; Yr = [yTrk+1

, yTrk+2
, · · · , yTrk+Np ]T ∈ RNpny is a column-vector of Np “output references” of size ny;

Qy = blkdiag([qyk+1
, qyk+2

, · · · , qyk+Np ]) > 0 ∈ RNpny×Npny is a positive-definite “output error weighting
matrix”, typically selected as a block diagonal matrix; and Ymax/Ymin are column-vectors containing
the limits of the output.

Remark 3.3. Once again, it may be the case that only certain outputs are required to be constrained
which can be done by selecting the respective rows of the output prediction models presented in subsection
3.1.2, in particular model (3.21).

We make this distinction between “state-only” and “state-and-output” cost functions as it forms
a special case when using the multiple-shooting framework, in particular due to the “expansion step”
which will be discussed in subsection 3.1.3.

Moreover, to ensure nominal stability of the optimisation, this general Optimal Control Problem
often includes the so called “terminal conditions” which typically come in the form of some terminal
weight [122], for example by having a special qk+Np matrix, or a “zero-terminal” constraint which comes
in the form of an “equality constraint” such as x̂k+Np = O. These type of conditions will be discussed
further in section 3.4, and can be added to this optimisation with very small modifications.

Any of the above optimisations represent a Non-Convex Nonlinear Programming Problem (NLP)
or optimisation which is typically very hard to solve. One of the most competitive approaches to
solve them are Sequential Quadratic Program (SQP) methods where the cost is linearized at a given
trajectory, resulting in a linearized Convex Quadratic Program (QP) which can be used to find an
optimal search direction, typically based in the Gauss-Newton method, that eventually converges to the
local-optimal. Notice the linearisation of the trajectory is only defined after a given input/state pairs
have been applied through the state dynamics (3.1b), and in the case of “state-and-output” problems,
the output function (3.2c). A popular approach to achieve this are the so called “shooting methods”
which use an “initially guessed” nominal input trajectory Ū = [ūTk , ū

T
k+1, · · · , ūTk+Np−1]T ∈ RNpnu ,

nominal state trajectory X̄ = [x̄Tk+1, x̄
T
k+2, · · · , x̄Tk+Np

]T ∈ RNpnx , and in the case of “state-and-
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output” cost functions, nominal output trajectory Ȳ = [ȳTk+1, ȳ
T
k+2 · · · , ȳTk+Np

]T , to linearize the
OCP along the trajectory and obtain the required sensitivity matrices for the optimisation. In order
to achieve this using the condensed multiple/single shooting approach, there are three main steps or
“tasks” at hand which must be understood properly which are:

1. Simulation and Linearisation

2. Prediction Modeling

3. Condensing-based Optimisation

These tasks will be described in detail in the following subsections.

3.1.1 Direct Optimal Control: Discretisation by Integration

One of the key tasks to be able to implement NMPC is to be able to “Simulate And Linearise” the
system, in particular the operations related to the system dynamics (3.1b) which will allow the use of
the prediction models (3.17a) and (3.21) discussed in the following subsection 3.1.2. In the case the
system evolution is already described by nonlinear discrete-time equations, then the steps described
in this subsection are not particularly required and one can simply proceed to establish the prediction
models directly from them. However, it is rather common to find that the representation of physical
systems are based on first principles which result in Ordinary Differential Equations (ODEs), thus
describing the system evolution in continuous time. As the optimisation introduced previously is
formulated in discrete-time, we will require to translate the continuous-time models into discrete-
time, something which is sometimes referred to as a “Direct Optimal Control” approach that follows a
“discretise-then-optimise” philosophy [8].

To tackle this, a common approach is to use the concept of “discretisation by integration” as dis-
cussed in [55]. Indeed, it is well known that solution to ODEs can be approximated (or simulated) to
arbitrary accuracy by using integrator methods such as Explicit Euler or Explicit 4th Order Runge-
Kutta (RK), as well as more general Implicit RK methods, and so on. In addition to the simulated
values, the prediction models discussed in the following section also require the linearisation of the sys-
tem dynamics (sometimes called the sensitivity matrices) [55], in particular matrices Ak, Bk. Therefore,
an efficient method to achieve a discrete-time model is to translate the continuous-time dynamics into
discrete-time by using the principle of internal numerical differentiation which obtains the linearisation
matrices by differentiation of the integrator method itself [55], thus giving both, the simulation and
linearisation parts required by the optimisation resulting in a ”discretise-then-linearise” approach [55].
It is important to note that although the integrator method is an approximation to the real system
evolution, the linearisation that results from its differentiation gives the exact derivatives of the method
(to machine precision).

To illustrate the basic idea behind this overall methodology, let us describe its application by
deriving the resulting algorithm that arises for the Explicit Euler integration scheme which can be
found in algorithm 4 of [55].

Consider a general ODE describing some nonlinear dynamics of the form:

ẋ = f(x, u) (3.3)
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By applying a single Explicit Euler step on the segment [k → k + 1] (or equivalently represented
in time-domain [0 → T ]), and considering an initial state x0 and a piece-wise constant input u0 over
the interval, we obtain the following:

xT = x0 + Tf(x0, u0) (3.4)

In this simple case, the partial derivatives w.r.t the state and input are given by:

A0 = I + T
∂f(x0, u0)

∂x0
B0 = T

∂f(x0, u0)

∂u0
(3.5)

and directly represent the “total” derivatives Ak, Bk required at each step of the prediction models.

To visualise the pattern that emerges for a higher number of inner steps, consider now the case of
dividing the segment in 3 steps (ie. [0→ T

3 → 2T
3 → T ]).

The simulations of the system at each of the inner steps would simply be given by:

xT
3

= x0 +
T

3
f(x0, u0) (3.6a)

x 2T
3

= xT
3

+
T

3
f(xT

3
, u0) (3.6b)

xT = x 2T
3

+
T

3
f(x 2T

3
, u0) (3.6c)

Likewise, the resulting linearisation matrices at each of this inner steps are then given by:

A0 = I +
T

3

∂f(x0, u0)

∂x0
B0 =

T

3

∂f(x0, u0)

∂u0
(3.7a)
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3
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∂x0
BT
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(3.7b)

A 2T
3

= I +
T

3

∂f(x 2T
3
, u0)

∂x0
B 2T

3
=
T

3

∂f(x 2T
3
, u0)

∂u0
(3.7c)

Each of this matrices only represent the linearisation of “a third of the total step” (ie. T
3 ). In order

to obtain the “total” linearisation matrix we must first understand the linearisation models that they
represent.

Following a Taylor linearisation, the linearised models given by these matrices are given by:

δxT
3

= A0δx0 +B0δu0 (3.8a)

δx 2T
3

= AT
3
δxT

3
+BT

3
δu0 (3.8b)

δxT = A 2T
3
δx 2T

3
+B 2T

3
δu0 (3.8c)

where δxk ∀k = [0, T3 ,
2T
3 , T ] and δu0 are the state and input deviations, respectively, from the

points at which the linearisation was calculated.

As it can be seen, these models relate each of the intermediate steps with its immediate following
step. This is still not useful given that the interest of this procedure is to understand the relationship
between the initial step state deviation (δx0) and input deviation (δu0), with the final step state
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deviation (δxT ). Moreover, it is important to understand that the optimisation will not “see” the inner
steps, and will only optimise the points at the end of the segment of the integration method.

With the purpose of deriving the steps required by the Explicit Euler algorithm, let us assume that
the initial value of the “total” linearisation matrices (A[0]

k , B
[0]
k ) is given by the matrices at the initial

step, ie. are given by:

δxT
3

= A0︸︷︷︸
A

[0]
k

δx0 + B0︸︷︷︸
B

[0]
k

δu0 (3.9)

By substituting equation (3.8a) into (3.8b) we obtain an intermediate linearised model up to the 2nd

inner step (2T
3 ).
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or expressed in terms of the initial matrices of equation (3.9):
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In other words, the new “total” linearisation matrices are given by A[1]
k = AT

3
A

[0]
k , and B[1]

k = AT
3
B

[0]
k +

BT
3

) where the terms (AT
3
and BT

3
) represent the linearisation matrices at the “current step” of the

algorithm.
Moving further along the simulated steps, the last step (T ) can be obtained by substituting (3.11)

in equation (3.8c), resulting in:
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Thus, the resulting pattern can be clearly seen where the new “total” linearisation matrices is a recursive
function of the previous “total” linearisation matrices and the linearisation matrices at the “current
step”. The resulting algorithm is given in algorithm 3.1.

As this thesis is not focused on the topic of integrators, this basic algorithm was used for simulation
of most of the non-linear systems and case studies presented throughout the thesis.

A similar procedure can be followed to derive the Explicit 4th Order Runge Kutta simulation
and linearisation algorithm 5 provided in [55], or any other integration method for that matter. In
the specific case of Implicit integration methods, the most efficient way is to implement the Implicit
Function Theorem (IFT) as discussed in [114].
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Algorithm 3.1: Explicit Euler Algorithm
Data: xk, uk, T,Ns

1 begin
2 T = T/Ns; // Divide sampling time into Ns segments
3 xk+1 = xk; // Initialize output state
4 Ak = I,Bk = O; // Initialize linearisation matrices
5 for i = 1 to Ns do
6 Bk = (I + T

∂f(xk+1,uk)
∂xk+1

)Bk + T
∂f(xk+1,uk)

∂uk
; // Propagate input-to-state matrix

7 Ak = (I + T
∂f(xk+1,uk)

∂xk+1
)Ak; // Propagate state-transition matrix

8 xk+1 = xk+1 + Tf(xk+1, uk); // Simulate system dynamics
9 end

10 end
Result: xk+1, Ak, Bk

3.1.2 The Multiple/Single Shooting Prediction Models

As discussed earlier, shooting methods are a popular approach which use a guessed trajectory for
the nominal input (Ū), the nominal state (X̄), and nominal output (Ȳ ) over which the QP is lin-
earised, thus allowing the formulation of a linearised convex Quadratic Program. Although the topic
of Multiple Shooting is “well known”, there is a rather common miss-conception around many authors
that Single/Multiple Shooting methods are “discretisation” methods that convert an infinite dimension
continuous OCP into a finite dimension Nonlinear Programming Problem (NLP) in which a “grid” of
points, commonly called the “shooting points”, is formed [21, 30, 57]. However, the author of this the-
sis considers that both of this methodologies (Single/Multiple Shooting) are not particularly dealing
with converting a “continuous-time” problem into a “discrete-time” problem as this task is done by
the “discretisation by integration” process itself presented in the previous subsection, and are instead
“prediction models linearisation” philosophies. Indeed, if one can apply the single or multiple shooting
linearisation schemes to already nonlinear discrete systems, then the whole “discretisation” claim is
not a “distinctive” part of the underlying process, and in this subsection we will present both of this
scenarios to explain the resulting linearised prediction models in detail.

Single Shooting

The single shooting scenario is perhaps the most intuitive form of linearisation in which the system
dynamics (3.1b) are simulated and linearised forward by using the nominal initial state (x̄0) and
nominal input trajectory (Ū) [115] to obtain the nominal state trajectory (X̄), and the resulting state
deviation prediction models.

Using a simple Taylor Series expansion, this results in a single shooting linearised prediction model
of the form:

x̂k+1 = x̄k+1 + δx̂k+1

= f(x̄k, ūk)︸ ︷︷ ︸
x̄k+1

+Akδx̂k +Bkδûk︸ ︷︷ ︸
δx̂k+1

(3.13)
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where δx̂k = x̂k − x̄k and δûk = ûk − ūk are the deviations of the state and input from their linearised
points (x̄k, ūk), respectively, and Ak, Bk are the partial derivatives w.r.t to the nominal state and input,
respectively, defined as:

Ak =
∂f(x̂k, ûk)

∂x̂k

∣∣∣∣x̂k=x̄k
ûk=ūk

Bk =
∂f(x̂k, ûk)

∂ûk

∣∣∣∣x̂k=x̄k
ûk=ūk

(3.14)

Notice in this specific scenario, the value of x̄k+1 is selected as the actual result from the simulation
with x̄k and ūk, ie. x̄k+1 = f(x̄k, ūk), which is then subsequently used to simulate the value of
x̄k+2, x̄k+3, · · · , etc. This particular “assumption” or “strategy” is THE absolute most distinctive feature
of single shooting (when compared with multiple shooting), in which the system is linearised following
a philosophy of “the ACTUAL simulated value PLUS a deviation”. As single shooting is just a special
case of multiple shooting, let us now look into its methodology to obtain the final prediction models
to be used throughout this thesis.

Multiple Shooting

A powerful extension of the single shooting modeling methodology is the multiple shooting approach
where rather than representing the whole trajectory as a “single simulation”, the trajectory is divided
into smaller segments with each segment represented by its own simulation [77], as depicted in figure
3.1. This results in 2 very specific differences between the multiple shooting and single shooting
approaches, namely:

1. A different linearised prediction model.

2. An expansion step.

In contrast to single shooting which only requires an initial state (x̄0) and a nominal input trajectory
(Ū) to generate the predictions, the multiple shooting philosophy follows a different approach in which
the user can linearise the system, not only around the nominal input trajectory (Ū), but also around a
possibly desired nominal state trajectory (X̄), which is not necessarily the one resulting from the actual
simulation as in the single shooting approach. This ultimately offers stronger flexibility in the problem
initialisation, and also presents improved convergence properties, especially in the case of unstable
systems [115]. We will discuss this further in the following subsection 3.1.3 where we will explain this
in more detail, in particular, how it owes the improved convergence properties to the “expansion step”
required for the next iteration of the SQP procedure.

Because the linearisation is now done on an arbitrary trajectory over the nominal state (X̄), the
method uses offsets (d̄k) to compensate, and ensures the continuity of the overall trajectory by propa-
gating this offsets forward as depicted in figure 3.1 by the red and blue arrows, respectively, allowing
the optimisation to “understand” the effects of a given segment in future segments. As it can be seen
from this figure, there may be some “inner” points, such as the ones that form part of the Explicit
Euler integration scheme dicussed in the previous subsection, which are not “seen” by the optimisation.
To understand this further, let us describe this by using the underlying mathematical models.
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Figure 3.1: Example of the Multiple Shooting Modeling Approach

The resulting linearised prediction models that arise from this scenario are given by the following:

x̂k+1 = x̄k+1 + δx̂k+1 = x̄k+1 +Akδx̂k +Bkδûk + dk+1
︸ ︷︷ ︸

δx̂k+1

(3.15a)

dk+1 = f(x̄k, ūk)− x̄k+1 (3.15b)

where the dk+1 term signaled by the red box is the “distinctive” part when compared to the single
shooting model (3.13). As it can be seen this term contains the difference between the nominal
simulated value f(x̄k, ūk) and the nominal value (x̄k+1), depicted by the red arrows in figure 3.1. The
reader might argue that the simple summation of x̄k+1 + dk+1 = f(x̄k, ūk), which makes the whole
modeling exactly the same as in the single shooting approach, and for the very first prediction step,
it is! The difference however relies in how this offset (dk+1), which forms part of the predicted state
deviation (δx̂k+1) sometimes referred as the continuity condition [28, 85], propagates into future values
of the predictions, depicted by the blue arrows in figure 3.1. This can be seen more clearly by forming
the model in the following step.

By following the same linearisation procedure to formulate the prediction model at next step
(k + 2), and substituting the value of the predicted step deviation (δx̂k+1) in the predictions, the
resulting models is given by:

x̂k+2 = x̄k+2 + δx̂k+2

= x̄k+2 +Ak+1δx̂k+1 +Bk+1δûk+1 + dk+2

= x̄k+2 +Ak+1 (Akδx̂k +Ak+1Bkδûk + dk+1)︸ ︷︷ ︸
δx̂k+1

+Bk+1δûk+1 + dk+2

= x̄k+2 +Ak+1Akδx̂k +Ak+1Bkδûk +Bk+1δûk+1 + dk+2 +Ak+1dk+1
︸ ︷︷ ︸

d̄k+2

(3.16)
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where the new term (d̄k+2 = dk+2 +Ak+1dk+1), signaled by the red box, actually contains the previous
term propagated through the linearised prediction matrix (Ak+1), as depicted in the “total” offset
(d̄k+2) signaled by the black arrow limits in the step k + 2 of figure 3.1.

By propagating this linearised models forward Np steps and grouping the terms in matrix/vector
formats, the resulting linearised prediction models can be found to be given by:

X̂ = X̄ + δX̂ = X̄ +D +Gδx0 +HδÛ︸ ︷︷ ︸
δX̂

(3.17a)

Û = Ū + δÛ (3.17b)

where δx0 = x0− x̄0 is an initial condition mismatch which forms an important part of the RTI Scheme
introduced in section 3.2, D ∈ RNpnx , G ∈ RNpnx×nx , H ∈ RNpnx×Npnu are defined as:

D =




d̄1

d̄2

...
d̄Np




G =




g1

g2

...
gNp




H =




h1,1 0 · · · 0

h2,1 h2,2
. . .

...
...

. . . . . . 0

hNp,1 hNp,2 . . . hNp,Np




(3.18a)

and with a slight abuse of notation by dropping the k + i notation (eg. Ak → A0, Ak+1 → A1,etc.),
the inner matrices/vectors are defined through the following recursions as:

d̄k =




dk

dk +Ak−1d̄k−1

k = 1

k > 1
(3.19a)

gk =




Ak−1

Ak−1gk−1

k = 1

k > 1
(3.19b)

hk,j =




Bk−1

Ak−1hk−1,j

k = j

k > j
(3.19c)

∀k = [1→ Np], j = [1→ Np]

Notice the case of single shooting is included in this general model as if one chooses to simulate and
linearise over the actual state trajectory, eg. x̄k+1 = f(x̄k, ūk), the D = O term simply becomes zero,
and X̄ becomes the actual state trajectory.

In the specific case that an “output” linearised prediction model is required for nonlinear outputs
of the form (3.2c) to be used in an “state-and-output” cost function such as (3.2), a similar procedure
can be followed by observing that the core linearised prediction model at each step is given by:
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ŷk+1 = ȳk+1 + Ck+1δx̂k+1 + dyk+1

= ȳk+1 + Ck+1(Akδx̂k +Bkδûk + dk+1) + dyk+1
(3.20a)

dyk+1
= g(x̄k+1)− ȳk+1 (3.20b)

where Ck+1 is the partial derivative of the output function (3.2c) given by:

Ck+1 =
∂g(x̂k+1)

∂xk+1

∣∣∣∣
x̂k+1=x̄k+1

(3.20c)

Thus, this results in a “total” general output linearised prediction model of the form:

Ŷ = Ȳ + δŶ = Ȳ +Dy +Gy +HyδÛ︸ ︷︷ ︸
δŶ

(3.21)

where Dy ∈ RNpny , Gy ∈ RNpny×nx , Hy ∈ RNpny×Npnu are defined as:

Dy =




d̄y1

d̄y2
...

d̄yNp




Gy =




gy1

gy2
...

gyNp




Hy =




hy1,1 0 · · · 0

hy2,1 hy2,2
. . .

...
...

. . . . . . 0

hyNp,1 hyNp,2 . . . hyNp,Np




(3.22)

with the inner matrices/vectors are defined in terms of the “original” matrices values (3.19) by:

d̄yk = dyk + Ckd̄k (3.23a)

gyk = Ckgk (3.23b)

hyk,j = Ckhk,j (3.23c)

∀k = [1→ Np], j = [1→ Np]

It is important to clarify that both state and output models are required for the proper implemen-
tation of the multiple shooting scheme as both of them must be used in the “expansion step”.

Multiple or Single Shooting for Linear MPC

An unfamiliar reader might be wondering how do all these models relate to the standard Linear MPC
approaches. Thus, in order to establish a clear relationship between the general nonlinear methodologies
discussed throughout this thesis and common linear MPC methodologies, we present the following
theorem relating the equivalence of single/multiple shooting models to avoid confusion regarding the
expectation about single/multiple shooting methods for linear systems. This comes to say that it is
irrelevant to talk about single or multiple shooting if the system dynamics or output functions are
linear, and one can instead just refer to standard MPC theory instead for this case.
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Theorem 3.1. Equality of Single/Multiple Shooting for Linear Systems

Both single and multiple shooting prediction models result in the exact same predictions for a linear
system which consequently results in the exact same optimisation.

Proof. For a linear system, we have the following predictions for the single shooting model,

x̂k+1 = x̄k+1︸︷︷︸
f(x̄k,ūk)

+A (xk − x̄k)︸ ︷︷ ︸
δxk

+B (uk − ūk)︸ ︷︷ ︸
δxk

= Ax̄k +Būk︸ ︷︷ ︸
f(x̄k,ūk)

+A(xk − x̄k) +B(uk − ūk)

= Axk +Buk (3.24)

Similarly, the predictions of a multiple shooting model result in,

x̂k+1 = x̄k+1 +A(xk − x̄k) +B(uk − ūk) + f(x̄k, ūk)− x̄k+1︸ ︷︷ ︸
dk+1

= Ax̄k +Būk︸ ︷︷ ︸
f(x̄k,ūk)

+A(xk − x̄k) +B(uk − ūk)

= Axk +Buk (3.25)

Ultimately this leads to the overall prediction models given by the well known linear MPC structure
such as:

X̂ = Gxk +HÛ (3.26)

with xk being the actual initial state (not the deviation).

Autonomous/Auto-correcting Feature of Multiple Shooting Prediction Model

Something which might not be immediately clear from the multiple shooting linearisation models
(3.17a) and (3.21) is that they have an “autonomous/auto-correcting” feature where their successive
use allows correcting the prediction errors arising from the nonlinearities, independently of whether
they are used in an optimisation context or not. To illustrate this, let us use the following example:

Example 3.1. Multiple Shooting Autonomous/Auto-correction Feature

Consider the dynamics of a simple pendulum in free-fall/swing (no control action), described by
the ODE:

θ̈ = −0.3θ̇ + 9.81 sin(θ) (3.27)

where θ, θ̇, θ̈ are the pendulum’s angle, angular velocity, and angular acceleration, respectively.
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This ODE can be put in the standard nonlinear state space form (ẋ = f(x)) given by:

[
ẋ1

ẋ2

]

︸ ︷︷ ︸
ẋ

=

[
x2

−0.3x2 + 9.81 sin(x1)

]

︸ ︷︷ ︸
f(x)

(3.28)

For the purpose of this example, consider the simulation and linearisation of this system using the
Explicit Euler algorithm 3.1 with a sampling time T = 0.02 (s), Ns = 1 number of steps, and linearised
state prediction model (3.17a). Moreover, to include the output linearised prediction model (3.21),
consider an output function given by:

y = cos(x1) (3.29)

related to the potential energy of the pendulum as discussed in chapter 6, section 6.6.
Now, let us assume that the pendulum starts swinging from the initial condition x0 = [3.992, 0]T

and that we want to obtain the predictions for the future states and outputs (X̂, Ŷ ), Np = 200

steps ahead using the linearised prediction models, (3.17a) and (3.21), with the input-related terms
(HδÛ ,HyδÛ) being zero. In the single-shooting scenario, one would simply simulate the system and
linearise around the resulting nominal state X̄. Instead, the multiple-shooting approach requires the
user to provide an initial guess for X̄. If there is no available knowledge about a “good” initial guess
for the nominal state, a safe approach is to select the one that results from the forward simulation (as
used in the single-shooting approach), something which the ACADO toolkit offers in its auto-generated
function “acado_initializeNodesByForwardSimulation()”. We will discuss other forms of initialisation
later on in section 3.2. However, with the strict objective of illustrating the auto-correcting feature,
let us assume that we decide to use a relatively “bad” initial guess for the nominal state trajectory
by simply selecting the initial state across all the nominal state, ie X̄ = [xT0 , x

T
0 , · · · , xT0 ]T , and that

our initial guess for the nominal output trajectory is given by its evaluation at the initial state, ie.
Ȳ = [cos(x0), cos(x0), · · · , cos(x0)]T .

By starting from the aforementioned conditions, formulating the linearised prediction models and
iteratively re-linearising around the “predicted” trajectories obtained from the previous iteration (ie.
X̄ [k] = X̂ [k−1] and Ȳ [k] = Ŷ [k−1]), something which the multiple shooting approach does in the
“expansion step” discussed earlier, we obtain the behaviour visible in figure 3.2. In this figure, the green
dashed line represents the initial guess for both nominal trajectories; the red dashed lines represent
the actual trajectory that the pendulum will follow from the initial state; the cian dashed lines are
the set of predictions iteratively obtained from procedure described above; and the thick blue line
represent the final prediction, naturally converging to the actual trajectory. The predictions converge
to the actual trajectory in only in 4 iterations, with each of the iterations signaled by an arrow/number
pair. As it can be seen from the iterations, the predictions (cian-dashed lines) at the earliest steps
quickly converge to the actual trajectory (red-dashed), whereas taking longer for the later parts of the
trajectory.

There are 2 important lessons that we can obtain from this, firstly: 1. The trajectory that the
multiple shooting linearised model predicts is NOT necessarily the real one, and secondly 2. The
multiple shooting modelling will “automatically” correct for prediction errors as it iterates, typically
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Figure 3.2: Example of the Multiple Shooting Autonomous/Auto-correction Feature

correcting the earliest prediction errors first as they are supported by more “accurate” predictions
emerging from the propagation of the offset (dk) through the linearised state-transition dynamics
(Ak). Nonetheless, each specific case will be different as it will obviously depend on the selected value
for the initial guess.

3.1.3 Condensing-based Optimisation

Having established the linearised prediction models to be used for the optimisation, we can now proceed
to reformulate the general Quadratic Program of interest (3.1). In this section we will show two main
ways in which the optimisation can be reformulated using a condensing-based approach: the Relative
and Non-Relative formats. In this type of optimisation, the states are removed from the decision
variables, leading to dense OCPs that can be solved with any general purpose Quadratic Programming
solver [8]. To save space we will only present the derivation of the resulting Quadratic Problems for
the “state-only” cost function (3.1), as it is the most common requirement, with the understanding
that the “state-and-output” cost function case can be easily derived by following similar steps.

Relative Quadratic Program

In the condensed relative framework, which is the most commonly used as it represents the “classic”
Newton type method giving an increment to the nominal point (eg. in the form of x+ = x− + ∆x),
and indeed the one used by the ACADO toolkit, the decision variables of the optimisation are the



Chapter 3. Technical Background 33

input “deviations”, ie. δÛ . Thus, one can directly substitute the linearised prediction models (3.17a
and 3.17b) into cost function (3.1) resulting in:

J =
1

2
(Xr − X̄ −D−Gδx0 −HδÛ)TQ(Xr − X̄ −D −Gδx0 −HδÛ)

+
1

2
(Ū+δÛ − Ur)TR(Ū + δÛ − Ur) (3.30a)

s.t. Xmin ≤ X̄ +D +Gδx0 +HδÛ ≤ Xmax (3.30b)

Umin ≤ Ū + δÛ ≤ Umax (3.30c)

Note the state dynamics (3.1b) and the initial condition (3.1c) are already included in the prediction
model.

After grouping common terms w.r.t. the decision variable (δÛ), disregarding any constant terms
in the cost and rearranging the constraints to be described by an inequality of the form Ax ≤ b to
express the cost function in the standard dense QP format, results in:

min
δÛ

J =
1

2
δÛTEδÛ + δÛT f (3.31a)

MδÛ ≤ γ (3.31b)

E = HTQH +R (3.31c)

f = −(HTQ(Xr − X̄ −D −Gδx0)−R(Ū − Ur)) (3.31d)

M =




I

−I
H

−H




γ =




Umax − Ū
−(Umin − Ū)

Xmax − X̄ −D −Gδx0

−(Xmin − X̄ −D −Gδx0)




(3.31e)

where E ∈ RNpnu×Npnu is called the “Hessian” of the optimisation; f ∈ RNpnu is typically referred
to as the “linear term”; M ∈ R2Np(nx+nu)×Npnu is the constraint matrix; and γ ∈ R2Np(nx+nu) is the
constraints vector.

We can see from the constraint vector (γ) that the input constraints are expressed relative to the
linearised trajectory (Ū), hence the name of the approach (“relative”) used by the author of this thesis.

Non-Relative Quadratic Program

In contrast, the condensed non-relative framework keeps the actual inputs, ie. Û , as the decision
variables. In this case, notice the relationships δÛ = Û − Ū can be replaced in the linearised state
prediction model (3.17a) resulting in an equivalent prediction model of the form:

X̂ = X̄ +D +Gδx0 +H(Û − Ū) (3.32)

Following the same steps, we can now proceed to substitute this model into the cost function (3.1),
group common terms w.r.t the decision variable Û and disregard any constant terms in the cost to
express the cost function the standard QP format, thus resulting in:
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min
Û

J =
1

2
ÛTEÛ + ÛT f (3.33a)

MÛ ≤ γ (3.33b)

E = HTQH +R (3.33c)

f = −(HTQ(Xr − X̄ −D −Gδx0 +HŪ) +RUr) (3.33d)

M =




I

−I
H

−H




γ =




Umax

−Umin
Xmax − X̄ −D −Gδx0 +HŪ

−(Xmin − X̄ −D −Gδx0 +HŪ)




(3.33e)

Notice in this case, the input constraints are expressed in a “non-relative” format (Umax/Umin), thus
the name of the approach.

Remark 3.4. Constraints Selection
As discussed earlier, the user might require only certain states or inputs which can be done by

selecting (or computing) only the relevant rows of the constraint matrix (M) and constraint vector (γ).

Optimal Solutions

Having defined any of these Quadratic Programs, any general purpose solver such as the quadprog
function from Matlab, or QP OASES [38] can be used to solve the optimisation.

For unconstrained problems, the well known solution can be found by differentiating J w.r.t the
decision variable, equating to zero (eg. ∂J

∂Û
= 0) and solving, resulting in:

δÛ∗unc = −E−1f For Relative (3.34)

or

Û∗unc = −E−1f For Non-Relative (3.35)

For constrained problems, the optimal solution can be shown to be the optimal unconstrained
solution plus an optimal correction term (Û∗λ or δÛ∗λ) related to the Lagrange multipliers (λ) that
satisfy the Karush-Kush-Tucker (KKT) conditions as discussed in [146], ie. having the form of:

δÛ∗ = δÛ∗unc + δÛ∗λ For Relative (3.36)

or

Û∗ = Û∗unc + Û∗λ For Non-Relative (3.37)

After obtaining the solution, only the first input of the resulting trajectory (û0) is implemented
to the actual system, and the whole process is repeated in the next iteration which is the well known
“receding horizon” strategy. In the particular case of multiple shooting, an “expansion step” is required
to calculate the nominal state (and if required, the nominal output) trajectory to be used in the
following step, which can be done by calculating the terms:
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X̂ = X̄ +D +Gδx0 +HδÛ∗

Ŷ = Ȳ +Dy +Gyδx0 +HyδÛ
∗

}
For Relative (3.38)

X̂ = X̄ +D +Gδx0 +H(Û∗ − Ū)

Ŷ = Ȳ +Dy +Gyδx0 +Hy(Û
∗ − Ū)

}
For Non-Relative (3.39)

It is this particular step which provides better convergence properties to the multiple shooting
approach by allowing the linearisation at the next step to be around the predicted trajectory in the
previous step, and compensating for any prediction errors that emerge from the linearisation through
the aforementioned offsets. In contrast, the single shooting approach completely disregards or “ignores”
any possible prediction errors emerging from the linearisation process and simply linearises at what-
ever trajectory emerges from Ū and x0 which consequently suffers from bad convergence properties,
particularly if the system has unstable dynamics [8, 77].

Note that even in the case where one would opt to optimise a set of nonlinear outputs, eg. by having
an “output-only” cost, the whole multiple shooting procedure would STILL require the “expansion step”
applied to the nominal state trajectory (X̄) to be able to obtain the required linearised prediction
models. It is for this reason that a distinction was made earlier in this chapter.

Theorem 3.2. The Equality of the Solutions

The optimal solutions for both, “relative” and “non-relative” types of optimisation will always result
in the exact same solution.

Proof. To satisfy this statement, both optimal solution must satisfy the following equality:

Ū + δÛ∗ = Û∗ (3.40)

Consider substituting the unconstrained optimal solution for both approaches in (3.40), resulting in:

Ū + E−1
(
HTQ(Xr − X̄ −D −Gδx0)−R(Ū − Ur)

)

= E−1
(
HTQ(Xr − X̄ −D −Gδx0 +HŪ) +RUr

)
(3.41)

After eliminating common terms and reorganising, this reduces to:

Ū = E−1
(
HTQH +R

)
︸ ︷︷ ︸

E

Ū

= ��
�E−1
��EŪ (3.42)

Thus satisfying the equality 3.40 for unconstrained solutions.

Given the unconstrained solutions have been proved to be the same, proving the equality of con-
strained solutions reduces to the additional correction terms (Û∗λ and δÛ∗λ) satisfying:

Û∗λ = δÛ∗λ (3.43)
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Following the procedure in [146], both of this terms can be shown to have the form:

Û∗λ = −E−1MTλ∗
Û

(3.44a)

δÛ∗λ = −E−1MTλ∗
δÛ

(3.44b)

where λ∗
Û
and λ∗

δÛ
are the optimal vectors of the Lagrange Multipliers of each solution containing only

positive or zero values related to the active/inactive constraints, respectively.

Given both solutions have the same term E−1MT , the problem reduces to proving both solutions
have the same optimal vector of Lagrange Multipliers (λ∗

Û
= λ∗

δÛ
). The optimal solution for both of

this vectors can be obtained based on the active-set methodology described in [146] which results in:

λ∗actÛ = −(MactE
−1MT

act)
−1(γactÛ −MactÛ

∗
unc) (3.45a)

λ∗actδÛ = −(MactE
−1MT

act)
−1(γactδÛ −MactδÛ

∗
unc) (3.45b)

Note that we have made a momentary distinction between both constraint vectors (γactÛ and γactδÛ ).

If one requires to implement this expression in an active-set method, a basic requirement is the
invertibility of the term (MactE

−1MT
act)
−1 which can only be achieved if there is linear independence

between the active constraints, and the number of active constraints is less than the decision variables
[146]. However, by equating both of this optimal vectors, this term cancels out leaving only the equality
of the terms:

γactÛ −MactÛ
∗
unc = γactδÛ −MactδÛ

∗
unc (3.46)

For the strict purpose of this proof, consider the active set being the entire constraint vectors (something
which cannot be done in practice but is equally valid for the proof). By substituting the expressions
for matrix M and each of the constraint vectors (γÛ and γδÛ ), results in:




Umax

−Umin
Xmax − X̄ −D −Gδx0 +HŪ

X̄ +D +Gδx0 −HŪ −Xmin




︸ ︷︷ ︸
γÛ

−




I

−I
H

−H




︸ ︷︷ ︸
M

Û∗unc =




Umax − Ū
−Umin + Ū

Xmax − X̄ −D −Gδx0

X̄ +D +Gδx0 −Xmin




︸ ︷︷ ︸
γδÛ

−




I

−I
H

−H




︸ ︷︷ ︸
M

δÛ∗unc (3.47)

Given we have proved the unconstrained optimal solutions to be the same (ie. Û∗unc = Ū + δÛ∗unc), by
evaluating the relevant matrix expressions and grouping terms this reduces to:

Umax − Û∗unc = Umax − (Ū + δÛ∗unc)

Û∗unc − Umin = Ū + δÛ∗unc − Umin
Xmax − X̄ −D −Gδx0 −H (Û∗unc − Ū) = Xmax − X̄ −D −Gδx0 −H δÛ∗unc

X̄ +D +Gδx0 +H (Û∗unc − Ū) −Xmin = X̄ +D +Gδx0 +H δÛ∗unc −Xmin

(3.48)

where relevant equality terms are signaled by dashed boxes which concludes the proof.
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Notice this proof also holds for single-shooting scenarios where the term D = O. Moreover, it is
trivial to show that the solution will also be exactly the same as in the Linear MPC case simply by
observing that the term X̄ +D+Gδxk −HŪ , present in the non-relative solution are the predictions
of the state when Û = O, thus represent what is commonly known as the “free-response” [19], ie.
X̄ +D +Gδxk −HŪ = Gxk.

A similar procedure will be used in chapters 4 and 6 for proving certain properties of interest of
the proposed approaches.

3.2 The Real-Time Iteration Scheme

To achieve real-time performance of the optimisation, one of the most successful approaches is the Real-
Time Iteration Scheme, originally developed in [31], which exploits the fact that NMPC is required to
successively solve OCPs which are closely linked to each other [55]. The latter is briefly summarised
in this section, and for more details, the reader is referred to [55] which gives an excellent tutorial like
paper of this method.

The scheme consists of 3 main strategies for the multiple-shooting approach:

1. Initial Value Embedding:

It uses a shifted version of the solution for the nominal state, input (and if required output)
trajectories obtained in the previous time step to hot-start the trajectories over which the SQP
will linearise, typically duplicating the last input ūk+Np−1|k = û∗k+Np−2|k−1, and shifting the state
X̄k|k−1 = [x̂Tk+1|k−1, . . . , x̂

T
k+Np−1|k−1, x̂

T
k+Np|k]

T , where the last state (and if required, the last
output) is typically obtained from a simple simulation x̂k+Np|k = f(x̄k+Np−1|k−1, ūk+Np−2|k−1),
ie. using the single shooting philosophy, but only at that step [28]. Moreover, in the case of
optimisation methods based on active-set strategies, it also uses a shifted version of the vector of
Lagrange multipliers (λ) obtained in the previous step. The shifting procedure of this vector will
depend on the particular “organisation” used for the constraint matrices and vectors, (M and γ),
and so it will vary from case to case, but the important part is to make a “consistent shifting” of
them such that they represent the “same” active-set of constraints relative to the next step.

2. Single SQP Iteration:

It performs only a single SQP iteration given the hot-started trajectory is expected to be close,
provided no significant disturbances have entered the system. Assuming the latter and other
conditions discussed in [31, 55] such as smooth reference changes, as well as starting at a global
optimum are satisfied, the scheme can guarantee nominal closed loop stability. Moreover, the
approach typically takes a full Newton step [55], and one has to be satisfied with local optimallity.

3. Computation Separation:

It separates the computations required for the optimisation into preparation and feedback phases
to reduce the computation delay required by the optimisation and avoid solving a problem that
is “only getting older” [115], also referred to as the “Real-Time Dilemma” in [55]. It can also be
seen as a “distributed-in-time” optimisation procedure [115]. An excellent diagram presenting the
timelines of this methodology is given in figure 3 of [55]. The tasks of each phase are as follows:
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(a) Preparation Phase: In between sampling times k − 1 → k, it uses the predicted state for
the next sampling time (x̄0 = x̂k|k−1) as an initial condition of (3.1) which enables the
computation of all the matrices and vectors required by the optimisation (D,G,H,E,M),
and if appropriate, the partial calculation of (f and γ) given the dependency on δx0.

(b) Feedback Phase: As soon as the state (x0) becomes available, either through measurement
or estimation, it calculates the initial deviation (δx0 = x0− x̄0), completes the calculation of
f and γ, and solves the QP. It is this particular term (δx0) which gives the whole approach
the ability to reject disturbances and have an inherent robustness to prediction errors. After
obtaining the solution, the “expansion step” described in the previous subsection must be
taken to calculate the predicted state (and if required, the output) for the next iteration.

A slightly different approach that captures the essence of the “feedback” phase was also implemented
and experimentally tested in this thesis, in particular in the double inverted pendulum work presented
in chapter 6, section 6.6. The aforementioned approach further avoids any possible delay related to
the solution of the QP as this task alone can prove to be quite expensive by itself, particularly if there
are significant active set changes from one step to the next, thus being unable to take advantage of the
hot-starting capabilities of active set methods.

The approach goes as follows: If we assume that the predicted state (x̄0 = x̂k|k−1 = f(xk−1, uk−1))
will be the actual state measured (or estimated), then the initial state deviation will be zero δx0 = 0,
thus we can already proceed to solve the QP during the preparation phase where a vector of Lagrange
Multipliers (λ̄) can be found. Having obtained this vector, and assuming that it won’t be significantly
affected by the actual value δx0 (noting that active set changes can also happen without this term due
to the term D or HδÛ from the previous iteration, or simply because of reference changes), a solution
can be found that re-includes the initial state deviation (δx0) to result in an “unconstrained” correction
to the “approximated constrained” solution.

Following the the procedure in [146], the solution to both types of optimisation (relative and non-
relative) will be given by (3.49) and (3.50), where each of the parts is clearly indicated.

1. Relative

Û = Ū − E−1




Unconstrained︷ ︸︸ ︷
−(HTQ(Xr − X̄)−R(Ū − Ur))

Constrained︷ ︸︸ ︷
+MT λ̄︸ ︷︷ ︸

Preparation Phase

+HTQGδxk︸ ︷︷ ︸
Feedback Phase


 (3.49)

2. Non-Relative

Û = −E−1




Unconstrained︷ ︸︸ ︷
−HTQ(Xr − X̄ +HŪ) +RUr

Constrained︷ ︸︸ ︷
+MT λ̄︸ ︷︷ ︸

Preparation Phase

+HTQGδxk︸ ︷︷ ︸
Feedback Phase


 (3.50)

A general drawback of the RTI Scheme is that because a single SQP step is taken, the solution
might be subject to approximation errors that arise from the linearisation, something which wouldn’t
happen if the standard SQP approach would be used where the dynamics are re-linearised over and
over until convergence.
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For a comparison between the standard NMPC and the RTI Scheme approach, refer to algorithms
2 and 3, as well as figure 5 of [55]. As stated earlier, the method can only guarantee local optimality if
certain conditions such as no reference or state jumps, and starting at the global optimum are satisfied,
as described in section 4.4 of [55]. In addition to these condition, other tuning parameters such as
sampling time, prediction horizon length, integrator accuracy and passing the reference trajectory in
a “smart way” can significantly improve the response of the solution [55].

3.3 Algorithm Details and Auto-generation

In order to provide a clear procedure to implement the overall standard RTI NMPC approach, this
section provides a set of algorithms that allow its application. Ultimately, all the algorithms included in
this section were implemented in efficiently auto-generated C/C++ codes based on the Eigen 3 library
for evaluation against the ACADO toolkit as discussed in the introduction chapter of this thesis.

For simplicity, only the algorithm for implementing the relative framework of the “state-only” cost
function will be provided, although the modifications required to implement the non-relative framework
and/or “state-and-output” cost functions, are quite minimal.

3.3.1 Rederivation of the O(N2) and O(N) algorithms

Before providing the final RTI preparation and feedback algorithms, it is important to understand the
underlying pattern of certain operations beyond their mathematical representation which could allow
the development of key algorithms that would speed-up the whole operation of the implementation. A
key example of this are the O(N2) and O(N) algorithms from the Ph.D. thesis [8] which are absolutely
essential given that they perform the efficient calculation of the Hessian term HTQH, and linear term
HTQ(Xr−X−D−Gδx0) through a recursive-like operation that takes advantage of the known lower-
block-triangular structure of matrix H to avoid the zero terms computations, as well as any repeated
terms that might result from the direct calculation.

As the derivation presented in [8] is slightly unclear given it skips a few steps along the way, we
present a re-derivation of this methodology in this subsection bearing in mind that we will require a
similar procedure for the extensions of this algorithms presented in chapters 5, 6 and 8.

To understand the fundamental operation of these algorithm, let us consider a system with a short
horizon of Np = 3 that will allow us to derive both of these algorithms. The resulting hessian operation
HTQH for this optimisation would be given by:

E =




B0 O O

A1B0 B1 O

A2A1B0 A2B1 B2




T

︸ ︷︷ ︸
HT



q1 O O

O q2 O

O O q3




︸ ︷︷ ︸
Q




B0 O O

A1B0 B1 O

A2A1B0 A2B1 B2




︸ ︷︷ ︸
H

=



E1,1 E1,2 E1,3

E2,1 E2,2 E2,3

E3,1 E3,2 E3,3


 (3.51)
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For a starting point, note that the operation (W̃ = QH), momentarily assigned to a new “dummy”
variable as in [8], is simply given by:

W̃ =



w̃1,1 O O

w̃2,1 w̃2,2 O

w̃3,1 w̃3,2 w̃3,3


 =




q1B0 O O

q2A1B0 q2B1 O

q3A2A1B0 q3A2B1 q3B2


 (3.52)

which in the specific case that the weights (qk) are purely diagonal, can be calculated using the
optimised “asDiagonal()” product operation available in the Eigen 3 library.

Let us now look only at the first column of the Hessian (E), ie. the term given by:



E1,1

E2,1

E3,1


 =



BT

0 BT
0 A

T
1 BT

0 A
T
1 A

T
2

O BT
1 BT

1 A
T
2

O O BT
2






w̃1,1

w̃2,1

w̃3,1


 (3.53)

The method is based on iteratively modifying the terms of the W matrix backwards starting from the
term in the last row (w3,1) which allows a straight forward calculation of the term E3,1. Therefore, to
understand the algorithm, let us begin by calculating this term which is given by:

E3,1 = BT
2 w̃3,1 (3.54)

Notice the following term (E2,1) can be calculated as a function of w̃3,1 by:

E2,1 = BT
1 w̃2,1 +BT

1 A
T
2 w̃3,1

= BT
1 (w

[0]
2,1 +AT2 w̃

[0]
3,1)

︸ ︷︷ ︸
w

[1]
2,1

= BT
1 w̃

[1]
2,1 (3.55)

where the notation w̃[0]
k,j and w

[1]
k,j indicate the initial value, and the value after the modification required

by the algorithm.
Following a similar procedure, the last term (E1,1) can be calculated as a function of w̃[1]

2,1 (and
consequently of w̃[0]

3,1) by:

E1,1 = BT
0


w̃

[0]
1,1 +AT1

w̃
[1]
2,1︷ ︸︸ ︷

(w̃
[0]
2,1 +AT2 w̃

[0]
3,1)

︸ ︷︷ ︸
w̃

[1]
1,1




= BT
0 w̃

[1]
1,1 (3.56)

Thus a clear pattern can be seen where the Hessian can be calculated by recursively modifying the
terms with an expression like w̃[1]

k,i = w̃
[0]
k,i + ATk w̃

[1]
k+1,i and subsequently calculating the Hessian term

as Ek,i = BT
k−1w̃

[1]
k,i.
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Notice this methodology is applicable for calculating any of the other columns of W̃ , however, given
that is known that the “Hessian” is symmetric, the final algorithm only calculates the lower triangular
part of the Hessian and copies the rest of the terms. Moreover, this exact same procedure can be used to
derive the O(N) algorithm from [8] used for calculating the linear term −HTQ(Xr− X̄−D−Gδx0) =

−HTQXe assuming the operation W̃ = −QXe is captured by the “dummy” variable. This again can be
computed efficiently using the “asDiagonal()” method of the Eigen 3 library. Moreover, the procedures
developed above lacked the Hessian term R, and the linear term R(Ū−Ur) to avoid confusion. However,
notice these terms can be easily included in the overall procedure with very small modifications. Thus,
the final O(N2) and O(N) algorithms which include these calculations are given in algorithms 3.2 and
3.3.

Algorithm 3.2: Standard Condensing O(N2) Algorithm
Data: H,Q,R,Ak, Bk, Np

1 begin
2 for i = 1 to Np do
3 w̃Np,i = qNphNp,i; // Initial value of the dummy variable

// For loop running backwards k = Np, Np − 1, · · · , i+ 1
4 for k = Np to i+ 1 do
5 Ek,i = BT

k−1w̃k,i; // Calculate Hessian term component
6 w̃k−1,i = qk−1hk−1,i +ATk−1w̃k,i; // Propagate recursively
7 Ei,k = ETk,i; // Copy transpose
8 end
9 Ei,i = BT

i−1w̃i,i + ri; // Diagonal term calculation
10 end
11 end

Result: E

Algorithm 3.3: Standard Condensing O(N) Algorithm
Data: Q,R,Ak, Bk, Xe, Ū , Ur, Np

1 begin
2 w̃Np = qNpXeNp ; // Initial value of the dummy variable

// For loop running backwards k = Np, Np − 1, · · · , 2
3 for k = Np to 2 do
4 fk = −BT

k−1w̃k + rk−1(ūk−1 − urk−1
); // Calculate linear term component

5 w̃k−1 = qk−1Xek−1
+ATk−1w̃k; // Propagate recursively

6 end
7 f1 = −BT

0 w̃1 + r0(ū0 − ur0); // Initial term outside the loop
8 end
Result: f
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3.3.2 Core Algorithms

In addition to the basic O(N2) and O(N) algorithms, there are 4 additional “core” algorithms that will
form part of the final RTI NMPC approach composed by the “preparation” and “feedback” phases which
are (given in order introduction and usage): 1. Forward Simulation algorithm 2. H Matrix calculation
3. D Vector calculation 4. HδÛ Expansion Step.

The Forward Simulation algorithm is perhaps one of the most fundamental parts of the whole
approach which focuses on the computation of all the linearisation matrices (Ak, Bk), as well as the
simulation of the system for the calculation of the state offsets (dk) required by the multiple shooting
approach. This task can be performed by algorithm 3.4. The algorithm essentially uses the previously
introduced Explicit Euler algorithm 3.1, although as mentioned earlier, one can use any type of inte-
grator that provides the required information (eg. RK4, implicit approaches, etc) for this step. The x̃k
variable used in the algorithm represent a “dummy” variable that essentially captures the “simulated”
value, ie. xk+1 = f(xk, uk). Moreover, notice the algorithm considers the single shooting case in which
x̄k = x̃k, thus making the dk zero.

Algorithm 3.4: Forward Propagation Algorithm
Data: X̄, Ū , x̄0, Np

1 begin
2 for k = 1 to Np do

// Simulation and Linearisation, eg. using algorithm 3.1
3 [x̃k, Ak−1, Bk−1] = Simulate_And_Linearize(x̄k−1, ūk−1)
4 if Single Shooting=1 then
5 x̄k = x̃k; // Special case for the single shooting case
6 end
7 dk = x̃k − x̄k; // Calculate individual offset at each step
8 end
9 end
Result: Ak, Bk, dk

Following this, another fundamental part is the computation of theH matrix which can be efficiently
obtained by the algorithm:

Algorithm 3.5: Standard Condensing H Matrix Calculation
Data: Ak, Bk, Np

1 begin
2 for i = 1 to Np do
3 hi,i = Bi−1; // Calculate initial value in the diagonal
4 for k = i+ 1 to Np do
5 hk,i = Ak−1hk−1,i; // Propagate recursively
6 end
7 end
8 end
Result: H
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The reader might be wondering why the G matrix has not been calculated. What is important to
note is that this matrix is related to the initial “offset” or “state deviation” (δx0), which for all practical
purposes represents exactly the same type of offset as dk given both are propagated through the state-
transition dynamics matrix Ak. Although it is convenient to have this initial offset “separated” from
the rest (ie. the D vector) to be able to obtain closed loop expressions such as (3.49), this is not strictly
required (and indeed, it is not how its operated in the ACADO toolkit) and one can directly embed the
initial offset into the “first” offset by d̄1 = A0δx0 + d1. As a result, a decent number of computations
are avoided by not calculating the G matrix and simply including the initial offset in the D matrix.
This task can be done by using algorithm 3.6.

Algorithm 3.6: Standard Condensing D Vector Calculation
Data: Ak, dk, δx0, Np

1 begin
2 d̄1 = A0δx0 + d1; // Initial value calculate with δx0

3 for k = 2 to Np do
4 d̄k = Ak−1d̄k−1 + dk; // Propagate recursively
5 end
6 end
Result: D

Finally, as explained previously, a key part required by the multiple shooting approach is the
“expansion” step (X̄ = X̄ + D + HδÛ∗), performed by the function “acado_expand()” in the auto-
generated codes from the ACADO toolkit. Notice to perform this operation the algorithm only requires
the efficient calculation of the term δX̃ = HδÛ∗ (assigned a new “dummy” variable) as the other terms
are simple column-vectors. To calculate this, the user can use algorithm 3.7 which propagates the
terms in δÛ∗ recursively through the dynamics δx̃k = Ak−1δx̃k−1 +Bk−1δû

∗
k−1, thus avoiding the zero

terms present in the H matrix.

Algorithm 3.7: Standard Condensing δX̃ = HδÛ∗ Expansion

Data: Ak, Bk, δÛ∗, Np

1 begin
2 δx̃1 = B0δû

∗
0; // Initial value

3 for k = 2 to Np do
4 δx̃k = Ak−1δx̃k−1 +Bk−1δû

∗
k−1; // Propagate recursively

5 end
6 end
Result: δX̃

3.3.3 RTI Algorithms

Having established all the aforementioned “core” algorithms, the final RTI NMPC is finally defined by
the preparation and feedback algorithms, (3.8) and (3.9) respectively, which are based in terms of the
previous algorithms to simplify the verification process of each working part of the overall algorithm.
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Algorithm 3.8: Standard RTI NMPC Preparation Phase Algorithm
Data: X̄, Ū , λ̄, x−1, u−1, Q,R,Np

1 begin
2 x̄0 = f(x−1, u−1); // Calculate predicted state from previous state and input
3 Shift X̄,Ū , and optionally λ̄ consistently ; // Initial Value Embedding
4 [Ak, Bk, dk] = Forward(X̄, Ū , x̄0, Np); // Run algorithm 3.4
5 [H] = CalculateH(Ak, Bk, Np) ; // Run algorithm 3.5
6 [E] = CalculateE(H,Q,R,Ak, Bk, Np); // Run algorithm 3.2

7 M =
[
I −I HT −HT

]T ; // Form M Matrix
8 end
Result: E,M,Ak, Bk, dk, x̄0

Algorithm 3.9: Standard RTI NMPC Feedback Phase Algorithm
Data: x0, x̄0, X̄, Ū , λ̄,Xr, Ur, E,M,Ak, Bk, dk, Q,R,Np, Umax, Umin, Xmax, Xmin

1 begin
2 δx0 = x0 − x̄0; // Calculate state deviation from measurement
3 [D] = FormD(Ak, dk, δx0, Np); // Run algorithm 3.6
4 Xe = Xr − X̄ −D; // Calculate X error
5 [f ] = Calculatef(Q,R,Ak, Bk, Xe, Ū , Ur, Np); // Run algorithm 3.3

6 γ =




Umax − Ū
Ū − Umin

Xmax − X̄ −D
X̄ +D −Xmin


; // Calculate constraint vector γ

7 [δÛ∗, λ̄] = QPSolve(E, f,M, γ, λ̄); // Solve the Quadratic Program
8 Ū = Ū + δÛ∗; // Calculate new nominal input
9 [δX̃] = Expand(Ak, Bk, δÛ

∗, Np); // Run algorithm 3.7
10 X̄ = X̄ +D + δX̃; // Calculate new nominal state
11 end

Result: X̄, Ū , λ̄

3.3.4 Auto-generation

An important contribution of this thesis is on the popular topic of “auto-generation”, available for
example in the ACADO toolkit [66], where the user can express a given OCP in terms of “symbolic”
variables, expressions and nonlinear functions, as well as penalisation terms and constraints which are
then translated by an “auto-generation” routine to automatically coded C/C++ routines that include
declarations of functions as well as matrices and vectors of specific sizes that implement the overall RTI
approach for that specific OCP. The ACADO auto-generation routine includes automatic differentiation
process typically based on CasADi (Computer Algebra Systems for Algorithmic Differentiation and
integration) [8], thus relieving the user from providing the underlying expressions required for the
linearisation matrices such as Ak, Bk or Ck, which by itself can be quite a daunting task for complex
nonlinear systems. In our case, the symbolic toolbox from Matlab was used in combination with the
Matlab Coder toolbox which allows writing expression in C/C++ notation. Moreover, although most
of the required steps can be done by a “generic” implementation of algorithms 3.9 and 3.8, a key step
performed by the ACADO toolkit is the unrolling of the required for-loops to avoid any unnecessary
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additional calculation related to pointers or indexing variables of the respective matrices, although
this may be avoided simply by activating the −O3 C optimisation flag when compiling the C/C++
codes which performs optimised for-loop unrolling. Finally, one important thing that the ACADO
lacked was the use of linear algebra routines readily available in popular packages such as LAPACK or
BLAS to perform matrix-matrix or matrix-vector operations efficiently, and instead relied on tailored
auto-generated matrix-matrix and matrix-vector functions to achieve an overall “self-contained” solver
and “reduce the software maintenance effort” [64]. The recent development of ACADOS [143] tackled
this issue by using the Basic Linear Algebra Subroutines For Embedded Optimisation (BLASFEO)
implementation. In our case, the solvers developed in this thesis make use of the Eigen 3 library
which offers competitive performance with extremely clean and expressive C++ templates (similar to
MATLAB), as well as supports AVX (Advanced Vector Extension) vectorisation instructions and FMA
(Fused Multiply-Addition) operations [15] which overall were observed to speed the code significantly,
and resulted in faster solvers when compared to the original ACADO toolkit using the standard RTI
NMPC case detailed in this chapter as seen for example in tables 5.12 or 6.6.

3.3.5 Generic Computations

To be able to evaluate the computational performance of the RTI NMPC approach of this chapter as
a whole, one would typically need to define a specific dynamical system to analyse and implement all
the algorithms presented above to be able to measure computation times. Thus, the resulting overall
computational performance (or “speed”) would inevitably vary from case to case, for example depending
on the initial conditions of the whole simulation, the time it takes to simulate and linearise the system,
the type of QP solver used, the number of active-set changes that an active-set Quadratic Program
requires, etc. However, there are a few key operations and algorithms which DO NOT depend on this
such as the computation of algorithms 3.2, 3.3, 3.5, 3.6 and 3.7. Hence, we can test their computational
performance using random or “generic” matrices (Ak, Bk) for given optimisation sizes (Np, nx, nu) of
interest without requiring to define a specific dynamical system, resulting in a “generic computations”
analysis. This is something that we will use throughout the thesis to compare certain algorithms
against the standard algorithms introduced in this chapter to demonstrate the inherent advantages (or
in some cases, disadvantages) that the proposed approaches have.

3.4 Stability, Recursive Feasibility and Convergence of NMPC

One of the most important properties in the topic Model Predictive Control in general (linear or
non-linear) is stability [28, 122], particularly if one is interested in a stabilisation problem, with the
understanding that the NMPC optimisation framework can also be used for non-stabilising problems
such as the Wave Energy Conversion device presented in chapter 5. In addition to this basic property,
another important property is “recursive feasibilty” which is the ability to obtain a feasible solution after
having obtained one in the previous step [94]. To guarantee both of these properties, one would ideally
solve an “infinite horizon” problem where Np → ∞ which would allow you to obtain a “stationary”
(non-changing) optimal control sequence or “plan” that automatically guarantees a decrease in the
overall cost function from step to step (Jk+1 < Jk) resulting in Lyapunov stability [28], and guarantees
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recursive feasibility simply by being able to follow the stationary plan. In practice, however this is not
only intractable, given the resulting optimisation would require a significantly higher time which would
prevent the user to implement it in real-time, but also improbable, given that real systems typically
contain a relatively large amount of uncertainty which would cause the optimisation to “change the
plan” at each time step. Instead, one typically has to select a finite horizon (Np), which brings the
question of how can we guarantee nominal stability and recursive feasibility using a finite horizon?,
ie. stability and recursive feasibility of the optimisation WITHOUT uncertainty, as it would be the
least basic requirement for the overall methodology to be relevant in theory.

On the simplest case one can simply test or “tune” the optimisation for different prediction horizons
and weights, and the properties can be investigated “after” the optimal solution is obtained (sometimes
referred as “a-posteriori” [18]). Alternatively, one can embed the desired stability and recursive fea-
sibility characteristics into the optimisation “before” even obtaining a solution (sometimes referred as
“a-priori”), thus resulting in an optimisation that “by design” has the properties of interest. Two of the
most well known methods for guaranteeing these properties are “zero-terminal constraints” [28], and
“terminal weights” (sometimes called terminal-modes or dual-mode [122]) with invariant sets, which
we will discuss in the following.

3.4.1 Zero-Terminal Constraints

In the case of “zero-terminal constraints”, an equality constraint is imposed in the last state of the
predictions in the form of x̂k+Np = 0, which can be done by simply selecting the last row of the
linearised prediction model (3.17a) and embedding the equality in the optimisation. To prove nominal
stability in this scenario let us consider the following. Without loss of generality, consider that the
nonlinear systems dynamics evaluated at the origin stays at the origin, ie. (f(0, 0) = 0), with the
overall cost function targeting the origin (ie. no state or input references Xr = 0, Ur = 0) and
the non-linear optimisation run until convergence under second order necessary conditions using an
appropriate step-size selection scheme which ensures proper nonlinear-optimisation [31]. By embedding
the aforementioned equality, and assuming the optimisation starts at a converged optimal feasible
solution, the very first optimisation, ie. the cost at time k (Jk) would result in an “optimal” feasible
sequence of predicted states and inputs, eg. given by [x̂∗k+1|k, û

∗
k|k, x̂

∗
k+2|k, û

∗
k+1|k, · · · , û∗k+Np−1, 0], for

which only the first input (u∗k|k) would be applied, thus resulting (under nominal conditions) in the
predicted state x̂∗k+1|k. Note that the value of this cost function (Jk) depends, not only on xk, but
also on where the solution was started due to the existence of local minimas. This makes obtaining
rigorous stability guarantees of nonlinear system a much harder problem given the solution can no
longer be written as a Lyapunov function as discussed in [117]. Nonetheless, under ideal conditions,
some sense of stability can be found when the solution is properly hot-started at the following time step
(k + 1). Notice that the costs related to the first state/input pair (x̂∗k+1|k, û

∗
k|k) at this time step are

now disregarded, thus decreasing the overall cost precisely by Jk+1 = Jk − x∗k+1|k
TQx∗k+1|k − u∗kTRu∗k.

Moreover, given that the previous solution can be used, the equality (xk+Np+1|k+1 = 0) is feasible
and does not add any additional cost. Furthermore, because the initial equality (xk+Np|k+1 = 0) has
now been “relaxed”, the optimisation can now do “better”, and consequently will give a decrease of AT
LEAST Jk+1 ≤ Jk − x∗k+1|k

TQx∗k+1|k − u∗kTRu∗k as discussed in [28], resulting in nominal stability.
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One important thing to understand is that when using this type of methodology, the resulting closed
loop will be sub-optimal when compared to the “original” infinite horizon optimisation (or “target”), or
even when compared to the cost without the terminal constraint, and may lead to “ill-posed” solutions
where the “plan” made at a given step may differ significantly from the next [122].

To illustrate this, let us consider the following example:

Example 3.2. Zero-Terminal Constraint Sub-optimality and Ill-Posedness

Consider the optimisation of the following discrete-time state space xk = [x1, x2]T given by:

xk+1 =

[
2 −1

1 0

]

︸ ︷︷ ︸
Ak

xk +

[
0.1

0

]

︸ ︷︷ ︸
Bk

uk (3.57)

subject to the penalisation weights qk = diag([1, 1]), rk = 5, with a prediction horizon of Np = 10, and
an initial condition of x0 = [5, 2]T (No input or state constraints to keep the example simple).

Figure 3.3a presents a comparison between the optimal closed loop infinite horizon solution obtained
via the standard Linear Quadratic Regular (LQR), depicted by the blue line; and the closed loop
performance that results from implementing the zero-terminal constraint approach in this system,
depicted by the red line. From this figure it can be seen how the open loop predictions of the approach,
depicted by the red-dashed lines which clearly present the embedded zero-terminal constraint, differ
moderately from the final closed loop trajectory (ie. the red line), thus resulting in an “ill-posed”
prediction/optimisation framework [122] that essentially represent a “meaningless” optimisation where
the predicted optimal is not even close to the closed-loop optimal. Moreover, it is worthwhile noting
that the total costs (J) of both simulated scenarios (ie. the red and blue trajectories) resulted in JLQR =

2, 431 and Jzero = 2, 538, thus giving a sub-optimallity of around ∆Jzero =
(
Jzero
JLQR

− 1
)
×100 = 4.42%.

What is most interesting is that if we simply optimise using the standard cost, ie. without the zero-
terminal constraint; without the “a-priori”/“by design” stability, the closed loop solution also results
in a stabilising feedback control law. The resulting behaviour can be seen in figure 3.3b where the
closed loop solution, depicted by the red thick dashed line, is almost indistinguishable from the LQR
solution (blue line) resulting in a sub-optimality of ∆Jno−zero = 0.06%; and the open loop predictions
being somewhat “closer” to the closed loop response. This behaviour is to expected given that the zero-
terminal constraint essentially moves the optimal “as far away as necessary” from the solution without
the terminal constraint (in this case, the unconstrained solution) to satisfy the requested condition,
even if this implies having to “over-react”, something which can be appreciated from the initial input of
figure 3.3a being “bigger”, ie. having a greater cost. As a result, the optimisation can give rather poor
performance and have significantly reduced feasibility “volumes” when using this type of approach.

The key takeaway from this example is that even though the method has the desired basic proper-
ties, it presents a potential disadvantage which can be avoided by using the terminal weight method-
ology described in the following subsection.
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3.4.2 Terminal Weights, Invariant Sets and Dual Modes

An alternative way to ensure nominal stability and recursive feasibility of the closed-loop solution,
and indeed one of the most competitive approaches, is by including a combination of a terminal
weight, sometimes called infinite horizon costing [66]; and a terminal set of inequality constraints,
sometimes called the Maximum Admissible Set (MAS) [122] which achieve the same property but are
less restrictive [28]. The problem is therefore a two-fold part, each of which deserves it own separate
explanation which we will discuss in the following.

Terminal Weights, Infinite Horizon Costing and Dual Modes

The idea of infinite horizon costing is based on Bellman’s “principle of optimality” which set the
foundation for the Dynamic Programming approach back in the 1950s [28]. This principle essentially
states that each step of the predictions (k, k + 1, k + 2, etc.) in an Optimal Control Problem is its
own “subproblem”, and we can solve the “total” Optimal Control Problem by optimising each step
“separately” and connecting them with their immediate following step through a “cost-to-go” function
that captures the “rest” of the optimal costs that emerge from that step on-wards. The simplest way
of demonstrating this principle if through a re-derivation of the so called Discrete Algebraic Riccati
Equation (DARE) [154] (an essential part of LQR), baring in mind that a similar procedure will be
used in chapter 7 to derive the terminal weight for the approach proposed in chapter 5.

Without loss of generality, consider the optimisation of a linear state space with a cost function
(J) connecting the quadratic costs of two subsequent steps (k and k + 1) given by:

min
uk−1,xk,uk,xk+1

J =uTk−1Ruk−1 + xTkQxk︸ ︷︷ ︸
Jk

+uTkRuk + xTk+1Pk+1xk+1︸ ︷︷ ︸
Jk+1

(3.58a)

s.t. xk+i = Axk+i−1 +Buk+i−1 ∀i = [0, 1] (3.58b)

Note that this cost function is essentially unconstrained (no inequalities), hence we can apply the
standard methods for unconstrained optimisation discussed subsection 3.1.3.

By substituting the system dynamics (3.58b) in the second stage (Jk+1) and grouping terms w.r.t.
the decision variable of this stage (uk) to formulate a standard QP we obtain:

min
uk

Jk+1 = (Axk +Buk)
TPk+1(Axk +Buk) + uTkRuk

= uTk (BTPk+1B +R)︸ ︷︷ ︸
Ek

uk + 2uTk (BTPk+1Axk)︸ ︷︷ ︸
fk

+ATPk+1A (3.59)

Considering xk as an “initial condition” to this stage (Jk+1), the optimal solution for uk is given by:

u∗k = min
uk

(Jk+1) = −E−1
k fk = − (BTPk+1B +R)−1BTPk+1A︸ ︷︷ ︸

Kk

xk = −Kkxk (3.60)

Note that this is true even if the cost of the first stage (Jk) were included in the optimisation.
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Substituting this control law in the state dynamics (3.58b) results in the “closed loop” state dy-
namics given by:

xk+1 = (A−BKk)︸ ︷︷ ︸
Φk

xk = Φkxk (3.61)

By substituting this “new” state dynamics (3.61) and the optimal input (3.60) into (Jk+1) of the
original cost function (3.58a), the second stage cost (Jk+1) can now be represented in terms of the
“initial/previous state” (ie. the state to be optimised in the previous stage) exactly as:

Jk+1 = xTk (ΦT
k Pk+1Φk +KT

k RKk)xk (3.62)

By grouping terms w.r.t xk of the original cost function with the new “closed loop” expression (3.62)
results in alternative way of expressing “total” cost with only a single stage that “captures” the cost of
the following stage in the form of:

J = Jk + Jk+1 = uTk−1Ruk−1 + xTk (Q+ ΦT
k Pk+1Φk +KT

k RKk)︸ ︷︷ ︸
Pk

xk (3.63)

where the term Pk = Q+ ΦT
k Pk+1Φk +KT

k RKk is known as the Discrete Algebraic Riccati Equation
(DARE) which is called a “dynamic recursion” [28].

A more commonly found expression for DARE is Pk = Q+ATPk+1A−ATPk+1BKk which can be
found by proving:

Pk = Q+ ΦT
k Pk+1Φk +KT

k RKk︸ ︷︷ ︸
term1

= Q+ATPk+1A−ATPk+1BKk︸ ︷︷ ︸
term2

(3.64)

This reduces to proving that “term1” and “term2” are exactly the same which is given in the following:

ΦT
k Pk+1Φk +KT

k RKk

= (A−BKk)
TPk+1(A−BKk) +KT

k RKk

= ATPk+1A− 2ATPk+1BKk +KT
k (BTPk+1B +R)Kk

= ATPk+1A− �2ATPk+1BKk +ATPk+1B((((
((((

((
(BTPk+1B +R)−1

((((
(((((BTPk+1B +R)Kk

= ATPk+1A−ATPk+1BKk (3.65)

Based on this idea, we can obtain a “static” cost-to-go (typically denoted PN ) by iterating the DARE
until convergence (eg. until ||Pk−Pk+1|| < ε) which represent the “infinite horizon cost” of the optimal
unconstrained solution [28]. Thus, we can embed this cost-to-go into the optimisation by imposing it
into the last state penalisation (qk+Np = PN ), which would capture the costs of the stages related to
[x̂k+Np , ûk+Np ,→, x̂k+∞, ûk+∞]. This strategy is sometimes called the open-loop paradigm of “Dual-
Mode” Predictive Control given this terminal cost represents a “secondary/dual static” controller of the
form uk+i = −KLQRxk+i embedded in the steps i = [Np, Np + 1, · · · ,∞] [122] and uses an “open-loop”
optimisation in the prediction horizon. We will introduce the closed loop paradigm later in chapter 6.
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Note that we can use this cost-to-go in the context of NMPC to approximate the infinite horizon
optimal solution around a steady state referent point (xss, uss) [66]. In the specific case where the
initial optimisation enters a “terminal region” where the linear approximation is valid and can also
be guaranteed recursive feasibility (something which can be tackled separately with invariant sets),
the controller will follow the initial “infinite horizon optimal plan”. A demonstration of this will be
presented in example 3.3. This will automatically ensure a decrease in the costs of precisely Jk+1 =

Jk − xTkQxk − uTkRuk (in Linear MPC), thus allowing to prove nominal stability [28, 66, 122].

Remark 3.5. Exact Terminal Weight for Linear MPC
In contrast to nonlinear systems where the cost-to-go is only an approximation, in linear systems

under nominal conditions it represents the exact infinite horizon cost to the desired precision.

Recursive Feasibility, Invariant Sets and Maximum Admissible Sets

In order to prove recursive feasibility of the optimisation when using the aforementioned terminal
weights methodology, we require the use of invariant sets, defined as:

Definition 3.1. Invariant Set
Considering dynamical systems of the general form xk+1 = f(xk), a set of states xk ∈ S is said

to be an “invariant set” if for any initial condition x0 ∈ S, all future states that result from this
condition propagated through the dynamical system remain inside the set, ie. xk+1 = f(xk) ∈ S ∀k =

[0, 1, · · · ,∞].

In the context of recursive feasibility, we can use this to define an invariant set which satisfies
that for any feasible initial condition (x0), all future state and inputs satisfy xmin ≤ xk ≤ xmax and
umin ≤ uk ≤ umax ∀k = [0, 1, · · ·∞]. In the specific case where the system enters the terminal
region, we can use this concept to calculate a “Maximum Admissible Set” (MAS) which captures the
“maximum” set of states inside the constraints that would satisfy this requirement, particularly when
the “static” infinite horizon feedback control law, ie. uk = −KLQRxk is applied [122].

By embedding the resulting MAS into the terminal state inequality constraint (xMAS−min ≤
x̂k+Np ≤ xMAS−max) along with the aforementioned terminal weights, the optimisation at any point
can only find a solution that will satisfy, not only the states and inputs within the prediction horizon
(k → k+Np), but all the future states and inputs that will emerge after it (k+Np →∞) considering
the unconstrained control law (uk = −KLQRxk) was applied, thus guaranteeing recursive feasibility of
the infinite horizon optimisation.

It is important to note that the MAS has not only one inequality constraint per state, but a set
of inequalities that in combination capture the “overall requirements” for all future states and inputs
to be satisfied [122]. Depending on the specific dynamical system and optimisation setup, this may
increase the overall number of constraints significantly, although one can typically apply a reduction
by disregarding the so called “redundant constraints”.

Example 3.3. Dual Mode Infinite Horizon Example

To illustrate the performance that one can obtain from using both of this methodologies, consider
the optimisation of the discrete system from example 3.2 using a prediction horizon of Np = 15.
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Figure 3.4: Example Predictions for Dual Mode and Non-Dual Mode MPC using Infinite Horizon
Terminal Weights

Moreover consider optimisation uses the same weights qk = diag([1, 1]), rk = 5, the same initial
condition x0 = [5, 2]T , with the additional state and input constraints, −10 ≤ (xk)1 ≤ 10 and −7 ≤
uk ≤ 10.

Figure 7.1 shows a comparative simulation for this scenario in two cases: with and without the
terminal weight. In this figure, the closed loop infinite horizon optimal response, ie. the response
if Np → ∞, is depicted by the blue line; the red dashed line represents the predicted trajectory at
the start of the simulation WITH the terminal weights, ie. using a Dual Mode prediction framework;
and the green dot-dashed line represents the predicted trajectory WITHOUT the terminal weights,
ie. a Non-Dual Mode Prediction. Note that the solution enters an invariant set at approximately
T = 0.08 (s) where the rest of the solution within the horizon lies inside the state constraints. This
allows the predicted response of the dual-mode approach (red-dashed line) at the start of the simulation
to match the infinite horizon optimal response exactly. In contrast, the predicted response of the non-
dual approach suffers from ill-posed prediction as signaled from the ellipsoids in the figure.

3.4.3 Convergence

In addition to the methods presented in the previous subsections which tackled the problem of stability
and recursive feasibility in general MPC frameworks, a potential issue in the specific case of Nonlin-
ear MPC is the convergence of the underlying Gauss-Newton method [28], inevitably related to the
linearisation process. In the neighbourhood of the optimal solution, that is when δX̂∗ ≈ 0, δÛ∗ ≈ 0

and δŶ ∗ ≈ 0, one can expect the Gauss-Newton method to have a linear local convergence rate [28],
ie. ||Û [i+1] − Û∗|| ≤ κ||Û [i] − Û∗||, which allows the method to converge relatively fast if the devi-
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ations are small. What we must understand is that the underlying linearised prediction models can
result in prediction errors which affect the overall “decision making” process where the optimisation
may take actions based on prediction models that are not representative of what will actually happen.
We have already showed an example of this in the autonomous/auto-correcting feature example 3.1
presented in section 3.1.2. This prediction errors must not be confused with the concept of “ill-posed”
or “meaningless” optimisation discussed in the zero-terminal constraint approach where the predicted
responses differed significantly from the closed loop performance, something which can happen even in
linear MPC. Instead, one can think of the convergence problems of SQP method even in a “stationary”
manner, ie. without even moving forward in the horizon. In the case of multiple shooting, given the
method enforces the linearisation around the predicted trajectory and compensates for any prediction
errors using the aforementioned offsets, it embeds a certain “consistency” between the predictions from
one iteration to the next which ultimately result in better convergence properties.

Likewise, a simple way of ensuring small prediction errors and consequently, convergence of the
Gauss-Newton method is by enforcing the deviations (δÛ , δX̂, δŶ ) to be sufficiently small. The stan-
dard approach of ensuring this is by using smaller steps, eg. in the form of x+ = x− + α∆x with
α = (0, 1], which allows the user to take reduced step in the optimal direction. The selection of the
step-length is not a trivial task, but can be done in a relatively straight forward manner using back-
tracking line search methods [28], where the linearised prediction is compared with the actual response,
and the step-length is iteratively reduced until the difference is sufficiently low. However, given that
this thesis is based on the RTI scheme which typically makes a full step [55], step-selection was not im-
plemented as it can be a rather time consuming task [28]. Instead, in the case where it was absolutely
necessary to improve convergence, a relatively simple approach was used based on imposing additional
penalisation weights (Qδ, Rδ) in the input and/or state deviations of the original cost function (3.1),
resulting in an alternative cost (Jδ) in the form of:

Jδ = (Xr − X̂)TQ(Xr − X̂) + (Ur − Û)TR(Ur − Û) + δX̂TQδδX̂ + δÛTRδδÛ (3.66)

This allows the optimal solution to have the same overall target, but intrinsically avoid any “big”
movements that may emerge whilst allowing small movements in the deviations. Because the prediction
errors have a “growing” nature where the predictions at the end are typically higher, as demonstrated in
the autonomous/auto-correcting feature example 3.1, we can further modify this method by imposing
exponentially decreasing weights in (Qδ, Rδ) which would prevent big movements in the earlier stages
and allow bigger movements at later stages, thus preventing big deviations on the earlier stages from
propagating through the linearised dynamics.

This method was observed to produce excellent results in various systems that were used as case
studies such as the Unmanned Surface Vehicle of chapter 4 and the Inverted Pendulum of chapter 5.
The method was particularly required for the challenging Triple Inverted Pendulum System which is
a highly nonlinear system that was used in case study 6.5 of chapter 6. It should be noted however
that although the optimisation has the same overall “target” given that the deviations at convergence
will be zero, including the additional penalisation term will affect how fast it reaches the optimum and
therefore will affect the overall frequency response of the solution. Thus, this method must be used
according to the requirements of the specific optimisation setup.
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3.5 Offset Free Control

Although it may sound trivial, offset free control is an important aspect to consider in an (N)MPC
optimisiation. There are 3 main methods in which offset-free control can typically be achieved, namely:
disturbance estimation methods [69], and explicit [109, 114] or implicit [122, 146] integral methods. A
basic requirement to achieve this is that the optimisation uses “unbiased” prediction models along with
“unbiased” optimisation costs [121, 122]. In simple terms, the prediction models must account for any
possible low-frequency or steady state disturbance which would allow the optimisation to understand
precisely where the system is going when a given action is taken. On the other hand, an “unbiased”
cost allows the optimisation to understand precisely where does it need to go in order to reach the
desired reference whilst avoiding the penalisation terms of the optimisation to “fight” each other.

Example 3.4. Disturbance Estimation Offset-Free Example

To illustrate these concepts and provide an example of disturbance estimation methods, consider
the optimisation of a second order model given by:

xk+1 =

[
1.8 −0.81

1 0

]

︸ ︷︷ ︸
A

xk +

[
0.1

0

]

︸ ︷︷ ︸
B

uk (3.67)

Let us assume that the model is augmented with an “input-disturbance” state as in [69], in the form:

[
xk+1

dk+1

]
=

[
A B

O I

][
xk

dk

]
+

[
B

O

]
uk (3.68)

This model allows the predictions to be unbiased in the case where there is a “known” input disturbance
(dk). Moreover, the model assumes that the disturbance is low-frequency, or ideally constant and it
assumes it will be kept constant for the entire prediction horizon as seen from the identity matrix.

Now, let us consider the optimisation of this system using a prediction horizon of Np = 100 with
penalisation weights q = diag([1, 1, 0]) and r = 10 where the objective is to bring the state to the origin
(Xr = 0 - regulation) from the random initial condition (xk = [−1.3499, 3.0349]T ), and considering
a disturbance of dk = 10. To cancel this disturbance and achieve the desired regulation task, the
objective function must set the input references as Ur = −10. In an ideal world, both of this variables
can be found, eg. using disturbance estimation methods as in [69], and calculating the required input
reference to achieve the desired objective, including the cancellation of the input disturbance. However,
in order to illustrate the concepts of “biased” predictions, and “biased” costs, consider the 3 scenarios
of figure 3.5: the first one being correct knowledge of both input disturbance, and input reference,
depicted by the blue line; the second one being correct knowledge of disturbance, but incorrect input
reference, thus resulting in a “biased” cost function with an “unbiased” prediction model, depicted by
the red dashed line; and the third one being incorrect knowledge of disturbance, but correct input
reference, resulting in a “biased” prediction model with an “unbiased” cost function, depicted by the
green dot-dashed line.
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Figure 3.5: Comparison of Different Scenarios using Disturbance Estimation

From this figure, it can be appreciated that the only response reaching the origin is the blue
line which has both “unbiased” prediction models and costs, thus reaching a state at the end of the
simulation where the overall costs are zero, as signaled by the inner data tips. On the other hand, the
optimisation in the case of the red dashed line is able to calculate precisely where the solution would go
for a given set of decision variables (“unbiased prediction model”) given it has the correct disturbance
value. However, given that it requires an input or Û = −10 to reach the objective X̂ = Xr = 0,
and the objective penalises any input deviation from zero, the terms of the optimisation “fight” each
other (“biased cost”) to achieve a consensus that minimises the overall cost. Lastly, the optimisation in
the case of the green dot-dashed line has the correct overall target (“unbiased cost”), but is unable to
understand how or why it should take the solution to the desired input reference given it predicts that
the state would go elsewhere (“biased prediction model”) with that input value which again, causes the
terms of objective to “fight” each other until reaching a consensus.

The second type of methods to be considered are integrator methods such as the one used for
the NMPC of a Quadcopter in [114] where the integral errors are “explicitly” included in the predic-
tions. Although they are very commonly used, this type of methods pose an interesting disadvantage,
particularly when considered in an NMPC framework. To illustrate this, let us use a simple example.

Consider the optimisation of the double integrator model of example 3.2. In the case of integrator
methods, the model must be augmented in the form:

[
xk+1

eik+1

]
=

[
A O

−CA I

][
xk

eik

]
+

[
B

−CB

]
uk (3.69)

where eik+1
= eik − C(Axk −Buk) = eik − yk+1 represent the so called integral error-dynamics [109].
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To optimise this system, the user must then select penalisation weights, including one for the
integral state which will be used to optimally minimise the predicted integral state and achieve reference
tracking. For this example, we selected penalisation weights of q = diag([1, 1, 0.01]) and r = 0.1, and
used a prediction horizon of Np = 100. The overall objective was to reach an output of yk = (x1) = 15

in the first state, ie. with the state-to-output matrix C = [1, 0]. Moreover, to provide a comparison
which will allow us to illustrate the disadvantage of the method, the system was also optimised using the
disturbance method of equation (3.68) with the weights q = diag([1, 1, 0]) and r = 0.1. Both scenarios
were simulated for T = 5 (s) starting from the origin under nominal conditions (no disturbances), and
an input-disturbance of dk = 10 was injected at time T = 2.5 (s). This disturbance was estimated
using the first-order estimation method described in equation (14) of [49], with a constant of α = 0.9.
Finally, the reference of the input for the disturbance estimation method was set at Ur = −dk to cancel
the disturbance. The simulations can be seen in figure 3.6.
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Figure 3.6: Difference between Steady State Predictions of Integral Control (3.6a) and Disturbance
Estimation (3.6b) Offset Free Strategies

From the integral control figure 3.6a, it can be appreciated that despite the solution reaching the
desired state both, with and without the presence of the disturbance, the optimisation results in a
steady ill-posed prediction where the optimisation is attempting to balance the costs between the
integral state (eik), the original state (xk) and the input uk, as depicted by the dashed blue line. In
contrast, the disturbance estimation method of figure 3.6b is able to estimate the disturbance with the
first-order method as seen from the red-dashed line, and results in a well-posed optimisation where the
prediction and closed loop responses are identical. Although the ill-posed effect seen in the integral
control example may not be as significant in practice, it does represent a potential problem specifically
when considered for NMPC given the optimisation would be linearising the system around potentially
ill-posed predicted trajectories which could otherwise prove to be harmful for the optimisation. On the
other hand, it is quite notorious how the disturbance estimation method achieved a significantly faster
convergence to the specified state-references whilst having a similar disturbance rejection response.
This is because the disturbance method does not require to “integrate” the error as in the integral
method in order to achieve a desired objective. As a conceptual example, the disturbance method could
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be seen as having only Proportional+Derivative actions of the well known PID controller, thus avoiding
the well known 90◦ phase shift that comes from including integral actions. This could ultimately
result in faster and better performance, and so the user must be aware of the inevitable performance
degradation when considering integral methods.

Finally, the last type of optimisation are those of “implicit” integrated models. An example of
these are the so called Controlled Auto-Regressive Integrated Moving Average (CARIMA) models
[122], which implicitly embed an integrator into the system dynamics. Two variants for this exist, the
first one being an augmented system state space with the form:

[
∆xk+1

yk+1

]
=

[
A 0

CA I

][
∆xk

yk

]
+

[
B

CA

]
∆uk (3.70)

as presented in [146]. Note the remarkable resemblance with the integrator model of (3.69).

The second variant, which is mostly used for ARMAX (or equivalently CARMA) models, is to use
the polynomial convolution where the system’s output is convoluted with the ∆ operator representing
the embedded integrator in the system, resulting in the so called Controlled Auto-Regressive Inte-
grated Moving Average (CARIMA). This model can then be arranged into a state space approach by
using Non-Minimal State Space (NMSS) representations as discussed in chapter 9 of [146]. A general
disadvantage of the CARIMA models is that they are known to be quite sensitive for predictions, and
for this reason they typically require filtering methods such as T-Filters [122], or Kalman Filters [69].

At this point it may still be unclear which method should be used for a given situation. However, to
quote the work done by [69], the authors concluded that “For systems with unmeasured non zero mean
disturbances, the disturbance model implementation in MPC offers the best closed loop performance”
when comparing disturbance estimation with CARIMAmodels. For this reason, this thesis will consider
that any of the dynamical systems and problems to be presented can achieve offset-free control with any
of the presented methods, with the disturbance estimation method being the preferred approach which
was used for the Adaptive Laguerre-based MPC for Attitude Stabilisation of a Quadrotor publication
presented in [49].

3.6 Summary

In this chapter we presented the main theory, notation, mathematical expressions, algorithms and
methods related to standard NMPC which will be used throughout the thesis, provided as a “detailed”
part of the Literature Review which could serve for reference or as an entry point for the new student.

The chapter included a thorough discussion on the topic of Direct Optimal Control in section 3.1.3
where the condensing-based framework for Single/Multiple Shooting “discretisation” was presented. In
this section, we presented the main objective functions of interest along with the prediction models
to be used, and provided the solution to the underlying Optimal Control Problems (OCPs) in two
formats, namely: the Relative and Non-Relative optimisation frameworks. Both of this frameworks
were proven to be equivalent in theorem 3.2, and will be used for reference in the developments of
chapters 4 and 5. Moreover, section 3.2 presented a detailed explanation of Real-Time Iteration (RTI)
Scheme which is considered as the “state-of-the-art” real-time NMPC solution for the rest of the thesis.
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Furthermore, section 3.3 provided a set of algorithms which allow the efficient implementation of
the standard NMPC. This included a re-derivation of the O(N2) and O(N) algorithms from Ph.D.
thesis [8], which are absolutely critical for achieving an efficient implementation and will be used for
reference in chapters 5, 6 and 8 where extensions of these algorithms will be proposed. Additionally,
this section included a discussion around the concepts of Auto-generation and Generic Computations
which will be relevant for some of the computational comparisons performed throughout the thesis.
Afterwards, section 3.4 discussed some of the nominal stability, recursive feasibility and convergence
properties and methods that are typically used by NMPC which will be used for reference, particularly
in chapters 5-8. The chapter ends with section 3.5 discussing 3 of the main methodologies which are
commonly used to achieve offset-free control in MPC optimisation frameworks.



Chapter 4

Input Parameterised Nonlinear Model
Predictive Control with Applications

In the previous chapter, we introduced the general technical background and baseline methodologies to
be used in this thesis. Along the chapter we discussed topics such as multiple shooting discretisation,
prediction models, optimisation methods, the Real Time Iteration (RTI) Scheme, algorithms, auto-
generation, common techniques for stability, recursive feasibility guarantees, methods for improving
convergence and offset-free control to provide a basis for the following chapters.

Following the contents of chapter 3 of [146]: Discrete-Time MPC Using Laguerre Functions, as well
as following the works of Dr. Rossiter and co-authors along the topic of Laguerre and Kautz Polyno-
mials eg. in [2–4, 78, 79, 125], all of which focused on their implementation in Linear MPC, these type
of approaches were initially considered an interesting research direction for their implementation in the
context of the RTI NMPC. Thus, in this chapter we will introduce the concept of Input Parameterised
Nonlinear Model Predictive Control, along with important characteristics, advantages and disadvan-
tages, which will provide a clear insight and motivation for their use in specific applications. It’s worth
mentioning that this approach has been investigated for NMPC in other works such as [33, 42], but it
is often found that certain important details, alternatives and analysis that emerge from its application
have been omitted in their general discussion. This provided the opportunity for the contents of this
chapter which include a set of algorithms for its efficient implementation to be considered as an initial
contribution of this thesis. Moreover, the contents of this chapter are considered a pre-requisite for the
method of the following chapter 5, given it implements a specific type of input parameterisation.

Along the contents of this chapter, a number of conference papers were published, all of which
will be used as reference and can be found in the Appendix D of this thesis. These include an initial
conference paper presented in UKACC 2018 on the topic of Laguerre-based Adaptive MPC for Attitude
Stabilisation of Quadrotors [49], which is related to the work presented in case study of section 4.3.
Moreover, the work done with Daniel McCullough on the topic of Unmanned Surface Vehicles published
in IFAC 2020 [100], provided the models and certain key characteristics for the application of the novel
Laguerre/Fourier Input Parameterisation presented in case study of section 4.4. Finally, the work done
with Juan Guerrero-Fernandez on the topic of Wave Energy Converters published in IFAC 2020 [59]
was used in the case study from section 4.5 to illustrate a key disadvantage surrounding this general
methodologies, providing the main motivation behind the approach later introduced in chapter 5.

59
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The chapter is organised as follows: Section 4.1 introduces the general concepts, formulations and
optimisation procedures for obtaining Input Parameterised NMPC solutions, along with theorem 4.1
which will provide the foundation for important discussions in chapter 5. Section 4.2 introduces a
set of algorithms, along with the relevant RTI preparation and feedback phases algorithms required
for the implementation of the proposed approach under the RTI Scheme, and concludes with with
a generic computation comparison of the relevant algorithms where the computational advantages
can be seen. Section 4.3 presents the case study of an Attitude Stabilisation NMPC controller for
a Quadrotor using the so called Laguerre polynomials as an extension of the work published in [49]
to illustrate the potential for significantly increased computational performance along with minimal
performance losses when using the RTI Scheme. Section 4.4 presents the case study of an Unmanned
Surface Vehicle (USV) using a novel Fourier/Laguerre polynomial basis function to provide the control
system with tailored frequency responses that achieve the minimisation of hull impact-forces on the
USV from [62, 100], as well as providing improved disturbance rejection properties when compared
to the standard Fourier basis function. Finally, 4.5 presents an extension to the case study of the
Wave Energy Converter (WEC) published in [59] which applies the so called Chebyshev Polynomials
to illustrate important disadvantages on this type of methodology. The chapter ends with a brief
summary of the key ideas and contributions to be taken from within.

4.1 General Formulations, Optimisations and Solutions

As in the previous chapter, we will begin by deriving two possible alternatives for the solution of Input
Parameterised optimisations, namely; Relative and Non-Relative based optimisations.

The main underlying idea behind this methodology is based on considering a general input param-
eterisation (or input structure) of the form (4.1a) for non-relative optimisation, and (4.1b) for relative
optimisation, given by:

Û = NÛ → δÛ = NÛ− Ū (4.1a)

δÛ = NδÛ → Û = Ū + NδÛ (4.1b)

where N ∈ RNpnu×nNnu is an input-parameterisation matrix defining the relationship between the
original input/decision vectors (Û ∈ RNpnu , δÛ ∈ RNpnu), and the “compressed” input/decision vectors
(Û ∈ RnNnu , δÛ ∈ RnNnu), where nN are the number of degrees-of-freedom that each input trajectory
will have, which for obvious reasons, will be considered less than the original, ie. nNnu < Npnu.

The idea behind these methodologies is that in some cases, we could “replicate” the original decision
variables by using fewer degrees-of-freedoms with certain “patterns” or trajectories embedded in them.
To achieve this, there exist a wide variety of input structures such as Laguerre Polynomials [146],
Kautz Polynomials [79], Fourier Polynomials [10], Chebyshev Polynomials [148] and so on, some of
which will be used as examples in the case studies of sections 4.3, 4.4 and 4.5. Along these input
structures it belongs the common approach of Generalised Predictive Control (GPC) [122] where the
inputs have a so called “control horizon” different than the prediction horizon, typically by leaving the
last decision variable constant, ie. (uk+Nc−1 = uk+Nc = · · · = uk+Np−1), although this variant is not
typically recognised as such. We will discuss this variant later in chapter 5.
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Let us now consider the cost functions that would result from using the input structures given
above. By substituting the appropriate input structures (4.1a or 4.1b) in the linearised state prediction
model (3.17a) and the linearised input prediction model (3.17b), and substituting this new input-
parameterised prediction models into the original cost function (3.1), the resulting input-parameterised
cost functions including their respective inequality constraints would be given by:

Non-Relative Input Parameterised Cost Function

J =
1

2
(Xr − X̄ −D −Gδx0 −HNÛ +HŪ)TQ(Xr − X̄ −D −Gδx0 −HNÛ +HŪ)

+
1

2
(NÛ− Ur)TR(NÛ− Ur) (4.2a)

Umin ≤ NÛ ≤ Umax (4.2b)

Xmin ≤ X̄ +D +Gδx0 +HNÛ−HŪ ≤ Xmax (4.2c)

Relative Input Parameterised Cost Function

J =
1

2
(Xr − X̄ −D −Gδx0 −HNδÛ)TQ(Xr − X̄ −D −Gδx0 −HNδÛ)

+
1

2
(Ū + NδÛ− Ur)TR(Ū + NδÛ− Ur) (4.3a)

Umin ≤ Ū + NδÛ ≤ Umax (4.3b)

Xmin ≤ X̄ +D +Gδx0 +HNδÛ ≤ Xmax (4.3c)

Following the standard procedure of expressing the costs and inequalities in terms of the decision
variables, and disregarding for constant terms, results in the following Input-Parameterised Quadratic
Programs (QP):

Non-Relative Input Parameterised Quadratic Program

J =
1

2
ÛTENÛ + ÛT fN (4.4a)

MNÛ ≤ γ (4.4b)

EN = NT (HTQH +R)N (4.4c)

fN = −NT
[
HTQ(Xr − X̄ −D −Gδx0 +HŪ) +RUr

]
(4.4d)

MN =




N
−N
HN
−HN




γ =




Umax

−Umin
Xmax − X̄ −D −Gδx0 +HŪ

−(Xmin − X̄ −D −Gδx0 +HŪ)




(4.4e)
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Relative Input Parameterised Quadratic Program

J =
1

2
δÛTENδÛ + δÛT fN (4.5a)

MNδÛ ≤ γ (4.5b)

EN = NT (HTQH +R)N (4.5c)

fN = −NT
[
HTQ(Xr − X̄ −D −Gδx0)−R(Ū − Ur)

]
(4.5d)

MN =




N
−N
HN
−HN




γ =




Umax − Ū
−(Umin − Ū)

Xmax − X̄ −D −Gδx0

−(Xmin − X̄ −D −Gδx0)




(4.5e)

Remark 4.1. Constraint Selection
As in the previous chapter, the inequality constraints can be reduced to include only the relevant

inputs or states by selecting (or computing) only the respective rows of constraint matrix MN, and
constraint vector γ.

Notice that in both resulting QPs (4.4 and 4.5), the expressions of EN, fN and MN are essentially
“compressions” of the original QPs (3.31 and 3.33) Hessian (E), linear-term (f) and constraint matrix
(M) presented in the previous chapter 3, given by:

EN = NTEN (4.6a)

fN = NT f (4.6b)

MN = MN (4.6c)

Indeed, an alternative way of obtaining these QPs is to directly substitute input structures (4.1a and
4.1b) in Quadratic Programs (3.31 and 3.33), respectively, essentially compressing the previously de-
rived optimisations. However, this must not overshadow the underlying mathematical procedure and
concepts that are behind this input parameterisation where the actual reason for this compression/de-
compression equivalency is the modification of the underlying prediction models. Also, by avoiding
the computation (and then compression) of E, f , M , one can go directly to the resulting expressions,
potentially avoiding computations and memory allocation. This will be discussed further in section
4.2 where a method for directly calculating this compressed matrices will be presented.

Having established the QPs to be solved, any standard general purpose solver can be used such
as QP OASES or quadprog. Once the solution is found, the original decision vector can be recovered
by using the original input structure expressions (4.1a or 4.1b). Additionally, in the case of using the
multiple shooting approach, the expansion step must be performed to obtain the nominal trajectories
for the next sampling time, as explained in chapter 3.

Remark 4.2. Condition: Positive-Definite Compressed Hessian and Properties of N
In order to obtain a convex problem for the compressed linearised QP, the compressed Hessian

EN = NTEN must be a positive-definite matrix which can be satisfied simply by ensuring N is full-
column rank. Other properties of interest for N are orthogonality and recursive feasibility.
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Remark 4.3. Condition: Independent Input Parameterisations

For the purpose of this chapter, we will only consider input parameterisations which result in com-
pletely independent compressed decision vectors for each input (1 → nu), ie. each input having its
own input-structure. An example of non-independent input parameterisation is the control-allocation
as discussed in the literature review, which is not the interest of this chapter.

4.1.1 Real-Time Iteration

To implement this approach using the Real Time Iteration (RTI) Scheme the user can simply follow
the guidelines established in chapter 3, section 3.2 and apply the standard steps, ie. performing
the Initial Value Embedding (IVE) shifting approach, performing a single full-step SQP iteration and
separating the computations in Preparation and Feedback Phases by using the predicted state obtained
from the previous state and input (x̄0 = x̂k|k−1 = f(xk−1|k−1, uk−1|k−1)), calculating the initial offset
(δx0 = x0 − x̄0) as soon as the measurement arrives and solving the QP.

On the other hand, if the user requires to achieve strict deterministic timings, one option is to
implement the alternative approach discussed in chapter 3 to completely remove the time-delay related
to the QP solution in the feedback phase by implementing equations (3.49 or 3.50) which as discussed,
is based on solving the problem with the assumption of δx0 = 0, and then re-including the feedback
term to provide an optimal “unconstrained correction” to the “approximated constrained solution”.

Non-Relative Input-Parameterised Solution

Û = −NE−1
N NT




Unconstrained︷ ︸︸ ︷
−HTQ(Xr − X̄ +HŪ) +RUr

Constrained︷ ︸︸ ︷
+MT λ̄︸ ︷︷ ︸

Preparation Phase

+HTQGδxk︸ ︷︷ ︸
Feedback Phase


 (4.7)

Relative Input-Parameterised Solution

Û = Ū − NE−1
N NT




Unconstrained︷ ︸︸ ︷
−(HTQ(Xr − X̄)−R(Ū − Ur))

Constrained︷ ︸︸ ︷
+MT λ̄︸ ︷︷ ︸

Preparation Phase

+HTQGδxk︸ ︷︷ ︸
Feedback Phase


 (4.8)

Theorem 4.1. The Equality Condition

In contrast to theorem 3.2 where the solution for Non-Relative and Relative optimisations will
always be exactly the same, this equality can only be satisfied for input-parameterised solutions if the
nominal input Ū can be exactly replicated with the input structure N.

Proof. If Ū can be exactly replicated with the input structure N, then there exist a compressed nominal
input vector Ū that is capable of satisfying the equality (4.9). We will refer to this as the “equality
condition”.

Ū = NŪ (4.9)
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Now, following a similar procedure as in theorem 3.2, we can begin by equating both unconstrained
solutions resulting in:

Ū + NE−1
N
(
NT
[
HTQ(Xr − X̄ −D −Gδx0)−R(Ū − Ur)

])
) (4.10)

= NE−1
N
(
NT
[
HTQ(Xr − X̄ −D −Gδx0 +HŪ) +RUr

])

From this, we can immediately see that the equality reduces to:

Ū = NE−1
N NT

(
HTQH +R

)
︸ ︷︷ ︸

E

Ū

= N(NTEN)−1NTEŪ (4.11)

Substituting equality (4.9) in the right hand Ū of (4.11), results in:

Ū = N���
��

(NTEN)−1
��

���(NTEN)Ū = NŪ = Ū

Thus, satisfying the equality (4.10) with the use of equality (4.9), as signaled by the red box.

A similar proof can be obtained for constrained solutions, though it involves a much longer proce-
dure, similar to the one presented for theorem 3.2. Regardless, this equality was consistently observed
during experiments with constrained solutions, and will be discussed further in chapter 5.

The essential part of what theorem 4.1 tell us is that if the Relative-based input-structure can
replicate the Non-Relative-based solution, it will. Moreover, it provides insight into an important
characteristic to keep in mind which is that, conceptually, it is not the same to embed a desired input-
structure into relative decision variables than it is to do so in the non-relative alternative. Thus, one
must take this into account when designing the input structure to ensure the desired outcome, which
could otherwise result in an entirely different target (optimisation). On a side note, the most common
way of performing input parameterisation is based on the Relative input structure format as this is
naturally considered a Newton’s method-like framework where the optimisation calculates a desired
deviation to the nominal/linearisation point/value, eg. (x+ = x− + ∆x). Instead, the Non-Relative
framework provides the final result directly.

4.2 Algorithm Details and Autogeneration

Having defined the relevant theory and methods required by the Input-Parameterisation method, we
can now proceed to introduce a set of algorithms that allow its efficient implementation using the RTI
NMPC framework. Thus, this section will present a set of methods and algorithms that were used for
developing an auto-generation toolkit that allowed us to benchmark the proposed approach against
the solution obtained by the ACADO toolkit. We will first introduce some important details related to
handling the input-parameterisation matrix (N) itself in sections 4.2.1, 4.2.2 and 4.2.3, then provide a
set of “core” algorithms in section 4.2.4, which will be used by the final RTI preparation and feedback
algorithms provided in section 4.2.5. The section concludes with a generic computation comparison on
some of the relevant “core” algorithms provided in section 4.2.6.
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4.2.1 Input Structure Order

One of the key steps required to achieve computational efficiency for applying this type of general
input-parameterisation is that of having appropriate input structures for multi-input systems, as well
as appropriate array ordering in general. This can be better explained with a simple example.

Example 4.1. The Two-Input Structure Alternatives

Consider the following two input structures alternatives (4.12a and 4.12b) for representing the 3
initial steps (k, k + 1, k + 2) of a 2-input (û1, û2) system given by:




û1
k

û2
k

û1
k+1

û2
k+1

û1
k+2

û2
k+2




=




(a1)0 (a2)0 0 0

0 0 (b1)0 (b2)0

(a1)1 (a2)1 0 0

0 0 (b1)1 (b2)1

(a1)2 (a2)2 0 0

0 0 (b1)2 (b2)2







Û1
0

Û1
1

Û2
0

Û2
1




(4.12a)




û1
k

û2
k

û1
k+1

û2
k+1

û1
k+2

û2
k+2




=




(a1)0 0 (a2)0 0

0 (b1)0 0 (b2)0

(a1)1 0 (a2)1 0

0 (b1)1 0 (b2)1

(a1)2 0 (a2)2 0

0 (b1)2 0 (b2)2







Û1
0

Û2
0

Û1
1

Û2
1




(4.12b)

where (a1, a2, b1, b2)k are the coefficients of the parameterisation matrix and (U0,U1)k are the two
decision variables available for each of the kth inputs.

Clearly both input structures have exactly the same decision variables available, with the only
difference being the way the input structure is ordered in the parameterisation matrices (N). This
inevitable changes the way the compressed decision vectors (U) need to be arranged, and the way they
will be related to the other terms of the optimisation such as the compressed linear term (fN). As an
example, the reader can verify that just by choosing an arrangement in the form of equation (4.12a),
the first two elements of (fN) will be related to the first order derivatives of the cost function w.r.t the
first compressed input (Û1), and the last two elements to the first order derivatives w.r.t. the second
compressed input (Û2). What is important to understand from this is that the order of the input
structure will affect the organisation of all the terms of the optimisation.

One may intuitively want to arrange the structure in the form of equation (4.12b), ie. first coefficient
of both inputs, then second coefficient, and so on. However, from an algorithmic perspective it may be
easier to have the input structure arranged as provided in equation (4.12a) given that in order to access
the coefficients related to a given input, one may access a simple row in a given range to avoid the
zero-terms computations. Note that from a computer memory arrangement perspective, one can access
the complete set of coefficients in a given row simply by giving a pointer to the initial value, provided
the matrix is stored using “row-major” order. Otherwise, the coefficients determining this relationship
may be scattered around that row as it is the case of equation (4.12b) which may present additional
complications for an algorithm to handle. We will discuss this further in the following subsection.
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4.2.2 Direct Computation of Compressed State Prediction Matrix HN

By now it may still not be evident that one of the main and most important differences with the
standard framework of chapter 3 is that of the compressed state prediction matrix (HN = HN). As
an example, notice the operation of NTHTQHN required by the compressed Hessian (EN) can be
obtained simply by HT

NQHN. Similarly, the operation NTHT required by the linear term (fN) would
be simply HT

N . This matrix HN also forms part of the compressed constraint matrix (MN). Finally, its
direct calculation would avoid the additional memory required to store H matrix. Thus, the efficient
computation of this matrix (HN) is of extreme importance and will be the focus of this subsection.

Let us begin by expanding the first few terms of this computations to illustrate the underlying
pattern in question. Using the arrangement preference discussed in the previous subsection (ie. that
of equation 4.12a), we have the following operation:

HN =




B1
0 · · · Bnu

0 0 · · · 0 0 · · · 0

A1B
1
0 · · · A1B

nu
0 B1

1 · · · Bnu
1 0 · · · 0

A2A1B
1
0 · · · A2A1B

nu
0 A2B

1
1 · · · A2B

nu
1 B1

2 · · · Bnu
2




︸ ︷︷ ︸
H




N1
0 0 · · ·
...

. . .
...

· · · 0 Nnu0

N1
1 0 · · ·
...

. . .
...

· · · 0 Nnu1

N1
2 0 · · ·
...

. . .
...

· · · 0 Nnu2




︸ ︷︷ ︸
N

(4.13)

where Bi
k represents the ith column of the matrix Bk at time step k, ie. related to the ith input.

The resulting matrix can be rewritten in the following form

HN =



B1

0N1
0 · · · Bnu

0 Nnu0

A1B
1
0N1

0 +B1
1N1

1 · · · A1B
nu
0 Nnu0 +Bnu

1 Nnu1

A2A1B
1
0N1

0 +A2B
1
1N1

1 +B1
2N1

2 · · · A2A1B
nu
0 Nnu0 +A2B

nu
1 Nnu1 +Bnu

2 Nnu2


 (4.14)

Thus it can be clearly seen how this whole operation can be separated into independent opera-
tions for the parameterisation of each input. In particular, what is most important is the efficient
computation of compressed input-to-state matrix (BkNk), which can be achieved by:

BkNk =
[
B1
kN1

k · · · Bnu
k Nnuk

]
= (BN)k (4.15)

Having defined this, matrix HN reduces to:

HN =



B0N0

A1(B0N0) +B1N1

A2(A1B0N0 +B1N1) +B2N2


 (4.16)
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Or simply:

HN =




(hN)1

(hN)2

...
(hN)Np




(4.17a)

(hN)k =




Bk−1Nk−1 k = 1

Ak−1(hN)k−1 +Bk−1Nk−1 k > 1
(4.17b)

Remark 4.4. Fully Dense Hessian and Linear Term
Note that because (HN) does not have any zero terms, and assuming the term (QHN) can be com-

puted efficiently using the special diagonal-matrix operation (mat3 = scalar * diag1 * mat1;) available
in Eigen 3 library [15], the computations of the Hessian term (HT

NQHN) and linear term (HT
NQXe)

automatically become fully dense (no zeros), thus simplifying their computation and not requiring any
special handling, eg. as in the O(N)/O(N2) algorithms 3.3 and 3.2 of section 3.3.1. Although symme-
try could be exploited for the Hessian term by a special algorithm, it was considered unnecessary given
the already large increase in computational performance as seen in table 4.1.

Looking to use this method, the total parameterisation matrix N can be organised more efficiently
by storing each input-parameterisation Ni ∀i = [1, nu], separately. In our specific case, we decided to
arrange each input-structure vertically in our programs as:

N =




N1

...
Nnu


 (4.18)

using “row-major” order which helps to provide a straight forward access to the rows of each input.
The algorithm will then compute BkNk based on the form of equation (4.15), and then execute the

recursive formula (4.17b). This can be seen explicitly in lines 4,7 and 9 of the core algorithm 4.1.

Remark 4.5. Only For Storage
Note that matrix (4.18) MUST NOT to be used explicitly for multiplication (eg. HN or Û = NÛ)

given it not correctly ordered, and it is only suggested to be used as part of the provided algorithm to
be accessed by the program whilst using minimum memory storage (ie. avoiding zeros storage).

Once the solution (Û or δÛ) is found, the recovery is done programatically by re-accessing this
same input structure and distributing the solution according to the original arrangement. Note that
because of the way the input-parameterisation is arranged, this can be done simply by:

Û i = NiÛi ∀i = [1, nu] (4.19a)

Û i = Ū i + NiδÛi ∀i = [1, nu] (4.19b)

This can be seen explicitly in the line 3 of the core algorithm 4.4 which performs the decompression
by assigning this result to a dummy variable (W̃ ) and then re-distributing it on lines 4-6.
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4.2.3 The N Input-Related Terms

Lastly, there are three other important operations related to the input penalisation weights and con-
straints which are present in all the QP variables, ie. the compressed Hessian (EN), eg in the term
NTRN; the linear term (fN), eg. in the term NTR(Ū − Ur); and finally constraint matrix and vector
(MN and γ), in the way that input-constraints must be embedded now that the input matrix has been
“reordered”, ie. given N from equation (4.18) can no longer be used explicitly as stated in remark 4.5.

On the one hand, the term NTRN can be pre-computed and stored, provided N and R are time-
invariant, although if this is not possible, the computation can be shown to simply be given by:

NTRN =




(N1)TR1N1 O · · ·
...

. . .
...

· · · O (Nnu)TRnuNnu


 (4.20)

This operation can be seen explicitly in line 3 of the core algorithm 4.2.

On the other hand, a simple analysis of the term NTR(Ū − Ur) can be proved to result in:

NTR(Ū − Ur) =




(N1
0)T r1

0(ū1
0 − u1

r0) + · · ·+ (N1
Np−1)T r1

Np−1(ū1
Np−1 − u1

rNp−1
)

...
(Nnu0 )T rnu0 (ūnu0 − unur0 ) + · · ·+ (NnuNp−1)T rnuNp−1(ūnuNp−1 − unurNp−1

)


 (4.21)

which can be done through a simple recursive operation. Indeed, this last operation can be seen
explicitly in line 4 of the core algorithm 4.3 where the linear-term (fN) is iteratively modified. A very
small modification would be required for the case of Non-Relative optimisation.

Finally, the last operation relates to the organisation of the matrix MN, and constraint vector γ,
particularly that of the input constraints given matrix N cannot be used explicitly as stated from remark
4.5. One can fix this with a simple re-organisational fix by using a “reorganised” matrix (N)reorg, and
“reorganised” input constraints (Umin ≤ Û ≤ Umax)reorg in the resulting QP. As an example, applying
this to the following for the Non-Relative QP would result:

(MN)reorg =




Nreorg
−Nreorg
HN

−HN




(γ)reorg =




(Umax)reorg

−(Umin)reorg

Xmax − X̄ −D −Gδx0 −HŪ
X̄ +D +Gδx0 +HŪ −Xmin




(4.22)

with Nreorg, (Umax)reorg and (Umin)reorg defined as:

Nreorg =




N1 · · · O
...

. . .
...

O · · · Nnu


 (Umax)reorg =




U1
max
...

Unumax


 (Umin)reorg =




U1
min
...

Unumin


 (4.23)

This last operation is only provided to generate awareness that a reorganisation is required, and a
plausible and simple way of achieving it with the expressions above.
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4.2.4 Core Algorithms

Having defined the relevant details that support the core algorithms, we can now proceed to introduce
them. The approach uses 4 “core” algorithms for its efficient implementation, namely (given in order
of introduction and usage): the compressed state prediction matrix HN computation; the compressed
Hessian EN computation; the compressed linear term fN computation; and the decompression routine
for obtaining the original uncompressed variable δÛ∗. These algorithms will then be used by the final
RTI preparation and feedback algorithms introduced in the following subsection 4.2.5, and will be
tested in the generic computations comparison of section 4.2.6. All the algorithms assume that the
input-parameterised matrix N is handled via the “separated” vertical arrangement of equation (4.18).

Algorithm 4.1 calculates the compressed state prediction matrix (HN) based on the method de-
scribed in section 4.2.2.

Algorithm 4.1: Compressed State Prediction Matrix HN Calculation
Data: Ak, Bk, Np, nu

1 begin
2 for k = 1 to Np do
3 for i = 1 to nu do
4 (BN)ik−1 = Bi

k−1Nik−1; // Compute Compressed Input-to-State Matrix
5 end
6 if k = 1 then
7 (hN)k = (BN)k−1; // Initial Value
8 else
9 (hN)k = Ak−1(hN)k−1 + (BN)k−1; // Propagate Recursively

10 end
11 end
12 end

Result: HN

On the other hand, algorithm 4.2 calculates the compressed Hessian (EN) via the method described
in section 4.2.3, noting that the term HT

NQHN is fully dense and can be efficiently calculated using
the special diagonal matrix multiplication in the Eigen 3 library as discussed in remark 4.4. In this
algorithm, the notation (EN)(i−1)nN+1→inN,(i−1)nN+1→inN indicates an operation in the compressed Hes-
sian (EN) in the rows and columns over the range (i − 1)nN + 1 → inN. Finally, we assume that the
column-vector Ri, represents the ith input penalisation terms, which can be either pre-stored or simply
assigned to a extra dummy variable which would require minimum storage.

Afterwards, algorithm 4.3 performs the calculation of the compressed linear term (fN) based on
the method established in section 4.2.3, noting that the term HNQXe can also be calculated, as
in the previous algorithm, using the special diagonal matrix multiplication in the Eigen 3 library.
Moreover, similar to the previous algorithm, the notation (fN)(i−1)nN+1→inN indicates an operation in
the compressed linear term (fN) in the rows over the range (i− 1)nN + 1→ inN.

Finally, algorithm 4.4 performs the decompression of the optimal compressed decision vector δÛ∗

by storing the ith input parameterisation variables in a dummy variable (W̃ ), and distributing them.
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Algorithm 4.2: Compressed Hessian EN Calculation
Data: HN, Q,R,N, nu, nN

1 begin
2 EN = HT

NQHN; // Initial Value
3 for i = 1 to nu do

/* Modify blocks of EN related to the ith input penalties */
4 (EN)+

(i−1)nN+1→inN,(i−1)nN+1→inN
= (EN)−(i−1)nN+1→inN,(i−1)nN+1→inN

+ (Ni)TRiNi

5 end
6 end
Result: EN

Algorithm 4.3: Compressed Linear Term fN Calculation
Data: HN, Q,R,N, Xe, Ū , Ur, Np, nu, nN

1 begin
2 fN = −HT

NQXe; // Initial Value
3 for k = 0 to Np − 1 do
4 for i = 1 to nu do

/* Recursive calculation */
5 (fN)+

(i−1)nN+1→inN
= (fN)−(i−1)nN+1→inN

+ (Nik)T rik(ūik − uirk)

6 end
7 end
8 end
Result: fN

Algorithm 4.4: Decompression of δÛ∗

Data: δÛ∗,N, Np, nu
1 begin
2 for i = 1 to nu do
3 W̃ = Ni(δÛi)∗; // Store ith input in dummy variable
4 for k = 0 to Np − 1 do
5 (δûik)

∗ = w̃k ; // Assign to the corresponding row of δÛ∗

6 end
7 end
8 end
Result: δÛ∗



Chapter 4. Input Parameterised Nonlinear Model Predictive Control with Applications71

4.2.5 RTI Algorithms

Having defined the required algorithms, the implementation of this approach using RTI Scheme is
given in terms of the Preparation and Feedback algorithms given in 4.5 and 4.6 respectively. These
algorithms are provided in terms of the “core” algorithms of this chapter, and “core” algorithms 3.4 and
3.6 of chapter 3, to facilitate the verification process of each working part of the proposed approach.

Algorithm 4.5: Input-Parameterised RTI NMPC Preparation Phase Algorithm
Data: X̄, Ū , λ̄, x−1, u−1, Q,R,Np, nu, nN

1 begin
2 x̄0 = f(x−1, u−1); // Calculate predicted state from previous state and input
3 Shift X̄,Ū , and optionally λ̄ consistently ; // Initial Value Embedding
4 [Ak, Bk, dk] = Forward(X̄, Ū , x̄0, Np); // Run algorithm 3.4
5 [HN] = CalculateHN(Ak, Bk, Np, nu) ; // Run algorithm 4.1
6 [EN] = CalculateEN(HN, Q,R,N, nu, nN); // Run algorithm 4.2

7 (MN)reorg =
[
(N)Treorg −(N)Treorg HT

N −HT
N
]T ; // Form (MN)reorg Matrix

8 end
Result: EN, HN ,MN, Ak, dk, x̄0

Algorithm 4.6: Input-Parameterised RTI NMPC Feedback Phase Algorithm
Data: x0, x̄0, X̄, Ū , λ̄,Xr, Ur, EN, HN,MN, Ak, dk, Q,R,Np, nu, nN, Umax, Umin, Xmax, Xmin

1 begin
2 δx0 = x0 − x̄0; // Calculate state deviation from measurement
3 [D] = FormD(Ak, dk, δx0, Np); // Run algorithm 3.6
4 Xe = Xr − X̄ −D; // Calculate X error
5 [fN] = CalculatefN(HN, Q,R,N, Xe, Ū , Ur, Np, nu, nN); // Run algorithm 4.3

6 (γ)reorg =




(Umax − Ū)reorg
(Ū − Umin)reorg

(Xmax − X̄ −D)reorg
(X̄ +D −Xmin)reorg


; // Form reorganised constraint vector (γ)reorg

7 [δÛ∗, λ̄] = QPSolve(EN, fN, (MN)reorg, (γ)reorg, λ̄); // Solve the Quadratic Program
8 δX̃ = HNδÛ∗; // Expansion Step Explicit Calculation
9 X̄ = X̄ +D + δX̃; // Calculate new nominal state

10 δÛ∗ = Decompress(δÛ∗,N, Np, nu); // Run algorithm 4.4
11 Ū = Ū + δÛ∗; // Calculate new nominal input
12 end

Result: X̄, Ū , λ̄
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4.2.6 Generic Computations Comparison

In order to evaluate how well the proposed algorithms perform compared to the standard approach,
we performed a generic computation comparison of the main algorithms, namely: algorithms 4.1, 4.2
and 4.3, against their respective counterparts from the standard approach (ie. alg. 3.5, 3.2 and 3.3).

To perform this comparison, we selected the Quadrotor system introduced later in case study 4.3
which has nx = 7 states and nu = 4 inputs. The algorithms were evaluated using different numbers
of degrees-of-freedom per input nN = [1, 3, 5, 7, 10], and different Prediction Horizons Np = [60, 120]

to illustrate the potential advantages. Each of these cases were programmed using automatically
generated C++ codes based on the Eigen 3 library, and were tested in Ubuntu 20.04 running with
Real-Time priority (ie. chrt -r 99 ./main) on a laptop with an Intel i7-8750 CPU @ 3.9 GHz, and 32
GB DDR4 RAM @ 2,666 MHz, with 120000 runs per case. The test codes were compiled using the
(-O3) optimisation C-flag, as well as with the fused-multiply-addition operations (-mfma) and auto-
vectorisation (-mavx) flags enabled to use the Advanced Vector Instruction set available in the Intel
CPU. The results are gathered in table 4.1 where the minimum computation time of each algorithm is
reported, indicating the minimum time that could be achieved if a Real-Time OS would be used.

Case nx = 7, nu = 4, Np = 60 nx = 7, nu = 4, Np = 120

Type/nN Std 1 3 5 7 10 Std 1 3 5 7 10

HN (alg. 4.1) - 317 77.1 105 133.8 182.8 - 632 1315 209.5 277 375.1

EN (alg. 4.2) - 242 810 145.9 243.5 421.97 - 3108 1423.2 2712 506.5 794.1

fN (alg. 4.3) - 1 2 2 3 4 - 1 3 4 5 7
H (alg. 3.5) 50 - - - - - 190 - - - - -
E (alg. 3.2) 83 - - - - - 325 - - - - -
f (alg. 3.3) 2 - - - - - 3 - - - - -

Total 134 622 177.9 265.2 403.4 642.1 545 1054 3018 5111 826.6 1234.4

Table 4.1: Generic Computation Times (in µs) Comparison of Standard and Input Parameterised
algorithms for a system with nx = 7 and nu = 4, using different number of degrees-of-freedom/input
(nN = [1, 3, 5, 7, 10]) with Prediction Horizons (Np = [60, 120]). The gain factor (α) is indicated in red.

In this table (table 4.1), each of the cases are signaled in the pink coloured cases, with the computing
times being reported beneath for the nN = [1, 3, 5, 7, 10] degrees-of-freedom/input for each of the
algorithms (alg. 4.1, 4.2 and 4.3), and the “Total” cyan coloured rows representing the summation
of this 3 algorithms. Moreover, most of the table cells contain a red-coloured under-script indicating
a “gain factor” (α) related to how many times faster is the specific algorithm-case than the standard
counterpart (alg. 3.5, 3.2 and 3.3) visible in the lower-left part of each of the cases. As an example,
the calculation of HN calculation with nx = 7, nu = 4, Np = 120, nN = 1 is α ≈ 32 faster than with the
standard approach (190 → 6µs). Note that row of the linear term fN is not signaled given it did not
present any relevant computational gain. What we can see from this table is that the approach does
indeed allow substantial computational saving in this “QP preparation” algorithms, being up to 7.9

and 18 times faster in the “Total” times for nN = 3 coefficients. We will see in the case study 4.3 that
for certain systems, this number of coefficients is more than enough to give very good approximation
to the actual solution. Finally, note that further computational benefits can result from using reduced
degrees of freedom to solve the QP itself. We will see this later in table 4.3.
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4.3 Case Study: Laguerre Input Parameterization for Quadrotor At-
titude Stabilisation

As discussed earlier, one of the first research directions of this Ph.D. was on the topic of Laguerre-
based Input Parameterisation, particularly that described in chapter 3 of [146]. This led to the initial
contribution of paper [49] where an Adaptive Laguerre-based MPC controller was developed and phys-
ically implemented for the Attitude Stabilisation of a Quadrotor as a fast “auto-tuning” method which
resulted in the performance that can be seen in (https://www.youtube.com/watch?v=RSe35TjjBPI).
The work in this paper focused predominantly on the use of Recursive Least Squares (RLS) as an
“adaptation” method for estimating a set of 2 parameters of a linear SISO model which defined the
single-axis dynamics of the Quadrotor based on control allocation theory as described in [72]. Addi-
tionally, the proposed method used a set of execution rules, described in section III.B of the paper
which were used to improve the performance of the RLS algorithm and protect the controller from
periods of poor excitation which can easily lead to the co-variance matrix “exploding”, ie. becoming
numerically unstable. The resulting model was then used to obtain an unconstrained Laguerre-based
MPC controller based on only 2 carefully tuned Laguerre Polynomials that were able to be updated in
real-time and were observed to result in excellent performance, as the one seen in the provided link.

Having observed the impressive results from the application of this type of approach in the fairly
complex Quadrotor system using only linear SISO modelling techniques with linear MPC implemen-
tations, it was considered relevant to extend this application to a more advanced Nonlinear MPC
Laguerre-based implementation using Multi-variable modelling, which motivated the contents of this
case study. We will demonstrate through this case study that the Laguerre Polynomials approach
for this kind of systems can result in surprisingly good performance when compared to the standard
NMPC approach, whilst also presenting significantly lower computation times.

4.3.1 The Laguerre Polynomials

Let us begin by defining the dynamics of the Laguerre Polynomials as in [146] given by:




L(1)

L(2)

L(3)

L(4)
...

L(NL)




k+1

=




aL 0 · · · · · · · · · 0

β aL 0 · · · · · · 0

−aLβ β aL 0 · · · 0

a2
Lβ −aLβ β aL 0
...

. . . . . . . . . . . . 0

(−aL)NL−2β
. . . . . . . . . . . . aL







L(1)

L(2)

L(3)

L(4)
...

L(NL)




k

(4.24)

where aL is the decay-rate, typically selected based on the desired settling time, β = (1− a2
L) and NL

is the number of Laguerre coefficients.

By taking L0 =
√
β
[
1 −aL · · · (−1)NL−1aNL−1

L

]T
as an initial condition and iterating system

(4.24) forward Np times, the following input-parameterisation can be obtained:

N =
[
L0 L1 · · · LNp−1

]T
(4.25)

https://www.youtube.com/watch?v=RSe35TjjBPI
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An example of the first 5 Laguerre Polynomials when using a decay rate of aL = 0.5 with a horizon
of Np = 30 can be seen in figure 4.6, representing each of the trajectories in the columns of (4.25).
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Figure 4.1: Example of First 5 Laguerre Polynomials

To give additional flexibility, input-parameterisation (4.25) was augmented with a constant column
of ones to capture any required bias in the input. Based on this, the optimisation can then select any
linear combination of these trajectories to “replicate” the trajectory obtained by the standard NMPC.

4.3.2 Quadrotor Model

To simulate the Quadrotor, we selected a slightly simplified version of the nonlinear model from [154],
specifying the quaternion and rate dynamics as:




q̇0

q̇1

q̇2

q̇3




=
1

2




0 −p −q −r
p 0 r −q
q −r 0 p

r q −p 0







q0

q1

q2

q3




︸ ︷︷ ︸
Quaternion Dynamics



ṗ

q̇

ṙ


 =




k1(ω2
1 − ω2

3)

k2(ω2
2 − ω2

4)

k3(ω2
1 − ω2

2 + ω2
3 − ω2

4)




︸ ︷︷ ︸
Rate Dynamics

(4.26)

where the −→q = [q0, q1, q2, q3] is known as the quaternion, [p, q, r] are angular-rates in the body axis,
[ω1, ω2, ω3, ω4] are the angular velocities of the propellers, and constants k1 = k2 = 0.0613 and k3 =

0.0184 were calculated using equation (9) and parameters of Table I of the paper [154].
The resulting differential equations were simulated using algorithm 3.1 with a sampling time of

Ts = 0.05 (s) and using Ns = 8 intermediate steps, to improve the accuracy of the integrator. One
particular requirement for simulating this system is to maintain a unitary norm on the quaternion
(−→q ). This can be achieved by embedding the corresponding non-linear equality into the optimisation
as in [154]. However, a slightly simplified procedure was implemented in this case study where the
quaternion was normalised at the end of every simulation step from algorithm 3.1.
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4.3.3 Performance Comparison

To evaluate the performance of the proposed approach, the resulting NMPC controller was tested for
the task of “reference tracking”. In this case, the objective of the optimisation was to reach a given
orientation defined by random quaternion reference −→q ref which was calculated by assigning a random
reference in the well known Euler angles (Roll/Pitch/Yaw), and converting them into the equivalent
quaternion via the “eul2quat” function from Matlab. The prediction horizon of the optimisation was
set at Np = 20, and the penalisation weights were selected qk+i = diag([0, 1, 1, 1, 0, 0, 0]) ∀i = [1, Np]

and rk+i = diag([0.01, 0.01, 0.01, 0.01]) ∀i = [0, Np − 1]. The optimisation was solved using single-
shooting based on the Relative Input Parameterised NMPC framework, initialised as in [154] with
all the motors running starting from at a hover condition as x0 = [1, 0, 0, 0, 0, 0, 0]T and ūk+i =

[40, 40, 40, 40]T ∀i = [0, Np− 1]. Moreover, a reference input of urk+i = [40, 40, 40, 40]T ∀i = [0, Np− 1]

was selected which is the required input steady state to reach any desired steady state orientation.
Finally, no input or state constraints were imposed to focus on the replicability properties of the
Laguerre Polynomials. The system was simulated for N = 300 times for different numbers of Laguerre
Polynomials NL = [1, 2, 3, 4, 5] with a decay rate of aL = 0.5 as in figure 4.1, and the sub-optimality
w.r.t. to the standard NMPC solution ∆J = (JLaguerre/JStd − 1) × 100 for each of the cases was
stored. Table 4.2 gathers the average and standard deviations obtained from the suboptimality of each
of the aforementioned cases, and an example simulation comparing the solution using only 1 Laguerre
polynomial to the standard NMPC approach can be seen in figure 4.2.
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Figure 4.2: Example Comparison of Laguerre (−) and Standard (−−) NMPC for the Quadrotor using
only NL = 1 Laguerre Polynomial with a Suboptimality of 3.48.



764.3. Case Study: Laguerre Input Parameterization for Quadrotor Attitude Stabilisation

N Polynomials 1 2 3 4 5
Average Suboptimality (∆J) 2.111 0.0834 0.0361 0.00842 0.000131
Standard Deviation 0.794 0.115 0.103 0.102 0.00412

Table 4.2: Suboptimality comparison for different Laguerre Polynomials applied to the Quadrotor

From table 4.2 it can be appreciated how the Laguerre Polynomials are able to reach extremely
competent performance with average suboptimalities of 0.0834 with as low as NL = 2 Laguerre polyno-
mials, a total of nN = 3 decision variables per input considering the extra bias. This is to be expected
given the system is basically a 2nd order with a few cross-coupled terms having multi-variable actu-
ation on each of the axis. This can also be appreciated in figure 4.2 where the solution with only
1 polynomial results in good (arguably better) performance with virtually no overshot seen in the
response of the Euler Angles. As a side note, it was found that tuning the Quadrotor of the UKACC
2018 paper [49] proved to be easier when using Laguerre than when using MPC, most likely related
to the damping property of the Laguerre Polynomials embedded into the solutions. Lastly, as it is to
be expected, the performance can be seen to become more consistent in terms of standard deviations
as the number of Laguerre Polynomials increases NL = [1 → 5]. Thus, this gives an example of the
powerful performance that can be obtained when using Laguerre Polynomials in this type of systems.

4.3.4 Computation Times Comparison

To evaluate the computational performance, the optimisation was tested using automatically generated
C++ codes based on the RTI algorithms of section 4.2.5, supported by the Eigen 3 Library. The codes
were tested for the same number of Laguerre Polynomials NL = [1 → 5], using prediction horizons
of Np = [20, 60]. Each code was run for a total of 1000 different simulations of T = 5 seconds,
giving a total of 100, 000 optimisations. The codes were run in the same conditions as in the generic
computations test of section 4.2.6, ie. same laptop, running with real-time priority and using the same
optimisation flags. To compare the resulting performance, the solution with the ACADO toolkit was
also obtained using QPOASES solver with the “FULL_CONDENSING_N2” O(N2) option enabled,
and was run for the same amount of simulations. The results of this comparison can be seen in table
4.3 where the average computation times of the unconstrained solutions are presented, and the gain
factor is indicated in the red under-scripts. As it can be seen, the solution with prediction horizon
Np = 20 resulted in rather small gains in the range of 3.1− 4 times faster. However, the solution with
Np = 60 presented significantly higher gains of up to 31, with the minimum being 25 times faster.
Indeed, even in the case where constraints would be involved, the optimisation could still perform
significantly higher amount of QP iterations before becoming inefficient thanks to the reduced number
of degrees of freedom. Thus, this gives another example of the potential of using this type of approach.

Np 20 60

(NL) ACADO 1 2 3 4 5 ACADO 1 2 3 4 5
Unc. Time 128 324 333.9 353.7 413.1 413.1 2487 7931 8031 8529 9127 9825

Table 4.3: Average Computation Times Comparison for the Quadrotor using NL = [1 → 5] Laguerre
Polynomials, and ACADO toolkit with Different Horizons Np = [20, 60]. Gain factor indicated in red.
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4.4 Case Study: A Fourier/Laguerre Input Parameterisation for an
Unmanned Surface Vehicle

The second case study that we considered for implementation of the Input-Parameterised framework
was that of the Unmanned Surface Vehicle (USV) from the work done in collaboration with Ph.D.
student Daniel R. McCullough which resulted in the IFAC World Congress 2020 publication [100]. In
this work, the main focus was to achieve the minimisation of hull-impact forces related to incoming
waves when going in a straight direction into them, which could ultimately serve as a mechanism to
navigate more safely through rough sea states. One of its interesting findings was that the optimal
NMPC solution for this task can be precisely related to the first 2 harmonics of the so called “encounter
frequency” (ωe), and a “bias” for maintaining a desired speed, all of which can be seen in the amplitude
spectrum of the NMPC controller visible in figure 5 of the paper. This raised the question of whether it
would be possible to embed a frequency based input-parameterisation such as a Fourier-basis function,
that could replicate this solution more efficiently which motivated the contents of this case study.

Remark 4.6. No Modelling Work
This case study won’t introduce any dynamic modelling given they were developed in large by Ph.D.

student Daniel R. McCullough based on work from [62]. Instead, please refer to the contents already
used in the paper for reference. This will allow us to focus on the relevant concepts rather than specifics.

4.4.1 The Fourier/Laguerre Input Parameterisation

The most obvious choice for this situation would be to embed a Fourier basis-function at the pre-
dicted average encounter frequency (ωe), with an additional “bias” to maintain the desired velocity.
This, in theory, would capture the most complete information relevant to this problem based on the
“offline/a-priori” knowledge that the solution to the objective function can be represented by a couple
of harmonics, and a “bias”. However, given this would only capture the “steady oscillating state”, ie.
when the solution is going through the waves with virtually no disturbances, it was deemed relevant
to consider an extra decision variable that would allow quick cancellation of any potential disturbance,
whilst keeping the main Fourier-basis function as a target. The obvious choice for this, given the
knowledge obtained from the implementation of Laguerre Polynomials in the previous case study, was
a first order exponentially decaying term (ie. the first Laguerre term), which could allow the system to
recover from a disturbed state to the “steady oscillating target” in an exponentially decaying manner.

Thus, the desired input-parameterised trajectory can be expressed in continuous time in the form:

u(t) = A+Aee
(− t

τ
) +A1 cos(ω1t+ φ1) +A2 cos(ω2t+ φ2) (4.27)

where u(t) is the input to the USV; A,Ae, A1, A2 are constants; ω1 and ω2 are the two frequencies to
be considered for the co-sinusoidal terms, in this case ω2 = 2ω1; and φ1 and φ2 are the phases of the
co-sinusoidal terms.

Using trigonometric identity cos(x+ y) = cos(y) cos(x)− sin(y) sin(x) in equation (4.27) leads to:

u(t) = A+Aee
(− t

τ
) +A1(cos(φ1) cos(ω1t)− sin(φ1) sin(ω1t)) +A2(cos(φ2) cos(ω2t)− sin(φ2) sin(ω2t))

(4.28)
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This can be simplified to eq. (4.29), simply by considering cos(Φ1), sin(Φ1), cos(Φ2), cos(Φ2) to become
parts of the constants A1, A2, resulting in the “alternative” constants A11, A12, A21, A22.

u(t) = A+Aee
(− t

τ
) +A11 cos(ω1t) +A12 sin(ω1t) +A21 cos(ω2t) +A22 sin(ω2t) (4.29)

Assuming the frequencies of interest (ω1 and ω2), and the decaying term (τ) are provided, we can
embed this desired behaviour into the inputs of the optimisation by evaluating the terms of (4.29) at
all time-steps k = [1, Np], resulting in the input-parameterisation matrix:

N =




1 e(−Ts
τ

) cos(ω1Ts) sin(ω1Ts) cos(ω2Ts) sin(ω2Ts)

1 e(− 2Ts
τ

) cos(ω12Ts) sin(ω12Ts) cos(ω22Ts) sin(ω22Ts)
...

...
...

...
...

...

1 e(−NpTs
τ

) cos(ω1NpTs) sin(ω1NpTs) cos(ω2NpTs) sin(ω2NpTs)




(4.30)

where Ts is the sampling time of the system, and A,Ae, A11, A12, A21, A22 are now the input parame-
terised decision variables from (4.29) which are gathered in the compressed input vectors (Û or δÛ).

Once this is defined, the optimisation will then find the optimal coefficients that optimise the rele-
vant cost function, knowing/enforcing in advance that the input trajectory CAN ONLY take the form
of input parameterisation (4.27). However, note that this parameterisation would embed a discretised
zero-order-hold (ZOH) version of equation (4.27). Moreover, note that this approach is fundamen-
tally different to those used in “spectral” or “pseudo-spectral” collocation methods [41], given we do
not embed this in the states/state derivatives as well, nor we use differentiation matrices which alto-
gether transform the system dynamics into a linear system of equations that is solved for obtaining
the simulation of the system [141, 148].

4.4.2 Performance Comparison

To evaluate the performance of the proposed input-parameterisation, the USV was simulated under
the same basic conditions discussed in the paper [100], ie. considering the boat heading directly into
oncoming periodic waves of 1 meter height with a frequency of ω = 0.5 (rad/s). The system was
simulated for T = 60 (s) using Explicit Euler algorithm 3.1 with a sampling time of Ts = 0.08 (s), and
Ns = 20 intermediate steps based on the USV model of equation (15) of the paper. The NMPC had
a prediction horizon of Np = 200, resulting in a prediction window of Tp = 16 (s) which captured just
over a complete harmonic of the wave at zero-velocity. The objective function was the minimisation of
three main quadratic costs, namely: the surge velocity (ν) deviations from a velocity reference; the hull
wave-induced forces (τw), considered as nonlinear outputs; and the propeller input (u) deviations from
an input reference, which can be solved using the output-cost framework (3.2) introduced in chapter 3.
The weights of the NMPC were the selected as: qνk+i = 10 ∀i = [1, Np] for penalising the velocity (ν)
with the references selected as yνrk+i = 5 (m/s) ∀i = [1, Np]; qτ = 1.4 × 10−7 for penalising the hull
wave-induced forces (τw); and rk+i = 0.01 = [0, Np − 1] for penalising the deviations of the propeller
input from a reference input of urk+i = 10.0598 ∀i = [0, Np− 1], which is the input required to achieve
the reference velocity of 5 (m/s) if there was no wave. Finally, the tuning weight of equation (22) for
“virtually” modifying the hull-force equation was selected as in the paper (α = 100).
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Regarding the setup of the proposed input-parameterisation, the method used the predicted average
of the encounter frequency obtained with the nominal input guess Ū , ie. ωe−avg =

∑Np
k=1(ω+ ω2

g ν̄k)/Np

to define the frequencies ω1 = ωe−avg and ω2 = 2ω1 required by the input parameterisation (4.30).
On the other hand, a value of τ = 1 was selected for the first order exponential decaying term, based
on the relatively slow dynamics of the boat. Two metrics were selected for comparison, namely: sub-
optimality and disturbance rejection. No computation times comparison was made for this system
given this has already been performed in various points earlier in the chapter.

Suboptimality Comparison

The first performance metric of interest was how close the standard RTI NMPC solution was able
to be replicated using the proposed approach. As the objective is to embed the desired frequency
content in the actual input (u), the Non-Relative Input-Parameterised framework (4.4) was used.
Interestingly, the proposed approach resulted in almost indistinguishable responses, even obtaining a
slightly better overall performance with a percentage “suboptimality” of ∆J = (JSpectral/JNMPC −
1)× 100 = −0.0111. The reason this can be happening is because the standard NMPC solution does
not embed any frequency information about the closed loop response into the solution, and as a result,
the optimisation was observed to be “relaxing” the solution near the end of the prediction horizon at
every time step. This can be seen in figure 4.3 where the predicted trajectories of both solutions are
presented, and the standard NMPC solution can be seen to be breaking the pattern near the end of
the horizon resulting in relatively small differences in the predictions, whereas the proposed approach,
hereafter denominated “Spectral NMPC”, enforces the specified pattern in the input. This causes the
standard NMPC optimisation to be slightly ill-posed [122] where the predicted trajectories differ from
the closed loop responses, potentially causing problems in the decision making process.
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Figure 4.3: Predicted Trajectories of Standard NMPC and Spectral NMPC for the USV
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The frequencies of the closed loop solutions obtained with both approaches, Standard NMPC and
Spectral NMPC, were analysed using Fast Fourier Transform, and were confirmed to both contain the
exact same pair of frequencies at slightly different amplitudes. This can be seen in the single sided
amplitude spectrum of the input response (u) given in figure 4.4. .
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Figure 4.4: Input Spectrum Comparison for the Unmanned Surface Vehicle problem

Disturbance Rejection Comparison

The second performance metric of interest was how well the approach responded to disturbances
compared to the standard approach. To evaluate this, an un-measurable disturbance of 5 revolutions
per second was injected in the input as uk−real = uk+5 at simulation time t = 10 (s), and kept constant
for 0.5 seconds, eg. emulating a vacuum encountered throughout a wave. The responses against this
disturbance were tested with three main methods: the standard NMPC, the proposed Spectral NMPC
with Laguerre term, and the Spectral NMPC without the Laguerre term, denominated “Fourier-Only”.
A comparison of the percentage sub-optimalities obtained by the two non-standard approaches w.r.t.
to the standard NMPC solution subject to the aforementioned disturbance can be seen in table 4.4.
From this we can see that the proposed approach, ie. the Spectral NMPC with the Laguerre term,
resulted in slightly improved approach when compared to the standard NMPC, with a slightly larger
improvement when compared to the Fourier-Only solution. The result of this comparison is by no
means unexpected given the predicted trajectories were observed to give much accurate predictions of
the closed loop responses in the case where the Laguerre term was included. This can be seen in figure
4.5 where the predictions with and without the proposed Laguerre first order term, depicted by the
dot-dashed red lines, are compared to the actual closed loop responses, depicted by the blue lines.

Case/Solution Suboptimality (∆J) in %
Disturbance Spectral w/Laguerre -0.0070
Disturbance Spectral Fourier-Only 0.0920

Table 4.4: Suboptimality Comparison for disturbance rejection with and without the proposed Fouri-
er/Laguerre Input Parameterised Solution applied to the Unmanned Surface Vehicle
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Figure 4.5: Comparison of Disturbance Rejection With (4.5a) and Without (4.5b) the additional
Laguerre first order term

Thus, this case study gives a relative simple example of the advantages that can be obtained
from embedding a-priori knowledge into the system such as desired frequency responses. Moreover,
the system was observed to have better disturbance rejection properties with the proposed additional
Laguerre term which by no means was an unexpected result given the use of a purely periodic signal
for handling non-periodic disturbed behaviour is conceptually insufficient.
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4.5 Case Study: Chebyshev Polynomials for Wave Energy Converters

The last case study that was considered for implementing the input-parameterisation framework was
on the Wave Energy Converter (WEC) from the IFAC World 2020 conference [59], resulting in an
extension to the work presented in the paper. We will discuss the exact method presented in the paper
in the following chapter, particularly in section 5.4, given the contents of the article are related to the
methods presented in it. For this case study, we decided to apply the so called “Chebyshev Polynomials”
following discussions with co-author Juan G. about the so called “pseudo-spectral collocation methods”
and their popularity among WEC devices [41, 43, 44, 63, 103], which raised the question of whether
they posed a particular advantage other than the so called “spectral accuracy”. As this is only a short
extension, only this basis function was considered. Moreover, as the methods discussed in this chapter
are not considered to be “collocation methods”, this comparison will be kept conceptual.

Remark 4.7. No Modelling Work
This case study won’t introduce any dynamic modelling given they will be introduced briefly in the

following chapter in case study 5.4, and they were developed in large thanks to expert WEC knowledge
by Ph.D. student Juan Guerrero-Fernandez. Instead, please refer to the contents already used in the
paper for reference. This will allow us to focus on the relevant concepts rather than specifics.

4.5.1 The Chebyshev Polynomials

Let us begin by defining the well known Chebyshev Polynomials as in [148], given by:

T1(t) = 1 (4.31)

T2(t) = t (4.32)

Tn(t) = 2tTn−1 − Tn−2 ∀n > 2 (4.33)

By evaluating this polynomials on the range t = [−1, 1] divided into the Np steps of the prediction
horizon to be used, and assigning them to the inputs in the range k = [0, Np − 1], we obtain an input
parameterisation matrix of the form:

N =




T t01 T t02 · · · T t0nN

T t0+ts
1 T t0+ts

2 · · · T t0+ts
nN

T t0+2ts
1 T t0+2ts

2 · · · T t0+2ts
nN

...
... · · · ...

T
tf
1 T

tf
2 · · · T

tf
nN




(4.34)

where t0 = −1, ts = 2/Np, tf = 1− ts, and the notation T ti is the ith polynomial evaluated at time t.
As an example of application of this, consider the prediction horizon of Np = 100 used for the WEC

paper [59]. Figure 4.6 shows the first 5 polynomials for this case which can be obtained by plotting
each of the columns of the resulting input-parameterisation matrix (4.34).

Based on this input-parameterisation, the optimisation can now select any linear combination of
this polynomials to achieve the desired result, whether that is satisfying a constraint or performing a
desired manoeuvre in the WEC device to maximise the energy generation.
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Figure 4.6: Example of First nN = 5 Chebyshev Polynomials

4.5.2 Energy Extraction Comparison

To evaluate the performance of the Chebyshev Polynomials parameterisation (4.34), we performed a
simulation of the WEC system using the exact same simulation parameters specified in the paper, ie.
same constraint limits on the input and input increments, same parameters specific to the buoy and
wave excitation as well as same prediction horizon Np = 100 and same simulation time of T = 600 (s).
The approach was then tested using various number of Chebyshev Polynomials (nN = [5, 10, 20]) to
match the NEN = 20 degrees of freedom used by the Moving Window Blocking (MWB) approach
presented in the paper. The results obtained from this were then compared to the Standard MPC with
Full-Degrees of Freedom (F-DoF), which is considered here (and in the paper) as the approach with
the “maximum” energy extraction that could be obtained with the selected prediction horizon. The
comparison can be seen in table 4.5.

From this table we can see that the approach requires at least nN = 20 Chebyshev Polynomials
to start to even become close to the 98.8 efficiency of the MWB approach proposed in the paper,
as seen in table 5.8 which will be discussed later in section 5.4. Thus, we can conclude that from a
energy extraction perspective, the proposed MWB approach of the paper still outperforms this type
of solution when applied to this particular system.

Method Energy
Extracted (MJ)

Efficiency (%)

Std MPC 307 100
CHEV (nN = 20) 301 97.9
CHEV (nN = 10) 272 88.6
CHEV (nN = 5) 246 80.3

Table 4.5: Efficiency Comparison of Chebyshev Polynomials and Standard Linear MPC applied to the
Wave Energy Converter problem
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In order to understand the reason for this significantly degraded performance, it was decided to
review the predicted trajectories to look for any inconsistency or ill-posedness that could be affecting
the decision making process. It was found that the Chebyshev approach was presenting a Gibbs-type
phenomena when the optimal solution was saturated in the input constraints, which in this particular
system was nearly 60% of the time. This can be seen in figure 4.7 where the predicted trajectories of
both Standard and Chebyshev approaches can be seen, and the Gibbs-type phenomena is signaled in
the inner graph of the PTO Forces. What this indicates is that the Chebyshev Polynomials approach
is fundamentally incapable to replicate constrained input trajectories adequately which consequently
can result in significantly degraded performance. Note that this is also true for the other two input-
parameterisation strategies presented in the previous case-studies. .
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Figure 4.7: Example of Chebyshev Polynomials Incapability for Constrained Solutions. The Inner
Graph shows the emergence of a Gibbs-type phenomena at the constraint.

4.5.3 Computation Times Comparison

Lastly, the other metric of interest was the computation time required to perform the optimisation
when using the aforementioned approaches, namely: the Std. F-DoF MPC, and the Chebyshev Poly-
nomials with nN = [5, 10, 20]. Table 4.6 presents the average computations times of each solution along
with other relevant metrics such as number of QP iterations. All the QPs were solved using the “quad-
prog” function of Matlab R2019b with the interior-point method, and the computation times involve
both, the update of the linear term (f/fN) and the solution of the QP itself, noting that the other
matrices/vectors required by the QP were pre-stored offline given the system is linear as discussed in
the paper. From this table we can clearly see how the CHEV approach presents a significantly de-
graded performance with the Standard approach being faster for all nN = [5, 10, 20], most likely related
to the inability of the Chebyshev Polynomials to deliver the very basic input-constrained solutions as
discussed in figure 4.7, indicating another disadvantage of applying this method to the WEC problem.
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Method Avg. opt.
time (ms)

Avg. opt. time
per iter. (ms)

Avg. num. of
QP Iterations

Computational
Gain

Std MPC 28± 4.5 3.43± 0.5 8.19± 0.79 -
CHEV (N = 20) 93.1± 24.3 9.88± 0.97 9.44± 2.67 0.3
CHEV (N = 10) 82.5± 10.8 9.13± 0.79 9.05± 1.06 0.326
CHEV (N = 5) 82.2± 38.7 9.39± 0.83 8.8± 4.6 0.333

Table 4.6: Computation Times Comparison of Chebyshev Polynomials and Standard Linear MPC
when using “quadprog” of Matlab R2019b to solve the optimisation of the Wave Energy Converter
problem

4.6 Summary

In summary, this chapter introduced the concept of Input Parameterised NMPC solutions which offer
a viable alternative to the Standard NMPC approach with the potential advantage of allowing signifi-
cantly faster computation times, both in terms of preparation and solution of the underlying QPs, as
well as reduced memory usage due to the reduction in the required degrees of freedom. Additionally,
this type of methods allow the user to embed various type of characteristics into the solutions such as
frequency response and desired settling times whilst generally being able to obtain good performance
determined by how well the input-parameterisation is designed for the specific system.

Throughout the chapter we introduced the required methods and mathematical models required
by two type of approaches, namely: the non-relative and relative input parameterisations, along with
theorem 4.1 which gives a condition on which the solution of both approaches would be equivalent,
something which will be used for reference in the following chapter 5. Moreover, the chapter introduced
a set of algorithms for its efficient implementation based on the RTI Scheme in section 4.2 where a
generic computations comparison was performed to evaluate how well the approach performs compared
to the standard NMPC approach for the Quadrotor system of case study 4.3 where significant com-
putation gains were obtained. The chapter concludes with 3 case studies, including: a Laguerre-based
NMPC for an Attitude Stabilisation of a Quadrotor; a Fourier/Laguerre Input-Parameterisation for
an Unmanned Surface Vehicle; and a Chebyshev Polynomials Parameterisation for a Wave Energy
Converter, all of which are used to illustrate some of the relevant properties, advantages and disadvan-
tages of the Input-Parameterisation techniques, including good sub-optimal performance, improved
disturbance rejection and faster computation times. The key message of this chapter is the under-
standing of this basic technique can open the NMPC optimisation methodologies to a wide range of
alternatives which may be relevant for specific systems or situations. However, a potential disadvan-
tage is the requirement of having “a-priori” knowledge of the system or optimisation in order to be able
to properly design the underlying input structures for which a systematic procedure may be hard to
define. Nonetheless, we consider this to be relevant given an offline analysis of a system can typically
be performed to select and/or investigate appropriate methods among the existing or common basis
functions to be used in an online optimisation setup.
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Finally, one of the interesting results that was shown in this chapter was the fundamental inca-
pability of the Chebysheb Polynomials to replicate constrained solutions which results in degraded
performance and significantly increased computations times when compared to the standard approach.
Note that this incapability is fundamentally present in all the different input-parameterisations used for
the case study, which motivated the research direction of this thesis into the so called “Move Blocking”
approaches, introduced in the following chapter 5.



Chapter 5

Shifting Strategy for Blocked Nonlinear
Model Predictive Control

In the previous chapter, we introduced the concept of input parameterised solutions using a general
framework which is capable of embedding a wide variety of input-structures such as Laguerre Poly-
nomial, Fourier Polynomials, Chebyshev Polynomials, and so on, as demonstrated in the case studies
provided along the chapter. These input-structures allow the user to reduce the degrees of freedom
substantially, potentially allowing a significant decrease in computation times whilst being able to
maintain good performance (determined by how well the input-structure is designed according to a
certain target/objective), and allowing the user to embed certain characteristics such as desired fre-
quency response and settling times into the solution. Although these advantages proved to be quite
useful in certain scenarios and/or applications, one of the key disadvantages or challenges that was ob-
served when using the aforementioned variations of input-structures was constraint satisfaction of input
inequalities, which can significantly affect the optimisation (as seen in the Chebyshev Case Study of
section 4.5), despite these being the simplest of the inequality constraints in the original optimisation.
This suggest that these constraints shouldn’t be the ones causing problems at all.

This particular disadvantage motivated the research direction of this thesis into the so-called “Move-
Blocking” methods [18, 130, 133, 134]. As it will be seen in this chapter, these type of methods belong
to the general input-parameterised solution framework introduced in the previous chapter, with the
main difference of presenting a particular form or “sparsity” in their input-structure which allows
significantly easier handling of the input inequality constraints. However, when not handled properly,
this type of methodology can present significant problems related to stability and recursive feasibility
of the optimisation. Thus, this chapter aims to address this with the use of the “Shifting Strategy”
proposed by the author of this thesis; a concept built upon the very foundation (or requirement) of
the IVE strategy of the RTI Scheme introduced in chapter 3, representing one of the key and most
important contributions of this thesis which the following chapters (particularly chapters 7 and 8) will
be based on. Additionally, following the same reasoning, it extends the scope of this strategy from
its application on the input-structure, to its application on the outputs and inequality constraints of
the optimisation, thus resulting in OCPs of reduced size in terms of degrees-of-freedom, targets (or
shooting points) and inequality constraints, allowing significant computational benefits whilst being
able to preserve excellent performance, in many cases better than the standard alternatives.

87
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The chapter is organised as follows: Section 5.1 introduces the main concepts behind the pro-
posed Shifting Strategy, along with the relevant theory and definitions required to validate the whole
methodology. An important part of this section is subsection 5.1.2 where the concept of shifting input
blocks is introduced, along with important discussions and details including the novel concept of the
proposed Ideal Prediction Horizon (supported by theorem 5.1), the resulting input-structure, as well
as Alternative Blocking Structures that can be used which may not be immediately evident and can
ultimately motivate its usage further. Following this, subsection 5.1.3 presents the extension of the
proposed Shifting Strategy to the shooting points and, more importantly, the inequality constraints of
the optimisation along with Alternative Shifting approaches that may be used. The section ends with
a discussion of the proposed optimisation framework to be used in subsection 5.1.4, followed by the
relevant nominal stability and recursive and feasibility proofs provided in subsection 5.1.5. Afterwards,
section 5.2 discusses the algorithm details required for an efficient implementation of the strategy, in-
cluding an extension of the O(N) and O(N2) algorithms presented in section 3.3.1 of chapter 3 which
forms part of the main contributions of the chapter, followed by the “core” algorithms that form part
of the preparation and feedback algorithms required for the implementation of the proposed approach
using the RTI Scheme. The resulting algorithms were used for developing an auto-generation toolkit
that implemented the proposed approach where its computational performance was able to be evalu-
ated. The section ends with a generic computations analysis of the relevant algorithms of the proposed
approach where significant computational benefits can be observed. Finally, the chapter includes 4
case studies presented in sections 5.3, 5.4, 5.5, and 5.6 which were used to demonstrate and discuss
the relevant properties, alternatives, advantages and disadvantages of the proposed approach, as well
as provide insight into potential applications where the proposed approach can be a viable alternative.
The chapter concludes with a brief summary of the key ideas and contributions contained within.

Disclosure: The main contents and methodologies discussed in this chapter were published in a
number of articles, including: an initial conference (abstract-only) paper in IFAC NMPC 2018 [48]; a
journal paper in IET Control Theory and Applications 2020 [50]; and the IFAC World Congress 2020
conference paper [59] of the work done in collaboration with Ph.D. student Juan-Guerrero Fernandez.
As a result, some of the content presented in this chapter will be inevitably repeated.

5.1 The Shifting Strategy

The proposed Shifting Strategy consists of 2, or optionally 3, main sub-strategies, namely:

1. Shifting Input Structure: It uses a time-varying input structure which is shifted in an absolute
time-frame to maintain consistency whilst reducing the degrees of freedom of the optimisation.

2. Shifting State/Output Inequality Constraints: It focuses the efforts of the optimisation to a
reduced number of states and outputs inequality constraints which are shifted in an absolute
time-frame to maintain consistency whilst potentially reducing memory and computation times.

3. Shifting Shooting Points and Lagrange Multipliers (Optional): It penalises a reduced amount of
output and/or state errors (hereafter referred as shooting points) which are shifted in an abso-
lute time-frame to potentially reduce memory and computation times. Additionally, Lagrange
Multipliers may also be shifted for hot-starting procedures of active set methods.
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5.1.1 Consistency: The Foundation of the Shifting Strategy

One of the key concepts to understand this strategy is consistency. Although this concept may not
be commonly used in the context of NMPC, it has been key for developing important methods and
discussion around the general MPC literature. For example, the Initial Value Embedding (IVE) of the
RTI Scheme presented in section 3.2, and indeed similar strategies such as Advanced Multi-Step [112],
rely on shifting the nominal inputs and states, as well as the Lagrange Multipliers optimal guesses
consistently along the prediction horizon. Similarly, nominal stability methods such as the infinite
horizon costing approach presented in chapter 3 rely on consistently embedding a “complete/total”
solution that the optimisation could follow, rather than just a part of it which can lead to ill-posed
optimisations as discussed in [122] that suffer from bad performance and/or stability issues where the
optimal solution at a given step differs from the next, ie. embedding an inconsistent overall “plan”. An
example of this was shown in the zero-terminal constraint approach of figure 3.3a. Another example
can be found in [110] where “consistency constraints” are used to preserve recursive feasibility of the
optimisation. This concept is also relevant for defining appropriate unbiased costs for achieving offset-
free control as introduced in section 3.5 where it was discussed how biased cost functions have an
inconsistent overall target where the penalised terms of the optimisation, eg. the inputs and output
errors or targets, can be “fighting” each other which ultimately causes offsets in the closed loop response
of the resulting control system. What is important to understand from this is that the mathematical
tools of Optimal Control will always deliver what is embedded into them, whether that is good or
bad performance, appropriate or inappropriate stability and recursive feasibility properties, as well as
consistent or inconsistent objectives.

In the following subsections we will show how the principle of consistent absolute time-frame shifting
will be the foundation of the proposed Shifting Strategy, and as long as this basic principle is applied
correctly it can be extended to a wide range of alternatives whilst preserving nominal stability and
recursive feasibility of the optimisation. It should be noted that each of the aforementioned sub-
strategies can, in principle, be applied separately as long as the aforementioned principle is embedded.

5.1.2 Shifting Input Blocks: The Ideal Moving Window Blocking Approach

In this section we will introduce the shifting input blocks to obtain what the author of this thesis calls
“The Ideal Moving Window Blocking (MWB)” approach which can be represented by a time-varying
input-blocking structure. Although some of the ideas and methods introduced in this section are similar
to the MWB approach presented in [18], there are several key differences which separate the proposed
approach with the aforementioned work, particularly: definition 5.1 which determines the general input
structure to be used; the use of what the author of this thesis calls “The Ideal Prediction Horizon”,
supported by theorem 5.1 which allows the prediction horizon and number of decision variables to be
constant, rather than time-varying as in algorithm 1 of [18]; and the implementation of the overall
approach in the context of the RTI NMPC framework which can be considered an extension of the
latter. Finally, although the approach has some similarities with lifted systems [124], it is fundamentally
different given both measurements and control actions are available at all times, and the methodology
is applied with the objective of reducing the computation times of the optimisation, thus allowing faster
corrections to disturbances/ uncertainties whilst preserving nominal stability and recursive feasibility.
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Input-Blocking Structures

In order to understand the proposed time-varying input-blocking structure (5.11), we must first define
the basic or “standard” input-blocking structure. Although there exist different ways of obtaining this,
the main objective of this method is to reduce the degrees of freedom by embedding an input structure
where the inputs or decision variables are blocked in sections that have the same value, eg. by using
an equality constraint of the form ûk = ûk+1 = · · · = ûk+Nb−1 spread evenly across all the prediction
horizon where Nb is the number of inputs or decision variables having the same value, hereafter referred
as the “block size”. For a system with a prediction horizon that is an integer multiple of the block size,
this can be achieved with an input parameterisation of the form (Û = NU or δÛ = NδU), as introduced
in the chapter 4, particularly in equations (4.1a and 4.1b) with the input-structure defined as:

N =




nNb ONb · · · ONb

ONb

. . . . . .
...

...
. . . . . . ONb

ONb · · · ONb nNb




(5.1)

where N ∈ RNpnu×NENnu is the input-blocking matrix, NEN is related to the size of the compressed
Hessian as discussed in chapter 4, and where the inner matrices nx and Ox, represent matrices with x
vertically arranged identity and zero matrices of size nu × nu, respectively, ie. given by:

nx =
[
Inu×nu1 · · · Inu×nux

]T
Ox =

[
Onu×nu1 · · · Onu×nux

]T
(5.2)

An alternative way of obtaining this input-parameterisation which is equivalent is to use the so called
“input-increments” (∆ûk = ûk − ûk−1) and embed a similar input-structure to that of (5.1) but with
nx having only the first identity, ie. given by:

nx =
[
Inu×nu1 Onu×nu2 · · · Onu×nux

]T
(5.3)

This last approach, ie. using input-increments (∆Û) as decision variables, is how it was formulated in
the IFAC World Congress 2020 conference paper [59], but it should not misunderstood as it achieves
the exact same task of blocking the input, thus having the same solution. Moreover, note that input-
structure (5.1) can also be embedded in the input increments which would result in a “ramp” type of
block or section, similar to that of First Order Hold (FOH) models [109] which can be used to obtain
smoother trajectories but may lack the rapid response available in standard input-blocking approaches.

This concept of blocking the inputs is commonly used in the standard Generalised Predictive
Control (GPC) approach for the so called “control horizon” (Nc) [19, 122, 146] (although not commonly
referred to as blocking) where the optimisation uses a reduced number of degrees of freedom congested
at the beginning of the prediction horizon, and the rest of the Np −Nc control actions are blocked by
embedding the equality ûk+Nc−1 = ûk+Nc = · · · = ûk+Np−1 which can be done by using a similar input-
structure to that of (5.1). However, one of the main advantages of having decision variables spread
over the prediction horizon rather than congested at the beginning as in GPC is that the system or
optimisation itself may require control actions available in the future.
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To illustrate the potential advantage of input-blocking over GPC, figure 5.1 presents a comparison of
the initial open-loop predictions of the optimal trajectories for the Inverted Pendulum system presented
in case study of section 5.5 when using 3 approaches, namely: Full Degrees of Freedom (FDoF) with
a prediction horizon of Np = 52 (Tp = 1.3(s)), depicted by the blue line; Input-Blocking with a block
size of Nb = 4, ie. having NEN =

Np
Nb

= 13 degrees of freedom, depicted by the red dot-dashed line; and
GPC with the same degrees of freedom, ie. Nc = NEN , depicted by the green dashed line. Although all
the optimal solutions present noticeable differences in the input trajectories, the predicted trajectories
for the angle and position are nearly indistinguishable for the blocked and FDoF solutions, as seen
from the inner graphs, whereas the GPC solution clearly results in a different trajectory. Similarly, the
blocked input can be appreciated to follow the FDoF solution more closely than the GPC approach.
As expected, the predicted costs of all the cases were: JFDoF = 1872, Jblk = 1878 and JGPC = 1994,
which clearly shows the superiority of blocking over GPC for this particular system. Obviously the
GPC solution would adjust the input as the horizon moves forward (receding horizon strategy), and
might be able to perform similar in closed-loop. However, it is this inconsistency/ill-posedness within
each prediction that may negatively affect the overall closed loop solution in the long term, especially
when constraints come into play. A similar comparison can be found in figure 2 of [59].
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Figure 5.1: Blocking vs Standard GPC Comparison in the Inverted Pendulum System with Nb = 4

When To Use Blocking? A Boxing Analogy

Although input-blocking can generally present substantial advantages when compared to other strate-
gies [59], it is not a generic solution that will always present the same advantages, irrespective of the
system dynamics or requirements of the optimisation. This naturally brings up the question of when
to use blocking?, and to answer this question we will use a “Boxing Analogy”. Yes, the fighting sport!
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As with many other sports, boxing requires having excellent timing and planning of movements
such as punching, crouching and footwork, as well as fast reaction times and anticipation or prediction
the opponent movements. In this case we can think of the solution of OCPs for Nonlinear Dynamical
Systems based on NMPC as a fight between two boxers. On the one side we have a well trained World
Champion professional boxer, representing the Optimal Control mathematical tools and methods,
capable of executing virtually any technique or skill within its available set flawlessly whilst respecting
its underlying constraints such as punching distance, speed of movements, muscle fatigue, etc., eg.
representing actuator constraints. On the other hand, we have his opponent; whether that is a veteran
professional boxer or a regular person, representing the performance objectives and dynamical systems
to be handled by the optimisation which may include certain constraints, eg. not to be hit in certain
areas, and will fight back, representing, for example, an unstable system not “giving in” to become
stable, or having strong resistance against going to a desired target and presenting disturbances.

Clearly, if the opponent is a regular person, representing eg. a simple stabilisation problem of a
linear first order system under nominal conditions, the World Champion boxer might as well beat
its opponent with his eyes closed, ie. with virtually no effort, simply by planning and executing
a couple of optimal movements. In contrast, if the system was the veteran professional boxer, the
World Champion boxer might require significantly more effort including planning more movements,
being faster, having faster reaction times and anticipating the opponent movements to make split-
second decisions. Certainly, the World Champion could go “full-effort” on the regular person and
“micro-manage” its movements and planning to completely destroy him, but it would most certainly
be unnecessary. Thus, to answer the original question of when to use blocking, we pose the following
questions: How much effort do you want to put? ; In how many moves can you beat your opponent? ;
How fast do you need to be to achieve your desired objective?. The answers to these questions certainly
depend on the fighting style that you want the system to have, or indeed that may be required; do you
need the system to be like famous boxer Manny Paquiao and throw a large amount of rapid punches,
or can it to be like famous boxer Mike Tyson and throw a reduced but mortal amount of punches?

The Time-Varying Shifting Input-Blocking Structure

Despite the standard input-blocking structure (5.1) generally being capable of following or “replicating”
the “Full Degrees of Freedom” solution closely (as in figure 5.1), its direct implementation is known
to produce significant recursive feasibility problems when considered in a receding horizon closed-loop
framework [18, 130, 134]. This is because its repeated implementation prevents the optimisation from
including the solution obtained in the previous time-step, ie. “the tail” of the solution [122], as a
possible solution to the current optimisation. Instead, the optimisation makes a plan at every time-
step which is then immediately forced to disregard at the next sampling time without the guarantee
that will be able to find a new one. Thus, a basic requirement to solve this problem is to re-include the
tail of the solution somehow which would result in a consistent optimisation where at each time-step,
the latter is able to improve or “build on top” of the previous solution. To achieve this, we propose to
fix the input-blocking structure in an “absolute time-frame” where the “breaking points” of the blocks
are shifted in time to maintain consistency. This results in a set of blocking structures which if applied
sequentially, guarantee that the tail is always included, thus solving the underlying problem.



Chapter 5. Shifting Strategy for Blocked Nonlinear Model Predictive Control 93

Definition 5.1. Shifted Input-Blocking: The Moving Window Blocking Approach

The proposed shifted input-blocking structures which arguably can be seen as a variant of the
MWB approach of [18], can be formally represented with the input equalities (5.4), defined for the
entire prediction horizon (Np), on the absolute time-frame steps k+Nb0 ∀Nb0 = [0, Nb−1], “restarting”
at time step k +Nb (hereafter referred as the “breaking point”), and repeating infinitely.

Ûn|k+Nb0
= ûk+j+(n−1)Nb|k+Nb0

(5.4a)

∀Nb0 = [0→ Nb − 1] (5.4b)

∀n = [1→
⌈
Np −Nb +Nb0

Nb

⌉
+ 1] (5.4c)





∀j = [Nb0 → Nb − 1] if n = 1 (First Block)

∀j = [0→ Nb − 1] if 1 < n <
⌈
Np−Nb+Nb0

Nb

⌉
+ 1 (Intermediate Blocks)

∀j = [0→ jlast] if n =
⌈
Np−Nb+Nb0

Nb

⌉
+ 1 (Last Block)

(5.4d)

with jlast = Np +Nb0 − 1−
⌈
Np −Nb +Nb0

Nb

⌉
Nb (5.4e)

where Ûn is the nth element of the total blocked input Û vector; Nb0 is a “virtual block position
indicator” related to the time step at which the equalities are defined in the absolute time frame, eg.
Nb0 = 0 being the equalities for initial time step k; n is related to nth block section, eg. n = 1 being
the first one; and j is related to the size of the nth blocked section. Notice both the size j of the block
and number of blocks n vary according to the time step Nb0 at which the equalities are defined.

In simple terms, this definition establishes the equalities that must be embedded at each time step
k + Nb0 on the range Nb0 = [0, Nb − 1], ie. the Nb time steps where the initial block was considered.
Once the time step reaches the “breaking point” (Nb0 = Nb), it “restarts” and continues to embed
the corresponding equalities in the next block, repeating infinitely. An example of its application is
provided next for clarity, and a figure showing its conceptual application is given in 5.2.

Example 5.1. Example usage of Definition (5.1)

To clarify the utility of definition 5.1 and provide an example of its general usage, consider an
optimisation of a single-input system (nu = 1) with a prediction horizon of Np = 6, and a block size
of Nb = 3. The input equalities that result from using this definition are the following:

U1|k = uk|k = uk+1|k = uk+2|k for n = 1

U2|k = uk+3|k = uk+4|k = uk+5|k for n = 2

}
For Time Step Nb0 = 0 (5.5a)

U1|k+1 = uk+1|k+1 = uk+2|k+1 for n = 1

U2|k+1 = uk+3|k+1 = uk+4|k+1 = uk+5|k+1 for n = 2

U3|k+1 = uk+6|k+1 for n = 3





For Time Step Nb0 = 1 (5.5b)

U1|k+2 = uk+2|k+2 for n = 1

U2|k+2 = uk+3|k+2 = uk+4|k+2 = uk+5|k+2 for n = 2

U3|k+2 = uk+6|k+2 = uk+7|k+2 for n = 3





For Time Step Nb0 = 2 (5.5c)



94 5.1. The Shifting Strategy

These equalities can be embedded into the optimisation with the following Nb = 3 matrices
(N0,N1,N2) applied sequentially (N0 → N1 → N2), “resetting or restarting” after reaching the last
one (N2) and repeating infinitely, ie. by following (N0 → N1 → N2 → N0 → N1 → N2 → · · · → ∞).

N0 =




1 0

1 0

1 0

0 1

0 1

0 1




N1 =




1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 0 1




N2 =




1 0 0

0 1 0

0 1 0

0 1 0

0 0 1

0 0 1




Repeat Infinitely

(5.6)

Remark 5.1. Equivalence of Relative and Non-Relative Shifted Input-Blocking Optimisation
Note that when using this shifting input-blocking strategy and shifting the solution (Ū|k = Û|k−1)

along in time using the IVE strategy of the RTI Scheme, the decision variables will remain completely
aligned with the nominal input Ū at all times (assuming Ū was initially aligned, eg. starting from
a free response Ū = O), thus satisfying the “condition equality” (4.9) introduced in chapter 4 which
consequently results in both types of optimisation (relative and non-relative) resulting in the exact same
solution for this approach. This will be discussed in the inverted pendulum case study of section 5.5.

Remark 5.2. Reduced Number of Input Constraints: Note that when using this type of approach, the
number of input constraints can be reduced to the number of decision variables, eg. Umin ≤ U ≤ Umax.

The Ideal Prediction Horizon

One of the distinctive characteristics of the proposed Shifted Input-Blocking strategy is what the author
of this thesis calls “The Ideal Prediction Horizon”. This concept emerged after one of the reviewers from
the IFAC 2018 conference (abstract only) paper [48] asked the question, “How do you deal with block
sizes that are not integers of the prediction horizon? ”. Indeed, although it may seem intuitive to select
the prediction horizon as a multiple integer of the block size, the reality is that this is not the best
option. We have already seen an example of this in example 5.1, where the number of decision variables
(Un) related to the number of columns varied from n = 2 to n = 3. From a computational perspective,
this is not a desirable behaviour given it could lead to requiring dynamic memory allocation, something
which should be avoided at all cost when developing real-time auto-generated control system routines
to improve computational performance.

Although one may find a simple solution to this such as using shrinking horizon strategies [28, 31]
or developing a set of different auto-generated routines for each of the cases (eg. n = 2, n = 3 for
example 5.1), a simpler solution is to use the proposed “Ideal Prediction Horizon” presented below.

Theorem 5.1. The Ideal Prediction Horizon
When using definition 5.1 to maintain recursive feasibility, the selected prediction horizon (Np)

must be an integer multiple of the block size (Nb) plus 1 to keep the Hessian dimension NEN (related to
the number of decision variables) constant for any block size Nb, at all time-steps Nb0 = [0→ Nb − 1].
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Proof. The expected size of the Hessian NEN for any block size (Nb) and prediction horizon (Np) is
given by:

NEN =

⌈
Np − x
Nb

⌉
+ 1 (5.7)

where x is the length of the first blocked input (n = 1 of equation 5.4) of a given blocking structure.
In simple terms, this expression can be understood as the size of the first block (+1), plus the size of
the rest of the blocks

(⌈
Np−x
Nb

⌉)
.

Looking at the range of j for case n = 1 (first block) in equation (5.4d) of definition (5.1), it can
be seen that the size of first block will shrink from Nb to 1. Therefore, to have a constant Hessian
dimension, the following must hold:

⌈
Np −Nb

Nb

⌉
+ 1 =

⌈
Np − x
Nb

⌉
+ 1 ∀x = [1, Nb] (5.8)

Equation (5.8) can only be satisfied for all x and any Nb by using Np = nNb + 1, where n is an integer
number. Substituting this expression in (5.8) gives:

⌈
nNb + 1−Nb

Nb

⌉
+ 1 =

⌈
nNb + 1− x

Nb

⌉
+ 1 (5.9)

After some algebraic manipulation:

n− 1 +

⌈
1

Nb

⌉
= n+

⌈
1− x
Nb

⌉
(5.10)

because
⌈

1
Nb

⌉
= 1 and

⌈
1−x
Nb

⌉
= 0 ∀x = [1→ Nb], equation (5.10) holds.

The Ideal Moving Window Blocking Input-Structure

Having defined the Ideal Prediction Horizon, it is evident that the resulting Ideal MWB structure
(NNb0 ) for each “virtual” block position indicator Nb0 is given by:

NNb0 =




nNb−Nb0 ONb−Nb0 · · · · · · ONb−Nb0
ONb nNb ONb · · · · · ·
...

. . . . . . . . .
...

· · · · · · ONb nNb ONb

O1+Nb0
· · · · · · O1+Nb0

n1+Nb0



∀Nb0 = [0, Nb − 1] (5.11)

where the matrices nx and Ox are defined as before, representing matrices with x vertically arranged
identity and zeros matrices of size nu × nu, respectively, ie. given by:

nx =




Inu×nu1
...

Inu×nux


 Ox =




Onu×nu1
...

Onu×nux


 (5.12)
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From the ideal MWB input structure (5.11) it can be appreciated how the initial block (ie. the one
in the left upper corner nNb−Nb0 ) is shrinking its size from Nb to 1, whereas the last block (ie. the one
in the lower right corner n1+Nb0

) is expanding its size from 1 to Nb. In contrast, the inner block sizes
(nNb) maintain the same size throughout the entire shifting process. This can be visualised clearly in
figure 5.2 where an example ideal blocking structure is given for a block size of Nb = 10 shifting from
Nb0 = 0, depicted by the thick blue line, to Nb0 = 9, depicted by the red dot-dashed line.

Discrete Time Steps (k)

In
p
u
t

Ideal Moving Window Blocking Structure

Figure 5.2: Example of Ideal Moving Window Blocking Parameterisation with Nb = 10

Example 5.2. Challenging the Intuitive Block Shifting

At this point, one might intuitively be asking the question “Why not just expand the final block
beyond the Nb block size to keep the sizes constant instead of using the proposed Ideal Prediction
Horizon? ”. Indeed, this is how it was done in the IFAC 2020 conference paper [59] (see equation 19b
of the paper), not to distract from the main message as the IET 2020 paper [50] containing the Ideal
Prediction Horizon proof hadn’t been publish by then. Although one might get away with this intuitive
way of shifting the blocks, the following numeric example aims at demonstrating how easily this type
of strategy can lead to instability.

Consider the unconstrained optimal control problem of replicating a given reference input sequence
Ur = [urk , urk+1

, · · · , urk+Np−1
] using the blocked input NNb0 Û. Indeed, we must not forget that one of

the purposes of the input-parameterisation framework is to replicate the original input sequence.
This optimisation is then simply given by:

J =
1

2
(Ur − NNb0 Û)T (Ur − NNb0 Û) (5.13)

Or written in the standard form:

J =
1

2
ÛT (NTNb0NNb0 )
︸ ︷︷ ︸

EN

Û + ÛT (−NTNb0Ur)︸ ︷︷ ︸
fN

(5.14)
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As it has already been proven in earlier chapters, the unconstrained solution to this problem is
given by:

U = −E−1
N fN = (NTNb0NNb0 )−1NTNb0Ur (5.15)

To provide an easily replicable result, consider now a single-input system (nu = 1) with a Non-
Ideal Prediction Horizon of Np = 4, and a block size of Nb = 2. In simple terms, we want to replicate
the first 4 inputs of the sequence using only 2 blocked inputs. To compare this approach with the
Ideal Prediction Horizon, consider the next closest ideal horizon of (Np = 5) resulting in the ideal and
non-ideal blocking structures given by:

Solution Type Input-Structure

Non-Ideal N0 =




1 0

1 0

0 1

0 1




N1 =




1 0

0 1

0 1

0 1




Ideal N0 =




1 0 0

1 0 0

0 1 0

0 1 0

0 0 1




N1 =




1 0 0

0 1 0

0 1 0

0 0 1

0 0 1




(5.16)

As it can be seen, both input structures maintain the same number of decision variables from one
step to the next. This is because the non-ideal input structure N1 expands the last block size beyond
Nb = 2 as it can been from the arrangement of the three vertical ones.

Assume that the total input reference trajectory to be replicated is given by,

Ur = [0.2259, 0.1707, 0.2277, 0.4357︸ ︷︷ ︸
Initial Horizon

, 0, · · · , 0]T (5.17)

Notice the inputs beyond the “initial horizon” (Np = 4) are zero, thus satisfy the common requirement
for stability where costs beyond the horizon are zero.

We can then select the following two consecutive “shifted” input references (Ur from 5.18) as they
would appear when implemented in a receding horizon fashion, with the additional zeros enclosed by
the red boxes representing the input references specifically required by the “Ideal Prediction Horizon”
approach which has Np = 5 instead of Np = 4.

Ur|k =




0.2259

0.1707

0.2277

0.4357

0




︸ ︷︷ ︸
Input Reference @ k

→ Ur|k+1 =




0.1707

0.2277

0.4357

0

0




︸ ︷︷ ︸
Shifted Input Reference

(5.18)
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The solutions for these optimisation problems using both approaches (ideal and non-ideal) at the
two initial consecutive steps are given by:

Time Step Solution Type Solution Cost

k

Non-Ideal Ûk =

[
0.1983

0.3317

]
→ Jk = 0.0232

Ideal Ûk =




0.1983

0.3317

0


 → Jk = 0.0232

k + 1

Non-Ideal Ûk+1 =

[
0.1707

0.2211

]
→ Jk+1 = 0.0950

︸ ︷︷ ︸
Problem !

Ideal Ûk+1 =




0.1707

0.3317

0


 → Jk+1 = 0.0216

(5.19)

As it can be seen in (5.19), the solution of both ideal and non-ideal approaches at the initial time
step (k) results in identical solutions and costs (Jk = 0.0232) with the “additional” variable of the
ideal-horizon approach doing nothing (U3 = 0) as the target for that step is the added 0 of the red
box in (5.18). However, the solution of the non-ideal approach in the following step (k + 1) results
in an increase to the cost of Jk+1 = 0.0950 > 0.0232 = Jk, as signaled by the red box, which clearly
demonstrates how easily this type of solution can lead to instability. In contrast, the solution of the
ideal approach results in a decrease to the cost of Jk+1 = 0.0216 < 0.0232 = Jk, thus satisfying the
common nominal stability requirements.

The core message of this example is that by using this small modification of the “Ideal Prediction
Horizon”, the resulting solution will always outperform the intuitive blocking approach which provides
a clear motivation to use it.

Example 5.3. The Lock-In Condition

In addition to the potential recursive feasibility problems that arise from not using the proposed
shifting strategy, an interesting problem that can happen when embedding a non-shifting blocking
structure using the Relative framework presented in chapter 4 is what the author of this thesis calls,
The Lock-In Condition. This problem can be very easily explained with a simple example.

Consider a single-input system (nu = 1) with the input-structure N of equation (5.20), representing
the shortest possible ideal horizon (Np = 3) with the smallest (non-unity) block size (Nb = 2) under
the Relative framework, ie. given by:



û0

û1

û2




︸ ︷︷ ︸
Û

=



ū0

ū1

ū2




︸ ︷︷ ︸
Ū

+




1 0

1 0

0 1




︸ ︷︷ ︸
N

[
δÛ0

δÛ1

]

︸ ︷︷ ︸
δÛ

(5.20)
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Moreover, consider that this input structure is used to optimise a random convex quadratic cost
(its actual definition is irrelevant), subject to the inequality:

Umin − Ū ≤ NδÛ ≤ Umax − Ū (5.21)

Let us assume that the optimisation starts from the “free response”, ie. the initial nominal input is
zero (Ū = O), and for some reason, the optimisation results in the blocked decision variable δÛ =

[umax, umin]T , thus making the input trajectory reach both max-min input limits in the form of:



û0

û1

û2


 =




0

0

0


+




1 0

1 0

0 1



[
umax

umin

]
=



umax

umax

umin


 (5.22)

After shifting the input trajectory as done by the IVE strategy of the RTI Scheme discussed in chapter
3, the resulting nominal input is given by:

Ū =



ū0

ū1

ū2


 =



umax

umin

umin


 (5.23)

This causes the inequality (5.21) at the next optimisation to reach a “lock-in condition” that results
from attempting to solve the inequalities related to the first two inputs, given by:

umin − umax = umin − ū0 ≤ δÛ0 ≤ umax − ū0 = umax − umax = 0 (5.24a)

0 = umin − umin = umin − ū1 ≤ δÛ0 ≤ umax − ū1 = umax − umin (5.24b)

for which the only solution is δÛ0 = 0, ie. not being able to move the first blocked input at all.

This causes the optimisation to lose the first decision variable completely, consequently “locking-in”
the solution at whatever value was initially selected (in this case umax) until the entire block passes,
essentially resulting in an “open-loop (no feedback at all)” solution. It’s worth mentioning that this
phenomena could equally happen on blocked inputs at later stages, ie. is not restricted to happen only
in the first decision variable.

By not being able to move, the optimisation is then forced to “ignore” new information that may
be coming as the horizon moves forward, such as new costs or new small constraint violations and
disturbances the may require small optimal corrections which otherwise could easily lead to infeasible
problems. Obviously, this could have a more significant impact if larger block sizes were used, al-
though a simple way to avoid this problem would be to use the Non-Relative framework. Indeed, this
resulting in-feasibility problem is stressed out significantly in the Case Study of the Inverted Pendulum
presented in section 5.5, particularly in table 5.10 where the number of in-feasibilities when using the
Relative Non-Shifted framework are significantly higher than when using the Non-Relative Non-Shifted
approach. Nonetheless, by using the proposed shifting-strategy, the input-structure keeps the decision
variables aligned with the nominal input at all times after shifting it along with the IVE strategy, as
discussed in remark 5.1, thus completely avoiding this problem.
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Alternative Blocking Structures

Although the main focus of this chapter has been in blocked input structures of the form given in figure
5.2, the core methodology of fixating the input-structure in an absolute-time frame can be extended
to other input structures such as the ones provided in figure 5.3. Each of these input trajectories may
be achieved through different input structures, and may present different advantages/disadvantages
as well as a different “Ideal Prediction Horizons”. Ultimately, all of this strategies preserve the main
advantages of allowing reduced number of degrees of freedom and reduced number of input inequality
constraints. A brief discussion on each of the alternatives is provided below.

Delta Blocking

(a) Delta Blocking

Delta Blocking with Initial Offset

(b) Delta Blocking

Sawtooth Blocking

(c) Sawtooth Blocking

First-Order Blocking

(d) First-Order Blocking

Figure 5.3: Input-Blocking Structure Alternatives

1. Delta Blocking (figure 5.3a): This type of input-parameterisation may be ideal for following
smooth trajectories and can be easily achieved by embedding the ideal MWB structure proposed
in this chapter (ie. equation 5.11) to the input increments, ie. ∆Û = NNb0∆Û. As a result,
this approach would have the same Ideal Prediction Horizon. Moreover, assuming the previous
input is inside the bounds (umin ≤ uk−1 ≤ umax), the entire input trajectory can be constrained
by looking only at the end points of each segment. This alternative approach was used for the
obstacle avoidance case study of section 5.6.
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2. Delta Blocking with Initial Offset (figure 5.3b): This type of input parameterisation can be
achieved by augmenting the Delta Blocking of the previous approach with one additional decision
variable for the initial offset of the form:

∆Û =

[
Inu×nu O

O NNb0

]
∆Û (5.25)

Thus, the Ideal Prediction Horizon in this case would be a multiple integer of the block size plus
2 (ie. Np = nNb + 2) due to the extra input required for the initial offset. This initial offset
would allow the system to have a fast initial input change (possibly required to quickly cancel
disturbances), followed by a smooth trajectory. As with the Delta Blocking approach, the entire
input trajectory can be constrained by looking only at the end points of each segment, with the
only difference being the added constraint on the initial offset.

3. Sawtooth Blocking (figure 5.3c): This type of input parameterisation can also be embedded using
the input increments (∆Û = NNb0∆Û) with slightly different input-structure, and may offer
greater responsiveness and flexibility to the user at the cost of having two decision variables per
block, resulting in more degrees of freedoms and required input constraints. Because of this, the
Ideal Prediction Horizon for this type of input trajectory is (given without proof) Np = 2nNb+2.
An example of the resulting structures for Nb = 3 using an Ideal Prediction Horizon Np = 8

would be given by:

N0 =




1 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




→ N1 =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1




→ N2 =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1




(5.26)

The entire input trajectory can be constrained by considering the first and last point of each
segment, which again is twice the amount of the other approaches.

4. First Order Blocking (figure 5.3d): This type of input is perhaps one of the most natural to
apply and can be achieved simply by augmenting the system with an “inner” input state that has
first-order dynamics. The method would then consider the “outer” input as the decision variable
for the optimisation on which the proposed Ideal MWB structure of equation (5.11) would be
embedded. Once the optimisation is solved, the “inner” input state is selected as the actual
input to be applied. As with the Delta Blocking approach, the entire input trajectory can be
constrained by looking only at the end point.

It is important to understand that some of this structures might be better suited than others for a
given application, and the purpose of introducing them is not to say which one is better but rather
to generate awareness on alternatives in which the proposed strategy of this chapter can be applied.
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Ultimately, all of these structures can use the core methodology of fixating the input-structure in an
absolute time-frame to recover recursive feasibility, which overall enlarges the scope of this chapter’s
contribution.

5.1.3 Shifting Inequality Constraints, Shooting Points and Lagrange Multipliers:
The Extended Approach

Having observed the benefits of the proposed absolute time-frame shifting strategy applied to the
standard input-blocking approach, it was considered relevant to extend its application to the states
and outputs of the system. In this case, it was observed that it was particularly useful to implement the
approach in the state and output inequality constraints of the optimisation, as they represent one of the
main “resource-hungry” parts when it comes to computation times of general Quadratic Programs. We
have already seen an example of this approach in the first-order input-blocking alternative presented
in figure 5.3d where the entire inner input/state trajectory can be constrained simply by constraining
only the end point of each block. Moreover, it is well known that the number of inequality constraints
that can be active at a given time will be restricted by the number of decision variables [146]. Thus,
it was considered logical to also look for a way of reducing the state and output constraints as even if
they were required to be active, they would be restricted by the amount of available decision variables.
Additionally, this can also have an impact on the memory requirements of the constraint matrices
and vectors of the optimisation which may be relevant for real-time control systems hardware which
typically has reduced memory resources.

The key question to ask here is whether it is actually required to include constraints at every
sampling time from a practical perspective. What will happen if the system presents a small violation
in an intermediate time-step? Or more importantly, what CAN happen? Is it possible that the system
is restricted by its inherent dynamics as in the first order input-blocking example (fig. 5.3d)? And
also, is it more important to have the constraints concentrated at the beginning of the horizon, eg. as
in the input parameterisation of GPC, or spread around the horizon? In all likelihood, it is quite often
found that the most relevant constraints are those closest to the beginning of the horizon, but what if
they are not, and constraints at the end of the horizon are as important as the ones in the middle or
in the beginning?. What if in order to be able to satisfy the constraints, they must be anticipated with
a significant time ahead? Certainly including the constraints across the entire horizon would be ideal
if there were sufficient computational resources, but what can we do when there are not enough?

This question remains! And an example of it will be given in the obstacle avoidance case study 5.6.
The purpose of the proposed sub-strategy is therefore to provide viable alternatives for these sce-

narios which would allow the user to select a reduced amount of inequality constraints spread over
the horizon whilst preserving nominal stability and recursive feasibility of the optimisation by using
the proposed absolute-time frame shifting strategy. Ultimately, all discrete MPC controllers ignore, to
some extent, the intermediate points, ie. those which aren’t seen between discrete sampling times, thus
the approach is somewhat justified from that perspective. In addition to this, it is well known that
output hard-constraints generally cannot be guaranteed feasible, thus ignoring intermediate constraints
allows the user to “virtually relax” the optimisation, although other approaches such as soft-constraints
can also be used. This will be seen in the results of the obstacle avoidance case study of section 5.6.
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On the other hand, the absolute time-frame shifting strategy can also be applied to the shooting
points themselves, ie. the state and output errors of the optimisation, which can ultimately reduce
computation times and memory requirements further. However, it is important to keep in mind that
reducing shooting points could lead to aliasing problems where the optimisation might be ignoring
intermediate information containing important frequency content. Thus, this sub-strategy is considered
an optional feature.

Finally, the proposed shifting strategy can also be applied for shifting the Lagrange Multipliers of
the optimisation, particularly when used for hot-starting active-set methods as in the RTI Scheme.
However, as this may not always be required, eg. if Interior Point methods are used, it is also considered
an optional feature.

Definition 5.2. Shifting Shooting Points and Inequality Constraints

The proposed approach can be formally represented by selecting only the state (and/or output)
prediction errors (ek = xrk − xk) and inequality constraints at the end of each block of definition (5.1)
to be included in the optimisation, ie. only including those given by:

êk+nNb|k+Nb0
= xrk+nNb|k+Nb0

− x̂k+nNb|k+Nb0
(5.27a)

xmin ≤ x̂k+nNb|k+Nb0
≤ xmax (5.27b)

∀Nb0 = [0, Nb − 1]

∀n = [1, NEN − 1]

where Nb0 is the “virtual block position indicator” related to the time steps in the absolute time-frame
as in definition 5.1; n is related to number of shooting points, and the last point of the prediction
horizon:

êk+Np+Nb0 |k+Nb0
= xrk+Np+Nb0 |k+Nb0

− x̂k+Np+Nb0 |k+Nb0
(5.28a)

xmin ≤ x̂k+Np+Nb0 |k+Nb0
≤ xmax (5.28b)

is always included, representing the shooting point/inequality constraint related to the last block
(n = NEN).

To select the points at the end of each blocked input, the time step Nb0 must be “in phase” with
the time step Nb0 used by Definition 5.1. As with definition 5.1, once the time step Nb0 reaches the
“breaking point”, it restarts the sequence, repeating infinitely (Nb0 = 1→ Nb → 1→ Nb →∞).

Remark 5.3. Shooting Point Selection
Selecting a given subset of state errors or state constraints can be achieved by selecting (or comput-

ing) only the respective rows of matrices H,G,D,Xr, X̄,M, γ.

Remark 5.4. Constant Number of Inequalities and Shooting Points
As there is only one selected shooting point and inequality constraint per block, it can be proved there

will be a constant number of shooting points and inequality constraints when using the Ideal Prediction
Horizon presented in theorem (5.1). This is given without proof as it is self-evident.
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To provide a visual example of definition 5.2, figure 5.4 shows the application of this approach to the
function (y(k) = A sin(αk + φ) exp(−τk) - a trajectory commonly found in the response of dynamical
systems) when using a block size of Nb = 5. In this figure, the shifting shooting points and inequality
constraints to be included in the optimisation are represented by the large points, whereas the small
points represent intermediate points that form part of the available predictions at discrete time-steps
but are ignored to save computational resources. Moreover, as the selected points are aligned with
the end of each block of definition (5.1), these points are essentially shifting backwards in the relative
time-frame (ie. as the horizon moves forward), due to first block shrinking. This can be seen with the
red arrows executing the “shifting action”, moving the entire black curve 4 steps back to the blue curve,
where the large blue points represent the shifted shooting points, ie. the same points of the black curve
@ time-step k+ 4 - the edge of the block from definition 5.1. An important thing to notice here is that
the last point of the black curve (signaled by the circle at the end of the trajectory) remains at the
relative time-step Np as required by definition 5.2. Finally, as pointed out earlier, given the strategy
ignores the intermediate points, some of them can undergo slight constraint violations as signaled for
the 9th step ahead of the black curve (5th of the blue curve). In practice, these small violations can
be compensated using conservative safety limits, eg. by embedding a small gap or slack between the
real hard constraint and the constraint used for the optimisation. This will be discussed further in the
inverted pendulum case study of section 5.5, and the obstacle avoidance case study of section 5.6.

Relative Time Steps (k)
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Shifting Shooting Points Strategy

Shooting Points @ k

Shooting Points @ k+4

Ignored Points @ k

Ignored Points @ k+4

Constraint

Shifting Action

Last Point Remains at N
p

Possible Constraint

 Violation of Ignored

Point

Figure 5.4: Shifting Points Strategy Example with Nb = 5 in a Relative Time-Frame
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Alternative Shifting of Shooting Points/Inequality Constraints

Although the proposed shifting strategy focuses specifically on placing the shooting points and in-
equality constraints at the end of each block, one can find alternatives for the implementation of this
where as long as the variables in question are fixed in an absolute time-frame, one will be able to find
nominal stability and recursive feasibility properties similar to the ones provided in section 5.1.5. This
can ultimately extend the scope of the proposed approach presented in this chapter.

To illustrate possible extensions of the proposed approach, consider first an optimisation with a
block size Nb = 4, and an Ideal Prediction Horizon of Np = 9 which instead of including only the
last shooting point at each block it includes the last two shooting points of each block resulting in
a 0 − 0 − 1 − 1 pattern, with the last point of the prediction horizon always included. This pattern
is illustrated in table 5.1 where each cyan “one” box represent a shooting point to be included in the
optimisation, expressed in the relative time-frame. The limits of each block at each of the time-steps
(Nb0) are signaled by the red boxes for clarity. From this table it can be appreciated that the number of
points in this optimisation remains constant (5 points) at all the virtual block position indexes (Nb0),
thus avoiding dynamic memory allocation requirements whilst reducing the overall shooting points
and inequality constraints of the original optimisation by approximately half its original size. In this
scenario, the approach would allow violations at a maximum of 2 consecutive points. However, the
approach could be equally be implemented as a 0− 1− 0− 1 pattern, ignoring a maximum of 1 point.

Nb0/k 1 2 3 4 5 6 7 8 9
0 0 0 1 1 0 0 1 1 1

1 0 1 1 0 0 1 1 0 1

2 1 1 0 0 1 1 0 0 1

3 1 0 0 1 1 0 0 1 1

Table 5.1: Example of Alternative Shifting for Inequality Constraints/Shooting Points with an Ideal
Prediction Horizon Np = 9 and block size Nb = 4, expressed in a Relative Time-Frame

Note that this same type of philosophy can be applied to virtually any pattern. As a second
example, consider an optimisation with a block size of Nb = 5 and an Ideal Horizon of Np = 11

implementing a 0 − 1 − 0 − 1 − 1 pattern, with the last point of the horizon always included. The
pattern is illustrated in table 5.2 where the number of points can also be seen to remain constant (7
selected points). In this case, the approach would reduce the number of points by approximately 37%,
whilst ignoring a maximum of 1 consecutive shooting point.

Nb0/k 1 2 3 4 5 6 7 8 9 10 11
0 0 1 0 1 1 0 1 0 1 1 1

1 1 0 1 1 0 1 0 1 1 0 1

2 0 1 1 0 1 0 1 1 0 1 1

3 1 1 0 1 0 1 1 0 1 0 1

4 1 0 1 0 1 1 0 1 0 1 1

Table 5.2: Example of Alternative Shifting for Inequality Constraints/Shooting Points with an Ideal
Prediction Horizon Np = 11 and block size Nb = 5, expressed in a Relative Time-Frame
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Shifting Lagrange Multipliers

Another key part of the proposed approach focuses on how to handle the Lagrange Multipliers (λ) of
the optimisation, particularly when using them for hot-starting active-set based Quadratic Programs
such as QP OASES. The important thing to notice here is that because the approach uses a reduced
amount of constraints (and consequently Lagrange Multipliers) spread around the horizon, the best
guess for the active-set in the next iteration is not given simply by shifting them at every time-step,
as implemented in the standard RTI IVE strategy. Instead we propose the Lagrange Multipliers must
be shifted in the absolute time-frame along with the proposed input-blocking and shifting inequality
constraints of definitions 5.1 and 5.2, respectively. This is addressed in the theorem 5.2.

Theorem 5.2. Shifting Lagrange Multipliers
When using definitions 5.1 and 5.2 with the Ideal Prediction Horizon of theorem 5.1, the Lagrange

Multipliers must be shifted ONLY when the optimisation reaches the “breaking point”, ie. when resetting
the virtual block position indicator (Nb0), to provide the guess of the active-set in the following step.

Proof. Consider the following unblocked Lagrange Multipliers related to the positive input constraints
(NÛ ≤ Umax):

λ = [λTk|k, λ
T
k+1|k, · · · , λTk+Np−1|k]

T (5.29)

The usual shifting strategy used by the RTI is:

λk+i|k+i > 0 if λk+i|k+i−1 > 0 (active if previous was active)
λk+i|k+i = 0 if λk+i|k+i−1 = 0 (inactive if previous was in inactive)

(5.30)

Now, for simplicity, consider an ideal prediction horizon Np = Nb + 1. When using the proposed
shifting input structure (5.11) that results from definition (5.1), the entire trajectory can be constrained
simply by constraining Û = [ÛT1 , ÛT2 ]T < Umax which results in requiring only 2 Lagrange Multipliers
[λ1|k+j , λ2|k+j ] for the two blocked sections where:

λ1|k+j = λk+i|k+j = λk+Nb−1|k+j ∀j = [0, Nb − 1] ∀i = [j,Nb − 1] (5.31)

for the first blocked section, and:

λ2|k+j = λk+Nb+i|k+j = λk+Nb−1|k+j ∀j = [0, Nb − 1] ∀i = [0, j] (5.32)

for the second blocked section.
By applying the standard RTI IVE shifting (5.30) combined with equalities (5.31) and (5.32), and

considering the “breaking point” of definition (5.1) happens at k +Nb gives:

λ1|k+Nb > 0 active if λ2|k+Nb−1 > 0

λ1|k+Nb = 0 inactive if λ2|k+Nb−1 = 0
(5.33)

which in simple terms means, the first block would be active if the second block was active before the
breaking point.
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The same would hold for if more blocks were considered, resulting in:

λi|k+Nb > 0 active if λi+1|k+Nb−1 > 0

λi|k+Nb = 0 inactive if λi+1|k+Nb−1 = 0
∀i = [1, NEN − 1] (5.34)

Moreover, a similar procedure can be followed to verify that the Lagrange Multipliers of the state
inequality constraints must also be shifted in time with the breaking points. Finally, a similar approach
can be derived based on the same principle of consistent absolute time-frame shifting for shifting the
Lagrange multipliers when Alternative Shifting of Shooting Points/Inequality Constraints such as those
introduced in tables 5.1 and 5.1 were to be used.

An example comparison of the proposed Lagrange Multipliers Shifting strategy is given in case
study 5.5, particularly in the computation time comparison of table 5.12 where the computation times
obtained by the QP OASES solver are seen to be higher when the proposed approach is not used.

5.1.4 General Optimisation Framework

The application of any of the sub-strategies proposed in this chapter leads to a general optimisation
framework where a set of Nb Quadratic Programs (J [Nb0 ] ∀Nb0 = [0, Nb − 1]), need to be formulated
and solved sequentially, whilst restarting every time the “breaking point” (Nb0 = Nb) is reached, and
repeating infinitely. As an example, the resulting Quadratic Programs when applying the Ideal MWB
input structure (5.11) to the relative input-parameterised framework (4.4) are given by:

J [Nb0 ] =
1

2
δÛTE[Nb0 ]

N δÛ + δÛf [Nb0 ]

N (5.35a)

M
[Nb0 ]

N δÛ ≤ γ (5.35b)

E
[Nb0 ]

N = NTNb0 (HTQH +R)NNb0 (5.35c)

f
[Nb0 ]

N = −NTNb0 [HTQ(Xr − X̄ −D −Gδx0)−R(Ū − Ur)] (5.35d)

M
[Nb0 ]

N =




NNb0
−NNb0
HNNb0
−HNNb0




γ =




Umax − Ū
Ū − Umin

Xmax − X̄ −D −Gδx0

X̄ +D +Gδx0 −Xmin




(5.35e)

A similar formulation can be found in the IFAC World Congress 2020 conference paper [59] (see
equation 20 of the paper). Moreover, note that the proposed approach can be also applied to Linear
MPC which would result in a set of Nb Quadratic Programs that can be pre-prepared and stored offline,
eg. that of the compressed set of Hessians (E

[Nb0 ]

N ), compressed set of constraint matrices (M
[Nb0 ]

N ), as
well as certain parts of the compressed set of linear terms (f

[Nb0 ]

N ). This is a particularly simplified task
when the approach uses the non-relative prediction models (3.26) for standard linear MPC discussed
in theorem 3.1, which can simplify the pre-storage of linear terms (f

[Nb0 ]

N ) and constraint vector (γ).
However, we do point out that other approaches such as Explicit MPC might be more suitable for
linear MPC implementation [37], and the proposed approach is given as an alternative that could be
more relevant for improving the performance of NMPC instead.
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On the other hand, we re-emphasise that the number of constraints required to implement the
proposed approach can be significantly reduced. For example, given the nominal input (Ū) remains
aligned with the Ideal MWB input structure (5.11) when using the IVE of the RTI Scheme (as discussed
in remark 5.1), the approach can constrain the entire input trajectory of (5.35) by looking at only one
of the inputs of each block, eg. the last one as in the shifting inequality constraint approach, resulting
in an input inequality constraint of the form (Umin−Ū)selected ≤ δÛ ≤ (Umax−Ū)selected as discussed in
remark 5.2. Similarly, the approach would select a reduced amount of shifting state constraints which
would modify the required state inequality constraint to the form (Xmin − X̄ − D − Gδx0)selected ≤
(HNNb0 )selected ≤ (Xmax− X̄ −D−Gδx0)selected. The application of both of this strategies combined

would result in a modified set of constraint matrices (M
[Nb0 ]

N ) and constraint vectors (γ[Nb0 ]) given by:

M
[Nb0 ]

N =




INENnu×NENnu

−INENnu×NENnu

(HNNb0 )selected

−(HNNb0 )selected




γ
[Nb0 ]

N =




(Umax − Ū)selected

−(Umin − Ū)selected

(Xmax − X̄ −D −Gδx0)selected

−(Xmin − X̄ −D −Gδx0)selected




(5.36)

Once again, we reiterate that the selection of each of the points can be done simply by selecting
(or computing) the relevant rows of matrices H,G,D,Xr, X̄,M, γ as discussed in remark 5.3.

To provide a more complete example of the proposed approach, consider an optimisation with
a block size of Nb = 2, and an Ideal Prediction Horizon of Np = 5. By implementing the shifted
input-blocking, inequality constraints, and state-errors strategies, the approach would solve the set of
Quadratic Programs (J [0] and J [1]) defined in table 5.3, sequentially and repeating infinitely (J [0] →
J [1] → J [0] → ∞), where the “selected” state-errors, input-structures, as well as input and state
constraints to be included in the optimisation are presented, expressed in the Relative Time-Frame.

QPs (J [Nb0 ]) J [0] J [1]

Input-Errors
(Included in Full)

Û − Ur Û − Ur

State-Errors Xr − X̂ =



xrk+2

− x̂k+2

xrk+4
− x̂k+4

xrk+5
− x̂k+5


 Xr − X̂ =



xrk+1

− x̂k+1

xrk+3
− x̂k+3

xrk+5
− x̂k+5




Input Structure N0 =




1 0 0
1 0 0
0 1 0
0 1 0
0 0 1




N1 =




1 0 0
0 1 0
0 1 0
0 0 1
0 0 1




Input Constraints Umin ≤



ûk+1

ûk+3

ûk+4


 ≤ Umax Umin ≤



ûk
ûk+2

ûk+4


 ≤ Umax

State Constraints Xmin ≤



x̂k+2

x̂k+4

x̂k+5


 ≤ Xmax Xmin ≤



x̂k+1

x̂k+3

x̂k+5


 ≤ Xmax

Table 5.3: Example of Overall Shifting Strategy applied to optimisation with block size of Nb = 2 and
an Ideal Prediction Horizon of Np = 5, expressed in the Relative Time-Frame
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5.1.5 Stability and Recursive Feasibility

Up until this point we have discussed important details regarding the general nature as well as the pos-
sible alternatives of the proposed sub-strategies, without dealing with their essential nominal stability
and recursive feasibility properties. However, we have emphasised repeatedly that the proper use of a
consistent absolute time-frame shifting allows the “tail” (ie. the solution at the previous time-step) to
be included as a possible solution to the current optimisation. This particular condition is the key to
retain the aforementioned properties given it allows us to obtain guarantees for them under the infi-
nite horizon and zero-terminal constraint assumptions discussed in chapter 3, in a relatively straight
forward manner. The proof of this is addressed in theorem 5.3.

Theorem 5.3. Stability and Recursive Feasibility of the Shifting Strategy
The tail of the optimisation is automatically included when using definitions 5.1 and 5.2 with the

Ideal Prediction Horizon 5.1 which allows the proposed approach to guarantee nominal stability and
recursive feasibility for the infinite horizon and zero terminal constraint approaches.

Proof. Let us begin by observing that because the input-blocking structure of definition 5.1 with the
Ideal Prediction Horizon of theorem 5.1 is fixed in an absolute time-frame, any optimal sequence of
blocked inputs (Û∗) at any time step (k + Nb0 ∀Nb0 = [0, Nb − 1]) can be replicated in the following
time step k +Nb0 + 1. In simple terms, this means that equality (5.37) can always be satisfied.

Û|k+Nb0
=




Û1|k+Nb0

Û2|k+Nb0
...

Û(NEN−1)|k+Nb0

Û(NEN )|k+Nb0




=




Û∗1|k+Nb0−1

Û∗2|k+Nb0−1

...
Û∗(NEN−1)|k+Nb0−1

Û∗(NEN )|k+Nb0−1




= Û∗|k+Nb0−1 ∀Nb0 = [1, Nb0 − 1] (5.37)

When the solution reaches the “breaking point” (Nb0 = Nb), the first optimal blocked input (Û∗1|k+Nb0−1)
would “shrink” completely, thus requiring the entire blocked trajectory to be shifted, eg. the second
block becoming the first one. This condition, represented by equality (5.38), can also be satisfied
noting that the time step k + Nb would represent the point at which Nb0 resets to 0, thus giving the
initial blocking structure. In this case, a completely “new” blocked input would emerge (as signaled by
the red box in 5.38), becoming a “free” element that would not require any constraint imposed on it.

Û|k+Nb =




Û1|k+Nb

Û2|k+Nb
...

Û(NEN−1)|k+Nb

Û(NEN )|k+Nb




=




Û∗2|k+Nb−1

Û∗3|k+Nb−1
...

Û∗(NEN )|k+Nb−1

Free




= Û∗|k+Nb−1 (5.38)

This allows the optimisation to include the tail of the input solution which is known to be a key
requirement to guarantee nominal stability and recursive feasibility. Moreover, note that this would
also hold for any of the proposed alternatives of figure 5.3, as long as they are properly shifted in time.
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Without loss of generality, consider now a regulation problem (Xr = Ur = O) with a globally
converged optimal set of selected state-inequality constraints (Xmin ≤ (X̂∗|k+Nb0

)selected ≤ Xmax) given
by definition 5.2 at time steps k+Nb0 ∀Nb0 = [0, Nb− 1]. The proposed approach fixes these points in
an absolute time frame, with the only “moving” point being the last one as seen from equation (5.28a).
To guarantee nominal stability and recursive feasibility between any two consecutive time-steps, the
optimisation would be required to have equality (5.39) as a possible solution to the optimisation.

(X̂|k+Nb0
)sel =




x̂k+Nb|k+Nb0

x̂k+2Nb|k+Nb0
...

x̂k+(NEN−1)Nb|k+Nb0

x̂k+Np+Nb0 |k+Nb0




=




x̂∗k+Nb|k+Nb0−1

x̂∗k+2Nb|k+Nb0−1

...
x̂∗k+(NEN−1)Nb|k+Nb0−1

x̂∗k+Np+Nb0−1|k+Nb0−1




= (X̂∗|k+Nb0−1)sel (5.39)

∀Nb0 = [1, Nb − 1]

As it can be seen, the only potential “problem” in satisfying this equality is that of the last selected
points (x̂k+Np+Nb0 |k+Nb0

and x̂∗k+Np+Nb0−1|k+Nb0−1), signaled by the red boxes. In the case where a
sufficiently long (or infinite) prediction horizon is used and recursive feasibility of the input trajectory
is guaranteed (as discussed previously), the last states and inputs of the optimisation would have negli-
gible cost (x̂∗k+Np+Nb0−1|k+Nb0−1 ≈ 0 and u∗k+Np+Nb0−2|k+Nb0−1 ≈ 0), thus allowing the optimisation to
follow the plan in the previous time step whilst satisfying all the equalities, consequently resulting in
nominal stability and recursive feasibility guarantees. It is noted, however, that given infinite horizons
are not generally feasible to be solved in real-time, a more rigorous guarantee for this approach requires
the use of invariant sets and terminal modes, such as the infinite horizon costing approach presented
in chapter 3. This will be the topic of chapter 7 where the infinite horizon costing of the proposed
approach will be derived, and the ability to obtain invariant sets will be discussed.

On the other hand, we can also use the zero-terminal constraint (x̂∗k+Np+Nb0−1|k+Nb0−1 = 0) ap-
proach presented in chapter 3 to prove the desired nominal stability and recursive feasibility properties.
Strictly speaking, when implementing both main approaches: the shifting inequality constraints ap-
proach with the proposed Ideal MWB structure (5.11), the optimisation would be able to satisfy the
requested equality (red boxes in 5.39) under a zero-terminal constraint assumption, if and only if, the
last optimal blocked input obtained in the previous optimisation was also zero (U∗NEN |k+Nb0−1 = 0),
considering the typical assumption that the system remains at the origin if its in the origin (0 = f(0, 0)).

To prove this, consider an optimal feasible sequence that results from an optimisation with a block
size Nb and an Ideal Prediction Horizon Np = Nb + 1 at the initial time-step (Nb0 = 0), with the
zero-terminal condition embedded (signaled by the red box in 5.40a), ie. given by:

[
x̂∗k+1|k û∗k|k · · · · · · x̂∗k+Nb|k û∗k+Nb−1|k x̂∗k+Np|k = 0 û∗k+Np−1|k

]
(5.40a)

s.t. Û∗1|k = û∗k|k = · · · = û∗k+Nb−1|k (5.40b)

Û∗2|k = û∗k+Np−1|k (5.40c)
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The only optimal solution with guaranteed feasibility for the zero-terminal constraint at the follow-
ing time-step x̂k+Np+1|k+1 = 0 is the tail of the solution, ie. the optimal inputs from (5.40a) at time
steps k+1→ k+Np−1, with the last input being zero (ûk+Np|k+1 = 0). Note that this is not possible
given the equality Û2|k+1 = ûk+Np−1|k+1 = ûk+Np|k+1 would be embedded. The only time-step (Nb0)
at which the last input could take the required zero value would be at the “breaking point” (Nb0 = Nb),
as discussed for the “free” value of equation (5.38).

Hence, guaranteeing nominal stability under the zero-terminal framework can be done by embed-
ding the zero-terminal constraint on the last blocked input as well. However, its practical implemen-
tation would most certainly be a limitation as it essentially removes the last decision variable entirely,
restricting its value for the entire sequence until reaching the “breaking point”, as discussed in the lock-in
condition example 5.3, thus preventing the solution from improving that particular block as the horizon
moves forward. A possible alternative to this would be to add an additional non-blocked input at the
end of the overall input-structure with its respective state inequality, similar to the Delta-Blocking
with Initial Offset approach of equation (5.25), resulting in an input structure of the form:

Û =

[
NNb0 O
O Inu×nu

]
Û (5.41)

This relatively small modification would give the optimisation the flexibility it needs on the last input
value to be able to assign a zero value if it needs to satisfy the constraint (5.39) but have the freedom
to choose otherwise, whilst embedding the proposed Ideal MWB structure in the rest of terms and
guaranteeing nominal stability and recursive feasibility for this scenario.

What this proves is that nominal stability under the zero-terminal constraint scenario CAN be
obtained with very small modifications of the proposed methodologies. Nevertheless, the infinite hori-
zon costing approach (which will be the focus of chapter 7) is preferred as zero-terminal constraint
approaches are known to be rather strict without necessarily resulting in good closed-loop performance
as discussed in chapter 3, particularly due to the ill-posedness/inconsistency that they can present, as
seen in the example comparison of figure 3.3a. Regardless, the proposed approach presented excellent
results even without embedding strict nominal stability or recursive feasibility guarantees which in
some cases can prove to be unnecessary from a practical perspective (eg. see comparison of figure 3.3).

As a side note, its worth mentioning that, like in the input-blocking case, when the solution reaches
the “breaking point” (Nb0 = Nb), the optimisation would have “gone through” the first selected state
(x̂∗k+Nb|k+Nb0

), thus requiring the entire trajectory of selected points to be shifted, ie. second point
becoming first and so on, fundamentally changing the equality that needs to be satisfied as in (5.38),
but overall maintaining the feasibility of the selected points. This particular feature or “mechanism”
was the foundation of the proposed Shifting Lagrange Multipliers strategy of theorem 5.2.

Finally, a similar procedure can be used to prove the nominal stability and recursive feasibility of
the proposed (optional) shifting shooting points approach where it can be derived that under zero-
terminal constraint conditions, the approach would reduce the optimal cost by AT LEAST Jk+1 ≤
Jk − u∗k|kTRu∗k|k whenever the time step is not at a breaking point (Nb0 ≤ Nb), and give the standard
decrease of AT LEAST Jk+1 ≤ Jk − x∗k+1|k

TQx∗k+1|k − u∗k|kTRu∗k|k when at the breaking point.

This is given without proof not to distract from the main methodologies.
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Remark 5.5. Alternative Stability and Recursive Feasibility Proofs
We reiterate that the fundamental understanding of the proposed absolute time-frame shifting strat-

egy would allow the derivation of similar nominal stability and recursive feasibility proofs of a wide
range of alternatives, such as those described in figure 5.3, and tables 5.1 and 5.2, independently of
whether the proposed sub-strategies are applied in combination or not.

5.2 Algorithm Details and Auto-generation

Having defined the overall theory and methodologies that support that proposed Shifting Strategy, we
can now proceed to introduce the key algorithms that are required for its efficient implementation using
the RTI NMPC framework. Thus, this section will present a set of algorithms and methods that were
used for developing an auto-generation toolkit that allowed us to benchmark the proposed approach
against the solution obtained by the ACADO toolkit. The section focuses specifically on the main
two methodologies: the Ideal MWB, and the Shifting Constraints approach, with the understanding
the similar procedures can be followed to derive the required algorithms for any of the alternatives
discussed in the previous section.

The section is organised as follows: Given the inherent complexity of the overall approach, sub-
section 5.2.1 introduces a general method for handling the Shifting Strategy from an algorithmic
perspective which was used for developing all the algorithms presented. Moreover, subsection 5.2.2
discusses how the proposed Ideal MWB approach can exploit the sparsity of matrix (5.11) to obtain
the compressed prediction matrix (HN) whilst reducing both computation times and memory usage.
Furthermore, subsection 5.2.3 includes an extension to the O(N) and O(N2) algorithms from PhD
thesis [8] presented in the re-derivation of chapter 3, subsection 3.3.1 which is considered one of the
key contributions of this thesis. Additionally, subsection 5.2.4 presents 3 “core” algorithms that were
used for developing the preparation and feedback phases algorithms of the RTI Scheme introduced
in subsection 5.2.5. The section concludes with a generic computation analysis in subsection 5.2.6
comparing the proposed algorithms with the standard approach of chapter 3.

5.2.1 General Method for Handling the Shifting Strategy

The overall strategy requires us to keep track of all the moving parts of the optimisation, such as
the limits and/or positions of each block and the selected points for the shifting strategy along the
prediction horizon. Although one can use the expressions of the definitions 5.1 and 5.2, as well as the
Ideal MWB structure (5.11) in some fashion, this proved to be quite impractical from an algorithmic
perspective. Thus, a method for handling the proposed shifting strategy was developed.

The proposed method relies on using an “inner block position index” (Nbi), and a block counter
(n), for the algorithm to keep track of the block’s position and number as it moves along the prediction
horizon. The idea is to initialise the index (Nbi) with the current “virtual block position indicator”
(Nb0) and iterate it forward for all the prediction horizon (k = 1 → Np) steps, resetting at the block
limits Nbi = [Nb0 → Nb−1, 0→, Nb−1, · · · , Nb0 ]. Moreover, every time the block reaches the breaking
point (Nbi = Nb), it increases the block counter (n = n+ 1), and resets the inner block position index
value to the “zero” block position (Nbi = 0), meaning a new block “emerged” along the prediction.
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To illustrate this method, consider a system with a block size of Nb = 4, and an ideal prediction
horizon of Np = 13. Table 5.4 presents an example of all the possible sequences of Nbi and n for all
the initial blocks (Nb0). To provide a visual aid, each coloured cell represent a different block, each of
which relates to a different block number (n) and can be seen to be moving backwards (diagonally)
as the initial block position moves forward Nb0 = [0,→ Nb − 1]. The points at which the inner block
position index (Nbi) “reset” to indicate a new block “emerged” along the prediction are signaled in red
boxes, found at the start of every block. An important thing to notice is that the ending value of the
inner block index (Nbi) will always be the same as the initial value as signaled by the black circles (or
ellipses), found at the start and end of each Nbi sequence. This will be key for developing the O(N)

and O(N2) algorithms (5.1 and 5.2) as they must be run backwards.

Nb0 k 1 2 3 4 5 6 7 8 9 10 11 12 13

0
Nbi 0 1 2 3 0 1 2 3 0 1 2 3 0
n 1 1 1 1 2 2 2 2 3 3 3 3 4

1
Nbi 1 2 3 0 1 2 3 0 1 2 3 0 1
n 1 1 1 2 2 2 2 3 3 3 3 4 4

2
Nbi 2 3 0 1 2 3 0 1 2 3 0 1 2
n 1 1 2 2 2 2 3 3 3 3 4 4 4

3
Nbi 3 0 1 2 3 0 1 2 3 0 1 2 3
n 1 2 2 2 2 3 3 3 3 4 4 4 4

Table 5.4: Example of all possible sequences of inner block index (Nbi), and block counters (n), for all
initial blocks positions Nb0 = [0→ 3] with a prediction horizon of Np = 13 with a block size Nb = 4.

The algorithms will then make decisions based on the values of n and Nbi using “if-then-else”
conditionals. As an example, all last points of each block segment of table 5.4, ie. the constraints that
would be selected for definition 5.2, can be found by the conditional: if (Nbi = Nb − 1 OR k = Np),
then “select”, else “ignore”. Similarly, the initial point of each block segment can be found by the
conditional: if (Nbi = 0 OR k = 1) then, “initial point of block”. On the other hand, the algorithm
uses the block counter (n) to define the relevant limits of the required for-loops. This overall method
can be seen explicitly in algorithms (5.1, 5.2, 5.3, 5.4 and 5.5) at various lines.

Remark 5.6. Range of Nb0 and Nbi

The actual range of Nb0 and Nbi that was implemented for the developed algorithms was Nb0 =

[1, Nb], meaning it resets to 1 whenever Nbi > Nb → Nbi = 1. The range is equivalent, ie. having
segments of size Nb in the absolute time-frame, but the required conditionals change slightly.

5.2.2 The Compressed Ideal Moving Window Blocking Prediction Matrix HN

In order to obtain an efficient implementation of the proposed approach, we must first understand the
fundamental structures of all the relevant parts. One of its key parts is the compressed prediction
matrix (HN = HNNb0 ) which can then be used to compute the compressed Hessian (EN), compressed
linear term (fN), and compressed constraints matrix (MN), as discussed in chapter 4. It is straight
forward to show that embedding the Ideal MWB matrix (5.11) results in a time-varying structure
where the number of non-zero elements of each column varies according to the time-step (Nb0) by:



114 5.2. Algorithm Details and Auto-generation

HN =




h1,1 O O
h1,1 h2,2 O
...

. . . . . . O
hNp,1 hNp,2 · · · hNp,1




︸ ︷︷ ︸
H




nNb−Nb0 ONb−Nb0 · · · · · · ONb−Nb0
ONb nNb ONb · · · · · ·
...

. . . . . . . . .
...

· · · · · · ONb nNb ONb

O1+Nb0
· · · · · · O1+Nb0

n1+Nb0




︸ ︷︷ ︸
NNb0

=




(hN)1,1 O · · · O
...

... · · · ...
(hN)Nb−Nb0 ,1 O · · · O

(hN)Nb−Nb0+1,1 (hN)Nb−Nb0+1,2 O
...

...
...

...
...

(hN)2Nb−Nb0 ,1 (hN)2Nb−Nb0 ,2 O
...

...
...

. . . O
(hN)(NEN−1)Nb−Nb0+1,1 (hN)(NEN−1)Nb−Nb0+1,2 . . . h(NEN−1)Nb−Nb0+1,NEN

...
...

...
...

(hN)Np,1 (hN)Np,2 . . . (hN)Np,NEN




(5.42)

∀Nb0 = [0, Nb − 1]

where (hN)i,n is defined as:

(hN)k,n =

jf∑

j=j0

hk,j
∀k = [1, Np]

∀n = [1, NEN ]
(5.43)

with the range j0 → jf defined as:

j0 → jf =





1 → min(k,Nb −Nb0) For n = 1 (First Block)
(n− 1)Nb −Nb0 + 1 → min(k, nNb −Nb0) For 1 < n < NEN (Inner Blocks)
(n− 1)Nb −Nb0 + 1 → min(k,Np) For n = NEN (Last Block)

(5.44)

Note that the fundamental operation in question is the summation of the entire column-elements of
H related to each block segment, depending on the time-step (Nb0) at which the Ideal MWB input-
structure is applied. Although the direct implementation of these expressions/summatories would be
correct, and indeed for simulation purposes might be easier to implement, eg. forming NNb0 and then
computing HN = HNNb0 explicitly, it would require the calculation of the entire matrix H which would
require additional memory, and potentially higher computation times as we will demonstrate shortly.
This brings the question of whether we can directly compute HN as it was done in chapter 4, section
4.2. To address this, let us consider an example that would allow its calculation through recursive
expressions whilst allowing us to illustrate the potential computational benefits.
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Consider the first 5 elements of the first column of (5.42) when using a block size of Nb = 3, with
a Ideal Prediction Horizon of Np = 7 at the time-step Nb0 = 0, given by:




(hN)1,1

(hN)2,1

(hN)3,1

(hN)4,1

(hN)5,1




=




B0

A1B0 +B1

A2A1B0 +A2B1 +B2

A3A2A1B0 +A3A2B1 +A3B2

A4A3A2A1B0 +A4A3A2B1 +A4A3B2




=




B0

A1(hN)1,1 +B1

A2(hN)2,1 +B2

A3(hN)3,1

A4(hN)4,1




(5.45)

Let us begin by observing that the cyan and pink parts correspond to the state predictions of H at
time-steps (k = 1 → Nb) over which the initial block segment is embedded (ie. U0 = u0 = u1 = u2),
and the yellow elements correspond to the elements “beyond” that initial block, related to the effects
of propagating that first block segment on later steps (k = Nb + 1 → Np). Note that other columns
would have similar sections, ie. elements related to the segment over which the block is embedded,
and elements beyond that block. What we can derive from this is that each column-block segment will
have up to 3 main parts, namely: an initial value (eg. B0), depicted by the cyan cell, representing the
first non-zero value of the column; an inner block-segment value, represented by the pink cell which
can be calculated with the use of recursive expression (hN)k,i = Ak−1(hN)k−1,i +Bk−1 as in the red
box of 5.45; and outer block-segment value, represented by the yellow cell, which can be calculated
with the use of recursive expression (hN)k,i = Ak−1(hN)k−1,i as in the blue box of 5.45, similar to the
recursive expression of H (3.19c). The use of these 3 main parts and recursive expressions was key for
the development of the algorithm 5.3 and can be seen explicitly in lines 7, 10 and 13 of the algorithm,
where it selects which expression to use depending on the position of the block segment, supported
by the general method for handling the shifting strategy introduced earlier in subsection 5.2.1. Note
that in some cases, the column will only have 1 or 2 parts, eg. the first and last block segments.
Finally, it is straightforward to see that the use of this method will allow a substantial amount of
computation reduction. As an example, the calculation of the last element (hN)5,1, would require 3
matrix-matrix multiplications for H and 2 matrix summations to group them into 1. In contrast, the
proposed recursive expression only requires 1 matrix-matrix multiplication.

On the other hand, the time-varying nature of the non-zero elements in (5.42) makes it particularly
problematic for auto-generation routines given it involves using memory spaces that can overlap with
each other. This can be seen in the cyan parts of equation (5.46) where the first Nb + 1 rows and 2

columns for a given time-varying HN matrix can be seen. For this reason, the algorithm requires to
“clean” this specific sections before using them to avoid any potential memory problem. This can be
seen in lines 17-19 of algorithm 5.3. The resulting algorithm is given in the core algorithms subsection
5.2.4.

HN =




(hN)1,1 O
...

...
(hN)Nb,1 O

(hN)Nb+1,1 (hN)Nb+1,2




︸ ︷︷ ︸
For Nb0 = 0

HN =




(hN)1,1 O
(hN)2,1 (hN)2,2

...
...

(hN)Nb+1,1 (hN)Nb+1,2




︸ ︷︷ ︸
For Nb0 = Nb − 1

(5.46)
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5.2.3 Extension of the O(N) and O(N2) Algorithms

Another key part for efficiently implementing the proposed approach is that of the compressed Hessian
computation (EN), and compressed linear term (fN). To achieve this, we can use a similar approach to
that of the O(N) and O(N)2 algorithms [8] which are known to be key for achieving fast computation
times through the use of recursive expressions.

Following a similar procedure to the one presented in chapter 3, section 3.3, subsection 3.3.1: The
Re-derivation of the O(N2) and O(N) algorithms, let us consider the first column of the compressed
Hessian term (EN = HT

NQHN) that results from a using a short horizon of Np = 3, with a block-
size Nb = 2 in the initial time step Nb0 = 0, ie. embedding the equality on the first two blocks
(Û1 = û0 = û1), given by:

[
(EN)1,1

(EN)2,1

]
=

[
BT

0 BT
0 A

T
1 +BT

1 BT
0 A

T
1 A

T
2 +BT

1 A
T
2

0 0 BT
2

]

︸ ︷︷ ︸
HN



w̃1,1

w̃2,1

w̃3,1




︸ ︷︷ ︸
W̃

(5.47)

where the dummy variable (W̃ ) captures the efficient operation of (QHN) through the use of the special
diagonal-matrix multiplication available in the Eigen 3 library, as explained in equation (3.52).

The overall idea of the standard O(N2) algorithm is to use some form of backwards recursions in
the dummy variables (W̃ ) which allow simple calculations of the standard Hessian terms, eg. given by
Ek,i = BT

k−1w̃k,i. Therefore, we can look to use this method for the proposed approach.
Let us begin by calculating the last element (EN)2,1, simply given by:

(EN)2,1 = BT
2 w̃

[1]
3,1 (5.48)

Looking at the standard O(N2) algorithm 3.2, the next step would be the recursive calculation
of w̃[1]

2,1 = w̃
[0]
2,1 + AT2 w̃

[1]
3,1 for it to be used for the calculation of the following term of the Hessian as

E2,1 = BT
1 w̃

[1]
2,1 (see equation 3.55). Note that implementing this in (5.47) for the element of (EN)1,1

does indeed capture the required expressions related to BT
1 , as signaled in the red box of (5.49), but

misses the terms related to BT
0 . Similarly, the next step in the standard algorithm 3.2 would be the

recursive calculation of w̃[1]
1,1 = w̃

[0]
1,1 + AT1 w̃

[1]
2,1 for it to be used in the calculation of the following

term of the Hessian as E1,1 = BT
0 w̃

[1]
1,1 (see equation 3.56). Interestingly, this element represent the

aforementioned missing elements from the previous calculation, as depicted by the blue box in (5.49).
Thus, the resulting term of the compressed Hessian (EN)1,1 is then composed by the summation of

the two elements over which the equality was embedded, given by:

(EN)1,1 = BT
0


w̃

[0]
1,1 +AT1

w̃
[1]
2,1︷ ︸︸ ︷

(w̃
[0]
2,1 +AT2 w̃

[1]
3,1)

︸ ︷︷ ︸
w̃

[1]
1,1


 + BT

1

w̃
[1]
2,1︷ ︸︸ ︷

(w̃
[0]
2,1 +AT2 w̃

[1]
3,1) (5.49)

This can be done by using a recursive expression for the compressed Hessian term itself (not the dummy
variable) to iteratively calculate them in the form of (EN)+

n,i = (EN)−n,i +BT
k−1w̃k,i, eg. given by:
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(EN)
[1]
1,1 = BT

0 w̃
[1]
1,1 + BT

1 w̃
[1]
2,1 = BT

0 w̃
[1]
1,1 + (EN)

[0]
1,1 (5.50)

What we can derive from this is that the total expression for all the compressed Hessian terms for
any block size (Nb) on any time-step (Nb0) can be calculated by the recursive addition of the standard
algorithm elements 3.2 in the nth block-segment to the Hessian term related to that segment (EN)n,i.
As an example, the first column-elements of the compressed Hessian for the same horizon (Np = 3),
same block size (Nb = 2) in the following time-step (Nb0 = 1) would be given by:

[
(EN)1,1

(EN)2,1

]
=

[
BT

0 BT
0 A

T
1 BT

0 A
T
1 A

T
2

0 BT
1 BT

1 A
T
2 +BT

2

]

w̃1,1

w̃2,1

w̃3,1


 =




BT
0 w̃

[1]
1,1

BT
1 w̃

[1]
2,1 + BT

2 w̃
[1]
3,1


 =




(EN)
[0]
1,1

BT
1 w̃

[1]
2,1 + (EN)

[0]
2,1




The same idea can be applied to the compressed linear term calculation (fN). Finally, a similar
method can be used for the input-related terms. As an example, the compressed Hessian term related
to the input weights (NTRN) represent the summation of the weights of the nth segment to the nth
diagonal term. This can be seen in lines 17 and 19 of algorithm 5.2.

The proposed extension of the O(N) and O(N2) algorithms is given in algorithms 5.1 and 5.2.

Algorithm 5.1: Ideal MWB O(N) Condensing Algorithm
Data: Q,R,Ak, Bk, Xe, Ue, Np, Nb, Nb0

1 begin
2 Nbi = Nb0 ; // Initialise inner block position index
3 n = NEN ; // Initialise working row of fN
4 w̃Np = qNpXeNp ; // Initial value of the dummy variable

// For loop running backwards k = Np, Np − 1, · · · , 2
5 for k = Np to 2 do
6 if k = Np OR Nbi = Nb then
7 (fN)0

n = −BT
k−1w̃k + rk−1Uek−1

; // Initialise linear term component
8 else
9 (fN)+

n = (fN)−n −BT
k−1w̃k + rk−1Uek−1

; // Add to linear term component
10 end
11 w̃k−1 = qk−1Xek−1

+ATk−1w̃k; // Propagate recursively
12 N+

bi
= N−bi − 1; // Iterate inner block position index backwards

13 if Nbi < 1 then
14 n+ = n− − 1; // Decrease row of fN elements
15 Nbi = Nb; // Reset inner block position index to Nb

16 end
17 end
18 if Nbi = Nb then
19 (fN)0

0 = −BT
0 w̃0 + r0Ue0 ; // Initialise first component of linear term (fN)0

20 else
21 (fN)+

0 = (fN)−0 −BT
0 w̃0 + r0Ue0 ; // Add to first component of linear term (fN)0

22 end
23 end

Result: fN
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Algorithm 5.2: Ideal MWB O(N2) Condensing Algorithm
Data: HN, Q,R,Ak, Bk, Np, Nb, Nb0

1 begin
2 Nbi = Nb0 ; // Initialise inner block position index

3 n = NEN ; // Initialise working row of EN and column of W̃

4 for i = 1 to n do
5 w̃Np,i = qNp(hN)Np,i; // Initialise last row of W̃ (w̃Np,1→n elements)

6 end
// Main for loop running backwards k = Np, Np − 1, · · · , 2

7 for k = Np to 2 do
8 for i = 1 to n− 1 do
9 if k = Np OR Nbi = Nb then

10 (EN)0
n,i = BT

k−1w̃k,i; // Initialise Hessian component

11 else
12 (EN)+

n,i = (EN)−n,i +BT
k−1w̃k,i; // Add to Hessian component

13 end
14 w̃k−1,i = qk−1(hN)k−1,i +ATk−1w̃k,i; // Propagate recursively

15 end
16 if k = Np OR Nbi = Nb then
17 (EN)0

n,n = BT
k−1w̃k,n + rk−1; // Initialise Hessian diagonal component

18 else
19 (EN)+

n,n = (EN)−n,n +BT
k−1w̃k,n + rk−1; // Add to Hessian diagonal component

20 end
21 if Nbi > 1 then
22 w̃k−1,n = qk−1(hN)k−1,n +ATk−1w̃k,n; // Propagate recursively

23 end
24 N+

bi
= N−bi − 1; // Iterate inner block position index backwards

25 if Nbi < 1 then
26 n+ = n− − 1; // Decrease row of EN

27 Nbi = Nb; // Reset inner block position index to Nb

28 end

29 end
// Calculate first diagonal element outside main loop

30 if Nbi = Nb then
31 (EN)0

0,0 = BT
0 w̃0,0 + r0; // Initialise first diagonal element (EN)0,0

32 else
33 (EN)+

0,0 = (EN)−0,0 +BT
0 w̃0,0 + r0; // Add to first diagonal element (EN)0,0

34 end

35 end
Result: EN
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These 2 algorithms are supported by the general method introduced in subsection 5.2.1 to keep
track of the block positions (Nbi) and number of segments (n) as required by the algorithms, for which
the user must provide the time-step of the virtual block position indicator Nb0 . Interestingly, given the
iterations of the dummy variable W̃ are required to run backwards, the algorithms require the inner
block position indicator (Nbi) and (n) to be decreased rather than increased as the algorithm iterates.
Finally, note that the algorithm uses the range Nb0 = [1, Nb] as discussed in remark 5.6.

5.2.4 Core Algorithms

In addition to the 2 novel extensions of the O(N) and O(N2) algorithms presented in the previous
subsection, the approach uses 3 additional “core” algorithms for its efficient implementation, namely:
the Ideal MWB HN Matrix Computation; a generic algorithm for selecting constraints with the Shifting
Strategy; and a decompression routine for obtaining the original uncompressed variable δÛ . These
algorithms will then be used in combination with the O(N) and O(N2) extensions, to develop the
final RTI preparation and feedback algorithms introduced in the following subsection 5.2.5. All the
algorithms are supported by the general method introduced in subsection 5.2.1 with the range the
Nb0 = [1, Nb] as discussed in remark 5.6.

Algorithm 5.3 calculates the HN matrix based on the theory established in subsection 5.2.2.

Algorithm 5.3: Ideal MWB Condensing HN Matrix Calculation
Data: Ak, Bk, Np, Nb, Nb0

1 begin
2 Nbi = Nb0 ; // Initialise inner block position index
3 n = 1; // Initialise columns of HN
4 j = n; // Initialise limit for recursive loop
5 for k = 1 to Np do
6 for i = 1 to j − 1 do
7 (hN)k,i = Ak−1(hN)k−1,i; // Propagate recursively
8 end
9 if k = 1 OR Nbi = 1 then

10 (hN)0
k,n = Bk−1; // Initialise nth column element

11 j+ = j− + 1; // Increase limit for recursive loop
12 else
13 (hN)+

k,n = (hN)−k,n +Bk−1; // Add to nth column element
14 end
15 N+

bi
= N−bi + 1; // Iterate inner block position index forward

16 if Nbi > Nb then
17 if n < NEN then
18 (hN)2+(n−1)Nb→nNb+1,n+1 = 0; // Clean elements of following column
19 end
20 n+ = n− + 1; // Increase columns row of HN
21 Nbi = 1; // Reset inner block position index to 1

22 end
23 end
24 end

Result: HN
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On the other hand, algorithm 5.4 is provided as a “generic” algorithm that sets up the framework
for implementing the selected constraints of the shifting strategy by detecting the edge of each of the
blocks with the conditional statement: if (Nbi = Nb OR k = Np), then “select”, else “ignore”, visible in
lines 5-11 of the algorithm.

Algorithm 5.4: Generic Algorithm for Constraint Selection using Shifting Strategy
Data: HN, X̄,D, Ū ,Xmax, Xmin, Umax, Umin, Np, Nb, Nb0

1 begin
2 Nbi = Nb0 ; // Initialise inner block position index
3 n = 1; // Initialise constraint element number
4 for k = 1 to Np do
5 if Nbi = Nb OR k = Np then

// Select nth Constraint Elements
6 (M,γ)selected ← (hN)k,1→n, x̄k, d̄k, ūk−1, xmax, xmin, umax, umin
7 n+ = n− + 1; // Increase constraint element number
8 Nbi = 1; // Reset inner block position index to 1

9 else
10 N+

bi
= N−bi + 1; // Iterate inner block position index forward

11 end
12 end
13 end

Result: Mselected, γselected

Finally, algorithm 5.5 calculates the original uncompressed optimal input trajectory (δÛ∗) from
the blocked decision variables (δÛ∗). Note that this algorithm can also be used for decompressing the
non-relative blocked variables (Û∗) into the original vector (Û∗).

Algorithm 5.5: Ideal MWB Decompression Routine

Data: δÛ∗, Nb, Nb0

1 begin
2 Nbi = Nb0 ; // Initialise inner block position index
3 n = 1; // Initialise row of δÛ∗
4 for k = 0 to Np − 1 do
5 δû∗k = δÛ∗n ; // Copy nth element of δÛ∗ to kth element of δÛ∗

6 N+
bi

= N−bi + 1; // Iterate inner block position index forward
7 if Nbi > Nb then
8 n+ = n− + 1; // Increase row of δÛ∗
9 Nbi = 1; // Reset inner block position index to 1

10 end
11 end
12 end

Result: δÛ∗
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5.2.5 RTI Algorithms

Having defined the algorithms required to implement the proposed Shifting Strategy with the Ideal
Moving Window Blocking input-parameterisation using the RTI Scheme, the overall approach is finally
provided in terms of the preparation and feedback phases given in algorithms 5.6 and 5.7, respectively.
Both of this algorithms are based on the previously presented algorithms, including some of the ones
introduced in chapter 3 to facilitate the verification process of each working part of the proposed
approach. The key part to use these algorithms effectively is to understand the working principle of
the absolute-time frame, and its relation to the virtual block position indicator (Nb0).

Algorithm 5.6: Ideal MWB RTI NMPC Preparation Phase Algorithm with Shifting Strategy
Data: X̄, Ū , λ̄sel, x−1, u−1, Q,R,Np, Nb, Nb0

1 begin
2 x̄0 = f(x−1, u−1); // Calculate predicted state from previous state and input
3 Shift X̄,Ū consistently ; // Initial Value Embedding
4 if Nb0 = 1 then
5 Shift λ̄sel consistently ; // Shifting Lagrange Multipliers theorem 5.2
6 end
7 [Ak, Bk, dk] = Forward(X̄, Ū , x̄0, Np); // Run algorithm 3.4
8 [HN] = CalculateHN(Ak, Bk, Np, Nb, Nb0) ; // Run algorithm 5.3
9 [EN] = CalculateEN(HN, Q,R,Ak, Bk, Np, Nb, Nb0); // Run algorithm 5.2

10 (MN)sel =
[
I −I (HN)Tsel −(HN)Tsel

]T ; // Form (MN)sel using algorithm 5.4
11 end

Result: EN, (MN)sel, Ak, Bk, dk, x̄0

Algorithm 5.7: Ideal MWB RTI NMPC Feedback Phase Algorithm with Shifting Strategy
Data: x0, x̄0, X̄, Ū , λ̄sel, Xr, Ur, EN, (MN)sel, Ak, Bk, dk, Q,R, Umax, Umin, Xmax, Xmin, Np, Nb, Nb0

1 begin
2 δx0 = x0 − x̄0; // Calculate state deviation from measurement
3 [D] = FormD(Ak, dk, δx0, Np); // Run algorithm 3.6
4 Xe = Xr − X̄ −D; // Calculate X error
5 Ue = Ū − Ur; // Calculate U error
6 [fN] = CalculatefN(HN, Q,R,Ak, Bk, Xe, Ue, Np, Nb, Nb0); // Run algorithm 5.1

7 γsel =




(Umax − Ū)sel
(Ū − Umin)sel

(Xmax − X̄ −D)sel
(X̄ +D −Xmin)sel


; // Form γsel vector using algorithm 5.4

8 [δÛ∗, λ̄sel] = QPSolve(EN, fN, (MN)sel, γsel, λ̄sel); // Solve the Quadratic Program
9 [δÛ∗] = Decompress(Û∗, Np, Nb, Nb0); // Run algorithm 5.5

10 Ū = Ū + δÛ∗; // Calculate new nominal input
11 [δX̃] = Expand(Ak, Bk, δÛ

∗, Np); // Run algorithm 3.7
12 X̄ = X̄ +D + δX̃; // Calculate new nominal state
13 end

Result: X̄, Ū , λ̄sel
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5.2.6 Generic Computations Comparison

In order to evaluate how well the proposed algorithms perform, we performed a generic computation
comparison of three of the main algorithms, namely: algorithm 5.3 for calculating HN efficiently; the
extended O(N2) algorithm 5.2 for calculating EN efficiently; and the extended O(N) algorithm 5.1
for calculating fN efficiently. Note that when the block size is one (Nb = 1), all of these algorithms
represent the exact same algorithms as their counterparts in the standard approach introduced in
chapter 3, namely: algorithms 3.5, 3.2 and 3.3, with the main difference being the use of conditionals
from the general method of section 5.2.1 to keep track of the relevant block positions and numbers.
In practice, we observed there was little to no difference from the additional conditional checks when
comparing with the standard algorithms. Thus, we are interested in comparing how well the proposed
approach performs for different block sizes against the standard case (Nb = 1).

To perform this comparison, we selected two systems with different dimensions, namely: the In-
verted Pendulum, introduced later in the case study of section 5.5, which has nx = 4 states and nu = 1

inputs; and the Quadrotor of case study 4.3, which has nx = 7 states and nu = 4 inputs. Each of these
systems was evaluated using block sizes ofNb = [1→ 6] with various Ideal Prediction Horizons, namely:
Np = [121, 241] for the Inverted Pendulum, and Np = [61, 121] for the Quadrotor. The algorithms were
then programmed using automatically generated C++ codes for each of the cases based on the Eigen
3 library, and were tested in Ubuntu 20.04 running with Real-Time priority (ie. chrt -r 99 ./main) on
a laptop with an Intel i7-8750 CPU overclocked @ 3.9 GHz, and 32 GB DDR4 RAM @ 2,666 MHz,
with 120,000 runs per algorithm. The test C++ codes were compiled using the (-O3) optimisation
C-flag, as well as with the fused-multiply-addition operations (-mfma) and auto-vectorisation (-mavx)
flags enabled to use the Advanced Vector Instruction set available in the Intel CPU. The results of
this comparison are gathered in table 5.5 where the minimum computation time obtained for each
algorithm is reported, indicating the minimum time that could be achieved if a Real-Time OS would
be used.

Case nx = 4, nu = 1, Np = 121 nx = 4, nu = 1, Np = 241

Nb 1 2 3 4 5 6 1 2 3 4 5 6

HN (alg. 5.3) 9 51.8 33 33 24.5 24.5 35 181.9 122.9 93.9 75 75

EN (alg. 5.2) 17 91.9 72.3 62.8 53.4 53.4 71 352 233.1 174.2 154.7 135.5

fN (alg. 5.1) 2 2 2 2 2 2 2 2 2 2 2 2

Total 28 161.8 122.3 112.5 93.1 93.1 108 552 372.9 283.9 244.5 224.9

Case nx = 7, nu = 4, Np = 61 nx = 7, nu = 4, Np = 121

Nb 1 2 3 4 5 6 1 2 3 4 5 6

HN (alg. 5.3) 50 261.9 182.8 143.6 124.2 105 199 982 623.2 504 405 355.7

EN (alg. 5.2) 78 411.9 292.7 233.4 203.9 174.6 319 1612 1073 843.8 674.8 595.4

fN (alg. 5.1) 2 2 2 1 1 1 3 3 2 2 2 2

Total 130 691.9 492.7 383.4 333.9 284.6 521 2622 1713 1363.8 1094.8 965.4

Table 5.5: Generic Computation Times (in µs) Comparison of Ideal MWB Approach for two different
scenarios: 1. A system with nx = 4 states and nu = 1 inputs, using different block sizes Nb =
[1, 2, 3, 4, 5, 6] with Ideal Prediction Horizons Np = [121, 241]; and 2. A system with nx = 7 and nu = 4
inputs, using different block sizes Nb = [1, 2, 3, 4, 5, 6] with Ideal Prediction Horizons Np = [61, 121].
The gain factor (α) is indicated in red.
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In this table (table 5.5) each of the cases are signaled in the gray coloured cases, with the computing
times being reported beneath for the Nb = [1 → 6] block sizes for each of the algorithms (alg. 5.3,
5.2 and 5.1), and the “Total” cyan coloured rows representing the summation of this 3 algorithms.
Moreover, most of the table cells contain a red-coloured under-script indicating a “gain factor” (α)
related to how many times faster is the specific algorithm-case than the standard counterpart (Nb = 1),
eg. HN calculation with nx = 4, nu = 1, Np = 121, Nb = 6 is α ≈ 4.5 faster than nx = 4, nu = 1, Np =

121, Nb = 1. The row of the linear term fN is not signaled as it discussed later in table 5.6. What we
can observe from this table is that the gain factor follows closely the block-size itself, ie. most of the
time being proportional to the block size in the form of: α ≈ kNb, with k ≈ 1. This is seen more clearly
in the the highest computing time cases such as the Quadrotor (nx = 7, nu = 4) with Np = 121. The
proposed approach can be seen to be up to 5.4 faster than the standard approach for implementing
the relevant “preparation” algorithms. Regardless, note that further computational benefits will arise
from solving the resulting QPs themselves given the reduced sizes of dof and constraints. We will show
an example of this in table 5.12 of case study 5.5 where gains up to 54 times faster were obtained.

To corroborate these results, a secondary platform was used: the Beaglebone Blue, a robotics-
oriented Linux-based embedded platform running a quasi-Real-Time Debian OS @ 1 GHz with a NEON
floating-point accelerator (fpa), specifically designed to perform efficient parallel floats computations.
Only two cases were evaluated in this platform: the Inverted Pendulum sizes with Np = 121, and the
Quadrotor sizes with Np = 61. The developed C++ codes were compiled using the (-O3) optimisation
C-flag, and the (-mfpu=neon) flag to enable the NEON instructions set which luckily, the Eigen 3
library is prepared to handle. The codes were tested using float precision to take advantage of the
NEON fpa and were run using real-time priority (ie. chrt -r 99 ./main) for 1250 iterations per algorithm.
The comparison is presented in table 5.6 where the minimum time is reported. From this table it can
be appreciated that the approach maintains a similar performance to that of table 5.5. However, it
is interesting to note that the fN computation times remain practically constant. This is because the
number of operations in algorithm 5.1 remains constant for all block sizes Nb, with the only difference
being the selection of the (fN)n element to which the operation is assigned, as visible in lines 7, 9, 19, 21.

Case nx = 4, nu = 1, Np = 121

Nb 1 2 3 4 5 6

HN (alg. 5.3) 644 2882.2 1943.3 1404.6 1245.2 1076

EN (alg. 5.2) 767 4321.8 3172.4 2483.1 2093.7 1844.2

fN (alg. 5.1) 16 161 161 151.1 151.1 151.1

Total 1427 7371.9 5272.7 4033.5 3484.1 3064.7

Case nx = 7, nu = 4, Np = 61

Nb 1 2 3 4 5 6

HN (alg. 5.3) 4703 25431.9 17162.7 13533.5 11374.1 9914.7

EN (alg. 5.2) 5394 30301.8 21082.6 16583.3 13913.9 12144.4

fN (alg. 5.1) 44 401.1 381.2 381.2 381.2 381.2

Total 10141 55231.8 38622.6 30493.3 25664 22434.5

Table 5.6: Generic Computation Times (in µs) Comparison of Ideal MWB Approach in the Beaglebone
Blue for two different scenarios: 1. A system with nx = 4 states and nu = 1 inputs, and 2. A system
with nx = 7 and nu = 4 inputs, using different block sizes Nb = [1, 2, 3, 4, 5, 6] with Ideal Prediction
Horizons of Np = 121 and Np = 61, respectively. The gain factor is indicated in red.
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5.3 Case Study: The Van Der Poll Oscillator

One of the first dynamical systems encountered when revising the literature available of NMPC was the
Van Der Poll Oscillator from [23]. To quote the authors of this work, “This system is known to have a
limit cycle, and with actuator constraints it is difficult to stabilise.” Moreover, in this work the authors
give a convincing case in which a “non-predictive” fixed-state feedback controller fails to stabilise the
system due to the aforementioned constraints. On the other hand, the system in question is composed
of 2 states and 1 input, thus making it a perfect example in which condensing-based approaches
typically outperform those of sparse representations [145]. Additionally, given the difficulty related to
input-constraints, it also makes a perfect case study for a system which struggles with this basic type
of constraints, which recalling from the introduction of this chapter, was the initial motivation into
looking at the Moving Window Blocking approach. Thus, this system is presented as a first example
on which implementing the proposed approach would be ideal.

5.3.1 Modelling, Simulation and Optimisation

The Van Der Poll Oscillator is defined by the following nonlinear differential equation:

p̈ = µ(1− p2)ṗ− p+ u (5.51)

with µ being a positive value, selected as µ = 2 as in [23] for our simulations.
This can be translated in the standard state space (ẋ = f(x, u)) simply by:

[
ẋ1

ẋ2

]

︸ ︷︷ ︸
ẋ

=

[
x2

µ(1− x2
1)x2 − x1 + u

]

︸ ︷︷ ︸
f(x,u)

(5.52)

with x1 = p and x2 = ṗ.
The system was simulated using the Explicit Forward Euler algorithm 3.1 with a sampling time of

Ts = 0.1 (s) as in [23], and with single Euler step (Ns = 1). Moreover, the optimisation was subject
to qk+i = diag([1, 0.5]) ∀i = [1, Np] weights for penalising state errors (no infinite horizon costing
used), rk+i = diag([0.1]) ∀i = [0, Np − 1] weights for penalising input errors as in [23], and subject
only to input inequality constraints considered as −1 ≤ ûk+i ≤ 1 ∀i = [0, Np − 1]. Furthermore,
all the simulations performed started from steady-state condition at x0 = [1, 0]T as in [23], and the
references (or objective) of the system was to bring the state to zero (regulation - xr = [0, 0]T ).
Finally, the optimisation was done using single shooting with an initial guess for the nominal input
trajectory selected as Ū = [1 · · · 1]T for the initial nominal state trajectory to start at a steady steady
X̄ = [xT0 , · · · , xT0 ]T by cancelling the terms −x1 + u from the differential equation of ẋ2. This satisfies
one of the basic requirements of the RTI discussed in [55] which is starting at a global optimum, that
being in this case the steady state at a previous target xr = [1, 0]T before changing the reference.

In order to compare the performance of the proposed approach with that of the standard RTI
NMPC, a T = 15 (s) was performed for block sizes Nb = [1→ 6] using an Ideal Prediction Horizon of
Np = 61. Recall that the standard RTI is achieved with Nb = 1. The comparison is gathered in table
5.7 where the resulting costs and percentage sub-optimalities ∆J = (

JNb
JSTD

− 1)× 100% can be seen.
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Nb 1 2 3 4 5 6

Cost (J) 94.8 96 93.3 99.2 93.8 90.3

% Suboptimality (∆J) - 1.3 -1.5 4.7 -1.1 -4.7

Table 5.7: Van Der Poll Oscillator Comparison of the Ideal MWB approach.

.
What is most interesting about the results from table 5.7 is that the solutions with block sizes

Nb = [3, 5, 6] actually outperformed the standard RTI NMPC solution (Nb = 1), as signaled by the
red boxes where negative sub-optimalities were obtained. Given the solution with any block-size can
actually be achieved with Nb = 1, ie. is a subset of the possible solutions of the standard RTI NMPC,
the only reason this can be happening is if the optimisation would improve further AFTER re-linearising
the system in future steps, eg. finding a steeper decreasing point for the cost after “waiting” with a
constant input as opposed to the standard RTI NMPC which would take the steepest there is at each
time-step. This is an example demonstration of the Boxing Analogy. This is the regular-person opening
its guard, and the World Champion effortlessly finding it. Obviously this not a generalisable result,
but it does give insight on a potential advantage of applying this approach to non-linear systems.

To provide a visual example of the comparison, figure 5.5 presents the simulations obtained with
the standard RTI NMPC (Nb = 1), and with the Ideal MWB using block size Nb = 6. From this figure,
it can clearly be appreciated how the solution embeds the desired blocking in the input trajectory, and
performs small corrections on each block, as visible on the inner graph of the inputs, which allows the
approach to make further improvements to the initial blocked plan as the horizon moves forward.
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5.4 Case Study: The Wave Energy Conversion Device

Another system which was considered for the implementation of the proposed MWB approach was
the Wave Energy Conversion (WEC) Device which formed the main contribution of the IFAC World
Congress 2020 paper [59], developed in collaboration with Ph.D. Student Juan Guerrero-Fernandez.
This system was discussed briefly in the previous chapter for case study 4.5 where a set of Chebyshev
polynomials were chosen as the input-parameterisation given their non-decaying properties (as opposed
to eg. Laguerre Polynomials), and were able to get relatively good performance but presented a
notorious disadvantage in the computation times obtained when using the “quadprog” function of
Matlab for solving the optimisation, which motivation the contents of this chapter further.

In this case, we will present the application of the Non-Ideal MWB approach as it was applied in
the paper, and compare it to various other strategies, including that of the Chebyshev polynomials
of section 4.5. Note that the paper [59] applied the approach of extending the last block beyond the
block-size (Nb) to maintain the dimensions of all the matrices constant, as discussed in the Intuitive
Block Shifting example 5.2, which for practical purposes can be applied in this system given a long
horizon is used (Np = 100) and the objective is not to achieve nominal stability in the system, but
rather to maximise energy extraction from the ocean wave energy. However, it is worth mentioning
that adjusting the optimisation for it to use the closest Ideal Prediction Horizon, in this case Np = 101

given Nb = 5 is used, made insignificant difference to the results that presented in this case study.

5.4.1 Modelling, Simulation and Optimisation

The WEC system modelling is well documented in the paper [59] and its contents are in high part
thanks to expert WEC devices knowledge from Ph.D. Student Juan Guerrero-Fernandez, including
the hydrodynamic modelling based on potential flow theory in which the model is decomposed into a
summation of forces. Given the theory involved in obtaining the model to be used is outside the scope
of this thesis, we refer to the final discrete-time model defined in equation (13) of the paper, where the
system is represented by a linear state space model of the form:

xk+1 = Axk +B∆uk +Buexck (5.53a)

y = Cxk (5.53b)

where xk = [zk, żk, xrk , uk−1]T is the state containing the vertical displacement of the buoy (zk), the
vertical velocity (żk), the radiation force approximation state (xrk), and the previous input (uk−1);
∆uk = uk − uk−1 is the force increment in the Power Take-Off (PTO) system; uexck is the excitation
force of the wave; and the matrices A,B,C are defined as in the paper, with C being an extraction
matrix that gives the output yk = [zk, żk, uk−1]T . The system sampling time was fixed at Ts = 0.1 (s).

The task is then to maximise the energy extraction by minimising the cost function:

min Jk =

Np∑

i=1

ûk+i−1żk+i (5.54a)

s.t. umin ≤ uk+i−1 ≤ umax, ∆umin ≤ ∆uk+i−1 ≤ ∆umax (5.54b)
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Although this is not a positive-definite cost function, it did result in a convex optimisation for our
particular WEC system which can be solved by using the general output cost function (3.2) method
introduced in chapter 3 with the non-relative modelling approach of equation (3.26) used by standard
linear MPC, and selecting a special output weighting matrix (qyk+i) as defined in equation (16) of the
paper which performs the crossed-terms multiplication. Moreover, in order to apply MWB strategy
using input increments (∆Û) instead of the inputs (Û) directly, the paper applies a slightly different
input-structure (N), given in equation (19) of the paper. Note that the aforementioned input-structure
is the shifted version of the alternative method for implementing the input-blocking scheme provided
earlier in equation (5.3). On the other hand, the application of the MWB scheme to this problem
results in the General Optimisation Framework discussed in section 5.1.4 as seen in equation (20) of
the paper. Finally, given that the system is linear, the compressed Hessian (EN) and the compressed
constraint matrix (MN) can be pre-stored offline to avoid any related calculations. This basically
reduces the required computations to updating the compressed linear term fN and constraints vector
γ (both of which have negligible computation times), and solving the Quadratic Program afterwards.

Regarding the optimisation setup, a Prediction Horizon of Np = 100 (Tp = 10s) was used with a
block size of Nb = 5 for implementing the MWB approach. In order to evaluate how well the proposed
approach performs against other strategies, several others types of solution were considered, including:
1. Standard MPC with Full Degrees of Freedom (F-DoF); 2. Unconstrained MPC with F-DoF, 3. Uncon-
strained MPC with F-DoF and the additional input-weighting terms rk+i = 1.12 ∀i = [0, Np−1] selected
via a brute-force search of the penalty giving the highest energy absorption; 4. GPC with Nu =

Np
Nb

= 20

decision variables; and 5. the Chebyshev Polynomials of section 4.5 with NEN = [20, 10, 5] coefficients.
Other parameters such as constraint limits and parameters specific to the buoy and wave excitation
are specified in the paper. These strategies were then simulated for T = 600 (s) and two performance
metrics were captured, namely: Energy Extracted and Computation Times of constrained approaches.

5.4.2 Energy Extraction Comparison

Table 5.8 presents a comparison of the energy extracted by each of the aforementioned strategies. It
is considered here that the energy obtained with the Standard MPC with F-DoF is the “maximum”
that could be obtained with the selected prediction horizon, and therefore the efficiency of all the other
strategies is measured relative to this performance. From this table it can be seen that the MWB
approach outperforms all the other strategies, with the exception of the Standard MPC with F-DoF.

Method Energy
Extracted (MJ)

Efficiency (%)

Std MPC (F-DoF) 307 100
Unc. MPC (F-DoF) −329 LOSS
Unc. MPC (rk) (F-DoF) 272 88.7

MWB MPC (Nb = 5) 303 98.8
GPC (Nu = 20) 285 92.8
CHEV (nN = 20) 301 97.9
CHEV (nN = 10) 272 88.6
CHEV (nN = 5) 246 80.3

Table 5.8: Energy Extraction Comparison of Different Solutions applied to the Wave Energy Converter
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This result is by no means unexpected, and can be explained with a few arguments. The first and
most important argument is that the Standard MPC F-DoF solution most of the time is saturated in
the input constraints umax/umin, with brief trajectories interconnecting them. This can be appreciated
in figure 5.7 where the standard MPC solution for a section of the simulation is visible along with only
2 other solutions, namely: MWB and GPC, to avoid saturation of the figure. Recall that Chebyshev
Polynomials were demonstrated to be incapable of replicating this behaviour in the optimised input
trajectories for this particular system as seen in figure 4.7, even when using as high as 20 coefficients.
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Figure 5.6: Simulation Example of Wave Energy Converter using Std. MPC, MWB MPC and GPC

On the other hand, the GPC approach suffers from ill-posedness, ie. the same problem explained in
figure 5.1, where having all the decision variables congested at the beginning of the horizon is unable
to replicate closely the plan of the Std. MPC F-DoF, and the optimisation is therefore making a
plan that it is for all practical purposes “irrelevant” and inconsistent. This can be seen in figure 5.7
where the predicted optimal trajectories for various types of solutions at a given time-step are seen,
namely: the Std MPC F-DoF prediction, depicted by the blue line; the MWB prediction, depicted by
the cyan line; the GPC prediction, depicted by the dashed black line; and the Chebyshev Polynomials,
depicted by the dot-dashed red line. Note that this is the same time-step used for figure 4.7 to show
incapability of the Chebyshev Polynomials for replicating the original solution correctly due to the
Gibbs-type phenomena. In contrast, the MWB can be seen to follow the input trajectory closely, with
the displacement trajectory being virtually indistinguishable. Thus, this type of system or situation
presents a perfect example in which decision variables at the end are as important as in the middle or
beginning of the prediction horizon.
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Figure 5.7: Example of Predicted Trajectories of Wave Energy Converter using Std. MPC, MWB
MPC, GPC and Chebyshev

Lastly, both unconstrained solutions also naturally suffer from ill-posedness/inconsistency given
that first of all they do not account for the required input saturations that may be required. Moreover,
as this is an energy maximisation problem subject to an external excitation force, the unconstrained un-
weighted F-DoF solution tends to infinity, ie. if there were no input constraints, the input trajectories
would quickly converge to infinity along with the energy produced which for all practical purposes is
unrealistic and irrelevant to consider as a proper prediction. Because of this completely flawed plan-
making, this type of solution results in a complete LOSS upon encountering the input constraints,
as signaled in table 5.8. This phenomena is well known and was discussed in [90]. The alternative
approach, which is to impose weights on the input to avoid this “exploding” phenomena, also discussed
in [90], causes the optimisation targets, in this case “energy maximisation” and “input minimisation”,
to fight each other, ie. posing an inconsistent overall objecting, thus resulting in reduced performance.

5.4.3 Computation Times Comparison

The other metric of interest was the computation time required to perform the optimisation of the
constrained approaches, namely: Std. MPC, MWB MPC, GPC, and Chebyshev Polynomials. Note
that even though the system is linear, it may difficult to obtain an explicit solution given the high
variability that the wave-excitation-force may present. For this reason, the WEC device may require
an online solution to properly adjust the predictions according to the predicted wave-excitation-forces,
thus requiring efficient methods to tackle the computational burden. Moreover, even if the Standard
MPC F-DoF solution for a single WEC system may be computationally feasible, ie. not requiring the
use of the proposed approach, the application of this method could be extended to wave-farms or robust
multi-model approaches [20, 136] where multiple WEC models must be optimised simultaneously.
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Table 5.9 presents the average computations times of each solution along with other relevant metrics
such as number of QP iterations. All the resulting QPs were solved using the “quadprog” function of
Matlab R2019b with the interior-point method, and the computation times involve both, the update
of the linear term (f/fN) and the solution of the QP itself, noting that the other matrices/vectors
required by the QP were pre-stored offline as discussed earlier. From this table we can clearly see how
the MWB and GPC approaches present decent computational gains of up to 14.5 and 15.1, respectively,
as signaled by the red boxes, whereas the CHEV approach presents the degraded performance discussed
in case study 4.5. What is more interesting from the results of this table is that the MWB approach
presents the smallest standard deviation in all the metrics, signaled by the green boxes, with the sole
exception of the number of iterations of the Std MPC, signaled by the blue box. Moreover, the MWB
approach presented the least amount of average iterations of the QP. Both of these indicators give
evidence that the MWB approach has a clear consistency embedded in its underlying methodology.

Method Avg. opt.
time (ms)

Avg. opt. time
per iter. (ms)

Avg. num. of
QP Iterations

Computational
Gain

Std MPC 28± 4.5 3.43± 0.5 8.19± 0.79 -
MWB MPC (Nb = 5) 1.94± 0.5 0.292± 0.086 6.75 ± 0.98 14.5
GPC (Nu = 20) 1.85± 0.74 0.257± 0.137 7.37± 1.17 15.1
CHEV (nN = 20) 93.1± 24.3 9.88± 0.97 9.44± 2.67 0.3
CHEV (nN = 10) 82.5± 10.8 9.13± 0.79 9.05± 1.06 0.326
CHEV (nN = 5) 82.2± 38.7 9.39± 0.83 8.8± 4.6 0.333

Table 5.9: WEC problem Computation Times comparison of different Methods using the “quadprog”
QP solver of Matlab R2019b. Note: Computational Gain defined as tstd/tmethod using avg. opt. time.

5.5 Case Study: The Inverted Pendulum

As discussed in the introduction chapter 1, the Inverted Pendulum was of special interest to the
author of this thesis given prior experience with it for the physical implementation of advanced control
methodologies which ultimately resulted in the experimental implementation of NMPC for a Double
Inverted Pendulum presented later in case study 6.6. Indeed, it is well known that the inverted
pendulum is a complex nonlinear system that was key for developing advanced rocket guidance systems
[155]. Nowadays it is widely used by academics given it presents several control challenges such as non-
linear and non-minimum phase dynamics, physical constraints and under-actuation (multiple outputs
- single input), where the task is to drive the pendulum to its upright position, and simultaneously
control its position in a rail. This makes it an interesting and challenging benchmark for NMPC.

For reference, part of the results of this case study were published in IET Journal [50].

5.5.1 System Modeling

Several variations of the mathematical model of an inverted pendulum have been used, some of which
are more complex than others. For our simulation, we used the mathematical model presented in [5]
which contains two main non-linearities, namely, the gravitational effect, g sin(θ), and the non-linear
torque-relationship cos(θ)u of the bar-link with the input u (or car acceleration p̈ = u).
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The model is given by the following differential equations:
[
p̈

θ̈

]
=

[
ku

−bθ̇ + g0 sin θ + cos θu

]
(5.55)

were θ is the angle of the pendulum; p is the position of the cart; u is the acceleration of the cart which
is considered the input of the system; b = 0.3 is a friction coefficient; k = 1 is an input-to-acceleration
gain coefficient; and g0 = 9.81 (m/s2) is the gravitational constant.

Assuming the state x =
[
ṗ θ̇ p θ

]T
=
[
x1 x2 x3 x4

]T
, a standard nonlinear state space of

the form ẋ = f(x, u) can be obtained, given by:




ẋ1

ẋ2

ẋ3

ẋ4




︸ ︷︷ ︸
ẋ

=




ku

−bx2 + g0 sin(x4) + cos(x4)u

x1

x2




︸ ︷︷ ︸
f(x,u)

(5.56)

This system was simulated using the Explicit Euler integration method of algorithm 3.1 with a sampling
time of Ts = 0.025 (s) and using a single integration step (Ns = 1).

5.5.2 Simulation and Optimisation Setup

Regarding the simulation setup, all the simulations were done in the nominal case (no noise, no
disturbances, no uncertainty) given that the prime interest is in the “inner” nominal stability and
recursive feasibility properties and computational efficiency. Disturbance rejection and noise cancella-
tion can be addressed separately using offset-free optimisations [67, 69] and observer/estimator design
or filters [19, 121, 122, 146] respectively. The simulation was initialised at the lower equilibrium
x0 =

[
0 0 0 π

]
, and was run for T = 8 (s), allowing the system to swing up in “one shot” or “two

shots” (see figure 5.9).
On the other hand, the optimisation was solved using single-shooting and was initialised with the

“free-response” of the system simply by using a nominal input guess trajectory of zeros Ū = O. The
references of the optimisation where selected as xrk+i = [0, 0, 0, 0]T ∀i = [1, Np] and urk+i = 0 ∀i =

[0, Np − 1] which satisfy the unbiased prediction models and costs requirements for offset-free control
as discussed in section 3.5 of chapter 3. A “desired” prediction horizon of Npdes = 50 (Tp = 1.25 (s))

was selected and the closest upper Ideal Prediction Horizon required for implementing the proposed
approach was then calculated as Np =

⌈
Npdes
Nb

⌉
Nb + 1 depending on the selected block size (Nb). For

reference, the selected Ideal Horizon is displayed in the parenthesis next to the block size on the results
presented in tables 5.10 and 5.11. Regarding the tuning parameters, the optimisation was done using
qk+i = diag([0, 0, 1, 1]) ∀i = [1, Np − 1] for penalising the state errors, and rk+i = 0.1 ∀i = [0, Np − 1]

for penalising input errors. Moreover, a terminal cost of qk+Np = diag([0, 0, 500, 500]) was used as a
“soft” zero-terminal constraint by penalising heavily the terminal “outputs/states” (angle and position)
to improve the stability characteristics of the optimisation. Finally, the constraints of the system were
imposed in the input and the position as −10 ≤ u ≤ 10 (m/s2) and −1 ≤ p ≤ 1 (m), respectively.
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Shifting Strategy Example

Let us begin by giving comprehensive visualisation of the proposed shifting strategy applied to this
system as depicted in figure 5.8 where the predicted trajectories of three subsequent optimisation prob-
lems are presented in the relative time frame when using a block size of Nb = 4 starting from time-step
Nb0 = 1 of definition 5.1. From this figure, it is noticeable how the shooting points at times approxi-
mately 0.2 ≤ t ≤ 0.4 (s) are kept precisely at the constraint limits, with the intermediate/ignored steps
practically satisfying the constraints despite them not being included in the optimisation. Moreover, it
is interesting to note how most of the time the shooting points and the blocked inputs are moving left
horizontally, indicating that the resulting optimisation at all three subsequent time-steps were nearly
identical in the absolute time-frame.
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Figure 5.8: Shifting Example with Nb = 4 starting from Nb0 = 1 of Definition 5.1

Performance Comparison

On the other hand, to assess the performance and recursive feasibility properties of the proposed
approach, the system was tested with four possible types of solution, namely: using the relative/non-
relative input parameterised frameworks (4.4 and 4.5), with/without the proposed shifting strategy.
Each of these approaches was tested for different block sizes (Nb = [1→ 12]) with their corresponding
Ideal Prediction Horizon as discussed earlier. The resulting optimisation of each case was solved
using “quadprog” function of Matlab R2018a with the interior point method. Moreover, given the
miss-alignment with the blocked decision variables discussed in remark 5.1, the relative/non-shifted
solution kept the constraints in the full sized vector (no selection) which allowed the demonstration of



Chapter 5. Shifting Strategy for Blocked Nonlinear Model Predictive Control 133

the resulting in-feasibilities discussed in the lock-in condition example 5.3. To demonstrate this more
precisely, every time the “quadprog” function returned an in-feasibility flag on any of the methods, it
was counted and the previous solution was used explicitly, essentially representing open-loop control
(no feedback) as discussed in the aforementioned example.

Table 5.10 gathers the comparison of the costs for all the different types of solutions where JRel−Shift
represents the cost of the relative based solution with the proposed shifting strategy, JNon−Rel−Shift
the cost of the non-relative based solution, and so on. For reference, costs less than 2000 swung up the
system in “one shot”, costs greater than 2000 but less than 3000 swung up the system in “two shots”,
and costs above 3000 means the optimisation was not able to stabilise the system at all (see green line
of figure 5.9). The number of resulting in-feasibilities of each type of solution is reported in brackets
the table. The following summarises the main results:

1. The results from using the relative/non-relative frameworks with the proposed shifting strategy
are exactly the same (columns 1-2 are equal), as expected from the discussion of remark 5.1.
This is a direct result of what has been said repeatedly throughout the chapter: consistency.
Moreover, no in-feasibilities were recorded for both types of solutions of the proposed approach.

2. The solution based on the relative framework without shifting (JRel) presented a large number
of in-feasibilities (239 total), most likely due to the “lock-in condition” discussed in example 5.3.

3. Overall, the best performance were given by the proposed shifting strategy as seen from the
“Total” costs. In contrast, the non-relative/non-shifted formulation gave the worse results.

4. For block sizes Nb = [10, 11], non of the solutions was able to swing up the system in “one shot”.
This is unsurprising and linked to the obvious observation that there may be more sensible block
sizes for a specific situation/initial condition.

5. All the “one shot” solutions of the proposed approach resulted in suboptimalities of ∆J =

(JNb/J1 − 1) × 100 < 13.26% which give acceptable performance such as the ones given in
both figures (5.9) and (5.10).

6. Notice block sizes Nb = [2, 7] presented even better performance than the standard NMPC
approach (Nb = 1). This is because in the linearisation process, the optimisation might take a
different “branch” of the solution that improved further AFTER re-linearisation, as discussed in
the case study of the Van-Der Poll Oscillator 5.3. Moreover, allowing the intermediate constraints
to be violated may relax the solution and lead to better performance at the cost of having
intermediate steps violations. Finally, the optimisation is done in a finite horizon where both
block sizes have slightly longer prediction horizon which could result in better overall predictions.

Figure 5.9 shows an example response with block size Nb = 6 where it can be seen that both
solutions using the proposed shifting strategy, namely: the relative/non-relative, depicted by the blue
and red dashed lines, were able to swing up and stabilise the system in “one shot”, with both giving
the exact same result using. In contrast, it took “two shots” for the non-shifted relative-based solution,
depicted by the cyan dotted line, and the optimisation failing completely in the case of the non-shifted
non-relative solution, depicted by the green dot-dashed line.
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Nb (Np) JRel−Shift JNon−Rel−Shift JRel JNon−Rel
1 (50) 1101 1101 1101 1101
2 (51) 1099 1099 1105 [17] 1119[8]
3 (52) 1104 1104 2732 [18] 1239
4 (53) 1138 1138 2758 [32] 2475
5 (51) 1194 1194 1224 [14] 4118
6 (55) 1168 1168 2436 [18] 4002
7 (57) 1098 1098 2438 [26] 2197
8 (57) 1183 1183 2533 [38] 2173
9 (55) 1207 1207 2361 [20] 3514
10 (51) 2524 2524 2544 [27] 3475
11 (56) 2776 2776 2284 [15] 3448
12 (61) 1244 1244 4432 [14] 3397
Total 16835 16835 27948 [239] 32258 [8]

Table 5.10: Cost comparison for different block sizes Nb using Shifting and Non-Shifting Strategies
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Figure 5.9: Example Performance Comparison with Nb = 6
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Violations Comparison

Another value of interest that was compared was the summation of the absolute violation to the
position constraints for different block sizes (Nb). In other words:

∑

∀k
vk where vk =




|pk| − 1 if |pk| > 1

0 else
(5.57)

The results of this are gathered in table 5.11 where VT−Shift represents the total violation of the
proposed shifting strategy (relative and non-relative being the same), and VRel and VNon−Rel the total
violation of the relative and non-relative non-shifting solutions, respectively. Additionally, given that
the proposed shifting strategy is only supposed to enforce the constraints in the shooting points, the
summation of the constraint violation at the selected “shifted shooting points (Shifted-SP)” was stored
separately and is represented by VShifted−SP in the table. From this table we can clearly see how the
proposed approach resulted in no violations of the constraints at the selected points (VShifted−SP = 0)
when using the proposed strategy with all block sizes Nb = [1 → 12]. Moreover, although the non-
relative non-shifted solution (VNon−Rel) did not present as much violations as the total shifted solution
(VT−Shift), it resulted in significantly degraded performance as seen in figure 5.9 and table 5.10.

Nb (Np) VT−Shift VShifted−SP VRel VNon−Rel
1 (50) 0 0 0 0
2 (51) 0.002 0 0.004 0.006
3 (52) 0.009 0 0.017 0
4 (53) 0.002 0 0.064 0
5 (51) 0 0 0.044 0.106
6 (55) 0.003 0 0.094 0.178
7 (57) 0.171 0 0.300 0
8 (57) 0.114 0 0.423 0
9 (55) 0 0 0.406 0.059
10 (51) 0.032 0 0.686 0
11 (56) 0.069 0 0.313 0
12 (61) 1.055 0 0.986 0
Total 1.457 0 3.337 0.349

Table 5.11: Constraint violation comparison for different block sizes Nb, with and without Shifting

Finally, to illustrate the concept of satisfying the constraints in the selected shooting points, figure
5.10 shows the response of the system with block size Nb = 12 where it can clearly be seen that the
solution satisfies the constraints of the selected shooting points at the very limits as signaled in the
inner graph/ellipse, which in this case are at times t = [0.925, 1.225] = [3NB + 1, 4NB + 1]T . The
“extra step” in both shooting points is due to the computation separation strategy of the RTI which
uses a predicted state, thus always optimising relative to “one step ahead” and applying the feedback
phase in the next sampling time when the measurement of the state is available. This can clearly be
seen in the input response where the first decision is at t = 0.025 (s) instead of t = 0 (s), as seen in
the inner graph. Another important thing to notice is that the solution clearly exhibits the blocking
structure, in particular, after t > 3 when the system is stabilised within the prediction horizon.
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Figure 5.10: Constraint Satisfaction Example for Shifting Strategy with Nb = 12

5.5.3 Computation Times Comparison

In order to evaluate the computational performance of the proposed approach in this system, we
developed a set of auto-generated C++ codes based on the Eigen 3 library using the RTI algorithms
5.6 and 5.7 which implemented the approach in the Inverted Pendulum system. For normalisation and
performance related reasons, three main differences were implemented in this particular test, namely:
a different model parameter (k = 10), different input constraints (−1 ≤ u ≤ 1 (m/s2)) and different
weights (qk+i = diag([0.01, 0.01, 1, 1]) ∀i = [1, Np − 1], qk+Np = 10qk+1, rk+i = 10 ∀i = [0, Np − 1]).
Moreover, the simulation used the same initial condition at the lower equilibrium, however, in this
case, the reference was introduced at the end of the prediction horizon to allow for a smooth transition
between the two operating points, thus satisfying common requirements of the RTI Scheme as discussed
in [55]. Furthermore, to evaluate a more complete version of the approach, the optimisation was
done using the multiple-shooting approach instead. The algorithms were automatically generated for
different block sizes Nb = [1 → 6] using an Ideal Prediction Horizon Np = 121. For comparison, the
solution with the standard RTI algorithms 3.9 and 3.8, as well as via the ACADO toolkit was also
obtained. The solutions of the resulting QPs were obtained using QP OASES [37, 38], all of which
were verified to match in all cases from Matlab simulations, to developed C++ codes, to the ACADO
toolkit. Finally, the algorithms were tested both with and without applying theorem 5.2 where the
Lagrange multipliers were shifted either correctly, every time the absolute time-step (Nb0) reached the
limit, or incorrectly by shifting them at every time step as in the standard IVE.
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Each of the aforementioned cases was run for 1000 simulations of T = 10 (s) giving a total of 400, 000

optimisations per case. The codes were run using the same conditions as in the generic computations
comparison of section 5.2.6, ie. same laptop running the codes with real-time priority (ie. chrt -r
99 ./main) with the same optimisation flags (-O3,-mavx,-mfma) for the compilation. The resulting
average computation times of the constrained iterations of each of these approaches is presented in
table 5.12. For reference, the resulting gain factors are indicated in the red under-scripts.

Solution/Nb ACADO Std 1 2 3 4 5 6

QP OASES (with thrm. 5.2) 2040 2000 2014 3126.4 11417.7 6431.5 4248 3754

QP OASES (without thrm. 5.2) - - - 3376 13614.8 7925.5 5735.3 4445.7

Table 5.12: Average constrained computation times in µs for the Inverted Pendulum using different
block sizes Nb = [1→ 6] with Ideal Prediction Horizon Np = 121. The gain factor is indicated in red.

From this table (table 5.12), it can clearly be appreciated how the proposed approach resulted
in substantial computational gains, being up to 54 times faster than the Standard approach when
using Nb = 6, increasing rapidly as the block-size increases. Moreover, it can be appreciated how
the approach resulted in slightly faster computation times when using the proposed theorem 5.2 for
shifting the resulting Lagrange multipliers. Although this may be a small difference, it does indicate
the method has improved hot-starting capabilities when using proposed method of theorem 5.2.

On the other hand, note that the method presents a very slight increase in the computation time
obtained with a block size of Nb = 1 when compared to the standard NMPC solution. This is inevitably
related to the additional computations of the conditional “if-then-else” statements required by most of
the algorithms introduced in section 5.2 for detection/tracking of the required block position and count.
This however is of minimum impact when considering the gains obtained with any block size Nb > 1.
Finally, it is noteworthy to mention that the solution obtained with QP OASES resulted in slightly
higher computation times, even when compared with the Standard NMPC solution obtained via the
auto-generation routines based on the Eigen 3 library developed as part of this Ph.D. thesis. Recalling
that all of the evaluated methods were validated by comparing the results, eg. comparing ACADO
with both Matlab simulations and with auto-generated C++ codes, we take this as an opportunity
to demonstrate that the approaches of this Ph.D. thesis, including the multiple-shooting framework
presented in chapter 3, along with the implementation of the O(N)/O(N2), and its required extensions
for the proposed approach were all implemented correctly and are absolutely essential for obtaining an
efficient real-time solution.

Thus, this comparison presents an example application in which the proposed approach was ob-
served to result in significantly reduced computation times. Moreover, the approach demonstrated
excellent closed loop performance and was observed to maintain the expected recursive feasibility
properties on the selected constraints of the optimisation, as per design of the proposed Shifting Strat-
egy. All of this features combined give an indication that the proposed approach may be a key method
for implementing advanced NMPC strategies in real-time control systems.
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5.6 Case Study: The Obstacle Avoidance Problem

The last case study that was considered for implementation of the proposed approach was on the topic
of obstacle avoidance, which is a powerful application of MPC methods given its innate ability to antic-
ipate and take corrective actions for future events, eg. collisions. In this case, we were interested in its
application in Quadrotors given their requirement for real-time solutions with reduced computational
resources which makes them a perfect candidate. However, the method of obstacle avoidance that we
will present in this case study can equally be applied to similar systems such as autonomous aircrafts,
cars, trucks, or even satellites, given it is based on a “high-level” optimisation approach which focuses
on defining trajectories to be followed by the inner control systems through the use of the so called
“virtual-forces” used in “control-allocation” schemes, as discussed in [72]. Moreover, although there ex-
ist a wide range of nonlinear controllers which can be used for the inner control systems of Quadrotors
such as nonlinear dynamic inversion [22, 27], differential-flatness based control [35, 119], and so on, this
particular case study uses a discrete back-stepping controlled based on the methodologies described in
[96, 151] which will be introduced briefly without proof on section 5.6.3 as the derivation of the required
control laws are outside the scope of this thesis. Finally, this case study will use the alternative Delta
blocking structure of figure 5.3a, along with alternative shifting shooting points strategies as described
in tables 5.1 and 5.2 to provide an example of the potential for extension of this chapter’s contribution.

5.6.1 UAV Modelling

Let us begin by considering the positioning model a Quadrotor of unitary mass (m = 1) under low-
speed/negligible drag scenarios, given by:



ẍ

ÿ

z̈


 =




Z(2q0q2 + 2q1q3)

−Z(2q0q1 − 2q2q3)

Z(q2
0 − q2

1 − q2
2 + q2

3)− g0


 (5.58)

where Z is the overall thrust of the system, g0 is the gravity constant, and −→q =
[
q0, q1, q2, q3

]
is a

unitary quaternion vector that defines the orientation of the vehicle.

Likewise, the Quaternion dynamics, defining the attitude/orientation of the vehicle are given by:

−̇→q =
1

2
E(−→q )−→ω (5.59a)

s.t
√
q2

0 + q2
1 + q2

2 + q2
3 = 1 (5.59b)

where −→ω =
[
ωx, ωy, ωz

]
is the angular velocity vector in body-axis, which for the simulations of this

case study was limited to ||−→ω || ≤ 300 (deg/s), and where E(−→q ) is defined as:

E(−→q ) =




−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0




(5.60)
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Finally, we consider the angular velocity has a generic model given by:

−̇→ω = f(−→ω , ω2
motors) (5.61)

which is typically defined using the inertias of the vehicle, the thrust/torque constants, motor arrange-
ment (depending on the type of vehicle eg. Hexacopters), etc. However, this case study will consider
the angular acceleration vector as the “lowest” control signal limited ||−̇→ω || < 2500(deg/s2) with the
understanding that a lower level controller could be easily developed. This will allow us to focus the
attention on the high-level planning of the controller.

In order to simulate the system, the positioning model (5.58) was discretised using a 2nd order
Taylor Polynomial series expansion, given by:




x
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vy

z

vz
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(
−→
F k+1 −

−→
F G) (5.62)

where Ts is the sampling time,
−→
F =

[
Fx, Fy, Fz

]T
is the “virtual force” vector defined as:



Fx

Fy

Fz


 =




Z(2q0q2 + 2q1q3)

−Z(2q0q1 − 2q2q3)

Z(q2
0 − q2

1 − q2
2 + q2

3)


 (5.63)

and
−→
F G being the gravity vector

−→
F G = [0, 0, g0].

A very important assumption about this model is that the force vector (
−→
F ) is evaluated in step

(k + 1) which could be seen as a “backward-forward” euler scheme. This was required by the discrete
backstepping low-level controller presented in section 5.6.3 to be able to have the model in “strict
feedback form” [96], which will allow the trajectories of the high-level NMPC planner to be tracked
“perfectly” when ever possible in the nominal case. This again will allow us to focus on the relevant
properties of the proposed approach. Moreover, given a fast sampling time of Ts = 0.02 (s) was chosen
for the simulation, this model could approximate the real trajectories with relatively small error.

On the other hand, the Quaternion dynamics were discretised for the simulation by:

−→q k+1 = −→q k +Bq
−→ω k+1 (5.64)

where Bq = Ts
2 E(−→q k), Ts being the sampling time as before.

Once again, notice the angular velocity vector (−→ω ) is evaluated in step (k + 1). However, in this
case, this model actually represents the standard backward Euler approach which has been used for
developing Extended Kalman Filters for Quaternion estimation [126] which take the “latest” gyroscope
measurement (−→ω k) to simulate and correct the “latest” Quaternion (−→q k) using the “latest” accelerom-
eter measurement (−→a k). Thus, this discrete model is justified.
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Lastly, the generic angular velocity model was discretised via a simple forward integration scheme,
given by:

−→ω k+1 = −→ω k +Bω
−̇→ω k (5.65)

where Bω = TsI3x3, Ts being the sampling time, and −̇→ω k being the lowest-level decision variable which
will be taken into account for the simulations presented in this case study.

Note that because of the required use of values at k+ 1 steps, the discrete models must be used in
a specific order to obtain the simulation, ie. −̇→ω k → −→ω k+1 → −→q k+1 →

−→
F k+1 → [x, vx, y, vy, z, vz]

T
k+1.

This again was specifically required by the discrete back-stepping procedure to allow us to obtain
“perfect” tracking in the nominal case whenever possible. We will discuss this further in subsection
5.6.3 where the backstepping procedure will be introduced.

5.6.2 High-Level NMPC Planner

One of the methods that is being used to reduce the complexity of the NMPC is the use of virtual
variables, in this case forces, in the same way Control Allocation is used for distributing the control
signals to the motors on low-level controllers of Quadrotors as discussed in [72]. This is not an
uncommon strategy for Quadrotors, and in fact, standard flight controllers such as “Ardupilot” use
this kind of strategy for their control loops, although they don’t use it in the same way, eg. using
normal PIDs and Transformation matrices, rather than combining NMPC and backstepping together
with Control Allocation concepts. The reason why they are used is in this case study is because it
allows us to simplify the control system by using modularity rather having one single master control
law. Moreover, in this particular case, it also allows the use of linear model (5.62) relating the forces
present in the system with the positional variables which are then handled by using control allocation
[72] and/or transformation matrices. The use of this linear model (5.62) in the context of NMPC
framework would allow some of the required matrices to be time-invariant, which in practice could
prove to be key for reducing the computational burden further.

The task of the NMPC High Planner is then to design trajectories using the virtual force vectors
(
−→
F ) as decision variables which must then be transformed into references for the low-level controllers.
To achieve this transformation, let us begin by noting that we can express the force vector in terms of
Euler angles (without singularities) using the Direction Cosine Matrix (DCM) as:



Fx

Fy

Fz


 =



Z(sin Φ sin Ψ + cos Φ sin Θ cos Ψ)

Z(− sin Φ cos Ψ + cos Φ sin Θ sin Ψ)

Z(cos Φ cos Θ)


 (5.66)

where Z is the thrust, Φ is the roll angle, Θ is the pitch angle, and Ψ is the yaw angle.
Looking at these equations, it can be clearly observed there are 4 independent variables that can

be used to control the 3 variables of the force vector, which clearly wouldn’t have a unique solution.
As an example, for any yaw-heading (Ψ) there is a combination of roll (Φ), pitch (Θ) and thrust (Z)
that would give the required force vector.
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To avoid this “non-uniqueness” problem, a simple solution is to fix the yaw-heading (Ψ) to a
reference value (Ψref ), and sort out what are the other variables required to achieve the force vector.
Moreover, because the motors of a Quadrotor typically can only produce thrust effectively in one
direction (unless, eg. variable pitch propellers are used), the thrust vector (Z) is constrained/saturated
to be positive and limited, eg. less than 90% of maximum thrust (Zmax) to allow for orientation
movements at all times. Based on this, the control allocation solution can be obtained as follows:

Noting that the total summation of forces must be equal the thrust vector:

Zref =
√
F 2
xref

+ F 2
yref

+ Fzref (5.67a)

s.t. 0 < ||Zref || < 0.9Zmax (5.67b)

the following system of 2 equations can be formed from the equations of Fx and Fy as:



Fxref
Zref
Fyref
Zref


 =

[
sin Ψref cos Ψref

− cos Ψref sin Ψref

][
α

β

]
(5.68)

After solving for α and β, the Roll (Φ) and Pitch (Θ) reference angles are defined as:

Φref = sin−1(α) (5.69a)

Θref = sin−1

(
β

cos Φ

)
(5.69b)

This angles are then transformed to the equivalent Quaternion and given as a reference to the back-
stepping controller presented in section 5.6.3.

Smoother Delta Blocking Trajectories

When implementing this type of control allocation, it is desirable to penalise the force increments
(∆
−→
F k =

−→
F k−

−→
F k−1) which would result in smooth trajectories on the required references angles, thus

improving the feasibility properties of the optimised trajectories in the low-level controllers. Moreover,
given the approach of this case study will be applying the general concept of “blocking” to reduce
the degrees of freedom of the optimisation, it is more reasonable to have the increment of the force
vector (∆

−→
F k) as the blocked decision variable, rather than the force vector itself. A simple way to

explain this is to consider blocking the force vector as having a desired thrust/orientation for some
time (where the time is defined by the block size Nb), and then INSTANTANEOUSLY changing to
another force/orientation without taking into account any previous force or orientation. In contrast,
by optimising using the increment of the force, ie. the force derivative, results in smoother control
actions where the reference thrust and orientation of the control allocation is always “connected” with
its previous value in some form, which in general was seen to improve the feasibility of the virtual
forces to be achieved by the low-level discrete back-stepping controller of section 5.6.3. Note that
this can be done simply by augmenting position dynamics model (5.62) with the force vector (

−→
F k+1)

and embedding the Ideal Delta Moving Window Blocking approach (∆Û = NNb0∆Û) in the force
increments as depicted in figure 5.3a.
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An example of the resulting smoothness that can be obtained with the Ideal Delta MWB approach
when using a block size of Nb = 6 and an Ideal Prediction Horizon of Np = 79 for the obstacle avoidance
simulation conditions provided later in section 5.6.5 is given in figure 5.11 where the trajectory of
the Y axis required to successfully avoid an obstacle is presented. For comparison, this figure also
presents the solution using two other type of optimisations, namely: the Standard NMPC solution,
depicted by the red dashed line; and the GPC solution with the same decision variables (Nu = 14),
depicted by the green dot-dashed line, similar to the comparison of figure 5.1. From this it can be
appreciated how the Ideal Delta MWB approach results in nearly indistinguishable trajectories in
the force and position when compared to the standard NMPC approach, whereas the GPC approach
clearly results in completely different trajectories. Thus, the Obstacle Avoidance problem gives another
example application where having decision variables spread around the horizon results in much better
performance when compared to having them congested at the beginning of the horizon as in GPC. .
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Figure 5.11: Delta Blocking vs GPC Comparison in the Obstacle Avoidance Problem with Nb = 6

5.6.3 Discrete Back-stepping Control

Back-stepping control is among the most popular nonlinear control methods for Quadrotors given its
simplicity and its adequacy for the models and control architectures that are typically used, as well
as its Lyapunov-derived stability guarantees [97, 139]. The derivation of the control laws can be done
both in continuous time and discrete time, however, for our simulation we choose to use it in discrete
time given its excellent tracking properties which would allow us, in an ideal nominal-case scenario,
to track the desired virtual control signals of the high-level planner with zero steady state error, thus
allowing us to focus on the expected performance and recursive feasibility properties of the proposed
approach. Note that in this case, the high-level NMPC planner is essentially optimising the first (or
highest) “virtual control signal” or references of the general back-stepping procedure.
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The back-stepping procedure used for this simulation consists of only 2 steps; the first step con-
trolling the Quaternion to a desired reference using the angular velocity vector as a virtual signal; and
the second step controlling the angular velocity vector using angular acceleration as an actual control
vector. The derivation of the control laws is out of the scope of this thesis but can be obtained following
the methodology given in [151]. The procedure is given by:

Step 1: Stabilise the Quaternion using Angular Velocities

−→ω k+1ref = B−1
q

(−→q k+1ref −−→q k − (I −Kq)(
−→q kref −−→q k)

)
(5.70)

where B−1
q = (BT

q Bq)
−1BT

q and Kq = αqI4x4 is a diagonal tuning matrix with 0 ≤ αq ≤ where αq = 0

would indicate “no correction”, basically leading to an open-loop feed-forward control law, and αq = 1

would result in an “instantaneous correction” leading to a potentially unstable one-step ahead dynamic
inversion control law.

Step 2: Stabilise the Angular Velocities using Angular Accelerations

−̇→ω k = B−1
ω

(−→ω k+1ref −−→ω k − (I −Kω)(−→ω kref −−→ω k)
)

(5.71)

where Kω = αωI3x3 is again a diagonal tuning matrix where the tuning variable 0 ≤ αω ≤ 1 follows
the exact same behaviour as described for step 1.

Note that both steps require the references given at two steps (k and k + 1). In essence, if the
system reached the desired reference for the current step, eg. qkref − qk = 0 or ωkref −ωk = 0, then the
solution is a simple one-step ahead dynamic inversion. Otherwise, it applies a correction which slows
the one-step dynamic inversion into a more smooth trajectory.

An important thing to mention is that both virtual control signals norm
∣∣∣∣−→ω k+1ref

∣∣∣∣ < 300 (deg/s)

and
∣∣∣
∣∣∣−̇→ω k

∣∣∣
∣∣∣ < 2500 (deg/s2) were always saturated to be within the constraint values for the simulation.

Whenever this happened, the Quadrotor went through a short transition phase before recovering track
of the requested trajectory. An example of this behaviour is given in figure 5.12 where the excellent
tracking performance of the resulting discrete back-stepping controller can be seen, and the approach
can be seen to recover quickly from a momentary thrust saturation, as signaled by the inner elipses.

5.6.4 Dynamic Obstacles and Nonlinear Constraints

Lastly, we have the topic of obstacle avoidance itself. In this case we are interested in dynamic obstacles
represented by “spheres” which follow 3D parabolic trajectories subject to gravity determined by the
discrete position dynamics of (5.62), with the only difference of not being “actuated” by the force vector.
Although there exist some different variants on how to achieve obstacle avoidance for this scenario, eg.
using potential fields as in [1, 17, 106], this case study implemented the nonlinear constraints approach
as in [57]. Considering the Quadrotor could also be represented by a sphere, the objective is then to
maintain a minimum squared distance to Nobs obstacles, eg. by imposing the nonlinear constraints:

d2
k,i = (xk − xk,i)2 + (yk − yk,i)2 + (zk − zk,i)2 ≥ d2

min (5.72)

∀k = [1, Np] ∀i = [1, Nobs]
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Figure 5.12: Example Discrete Back-stepping Tracking Performance with Recovery

These nonlinear constraints (5.72) can be imposed into the cost function simply by forming the Nobs

linearised output prediction models of the squared distances to each obstacle, eg. given by:

Ŷ i
obs = Ȳ i

obs +Giobsδx0 +H i
obsNNb0∆Û ∀i = [1, Nobs] (5.73)

and including them into the optimisation inequality constraints as:

MN∆Û =




−H1
obsNNb0
...

−HNobs
obs NNb0


∆Û ≤




−(D2
min − Ȳ 1

obs −G1
obsδx0)

...
−(D2

min − Ȳ Nobs
obs −GNobsobs δx0)


 = γ (5.74)

The shifting strategy approach would then select a subset of these constraints to be included in the
optimisation.
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5.6.5 Performance Comparison

In order to evaluate the performance of the proposed approach applied to this problem, we performed
a series of simulations for different optimisation versions, including: block sizes Nb = [1 → 6], and
apart from the basic shooting point selection of Ncon = 1 constraint selected at the end of each
block, alternative shooting point selection methods were implemented where the optimisation selected
Ncon = 2 constraints per block, similar to those described in tables 5.1 and 5.2. Following the same
notation as in the aforementioned tables, the alternative Ncon = 2 selection patterns were: 1 − 1 for
Nb = 2 (fully constrained); 0 − 1 − 1 for Nb = 3; 0 − 1 − 0 − 1 for Nb = 4; 0 − 0 − 1 − 0 − 1 for
Nb = 5; and 0− 0− 1− 0− 0− 1 for Nb = 6. These alternative cases will be referred to as Ncon = 2.
Each of this cases were simulated for different number of obstacles Nobs = [1, 3, 5, 7, 10] simultaneously
being thrown to the vehicle. Two performance metrics were captured from these simulations, namely:
overall cost and collision probability, which will be discussed later in table 5.13.

The conditions of the simulation are quite involved, but can be briefly summarised as follows. All
the simulations were done for a total of T = 400 (s) with the Quadrotor starting at the origin in steady
state. A sampling time of Ts = 0.02 (s) was used for all the discrete models of section 5.6.1. Regarding
the controller setup, a base prediction horizon of Np = 75 (Tp = 1.5) was used for the NMPC optimisa-
tion and was modified to select the Ideal Prediction Horizon depending on the block size (Nb) as in case
study 5.5. The costs of the optimisation were selected as qk+i = diag([1, 0, 1, 0, 1, 0, 0, 0, 0]) ∀i = [1, Np]

for penalising the augmented state errors [x, vx, y, vy, z, vz, Fx, Fy, Fz], and rk+i = diag([1, 1, 1]) ∀i =

[0, Np − 1] for penalising the force increments (∆
−→
F ). The reference of the simulation was selected at

the origin for half the simulation time, and was modified to a co-sinusoidal trajectory on all three axis
for the rest of the simulation, with each axis reference selected as: xr = 2 sin(0.4πt), yr = 2 sin(0.4πt)

and zr = 3 sin(0.2πt). The obstacle’s trajectories were randomised based on the current and fu-
ture vehicle references ([xr, yr, zr]k and [xr, yr, zr]k+timp/Ts), considering random initial positions on
a sphere of radius 5 < robs−ini < 25(m) relative to the position reference of the vehicle at the cur-
rent time [xr, yr, zr]k, and random collision positions around the reference at a future time of impact
[xr, yr, zr]k+timp/Ts ± 0.5 (m), with the time of impact randomised between (1.5 < timp < 2.5), al-
lowing for statistical variability in the resulting trajectories of the obstacles. The time impact was
selected such that the obstacles were smoothly introduced at the end of the prediction horizon of the
optimisation, allowing for the IVE conditions of the RTI Scheme to be valid. The trajectory of each
obstacle was “reset” (given a new trajectory) when its vertical position was zobs < −5 (m) and its
vertical velocity was vzobs < 0 (m/s), ie. falling and 5 (m) below the origin. The exact same obstacle
trajectories were used for all the simulations where the total number of different obstacles thrown to
the vehicle (after resetting) averaged on 160 obstacles per Nobs.

Regarding the nonlinear constraints, considering a common m = 1 (kg) Quadrotor frame has a
spherical safe radius of about rsafe = 0.45 (m) (including 10in propeller tips), and considering spherical
obstacles of radius robs = 0.15 (m) (similar to basket-balls) are thrown to the vehicle, all simulations
were subject to two distance constraints; a “collision constraint” d2

col ≥ 0.62 which, if violated, indicated
the obstacle collided with the vehicle; and a “warning constraint” using a fixed slack d2

warn = (0.6+0.2)2

(referred to as soft-constraint in figure 5.13) which indicated the obstacle got extremely close to the
vehicle. This warning constraint (d2

warn) was used as the constraint to be satisfied by the nonlinear
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constraints (5.72) in order to allow for the small violations of the intermediate constraints which are
ignored by the proposed Shifting Strategy. Given the obstacles were smoothly introduced at the end of
the prediction horizon, the optimisation was solved using the Hildreth’s QP algorithm from [146] with
only 5 iterations per obstacle. Moreover, given the potential in-feasibility of the obstacles being thrown
from all directions, the optimisation was augmented with a slack soft-constrained variable (ρ) added
to the cost as Jρ = J + 100000ρ2, that was used to automatically adjust the selected constraints limits
which allowed the optimisation to adjust its plan with small violations on the selected constraints in
case the Quadrotor required manoeuvres which were too difficult to avoid the obstacles. This was
observed to result in a more stable optimisation by always being able to find an optimal trajectory.
Finally, the constants for the back-stepping controller were both selected as αq = αω = 0.5.

As it is understandably hard to picture the aforementioned conditions, a video showing an example
animation can be found in (https://www.youtube.com/watch?v=Jsl6dRCSGNI) where the resulting
performance with Nb = 4 and Ncon = 2 can be seen.

Selected Nonlinear Constraints Satisfaction

One of the main properties of interest from the proposed Shifting Strategy is the satisfaction of the
selected nonlinear constraints for the optimisation. This property was seen consistently throughout
all the results that were analysed. To illustrate this, figure 5.13 shows an example performance of the
distance maintained for up to Nobs = 10 obstacles when using the proposed approach with Nb = 3,
Ncon = 1. In this case, the proposed Shifting Strategy is expected to ignore 2 intermediate constraints,
something which can be clearly appreciated from the signaled ellipses of the figure.

Figure 5.13: Example Distance to Obstacles when using Nb = 3 with Ncon = 1 constraint per block

https://www.youtube.com/watch?v=Jsl6dRCSGNI
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Costs and Collision Probability

As discussed earlier, the approach was tested using various number of obstacles Nobs = [1, 3, 5, 7, 10],
with various block sizes Nb = [1 → 6], and different number of constraints per block Ncon = [1, 2] for
block sizes Nb > 1. The resulting performance with each of this variations was then measured in terms
of resulting costs (J) and collision probability, where the latter was the calculated based on the number
of times the solution violated the collision constraint d2

col = 0.62. Both of this measures are captured in
table 5.13 where each case is clearly signaled in terms of Ideal Prediction Horizon, block size, number
of constraints and number of obstacles. As it can be seen, in terms of the resulting costs, the proposed
approach resulted in improved costs for the majority of the solutions when compared to the standard
NMPC approach (Np = 75, Nb = 1, Ncon = 1), most likely given the relaxation of the intermediate
constraints as well as the small increments in the Ideal Prediction Horizons that were used. However,
this improvement comes at the cost of having a potential increase in the collision probability given
the aforementioned relaxation. This can be seen clearly by observing that the solution ignoring the
most constraints (Np = 79, Nb = 6, Ncon = 1) results in the best overall costs, but proves insufficient
in successfully avoiding/detecting the obstacles with the reduced amount of selected constraints, thus
having the highest collision probabilities for all the different number of obstacles tested. On the other
hand, it can be appreciated how by using the alternative shifting constraints approach (Ncon = 2) on
block sizes Nb > 2, the optimisation fixes the collision probabilities resulting in as low as 0.1% (1 in
1000 obstacles colliding) when using a block size of Nb = 5 with Ncon = 2 constraints per block.

Metric Cost Collision Probability
Case/Nobs 1 3 5 7 10 1 3 5 7 10

Np = 75, Nb = 1, Ncon = 1 574 1354 2250 3243 4988 0 0 0 0 0
Np = 77, Nb = 2, Ncon = 1 527 1211 2171 2989 4730 0 0 0 0 0
Np = 76, Nb = 3, Ncon = 1 511 1258 1865 2605 4211 0 0 0.3 0.3 0.1
Np = 77, Nb = 4, Ncon = 1 430 992 1839 2434 4234 4.4 3.4 3.3 3.2 3.0
Np = 76, Nb = 5, Ncon = 1 446 952 1465 1936 3018 12.5 9.2 8.1 6.8 6.8
Np = 79, Nb = 6, Ncon = 1 376 743 1081 1705 2620 12.8 13.0 13.1 10.8 10.8
Np = 77, Nb = 2, Ncon = 2 552 1278 2298 3226 4874 0 0 0 0 0
Np = 76, Nb = 3, Ncon = 2 564 1372 2098 2977 4554 0 0 0 0 0
Np = 77, Nb = 4, Ncon = 2 528 1214 2196 3094 4779 0 0 0 0 0
Np = 76, Nb = 5, Ncon = 2 533 1286 1950 2691 4266 0 0 0.1 0.1 0
Np = 79, Nb = 6, Ncon = 2 518 1154 1786 2530 4378 0.6 0 0.1 0.4 0.1

Table 5.13: Comparison of costs (J) and collision probability (in %) for different type of optimisations
Nb = [1→ 6]/Ncon = [1, 2] and different number of obstacles Nobs = [1, 3, 5, 7, 10]

Thus, this case study shows another example where the proposed Shifting Strategy could be applied
to reduce the computational burden of the optimisation whilst resulting in excellent performance.
Although no computation time comparison was performed, it is evident that the proposed approach
would result in significantly reduced computation times. As an example, the standard optimisation
(Np = 75, Nb = 1, Ncon = 1) for Nobs = 10 case would result in 225 decision variables with 750

nonlinear constraints. In contrast, the solution with (Np = 76, Nb = 5, Ncon = 2) would result in 48

decision variables with only 310 nonlinear constraints.
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5.7 Summary

This chapter presented the proposed Shifting Strategy which is considered one of the most important
contributions of this thesis. The proposed method was published in a number of articles, namely:
an initial conference (abstract-only) paper in IFAC NMPC 2018 [48]; a journal paper in IET Control
Theory and Applications 2020 [50]; and the IFAC World Congress 2020 conference paper [59].

The method is based on shifting a set of input-blocking equality constraints in an absolute time-
frame as established in definition 5.1. Moreover, to avoid having dimensional related problems that
potentially require dynamic memory allocation for implementing the approach, the proposed method
uses the novel concept of the “Ideal Prediction Horizon” supported by theorem 5.1 which proves that,
although counter intuitive, the selected prediction horizon must be an integer multiple of the block-size
plus one in order to have a constant Hessian dimension, ie. a constant number of decision variables.
The application of this concept results in a novel input-blocking parameterisation which the author
of this thesis calls “The Ideal Moving Window Blocking (MWB)” approach, defined specifically by
equation (5.11). Furthermore, to reduce the computational burden further, the proposed approach
uses a reduced set of shifting shooting points and inequality constraints as established by definition
5.2 which allow the optimisation to keep focus on the same overall targets in the absolute time-frame.
All of these features combined allows the method to preserve nominal stability and recursive feasibility
properties when considered in infinite horizons or zero-terminal constraints as proven in theorem 5.3.
Finally, one of the benefits of the proposed approach is that by applying the basic concept of consistent
absolute time-frame shifting, the method can be extended to a wide range of alternatives, both in terms
in alternative input-parameterisation as given in figure 5.3, as well as in terms of alternative shifting
of shooting points as described by tables 5.1 and 5.2. This gives additional flexibility to the user for
its implementation, as well as extends the scope of the contribution.

On the other hand, the chapter includes a set of algorithms and methods provided in section
5.2 which allow an efficient handling and implementation of the overall method. One of the key
contributions of this approach is the extension of the O(N) and O(N2) algorithms from Ph.D. thesis
[8] provided in section 5.2.3. Additionally, the section includes the “core” and RTI algorithms required
to efficiently implement the approach, as well as a generic computations comparison where the proposed
method can be seen to present substantial computational benefits.

The chapter ends with 4 case studies which allow the demonstration of the various properties,
advantages and disadvantages of the proposed method, as well as serve as motivation for its usage.
These include: the Van Der Poll Oscillator from section 5.3 which gives an example application of the
Ideal MWB approach for a system “difficult to stabilise in the presence of actuator constraints”; the
WEC device, presented in section 5.4 which presents the results from the publication [59] in which the
Non-Ideal MWB approach resulted in substantial performance and computational gains when compared
to standard approaches; the Inverted Pendulum, presented in section 5.5 where the performance and
recursive feasibility properties of the Shifting Strategy were presented along with a computational
comparison where significant computational gains were observed, giving solutions up to 54 times faster
than the standard NMPC, including the solution of the ACADO toolkit; and finally, the Obstacle
Avoidance Problem from section 5.6, which allowed the demonstration of potential alternatives of the
proposed approach applied to a complex problem in which an efficient NMPC solution is required.
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A general drawback of the proposed method is that it only guarantees recursive feasibility for the
selected shooting points by fixating all attention to them. Therefore, a small slack is required to
protect the ignored points from small constraint violations as it was done in the Obstacle Avoidance
case study. The selection of the slack size itself is a non-trivial task but could be selected based on
Monte Carlo simulations, analysing the system from a variety of conditions, and obviously would be
required to increase as the block size increases. However, this problem is also found in most MPC
methods because of the discretisation process, and thus is not unique to the proposed method of this
chapter.

Thus, based on this evidence, we believe the proposed approach has enough benefits and enough
reason for it to be considered relevant for an actual implementation on real systems.



Chapter 6

Closed Loop Dual Mode Nonlinear Model
Predictive Control: The Numeric
Conditioning Problem

Up until this point, the previous chapters have all been based on the “open-loop” paradigm described in
[122] where the predicted evolution of the system is essentially represented by an “open-loop” simulation
that includes decision variables for the optimisation at each of the prediction steps, and the resulting
optimal feedback control action (û0) is applied “after” the optimisation is solved, ie. in an “a-posteriori”
manner. This type of approach is generally sufficient for common systems like the Inverted Pendulum
presented in the previous chapter 5, or the Quadrotor presented in chapter 4, which suffer from “mild”
unstable (or conditionally stable) dynamics (sometimes called unstable modes as they are related
to the poles of the system) that do not typically present a problem when using small to medium
horizons. There are however, other systems such as the Ball Plate System of [18] or the Triple Inverted
Pendulum System from [45, 120] which suffer from severe unstable dynamics which are well known to
cause numeric conditioning problems arising from the growing nature of the state-transition dynamics
recursion required by condensing-based optimisation frameworks (ie. ANp · · ·A1A0). This causes the
Hessian term (E) to become ill-conditioned which makes the numeric calculation of its inverse very
inaccurate (in some cases impossible), thus affecting the quality of the optimal solution, or preventing
the optimisation to be solved all-together.

A simple solution to this is to use the so called sparse solvers such as QP DUNES [40] or QP
FORCES [66] which implement the “simultaneous” approach where the states are kept as decision vari-
ables resulting in a large dimensional Quadratic Programs (QPs) that present a clear sparse structure
which can be exploited by allowing the solution of each prediction stage separately and connecting
them in the final solution, similar to the “principle of optimality” of Dynamic Programming, described
in the re-derivation of the Discrete Algebraic Riccati Equation (DARE) presented in chapter 3, section
3.3. Indeed, it is shown in theorem 6 of [40] that the unconstrained solution obtained by QP DUNES
has the exact same structure as the dynamic recursion of DARE. However, it is important to note that
these methods have been shown to give better performance for medium to large scale Optimal Control
Problems (OCPs) [145], and one can also find small OCPs which present this problem.

150
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An alternative approach to this is the well-known “closed-loop” paradigm described in [122], com-
monly used to tackle Robust Control problems which use a “pre-stabilisation” procedure that imposes
feedback “before” the optimisation is done, ie. “a-priori’, which results in closed loop state-transition
dynamics of the form Φk = Ak − BkK that contains stable modes and possibly cancels any distur-
bance, thus solving the underlying problem. This approach has been studied by many authors which
have proposed different variants to its implementation, both in linear MPC and Nonlinear MPC, al-
though mostly for linear MPC with most of them based on using a fixed feedback gain K. Moreover,
when combined with terminal weights/terminal modes, this approach is typically called “closed loop
dual-mode”, and was originally proposed for state-space linear MPC in [123]. Other works such as
[147] have used the closed-loop paradigm for NMPC with a single locally stabilizing gain K across the
entire prediction to stabilize the system around a given steady state target/reference. Finally, work by
[29, 30] used a linear time-varying controller calculated offline, to stabilise a nonlinear system around
a pre-defined periodic trajectory, which arguably could be refered to as “linear” MPC [55].

A key issue that has not yet been addressed for condensing based NMPC is: how can we pre-
stabilise the system around ANY trajectory that emerge from the nonlinear optimisation, irrespective
of the trajectory or prediction horizon requirements?. The answer to this is relevant bearing in mind
that one could be interested in solving optimisations with heavily unstable nonlinear systems on short
horizons and/or using a preferred optimised/efficient dense QP solver such as QP OASES [38] which
would otherwise not be available for an implementation. At this point it is important to highlight that
it is possible the trajectory presents highly unstable dynamics BEFORE even getting close to a steady
state target/reference or terminal region, and none of the currently available methods and toolkits,
such as the ACADO toolkit, offers a “generic” methodology or “option” for prestabilizing the system
to allow condensing approaches to be used in this scenarios. What we must understand is that the
application of a single feedback gain K, eg. obtained via the LQR, might be completely inappropriate
for parts of the system evolution which have not yet entered the terminal region. A clear example of
this is the inverted pendulum (or its bigger brother, the triple inverted pendulum [45]) which undergo a
complete input-reversal phenomena where the inputs in the lower-side of the pendulum cause a moment
in the complete opposite direction of that in the upper-side, ie. 180◦ in the frequency domain, which
ultimately means what is stabilising for one side, its de-stabilising for the other. On the other hand, the
improvement of the numeric conditioning of the optimisation would allow us to obtain more accurate
solutions as well as to use reduced numeric accuracy (eg. floats instead of doubles) to obtain faster
solutions, something which cannot commonly be exploited using the available condensing methods for
highly unstable nonlinear systems.

The aforementioned reasons motivated the contents of this chapter in the hopes of establishing a
“generic” condensing-based methodology that could tackle a wide range of unstable nonlinear systems,
which has not yet been achieved. Moreover, the method was developed as a “pre-requisite” step towards
the final approach presented in chapter 8 which combines pre-stabilisation with the shifting strategy
of chapter 5 and the terminal weight methodology of chapter 7. The contents of this chapter resulted
in the IET publication [47] related to an experimental validation in a physical double inverted pendu-
lum system, and a submission to the IEEE TAC journal detailing the overall procedure, along with
important theorems, novel algorithms and interesting case studies that demonstrate the advantages
and disadvantages of the method and allow its efficient implementation using the RTI Scheme.
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The chapter is organised as follows: Section 6.1 introduces the proposed closed loop dual mode ap-
proach where subsection 6.1.1 presents the pre-stabilisation scheme; subsection 6.1.2 presents the dual
mode optimisation framework; subsection 6.1.3 discusses and proves the nominal stability, recursive
feasibility and convergence properties of the proposed approach, supported by novel theorem 6.2; and
subsection 6.1.3 discusses the implementation of the overall approach in the RTI framework. Following
this, section 6.2 presents a set of algorithms that allow the efficient implementation of the approach
using the RTI Scheme, including an extension of the O(N2) and O(N) algorithms of chapter 3 along
with a generic computations analysis of the resulting algorithms against those used by the standard
approach. Section 6.3 presents a brief case study of a nonlinear ball plate system from [18] which
has severe unstable dynamics that were unable to be handled by the condensing-based methodology
of the ACADO toolkit as an initial example to demonstrate the potential of the proposed approach.
Moreover, section 6.4 presents the application of this methodology to the standard inverted pendulum
system where the auto-generation toolkit was tested against the standard condensing-based approach
and discusses certain interesting properties, advantages and disadvantages which might be overlooked.
Section 6.5 presents the extension of the classical inverted pendulum to a significantly more challenging
problem: the Triple Inverted Pendulum system, a problem which was unable to be solved using the
standard condensing-based methodology all together given the heavily unstable dynamics that arise
from the triple link in the system. Finally, section 6.6 presents experimental validation of the pro-
posed approach in a double inverted pendulum system which formed the main contribution of the IET
publication [47]. The chapter ends with a summary of the contents and contributions in section 6.7.

6.1 Closed Loop Dual Mode Prediction Models and Optimisation

As with all the other methodologies of this thesis, the basic/fundamental problems of interest are that
of the “state-only” cost given by (3.1), or in the case of nonlinear outputs, the “state-and-output” cost
function (3.2). We will see in this section that in order to implement the proposed approach we must
modify the overall linearised prediction models of interest, particularly those related to the state and
input dynamics, ie. (3.17a) and (3.17b). This will allow us to embed the proposed prestabilisation
methodology into the predictions which will ultimately result in a different Quadratic Program that
will have the desired properties. Based on this, we will demonstrate how we can implement the Real
Time Iteration (RTI) Scheme using this approach.

6.1.1 Prestabilised Prediction Models

In contrast to a linear system where a single linear gain K, typically obtained from LQR, can be used
to prestabilise the predictions by imposing it into the cost function (3.1) as an unconstrained control
law of the form uk = −Kxk+ck, where ck would become the additional variables of the optimisation as
in [122], a nonlinear system may require a time-varying, possibly nonlinear unconstrained control law
of the form uk = f(xk)+ck that would stabilise the system to the desired reference, eg. the origin. The
development of such a nonlinear control law would likely vary from system to system, thus making its
generalisation a hard process. Moreover, the resulting control law may be based on nonlinear strategies
such as back-stepping or nonlinear dynamic inversion which completely ignore any desired performance
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index of the optimisation as well as any desired constraint handling. On the other hand, one could use
the Dynamic Programming (DP) procedure to quickly find the unconstrained solution of the original
cost function (3.1) and embed it into the solution in the form of ûk = ūk + ū∗unck − Kδxk + δck.
Alternatively, one could avoid solving the DP online by having it calculated off-line for a known
trajectory, eg. a periodic trajectory as in [30], or a steady state reference, ie. LQR as in [66], although
this would limit the overall application and generalisation of the procedure.

An Underlying Problem and The Proposed Solution

A potential problem of the typical approach where the unconstrained solution is embedded into the
predictions as in [122] is that it can potentially place the “free-response” (δĉk = 0 of the pre-stabilised
prediction models of the optimisation) on paths that completely ignore the constraints, thus making
the solution of feasible initial points more difficult for QP solvers. To solve this problem we propose an
alternative approach where rather than seeking to solve the original optimisation (3.1) which focuses
on stabilising the system around the original target references (Xr, Ur), we will focus on stabilising
the system at whatever nominal trajectory (X̄, Ū) is used by the optimisation. By implementing this
modification we naturally embed a pre-stabilisation scheme that focuses on maintaining the current
optimal constrained plan, rather than finding a new unconstrained plan and re-optimising around it.

The proposed approach can be achieved by formulating a “secondary/inner” unconstrained optimi-
sation with the objective:

min
δûk

J =

Np−1∑

k=0

[
δx̂Tk+1qk+1δx̂k+1 + δûTk rkδûk

]
(6.1a)

δx̂k+1 = Akδx̂k +Bkδûk ∀k = [0→ Np − 1] (6.1b)

which can be efficiently solved using the Dynamic Programming procedure presented in chapter 3,
section 3.4 resulting in the well known Time-Varying Discrete Algebraic Riccati Equation (DARE):

Pk = qk +ATk Pk+1Ak −ATk Pk+1BkKk (6.2a)

Kk = (BT
k Pk+1Bk + rk)

−1BT
k Pk+1Ak (6.2b)

The method can then obtain a set of optimal gains (Kk) by iterating the dynamic recursion (Pk)
backwards k = [Np − 1 → 0] starting from PNp = qk+Np , and using the penalisation terms qk+i ∀i =

[1, Np − 1] and rk+i ∀i = [0, Np − 1] defined by in the original cost function (3.1).
The proposed scheme results in a control law of the form:

ûk = ū+ δûk

= ū−Kkδx̂k + δĉk︸ ︷︷ ︸
δûk

(6.3)

where at each step, the input automatically reacts to deviations of the nominal trajectory (X̄) with the
term (−Kkδx̂k) whilst having additional decision variables (δĉk) for the “main/outer” optimisation.
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Before we proceed any further, there are a few important remarks to be made about this method-
ology. The points below are key remarks that set up the general expectations as well as allow the user
to understand the overall objectives, alternatives and limitations of proposed approach.

Remark 6.1. Inner Optimisation Stability Considerations
Despite the word “pre-stabilisation” being used to describe the proposed methodology (as typically

used in the literature for similar approaches), it is important to clarify that the purpose of the inner
optimisation is NOT to achieve nominal stability by itself (that task is solely handled by the outer
controller), but rather to “pre-condition” the outer optimisation such that it has improved numeric con-
ditioning, as well as improved hot-starting capabilities. Both of these tasks are achieved by the “inner”
optimisation by minimising the predicted deviations from the previous optimal trajectory, thus prevent-
ing them from “growing freely”, in case the system presents unstable dynamics along the trajectory.
By doing this, the columns of the resulting input-to-state/input-to-input prediction matrices (ie. H

and F from equations 6.10a and 6.10b) won’t be allowed grow freely, therefore resulting in a properly
conditioned optimisation. Provided the optimisation can actually minimise/react to the predicted de-
viations, ie. it has proper qk, rk matrices, and the nominal trajectory is stabilisable/controllable (see
remark 6.2), the proposed method will typically give good results. Nonetheless, the method does not
guarantee (nor requires) nominal stability of the inner controller, neither it guarantees that a proper
numeric conditioning will be obtained, but it allows the user to have the freedom to design as required
(see remark 6.3).

Remark 6.2. A stabilisiable trajectory - Not Point-wise Stabilisable Ak and Bk
Another important point to mention is that it is NOT required to have “point-wise” stabilisable

Ak and Bk matrices at each time-step, although having it would ensure that the proposed method
can indeed “react/minimise” to the deviations at each time-step. Nonetheless, there may be nonlinear
systems where the nominal trajectory momentarily passes through segments with unstable/uncontrollable
dynamics, thus causing the inner optimisation to be unable to “react” at those points. However, even
if this happens, feedback gains at future stages can still minimise any deviations that emerge from that
segment, thus preventing them from “growing freely”. Because of this, we refer to the “trajectory” itself
being stabilisable/controllable in remark 6.1, not the individual points/time-steps.

Remark 6.3. Freedom in Weighting Matrices and Design of Kk

Finally, note that different weighting matrices (qk+1 and rk) can be used in case stronger pre-
stabilisation is necessary without affecting the main overall target of cost function (3.1), as it will be
proved in theorem 6.2. However, we propose to use the same weights as in the main optimisation to keep
things simple, although this freedom on the selection of the pre-stabilisation weights might be advanta-
geous for heavily unstable systems. In general, this gives the user the freedom for designing the feedback
gains (Kk) as appropriate, eg. by using those obtained from the infinite-horizon optimisation (K∞) for
the linearised models at each time-step (Ak, Bk), or using pole-placement techniques. Nonetheless, it
is important to mention that because of the time-varying nature of the linearisation matrices (Ak, Bk),
the matrix-matrix multiplication between two different matrices with stable poles doesn’t guarantee a
matrix with stable poles. Moreover, the use of infinite horizon gains may not even be possible for Ak, Bk
pairs that are not stabilisable, as discussed in remark 6.2, and may take significantly longer time, thus
it is not recommended. A short comparison discussing these points further is presented in appendix B.
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The Inner Optimisation Equivalency

On the other hand, it is important to clarify that this pre-stabilisation scheme does not penalise or
include the multiple shooting offsets (dk+1), ie. it follows a single shooting modelling approach, given
that they represent the actual predictions of each segment as depicted in figure 3.1 of chapter 3, and
preventing the them from going to this points as it would with HδÛ = O was considered counter-
productive by the author of this thesis. This essentially means the inner objective (6.1a) has an overall
cost given by J = ||Gδxk + HδÛ ||2Q + ||δÛ ||2R, ie. D = O. However, even if they were to be included
into the overall “inner” objective (6.1a), they would simply result in an additional offset in the overall
input model in the form of ûk = ūk −Kkδx̂k + c̄k + δĉk and would become part of the state offsets
in the form of dk+1 +Bk c̄k when considered in the state dynamics, but they would not affect neither
the recursion of Pk (eq. 6.2a), neither the feedback gain Kk (eq. 6.2b), as proved in theorem 6.1.
As a result, the approach would result in the same pre-stabilised matrices (H and F ) of the final
prediction models (6.10a) and (6.10b) which consequently would result in the optimisation having the
same numeric conditioning. The main difference would be the additional computations related to the
additional term c̄k which justifies its neglection, as well as different offset vectors D and S of models
(6.10a) and (6.10b), which do not affect the validity of theorem 6.2 proof which is the foundation for
proving the nominal stability and in general, relevance of the whole approach.

Theorem 6.1. The Inner Optimisation Equivalency
The solution of the proposed “secondary/inner” optimisation (6.1a) would result in the same Time-

Varying DARE recursion of Pk, and the same feedback gain Kk with or without the including the
offsets (dk+1), and even with or without including the references of the outer optimisation (xrk+1

, urk),
ie. when looking to obtain the unconstrained solution.

Note: For the purpose of this theorem, only the offsets case will be presented.

Proof. Consider the cost of two subsequent predictions stages given by:

J = δxTk qkδxk + 2δxTk gk + δuTk−1rk−1δuk−1︸ ︷︷ ︸
Jk

+ δxTk+1Pk+1δxk+1 + 2δxTk+1g̃k+1 + δuTk rkδuk︸ ︷︷ ︸
Jk+1

(6.4a)

s.t. δxk+1 = Akδxk +Bkδuk + dk+1 (6.4b)

where gk and g̃k+1 are linear terms w.r.t. δxk and δxk+1, respectively, that emerge from the
including offsets, as it will be seen.

As discussed in chapter 3, the objective of the Dynamic Programming approach is to express the
everything that is in the second stage (Jk+1) in terms of the first stage (Jk), ie. to solve the optimisation
using Bellman’s “principle of optimality”, solving each of the stages separately and then connecting
them.

By substituting the state dynamics (6.4b) and reorganising the terms to form a standard QP w.r.t.
δuk we obtain:

Jk+1 = δuTk (BT
k Pk+1Bk + rk)︸ ︷︷ ︸

Ek

δuk + 2δuTk B
T
k [Pk+1(Akδxk + dk+1) + g̃k+1]︸ ︷︷ ︸

fk

(6.5)
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The optimal unconstrained solution to this QP would be given by:

δu∗k = −E−1
k fk

= −Kkδxk + c̄k

= −E−1
k BT

k Pk+1Ak︸ ︷︷ ︸
Kk

δxk−E−1
k BT

k (Pk+1dk+1 + g̃k+1)︸ ︷︷ ︸
c̄k

(6.6)

By substituting (6.6) in Jk+1 of the original cost (6.4a), rearranging the state dynamics in the closed
loop form (δxk+1 = Φkδxk + d̃k+1 with Φk = Ak −BkKk and d̃k+1 = dk+1 +Bk c̄k ) and reorganising
the terms w.r.t. δxk, results in:

Jk+1 = δxTk (ΦT
k Pk+1Φk +KT

k rkKk)δxk + 2δxTk

[
ΦT
k (Pk+1d̃k+1 + g̃k+1)−KT

k rk c̄k

]
(6.7)

Finally, by substituting (6.7) in (6.4a), and grouping common terms w.r.t. δxk:

Jk = δxTk (qk + ΦT
k Pk+1Φk +KT

k rkKk)︸ ︷︷ ︸
Pk

δxk + 2δxTk

[
gk + ΦT

k (Pk+1d̃k+1 + g̃k+1)−KT
k rk c̄k

]

︸ ︷︷ ︸
g̃k

(6.8)

resulting in the same recursions for Pk, and same feedback gains Kk which concludes the proof.

In order to obtain the pre-stabilised state prediction model we can substitute the input deviation
model (δûk = −Kkδx̂k + δĉk) from the proposed pre-stabilisation control law (6.3) into the general
multiple-shooting prediction model (3.1) presented in chapter 3, resulting in:

x̂k+1 = x̄k+1 +Akδx̂k +Bk

δûk︷ ︸︸ ︷
(−Kkδx̂k + δck) +dk+1

= x̄k+1 + (Ak −BkKk)︸ ︷︷ ︸
Φk

δx̂k +Bkδĉk + dk+1

= x̄k+1 + Φkδx̂k +Bkδck + dk+1︸ ︷︷ ︸
δx̂k+1

(6.9)

where dk+1 = f(x̄k, ūk) − x̄k+1 is defined as in the general model (3.15b), and Φk = Ak − BkKk are
the closed-loop state-transition dynamics. Note that Φk can be calculated as equation (6.2a), ie. Pk,
is iterated backwards and the optimal gains (Kk) are obtained.

Before formulating the final linearised prediction models, note that the input predictions are re-
quired to be adjusted to include the feedback terms propagated through the closed-loop state dynamics
(Φk). By propagating both state and input linearised prediction models (6.9) and (6.3) Np steps ahead
starting from an initial state deviation (δx0) and reorganising in matrix-vector formats, the predictions
of all future states and inputs are then given by:

X̂ = X̄ + δX̂ = X̄ +D +Gδx0 +HδĈ︸ ︷︷ ︸
δX̂

(6.10a)

Û = Ū + δÛ = Ū + S +Wδx0 + FδĈ︸ ︷︷ ︸
δÛ

(6.10b)



Chapter 6. Closed Loop Dual Mode Nonlinear Model Predictive Control: The Numeric
Conditioning Problem 157

where as before, δx0 = x0− x̄0 is an initial condition mismatch that forms part of the RTI Scheme,
δĈ = [δĉTk , δĉ

T
k+1, · · · , δĉTk+Np−1]T ∈ RNpnu is a column-vector containing the new decision variables

or inputs of system, and D ∈ RNpnx , G ∈ RNpnx×nx , H ∈ RNpnx×Npnu , S ∈ RNpnu , W ∈ RNpnu×nx ,
F ∈ RNpnu×Npnu are defined as:

D =




d̄1

d̄2

...
d̄Np




G =




g1

g2

...
gNp




H =




h1,1 0 · · · 0

h2,1 h2,2
. . .

...
...

. . . . . . 0

hNp,1 hNp,2 . . . hNp,Np




(6.11a)

S =




s1

s2

...
sNp




W =




w1

w2

...
wNp




F =




f1,1 0 · · · 0

f2,1 f2,2
. . .

...
...

. . . . . . 0

fNp,1 fNp,2 . . . fNp,Np




(6.11b)

and by dropping the k notation (ie. Φk+1 = Φ1), the inner matrix-vector terms are defined through
the following recursions as:

d̄k =

States︷ ︸︸ ︷


dk

dk + Φk−1d̄k−1

k = 1

k > 1
sk =

Inputs︷ ︸︸ ︷


Onu

−Kk−1d̄k−1

k = 1

k > 1
(6.12a)

gk =





Φk−1

Φk−1gk−1

k = 1

k > 1
wk =




−Kk−1

−Kk−1gk−1

k = 1

k > 1
(6.12b)

hk,j =




Bk−1

Φk−1hk−1,j

k = j

k > j
fk,j =




Inu×nu

−Kk−1hk−1,j

k = j

k > j
(6.12c)

∀k = [1→ Np] ∀j = [1→ Np]

Remark 6.4. For modelling of nonlinear outputs, the same linearised prediction model (3.21) can be
used considering the new expressions of the pre-stabilised state prediction model (6.10a).

6.1.2 Condensing-based Optimisation

Having established the linearised state, input, and if required, output prediction models, we can proceed
to implement the condensing procedure based on the relative framework by directly substituting them
into the original cost function (3.1b), resulting in:

min
δĈ

J =
1

2
(Xr − X̄ −D −Gδx0 −HδĈ)TQ(Xr − X̄ −Gδx0 −HδĈ)

+
1

2
(Ū + S +Wδx0 + FδĈ − Ur)TR(Ū + S +Wδx0 + FδĈ − Ur) (6.13a)

Umin ≤ Ū + S +Wδx0 + FδĈ ≤ Umax (6.13b)

Xmin ≤ X̄ +D +Gδx0 +HδĈ ≤ Xmax (6.13c)
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By grouping terms w.r.t. the decision variables (δĈ), disregarding constant terms and rearranging the
inequalities results in a standard Quadratic Program (QP) given by:

min
δĈ

J =
1

2
δĈTEδĈ + δĈT f (6.14a)

E = HTQH + F TRF (6.14b)

f = −
[
HTQ(Xr − X̄ −D −Gδx0)

−F TR(Ū + S +Wδx0 − Ur)
]

(6.14c)

MδĈ ≤ γ (6.14d)

M =




F

−F
H

−H




γ =




Umax − Ū − S −Wδx0

−(Umin − Ū − S −Wδx0)

Xmax − X̄ −D −Gδx0

−(Xmin − X̄ −D −Gδx0)




(6.14e)

which can be solved any general purpose solver as QP OASES [38] or quadprog function of Matlab,
and will have the same general form discussed in chapter 3, section 3.1.3 where the optimal solution
will always be given by:

δĈ∗ = δĈ∗unc + δĈ∗λ (6.15)

Once the solution is found, the “expansion step” from the standard approach of the multiple shooting
procedure can be implemented to obtain the nominal states and inputs for the following step as:

X̂ = X̄ +D +Gδx0 +HδĈ∗ (6.16)

Û = Ū + S +Wδx0 + FδĈ∗ (6.17)

Only the first input (û0) is applied into the system and the process is repeated in the following step
as in the standard receding horizon method.

6.1.3 Stability, Recursive Feasibility and Convergence

In order to prove the nominal stability, recursive feasibility and convergence properties of the proposed
approach we could first seek to understand how it relates to the standard methodology which would
allow us to derive certain conclusions about its underlying properties.

The Equality of The Pre-stabilised Solution

Based on this interest, we derived theorem 6.2 which states and proves that the solution obtained with
this approach will always be exactly the same as the original methodology.

Theorem 6.2. The Equality of the Pre-stabilised Solution
The optimal solution with the proposed pre-stabilised prediction models will always be exactly the

same as the standard optimal solution which consequently will result in the same nominal stability,
recursive feasibility and convergence properties of the standard approach.
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Proof. The standard solution, ie. the one that uses the predictions with Kk = O, results in F = I,
S = W = O, and therefore δĈ = δÛ which results in the standard prediction models:

X̂ = X̄ +D1 +G1δx0 +H1δÛ (6.18a)

Û = Ū + δÛ (6.18b)

In contrast, the proposed approach uses the pre-stabilised prediction models:

X̂ = X̄ +D2 +G2δx0 +H2δĈ (6.19a)

Û = Ū + S +Wδx0 + FδĈ︸ ︷︷ ︸
δÛ

(6.19b)

Notice the D1/D2 − G1/G2 −H1/H2 notation has been used to distinguish the two state prediction
models. Similar notation will be used throughout the proof where relevant, eg. as E1 in equation 6.22.

Although we have different prediction models, we can expect that both models would result in the
exact same predictions for a given “total” input deviation (δÛ). Thus, by replacing the pre-stabilised
prediction of the input deviations (δÛ = S +Wδx0 + FδĈ) in equation (6.18a) we obtain:

X̂1 = X̄ +D1 +G1δx0 +H1(S +Wδx0 + FδĈ)

= X̄ + (D1 +H1S)︸ ︷︷ ︸
D2

+ (G1 +H1W )︸ ︷︷ ︸
G2

δx0 +H1F︸︷︷︸
H2

δĈ (6.20)

which allows us to derive the following relationships:

D2 = D1 +H1S (6.21a)

G2 = G1 +H1W (6.21b)

H2 = H1F (6.21c)

Following the procedure of theorem 3.2 presented in chapter 3, we can begin by first proving uncon-
strained solutions (δÛ∗unc) are the same, and proving the equality of constrained solutions afterwards.

In the standard case, we have an optimal unconstrained solution of the form:

δÛ∗unc =

E1︷ ︸︸ ︷(
HT

1 QH1 +R
)−1

−f1︷ ︸︸ ︷[
HT

1 Q(Xr − X̄ −D1 −G1δx0)−R(Ū − Ur)
]

= −E−1
1 f1 (6.22)

In contrast, the proposed approach has an optimal unconstrained solution of the form:

δÛ∗unc = S +Wδx0 + F

E2︷ ︸︸ ︷(
HT

2 QH2 + F TRF
)−1

[
HT

2 Q(Xr

−X̄ −D2 −G2δx0)− F TR(Ū + S +Wδx0 − Ur)
]

(6.23)
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By substituting equation (6.21c) in (6.23) and rearranging it noting that the Hessian of the proposed
approach (E2) can be expressed in terms of the standard Hessian (E1) as E2 = F TE1F gives:

δÛ∗unc = S +Wδx0 + F
(
F TE1F

)−1
F T

[
HT

1 Q(Xr − X̄ −D2 −G2δx0)

−R(Ū + S +Wδx0 − Ur)
]

(6.24)

Given F is always invertible because of the identity matrix in the diagonal, and E1 is always invertible
because is positive definite, the terms related to the inverse of the inner product signaled by the red
box above are given by:

F
(
F TE1F

)−1
F T = F (F−1E−1

1 F T
−1

)F T

= E−1
1 (6.25)

Substituting equations (6.21b), (6.21a) and (6.25) in (6.24) gives:

δÛ∗unc = S +Wδx0 + E−1
1

[
HT

1 Q(Xr − X̄ −D1 −H1S −G1δx0 −H1Wδx0)

−R(Ū + S +Wδx0 − Ur)
]

(6.26)

Rearranging terms:

δÛ∗unc = S +Wδx0 −��
�E−1

1 ��E1 (S +Wδx0)

+ E−1
1

[
HT

1 Q(Xr − X̄ −D1 −G1δx0)−R(Ū − Ur)
]

= E−1
1

[
HT

1 Q(Xr − X̄ −D1 −G1δx0)−R(Ū − Ur)
]

= −E−1
1 f1 (6.27)

Thus, the equality of the unconstrained solutions (6.27) and (6.22) holds.

Having proved the equality of the unconstrained solutions, the equality of constrained solutions
reduces to proving the optimal correction terms related to the Lagrange Multipliers (δÛ∗λ = FδĈ∗λ) are
exactly the same. Following the procedure for optimal constrained solutions established in chapter 3
and used by theorem 3.2, the optimal correction term for both solutions is known to be given by:

δÛ∗λ = −E−1
1 MT

1 λ
∗
1 Standard (6.28a)

δÛ∗λ = −FE−1
2 MT

2 λ
∗
2 Dual Mode (6.28b)

with the optimal vectors of Lagrange Multipliers (λ∗1 and λ∗2) containing only positive or zero values
that satisfy the Karush-Kush-Tucker (KKT) conditions.

Noting that M2 = M1F , substituting it in equation (6.28b) and using the equivalency between the
Hessians (6.25), we obtain:

δÛ∗λ = − F (F TE1F )−1F T MT
1 λ
∗
2

= −E1M
T
1 λ
∗
2 (6.29)
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This reduces to proving both optimal vectors of Lagrange Multiplers will be the same. ie. λ∗1 = λ∗2.
To prove this, we can then apply the active-set approach used for theorem 3.2 where for any given
active set, the optimal Lagrange Multipliers of each approach would be given by:

λ∗act1 = −(Mact1E
−1
1 MT

act1)−1(γact1 −Mact1δÛ
∗
unc) (6.30a)

λ∗act2 = −(Mact2E
−1
2 MT

act2)−1(γact2 −Mact2δĈ
∗
unc) (6.30b)

where Mact1/γact1 and Mact2/γact2 are the active-set constraints matrix/vector of each approach.

Note that because, M2 = M1F , then Mact2 = Mact1F . Substituting this along with the hessian
equivalency E2 = F TE1F from (6.25) in (6.30b) results in:

λ∗act2 = −(Mact1 F (F TE1F )−1F T MT
act1)−1(γact2 −Mact2δĈ

∗
unc)

= −(Mact1E
−1
1 MT

act1)−1(γact2 −Mact2δĈ
∗
unc) (6.31)

Thus, by equating (6.30a and 6.30b) the inverse related term cancels which results in:

γact1 −Mact1δÛ
∗
unc = γact2 −Mact2δĈ

∗
unc (6.32)

For the strict purpose of the proof, consider the active-set composed by the entire set, something which
as stated in theorem 3.2 can not be done in practice given the requirement of linear independence of the
active sets for invertibility of the matrix (ME−1MT )−1, and the restriction of the number of active-sets
being less than the number of decision variables, but is equally valid for the proof.

Given we have proved the unconstrained solutions to be the same, ie. δÛ∗unc = S+Wδx0 +FδĈ∗unc,
we can substitute this in (6.32) along with the equivalence expressions of (6.21) resulting in:

γ1 −M1δÛ
∗
unc =

γ1︷ ︸︸ ︷


Umax − Ū
Ū − Umin

Xmax − X̄ −D1 −G1δx0

X̄ +D1 +G1δx0 −Xmin



−

M1︷ ︸︸ ︷


I

−I
H1

−H1




δÛ∗unc︷ ︸︸ ︷
(S +Wδx0 + FδĈ∗unc)

=




Umax − Ū − S −Wδx0

Ū + S +Wδx0 − Umin
Xmax − X̄ −D2 −G2δx0

X̄ +D2 +G2δx0 −Xmin




︸ ︷︷ ︸
γ2

−




F

−F
H2

−H2




︸ ︷︷ ︸
M2

δĈ∗unc = γ2 −M2δĈ
∗
unc (6.33)

which concludes the proof.

Note that this proof also holds for single-shooting scenarios where the system is linearized along the
nominal state trajectory (X̄) obtained with the nominal input (Ū) resulting in dk = Onx ∀ k = [1, Np],
and consequently in S = D = ONpnx . Moreover, the proof holds independently of the selection of
the pre-stabilisation weights, ie. independently of the feedback gains used, as discussed earlier in the
formulation of the inner objective function (6.1a), given F will always be invertible which essentially
means that if the new decision variables (δĈ) can replicate the original variables (δÛ), they will.
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Advantages

Because the solution of the proposed approach will always be exactly the same as the standard one,
we can use the same methodologies dicussed in chapter 3, section 3.4 such as zero terminal constraints,
terminal weights, invariant sets and convergence improvement methods which ultimately result in the
method having exactly the same nominal stability, recursive feasibility and convergence properties.
However, the use of the proposed pre-stabilisation scheme will provide appropriate numeric condi-
tioning to the problem which will lead to a numerically robust Hessian inversion required by the
optimisation. This will allow the optimisation of a wide range of unstable nonlinear systems based
on the condensing methodology on any prediction horizon without sacrificing numerical robustness of
the solution. Moreover, the method could allow the use of less accurate inverse solutions and weaker
numeric representations such as floats which could ultimately speed up the overall solution. Examples
of the potential advantages of the proposed method will be presented in the case studies of sections
6.3, 6.4 and 6.5.

Disadvantages

On the other hand, the method has some inherent disadvantages, particularly due to the additional
computations required for the computation of DARE (ie. the calculation of Pk,Kk,Φk), as well as the
additional matrices S,W,F , and the fact that input constraints essentially have the form of output
constraints which prevents the special case available in standard QPs where the inputs are constrained
through an identity matrix (I) rather than dense matrix (F ), all of which will ultimately increase the
overall computation times when compared to the standard approach. Moreover, assuming the system
was linearised around a feasible input trajectory (Ū), an initial feasible point for (Û) is not necessarily
achieved by δĈ = ONpnu as opposed to the standard methodology where imposing δÛ = ONpnu

directly would be feasible. This can ultimately make finding a feasible initial point for what are
typically the “easiest” constraints a hard process. However, note that a straightforward solution to
this is to compute δĈ = F−1(ONpnu − S −Wδx0) which is the required δĈ to obtain δÛ = ONpnu .
This brings the question of whether it would be possible develop QPs specially designed to handle the
pre-stabilised input structure F better.

6.1.4 Real Time Iterations

To implement this approach using the Real Time Iteration (RTI) Scheme the user can simply follow
the guidelines established chapter 3, section 3.2 and apply the standard steps, ie. performing the Initial
Value Embedding (IVE) shifting approach, performing a single full-step SQP iteration and separating
the computations in Preparation and Feedback Phases by using the predicted state obtained from the
previous state and input (x̄0 = x̂k|k−1 = f(xk−1|k−1, uk−1|k−1)), calculating the operations related to
the initial offset (δx0 = x0 − x̄0) as soon as the measurement arrives and solving the QP.

On the other hand, if the user requires to have stricter deterministic timings, an alternative is to
implement the approach discussed in chapter 3 to completely remove the time-delay related to the QP
solution in the feedback phase by implementing equation (6.34) which as discussed, is based on solving
the problem with the assumption of δx0 = 0, and then re-including the feedback term to provide an
optimal “unconstrained correction” to the “approximated constrained solution”.
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Û = Ū +

Unconstrained︷ ︸︸ ︷
S − FE−1

[
−HTQ(Xr − X̄ −D)− F TR(Ur − Ū − S)

]
−

Constrained︷ ︸︸ ︷
FE−1MT λ̄]︸ ︷︷ ︸

Preparation Phase

−
[
FE−1(HTQG+ F TRW )−W

]
︸ ︷︷ ︸

Feedback Phase

δx0 (6.34)

This particular approach was used in the experiment validation process of the double inverted pendulum
case study presented in section 6.6, and was published in [47] along with the overall pre-stabilisation
methodology and a hybrid switching scheme that will be discussed in the case study’s section.

6.2 Algorithm Details and Auto-generation

Having defined the theory of the overall methodology, we can proceed to define the key algorithms
that are required to implement the proposed approach using the developed auto-generation toolkit
based on the RTI framework which will ultimately allow us to benchmark the proposal against the
solution obtained by the ACADO toolkit. Thus, this section will provide a set of algorithms that
allow its efficient implementation including an extension of the O(N2) and O(N) algorithms from PhD
thesis [8] presented in the re-derivation of chapter 3, section 3.3.1, which is considered one of the key
contributions of this thesis, along with 4 “core” algorithms that will be used by the Preparation and
Feedback algorithms of the RTI approach.

6.2.1 Extension of the O(N2) and O(N) Algorithms

Apart from S andW of the pre-stabilised input prediction model (6.10b) which result in simple vectors
(with the understanding that the effect of δx0 can be included in S as it was included in D in algorithm
3.6), the main and most important difference of the whole approach proposed in this chapter comes
from matrix F , particularly from the Hessian term F TRF (previously simply R), and the linear term
F TR(Ū + S + Wδx0 − Ur). In this subsection we will see that we can use the philosophy of the
O(N2)/O(N) algorithms to calculate this terms efficiently, thus resulting in an “extension” to the
fundamental algorithms provided in [8].

Following a similar procedure as in the re-derivation of the original algorithms presented in section
3.3.1, let us begin by expanding the first Np = 3 terms of the first column of the total Hessian
considering dummy matrices W̃ and Ṽ as:



E1,1

E2,1

E3,1


 =



BT

0 BT
0 ΦT

1 BT
0 ΦT

1 ΦT
2

0 BT
1 BT

1 ΦT
2

0 0 BT
2




︸ ︷︷ ︸
H1



w̃1,1

w̃2,1

w̃3,1




︸ ︷︷ ︸
W̃

+



I −BT

0 K
T
1 −BT

0 ΦT
1 K

T
2

0 I −BT
1 K

T
2

0 0 I




︸ ︷︷ ︸
F



ṽ1,1

ṽ2,1

ṽ3,1




︸ ︷︷ ︸
Ṽ

(6.35)

where the dummy matrices W̃ and Ṽ will eventually represent columns of the operations W̃ = QH,
W̃ = QXe, Ṽ = RF or Ṽ = RUe, but are not particularly required to find the underlying pattern of
the operations.
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From equation (6.35) we can easily obtain the last value given by:

E3,1 = ṽ3,1 +BT
2 w̃

[1]
3,1 (6.36)

where as before, the notation w̃[0]
3,1/w̃

[1]
3,1 represents the initial/final value of the algorithm. Note that

this particular variable starts in the final value as it does not require any modification.
The following expression can be expressed in terms of the previous dummy variable (w̃[1]

3,1) as:

E2,1 = ṽ2,1 +BT
1 (w̃

[0]
2,1 + ΦT

2 w̃
[1]
3,1 −KT

2 ṽ3,1)
︸ ︷︷ ︸

w̃
[1]
2,1

(6.37)

Moving on to the last term, we can express it in terms of the previous dummy variable (w̃[1]
2,1) as:

E1,1 = ṽ1,1 +BT
0 (w̃

[0]
1,1 + ΦT

1

w̃
[1]
2,1

︷ ︸︸ ︷
(w̃

[0]
2,1 + ΦT

2 w̃
[1]
3,1 −KT

2 ṽ3,1)−KT
1 ṽ2,1)

= ṽ1,1 +BT
0 (w̃

[0]
1,1 + ΦT

1 w̃
[1]
2,1 −KT

1 ṽ2,1)
︸ ︷︷ ︸

w̃
[1]
1,1

(6.38)

Thus a clear static pattern can be seen where the Hessian can be calculated in terms of the modified
dummy variable w̃[1]

k,j as: Ek,j = ṽk,j + BT
k−1w̃

[1]
k,j , and the dummy variable is defined as a recursive

expression given by: w̃[1]
k,j = w̃

[0]
k,j + ΦT

k w̃
[1]
k+1,j −KT

k ṽk+1,j .
This solution is also valid for the calculation of the linear term as well as any column of the Hessian,

however, as with the standard O(N2) algorithm, only the diagonal terms are calculated and the rest are
duplicated. Based on this and the understanding that the operations related to the dummy variables
are W̃ = QH, W̃ = QXe = Q(Xr− X̄−D−Gδx0), Ṽ = RF and Ṽ = RUe = R(Ur− Ū −S−Wδx0),
the final algorithms are given in algorithms 6.1 and 6.2. Note that the expression for Ue has been
reversed from the original to match the linear term f = −(HTQXe + F TRUe).

Algorithm 6.1: Dual Mode O(N) Condensing Algorithm
Data: Q,R,Φk, Bk,Kk, Xe, Ue, Np

1 begin
2 w̃Np = qNpXeNp ; // Initial value of the main dummy variable

// For loop running backwards k = Np, Np − 1, · · · , 2
3 for k = Np to 2 do
4 ṽk = rk−1Uek−1

; // Calculate secondary dummy variable
5 fk = −(ṽk +BT

k−1w̃k); // Calculate linear term component
6 w̃k−1 = qk−1Xek−1

+ ΦT
k−1w̃k −KT

k−1ṽk; // Propagate recursively
7 end
8 f1 = −(r0Ue0 +BT

0 w̃1); // Initial term outside the loop
9 end
Result: f
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Algorithm 6.2: Dual Mode O(N2) Condensing Algorithm
Data: H,Q,F,R,Φk, Bk,Kk, Np

1 begin
2 for i = 1 to Np do
3 w̃Np,i = qNphNp,i; // Initial value of the main dummy variable

// For loop running backwards k = Np, Np − 1, · · · , i+ 1
4 for k = Np to i+ 1 do
5 ṽk,i = rk−1fk,i; // Calculate secondary dummy variable
6 Ek,i = ṽk,i +BT

k−1w̃k,i; // Calculate Hessian term component
7 w̃k−1,i = qk−1hk−1,i + ΦT

k−1w̃k,i −KT
k−1ṽk,i; // Propagate recursively

8 Ei,k = ETk,i; // Copy transpose
9 end

10 Ei,i = ri−1fi,i +BT
i−1w̃i,i; // Diagonal term calculation

11 end
12 end

Result: E

6.2.2 Core Algorithms

In addition to the 2 novel algorithms introduced in the previous section, there are 4 additional “core”
algorithms required for the implementation of the whole approach which are (given in order of intro-
duction and usage): 1. Time-Varying DARE; 2. Dual Mode H and F Matrices Calculation; 3. Dual
Mode D and S Vectors Calculation, and; 4. Dual Mode Decompression Routine. These routines will
be fundamental for the final RTI algorithms introduced in the following subsection.

The Time-Varying DARE algorithm allows us to calculate the pre-stabilised state-transition ma-
trices Φk, as well as the optimal feedback gains Kk by using the recursive expression of (6.2a) and
(6.2b), and is given in algorithm 6.3.

Algorithm 6.3: Dual Mode Time-Varying DARE Algorithm
Data: Ak, Bk, Q,R,Np

1 begin
2 PNp = qNp ; // Initial value for weighting matrix Pk+1

// For loop running backwards k = Np − 1, Np − 2, · · · , 0
3 for k = Np − 1 to 0 do
4 Kk = (BT

k Pk+1Bk + rk)
−1BT

k Pk+1Ak; // Calculate feedback gain
5 Φk = Ak −BkKk; // Close System Dynamics
6 Pk = qk + ΦT

k Pk+1Φk +KT
k rkKk; // Propagate Weights

7 end
8 end
Result: Φk,Kk

Moreover, the H and F matrices can be efficiently calculated by algorithm 6.4 which is based on the
recursive expressions defined in (6.12c). Similarly, we can include the initial offset δx0 into both terms
D and S as performed in the original algorithm (3.6) for D, simply by having the initial conditions
d̄1 = Φ0δx0 + d1 and s̄1 = −K0δx0. This can be performed efficiently with algorithm 6.5 which is
based on expressions (6.12a).
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Algorithm 6.4: Dual Mode H and F Condensing Calculation
Data: Φk, Bk,Kk, Np

1 begin
2 for i = 1 to Np do
3 hi,i = Bi−1; // Diagonal Term of H
4 fi,i = Inu×nu ; // Diagonal Term of F
5 for k = i+ 1 to Np do
6 hk,i = Φk−1hk−1,i; // Propagate H terms recursively
7 fk,i = −Kk−1hk−1,i; // Calculate F in terms of H

8 end
9 end

10 end
Result: H,F

Algorithm 6.5: Dual Mode D and S Calculation
Data: Φk,Kk, dk, δx0, Np

1 begin
2 d̄1 = Φ0δx0 + d1; // Calculate Initial D value
3 s̄1 = −K0δx0; // Calculate Initial S value
4 for k = 2 to Np do
5 d̄k = dk + Φk−1d̄k−1; // Propagate D terms recursively
6 sk = −Kk−1d̄k−1; // Calculate S terms
7 end
8 end
Result: D,S

Finally, to perform the “expansion step” required by the multiple shooting approach, note that we
only require to calculate the additional terms δX̃ = HδĈ∗ and δŨ = FδĈ∗ related to the optimal
pre-stabilised correction. To do so, we can use algorithm 6.6 which calculates this term efficiently by
propagating them through the dynamics instead of their direct evaluation, thus avoiding the calcula-
tions related to the zero terms above the diagonal, and any repeated use of the terms in vector δĈ∗.

Algorithm 6.6: Dual Mode δX̃ and δŨ Expansion Step

Data: Φk, Bk,Kk, δĈ
∗, Np

1 begin
2 δũ0 = δc∗0; // Calculate initial δŨ value
3 δx̃1 = B0δc

∗
0; // Calculate Initial δX̃ value

4 for k = 2 to Np do
5 δũk−1 = −Kk−1δx̃k−1 + δĉ∗k−1; // Calculate δũk−1

6 δx̃k = Φk−1x̃k−1 +Bk−1δc
∗
k−1; // Propagate δc∗k−1 through dynamics

7 end
8 end
Result: δX̃, δŨ
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6.2.3 RTI Algorithms

Having established the fundamental algorithms required for the implementation of the proposed Closed-
Loop Dual-Mode NMPC approach under the RTI Scheme, the overall approach is finally provided in
terms of the Preparation and Feedback Phases given in algorithms 6.7 and 6.8, respectively, both of
which are based on the previously presented algorithms, as well as forward simulation algorithm 3.4
to facilitate the verification process of each working part of the proposed approach.

Algorithm 6.7: Dual Mode RTI NMPC Preparation Phase Algorithm
Data: X̄, Ū , λ̄, x−1, u−1, Q,R,Np

1 begin
2 x̄0 = f(x−1, u−1); // Calculate predicted state from previous state and input
3 Shift X̄,Ū , and optionally λ̄ consistently ; // Initial Value Embedding
4 [Ak, Bk, dk] = Forward(X̄, Ū , x̄0, Np); // Run algorithm 3.4
5 [Φk,Kk] = DARE(Ak, Bk, Q,R,Np); // Run algorithm 6.3
6 [H,F ] = CalculateHF (Φk, Bk,Kk, Np) ; // Run algorithm 6.4
7 [E] = CalculateE(H,Q,F,R,Φk, Bk,Kk, Np); // Run algorithm 6.2

8 M =
[
F T −F T HT −HT

]T ; // Form M Matrix
9 end
Result: E,M,Φk, Bk, dk, x̄0

Algorithm 6.8: Dual Mode RTI NMPC Feedback Phase Algorithm
Data: x0, x̄0, X̄, Ū , λ̄,Xr, Ur, E,M,Φk, Bk, dk, Q,R,Np, Umax, Umin, Xmax, Xmin

1 begin
2 δx0 = x0 − x̄0; // Calculate state deviation from measurement
3 [D,S] = CalculateDS(Φk,Kk, dk, δx0, Np); // Run algorithm 6.5
4 Xe = Xr − X̄ −D; // Calculate X error
5 Ue = Ur − Ū − S; // Calculate U error
6 [f ] = Calculatef(Q,R,Φk, Bk,Kk, Xe, Ue, Np); // Run algorithm 6.1

7 γ =




Umax − Ū − S
Ū + S − Umin
Xmax − X̄ −D
X̄ +D −Xmin


; // Calculate constraint vector γ

8 [δĈ∗, λ̄] = QPSolve(E, f,M, γ, λ̄); // Solve the Quadratic Program
9 [δX̃, δŨ ] = Expand(Φk, Bk,Kk, δĈ

∗, Np); // Run algorithm 6.6
10 Ū = Ū + S + δŨ ; // Calculate new nominal input
11 X̄ = X̄ +D + δX̃; // Calculate new nominal state
12 end

Result: X̄, Ū , λ̄

6.2.4 Generic Computations

In order to get an idea of how well the proposed approach performs compared to the standard ap-
proach, we performed a generic computations comparison of all the relevant Dual Mode algorithms (ie.
algorithms 6.3, 6.4, 6.2, 6.1, 6.5, 6.1 and 6.6) against their counterpart algorithms from the standard
approach (ie. algorithms 3.5, 3.2, 3.6, 3.3 and 3.7). For reference, table A.1 contains the Floating Point
Operations (FLOPS) counts of the developed algorithms, along with those of the standard approach.
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As it is well known that the DARE algorithm 6.3 which is one of the core fundamental differences
scales linearly with both the number of inputs and the number of prediction steps, ie. it has an O(Nnu)

performance [28], the most reasonable comparison to make was using different nu and Np for a system
with fixed nx states. Hence, to relate the results of this comparison to that of the inverted pendulum
dynamics presented in chapter 5, as well as later in this chapter in case study 6.4, the comparison was
made for a system with nx = 4 states, nu = [1, 2, 3] inputs, and Np = [100, 150, 200] prediction steps
using only doubles precision as no particular gain was observed from using floats. All the algorithms
were tested in Ubuntu 20.04 running with Real-Time priority (ie. chrt -r 99 ./main) on a laptop with an
Intel i7-8750 CPU overclocked @ 3.9 GHz, and 32 GB DDR4 RAM running @ 2,666 MHz, with 120000
runs per algorithm. The test C++ codes were compiled using the (-O3) optimisation C-flag, as well as
with the fused-multiply-addition operations (-mfma) and auto-vectorisation (-mavx) flags enabled to
use the Advanced Vector Instruction set available in the Intel CPU. The results of this comparison are
gathered in table 6.1 where the minimum computation time obtained for each algorithm is reported,
indicating the minimum time that could be achieved if a Real-Time OS would be used.

Type Dual Mode Approach
Case (nx = 4) nu = 1 nu = 2 nu = 3

Np 100 150 200 100 150 200 100 150 200

DARE (alg. 6.3) 6 9 12 10 15 20 14 21 28
H/F Matrices (alg. 6.4) 12 25 51 26 63 118 53 122 249

E Matrix (alg. 6.2) 14 33 67 41 100 189 89 235 551
D/S Vectors (alg. 6.5) 1 2 2 1 2 2 2 2 3

f Vector (alg. 6.1) 1 2 2 2 2 2 2 2 3
Expansion Step (alg. 6.6) 1 2 2 1 2 2 2 2 2

Total 35 77 136 81 184 333 162 384 836

Type Standard Approach
Case (nx = 4) nu = 1 nu = 2 nu = 3

Np 100 150 200 100 150 200 100 150 200

H Matrix (alg. 3.5) 6 14 31 14 28 64 23 46 103
E Matrix (alg. 3.2) 12 26 54 32 73 144 64 151 367
D Vector (alg. 3.6) 1 2 2 1 2 2 1 2 2
f Vector (alg. 3.3) 1 2 2 2 2 2 2 2 3

Expansion Step (alg. 3.7) 1 2 2 1 2 2 1 2 2

Total 21 46 91 50 107 214 91 203 477

Increase (+%) 67 67 50 62 70 55 78 89 75

Table 6.1: Generic Computation Times (in µs) Comparison of Standard and Closed Loop Dual Mode
Approaches for a system with nx = 4 states, nu = [1, 2, 3] inputs, and Np = [100, 150, 200] steps.

From this table we can see that the DARE algorithm 6.3 scales exactly linearly with the prediction
horizon Np as expected, and slightly below the expected linear dependence with the input nu, but
overall maintaining acceptable performance. Moreover, all the cases of the proposed approach have
the expected inevitable increase signaled by the pink row which compares each of the “total” cyan rows,
representing the summation of each of the columns of all the algorithms used by the respective approach.
Note that this increase is particularly related to the computation of DARE, the H/F matrix, and the
computations of the Hessian (E) as the other computations are, for all practical purposes, negligible.
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Although in all cases the approach presented a relatively large increase of +50/67%, +55/62% and
+75/89%, it is important to remember that the comparison is not based on the final computation times
of the approach given there are still 2 main computations missing, namely: the Forward Simulation and
Linearisation of the system, and the QP Solution, as seen from the Preparation and Feedback phase
algorithms, 6.8 and 6.7, respectively. An example of the actual performance obtained in the Inverted
Pendulum of case study 6.4 will be discussed in table 6.6, where the total increase is presented.

As it is to be expected, the performance of these algorithms will vary from platform to platform, and
could result in better “relative” performance depending on the available Floating Point Unit (FPU) on
the CPU that is used. However, regardless of this, we can always do an analysis of what can we expect
from a given algorithm. A relatively simple example of this is the comparison between the number of
computations required for the standard H matrix (algorithm 3.5), and that of the dual mode H/F
matrices (algorithm 6.4). The expected performance of both of these algorithms can be easily measured
in terms of the number of “vector times vector” multiplications required. Let us begin by noting that
each of the computations of hk,i = Ak−1hk−1,i in algorithm 3.5 (or equivalently hk,i = Φk−1hk−1,i in
algorithm 6.4) requires exactly nxnu “vector times vector” multiplications of vectors of size nx. In
addition to this, algorithm 6.4 requires the calculation of fk,i = −Kk−1hk−1,i which adds exactly n2

u

“vector times vector” multiplication of vectors of the same size (nx). Because both of these operations
are inside the same for-loop limits, ie. they both require the same amount of lower-triangular off-
diagonal terms, they both require exactly Np(Np−1)

2 terms to be calculated. As a result, the number of
“vector times vector” multiplications required by each algorithm are: Np(Np−1)

2 nxnu for the standard
approach, and Np(Np−1)

2 (nx + nu)nu for the dual mode approach. Consequently, the dual mode H/F
calculation will always require exactly α = (nx+nu)

nx
times more “vector times vector” multiplications.

Note that the results of table 6.1 were not even close to this ratio, which raised the question of whether
the Eigen 3 library was not optimising these operations properly, including the memory related tasks.

Thus, to validate this claim and provide further insight into potential future work of the proposed
approach, these 2 algorithms (alg. 3.5 and alg. 6.4) were tested in an alternative platform: the
Beaglebone Blue, running a quasi-Real-Time Debian (Linux-based) OS @ 1 GHz. This platform has a
NEON floating-point accelerator, specifically designed to make efficient parallel multiply and addition
operations which the Eigen 3 library is prepared to handle. As the platform has a 32-bit ARM Cortex-
A8 processor, the performance is expected to be better when using floats instead of doubles. Therefore,
a comparison for this was made for a system with nx = 4 states, nu = 1 inputs, and Np = [100, 150, 200]

steps, using both double and float precision. The test codes were compiled using the (-O3) optimisation
C-flag, as well as the (-mfpu=neon) flag to enable the NEON fp-accelerator instructions. All the codes
were run using real-time priority (ie. chrt -r 99 ./main) and the minimum computation time of 1250
iterations was captured. The comparison is presented in table 6.2.

From table 6.2 we can see that the increase from these 2 algorithms (signaled by the pink row),
is closer to the expected values (+24.5/30.1% and +12.9/26%), as opposed to the results presented
in table 6.1 were increases of up to +165% were obtained. Additionally, note that in this platform
the algorithms presented a significant increase when using double/float point thus justifying the appli-
cability of the approach for its use in unstable systems using reduced numeric precision. Ultimately,
these algorithms could be tailored further using Real-Time Field Programmable Gate Arrays (FPGA),
potentially resulting in more accurate computation times which were outside the scope of this thesis.
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Case (nx = 4, nu = 1) Doubles Floats
Np 100 150 200 100 150 200

Standard H Matrix (alg. 3.5) 2040 4693 8405 416 1152 2666
Dual Mode H/F Matrices (alg. 6.4) 2654 5847 10461 524 1300 3093

Increase (+%) 30.1 24.6 24.5 26 12.9 16

Table 6.2: H and H/F Computation Times (in µs) Comparison using Beaglebone Blue platform for a
system with nx = 4 states, nu = 1 inputs, and Np = [100, 150, 200] steps, using doubles and floats.

6.3 Case Study: The Ball Plate System

The Ball-Plate System, which is the two-dimensional extension of the Ball and Beam system [34],
is a challenging nonlinear, multi-variable and open loop unstable system commonly used in higher
education laboratory experiments for teaching purposes. Its inherent complexity allows the study of
interesting control problems such as: 1. point stabilisation control, ie. to carry the ball to a desired
position in the plate; and 2. trajectory tracking control, ie. to make the ball follow a pre-defined
trajectory such as a circle, a square, a Lissajous curve, etc. [34].

The system in question was used as a case study in [18] which forms part of the core/foundational
articles that motivated the work presented in the previous chapter: the Shifting Strategy (chapter 5),
particularly in section 6 of the aforementioned article. Upon testing the proposed approach of chapter 5
in this system, it became clear very quickly that it was not possible to use long horizons on this system
which motivated the work of this chapter as a prerequisite method towards the combined approach
presented in chapter 8. To put things in perspective, the ball-plate system from [18] has 3 integrators
(poles at zero), and one unstable pole. We will see in this case study that this causes a significant
numeric conditioning problem in the Hessian of the optimisation, even when using prediction horizons
as low as Np = 20. This prevents its solution using the standard approach in what is considered
a small/fast Optimal Control Problem (OCP) which forms the core interest of applications for the
proposed methodology of this chapter.

6.3.1 Modeling, Optimisation and Simulation Setup

In the aforementioned work [18], a linear time-invariant model for the x-axis of the system, ie. for the
ball-beam case, was given by:

ẋ =




0 1 0 0

0 0 −700 0

0 0 0 1

0 0 0 33.18




︸ ︷︷ ︸
A

x+




0

0

0

3.7921




︸ ︷︷ ︸
B

u (6.39)

where x = [p, ṗ, θ, θ̇]T is the state vector related to the x-axis, p and ṗ are the position and velocity of
the ball, θ and θ̇ are the angle and angular velocity of the plate, and u is the voltage of the motor that
makes the plate’s x-axis rotate. Note that the poles of the system, ie. the eigenvalues of matrix A are:
eig(A) = [0, 0, 0, 33.18] which causes the aforementioned numerical conditioning problems.
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As this is a linear system, one could directly discretise the system for a given sampling time, eg.
using a sampling time of Ts = 30 (ms) with a Zero-Order-Hold (ZOH) method as in [18], and proceed
to use the standard Linear MPC methodologies. However, to shake things up a bit, we will modify this
model slightly simply to make it a nonlinear system that would justify the use of the NMPC methods
discussed in this chapter.

Based on the Euler-Lagrange differential equations from [34], there are at least 2 nonlinear terms
which are not represented in the motion of the ball in 6.39, namely: the gravitational term (mg sin(θ),
and the centrifugal term (mpθ̇2). Considering the provided model is a linearisation of the actual model,
it is evident that if the gravitational term would be included in the original nonlinear model, the system
would be represented by a Ordinary Differential Equation represented by the state space (ẋ = f(x, u)):




ẋ1

ẋ2

ẋ3

ẋ4




︸ ︷︷ ︸
ẋ

=




x2

−700 sin(x3)

x4

33.18x4 + 3.7921u




︸ ︷︷ ︸
f(x,u)

(6.40)

with x1 = p, x2 = ṗ, x3 = θ and x4 = θ̇.
Clearly, the linearisation of the nonlinear model (6.40) at the origin results in the exact same linear

model (6.39) of [18]. However, this modification allows the model to be valid at steeper angles which
will be used as part of the initial condition of the system. Although the centrifugal term could have
also been added, there was not enough information provided in [18] to verify what would constitute
an equivalent or correct coefficient. Regardless, the aforementioned modification resulted in similar
responses to the ones provided in [134]. To keep the responses as close as possible to the real system,
the nonlinear system was simulated and linearised using algorithm 3.1 with Ns = 20 intermediate steps
and a sampling time of Ts = 30 (ms).

The optimisation was subject to the same penalisation weights as in [18, 134], ie. a state-error
penalisation weight qk+i = diag([6, 0.1, 500, 100]) ∀i = [1, Np], and an input-error penalisation weight
of rk+i = diag([1]) ∀i = [0, Np − 1]. Although one could optionally use the infinite horizon terminal
weight (qk+Np = PN ) as in [18, 134] to embed the secondary mode, this was not required to observe the
benefits that result from the application of the proposed approach. Moreover, the system was subject
to the following input and position constraints:

−20 ≤ p ≤ 20 (cm) (6.41a)

−10 ≤ u ≤ 10 (V ) (6.41b)

The optimisation was initialised with the free-response of the system, which can be obtained simply
with an initial guess for the nominal input trajectory of zeros (Ū = O), and the initial guess for the
nominal state trajectory being the response obtained with the nominal input guess, ie. following a
single shooting philosophy. The reference of the system was set at the origin and the resulting Optimal
Control Problems (OCPs) were solved using the “quadprog” function from Matlab.
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To compare the performance of the proposed approach with the standard method, the system
was simulated for T = 3 (s) starting from the initial condition x0 = [17, 0, 0.4, 0]T , and optimised
using multiple-shooting with various prediction horizons Np = [15, 20, 30, 60] which overall allowed the
demonstration of key benefits and problems relevant to the proposed approach of this chapter.

6.3.2 Numeric Conditioning Comparison

One of the most surprising parts of this system is the numeric conditioning problem that it presents.
To give an idea of the severity of the ill-conditioning problem, the standard NMPC presented a numeric
condition of 2.47E+12 in the Hessian when using a prediction horizon as low as Np = 15 and linearising
the system at the origin, which would represent the steady state or “final” condition of the Hessian.
Although this particular case was still solvable using the standard approach, it would present significant
problems if reduced numeric precision such as floats and/or longer horizons were to be used. Indeed
we will see that the optimisation resulted in numerical conditioning problems with prediction horizons
as low as Np = 20. For reference, table 6.3 gathers the condition number obtained for each prediction
horizon at the origin of the system where the standard optimisation can be seen to reach condition
numbers up to 2.38E + 50 in what could be considered a relatively small Optimal Control Problem.

Np Dual Mode Standard
15 3.021 2.47E + 12
20 3.025 7.30E + 16
30 3.277 2.77E + 25
60 3.295 2.38E + 50

Table 6.3: Comparison of Numeric Condition Numbers of the Nonlinear Ball Plate System at the origin
with prediction horizon Np = [15, 20, 30, 60]

To illustrate some of the key properties of the proposed approach, figure 6.1a presents the resulting
responses when using both, the Dual-Mode and Standard approaches with a prediction horizon of
Np = 15. From this figure we can clearly see that the responses of both approaches are exactly
identical as expected from theorem 6.2. Moreover, the resulting condition numbers of each approach
can be seen in the top graph of the figure where a condition number of 3.021 is achieved at the
steady state condition when using the proposed approach as signaled from the inner graph, and of
2.47E + 12 when using the standard approach, ie. resulting in a condition number 8.18E + 11 times
larger. Furthermore, the condition number of the proposed approach undergoes a transient response
as seen in the inner graph which is expected as the system is linearised around the trajectory of the
system as opposed to the standard approach where the system would be simply linearised at the origin.

Similarly, figure 6.1b shows the response of the system when using a prediction horizon of Np = 20

were the consequences of not having an appropriate numeric condition in the optimisation can be seen.
In this figure, it can be appreciated how the response obtained using the proposed Closed Loop Dual-
Mode approach maintains a similar performance to that of figure 6.1a. In contrast, the performance
obtained from the standard approach shows a rather erratic response, particularly in the input of the
system, evidently related to the numeric conditioning problems. As expected, this problem was even
worse when using longer prediction horizons, in some cases preventing the solution altogether.
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Figure 6.1: Nonlinear Ball Plate System Simulation with initial condition x0 = [17, 0, 0.4, 0]T and
prediction horizons of Np = 15 (6.1a) and Np = 20 (6.1b). DM and STD represent the Dual-Mode
and Standard approaches, respectively.
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6.4 Case Study: The Inverted Pendulum

The Inverted Pendulum was a key benchmark for this chapter as it allowed not only the simulation
but the experimental validation of the approach presented in the Parallel Double Inverted Pendulum
experiment of section 6.6 which formed the main contribution of the IET paper [47]. Moreover,
its complex nonlinear dynamic requirements formed the ideal case in which the proposed approach
may be necessary (as we will show in the case study of the Triple Inverted Pendulum in section
6.5) given that the system undergoes a complete input reversal where inputs that would generate a
positive moment in the lower equilibrium generate negative moments in the upper equilibrium. As a
result, the user wouldn’t be able to apply a “constant” feedback control law designed for the upper
equilibrium as in the standard approach given it would completely destabilise the system at the lower
equilibrium, potentially preventing the system from even entering the upper equilibrium region due to
the ill-conditioning problem. In contrast, we will see in this case study how by applying the proposed
approach, the numeric conditioning problem remains under control at all times whilst giving the exact
same performance and remaining competitive in terms of computations times.

6.4.1 Modeling, Simulation and Optimisation Setup

In this case study, the same simplified model of the inverted pendulum of the case study from the
previous chapter (chapter 5) with an additional position friction fm was used which is given by:

p̈ = fmṗ+ ku (6.42a)

θ̈ = aθ̇ + b sin(θ) + c cos(θ)(fmvk + kuk) (6.42b)

Considering the state xk = [v, ω, p, θ]T with v = ṗ and ω = θ̇ and using the Explicit Euler integration
method of algorithm 3.1 with a single step (Ns = 1), the simplified discrete-time nonlinear model is
given by:

xk+1 = xk + Tsf(xk, uk) (6.43a)

f(xk, uk) =




fmvk + kuk

aωk + b sin(θk) + c cos(θk)(fmvk + kuk)

vk

ωk




(6.43b)

where Ts = 0.02 (s) is the sampling time; p is the position; v is the velocity; θ is the pendulums’ angle;
ω is the pendulums’ angular velocity; and uk is the input of the system.

In this case, the coefficients of the system were defined as in table 6.4 in alignment with the
coefficients obtained from the experiment of the double inverted pendulum case study of section 6.6.

fm k a b c

−4.67 0.065 −0.129 38.4 3.95

Table 6.4: Inverted Pendulum Parameters
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To evaluate the performance of the proposed methodology, the optimisation was done for different
prediction horizons using qk+i = diag([0.1, 0.1, 10, 10]) ∀i = [1, Np − 1], and rk+i = diag([0.001]) ∀i =

[0, Np − 1] to penalise the state and input errors. A terminal weight of qk+Np = 10qk+1 was imposed
in the last state of the horizon xk+Np to improve stability properties of the optimisation by emulating
zero-terminal constraints. All the simulations started at the lower equilibrium in steady state xr =

x0 = [0, 0, 0, π]T , and a reference change to the upward equilibrium (xr = [0, 0, 0, 0]) was given by
introducing it at the end of the prediction horizon to achieve better performance of the RTI Scheme as
discussed in [55]. Notice the required input to stabilise the inverted pendulum in the upper equilibrium
is zero, thus a reference of Ur = ONpnu was imposed in the inputs. Finally, constraints in the input
and position were imposed as −170 < u < 170 and −0.35 ≤ p ≤ 0.35, respectively.

6.4.2 The Prestabilised Target

One of the most important characteristics of the proposed approach which differs from the standard
prestabilisation approaches is the target that is considered for prestabilisation. In the standard presta-
bilisation approach, eg. the one presented in [122], the unconstrained solution is embedded on the
optimisation such that when the decision variables are zero, ie. Ĉ = O, the response gives the optimal
unconstrained solution. Such a type of prestabilisation might be more relevant if input parameteri-
sation approaches such as the Laguerre or Chebyshev polynomials presented in chapter 4 were used
as decision variables specifically to handle constraints rather than to seek optimallity as discussed in
[79, 125]. However, in the case where the full degrees of freedom are kept as in the proposed approach,
the solution would be the same irrespective of the prestabilisation target that is chosen as proved by
theorem 6.2. In contrast, the proposed approach targets the optimal constrained solution obtained in
the previous step such that if any small disturbance comes into the system it will not only cancel it
(which is known to have benefits for achieving robust predictions), but also bring the solution directly
back to the optimal constrained solution. It is important to note that in the ideal/nominal case where
the system has converged to the global optimum, no uncertainty, noise or disturbances are present, and
infinite horizon costs are used along with invariant sets, the solution to the OCP at all the future stages
would be directly given by Ĉ = O which can be beneficial for finding initial points in Interior Point
methods, eg. as the one presented in appendix C. This is also the case when the standard approach
based on the relative solution is initialised with δÛ = O, however the key difference is what happens
when a small disturbance comes into the system which affects the overall predictions.

To illustrate the aforementioned situation, figure 6.2 presents a comparison of the “free-response”
predictions of both approaches in the presence of a disturbance, ie. the predictions when the decision
variables are zero. In this figure, the green dot-dashed line represents the previous nominal optimal
solution, ie. the target of the proposed pre-stabilisation approach, and the blue and red-dashed lines
are the “free-response” predictions of the Closed Loop Dual Mode, and Standard approaches, respec-
tively. In this simulation a small input disturbance was introduced during the swing up phase of the
optimisation as visible in the ellipse of the lower graph of the figure. As it can be appreciated, the
standard approach leads to significant deviations in the “free-response” predictions of the angle and
angular velocities of up to −758 and −5216, respectively as seen in the inner graphs, whereas the
proposed approach quickly cancels out the disturbance and comes back to the optimal solution.
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Although in this particular case the angle or angular velocities were not constrained, it would be
significantly more challenging to find feasible initial points for the optimisation if the standard approach
was used and these variables were constrained given the substantial violations of the free-response.
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6.4.3 Numeric Conditioning Comparison

As discussed earlier, another topic of interest is the numeric condition of the optimisation. To analyse
this, the condition number (c.n) of the Hessian E was calculated and compared between both, the
standard and the proposed Closed Loop Dual Mode approaches using different numeric precision (floats
and doubles), and the maximum c.nmax of each solution was gathered in table 6.5 for all prediction
horizons.

Precision Double Float
Np DM STD DM STD

75 3.58 1.39e+06 3.58 2.28e+06
100 3.58 4.52e+08 3.58 (Singular)
125 3.58 1.47e+11 3.58 (Singular)
150 3.58 5.02e+13 3.58 (Singular)

Table 6.5: Maximum Condition Numbers Comparison for Different Prediction Horizons and Numeric
Precision. STD and DM refer to the standard and dual mode solution, respectively.

To visualise this differences, an example performance of the optimisation is given in figure 6.3
for the solution with prediction horizon Np = 75 where the c.n. is plotted for both solutions along
with the resulting trajectories. As it can be seen, the solutions of both approaches are exactly the
same as expected from theorem 6.2, however the standard solution gives a condition number of up to
c.n. = 1.39e+06, resulting in a difference between both solutions of nearly 6 orders of magnitude larger,
which is fairly significant considering the relatively short prediction horizon used. Looking further at
table 6.5, the condition number of the standard solution increased as the prediction horizon increased
giving differences of up to 13 orders of magnitude for Np = 150, with the Hessian becoming singular for
Np > 75 when using float precision. This ultimately prevents the standard methodologies from using
floating precision which can lead to faster computation as discussed earlier in the generic computations
section 6.2. In contrast, the proposed solution maintained steady at c.nmax ≈ 3.58 ∀Np independent
of the numeric precision. It should be mentioned that common prediction horizons for the inverted
pendulum are relatively long (2 to 4 seconds [55, 104]), which is approximately the time required to
swing up and stabilise the system. However, other systems can present numeric conditioning problems
in as low as 1 second, as we have already shown in the previous ball-plate case study of section 6.3,
for which the proposed approach offers a viable solution.

Remark 6.5. It should be noted that the numerical conditioning problem of this or any system can
be changed by selecting a different sampling time, prediction horizon, number of intermediate steps of
the discretisation and linearisation process, etc. [55]. However, this doesn’t tackle the source of the
problem, nor does it provide a general methodology to address it using an arbitrary/desired number of
elements to be selected by the user.
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6.4.4 Disturbance Rejection Comparison

Another interesting result was obtained when comparing the responses against disturbance rejection
which were observed to present small differences despite the equality of the solutions proven by theorem
6.2. This was particularly present when using long horizons but more importantly, when using the
inverse function “inv(A)” of Matlab to obtain the unconstrained solution, which is known to be slower
and less accurate than solving a linear system using A\b. To test this, a disturbance of xk = xk +

[0, 0.5, 0, 0]T was injected at t = 7 (s) (continuation from figure 6.3 - system in upper equilibrium) for
which the unconstrained solution satisfies.
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Figure 6.4 shows an example of the aforementioned situation where the predicted and closed-loop
responses are plotted after the disturbance is injected. Only the initial predicted trajectories were
plotted to avoid saturation. As it can be seen, the predicted trajectories of the angle using the
standard solution (magenta dotted line - visible in the upper right corner of the upper graph) diverged
significantly from the closed loop, which in essence resulted in an ill-posed optimisation [122] and
caused the closed loop solution (red dashed line) to differ as it can be seen from all 3 responses (angles,
position and inputs). In contrast, the predictions of the angle using proposed dual mode approach
(cyan dash-dotted line - visible in the lower left corner of the upper graph) are indistinguishable from
the closed-loop response (blue solid line). Interestingly, the closed-loop responses were identical before
the introduction of the disturbance, which suggest that this problem is clearly related to the numeric
conditioning of matrix G whose norm grows as big as ||G|| ≥ 2.49e + 08, thus affecting the linear
term f significantly when ||δx0|| >> 0. However, it is noted that this anomaly ONLY happened when
using the aforementioned inverse function, and it was not present when using the command A\b to
obtain the unconstrained solution, resulting in the exact same responses as expected from theorem
(6.2). Nonetheless, it shows an example of another advantage that the proposed method can provide.
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6.4.5 Computation Times Comparison

In order to evaluate the computational performance of the proposed approach in this system, we
developed a set of auto-generated C++ codes based on the Eigen 3 library using the RTI algorithms
6.8 and 6.7 which implemented the approach in the Inverted Pendulum system. In order to reuse the
developed auto-generation routines for the tests performed in the Inverted Pendulum case study of
section 5.5, three main differences were implemented in this particular test, namely: different model
parameters (a = −0.3, b = 9.8065, c = 1, fm = 0 and k = 10), different constraints (−1 ≤ u ≤ 1 and
−1 ≤ p ≤ 1) and different weights (qk+i = diag([0.01, 0.01, 1, 1]) ∀i = [1, Np − 1], qk+Np = 10qk+1,
rk+i = 10 ∀i = [0, Np − 1]), with the rest of the simulation specifications being identical, eg. same
sampling time, same initial condition at the lower equilibrium and reference to the upper equilibrium
introduced at the end of the prediction horizon. For comparison, the solution was tested against the
standard RTI algorithms 3.9 and 3.8, as well as against the solutions obtained via the ACADO toolkit.
Each of these algorithms was tested for different prediction horizons Np = [100, 150, 200] and the
solutions of the resulting QPs were obtained using QP OASES [37, 38] which were verified to match
in all cases from Matlab simulations, to developed C++ codes, to the ACADO toolkit. For further
comparison purposes, the developed Dual Mode and Standard algorithms also calculated 10 iterations
of the Interior Point method presented in the appendix C, particularly by repeatedly solving system
(C.2) via the efficient solution given in (C.3). In this case (Interior Point), the interest was not on
obtaining an optimal solution, but on quantifying how fast the algorithms would run when requiring
to solve system system (C.2) 10 times, independently of whether the solution was found or not. This
allowed a more “generic” measurement of the required computation times in the context of Interior
Point methods. Each of these cases was run for 1000 simulations of T = 10 (s) giving a total of 400, 000

optimisations per case. The codes were run using the same conditions as in the generic computations
comparison of section 6.2.4, ie. same laptop running with real-time priority with the same optimisation
flags. The resulting average computation times of the constrained iterations of each of these approaches
is presented in table 6.6 signaled by the pink cells, with the computational increase of the proposed
Dual Mode compared to the Standard approach signaled in the yellow cells. For reference, the average
computation times related to the “preparation” steps of each algorithm (eg. Forward/DARE/Matrices
from lines 2-8 of algorithm 6.7) are also presented in table 6.6 signaled by the cyan cells, with the
“total” preparation time obtained with the ACADO toolkit captured entirely in the “Matrices” row.

Type Dual Mode Standard ACADO
Np 100 150 200 100 150 200 100 150 200

Forward 7 12 15 7 11 14 - - -
DARE 5 7 9 - - - - - -
Matrices 48 111 248 35 76 177 80 173 306

QP OASES 1330 3080 7266 1111 2823 6678 1154 2863 6779
Increase (+%) 19.8 9.1 8.8 - - - - - -
10 Int.Point steps 2973 8486 17828 2774 8226 17188 - - -
Increase (+%) 7.1 3.2 3.7 - - - - - -

Table 6.6: Average constrained computation times for the Inverted Pendulum using different methods
(Dual Mode, Standard, ACADO), with different prediction horizons Np = [100, 150, 200].
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As it can be seen from table 6.6, the QP OASES solution obtained with the Standard approach
remains remarkably close to the solution obtained with the ACADO toolkit, to the point of the solution
with the developed Standard auto-generated solution being slightly faster in all the cases. We take
this as an opportunity to demonstrate again that the auto-generation routines based on the Eigen 3
library developed throughout this Ph.D. resulted in even better computation times than those obtained
with the ACADO toolkit itself when using the Standard NMPC approach. This was also seen in the
comparison of case study 5.5, particularly in table 5.12.

On the other hand, the proposed approach can be seen to remain competitive w.r.t. to the standard
approach with computational increases ranging from +8.8/+ 19.8% in all the QP OASES cases, with
the computational increase decreasing as the horizon increases, as it was seen in some parts of generic
computations comparison of table 6.1. As discussed earlier, this increase is inevitably related to the
extra preparation computations visible mainly in the DARE/Matrices steps of the preparation phase,
as well as the requirement for extra “output” type of constraints which may be handled inefficiently by
the QP OASES algorithms. Nevertheless, we believe this increase is reasonable given the generic ability
of the proposed approach to handle unstable non-linear systems. Interestingly, the “total” preparation
times of all the Dual Mode approach solutions resulted in better performance that the preparation
times of the ACADO toolkit (eg. 48 + 5 + 7 = 60 < 80 for Np = 100), which demonstrates the in-
creased efficiency obtained with proper implementation of the proposed extensions of the O(N)/O(N2)

algorithms. Moreover, the total computational increase was much better than the preparation related
operations increase, eg. the preparation steps of Np = 200 using both Standard/Dual Mode approaches
resulting in a (248 + 9 + 15)/(14 + 177) = +42% increase, whereas the total solution with QP OASES
resulting in an increase of only +8.8%. Recalling the discussion from table 6.2, the total computational
increase could improve if the algorithms would result in the “expected” performance, eg. if they were
applied in actual real-time systems such as Micro-controller Units (MCU) or FPGAs which unfortu-
nately were outside the scope of this thesis. Thus, this is considered an area of opportunity for future
work to evaluate the actual performance that could be obtained with the proposed approach. Lastly,
the approach presented comparatively much better computational performance when considered in the
context of its implementation using the Interior Point method of appendix C. In this case, the proposed
approach resulted in computational increases in the range of only +3.2/7.1 which again, we believe its
justified considering the general advantages that come with the proposed method.

Thus, this case study provides a comparative example of the performance that can be obtained
when implementing the proposed approach. Based on this evidence, we believe the proposed approach
has enough benefits and enough reason for it to be considered for an actual implementation on real
systems. Moreover, although the approach was not particularly required for this system, it could serve
as an alternative in the case were reduced precision was required to be used given the solution using
floats was observed to result in singular Hessian as seen in table 6.5. This could again result in further
computational benefits when compared to the Standard solution which would require double precision
for it to be able to be implemented.
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6.5 Case Study: The Triple Inverted Pendulum

To further illustrate the benefits of the proposed methodology and provide a more complete example
that further shows its generalisation capabilities for higher order systems, this section presents its
application to a triple inverted pendulum which is a considerably more complex nonlinear system than
the single inverted pendulum. Indeed, due to its highly unstable dynamics, the standard condensing
based multiple shooting NMPC approach was unable to solve this problem altogether, independently
of the prediction horizon used. Thus, this provides an example of a problem that previously was unable
to be solved using the latter which further stresses out the importance of the contribution.

6.5.1 Modeling, Simulation and Optimisation Setup

In this thesis, the equations of motion for a point-mass triple pendulum provided in [120] were used,
combined with the cart acceleration differential equation (6.42a) with the assumption that the pen-
dulums will have no effect on the cart. This assumption is standard in many approaches present in
the literature as the pendulums’ effects can be cancelled using subordinate/inner acceleration/velocity
controllers for the cart as described in [6, 45].

The equations are given by:

p̈ = fmṗ+ ku (6.44a)

M(θ)θ̈ = −N(θ)θ̇2 −Rθ̇ − P (θ)− f(θ)(fmṗ+ ku) (6.44b)

where M(θ), N(θ), R, P (θ) and f(θ) are matrices defined as in [120], and the specific parameters
used for our simulation are given in table 6.7. Assuming the state xk = [v, ω1, ω2, ω3, p, θ1, θ2, θ3]T

with v = ṗ and ωi = θ̇i, the system was simulated and linearised using Ns = 2 steps of Explicit
Euler algorithm 3.1 with a sampling time of Ts = 0.02(s). The inner step was required to improve
the accuracy and stability of the integration method as the system is known to present highly chaotic
behaviour [120]. Moreover, given the complexity of the system, Matlab’s Symbolic Toolbox was used
to obtain the expressions of the linearisation terms.

m1 0.3 L1 0.3 R1 0.1 g 9.81

m2 0.27 L2 0.27 R2 0.1 fm −4.67

m3 0.243 L3 0.243 R3 0.1 k 0.065

Table 6.7: Triple Inverted Pendulum Parameters

Regarding the optimisation setup, a prediction horizon of Tp = 2 (s)(Np = 100) was used, and
the penalization weights were selected as qk+i = diag([0.1, 0.2, 0.3, 0.4, 10, 20, 30, 40]) ∀i = [1, Np − 1]

with the terminal weight selected as qk+Np = 100qk+1, and the input penalisation term as rk+i =

diag([0.001]) ∀i = [0, Np−1]. As in case study 6.4, all the simulations started from the lower equilibrium
in steady state (xr = x0 = [0, 0, 0, 0, 0, 0, 0, 0]T ), and a reference of xr = [0, 0, 0, 0, 0,−π, π,−π]T was
introduced at the end of the prediction horizon. Moreover, to relax the optimisation (as it is indeed a
much more difficult problem), the position was constrained to −0.5 ≤ p ≤ 0.5 whilst keeping the same
input constraints as for the single inverted pendulum of section 6.4, ie. (−170 ≤ u ≤ 170).
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To further improve the performance of the underlying SQP method, an additional exponentially
decaying input penalisation term defined as δ(r)k+i = 1000rk+i(α)i ∀i = [0, Np− 1] with α = (0.01)

1
Np

was imposed on the input deviation δÛ which modified the original cost function (3.1) to:

JδR = J +
(
δÛ
)T

δR
(
δÛ
)

(6.45)

where δR = diag([δ(r)k+i]) ∈ RNpnu×Npnu , which modified the Hessian E and linear term f to:

EδR = HTQH + F T (R+ δR)F (6.46a)

fδR = −
[
HTQ(Xr − X̄ −D −Gδx0)− (6.46b)

F TR(Ū − Ur)− F T (R+ δR)(S +Wδx0)
]

Although the performance can also be improved by using proper step-size of the Newton-method as
discussed in the improvement methods of section 3.4, this additional term was motivated by observing
that the prediction errors due to linearisation typically grow as they move forward through the horizon,
as discussed in example 3.1 of section 3.1.2 where the autonomous/auto-correcting feature of multiple
shooting was presented. Therefore, by preventing large deviations at the beginning of the horizon, the
prediction errors in future time-steps are reduced which consequently improves the contraction rate of
the underlying Gauss-Newton method. On the other hand, it can be proved that the solution with this
added penalisation term only affects the rate of convergence towards the solution (from a fixed-in-time
optimisation point of view), but does not change the solution itself. Finally, it is trivial to show that
theorem 6.2 still holds with this modification, ie. if the additional exponential weight was imposed in
the standard approach, it would result in the exact same solution as in the proposed approach.

6.5.2 Numeric Conditioning

Figure 6.5 shows a T = 10(s) simulation of a swing-up and stabilisation of the triple inverted pen-
dulum with a disturbance of xk = xk + [0, 0, 0, 0.1, 0, 0, 0, 0]T introduced at t = 5 (s) for which the
unconstrained solution satisfies. Of particular interest is the figure on the lower-right corner where the
steady state condition number (c.n.)ss ≈ 252 can be seen which, for this system, is naturally much
higher than that of the single inverted pendulum presented in figure 6.3. Indeed, the latter undergoes
critical points during the swing up reaching a maximum of (c.n.)max ≈ 811, approximately 3.2 times
higher, which once again shows the complexity of the system at hand. Nonetheless, the method pre-
serves the expected properties of low conditioning number which protect the solution from numerical
instability, and the resulting controller is observed to perform well against disturbances. Moreover,
it can be seen how the proposed approach follows the standard solution (as expected from theorem
6.2) up until the point in which the numeric condition of the standard approach “explodes” at around
T = 1.8 (s) reaching c.n. ≈ 1027 where a numeric solution was no longer able to be obtained before
the system even entered the linear zone. It is worth noting that linearising the system at the upward
equilibrium with the standard approach resulted in (c.n.) = 3.07×1023 of the “would-be” optimisation.

For the interest of the reader, figure 6.6 shows an animation of the inverted pendulum trajectory,
and a video of its evolution can be found in (https://www.youtube.com/watch?v=rMKrCKjvCtA).

https://www.youtube.com/watch?v=rMKrCKjvCtA
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6.6 Experimental Case Study: The Double Inverted Pendulum

Based on the author’s experience and interest in Inverted-Pendulum-type systems, an experimental
validation of the general pre-stabilisation approach was performed in a Parallel Double Inverted Pen-
dulum which formed the main contribution of the IET paper [47] along with two main modifications
which improved the performance of the RTI Scheme in the presence of disturbances, namely: additional
energy based costs, and a hybrid switching scheme. Moreover, the approach used a slightly different
discretisation scheme to that of the standard Explicit Euler of algorithm 3.1 and combined the imple-
mentation with an Extended Kalman Filter (EKF) for state estimation, and with the Recursive Least
Squares (RLS) algorithm for OSI (OSI).

Ideally, a more complex system such as the Triple Inverted Pendulum from the previous case study
(section 6.5) in which the approach proposed in this chapter is absolutely essential would have been
preferred. However, such systems, eg. the variant “B” offered by REX Controls www.rexcontrols.com
have a price of up to 36,000 euros which was completely outside the scope of the available funding.
Instead, a relatively small modification was made to a fairly outdated Single Inverted Pendulum system
available in the ACSE Department of the University, mainly with the addition/replacement of a couple
of encoders, as well as the acquisition of a DC Motor driver and a Micro-Controlling Unit (MCU) which
allowed the development top-to-bottom of the control system for the experiment.

As this case study was used entirely for the IET publication [47], some of the contents introduced
here are inevitably repeated in the paper. In some cases, the reader will be referred to specific sections
of the paper to avoid redundancy and keep the focus on the main contributions.

6.6.1 Modeling

Considering a parallel double inverted pendulum as depicted in figure 6.7 and assuming that the
pendulum’s will have negligible effect on the cart as in previous case studies, the equations of motion
given in [6] can be used with additional friction terms to include the relevant energy dissipation
properties.

Figure 6.7: Parallel Double Inverted Pendulum Diagram from [6]

www.rexcontrols.com


186 6.6. Experimental Case Study: The Double Inverted Pendulum

The system dynamics are then represented by:

p̈ = fmṗ+ ku (6.47a)

θ̈i = aiθ̇i + bi sin θi + ci cos θi (fmṗ+ ku) (6.47b)

∀ i = [1, 2]

where p is the position of the car; u is an input signal to the system which in this case is a Pulse Width
Modulated (PWM) signal for the motor driver; the i index represents the variable or parameter related
to the ith pendulum; k is a constant that relate the PWM with the force and mass of the system; θi
are the angles of the ith pendulum; fm and ai are viscous friction constants; bi = (milig)/(mil

2
i + Ii)

are the pendulums’ gravity related terms; ci = bi/g are the acceleration-torque related constants; g
is the gravity constant; and mi, li, Ii, are the mass, length and moment of inertia of each pendulum,
respectively.

In this work the relevant coefficients of the model were found by an Online System Identification
(OSI) algorithm based on the Recursive Least Squares (RLS) approach presented in section 5 of the
paper [47]. Note that the sign of certain coefficients might be subject to the specific experimental setup
depending on orientation, e.g. positive cart motion to the left or positive angle rotation CCW, however,
all the viscous friction constants (fm and ai) must always be negative. Moreover, it should be noted that
although counter-intuitive, the lengths of the arms should be different to achieve better controllability
of the system [6], particularly in the presence of noise which causes a significantly increasing amount
of input shattering as the lengths become closer. This was validated through simulations to select
appropriate length differences for our particular system.

Model (6.47) was valid for our particular experimental setup given two conditions were true: both
pendulum’s masses are much lower than the cart, and the motor driver used has a regenerative breaking
feature which further cancels out any possible uncontrolled movement of the cart. In the case where the
cart motion is indeed affected by the pendulum’s motion, a subordinate controller can be developed
to cancel this effects as in [45], or the full nonlinear model can be included in the general NMPC
framework as it has been shown in [66].

As with all the methods presented in this thesis, we will use a “direct approach” which requires us to
“first discretise, then optimise” the system [65]. Thus, we now look to discretise the equations of motion
(6.47a) and (6.47b) which will allow us to simulate and linearize the system for both NMPC and EKF
frameworks. For this work, the Explicit Forward Euler method of algorithm 3.1 was considered at first,
following similar works as in [45, 104], however, based on the observation that only position and angles
are measured by the system, this scheme was modified to a Forward-Backward Euler scheme. More
over, given that the position model (6.47a) represent a linear system, the discretisation was modified to
include an extra previous input uk−1 based on the fact that it can be exactly represented by a standard
2nd order discrete-time model which would have 2 previous input terms if the system was discretised
using Zero Order Hold methods. This was achieved by augmenting the state as seen in (6.48) to obtain
a Non-Minimal State Space (NMSS) [146]. For more details regarding this modification, please refer
to section 2.2 of the paper [47].
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The resulting discrete-system dynamics are given by:

xk+1 = xk + Tsf(xk, uk) (6.48a)

f(xk, uk) =
[
fTup, f

T
down, (uk − uk−1)/Ts

]T
(6.48b)

fup =



ṗk + Tsf1

θ̇1k + Tsf2

θ̇2k + Tsf3


 fdown =



f1

f2

f3


 (6.48c)

f1 = fmṗk + k1uk + k2uk−1 (6.48d)

f2 = a1θ̇1k + b1 sin θ1k + c1 cos θ1kf1 (6.48e)

f3 = a2θ̇2k + b2 sin θ2k + c2 cos θ2kf1 (6.48f)

where Ts is the sampling time. It is noted that the last term of function (6.48b) was only used to
represent the propagation of the input x7k+1

= uk = uk−1 + Ts(uk − uk−1)/Ts and doesn’t represent,
in any way, a “derivative of the input” u̇k = (uk − uk−1)/Ts which would lead to a completely different
integration scheme if more intermediate steps were computed [55].

This discretisation differs slightly from the standard Explicit Forward Euler method in the sense
that the latter would compute a Forward Euler step on the higher derivative states (p, θ1, θ2). However,
as stated previously, given only position and angle’s measurement were available, the Backward Euler
approximations were used instead to use the latest information of the system. Moreover, the standard
Explicit Forward Euler approach would only take into account uk for simulation purposes. Nonetheless,
this modification was observed to produce much better predictions in an offline analysis of the system
identification process for both, position and angle dynamics. In fact, increasing the number of previous
input terms uk−j was be able to improve them even further, possibly given that it accommodates some
unmodelled higher order motor dynamics which are known to be at least 2nd order in the angular
velocity; 3rd order in the angular position; which can be accounted for using convolution/FIR models.
However, the system was observed to get good performance whilst only including 2 previous input
terms, uk and uk−1.

6.6.2 A Modified Optimisation: Additional Energy Terms and Hybrid Approach

A major issue with the RTI Scheme is that the solution might give very poor performance whenever
an abrupt change is made, e.g. when there is an abrupt change in the reference of the system [55], or
a large fault or disturbance enters the system, which may lead to leaving the region of contraction of
the Gauss-Newton method and in some cases may even lead to instability of the system [65]. In these
cases, the previous solution will not be close to the optimal, and therefore, the method would need to
quickly find a suitable correction from the previous solution. This issue may be addressed by adding
suitable end weights and other regularity conditions [65] and convergence improvement methods as
discussed in chapter 3. However, to address this issue, a different approach was taken in this work
with two main modifications to the standard approach of NMPC of an inverted pendulum such as
[55, 66, 73, 104], namely: an additional energy based cost; and a hybrid switching scheme.
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Energy Based Costs

Motivated by the fact that a common strategy for the swing up of the pendulum are Energy Lyapunov
based control laws [6], along with the fact that standard cost terms defined for inverted pendulum
NMPC, e.g. angle errors [55, 104], do not actually capture the requirement of “swinging-up” but
rather a more restrictive cost requiring the optimisation to drive the angles to a desired angle reference
without considering other upward equilibrium points, the outputs and references typically used for the
standard output cost function (3.2) were modified to include two extra terms related to the potential
energy of both pendulums Eθi = cos θi as:

yk =
[
ṗ, θ̇1, θ̇2, p, θ1, θ2, cos θ1, cos θ2

]
k

Outputs (6.49a)

yrk =
[
0, 0, 0, pr, θ1r , θ2r , cos θ1r , cos θ2r

]
k

References (6.49b)

Remark 6.6. With this modification, the optimisation has ny = 8 outputs per step, instead of only 6

as it would be with the standard approach.

Some of the relevant properties of this added terms are:

1. Boundedness: The error ek = cos θ1r − cos θ1 is always bounded at ek = [−2, 0] for the upright
position, and ek = [0, 2] for the downside position. This in general would make the nominal
output error (Yr − Ȳ ) related to the additional terms of the linear term (f) bounded.

2. Singularity: The derivative w.r.t. the added term (Ci = − sin θi) required by the linearised
predictions (3.21) has a singularity at any Nπ multiple given the sensitivity matrix is zero.
Thus, if the system is at a steady condition, e.g. all other errors zero, the optimisation would
have no sensitivity on it, therefore, not reacting or causing any movement. Although the system
can be confined inside an incorrect singularity, if the system is started at any other sufficiently
non-singular point, the optimisation will eventually drive the solution to the desired singularity.

By penalising the energy term much higher than the angles directly, the optimisation is more relaxed,
essentially aiming to drive the potential energy of the pendulum to the desired state Eθi = cos θi →
cos θir whilst accepting swinging up in either directions. This is because if at a given time the system
cannot swing the pendulums up in a given direction, the optimisation would naturally select the other
direction which is not the case when the standard costs are used, and the solution was observed to
be severely affected when the system reached this in-feasibility condition. After a series of simulations
it was concluded that imposing higher penalties on this added terms instead of the angles directly,
resulted in much better convergence properties than when using the standard cost, which in turn
resulted in a larger region of contraction of the Gauss-Newton method. Moreover, notice the nominal
stability of the resulting scheme can still be guaranteed by using zero-terminal constraints even though
the sensitivity at that condition dissipates, which in turn leads to having the original problem once
the system has reached the terminal region.

To visualise the benefits of this approach, a comparison simulation is given in figure 6.8 where
the predicted and closed-loop trajectories are plotted, with and without focusing on the added energy
term. For clarity, the predicted responses that presented the erratic behaviour are signaled.
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As it can be seen from figure 6.8b, the optimisation penalising only the angles presented mayor
erratic behaviour in the closed loop input response at times 0.5 < t < 1, and significant differences
between predicted and closed-loop responses in general leading to ill-posed optimisations [122]. In
contrast, the optimisation that focused effort on the added energy-cost (figure 6.8a) presented smooth
and much better overall closed-loop performance.

Although this approach might not be immediately generalisable for other control systems and
applications, it is very common to find trigonometric terms in robotics systems and mechatronic ap-
plications that arise from rotation matrices. This naturally brings the question of whether it is better
to target a desired potential energy or an angle directly when dealing with multi-link robots. Indeed,
it is well known that the understanding of the inverted pendulum dynamics helped with the develop-
ment of many robotic applications nowadays, thus its generalisation to multi-link robotic problems,
eg. to the triple inverted pendulum in series of case the previous case study, could lead to a significant
improvement in performance in a broader spectrum of applications, particularly when using the RTI
Scheme.

Hybrid Switching Scheme

As discussed previously, penalizing the energy-related terms lead to smoother responses. However,
because of the aforementioned singularity problem, if only the energy terms are penalized instead of
the angles directly, the optimisation would have no sensitivity to potential energy errors at the upper
equilibrium, and would only be sensitive to angular velocity errors. Moreover, if a sufficiently small
penalty was imposed on the angles, the optimisation could converge to upright positions were the angle
errors were essentially ignored.

To avoid this problems whilst preserving the smoothness of the added energy terms during the
swing up phase, a hybrid approach was used where the optimisation would switch between different
weightings depending not only on the region in which the angles where, but also the time that they
have been there.

The hybrid switching scheme is given by;

qθi =





1, tlin < 2

10, tlin ≥ 2
(6.50)

where qθi is the weight of the ith pendulum angle error and tlin is the time that has elapsed since
cos θi > 0.9, ie. the time the system has been in the “linear” zone.

Regarding the stability of this proposed hybrid scheme, it should be noted that both penalization
terms of qθi were stable for our particular system, and the only reason for this change was to preserve
the smoothness of the system during the swing up phase. As the change was implemented when the
system was already in the terminal region, the cost of both selected weights had dissipated to zero
within the available horizon, which in turn made the change between both weights stable. Essentially,
the selection of this different weights changes the frequency response of the system to a more “rigid” or
fast response for angle perturbations. Indeed, this approach could be used for fault-tolerant applications
where the system momentarily has to undergo through a “softer/smoother” set of actions to bring the
system back to its target before regaining a more “reactive” state.
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(a) With

(b) Without

Figure 6.8: Example comparison of predicted (dashed-lines) and closed-loop (thick lines) responses
with (6.8a) and without (6.8b) energy costs.
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6.6.3 Experiment Setup

The test bench used for the experiments is depicted in figure 6.9. The cart is driven by a brushed 24V
DC motor via a toothed-belt and a toothed-pulley of 0.05 (m) diameter. The DC motor is driven by
a Cytron MD30C Motor Driver operated using sign-magnitude drive with a 8-bit resolution PWM at
a frequency of 20 kHz via a Teensy 3.2 Micro Controller Unit (MCU). Three incremental encoders are
used to measure both pendulum angles and the DC motor rotation. The resolution of both pendulum
encoders and of the motor are 4000 and 2040 counts per revolution, respectively, which are processed
by the MCU, leading to angle and position resolutions of 0.09◦ and 7.7× 10−5 (m), respectively. The
sampling time of the system is handled by the MCU and kept constant at Ts = 20 (ms). Every sampling
time, encoders data is streamed via (UART) serial communication to a PC where the calculations
related to proposed NMPC approach, OSI and EKF are performed in a Labview Human Machine
Interface (HMI) Application which was used to visualise the information and interact with the system.
After the control action is calculated via the RTI Scheme, it is sent back to the MCU which generates
the motor signals. Due to network communication delays, the motor signal was always implemented
exactly 5 ms after the encoders data was streamed to have a constant behaviour at least. Figure 6.10
shows a control diagram detailing the interaction between the different components.

Figure 6.9: Double Inverted Pendulum Test Bench Photograph
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Figure 6.10: Double Inverted Pendulum Control Diagram
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6.6.4 Online System Identification

To test the online system identification algorithm presented in section 5 of the paper, the system was
excited using a random input 30 < ||u|| < 60, which reversed every time the system crossed a maximum
limit of the position ||x|| > 0.15 (m) in the current direction. All the parameters were started from
completely unknown values Θ0 = O with a forgetting factor of λ = 0.995 and initial covariance matrices
as P0 = 1000I3×3. The resulting performance of the overall OSI algorithm can be seen in figure 6.11.
As it can be seen, the system presented very fast convergence rates, giving settling times for all the
parameters of τs < 2 (s), indicating that the models are indeed well defined. The resulting parameters
after 1 minute of excitation are gathered in table 6.8, and the input-output data is available in [144].
Notice the theoretical relationship ci = bi/g stated in section 6.6.1 is very close to the one observed in
the resulting parameters. Finally, although the system was only tested for online system identification,
it could work using the available adaptation mechanism provided proper rules are used to avoid the
periods of poor excitation, as in the Adaptive Laguerre-based MPC publication [49] of chapter 4.

Motor Coeffs. Pend 1 Coeffs. Pend 2 Coeffs.
fm -4.67 a1 -0.129 a2 -0.107
k1 0.0174 b1 38.4 b2 49.6
k2 0.0477 c1 3.95 c2 5.11

Table 6.8: Identified Parameters for the Double Inverted Pendulum (6.9)
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6.6.5 Swing Up, Stabilisation and Disturbance Rejection

Regarding the optimisation setup, the cart had a maximum range for the position of −0.35 < x < 0.35

and the PWM input was constrained to −200 < uPWM < 200 despite the actual maximum being
255 (8-bit) to avoid wearing of the DC motor which defined the constraints to be included in the
optimisation. Furthermore, the DC motor presented a dead-zone nonlinearity of udz ≈ 30 which was
removed by implementing the conditional function (6.51), adjusting constraints to −200 + udz < u <

200− udz and using u in the relevant models to simulate and linearise the system.

uPWM =




u+ udz, u > 0

u− udz, u < 0
(6.51)

The prediction horizon for the NMPC was set at Np = 75 (Tp = 1.5 (s)) leading to 600 outputs, 75

decision variables and 300 constraints to be optimised. The output and input weights were selected
as qk+i = diag([1, 0.1, 0.1, 100, qθ1 , qθ2 , 10, 10]) ∀i = [1, Np − 1] and rk+i = diag(0.003) ∀i = [0, Np − 1]

which were observed to give a good balance between fast swing up performance and input chattering
due to noise at the steady state. A terminal weight qk+Np = 10qk+1 was selected for the last values
of the prediction horizon when tlin > 2 (s), emulating soft zero terminal constraints to improve the
stability characteristics of the optimisation [65]. Moreover, a tailored C++ code available in [144] was
developed using EIGEN library following suggestions of [65, 145], and was tested in a laptop running
Ubuntu 18.04 with an Intel i7-5700 HQ @ 2.7 GHz giving computation times of tunc < 800 µs for
the unconstrained solution and tcon < 2500 µs for the constrained one when doing 10 iterations of
an efficient version of Hildreth’s QP found in [146]. Finally, the EKF weights were set at QEKF =

diag([0.1, 0.1, 0.1, 0.0001, 0.0001, 0.0001, 1]) and REKF = diag([0.0001, 0.0001, 0.0001, 1]) based on the
variance of the errors observed in an offline analysis of the system identification process.

Remark 6.7. It should be noted that the O(N) and O(N2) algorithm extensions (6.1 and 6.2) presented
in this chapter were not implemented in this experiment as they hadn’t been developed yet, and due to
COVID-19, access to the equipment has not been possible since March 2020. This ultimately means
faster solutions could be obtained.

The resulting performance of the overall scheme can be seen in figure 6.12 starting from the rest
position at the lower equilibrium and introducing large disturbances at t ≈ 9 (s) and t ≈ 17 (s). As
it can be seen, the system clearly exhibits much faster performance than [6] giving settling times of
τs ≈ 1.4 (s) for the swing up maneuver and of τ ≈ 2.5 (s) after large disturbances. Moreover, the
system presented smooth input shapes during the swing up phases as a result of the added energy
costs and the hybrid switching scheme. Furthermore, notice the position constraint is clearly satisfied
at t ≈ 17 (s) after the disturbance was given, demonstrating good handling of the rapid active-set
changes by the QP. Finally, in some cases the position presented small steady state error and the well
known limit cycle, however, this can be removed using standard methods such as integral control or
disturbance estimation methods which were outside the scope of this work, and therefore were omitted.
For the interest of the reader, an overall video is provided in (https://youtu.be/7E-SXi3YKQo) where
the results can be seen, and the input-output data is available in [144].

https://doi.org/10.24433/CO.8048147.v1
https://youtu.be/7E-SXi3YKQo
https://doi.org/10.24433/CO.8048147.v1
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6.7 Summary

In this chapter we presented the development of a novel pre-stabilisation approach for Nonlinear Model
Predictive Control, sometimes referred to as Closed Loop Dual Mode NMPC. The proposed approach
uses the Time-Varying Discrete Algebraic Riccati Equation (DARE) to obtain a set of optimal feedback
gains that pre-stabilise the predicted trajectory along the current optimal guess. A key difference of the
proposed approach is that the pre-stabilisation target is the previous constrained optimal trajectory
itself rather than the unconstrained solution as done by many standard approaches. Moreover, because
the approach uses a set of time-varying feedback gains, it allows the user to obtain pre-stabilised
predictions along virtually any possible (or desired) trajectory that emerges from the optimisation,
rather than using a single feedback gain as in standard approaches, eg. to stablise the system to the
origin, which may not even be adequate in specific scenarios such as in Inverted Pendulum systems.

One of the main contributions of the approach is theorem 6.2 which proves the equivalency with the
standard NMPC approach, hence guaranteeing the exact same to nominal stability, recursive feasibility
and convergence properties. In addition to this, two important contributions presented in this chapter
are the extensions of the O(N) and O(N2) algorithms, presented in section 6.2 which overall allow
efficient computation of the Hessian E and linear term f . Moreover, the chapter includes the “core”
as well as feedback and preparation algorithms required to implement the approach using the RTI
Scheme.
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Given that the approach requires additional computations, it inevitably increases the computation
time of the solutions. To assess this, a generic computations comparison with the standard method
was performed based on the Eigen 3 library where the approach was observed to give up to 50− 89%

increased computation times when computing some of the main preparation and feedback operations,
depending predominantly on the prediction horizon and number of inputs of the optimisation as seen
in table 6.1. However, upon reviewing the “expected” computational increase with the one reported in
table 6.1, it was clear that some parts of the underlying matrix-matrix or matrix-vector operations were
not being done optimally which motivated the verification process in a different computing platform;
the Beaglebone Blue, where increases as low as 13% were obtained in one of the operations. This comes
to say that the implementation of the developed algorithms in other platforms could lead to better
computational performance, particularly if tailored designs eg. based on Field Programmable Gate
Arrays (FPGAs) were to be used. Irrespective of this, it is important to understand that these were
not the “total” computation times required as the solution of the resulting quadratic program itself was
not included, and the approach resulted in much better performance when the approach was considered
in this scenario as seen from table 6.6 where increases as low as 3.2% were obtained. Nonetheless, the
reader should be reminded that this chapter was developed as a pre-requisite methodology towards the
combined approach presented in chapter 8 where the computational benefits of the shifting strategy of
chapter 5 allow significantly better computational performance.

The chapter included 4 case studies, demonstrating the various properties of the approach, namely:
the nonlinear ball-plate system which presented severe unstable dynamics that in certain scenarios
were unable to be handled by the standard approach; the standard Inverted Pendulum system where
important properties were discussed related to potential issues of the standard approach that would
be solved using the proposed approach along with a computational performance comparison based on
an auto-generation toolkit developed as part of the contributions; the Triple Inverted Pendulum which
formed the ideal case in which the proposed approach would be required as it was unable to be solved
with the standard approach altogether; and the Experimental Validation of a Parallel Double Inverted
Pendulum, which formed the main contribution of the IET paper [47].



Chapter 7

Infinite Horizon Costing for the Ideal
Moving Window Blocking Approach

In chapter 5 we presented the Shifting Strategy approach which focuses on reducing the amount of
decision variables and constraints of the system in a systematic way to preserve nominal stability
and recursive feasibility proofs. However, the nominal stability proofs that were provided in the
aforementioned chapter were based on both: infinite horizons, which for all practical purposes are
intractable for real-time implementation; and zero-terminal constraints, which are known to be too
stringent without necessarily giving good performance as it was shown in figure 3.3a of chapter 3.
Therefore, it was decided to investigate the possibility of obtaining an infinite horizon costing solution
for the Ideal Moving Window Blocking (MWB) approach that would guarantee nominal stability using
a more relaxed condition. Indeed, infinite horizon costing with invariant sets is known to be one of the
strongest approaches for guaranteeing nominal stability of the optimisation, as discussed in chapter 3,
section 3.4.

On the other hand, the previous chapter 6 introduced the proposed Dual Mode Closed Loop NMPC
framework for efficiently handling unstable systems. The interest in this type of solution emerged after
the Ball Plate System from [18] was observed to present numerical challenges when applying the Ideal
MWB approach presented in chapter 5, even when using relatively small horizons of Np = 20. In
practice one may opt to embed the unconstrained solution into the predictions, and embed the block
structure into the “additional” decision variables uk = −Kxk+ ck as discussed in the previous chapter,
which in general, would allow the user to use standard infinite horizon costing techniques. Indeed, this
is how the authors from [18] applied the original MWB approach (see equation 10 of the paper).
However, in this scenario, the optimisation would require one to maintain constraints on all the inner
inputs of all the blocks in order to guarantee recursive feasibility due to the embedded unconstrained
path on the inputs, thus removing one of the main computational benefits. Instead, obtaining the
infinite horizon solution to the problem whilst embedding the blocked solution would result in a set
“blocked feedback gains” that would allow the required input-related constraints to be reduced as in
the original blocked problem. Thus, this represents another motivation of this chapter which will be
exploited further in the following chapter 8: The Combined Approach, where closed loop dual mode
blocked feedback gains will be used to obtain blocked pre-stabilised prediction models for the final
approach proposed in this thesis.

196
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Given the relative simplicity of the solution that will be presented, this chapter will be kept brief.
The chapter is organised as follows: Section 7.1 describes the conceptual task related to both obtaining
and appropriately embedding the infinite horizon costing in the Ideal MWB approach. Section 7.2
presents the derivation of one possible general solution to the infinite horizon problem of the Ideal MWB
based on the Dynamic Programming approach along with algorithm 7.1 for its implementation. Finally,
section 7.3 presents the case study of applying the proposed solution to a linear double integrator system
where relevant properties are discussed. The chapter ends with a brief summary.

Remark 7.1. Range of Nb0 and Nbi

This chapter will use the range Nb0 = Nbi = [1→ Nb] discussed in remark 5.6.

7.1 The Time-Varying Infinite Horizon Costing and Solution

One of the very first concepts to understand when looking for the infinite horizon costing is that
given the time-varying nature of the Ideal MWB parameterisation (5.11), the resulting infinite horizon
solution, and therefore, costing will also be time-varying. In particular, it will vary according to the
“virtual block position indicator” (Nb0), ie. the index that keeps track of the absolute time frame.
In order to explain this, let us consider the infinite horizon solution that would result when using a
block-size of Nb = 10 with an Ideal Prediction Horizon of Np = 41 at the absolute time-step Nb0 = 7.
This scenario is pictured in figure 7.1 for a random system where various important parts are labelled.

Figure 7.1: Infinite Horizon Optimal Solution of Ideal MWB for Nb = 10 and Nb0 = 7
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There are 3 mains parts of interest in this figure, namely: the initial blocked gain, the infinite
horizon blocked gain, and the infinite horizon cost, on which we will elaborate to provide insight of
their general properties and utility.

Consider at first that there is no distinction between the Prediction Horizon and the Infinite Horizon
parts, assuming we are interested in finding the entire solution using the Dynamic Programming
approach introduced in chapter 3, section 3.4. Note that at the specified absolute time-step (Nb0 = 7),
the first block would have a size of Nb−Nb0+1 = 4 steps, ie. embedding equal values on the first 4 input
which can be seen in the lower-left corner. At this segment, the infinite horizon solution would apply an
“optimal initial block gain” K4

x, representing a gain specifically designed for a block of size 4. Given the
size of the first block would vary as the time-step moves forward and resets Nb0 = [1→ Nb, 1,→ Nb,∞],
the initial gain would vary in terms of it being optimal for a different block size, eg. K3

x begin the
optimal initial blocked gain for the following time-step (Nb0 = 8). After the initial block segment, the
rest of the solution would embed static feedback gains for blocks of size 10, referred to as the “optimal
infinite blocked gain” in the figure, represented by the multiple K10

x gains embedded across the rest
of the horizon. Both of this feedback gains could be used to obtain blocked pre-stabilised prediction
models, eg. in the context of linear MPC. Indeed, the following chapter 8 will be focused on finding
blocked feedback gains such as this ones which will allow the “blocked” pre-stabilisation of nonlinear
models used by NMPC.

On the other hand, consider the given prediction horizon of Np = 41, depicted by the double-arrow
in the lower-left side of the figure. The interest is to find an infinite horizon cost or “terminal weight”,
potentially having the conceptual standard form of xTk+Np

P iNxk+Np as depicted in the lower-right side
of the figure. What is key here to notice, is that the resulting cost must represent the rest of the
solution whilst keeping the last input uk+Np−1 constant for the remaining steps before applying the
infinite horizon gain again. In this particular example, the infinite horizon cost must consider the last
input will remain constant for 3 additional steps BEYOND the horizon, visible from discrete spaces
between the black vertical line and the immediate following block edge, giving a total of 4 steps when
measured from the final decision variable (uk+Np−1). Thus, the conceptual notation xTk+Np

P 4
Nxk+Np

provided in the figure is used to indicate the “terminal weight for a remaining block of size 4”. Note
that, like in the case of the initial block gain, the size of the remaining steps beyond the horizon on
which the last input must considered constant will also vary. As a result, it can be shown that both
the optimal initial blocked gain (Kx0) and the terminal weight (PN ) to be used at time-step Nb0 would
vary according to equation (7.1). An example of this is equation applied to the problem of figure 7.1
at all time-steps Nb0 = [1, Nb] is given in table 7.1.

Kx0 = K
Nb−Nb0+1
x (7.1a)

PN = P
Nb−Nb0+1

N (7.1b)

Initial Block Size Nb0 1 2 3 4 5 6 7 8 9 10

Terminal Weight PN P 10
N P 9

N P 8
N P 7

N P 6
N P 5

N P 4
N P 3

N P 2
N P 1

N

Initial Block Feedback Gain Kx0 K10
x K9

x K8
x K7

x K6
x K5

x K4
x K3

x K2
x K1

x

Table 7.1: Table of admissible terminal weights and initial block feedback gains of figure 7.1.
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7.2 Methodology and Algorithm

So far we haven’t really discussed how to obtain any of the aforementioned parts: the initial blocked
gain, the infinite blocked gain, and the terminal weight, and we have focused mainly on the conceptual
time-varying requirements of the resulting solutions, irrespective of how they are obtained.

In this section, we will present a methodology for obtaining the required blocked feedback gains
and terminal weights via the Dynamic Programming approach, based on the technique of state-
augmentation. Although other methods such as lifted systems [124], as well as modified versions
of the standard Dynamic Programming approach including crossed input-state penalisation terms can
be used, we found the proposed method to be the simplest to implement in practice. Moreover, given
there is no particular requirement for real-time performance, as this is typically considered an “offline”
procedure, the additional computations related to the state-augmentation are not relevant, and the
method is simply provided as proof that obtaining infinite horizon solutions for guaranteeing nominal
stability of the proposed Ideal MWB approach can be achieved.

Recalling the Dynamic Programming procedure presented in chapter 3, section 3.4, the method
is based on Bellman’s “principle of optimality” where the optimal costs of two subsequent stages
(Jk and Jk+1) can be reduced to a single stage, by solving the optimisation of the second stage
(Jk+1) and propagating its cost backwards to be represented at the first stage Jk via the so-called
“Riccati” recursion. In this case, we require to do something similar, with the main difference of
having the additional equalities of the Ideal MWB approach, which could potentially cause some
difficulties or require some additional terms when considered in the standard Riccati recursion (Pk =

Q+ATPk+1A−ATPk+1BKk).
A simple alternative is to consider the system using a state-space augmentation of the form:

zk =

[
xk

uk−1

]
(7.2)

where the predictions of the system are given by two models, namely:

1. A “Closed Loop” model that will be used to make the blocked decisions of the optimisation, given
by:

zk+1 = ACLzk +BCLuk Closed Loop (7.3a)

ACL =

[
A 0

0 0

]
BCL =

[
B

I

]
(7.3b)

which captures the basic dynamics of standard state-space models xk+1 = Axk +Buk.

2. An “Open Loop” model, which will be used to “maintain” the blocked decisions of the optimisation
through an “integrator-type” of dynamics, given by:

zk+1 = AOLzk Open Loop (7.4a)

AOL =

[
A B

0 I

]
(7.4b)
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Note that this last model does not have decision variables as it will only be used for propagation
the blocked inputs in the Riccati recursion.

Consider now the general method for handling the Shifting Strategy described in section 5.2.1,
where the inner block position index (Nbi) allows the user to keep track of the block position at any
predicted time-step.

Let us assume that the infinite horizon solution is started at a block position of Nbi = 1 on which a
“new” blocked decision must be made. The optimisation of this stage, say Jk+1, could be easily solved
by using model (7.3) and optimising:

Jk+1 = ẑTk+1P
Nb
N ẑk+1 (7.5a)

s.t. ẑk+1 = ACLẑk +BCLûk (7.5b)

Remark 7.2. Embedded Input Penalisation
It is considered in (7.5) that the weight related to the input penalisation of uk is inside PNbN . This

can be done, eg. by considering the augmented state penalisation matrix as Qaug = blkdiag([qk+1, rk]).

The well known unconstrained solution to (7.5) is given by:

uk = −KNb
x ẑk (7.6a)

KNb
x = (BT

CLP
Nb
N BCL)−1BT

CLP
Nb
N ACL (7.6b)

We can then follow the same procedure of chapter 3, section 3.4 where by substituting the solution
in the original cost (7.5) and grouping the terms w.r.t. ẑk allows us to express the cost of Jk+1 in terms
of the previous cost Jk = ẑTk P

1
N ẑk by:

KNb
x = (BT

CLP
Nb
N BCL)−1BT

CLP
Nb
N ACL (7.7a)

P 1
N = Qaug +ATCLP

Nb
N ACL −ATCLPNbN BCLK

Nb
x (7.7b)

Note that the calculation is stored in the infinite horizon weight P 1
N given it would be the terminal

weight related to having an input blocked for 1 step before applying the infinite blocked gain of KNb
x .

Similarly, when the inner block index is not at the start of a “new” block, the original task would
be to maintain the previous input, or more specifically, propagate the cost related to blocking the
input backwards. This can be done easily by propagating the related weights backwards through the
“integrator-type” dynamics from (7.4), resulting in a recursion for when the algorithm is NOT at a
new block (Nbi > 1), given by:

P
Nb−Nbi+2

N = Qaug +ATOLP
Nb−Nbi+1

N AOL (7.8a)

The iterative use of both equations (7.7 and 7.8) allow the calculation of the terminal weights for
all Nb0 , and the “infinite blocked gain” (KNb

x ). However, the initial blocked gain has still not yet
been addressed. Nevertheless, it can be obtained simply by calculating it as if it would be applied
for feedback but without applying it. This can be seen in line 8 of the final algorithm 7.1 where the
feedback gain is always calculated, but it is only “applied” if at a new block (Nbi = 1).
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The final algorithm is given in algorithm 7.1 which calculates the infinite horizon solution for the
Ideal MWB approach. This algorithm includes terminal condition checks (δi) which compare each of
the terminal weights P iN with the ones obtained in the previous iteration. The user must then provide
a maximum number of iterations (Nmax), along with the desired tolerance (εtol). Moreover, note that
the inner block index is required to be iterated backwards as the blocks position is indeed moving
backwards.

We will provide an example of its application along with several properties of interest in the case
study of section 7.3.

Algorithm 7.1: General Infinite Horizon Solution for the Ideal MWB Approach
Data: Qaug, AOL, ACL, BCL, Nb, Nmax, εtol

1 begin
2 Pk+1 = Qaug; // Initialise DARE Weight Matrix
3 P iN = Qaug ∀ i = [1, Nb]; // Initialise all Terminal Weights
4 δi = 100000 ∀ i = [1, Nb]; // Initialise Differences for Terminal Condition
5 Nbi = Nb; // Initialise Inner Block Position Index
6 n = 1; // Initialise Iteration counter

/* Find Optimal Blocked Terminal Weights and Feedback Gains */
7 while max(δi) > εtol AND n < Nmax do
8 K

Nb−Nbi+1
x = (BT

CLPk+1BCL)−1BT
CLPk+1ACL; // Calculate optimal feedback gain

9 if Nbi = 1 then
/* Propagate weight and apply feedback only at new block (Nbi = 1) */

10 Pk = Qaug +ATCLPk+1ACL −ATCLPk+1BCLK
Nb−Nbi+1
x

11 i = 1; // Terminal weight index
12 else

/* Propagate Weight only if not at new block */
13 Pk = Qaug +ATOLPk+1AOL
14 i = Nb −Nbi + 2; // Terminal weight index

15 δi = ||Pk − P iN ||2 ; // Calculate norm difference of ith weight
16 P iN = Pk; // Store new terminal weight for ith index
1717 Nbi = Nbi − 1; // Move inner block position index backwards
18 if Nbi < 1 then
19 Nbi = Nb; // Reset weight
20 n = n+ 1 ; // Increase iteration counter

Result: P
Nbi
N ,K

Nbi
x ∀ Nbi = [1, Nb]
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7.3 Case Study: Double Integrator

In order to validate the developed infinite horizon solution for the Ideal MWB, we selected the linear
double integrator system from the zero-terminal example 3.2, given by:

xk+1 =

[
2 −1

1 0

]

︸ ︷︷ ︸
A

xk +

[
0.1

0

]

︸ ︷︷ ︸
B

uk (7.9)

subject to the penalisation weights q = diag([1, 1]), r = 1 with a sampling time of Ts = 0.02 (s).

7.3.1 Exact Solution

One of the simplest ways to verify that the correct solution has been found is to compare the cost
predicted by the terminal weight, and the cost obtained when simulating the system. However, given
that the predicted cost is calculated considering that an actual blocked plan will be executed, the
simulation must apply this plan explicitly by only applying the “infinite blocked gain” KNb

x every time
there is a new block (ie. Nb0 = 1). Otherwise, the predicted cost will differ.

To give an example of this, consider a block-size of Nb = 5. The resulting terminal costs and
feedback gains that result from using algorithm 7.1 would be:

P 1
N =




90.9 −66.8 0

−66.8 53 0

0 0 1


 P 2

N =




150.3 −115 11.5

−115 91.9 −9.1

11.5 −9.1 2.9


 P 3

N =




234.2 −185.6 32.5

−185.6 151.3 −55.9

32.5 −26.5 7.7




P 4
N =




346.6 −282.8 66.7

−282.8 235.2 −55.9

66.7 −55.9 17.5


 P 5

N =




491.6 −410.5 118.5

−410.5 347.6 −101.3

118.5 −101.3 35.3


 (7.10a)

K1
x =

[
6.02 −4.76 0

]
K2
x =

[
4.84 −3.95 0

]
K3
x =

[
4.03 −3.38 0

]

K4
x =

[
3.45 −2.95 0

]
K5
x =

[
3.02 −2.62 0

]
(7.10b)

There are a few thing to note from these gains and costs. First, note that the only cost which
does not involve crossed-terms multiplications between xk and uk−1 is P 1

N . This is because this cost
represents the scenario where input uk−1 would remain constant for only a single step, and feedback
would be immediately applied after that. As a result, the solution will not depend on where the
value of uk−1 could be taking the state xk before applying feedback. In contrast, all the other costs
P iN ∀i = [2, Nb] represent the alternative scenario where uk−1 will be maintained constant for 2 to Nb

steps before feedback would be applied. Thus, the terminal weights must capture the costs related to
the evolution of xk with uk−1 before feedback is applied. The second thing to note here is that the last
value of all initial and infinite blocked feedback gains, is always zero. This can be verified by observing
that the expression for Kx involves a multiplication with ACL which causes these zeros. Essentially,
this means that non of the optimal blocked control actions depend on the last value of the input uk−1

which is to be expected given a correction to the current path is available, as opposed to the terminal
costs P iN = [2, Nb] which require to consider the last input value uk−1 will be kept constant.
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Now, consider an initial augmented state of z0 = [10, 5, 4]T . Note that this initial condition will
be used at several points in this case study. Figure 7.2 shows a T = 1 second simulation where the
obtained responses for 2 cases can be seen: 1. when the “infinite blocked gain” K5

x is immediately
applied (Nb0 = 1), ie. applied in time steps k, k + 5, k + 10, · · · ,∞, depicted by the blue line; and 2.
when the gain is applied after 5 steps (Nb0 = 2), ie. at time steps k + 4, k + 9, · · · ,∞, depicted by
the red dot-dashed line where the initial value of the input can be seen to be maintained at the initial
value of (uk−1 = 4) before applying feedback at T = 0.08, ie. k + 4 when considering the sampling
time (Ts = 0.02 (s)).
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Figure 7.2: Example Simulation of Double Integrator System with Infinite Horizon Solutions at two
different initial time-steps Nb0 = [1, 2]

The reader can verify that the resulting costs of both simulations using the aforementioned condi-
tions are J1 = 3, 748 and J2 = 22, 795, both of which can be calculated exactly by J1 = zT0 P

1
Nz0 and

J2 = zT0 P
5
Nz0 which satisfies the basic requirement of representing the infinite horizon cost EXACTLY.

This was also true for starting the simulation at any other time-step Nb0 = [1 → Nb]. Moreover, this
example is used to illustrate the significant difference of the predicted/resulting cost obtained when
the input must be kept constant for certain amount of steps before feedback is applied. Thus, it is very
important to properly account for this in the terminal weights for them to be used as infinite horizon
costs of the proposed Ideal MWB approach.
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7.3.2 Infinite Horizon Costing Comparison

Having demonstrated the validity of the proposed solution, we can now look to implement the terminal
weights in the context of the Ideal MWB MPC implementation. To do this, let us consider the smallest
Ideal Prediction Horizon for the aforementioned block-size of Np = 6. Clearly, the solution to the
problem used in figure 7.2 does not reach a near “zero” state (where costs would be zero) within
Np = 6 steps, ie. Tp = 0.12 (s) of the initial time step. Thus, we can expect that applying the terminal
weight in this case could lead to relevant improvements.

To evaluate this, consider again the application of feedback only at the start of new blocks, ie.
when Nb0 = 1. This means that the Ideal MWB approach in this scenario would only use a single
parameterisation matrix given by:

N =




1 0

1 0

1 0

1 0

1 0

0 1




(7.11)

In the case where the predictions were formulated using the augmented models as in chapter 8 we can
directly use the augmented terminal weights P iN , however, in order to implement them in the original
non-augmented framework, we must separate the terminal weights in terms of states and inputs by:

zTk+NpP
i
Nzk+Np =

[
xTk+Np

uTk+Np−1

] [ P iN1
P iN2

P iN2

T P iN3

][
xk+Np

uk+Np−1

]

=
[
xTk+Np

uTk+Np−1

] [ P iN1
xk+Np + P iN2

uk+Np−1

P iN2

Txk+Np + P iN3
uk+Np−1

]

= xTk+NpP
i
N1
xk+Np + xTk+NpP

i
N2
uk+Np−1 + uTk+Np−1P

i
N2

Txk+Np + uTk+Np−1P
i
N3
uk+Np−1

(7.12)

Clearly P iN1
and P iN3

can be considered in the standard Q and R matrices as the terminal weights
for qk+Np = PN1 and rk+Np−1 = PN3 . However, a slight more involved modification is required to
include the cross-terms terminal weights PN2 . The reader can verify that including these extra weights
can be obtained simply by modifying the Hessian and linear term of the input-parameterised MPC to:

J =
1

2
ÛTENÛ + ÛT fN (7.13)

EN = NT (HTQH +R)N + NTHT
NpP

i
N2

NNp + NTNpP
i
N2

THNpN (7.14)

fN = NT (HTQGxk) + NTNpP
i
N2

TGNp (7.15)

where HNp , GNp and NNp are the Npth rows of H, G and N.
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Because we will only apply feedback at the start of new blocks, ie. when Nb0 = 1, the terminal
weight must consider the last input uk+Np−1 will be maintained constant for 4 additional steps, giving
a total of 5 steps. Thus, the terminal weight to be used is P 5

N . To match the responses with the
previous example, the Ideal MWB MPC was started at time-step Nb0 = 1.

Figure 7.3 shows an example of the solution with and without the terminal weight when solved
using the Ideal MWB MPC framework where it can be seen that the solution without the terminal
weight presents rather poor performance with oscillatory behaviour. In contrast, the solution with the
terminal weight maintains the exact same performance of figure 7.2, inevitably resulting in the same
cost Jwith = 3, 748. Thus, this gives an example of the advantage of including the terminal cost in the
Ideal MWB framework which ultimately provides the desired nominal stability guarantee.
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Figure 7.3: Example Simulation of Double Integrator System with and without Infinite Horizon Costing

7.3.3 Cost Limits

So far we have focused on following the “original” plan by applying feedback only at the start of a block
Nb0 = 1. However, an interesting feature of the Ideal MWB approach is that unless the optimisation
is going through a critical feasibility stage where it is enforced to continue with the current plan to
satisfy constraints, the solution will typically be able to improve as the horizon moves forward which
essentially means that the terminal weights of the Ideal MWB are only “Cost Limits” which in reality
can be smaller when solution applies feedback at every step instead. We have already shown an example
of this in figure 5.5 where the input can be seen to be making small corrections to the blocks.
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As an example, figure 7.4 shows the response obtained for two cases: 1. when applying the
feedback gains of (7.10b) sequentially, resetting when the new block emerges and repeating infinitely
K5
x,K

4
x, · · · ,K1

x,K
5
x,K

4
x, · · · ,K1

x,∞, depicted by the blue line; and when feedback is only applied
at new blocks as before, depicted by the red dot-dashed line. The resulting costs of both of these
trajectories are: Jwith = 3, 685 and Jwithout = 3, 748, ie. around 1.68% better when compared in terms
of suboptimality ∆J = (Jwith/Jwithout− 1)× 100. This is to be expected given the optimisation would
only modify the input if it can improve the current blocked plan. The key message from this is that the
costs calculated with the terminal weights are only limits and the Ideal MWB approach will typically
present better costs that the ones it initially predicts. Lastly, note that this could equally be obtained
if the Ideal MWB approach were to be used with the time-varying parameterisation (5.11) along with
the terminal weights P 5

N , P
4
N , · · · , P 1

N , P
5
N , P

4
N , · · · , P 1

N ,∞ applied as in equation (7.13).
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7.4 Summary

In summary, this chapter presented one possible solution to the infinite horizon Ideal MWB problem
which can be used to obtain a set of infinite horizon costs that when applied appropriately, represent the
infinite horizon solution of the Ideal MWB approach embedded into the predictions of the optimisation
which consequently result in stronger nominal stability guarantees for the nominal solution. Moreover,
the developed solution includes the acquisition of optimal feedback gains for the entire approach which
could potentially be used to generate blocked pre-stabilised prediction models. The resulting models
could then be used to obtain invariant sets which contain the Maximum Admissible Set (MAS), (or
more likely, a set of Maximum Admissible Sets for each time-step Nb0) specific for the Ideal MWB.
This however was outside the scope of this thesis and left for future work.

The chapter includes the development of the proposed solution, along with algorithm 7.1 which
implements it. Moreover, it includes a case study of a linear double integrator system which was
used to demonstrate the validity of the proposed solution along with relevant details related for its
implementation in the framework presented in chapter 5 where the advantages of being able to obtain
an infinite horizon solution were seen.



Chapter 8

Blocked Closed Loop Dual Mode
Nonlinear Model Predictive Control with
Shifting Strategies:
The Combined Approach

Having observed the benefits of the Shifting Strategy for Blocked NMPC solutions presented in chapter
5, along with the benefits of the generalisable Closed Loop Dual Mode NMPC Prestabilisation Scheme
of chapter 6 for handling unstable systems with condensing-based NMPC, and the ability to obtain the
Infinite Horizon Solution of blocked linear MPC by using open loop and closed loop models, presented in
chapter 7; this chapter aims at merging these methods into a combined approach: the “Blocked Closed
Loop Dual Mode Nonlinear Model Predictive Control with Shifting Strategy”, potentially merging the
advantages and disadvantages from all the other strategies.

Some of the key properties of the proposed method to be discussed in this chapter are:

1. The equality between closed loop and open loop solutions, as derived in chapter 6, theorem 6.2.

2. Low condition number of the Hessian as inherited from methodology of chapter 6.

3. Slightly higher computation times due to use of an augmented state, when comparing to solutions
without using the augmented state.

4. Slightly higher computation times due to the pre-stabilisation steps, when comparing to non-
prestabilised solutions, as discussed in chapter 6.

5. Significantly lower computation times due to the input-blocking structure and the shifting in-
equality constraints of chapter 5.

6. Nominal stability and recursive feasibility guarantees for the shooting points inherited from the
shifting strategy presented in chapter 5, and the dual mode terminal weight of chapter 7.

7. Ability to implement blocked closed loop solutions in highly unstable systems, something which
otherwise could not be possible.

208
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As this is a “gathering” chapter, it is kept brief. The chapter focuses mainly on the required
methodological and algorithmic steps to implement the proposed approach, and discusses some of the
expected properties along with some examples. Nonetheless, its contents represent a key contribution of
this thesis which include the philosophy itself, along with the modelling and optimisation methodology,
described in section 8.1; the equality of the solution theorem 8.1 (given without proof as inherits this
property from theorem 6.2 of chapter 6), required to preserve the nominal stability and recursive
feasibility properties of the original Shifting Strategy presented in chapter 5; and finally, the overall
algorithms required for its implementation, given in section 8.2.

The chapter is organised as follows: Section 8.1 introduces the general optimisation of interest, and
develops the prediction models containing the embedded blocked closed loop, along with several inter-
mediate steps required for proper operation of the final algorithms. Moreover, it derives the resulting
optimisation to be used, and presents theorem 8.1 briefly. Section 8.2 introduces the algorithms re-
quired for the efficient implementation of the proposed approach using the RTI Scheme. This includes
a further extension to the already extended O(N) and O(N2) algorithms of the Shifting Strategy pre-
sented in chapter 5, adjusting them to use the proposed method; a set of core algorithms; and finally,
the algorithms for the preparation and feedback phases of the RTI Scheme. The section concludes with
a generic computation analysis. Section 8.3 presents the case study of an inverted pendulum where
the properties of chapters 5 and 6 are clearly shown to be inherited from the respective methodologies,
as per design. Section 8.4 presents the case study of the nonlinear ball-plate system from chapter 6, a
system in which the standard blocking approach of chapter 5 could not be applied due to a significant
underlying numeric conditioning problem. Finally, section 8.5 presents a summary of the contributions.

8.1 Closed Loop Blocked Prediction Models and Optimisation

Following a similar approach as in chapter 7, the proposed methodology relies on an augmented state
of the form:

zk =

[
xk

uk−1

]
(8.1)

and selects between two possible discrete system dynamics (f1
z or f2

z ) of the form:

zk+1 = fz(zk, uk) =





f1
z (zk, uk) =


f(xk, uk)

uk


 (Closed Loop)

f2
z (zk, uk = uk−1) =


f(xk, uk = uk−1)

uk = uk−1


 (Open Loop)

(8.2)

depending on whether it is desired to have a decision (uk) available (Closed Loop - f1
z ), e.g. when

the prediction step is at the beginning of a block; or whether it is required to maintain the previous
control action (uk = uk−1) constant, ie. embedding the blocking equality (Open Loop - f2

z ). This type
of model will simplify the representation of the prediction models defined in (8.5), as well as simplify
the DARE procedure (8.7) for embedding the blocked feedback control law.
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As we have redefined the state variable, we are now interested in optimisations of the form:

J = (Zr − Ẑ)TW (Zr − Ẑ) (8.3a)

s.t. zk = z0 (8.3b)

ẑk+i = fz(ẑk+i−1, ûk+i−1) ∀i = [1, Np] (8.3c)

Zmin ≤ Ẑ ≤ Zmax (8.3d)

where Ẑ = [ẑTk+1, · · · , ẑTk+Np
]T ∈ RNp(nx+nu) is a vector containing the predictions of the augmented

state variable; Zr = [zTrk+1
, · · · , zTrk+Np ]T ∈ RNp(nx+nu) is a vector of references for the augmented state

variables; W = blkdiag([wk+1, · · · , wk+Np ]) ∈ RNp(nx+nu)×Np(nx+nu) is the weighting matrix penalising
the augmented state deviations, ie. penalising states and inputs deviations from their references, for all
practical purposes considered block diagonal formed with the Q and R matrices of the standard NMPC
in the form of: W = blkdiag([qk+1, rk, qk+2, rk+1, · · · , qk+Np , rk+Np−1]); (8.3b) is the initial condition;
(8.3c) are the system dynamics; and (8.3d) are the inequality constraints of the optimisation.

Remark 8.1. Blocked Dual Mode Terminal Weight
As with chapter 6, we propose the dual mode framework for NMPC by imposing the infinite horizon
terminal weight (wk+Np) obtained in chapter 7. Note that this terminal weight should only be imposed
when the predicted state at the final step (ẑk+Np) has reached the terminal region, ie. when the state
enters a quasi-linear zone where the terminal weight is indeed valid. Thus, the proposed approach only
adds this nominal stability guarantee method when the system can reach this condition. Otherwise, long
horizons and/or other terminal conditions such as zero-terminal constraints still need to be used.

For this optimisation we also use definitions 5.1 and 5.2 of chapter 5 to embed the Shifting Strategy
on the blocks and inequality constraints in an absolute time frame, and assume the Ideal Prediction
Horizon of theorem 5.1 is used. Moreover, we assume that the provided nominal input Ū is aligned
with the blocks for the relative and non-relative solution to be identical as discussed in remark 5.1.
Finally, to simplify the mathematical representation of the prediction models, the proposed method
uses the concept of the “inner block position index” (Nk

bi
) introduced in the general method of chapter

5, subsection 5.2.1, described by:

Nk
bi

=





Nb0

1

Nk−1
bi

+ 1

k = 0 (starting condition)
Nk−1
bi

= Nb AND k > 0

Nk−1
bi

< Nb AND k > 0

(8.4)

∀k = [0→ Np − 1]

This index (Nk
bi
) represents the “virtual” position of the inputs at a given block for each time-step

(k = 0 → Np − 1) when moving forward along the prediction horizon, starting from an initial block
position index (Nb0) until reaching the block limit and resetting (Nbi = Nb0 → Nb, 1 → Nb, 1, · · · ).
Note that the range of Nb0/Nbi ← [1→ Nb] is used as discussed in remark 5.6.
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To illustrate the use of equation (8.4), an example of the resulting sequences for all initial block
position indexes Nb0 = [1→ Nb], using a block size of Nb = 4, and Ideal Prediction Horizon of Np = 13

is given in table 8.1. Note that this is similar to that of table 5.4, but is re-included in this chapter for
it to be self-contained. This set of values of Nk

bi
basically help identify which points in time represent

the beginning of a new block through the use of if-then conditional statements: eg. if (k = 0 OR
Nbi = 1), then “new block”, something which can be appreciated in table 8.1, and can also be derived
from equation (8.4) itself. Depending on the values of Nk

bi
at a given step k, a different model will

be selected or a different computation will be performed in the final algorithms. Note that for this
particular example, the number of blocks (or decision variables in the case of nu = 1) with the selected
block size and ideal prediction horizon would be exactly NEN =

⌈
Np
Nb

⌉
= 4 ∀Nb0 = [1→ 4], something

which can be clearly appreciated by the 4 coloured cells of the table.

Nb0 k 0 1 2 3 4 5 6 7 8 9 10 11 12

(Nb0 = 1) Nk
bi

1 2 3 4 1 2 3 4 1 2 3 4 1

(Nb0 = 2) Nk
bi

2 3 4 1 2 3 4 1 2 3 4 1 2

(Nb0 = 3) Nk
bi

3 4 1 2 3 4 1 2 3 4 1 2 3

(Nb0 = 4) Nk
bi

4 1 2 3 4 1 2 3 4 1 2 3 4

Table 8.1: Example of all possible sequences for the MWB index Nk
bi
with a block size of Nb = 4, and

an ideal prediction horizon of Np = 13. Each block is represented by the coloured cells

The proposed methodology must then provide the initial block position index Nb0 = [1 → Nb] in
sequence, resetting when reaching the block limit and repeating infinitely as the horizon moves forward
to embed the blocked input parameterisation whilst retaining the nominal stability and recursive
feasibility properties discussed in chapter 5. Moreover, the method embeds a feedback correction
δuk = −Kkδzk + δck, aimed at pre-stabilising the multiple shooting trajectory itself as discussed in
chapter 6, with the main difference of only applying feedback at the beginning of each block, allowing
the feedback-corrected control action to be maintained constant through the open-loop dynamics of
(8.2). As discussed previously, this happens when Nk

bi
= 1 or k = 0, ie. at the beginning of a block, or

in the very first step of the horizon. In order to achieve this efficiently, we utilise the concept of open
loop and closed loop models as in chapter 7 where the prediction models change depending on the
position of the block Nk

bi
, and are able to maintain constant the input through the “integrator-with-

no-input” type of dynamics of function (8.2). The linearised prediction models of function (8.2) at all
future time steps k = 0→ Np − 1 are then given by:

ẑk+1 =




z̄k+1 +ACLkδẑk +BCLkδûk + dk+1

z̄k+1 +AOLkδẑk + dk+1

Nk
bi

= 1 OR k = 0

else
(8.5a)

dk+1 =




f1
z (x̄k, ūk)− z̄k+1

f2
z (x̄k, ūk−1)− z̄k+1

Nbi = 1 OR k = 0

else
(8.5b)

δûk =




−Kkδẑk + δĉk

0

Nk
bi

= 1 OR k = 0

else
(8.5c)

∀k = [0→ Np − 1]
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where z̄k+1 is the nominal augmented state at time step k + 1; δzk is the augmented state deviation
at time k; δûk is the input deviation at time step k; dk+1 is the multiple-shooting offset at time k+ 1;
and AOLk , ACLk and BCLk are the partial derivatives of the open loop (OL) and closed loop (CL)

models of (8.2), respectively, and are defined as:

AOLk =
∂f2

z (ẑk, ûk)

∂ẑk

∣∣∣∣ x̂k=x̄k
ûk=ūk−1

=

[
Ak Bk

0 I

]
(8.6a)

ACLk =
∂f1

z (ẑk, ûk)

∂ẑk

∣∣∣∣x̂k=x̄k
ûk=ūk

=

[
Ak 0

0 0

]
(8.6b)

BCLk =
∂f1

z (ẑk, ûk)

∂ûk

∣∣∣∣x̂k=x̄k
ûk=ūk

=

[
Bk

I

]
(8.6c)

with Ak and Bk being the state and input partial derivatives used by the standard NMPC.
On the other hand, Kk is a feedback control law obtained from using the Time-Varying Discrete

Algebraic Ricatti Equation (DARE) backwards starting from the terminal weight PNp = wNp , and
applying feedback only at the beginning of a block, but propagating the cost Pk through the open loop
dynamics at all the other points as performed in chapter 7, defined as:

Kk =





(BT
CLk

Pk+1BCLk)−1BT
CLk

Pk+1ACLk

O

Nk
bi

= 1 OR k = 0

else
(8.7a)

Pk =




wk +ATCLkPk+1ACLk +ATCLkPk+1BCLkKk

wk +ATOLkPk+1AOLk

Nk
bi

= 1 OR k = 0

else
(8.7b)

∀k = [0→ Np − 1]

Indeed, by using this approach, the solution naturally embeds the cost of the blocked inputs on the
DARE recursion whilst imposing feedback only at the start of each block, which in turns leads to
obtaining optimal blocked feedback control gains, as discussed in chapter 7.

Substituting the value of Kk from (8.7a) in model (8.5a), results in the final linearised blocked
closed loop prediction model:

ẑk+1 =




z̄k+1 + Φkδẑk +BCLkδĉk + dk+1

z̄k+1 + Φkδẑk + dk+1

Nk
bi

= 1 OR k = 0

else
(8.8a)

dk+1 =




f1
z (x̄k, ūk)− z̄k+1

f2
z (x̄k, ūk−1)− z̄k+1

Nk
bi

= 1 OR k = 0

else
(8.8b)

Φk =




ACLk −BCLkKk

AOLk

Nk
bi

= 1 OR k = 0

else
(8.8c)

∀k = [0→ Np − 1]
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Notice that this model only has control actions (δĉk) available at specific points (Nk
bi

= 1 OR
k = 0), ie. δĉk = 0 elsewhere, which causes the input-to-state prediction matrix H to contain zero-
columns for values of δĉk = 0, all of which can be disregarded as they were considered zero by design.
This allows the “compressed” prediction matrix HN containing only the values of non-zero columns to
be given directly. Moreover, notice that the blocking approach with no feedback discussed in chapter
5 can also be applied with this model simply by enforcing Kk = O ∀k = [0→ Np − 1] in 8.5. Finally,
as with all the other methods discussed in this thesis, the single-shooting approach can be applied by
using the simulated value at each time step prediction, instead of using the nominal value obtained in
the previous iteration, thus causing all offsets (dk) to be zero, as discussed in chapter 3.

By propagating the models resulting from all possible absolute time-steps (Nb0 = [1→ Nb])Np steps
ahead, results in Nb different prediction models which depend on Nb0 , and are defined in condensed
format (8.9) given by:

ẐNbo = Z̄ + δẐ = Z̄ +D +Gδz0 +HNδĈ︸ ︷︷ ︸
δẐ

∀Nb0 = [1→ Nb] (8.9)

where Z̄ = [z̄Tk+1, · · · , z̄Tk+Np
]T ∈ RNp(nx+nu) is a vector containing the nominal augmented state (state

and inputs) predictions, δĈ ∈ RNEnu is a vector of the feedback decision variables to be used for the
optimisation, ie. only those which were not imposed to be zero by design; δz0 = z0 − z̄0 is the initial
condition mismatch which forms part of the RTI Scheme; andD ∈ RNp(nx+nu), G ∈ RNp(nx+nu)×(nx+nu)

are a vector and a matrix, respectively, defined as:

D =
[
d̄T1 d̄T2 · · · d̄TNp

]T
G =

[
gT1 gT2 · · · gTNp

]T
(8.10a)

where the inner matrices/vectors are defined through the recursions:

d̄k =




dk

dk + Φk−1d̄k−1

k = 1

k > 1
(8.11a)

gk =





Φk−1

Φk−1gk−1

k = 1

k > 1
(8.11b)

∀k = [1, Np]

using the proposed blocked closed loop matrix Φk of equation (8.8c).

Matrix HN ∈ RNp(nx+nu)×NENnu deserves special attention as it presents the special structure of
the Ideal MWB Scheme (5.42) introduced in chapter 5 with the inner matrices defined through the
following recursions as:

hk,j =





O

BCLk−1

Φk−1hk−1,j

jk > nk

(Nk−1
bi

= 1 AND jk = nk) OR (k = 1)

Nk−1
bi

> 1 OR jk < nk
(8.12)

∀k = [1→ Np] ∀j = [1→ NEN ]
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where jk represent the jth column in the kth row, ie. at kth time-step, and nk represents the column
on which the block at the kth time-step is embedded, similar to the block counter (n) introduced in
the general method 5.2.1, defined as:

nk =





1

nk−1 + 1

nk−1

k = 1 (starting condition)
Nk−1
bi

= 1 AND k > 1

Nk−1
bi

> 1 AND k > 1

(8.13)

∀k = [1→ Np] (8.14)

In simple terms, nk represents a column index which increments every time there is a new block. To
illustrate this, consider the values of Nk

bi
from table 8.1. The required values of nk for that example

are given in table (8.2). Notice there is a difference in the k range used for that example (ie. 0 →
12 and 1 → 13). This is because of how the matrix HN range was defined with future “states” in
mind (ie. x̂k+1, x̂k+2, · · · , x̂k+Np), and Nk

bi
was defined with inputs/decision variables in mind (ie.

ûk, ûk+1, · · · , ûk+Np−1). Nonetheless, they represent the same prediction steps.

Nb0 k 1 2 3 4 5 6 7 8 9 10 11 12 13

(Nb0 = 1) nk 1 1 1 1 2 2 2 2 3 3 3 3 4

(Nb0 = 2) nk 1 1 1 2 2 2 2 3 3 3 3 4 4

(Nb0 = 3) nk 1 1 2 2 2 2 3 3 3 3 4 4 4

(Nb0 = 4) nk 1 2 2 2 2 3 3 3 3 4 4 4 4

Table 8.2: Continuation example from table (8.1) of all possible sequences for the MWB column index
nk starting from all possible initial block index Nb0 = [1→ 4] with a block size of Nb = 4, and an ideal
prediction horizon of Np = 13. Each block is represented by coloured cells.

Having defined the condensed prediction models (8.9), the standard steps can be taken where
the models are substituted in cost function (8.3), and constant terms are disregarded to obtain the
standard QP form. This leads to Nb different costs functions of the form (8.15) as discussed in the
Shifting Strategy optimisation framework of section 5.1.4, each of which depends on the initial block
index Nb0 , and are defined as:

JNb0 =
1

2
δĈTENδĈ + δĈT fN ∀Nb0 = [1→ Nb] (8.15a)

s.t. MNδĈ ≤ γ (8.15b)

EN = HT
NWHN (8.15c)

fN = −HT
NW (Zr − Z̄ −D −Gδz0) (8.15d)

MN =




(HN)u

−(HN)u

(HN)x

−(HN)x




γ =




Umax − Z̄u −Du −Guδz0

Z̄u +Du +Guδz0 − Umin
Xmax − Z̄x −Dx −Gxδz0

Z̄x +Dx +Gxδz0 −Xmin




(8.15e)



Chapter 8. Blocked Closed Loop Dual Mode Nonlinear Model Predictive Control with
Shifting Strategies:
The Combined Approach 215

where EN ∈ NNENnu×NENnu is the “compressed” Hessian; fN is the “compressed” linear term; MN is
the “compressed” constraints matrix; and γ is the constraints vector.

We assume here that the values of (HN)u, , Z̄u, Du and Gu represent the rows of HN, Z̄,D and G,
respectively, related to the input constraints (Umax and Umin). Likewise, the values of (HN)x, Z̄x, Dx

and Gx represent the rows of HN, Z̄,D and G related to the state constraints (Xmax and Xmin).

Moreover, to be able to apply the shifting constraints strategy presented in chapter 5, the constraints
must be selected according to definition (5.2), which essentially selects the constraints at the end of
each block, as well as the constraints at the end of the prediction horizon (which may or may not be
coincident with the end of a block). The resulting sequence of end-points of each block depends on
Nk
bi
, and happens whenever Nk

bi
= Nb when using the range k = [1→ Np] or k = Np, as defined by (8.4

shifted in k). This task is fundamentally performed by algorithm 5.4 introduced in chapter 5, where
at each time step the algorithm checks a simple conditional flag of the form:

flag =




Include Constraint

Ignore Constraint

Nk
bi

= Nb OR k = Np

else
∀k = [1→ Np] (8.16)

The proposed shifting constraints approach would then select only the predictions at the the end
of each block, resulting in the selected matrices and vectors (HN)u−sel, Z̄u−sel, Du−sel, Gu−sel related
to the inputs, and (HN)x−sel, Z̄x−sel, Dx−sel and Gx−sel, related to the states, to be included in the
optimisation.

Once the optimal δĈ∗ has been found, the expansion step Ẑ∗ = Z̄ +D+Gδz0 +HNδĈ∗ is applied,
as in the standard multiple shooting method for Ẑ∗ to be used in the next iteration of the solution.
Having calculated this expansion step, the nominal input Ū , and the nominal state X̄ can be extracted
from Ẑ∗ for the next iteration. Only the first input is applied to the system, as applied by the standard
“receding horizon” strategy, and the whole process is repeated in the next time step. To retain the
nominal stability and recursive feasibility properties, the initial block index Nb0 must then be moved
forward with (8.17) at every time-step, as required by the Shifting Strategy presented in chapter 5.

N+
b0

=





1 Nb0 = Nb

Nb0 + 1 Nb0 < Nb

(8.17)

Theorem 8.1. Equality of the Blocked Pre-stabilised Solution
The solution with and without the blocked pre-stabilisation is exactly the same. (Given without proof)

As stated in theorem 6.2 of chapter 6, “if the new decision variables can replicate the original
variables, they will !!!”. Thus, the solutions are expected to be the same given the same amount of
decision variables as in the Ideal MWB approach of chapter 5 is available, and the original blocked
decision can be exactly replicated with the available decision variables. This allows all the nominal
stability and recursive feasibility properties for the original blocked approach with shifting constraints
presented in chapter 5 to be retained.

This property was consistently observed during the tests of this proposed method, and can be
appreciated in figure 8.2. Nonetheless, a formal proof is not given.
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8.2 Algorithm Details and Autogeneration

Having defined the theory and formulae that supports the proposed approach, we can now proceed to
define the required algorithms for its efficient implementation using the RTI Scheme that will allow the
development of an auto-generation toolkit which will be used for benchmarking the proposed approach.
Thus, this section will provide a set of algorithms to be used which include: an extension to the already
extended O(N) and O(N2) algorithms presented in chapter 5 for the proposed Ideal MWB approach; a
set of 4 “core” algorithms that perform various important operations; and the preparation and feedback
phases algorithms of the RTI Scheme. The section concludes with a generic computation analysis on
the relevant algorithms.

It is worth mentioning that all the algorithms are supported by the general method introduced
in section 5.2.1 of chapter 5, based on the “inner block position index” (Nbi) which was used for the
proposed modelling of this chapter, as seen eg. in equations (8.4), (8.5) and (8.7). Moreover, all the
algorithms use the standard notation Ak and Bk to avoid saturation for representing the augmented
matrices, eg. ACLk , BCLk , AOLk , for which the inner definitions (8.6) must be used.

8.2.1 Further Extension of O(N) and O(N2) Algorithms

Because, this method follows the same structure of HN, the entire procedure used for the derivation of
the extension of the O(N) and O(N2) algorithms for the Ideal MWB presented in chapter 5, section
5.2.3 is valid, with the understanding that Q = W , R = O, Ak = Φk and Bk = O at some points.

Algorithm 8.1: Closed Loop Ideal MWB O(N) Condensing Algorithm
Data: W,Φk, Bk, Ze, Np, Nb, Nb0

1 begin
2 Nbi = Nb0 ; // Initialise inner block position index
3 n = NEN ; // Initialise row of fN
4 w̃Np = wNpZeNp ; // Initial value of the dummy variable

// For loop running backwards k = Np, Np − 1, · · · , 2
5 for k = Np to 2 do
6 if Nbi = 1 then
7 (fN)n = −BT

k−1w̃k; // Calculate linear term component
8 end
9 w̃k−1 = wk−1Zek−1

+ ΦT
k−1w̃k; // Propagate recursively

10 N+
bi

= N−bi − 1; // Iterate inner block position index backwards
11 if Nbi < 1 then
12 n+ = n− − 1; // Decrease row of fN elements
13 Nbi = Nb; // Reset inner block position index to Nb

14 end
15 end
16 if Nbi = 1 then
17 (fN)0 = −BT

0 w̃0; // Calculate first component of linear term (fN)0

18 end
19 end

Result: fN
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However, given that matrix Bk is non-zero only at the start of a block, eg. Nbi = 1, the algorithms
were no longer required to calculate the Hessian terms recursively, eg. as in equation (5.50). Instead,
the algorithms now only have to check for the start of a block with conditions k = 1 or Nbi = 1

to perform a single calculation of the Hessian term. This allows a slight reduction in the number of
required operations. Thus, the algorithms were adjusted to look for these conditions which can be seen
throughout the codes, eg. in lines 9-10 of algorithm 8.2. This extended version of the already extended
O(N) and O(N2) algorithms is given in algorithms 8.1 and 8.2.

Algorithm 8.2: Closed Loop Ideal MWB O(N2) Condensing Algorithm
Data: HN,W,Φk, Bk, Np, Nb, Nb0

1 begin
2 Nbi = Nb0 ; // Initialise inner block position index
3 n = NEN ; // Initialise row of EN
4 for i = 1 to n do
5 w̃Np,i = wNp(hN)Np,i; // Initialise last row of W̃ (w̃Np,1→n elements)
6 end

// Main for loop running backwards k = Np, Np − 1, · · · , 2
7 for k = Np to 2 do
8 for i = 1 to n− 1 do
9 if Nbi = 1 then

10 (EN)n,i = BT
k−1w̃k,i; // Calculate Hessian component

11 end
12 w̃k−1,i = wk−1(hN)k−1,i + ΦT

k−1w̃k,i; // Propagate recursively
13 end
14 if Nbi = 1 then
15 (EN)n,n = BT

k−1w̃k,n; // Calculate Hessian diagonal component
16 else
17 w̃k−1,n = wk−1(hN)k−1,n + ΦT

k−1w̃k,n; // Propagate recursively
18 end
19 N+

bi
= N−bi − 1; // Iterate inner block position index backwards

20 if Nbi < 1 then
21 n+ = n− − 1; // Decrease row of EN
22 Nbi = Nb; // Reset inner block position index to Nb

23 end
24 end
25 (EN)0,0 = BT

0 w̃0,0; // Calculate first diagonal element outside main loop
26 end

Result: EN

8.2.2 Core Algorithms

In addition to the 2 novel algorithms (8.1 and 8.2), 4 additional “core” algorithms were required
for implementing the proposed approach in the RTI algorithms of subsection 8.2.3 in a structured
manner. The developed algorithms are (given in order introduction and usage in the RTI): 1. Forward
Propagation, 2. Ideal MWB Time-Varying DARE, 3. Closed Loop Ideal MWB HN Computation, and
4. HNδĈ∗ Decompression and Expansion. All the algorithms take an entire page to improve the spacing
and flow of the section.
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Given it is required to select between 2 different “Simulation and Linearisation” models, as estab-
lished from equation (8.2), the standard Forward Propagation algorithm 3.4 proved incomplete. Thus,
algorithm 8.3 performs this fundamental task by using the “inner block position index” along with the
required conditionals to select between the 2 models of (8.3c). This can be seen explicitly in lines 4-10
of the algorithm. As in the standard algorithm, it considers the “single shooting” case visible in lines
11-13.

Algorithm 8.3: Closed Loop Ideal MWB Forward Simulation Algorithm
Data: Z̄, Ū , z̄0, Np, Nb, Nb0

1 begin
2 Nbi = Nb0 ; // Initialise inner block position index
3 for k = 1 to Np do

/* Simulate And Linearise the system, eg. using algorithm 3.1 with the
selected dynamics */

4 if k = 1 OR Nbi = 1 then
5 z̃k = f1

z (z̄k−1, ūk−1); // Use Closed Loop Dynamics
6 Ak−1 ← ACLk−1

; // Closed Loop State-Transition Matrix
7 Bk−1 ← BCLk−1

; // Closed Loop Input-to-State Matrix
8 else
9 z̃k = f2

z (z̄k−1, ūk−2); // Use Open Loop Dynamics
10 Ak−1 ← AOLk−1

; // Open Loop State-Transition Matrix
11 Bk−1 ← O; // Open Loop Input-To-State Matrices
12 end
13 if Single Shooting=1 then
14 z̄k = z̃k; // Special case for the single shooting case
15 end
16 dk = z̃k − z̄k; // Calculate individual offset at each step
17 N+

bi
= N−bi + 1; // Iterate inner block position index forward

18 if Nbi > Nb then
19 Nbi = 1; // Reset inner block position index to 1
20 end
21 end
22 end

Result: Ak, Bk, dk
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On the other hand, because the proposed approach only applies feedback at the start of a block,
the Time-Varying DARE algorithm 6.3 was required to be modified, although arguably can be applied
as it is with the understanding that the feedback gain would be zero (Kk = 0) if the input matrix
is zero (Bk = 0). However, given the indefiniteness of the required inverse (BT

k Pk+1Bk)
−1, a proper

modification was due. The modified algorithm 8.4 performs the feedback step only when the condition
(Nbi = 1 OR k = 0) is met, as seen in lines 5-11. Thus, the algorithm avoids the problem of the
indefiniteness, whilst also reducing the computations that would be related to Kk.

Algorithm 8.4: Ideal MWB Dual Mode Time-Varying DARE Algorithm
Data: Ak, Bk,W,Np, Nb, Nb0

1 begin
2 Nbi = Nb0 ; // Initialise inner block position index
3 PNp = wNp ; // Initial value for weighting matrix Pk+1

// For loop running backwards k = Np − 1, Np − 1, · · · , 0
4 for k = Np − 1 to 0 do
5 if Nbi = 1 OR k = 0 then
6 Kk = (BT

k Pk+1Bk)
−1BT

k Pk+1Ak; // Calculate feedback gain
7 Φk = Ak −BkKk; // Apply Feedback
8 else
9 Φk = Ak; // No Feedback

10 end
11 Pk = wk + ΦT

k Pk+1Φk; // Propagate Weights
12 N+

bi
= N−bi − 1; // Iterate inner block position index backwards

13 if Nbi < 1 then
14 Nbi = Nb; // Reset inner block position index to Nb

15 end
16 end
17 end

Result: Φk
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Afterwards, algorithm 5.3 presents the modification of algorithm 5.3 which basically reduces to not
requiring the recursive expression (hN)+

k,n = (hN)−k,n+Bk−1 visible in line 13 of algorithm 5.3, which in
essence means the “pink” part of equation (5.45) is never present in our approach given it is embedded
in the augmented “integrator-type” matrix AOL of equation (8.5). This again can save some of the
required operations, thus decreasing computation times slightly. The algorithm, retains the “cleaning”
operation seen in lines 15-17 required for the overlapping spaces of memory as explained in equation
(5.46).

Algorithm 8.5: Closed Loop Ideal MWB Condensing HN Matrix Calculation
Data: Φk, Bk, Np, Nb, Nb0

1 begin
2 Nbi = Nb0 ; // Initialise inner block position index
3 n = 1; // Initialise columns of HN
4 j = n; // Initialise limit for recursive loop
5 for k = 1 to Np do
6 for i = 1 to j − 1 do
7 (hN)k,i = Φk−1(hN)k−1,i; // Propagate recursively
8 end
9 if k = 1 OR Nbi = 1 then

10 (hN)k,n = Bk−1; // Initialise nth column element
11 j+ = j− + 1; // Increase limit for recursive loop
12 end
13 N+

bi
= N−bi + 1; // Iterate inner block position index forward

14 if Nbi > Nb then
15 if n < NEN then
16 (hN)2+(n−1)Nb→nNb+1,n+1 = 0; // Clean elements of following column
17 end
18 n+ = n− + 1; // Increase columns of HN
19 Nbi = 1; // Reset inner block position index to 1

20 end
21 end
22 end

Result: HN
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Finally, algorithm 8.6 performs the simultaneous Decompression and Expansion of the term δĈ∗

which is required to complete the predicted optimal correction to the nominal state trajectory, ie.
Ẑ∗ = Z̄ +D +Gδz0 +HNδĈ∗ of equation (8.9), which is then used to provide the guess for Z̄ at the
next iteration, as performed by the standard multiple-shooting approach. This algorithm can be seen
as a combination of the tasks performed by algorithms 3.7, 5.5 and 6.6.

Algorithm 8.6: Closed Loop Ideal MWB δZ̃ = HNδĈ∗ Decompression/Expansion Step

Data: Φk, Bk, δĈ∗, Np, Nb, Nb0

1 begin
2 Nbi = Nb0 ; // Initialise inner block position index
3 n = 1; // Initialise working row of δĈ∗
4 for k = 1 to Np do
5 if k = 1 then
6 δz̃∗k = Bk−1δĈ∗n; // Initial value
7 else
8 if Nbi = 1 then
9 δz̃k = Φk−1δz̃k−1 +Bk−1δĈ∗n; // Propagate recursively (with input)

10 else
11 δz̃k = Φk−1δz̃k−1; // Propagate recursively (without input)
12 end
13 end
14 N+

bi
= N−bi + 1; // Iterate inner block position index forward

15 if Nbi > Nb then
16 n+ = n− + 1; // Increase working row of δĈ∗
17 Nbi = 1; // Reset inner block position index to 1

18 end
19 end
20 end

Result: δZ̃
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8.2.3 RTI Algorithms

Having established the fundamental algorithms required for the implementation of the proposed Blocked
Closed-Loop Dual-Mode NMPC approach with the Shifting Strategy of chapter 5, and using the RTI
Scheme, the overall approach is finally provided in terms of the Preparation and Feedback Phases given
in algorithms 8.7 and 8.8, respectively, both of which are based on previously presented algorithms to
facilitate the verification process of each working part of the proposed approach.

Algorithm 8.7: Closed Loop Ideal MWB RTI NMPC Preparation Phase with Shifting Strat-
egy
Data: Z̄, Ū , λ̄sel, z−1, u−1,W,Np, Nb, Nb0

1 begin
2 z̄0 = f1

z (z−1, u−1); // Calculate predicted state from previous state and input
3 Shift Z̄,Ū consistently ; // Initial Value Embedding
4 if Nb0 = 1 then
5 Shift λ̄sel consistently ; // Shifting Lagrange Multipliers theorem 5.2
6 end
7 [Ak, Bk, dk] = Forward(Z̄, Ū , z̄0, Np, Nb, Nb0); // Run algorithm 8.3
8 [Φk] = DARE(Ak, Bk,W,Np, Nb, Nb0); // Run algorithm 8.4
9 [HN] = CalculateHN(Φk, Bk, Np, Nb, Nb0) ; // Run algorithm 8.5

10 [EN] = CalculateEN(HN,W,Φk, Bk, Np, Nb, Nb0); // Run algorithm 8.2
// Form (MN)sel using algorithm 5.4

11 (MN)sel =
[
(HN)Tu−sel −(HN)Tu−sel (HN)Tx−sel −(HN)Tx−sel

]T
12 end

Result: EN, (MN)sel,Φk, Bk, dk, z̄0, λ̄sel

Algorithm 8.8: Closed Loop Ideal MWB RTI NMPC Feedback Phase with Shifting Strategy
Data: z0, z̄0, Z̄, Ū , λ̄sel, Zr, EN, (MN)sel,Φk, Bk, dk,W,Umax, Umin, Xmax, Xmin, Np, Nb, Nb0

1 begin
2 δz0 = z0 − z̄0; // Calculate state deviation from measurement

3 [D] = FormD(Φk, dk, δz0, Np); // Run algorithm 3.6

4 Ze = Zr − Z̄ −D; // Calculate Z error

5 [fN] = CalculatefN(W,Φk, Bk, Ze, Np, Nb, Nb0); // Run algorithm 8.1

6 γsel =




(Umax − Z̄u −Du)sel

(Z̄u +Du − Umin)sel

(Xmax − Z̄x −Dx)sel

(Z̄x +Dx −Xmin)sel



; // Form γsel vector using algorithm 5.4

7 [δĈ∗, λ̄sel] = QPSolve(EN, fN, (MN)sel, γsel, λ̄sel); // Solve the Quadratic Program

8 [δZ̃] = Decompress_And_Expand(Φk, Bk, δĈ∗, Np, Nb, Nb0); // Run algorithm 8.6

9 Z̄ = Z̄ +D + δZ̃; // Calculate new nominal state

10 Ū = Z̄u; // Extract Ū from Z̄

11 end
Result: Z̄, Ū , λ̄sel
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8.2.4 Generic Computations

In order to evaluate how well the proposed algorithms perform, we performed a generic computation
comparison of the main algorithms, namely: algorithm 8.4 for performing the proposed Time-Varying
DARE; algorithm 8.5 for calculating HN; algorithm 8.2 for calculating EN; algorithm 8.1 for calculat-
ing fN; and algorithm 8.6 for performing the simultaneous decompression/expansions step. One of the
performance measurements of interest was the “gain factor” (α) discussed in the generic computations
section of the Shifting Strategy (section 5.2.6) which represent the comparison of the algorithms for
different block sizes to the “standard” (Nb = 1). On the other hand, we are also interested in com-
paring how well the proposed approach performs when compared to that of the respective counterpart
algorithms of the Shifting Strategy of chapter 5, namely those of table 5.5, as well as their respective
counterparts of the Dual Mode approach of chapter 6, namely those of table 6.1.

To perform this comparison, we selected the Inverted Pendulum, introduced previously in case
study 5.5, which has nx = 4 states and nu = 1 inputs. The algorithm’s performance was evaluated
on this system using block sizes of Nb = [1→ 6] with Ideal Prediction Horizons Np = [121, 241]. The
algorithms were then programmed using automatically generated C++ codes for each of the cases
based on the Eigen 3 library, and were tested in Ubuntu 20.04 running with Real-Time priority (ie.
chrt -r 99 ./main) on a laptop with an Intel i7-8750 CPU overclocked @ 3.9 GHz, and 32 GB DDR4
RAM @ 2,666 MHz, with 120,000 runs per algorithm. The test C++ codes were compiled using the
(-O3) optimisation C-flag, as well as with the fused-multiply-addition operations (-mfma) and auto-
vectorisation (-mavx) flags enabled to use the Advanced Vector Instruction set available in the Intel
CPU. The results of this comparison are gathered in table 8.3 where the minimum computation time
obtained for each algorithm is reported, indicating the minimum time that could be achieved if a
Real-Time OS would be used.

Case (nz = 5) Np = 121 Np = 241

Nb 1 2 3 4 5 6 1 2 3 4 5 6

DARE (alg. 8.4) 10 91.1 71.4 71.4 61.7 61.7 18 151.2 131.4 131.4 131.4 121.5

HN (alg. 8.5) 24 122 83 73.4 54.8 54.8 98 462.1 303.3 224.5 185.4 156.5

EN (alg. 8.2) 42 182.3 113.8 94.7 85.3 76 162 712.3 443.7 315.2 256.5 227.4

fN (alg. 8.1) 2 2 2 2 2 2 3 3 3 3 3 3

HNδĈ∗ (alg. 8.6) 2 2 2 2 2 2 3 3 3 3 3 3

Total 80 431.9 302.7 273 233.5 223.6 284 1382.1 933.1 723.9 624.6 555.2

Table 8.3: Generic Computation Times (in µs) of Ideal MWB Closed Loop Dual Mode Approach for
a system with nx = 4 states, nu = 1 inputs (augmented state-size of nz = 5) using different block sizes
Nb = [1, 2, 3, 4, 5, 6] with Ideal Prediction Horizons Np = [121, 241]. The gain factor is indicated in red.

In this table (table 8.3) each of the cases are signaled in the gray coloured cases, with the computing
times being reported beneath for the Nb = [1→ 6] block sizes for each of the algorithms (alg. 8.4, 8.5,
8.2, 8.1 and 8.6), and the “Total” cyan coloured rows representing the summation of these algorithms.
Moreover, most of the table cells contain a red-coloured under-script indicating the “gain factor” (α)
as explained in section 5.2.6. The rows of the linear term (fN) and decompression/expansion step
(HNδĈ∗) are not signaled as they are not the main source of computation times.
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As in the generic computation comparison of the Shifting Strategy (sec. 5.2.6), we can see from
table 8.3 that the gain factor of HN (alg. 8.5) and EN (8.2) follow the block-size itself closely, in
some cases being up to 7.4 times faster as in EN of Np = 241, and giving up to 5.2 times faster
calculation in the “Total” times for Np = 241,Nb = 6. Note that the “Total” times may be affected
by the DARE calculation (alg. 8.4), which presents a rather minimum gain factor of up to 1.7 − 1.5,
respectively, although decreasing as expected from the method of calculating feedback gains (with the
required inverse - Kk = (BT

k Pk+1Bk)
−1BT

k Pk+1Ak) only at Nbi OR k = 0 as visible in lines 5−8 of the
algorithm. What this indicates is that the backward propagation of the weights Pk = wk + ΦT

k Pk+1Φk,
visible in line 11 of the algorithm, remains the main source of computations. However, this may change
if systems with more inputs were used given the required nu × nu inverse for the calculation of Kk.

On the other hand, we are also interested in knowing how does the proposed method compare to
that of those introduced earlier in chapters 5 and 6, namely those of tables 5.5 and 6.1. Comparatively
speaking, the proposed approach performs the calculation of HN and EN much slower than that of the
Ideal MWB of table 5.5, with the original version being up to 2.8 times faster for the calculation of HN

with Np = 241, Nb = 1 (98 to 35µs), but becomes closer to the performance of the original version as
the block size increases, eg. being only 1.7 times faster for the calculation of EN with Np = 241,Nb = 6

(22 to 13µs). Similarly, the algorithms also presented an increase when compared to those of the Dual
Mode approach presented in table 6.1. As an example, the calculation of H/F and E matrix (which
represent matrix HN and EN with Nb = 1), was 25µs and 33µs, respectively, for a Prediction Horizon
of Np = 150, whereas the proposed approach resulted in 24µs and 42µs for the Ideal Horizon Np = 121,
higher already in the case of EN. This comparative disadvantage is quite surprising considering the
state was only augmented by one (nz = 5 against nx = 4) but brings an important question of whether
it would be possible to develop algorithms that exploit the zeros structures of ACL and AOL more
efficiently which could potentially reduce the computations that come from the state augmentation.
We will discuss this at the end of the chapter for future work.

To corroborate this results, a secondary platform was used: the Beaglebone Blue, a robotics-oriented
embedded platform running a quasi-Real-Time Debian (Linux-based) OS @ 1 GHz with a NEON
floating-point accelerator (fpa), specifically designed to perform efficient parallel floats computations.
Only the case with Ideal Prediction Horizon Np = 121 was evaluated in this platform. Moreover, given
the platform has a 32-bits ARM processor, and the NEON fpa can only use floats for its operation, the
algorithms were tested using floats and doubles to evaluate the advantage that could be obtained in
this platform from being able to use reduced numeric precision via the proposed blocked prestabilised
approach without having numeric conditioning problems. The developed C++ codes were compiled
using the (-O3) optimisation C-flag, and the (-mfpu=neon) flag to enable the NEON instructions set
and were run using real-time priority (ie. chrt -r 99 ./main) for 1250 iterations per algorithm. The
comparison is presented in table 8.4 where the minimum time is reported, and the gain factor of using
floats instead of doubles indicated in the pink row.

From this table it can be appreciated that the approach maintains a similar performance to that
of table 8.3, reaching up to 8.8 times faster for the calculation of EN and being up to 5.8 times faster
for the “Total” calculation when using doubles, with DARE preserving the relatively low gain factor of
up to 1.7. Lastly, note that just by being able to use floats instead of doubles, the approach would be
able to compute up to 3.4 times faster in this platform.
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Case (nz = 5, Np = 121) Floats
Nb 1 2 3 4 5 6

DARE (alg. 8.4) 390 3181.2 2981.3 2811.4 2741.4 2711.4

HN (alg. 8.5) 1592 7572.1 5053.2 3864.1 3155.1 2715.9

EN (alg. 8.2) 2138 9952.1 6143.5 4644.6 3755.7 3196.7

fN (alg. 8.1) 33 341 331 321 321 321

HNδĈ∗ (alg. 8.6) 35 321.1 311.1 301.2 301.2 291.2

Total 4188 21362 14812.8 11933.5 10264.1 9224.5

Case (nz = 5, Np = 121) Doubles
Nb 1 2 3 4 5 6

DARE (alg. 8.4) 1335 9871.4 8751.5 8481.6 7861.7 7691.7

HN (alg. 8.5) 5045 21242.4 13493.7 10015 8056.3 6777.5

EN (alg. 8.2) 7477 27472.7 17184.4 12675.9 10117.4 8508.8

fN (alg. 8.1) 93 801.2 751.2 731.3 741.3 721.3

HNδĈ∗ (alg. 8.6) 92 695.7 655.7 635.7 625.7 625.7

Total 14042 60072.3 40823.4 35254 27385.1 24305.8

Double-Float Gain Factor 3.4 2.8 2.8 3 2.7 2.6

Table 8.4: Generic Computation Times (in µs) of Ideal MWB Closed Loop Dual Mode Approach using
Beaglebone Blue for a system with nx = 4 states, nu = 1 inputs (augmented state-size of nz = 5)
using different block sizes Nb = [1, 2, 3, 4, 5, 6] with Ideal Prediction Horizon Np = [121] and different
numeric precision (doubles and floats). The individual gain factor is indicated in red.

8.3 Case Study: The Inverted Pendulum

To evaluate the performance of the proposed approach, the Inverted Pendulum problem presented in
previous chapters was selected given its unstable dynamics in the upper equilibrium can easily lead to
ill-conditioned problems as discussed in chapter 6. As this system has been repeatedly tested, we will
keep this case study brief and we will focus only on the relevant/expected properties which ultimately
can relate the results of this chapter with that of the case studies presented in chapters 5 and 6.

For this case study, we used the dynamics of the inverted pendulum from case study 6.4 with
the same simulation parameters. Moreover, all the simulations were done using an Ideal Prediction
Horizon of Np = 121 for different block sizes Nb = [1 → 6], which allowed the verification of the
relevant properties. Furthermore, the optimisation was selected as in chapter 6 with the augmented
state weights wk+i = diag([1, 1, 10, 10, 0.1]) ∀i = [1, Np−1], and the terminal cost selected as wk+Np =

10wk+1 (ie. no infinite horizon terminal cost used). Finally, the same parameters from table 6.4 were
used with the same constraints, selected as −170 ≤ u ≤ 170 for the input, and −0.35 ≤ x ≤ 0.35.

8.3.1 Blocked Pre-stabilisation Example

One of the main concepts or “ideas” motivating this chapter’s contribution is that of “blocked prestabil-
isation”. To illustrate this, figure 8.1 shows a comparison between the predicted trajectories during the
swing up phase with a relatively small input disturbance (visible in the inner axis of the lowest graph
of the figure) on the decision variable when using two approaches: the Ideal MWB approach presented
in chapter 5, where the numeric conditioning problem was ignored; and the blocked pre-stabilised
approach proposed in this chapter. Note that this is the blocked pre-stabilised version of figure 6.2.
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Figure 8.1: Comparison of Blocked Predictions with and without Prestabilisation for the Inverted
Pendulum problem during the swing up phase.

As it can be appreciated, the predictions of the proposed approach (blue line) undergo a short
transition phase, particularly visible in the upper three graphs before stabilising in the nominal trajec-
tory of the state and input (green dot-dashed-line). In contrast, the predictions of angle and angular
velocities (2nd and 4th graphs) when using the original shifting blocks approach (red dashed-line) of
chapter 5, can be observed to diverge quite significantly, reaching deviations of up to −9501 and −1739

for the angular velocity and angle, respectively, visible in the inner axis of the respective graphs.
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What this demonstrates is that making a relatively small mistake in the blocked decision variable
has a significant impact on the predicted trajectories which for a nonlinear optimisation, can affect the
linearisation process, as well as the numeric conditioning of the problem in the general case.

8.3.2 Equality of Solutions, Numeric Conditioning and Shifting Constraints

Another set of properties that are expected when applying the proposed method of this chapter are:

1. Equality of the Solutions
2. Lower condition number of the Hessian (EN).
3. Satisfaction of constraints at the selected shooting points.

To illustrate these properties, figure 8.2 shows a 5 second simulation of the system with initial

condition x0 =
[
0 0 0 π

]T
(ie. the lower equilibrium), using a block size of Nb = 6, and starting

the optimisation with the free response (Ū = O). The simulation was run using two methods, namely:
the proposed blocked closed loop approach of this chapter, depicted by the blue line; and the originally
proposed blocking approach from chapter 5, depicted by the red dashed-line.
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Figure 8.2: Comparison of Blocked Closed Loop DM NMPC with MWB NMPC for the Inverted
Pendulum problem with an Ideal Prediction Horizon of Np = 121, a block size of Nb = 6, and using
the shifting strategy for the constraints. The condition number is given in the top figure for comparison.
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The first of these properties can be clearly identified by observing that both solutions are exactly
identical, with the embedded blocked solution clearly visible in the lower graph of the figure. Thus,
this represents a key illustration of theorem 8.1, which was required to link the nominal stability and
recursive feasibility properties of the proposed approach with those presented in chapter 5.

The second of these properties can be clearly seen in the upper graph of the figure where the
condition number of EN is plotted for both solutions: open loop and closed loop. From this, it can
be clearly appreciated how the originally proposed blocking approach (red dashed-line) leads to a
condition number on the order of 109, something which was initially ignored; eventually reaching a
steady oscillatory state around the values of (1.5 − 2) × 109, even after the system had stabilised.
Note that this oscillation on the condition number happens because the embedded blocking structure
is shifting forward until resetting its value, which in turn leads to different Hessian’s at each time step,
each of which has a different condition number. In contrast, the resulting condition number of the
proposed approach reaches a maximum value of around 150, and settles its oscillations around 10−25,
clearly demonstrating the improved numeric conditioning of the proposed approach.

Finally, regarding the constraint satisfaction of the shooting points, the solution using the original
optimisation setup was observed to be more relaxed in the blocked case than the standard NMPC (eg.
see figure 8.1), and as such was not even reaching the constraints for some of the evaluated block sizes
and initial condition, which in turn didn’t allow a proper illustration of the property to be discussed. To
address this, the constraints on the positions were restricted further to the range of −0.15 ≤ x ≤ 0.15

as seen in the figure. With this modification in place, the satisfaction of the shooting points can
clearly be seen in the two inner graphs of the position graph at times approximately t1 = 0.92 (s) and
t2 = 1.32 (s) where the constraint satisfaction is signaled in red circles. Indeed, the separation between
the shooting points of the inner graph at t1 can clearly be seen to be exactly 6, which is the selected
block size for the simulation, thus giving a clear example of the constraint satisfaction property of the
proposed shifting strategy of chapter 5. Such property remains to be one of the key contributions of
this thesis, thus forms an important part to be distinguished for the proposed combined approach.

8.3.3 Computation Times Comparison

In order to evaluate the computational performance of the proposed approach in this system, we
developed a set of auto-generated C++ codes based on the Eigen 3 library using the RTI algorithms
8.7 and 8.8 which implemented the approach in the Inverted Pendulum system. In order to reuse the
developed auto-generation routines for the tests performed in the Inverted Pendulum case study of
sections 5.5 and 6.4, we implemented the same three main modifications indicated in section 6.4.5,
namely: different model parameters (a = −0.3, b = 9.8065, c = 1, fm = 0 and k = 10), different
constraints (−1 ≤ u ≤ 1 and −1 ≤ p ≤ 1) and different weights (qk+i = diag([0.01, 0.01, 1, 1]) ∀i =

[1, Np − 1], qk+Np = 10qk+1, rk+i = 10 ∀i = [0, Np − 1]), with the rest of the simulation specifications
being identical, eg. same sampling time, same initial condition at the lower equilibrium and reference to
the upper equilibrium introduced at the end of the prediction horizon. For comparison, the algorithms
were developed for different block sizes Nb = [1→ 6] with an Ideal Prediction Horizon Np = 121. The
solutions of the resulting QPs were obtained using QP OASES [37, 38], all of which were verified to
match in all cases from Matlab simulations, to developed C++ codes.
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Each of the aforementioned cases was run for 1000 simulations of T = 10 (s) giving a total of
400, 000 optimisations per case. The codes were run using the same conditions as in the generic
computations comparison of section 8.2.4, ie. same laptop running the codes with real-time priority
(ie. chrt -r 99 ./main) with the same optimisation flags (-O3,-mavx,-mfma) for the compilation. The
resulting average computation times of the constrained iterations of each of these cases is presented in
table 8.5. For reference, the resulting gain factors are indicated in the red under-scripts.

Nb 1 2 3 4 5 6

QP OASES 2616 4286.1 18014.5 11223.4 8331.5 6937.9

Table 8.5: Average constrained computation times for the Inverted Pendulum using different block
sizes Nb = [1→ 6] with Ideal Prediction Horizon Np = 121. The gain factor is indicated in red.

From this table (table 8.5), it can clearly be appreciated how the proposed approach results in
substantial computational gains, being up to 38 times faster than the standard solution (Nb = 1) when
using block size Nb = 6, increasing rapidly as the block-size increases as in the results of table 5.12.
Moreover, the proposed approach presents a certain degree of “inefficiency” when comparing the results
to the approaches of tables 5.12 or 6.6. However, the approach still presented significant gains, even
when compared with the Standard NMPC of table 5.12, and starts to come close to the performance
of table 5.12 as the block-size increases, thus demonstrating that the approach results in adequate
computational performance and could be used as a viable alternative, especially in the case where
reduced numeric conditioning is required to be used with significantly unstable systems.

8.4 Case Study: The Nonlinear Ball-Plate System

To further illustrate the possible applications of this chapter’s contribution, this section presents the
final case study of this thesis; the non-linear ball-plate system from chapter 6, section 6.3. The system
was simulated using the same conditions and parameters, ie. with that of equation (6.40) simulated
using Forward Euler with Neuler = 20 intermediate steps, and a sampling time of Ts = 30 (ms). The
prediction horizon was selected as Np = 61 for it to be an ideal horizon of Nb = 6. The optimisation
weights were selected as wk+i = [6, 0.1, 500, 100, 1] ∀i = [1, Np − 1], with the terminal weight selected
as wk+Np = wk+1, ie. no infinite horizon costing. Finally, the constraints were set as in section 6.3, ie.
with −20 ≤ p ≤ 20 (cm), and −10 ≤ u ≤ 10 (V ).

Figure 8.3 shows an example T = 2.5 (s) simulation of the system where the embedded blocking
structure and the condition numbers of the Hessian can clearly be seen in the lower and upper graphs,
respectively. As it can be appreciated, the system presents such a highly unstable dynamics that
even with the proposed blocked pre-stabilisation, the resulting condition number reaches orders up
2.13 × 106 and presents fluctuations due to the time-varying nature of the nodes at which feedback
is applied which ultimately affects the condition number of the Hessian. As mentioned earlier, this
system was unable to be solved using the standard blocking method of chapter 5 given it resulted in a
Hessian with a condition number in the order of 1051. Thus, this case study provides a relatively simple
example of a relatively small system in which the typical input-blocking condensing based methods
wouldn’t be able to be applied.
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8.5 Summary

This chapter presented the development of a newly proposed Blocked Closed Loop Dual Mode Nonlinear
Model Predictive Control with Shifting Strategies. The proposed approach combined the contributions
of chapters 5, 6 and 7 into a single approach which benefits from all their respective advantages and/or
disadvantages. The main advantages of the proposed method are:

1. Nominal stability and recursive feasibility guarantees due to the shifting blocks of chapter 5, along
with theorem 8.1 and the Dual Mode terminal weight for the blocked infinite horizon solution
obtained in chapter 7.

2. Proper Numeric Conditioning for the Hessian due to the closed loop pre-stabilisation, as in
chapter 6, allowing reduced precision (ie. floating point) to be used, as well as being able to deal
with heavily unstable nonlinear systems.

3. Reduced amount of input and state constraints with recursive feasibility guarantees for the shoot-
ing points (selected constraints) in the infinite horizon case, as discussed in chapter 5.

4. Significant overall computational benefits due the embedded blocking structure of chapter 5.

On the other hand, some of the underlying disadvantages are:

1. Slightly higher computation times due to the pre-stabilisation steps (eg. when compared to
non-prestabilised solutions from chapter 5)

2. Slightly higher computation times due to the use of an augmented state (eg. when compared to
solutions from previous chapters such as chapters 5 and 6).

3. Possibility of violating intermediate constraints as inhereted from the method of chapter 5, which
can be compensated using small slacks.

Nonetheless, the overall approach may be critical for the implementation of condensing-based real
time NMPC with blocked input parameterisation for heavily unstable nonlinear systems, such as
nonlinear ball-plate system presented in section 8.4, or the triple pendulum of chapter 6.

The chapter presented the required steps to be able to combine the other approaches, as well
as on the underlying properties to be expected. The proposed approach was successfully applied
to the inverted pendulum problem of section 6.4 where all the benefits/properties above were seen
and discussed, including significant computational gains of up to 38 times faster than the standard
NMPC solution. Furthermore, to give a stronger example of the potential applications of the proposed
methodology, the chapter presents a case study for a nonlinear ball-plate system which was unable to
be solved using the standard blocking approach of chapter 5. The method was supported by theorem
8.1 (given without formal proof) which allowed the solution to retain the relevant nominal stability and
recursive feasibility guarantees of the method introduced in chapter 5. Moreover, the chapter presented
a set of algorithms for its efficient implementation in section 8.2, including a further extension to the
O(N)/O(N2) algorithms of chapter 5. In the case where further computational benefits are required,
future work will look to take advantage of the special structures presented in matrices AOL and ACL
to develop tailored algorithms which could reduce the computational burden further.
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Thus, based on the provided evidence, this chapter is considered a key contribution of this thesis,
offering a general methodology for implementing blocked closed loop dual mode nonlinear model pre-
dictive control with shifting constraints which was observed to result in enough benefits for it to be
relevant for its implementation in real systems.



Chapter 9

Summary, Conclusions and Future Work

This thesis presented a set of novel methods for Nonlinear Model Predictive Control (NMPC) tackling
a fundamental problem; the reduction of the computation burden. These methods were developed in
the hopes of providing the user with a wide range of suitable options for obtaining efficient real-time
solutions of NMPC that could serve as alternatives for implementation of NMPC in low-cost/low-
performance embedded real-time control systems.

The thesis starts by introducing the general notation, algorithms and methodologies to be used
in chapter 3, developed as a “detailed” literature review in the hopes of providing a complete set of
methods that could serve as an entry point for this thesis as well as for the new student of NMPC.

Afterwards, we introduce the general input-parameterised frameworks in chapter 4 where a set of al-
gorithms are provided as an initial contribution for the efficient implementation of input-parameterised
NMPC using the Real-Time Iteration (RTI) Scheme. The chapter includes 3 case studies which were
used to demonstrate the key properties, advantages and disadvantages of these type of methods.

Subsequently, we introduce the proposed Shifting Strategy in chapter 5; a key contribution of this
thesis that can be used in a wide range of variations and/or alternatives for obtaining significantly faster
solutions when compared to the standard NMPC whilst preserving nominal stability and recursive
feasibility properties as proved by theorem 5.3. The chapter provides a set of algorithms and methods
for its implementation under the RTI framework, including an extension of theO(N)/O(N2) algorithms
from Ph.D. thesis [8] which proved to be absolutely critical for obtaining efficient real-time solutions
and therefore is considered an important contribution. Moreover, the chapter included 4 case studies
which demonstrate very clearly the key properties, advantages and disadvantages of the proposed
method. One of the key results obtained in these case studies was in the computation times of the
popular Inverted Pendulum system where solutions up to 54 times faster than the standard approach
(including those of the ACADO toolkit) were obtained, thus fulfilling one of the initial goals set from
the initial motivations, aims and objectives of this thesis.

Following this, chapter 6 introduces a novel “generic” dual-mode pre-stabilisation method which
allows the optimisation of significantly unstable nonlinear systems that were otherwise unable to be
optimised using standard condensing-based methodologies. Although this method does not particularly
tackle the computational burden given it results in slightly higher computation times, it was developed
as a “pre-requisite” step towards “The combined approach” presented later in chapter 8 where the
computational burden was observed to be significantly reduced. Nonetheless, the method is a key
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development of this thesis given it solves the “numeric conditioning” problem of condensing-based
optimisations as described in the chapter, thus allowing the solution of a wide range of unstable systems
with the advantage of being able to use reduced numeric precision (eg. floats instead of doubles) which
overall could ultimately result in faster solutions. Moreover, the chapter included a set of algorithms
for its implementation under the RTI Scheme, along with an extension to the O(N)/O(N2) algorithms
from Ph.D. thesis [8] which is considered a key contribution of this chapter. The resulting algorithms
and methods were tested in 4 case studies which clearly demonstrated the expected advantages and
disadvantages of the proposed approach, along with important properties that supported the method
such as those described by novel theorem 6.2. Among the key results, it was seen that the proposed
method could result in increments in the computation times as low as +3% in the context of Interior
Point methods, which were considered to be justified based on the substantial numeric conditioning
advantages that were observed which ultimately allowed the solution of highly unstable systems such
as the Triple Inverted Pendulum of case study 6.5 that were unable to be solved using the standard
methodologies altogether. Finally, the method could be merged with dense input-parameterisation
techniques such as the Laguerre polynomials of chapter 4 as discussed in the chapter, which ultimately
would offer additional alternatives to the user.

Later, chapter 7 provided a brief and relatively simple solution to the infinite horizon problem that
results from the Shifting Strategy of chapter 5, particularly from the implementation of the “Ideal
MWB” input parameterisation defined by equation (5.11). The proposed solution could be used as
a “terminal weight” for the optimisation, thus allowing the user to obtain a more relaxed stability
guarantee. The application of this approach could ultimately allow the use of reduced prediction
horizons which would result in faster computation times. Moreover, the chapter introduces the concept
of “blocked feedback” gains, as depicted in figure 7.1, which could be used to obtain “blocked pre-
stabilised” prediction models, eg. in the context of linear MPC, to acquire Maximum Admissible Sets
(or more likely a set of MAS) which could be used as terminal conditions to obtain a more rigorous
recursive feasibility guarantee for the approach of chapter 5. This task was left as future work.

Finally, chapter 8 presents the final contribution of this thesis; “The Combined Approach”, which
merges the methodologies of chapters 4, 5, 6 and 7 into a single strategy which could be used to optimise
a wide range of unstable nonlinear systems whilst having a significantly reduced computational burden.
The proposed approach is provided with a set of algorithms which allow its efficient implementation,
including a further extension to the “already extended” O(N)/O(N2) algorithms from chapter 5, thus
considered as an additional key contribution of this thesis. The chapter includes 2 different case studies
which allow the demonstration of the various relevant properties inherited from the methodologies of
the other chapters. One of the key results obtained from this case studies were the computation times
obtained for the Inverted Pendulum of section 8.3 where solutions up to 38 times faster were obtained
when compared to the standard approach. This ultimately aligns with the initial motivations of this
thesis where the proposed approach could serve as a viable alternative for handling a wide range of
unstable nonlinear systems with the advantage of having a significantly reduced computational burden
along with desirable nominal stability and recursive feasibility properties. In the specific case where
faster computation times are required, the proposed algorithms could take advantage of the special
structures of some of the used matrices of the approach which could reduce the computational burden
further. This task was left for future work.
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In conclusion, we believe the work presented in this Ph.D. to be of great importance and relevance
for the NMPC research community, both in academia and industry, and that its proper understanding
could be key for enabling a wide range of applications in which real-time performance is required and
hard deterministic time-constraints must be satisfied. Indeed, the author of this thesis strongly believes
that even though some of the methods and algorithms may seem complex, they might be easier to
implement and understand than they appear which makes them relevant for industry engineers which
typically prefer avoiding too complex or theoretical procedures, often lacking detailed steps for their
implementation. Moreover, the developed approaches satisfied the initial objectives of this Ph.D. which
were to “tackle the computational burden whilst preserving desirable properties for the optimisation”,
and we believe the methods described in this thesis provided enough details and supporting evidence
for them to serve as viable alternatives to the standard NMPC approaches for practical applications.

On the other hand, future work will look to merge the proposed approaches with other existing
alternatives to give an ever wider range of options to the final user. As an example, one direct extension
currently in the works will be to extend the proposed Closed Loop Dual Mode NMPC framework to
couple it with the input parameterised approach where by calculating and embedding the unconstrained
solution in the ”free-response” (ie. with the decision variables set to zero), the optimisation can then
use the Laguerre Polynomials, or any relevant input parameterisation to adjust the solution only when
the unconstrained solution violates the constrains, similar to the work presented in [79] for Linear
MPC. Similarly, the proposed setup will be considered in a robust online framework supported by
multi-model unstable systems to capture the uncertainty whilst having a set “pre-stabilising” gains
to “pre-condition” the resulting optimisation and improve its hot-starting properties, resulting in an
online robust optimisation which again aligned with the initial motivations and objectives of this
thesis. Lastly, the algorithms for chapter 8 will be adjusted to exploit the underlying structure of the
operations, thus leading to a more efficient framework, and the algorithms required the calculate the
MAS for the proposed Shifting Strategy case with the Ideal MWB will be developed based on the
blocked feedback gains obtained in chapter 7.

Thank you for your time and effort reading through my Ph.D. thesis!
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Appendix A

FLOPS Comparison

Table A.1 presents a Floating Point Operation comparison between the Standard approach and the
proposed Closed Loop Dual Mode of chapter 6. The algorithms are introduced in their order of use in
their respective final RTI algorithms.

Method Algorithm Number of Multiplications

Standard

Calculate H (alg. 3.5) 0.5Npn
2
xnu(Np − 1)

Calculate E (alg. 3.2) 0.5Npnxnu[Np(2nx + nu) + nu]
Calculate D (alg. 3.6) Npn

2
x

Calculate f (alg. 3.3) Npnxnu(2nx + nu)− n2
xnu

Calculate X̃ (alg. 3.7) (Np − 1)n2
x +Npnxnu

Closed Loop
Dual Mode

Calculate H/F (alg. 6.4) 0.5Npnxnu(Np − 1)(nx + nu)
Calculate E (alg. 6.2) 0.5Npnu[Np(2n

2
x + 2nxnu + n2

u) + n2
u]

Calculate D/S (alg. 6.5) Npnx(nx + nu)
Calculate f (alg. 6.1) Np(n

2
xnu + nxn

2
u + n3

u) + (nxn
2
u + n2

xnu)(Np − 1)

Calculate X̃/Ũ (alg. 6.6) Npnx(nx + 2nu)− n2
x − nxnu

Method Algorithm Number of Summations

Standard

Calculate H (alg. 3.5) 0.5Npnxnu(Np − 1)(nx − 1)
Calculate E (alg. 3.2) 0.5Npnu[Np(2n

2
x + nxnu − nx − nu) + nx + nu]

Calculate D (alg. 3.6) Npn
2
x

Calculate f (alg. 3.3) Npnu(2n2
x + nxnu − nx − nu + 1)− n2

xnu
Calculate X̃ (alg. 3.7) (Np − 1)n2

x +Npnx(nu − 1)

Closed Loop
Dual Mode

Calculate H/F (alg. 6.4) 0.5Npnu(Np − 1)(nu + nx)(nx − 1)
Calculate E (alg. 6.2) Expression is too long

Calculate D/S (alg. 6.5) Np(n
2
x + nxnu − nu)

Calculate f (alg. 6.1) Npnu(3n2
x + nxnu + n2

u − nx − nu)− 2n2
xnu

Calculate X̃/Ũ (alg. 6.6) Np(n
2
x + 2nxnu + nx)− nx(nx + nu)

Table A.1: Floating Point Operations (FLOPS) of the main algorithms from the standard and closed
loop dual mode approaches which are relevant for real-time implementation.
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Appendix B

Infinite Horizon Feedback Gains for
NMPC Pre-stabilisation: A Comparison

This chapter is meant to show a simple and easy to replicate comparison between using infinite horizon
feedback gains in the general NMPC “prestabilisation” method established in chapter 6 for each of the
linearised state space system matrices (ie. Ak, Bk), and using those proposed in the method of chapter
6. Although their usage may be intuitive given the general stability properties they embed on the Ak
matrix, it is important to recognise that the multiplication between matrices with eigenvalues inside
the unit circle DOES NOT guarantee the resulting matrix will also have the eigenvalues in the unit
circle. Moreover, if the system undergoes through uncontrollable/unstabilisable periods or sections
along the prediction horizon, the standard DARE procedure wouldn’t be able to obtain a control
law for those specific time steps. Moreover, their calculation takes significantly more time than the
proposed approach. All of these represent important disadvantages which can be overcome by the
general “pre-stabilisation” procedure introduced in chapter 6.

Let us begin by considering a small unstable and nonlinear “generic” state space system defined by:

xk+1 =

[
2.2 −1.2

1 0

]
xk +

[
b1

0

]
uk (B.1)

where the coefficient b1 is time-varying, defined as b1 = 0.1 + 0.1 sin
(

2πk
Np

)
which contains the non-

linearity where the coefficient is varying with in a smooth/simple sinusoidal manner along the prediction
horizon (Np). This results in an unstable system with eigenvalues in eig(A) = [1, 1.2].

Consider now an optimisation with a prediction horizon of Np = 100, a state penalisation weight of
qk = diag([1, 1]) ∀k = [1→ Np], and an input penalisation weight of rk = diag([0.1]) ∀k = [0→ Np−1].
Note that the b1 coefficient is 0 for k = 75, which would lead to an unstable/uncontrollable system
in which no infinite horizon gain can be obtained in general. For the purpose of this example, the
feedback gain at that time step will be set to zero. This is automatically achieved when using the
proposed approach as the matrix Bk becomes zero which consequently makes the expression of Kk

from equation (6.2b) to be zero.
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Table B.1 summarises the condition numbers obtained for the Hessian (E) when using different
version of pre-stabilisation including: no pre-stabilisation (standard approach), pre-stabilising by using
infinite horizon gains for each Ak, Bk pair in algorithm 6.4, and pre-stabilising by using the proposed
approach, ie. the one defined by algorithms 6.3 and 6.4. From this table it can be appreciated that the
system is indeed heavily unstable, reaching a condition number with up to 16 orders of magnitude. On
the other hand, it can also be seen that although the infinite horizon gain pre-stabilisation approach
does indeed result in a low condition number of 46.776, the proposed approach gives a better result
with a condition number 0.4543, clearly showing the deficiencies of using infinite horizon gains for this
particular.

Method Condition Number
Standard (No prestabilisation) 4.1132E + 16
Pre-stabilised w/Infinite Horizon Gain 46.776
Pre-stabilised w/proposed approach 0.4543

Table B.1: Comparison of Condition Number of E when using different versions of pre-stabilisation.

This provides a small example comparison where the proposed approach was able to outperform
the infinite horizon gains. However, there may be other cases where the latter (or indeed any other
approach) performs better, and a definitive statement of superiority cannot yet be made. Nonetheless,
if the system enters the terminal region, an infinite horizon cost can be embedded in the final weight
(qNp) which would cause the immediately preceding feedback gain (KNp−1) to be the infinite horizon
gain for the linear region, followed by the rest of the feedback gains embedded in the infinite horizon
framework.

In general, because of the significantly increased computation times that would be required to
compute the infinite horizon gains online, it is recommended to use the proposed approach which was
found to give satisfactory performance with the benefit of freedom in selecting the tuning for the “pre-
stabilisation” procedure, as well as avoiding any potential issue due to uncontrollable/unstabilisable
regions around the nonlinear trajectory.



Appendix C

Interior Point Method

One of the methods that was studied as part of the learning of this Ph.D. were Interior Point methods.
This allowed a deeper understanding of the underlying procedures required by this type of Quadratic
Programs which ultimately were used to evaluate the computational performance, particularly when
using the method presented in chapter 6 for the Inverted Pendulum case study 6.4 as seen in table 6.6.
In this case study, we were interested in how fast can the resulting Quadratic Programs of chapter 6
be “run” using general Primal-Dual Interior Point methods as the ones described in [39, 91, 150], as
well as how do they compare when used for standard NMPC QPs.

Consider a general Quadratic Program of the form:

J =
1

2
ẐTEẐ + ẐT f MẐ ≥ γ (C.1)

The optimal solution via Primal-Dual Interior Point methods reduces to the repeated solution of
the linear system of equations as (C.2) until the Karush-Kush-Tucker (KKT) conditions are satisfied
(δẐ = 0, δλ = 0, λ > 0, MẐ ≥ γ), with the logarithm barrier term decreasing to (µ = µini → 0). The
system is given by:

[
E −MT

ΛM C

][
δẐ∗

δλ∗

]
=

[
−f − EZ̄ +MT λ̄

µ1− Cλ̄

]
(C.2)

where Z̄ and λ̄ are guesses of the optimal solution; δẐ∗ and δλ∗ are optimal deviations from the
guesses towards the optimal solution; Λ = diag(λ̄); C = diag(MZ̄−γ); and 1 is a vector of ones which
multiplies the logarithm barrier weight (µ). Note that the constraints must be in the formMẐ ≥ γ for
proper operation operation of the interior point, ie. both M and γ from the general QP frameworks
(3.33, 3.31, 4.4, 4.5, 6.14) presented throughout the thesis must be negated.

The reader can verify that an efficient solution to (C.2) can be obtained by:

δẐ∗ = (E −MTC−1ΛM)−1(−f − EZ̄ +MTC−1µ1) (C.3a)

δλ∗ = −λ̄+ C−1(µ1− ΛMδẐ∗) (C.3b)
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Having defined this, the solution of the QP using this Interior Point method reduces to 3 particular
tasks: the selection of the initial guess for Z̄ [0] and λ̄[0] required to be feasible (inside the interior
of the barriers), the selection of appropriate step-size that satisfies M(Z̄ [i] + αδẐ∗) − γ ≥ ε and
λ̄[i] +αδλ∗ ≥ ε, and the systematic reduction of the logarithm barrier weight (µ). In this case, we took
a simple approach for these 3 tasks on ours tests for the case study of section 6.4 such as exponential
decrease of (µ), ratio-test based selection of α [38, 40], and use of heavily penalised slacks (soft-
constraints) for calculating initial guesses which satisfied the basic requirements and were observed to
obtain proper optimal solutions. Regardless, the main interest of its implementation was not to obtain
an actual solution but to quantify the computational burden related to the repeated solution of (C.3),
as discussed in the aforementioned case study.



Appendix D

Publications

This appendix includes all the publications and submissions related to the work of this thesis, namely:

• A 2018 IFAC NMPC Conference (Abstract-only) Paper [48]: “A Time-Varying Shifting Strategy
for Block Based MPC Solutions using a RTI Scheme”, related to the contents of chapter 5.

• A 2018 UKACC Conference Paper [49]: “Laguerre-based Adaptive MPC for Attitude Stabilisa-
tion of Quadrotor”, related to the contents of chapter 4 experimentally applied to the physical
Quadrotor visible in (https://youtu.be/RSe35TjjBPI).

• A 2020 IET Control Theory and Applications journal paper [50]: “Shifting Strategy for Efficient
Block-based Non-linear Model Predictive Control using Real-Time Iterations”, related to the
contents of chapter 5.

• A 2020 IET Control Theory and Applications journal paper [47]: “Fast Hybrid Dual-Mode NMPC
for a Parallel Double Inverted Pendulum with Experimental Validation”, related to the con-
tents of chapter 6 based on the experimental application of the proposed approach visible in
(https://youtu.be/7E-SXi3YKQo).

• A 2020 IFAC World Congress publication [59]: “Model Predictive Control for Wave Energy
Converters: A Moving Window Blocking Approach”, related to the contents of chapter 5.

• A 2020 IFAC World Congress publication [100]: “Towards Control of Autonomous Surface Vehi-
cles in Rough Seas”, related to the contents of chapter 4.

• A 2020 IEEE Transactions on Automatic Control submission: “Dual Mode Stable Prediction
Models for Numerically Robust Fast Nonlinear Model Predictive Control using Real-Time Iter-
ations”, related to the contents of chapter 6.
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1. INTRODUCTION

Over the last decade, Nonlinear Model Predictive Control
(NMPC) has been gaining attention given the increasing
computing power available nowadays which allows its
online implementation in fast systems. Its popularity is
mainly due to its ability to handle constraints and complex
or highly nonlinear multivariable systems.

One of the most prominent approaches for fast online
optimisation in the context of NMPC is the Real Time
Iteration (RTI) Scheme (Diehl et al., 2005). An excellent
review of this method is presented in Gros et al. (2016).
The ACADO toolkit (Houska et al., 2015) is an open-
source software capable of automatic code generation that
allows implementation of this method for solving Optimal
Control Problems (OCP) for different types of systems,
such as continuous, discrete, ODEs, DAEs, etc. (Quirynen
et al., 2013). In the case of continuous time systems, it
uses single or multiple shooting to reduce the OCP to
an approximate but tractable non-linear program (NLP).
Depending on the requirements of the user, as well as
the size of the system itself, the optimization can be
done using condensing approaches or sparse solutions. An
earlier study (Vukov et al., 2013) concluded the condensing
approach is faster for small to medium systems, whereas
the sparse solution is preferred for larger scale systems.

Another popular approach to reduce the computational
burden within NMPC is that of blocked solutions, however
a common problem with this type of approach is recursive
feasibility. In Cagienard et al. (2007), a ”Moving Window
Blocking” strategy is presented that solves this by using a
set of blocking matrices, similar to the concept presented
in this paper but with significant differences. The work in
Kouzoupis et al. (2015) presented the application of block
condensing using the ACADO toolkit, but critically, with
no consideration of the recursive feasibility problems.

This paper focuses on condensed solutions for the solution
of NMPC problems (although the proposed approach is
equally applicable to sparse solutions) and explores block
based solutions for the reduction of the computation bur-
den related to the optimization. To solve the recursive
feasibility problems present in this type of formulation,
we propose a time-varying shifting strategy which relies on
fixing the points of interest in the time domain and shifting
the optimization accordingly. To validate the concept, the
paper presents a simulation of the swing-up and stabi-
lization of an inverted pendulum, a common benchmark
for NMPC. The results show that recursive feasibility is
recovered and the proposed approach gives significantly
better performance than previous alternatives. Addition-
ally, restrictions in the block size (Kouzoupis et al., 2015)
are now not required.

The paper is organized as follows: Section 2 presents
the NMPC formulation based on Taylor linearisation for
discrete systems, derives the optimization matrices, give
two types of solution, the incremental and absolute and
introduces the concepts used by the RTI Scheme. Section
3 presents the blocked solution which embeds an input-
structure into the optimization. Section 4 presents the
proposed time-varying shifting strategy for block based
solutions to retain recursive feasibility problem and em-
beds a well-posed optimization giving better performance
and more stable and reliable solutions. Section 5 presents
numerical results obtained from an inverted pendulum
simulation where the proposed strategy clearly outper-
forms earlier non time-varying shifting strategies. Finally,
section 6 contains conclusions and future work.



2. NONLINEAR MODEL PREDICTIVE CONTROL

2.1 Modeling

Throughout this paper, discrete-time nonlinear dynamics
of the following form will be considered:

xk+1 = f(xk, uk)
yk = g(xk, uk)

(1)

where xk are the states, uk are the controls or inputs of
the system and yk are the outputs. For continuous-time
models, direct methods such as single or multiple shooting
can be used to discretize the system and reduce the infinite
Optimal Control Problem (OCP) to an approximate but
tractable and finite NLP and simulate the nominal trajec-
tories and linearisation matrices used by the formulation.

2.2 Prediction

By expanding a Taylor series up to first order terms, the
system (1) can then be approximated by:

xk+1 = f(x̄k, ūk) +
∂f(x̄k, ūk)

∂x̄k
δxk +

∂f(x̄k, ūk)

∂ūk
δuk

= x̄k+1 +Akδxk +Bkδuk

(2)

where δxk = xk − x̄k and δuk = uk − ūk represent the
deviation of the state and input from the nominal point at

time step t = k, and Ak = ∂f(xk,uk)
∂xk

and Bk = ∂f(xk,uk)
∂uk

represent the partial derivatives of the system dynamics.
Notice the deviation δxk+1 = xk+1 − x̄k+1 at time step
t = k + 1 is then approximated by:

δxk+1 = Akδxk +Bkδuk (3)

Given that the nominal points x̄k+1 and linearization
matrices (Ak, Bk) of (2) depend parametrically on x̄k and
ūk, and that at a given sampling time t = k the value of
x̄k is already given either by measurements or by state
estimation, the value of x̄k+1 can only be obtained by
assuming the value of ūk. If values are assumed not only
for ūk but for all the future nominal input trajectory

Ū =
[
ūk ūk+1 · · · ūk+Np−1

]T
, this allows us to simulate

the system forward and generate the nominal points X̄ =[
x̄k+1 x̄k+2 · · · x̄k+Np

]T
and linearisation matrices Ak

and Bk at future time steps t = k + 1, k + 2, · · · , k +
Np. From now on, X̄ will be referred as the predicted
nominal state trajectory.

Once the predicted nominal state trajectory is obtained by
using the future nominal input trajectory, the prediction
equation (3) can be shifted forward by:

δxk+2 = Ak+1δxk+1 +Bkδuk+1 (4)

Substituting equation 3 in 4 gives:

δxk+2 = Ak+1(Akδxk +Bkδuk) +Bk+1δuk+1

= Ak+1Akδxk +Ak+1Bkδuk +Bk+1δuk+1
(5)

By repeating the process Np steps ahead and considering
only the output of the system, the deviations from the
predicted nominal output trajectory can be condensly
represented by:

δŶ = Gδxk +HδÛ (6)

where δŶ = Ŷ − Ȳ and matrices G and H are given by:

G =




C1A0

C2A1A0

...
CNpANp−1 · · ·A1A0


 (7)

H =




C1B0 O · · · · · ·
C2A1B0 C2B1 O · · ·
C3A2A1B0 C3A2B1 C3B2 · · ·

...
...

...
. . .

CNpANp−1 · · ·A1B0 CNpANp−1 · · ·A2B1 · · · · · ·




(8)

where Ck = ∂g(x̄k,ūk)
∂x̄k

is the partial derivative w.r.t the

nominal state in (1), and O represents a matrix of zeros
with the same dimensions of CkBk. Notice the k notation
in Ak and Bk has been dropped for simplicity.

2.3 Optimization

Once the prediction is formulated, a quadratic cost func-
tion penalizing the predicted errors between the reference
trajectory Yr and the predicted output trajectory Ŷ and
the input trajectory Û magnitude can be formulated as:

J =
1

2
(Yr − Ŷ )TQ(Yr − Ŷ ) +

1

2
ÛTRÛ (9)

where Q is a positive-definite matrix penalizing the pre-
dicted errors with dimensions nyNp × nyNp and R is a
positive-semi definite matrix penalizing input deviations
with dimension nuNu × nuNu.

In the following, two types of solutions will be formulated:
the first one giving increments to the nominal input tra-
jectory δÛ and the second one giving the input trajectory
directly Û . Although both solutions give exactly the same
answer, the inequality constraints are expressed differently.
Let us first reformulate cost function (9) by expressing it
in the standard QP form:

J =
1

2
zTEz + fT z s.t Mz ≤ γ (10)

where z is the decision variable to be optimized depending
on which formulation (incremental or absolute) is chosen,
M is the linearisation matrix of the inequality constraints
and γ is a time varying vector with the constraints. The
equality constraints can be implemented by selecting the
upper and lower limits of the inequality constraints to be
the same value.

Incremental Formulation

Substituting expressions (6) and the definition of Ŷ and

Û into cost function (9) gives:

J =
1

2
(Yr − Ȳ −Gδxk −HδÛ)TQ(Yr − Ȳ −Gδxk −HδÛ)

+
1

2
(Ū + δÛ)TR(Ū + δÛ) (11)

By optimizing w.r.t δÛ , the optimization is of the standard
QP form (10) where E = HTQH + R is formally known
as the Hessian and f = −(HTQ(Yr − Ȳ − Gδxk) − RŪ)
is formally known as the gradient. In this case, both
input and output inequality constraints must be expressed
relative to the nominal trajectory:



M =



I
−I
H
−H


 γ =




Umax − Ū
−(Umin − Ū)

Ymax − Ȳ −Gδxk
−(Ymin − Ȳ −Gδxk)


 (12)

Absolute Formulation

Similarly, substituting expression (6) and the definition of

Ŷ and δÛ into cost function (9) gives:

J =
1

2
(Yr − Ȳ −Gδxk −HÛ +HŪ)TQ

(Yr − Ȳ −Gδxk −HÛ +HŪ) +
1

2
ÛTRÛ (13)

Once again, by optimizing w.r.t Û , the optimization is of
the standard QP form (10) where E = HTQH + R and
f = −HTQ(Yr − Ȳ −Gδxk +HŪ). In this case, the input
constraints are expressed in absolute values and the output
constraints remain relative:

M =



I
−I
H
−H


 γ =




Umax

−Umin

Ymax − Ȳ −Gδxk +HŪ
−(Ymin − Ȳ −Gδxk +HŪ)




(14)

Having defined this, any QP solver such as qpOASES can
be used to solve the optimization. For our simulation, the
quadprog function from Matlab was used.

2.4 Real-Time Iteration Scheme

The RTI Scheme is a method developed by Diehl et al.
(2005) for Nonlinear Optimization in Optimal Feedback
Control that is capable of giving real-time performance
based on the following strategies:

(1) Initial Value Embedding
It uses the solution found in the previous step in a
shifted version, typically duplicating the last input
variable uk+Np

= uk+Np−1, to obtain the trajectory
over which the formulation will linearise and optimize.
Additionally, in the case of constrained optimization,
it also uses a shifted version of the Lagrange multi-
pliers λ found in the previous optimization.

(2) Computation Divisions
It separates the computations into feedback and
preparation phases. The preparation phase uses a pre-
dicted state evolution obtained from the last input tra-
jectory in its shifted version to linearise and prepare
a QP. Once the state becomes available, the feedback
phase quickly delivers an approximate solution.

(3) Approximate QP Solution
To further reduce the computational burden, it per-
forms only one QP iteration and accepts an approxi-
mate solution the decreases the cost function J .

The main relation between the proposed approach and
the RTI Scheme lies on the modification of the shifting
strategy used in the IVE.

3. BLOCKED SOLUTION

A popular method for reducing the computational burden
further is by using blocked solutions where the inputs or
decision variables are blocked in sections and assumed to

have the same value, e.g. uk = uk+1 = · · · = uk+NB−1

where NB is the block size, thus reducing the number
of degrees of freedom and consequently the optimization
time. This blocked solution can be represented by an input
structure of the form:

δÛ = NδÛ (15)

Û = NÛ (16)

where Û (or δÛ) is the blocked decision variable and N is
the blocking matrix defined as:

N =




I O · · · O
O I · · · O
...

...
. . .

...
O O · · · I


 (17)

I is a matrix containing NB vertically blocked identity
matrices of nu dimension and O is a matrix of zeros of the
same dimension. By substituting (15) and (16) into cost
functions (11) and (13) respectively, the following modified
Hessians and gradients can be found.

Incremental Formulation

E∗ = NT (HTQH +R)N (18)

f∗ = −NT (HTQ(Yr − Ȳ −Gδxk)−RŪ) (19)

Absolute Formulation

E∗ = NT (HTQH +R)N (20)

f∗ = −NTHTQ(Yr − Ȳ −Gδxk +HŪ) (21)

Efficient code can be generated to compute both previous
solutions which save a significant amount of computations
and reduce the required memory of the relevant matrices.

Definitions (15) and (16) can be used to recover the
solution in the original variables. This is also relevant when
representing the constraints as in (12) or (14). Finally, it
should be noted that in contrast to the unblocked case
where both formulations (absolute or incremental) result
in the same solution, in this case, they can present different
solutions given that it is conceptually different to embed
this blocked structure in either increments or absolute
variables. However, if the time-varying shifting strategy
presented next is used, they do give the same results which
is a consequence of deploying a consistent optimization.

4. TIME-VARYING SHIFTING STRATEGY

One potential problem of using the blocked solution above
is the lack of recursive feasibility guarantees. Using the
definition of recursive feasibility discussed in Cagienard
et al. (2007), an optimization is said to be recursively
feasible if and only if, for any feasible solution found
at time step t = k, all solutions found at future steps
t = k+1, k+2, · · · , k+∞ are also feasible. A simple way of
guaranteeing recursive feasibility is to include the solution
at the previous sampling (also known as the ”tail”) in the
possible input choices at the current time step (Rossiter,
2018). The problem with a standard blocking approach
is that it fails this simple test; the input trajectory from
the previous sample is not available in the choices at
the current sample and, as such, a recursive feasibility
assurance cannot be given, in general.



One possible work around (Mendez et al., 2000) is to
utilize the tail explicitly. If the input choice was feasible
previously and one cannot find a feasible solution at the
current step, then a shifted version of the previous decision
should still be feasible (nominal case). However, such a
choice is, in effect, open-loop and thus will not be rejecting
any uncertainty in the system. This observation presents a
mayor problem for the RTI Scheme with standard blocking
given that a well-posed optimization (Rossiter, 2018) is
premised on the fact that a shifting of the previous solution
will be included automatically in the optimization.

This section proposes a time-varying shifting strategy
with analogies to multi-rate approaches (Rossiter et al.,
2005) that fixes the recursive feasibility and ill-posed
optimization problems present in simplistic blocking. The
proposed strategy fixes the attention of the optimization
to absolute rather than relative points in time at which
either inputs or decisions must be made, and constraints
must be satisfied. This method is relevant when the points
of interest occur at a significantly lower frequency than
the sampling time. Notice that although in this paper
the formulation is presented for discrete time models,
this concept is equally applicable to shooting methods
where the system must be discretized. The concept is
illustrated in figure (1) where the red asterisk represents
the optimization at time t = k looking at 5 shooting nodes
or points of interest sampled at Ts = 0.4 (s). Assuming
that the actual sampling time of the system is Ts = 0.2 (s),
the usual shifting strategy of the RTI used with the
shooting concepts would look into the black crossed nodes
and forget about the red asterisk nodes of the previous
optimization. In contrast, the proposed approach (TV)
represented by the green squares remain looking at the
same red points of the previous optimization and add the
last node to keep a constant prediction horizon.

Fig. 1. Time-Varying Strategy Illustration

When thinking about the decision variable, the concept
of time-varying shifting illustrated in figure (1), leads to
a time-varying blocking structure N that is used sequen-
tially as the optimization progresses. To understand this,
consider a small system of prediction horizon Np = 4 with
a single input nu = 1 and a block size NB = 2. For this
system, the standard time-invariant blocking is given by:

N =




1 0
1 0
0 1
0 1


 (22)

However, notice that in order to make the decisions on
the same points in time matrix (22) must be shifted
in time accordingly, hence giving the next two possible
representations:

N1 =




1 0
1 0
0 1
0 1


 N2 =




1 0 0
0 1 0
0 1 0
0 0 1


 (23)

It can be shown that for an input-structure with NB

blocks, there will be NB possible representations that
maintain consistency along time. Notice this may cause

the modified Hessians E∗ to vary in length from d Np

NB
e

to d Np

NB
+ 1e as shown in the example above for N2. An

alternative would be to have a time-varying horizon or
to select an horizon that keeps this lengths fixed, e.g.
Np = 51, NB = 2.

Finally, the points of interest related to the outputs
must also be fixed in time, as illustrated in figure (1),
for the optimization to be consistent. This means that the
optimization will select a time-varying subset of rows
from H, HN, G, M , γ, Ȳ and Yr matrices and vectors, that
ensures the same points are always optimised.

5. SIMULATIONS

To test the proposed formulation, a challenging benchmark
problem was selected such as the nonlinear inverted pen-
dulum which is a under-actuated single-input multiple-
output non-minimum phase nonlinear system where the
task is to swing-up and stabilize the system. The latter
was achieved in a real inverted pendulum system by Mills
et al. (2009) using modest hardware. The idea now is to
see if the optimisation can be done using much simpler
algorithms, thus allowing faster computation times.

5.1 System Modeling

The simplified nonlinear differential equations describing
the dynamics of an inverted pendulum can be found in
Alamir (2014) and are given by:[

θ̈
p̈

]
=

[
−bθ̇ + g sin θ + cos θu

u

]
(24)

Assuming the state x =
[
θ θ̇ p ṗ

]T
, the system was

simulated using a forward euler integration method which
leads to the following linearized state space model:

δxk+1 = Akδxk +Bδuk (25)

Ak =




1 T 0 0
Tαk (1− Tb) 0 0

0 0 1 T
0 0 0 1


 Bk =




0
Tcθk

0
T


 (26)

where T is the sampling time, cθk = cos θk, sθk = sin θk
and αk = gcθk − sθkuk. It is important to remember that
the dynamics were still simulated using the forward euler
integration to generate the nominal outputs Ȳ , namely the
position p and angle θ of the system.



For our simulation, the parameters were b = 0.3 and g =
9.806655, and the simulation was done using a sampling
time of T = 0.025 (s). Furthermore, the prediction horizon
was set at Tp = 1.25 (s) ( i.e Np = 50) and the tuning
parameters were R = 0.1I and Q = I. Following the
ideas presented in Mills et al. (2009), a terminal weight of
Q = 500 was added to the end of both position and angle of
the pendulum to aid with the convergence properties of the
optimisation, given the required swing-up is highly non-
linear. Finally, the system was constrained to positions
−1 < p < 1 and inputs/accelerations of −10 < u < 10.

5.2 Results and Discussion

The system was simulated for blocking sizes up to 12 start-
ing with the pendulum at the lower equilibrium position

in the center of the sliding bar (x0 = [π 0 0 0]
T

) and with
a nominal input trajectory of zeros. Table (1) presents a
cost comparison for each blocking size using 4 different
blocked methods, namely absolute and incremental with
and without the proposed time-varying (TV) shifting.
Additionally, whenever the system encountered a recursive
feasibility violation (ie. an infeasible flag) or a non-convex
QP (ie. a non-convex flag) from quadprog, the previous
solution (ie. the tail) was used to retain feasibility. The
number of recursive feasibility violations were counted and
are shown in brackets in the same table. If no violations
were recorded, the brackets were omitted.

From Table (1) it can be seen that the TV formulations
have identical values for J as expected, and they present
an overall better cost indicated by the final (’Total’) row.
Furthermore, although the non TV incremental formula-
tion presents slightly better performance in some cases
(specifically NB = [2, 3, 6, 9]), notice it has a significant
problem with recursive feasibility and an overall unstable
behavior as the block size increases. In the case of the
absolute formulation, the recursive feasibility problems
only occurs once for this scenario, however, it delivers
significantly worse behavior and in most cases is not able to
control the system effectively as seen in figure (2). Finally,
an interesting case is visible at NB = 10 were the opti-
mization wasn’t able to swing-up the pendulum in ”one
shot”, thus giving significantly sub-optimal performance.
This is unsurprising and linked to the obvious observation
that there is a upper limit to sensible block sizes.

NB TV-Inc TV-Abs Inc Abs

1 1101 1101 1101 1101

2 1104 1104 1103 [10] 1128 [2]

3 1111 1111 1109 [8] 1288

4 1125 1125 1149 [16] 2532

5 1219 1219 1239 [16] 4149

6 1376 1376 1229 [13] 4116

7 1145 1145 2495 [12 4157

8 1238 1238 2573 [29] 3960

9 1360 1360 1227 [17] 3904

10 2560 2560 2552 [20] 3480

11 1326 1326 4261 [28] 3458

12 1109 1109 4076 [38] 3979

Total 15773 15773 24115 [207] 37253 [2]

Table 1. Cost (J) comparison alongside num-
ber of optimisation failures.

Furthermore, because the optimisation is only taking into
account intermediate points defined by the block size, and
the fact that the predicted corrections are approximations
given by equation (3), there exists the possibility of small
constraint violations, as illustrated in figure (3), where
the position presented a small constraint violation at
t ≈ 0.8(s). Notice that the violation presented in figure
(3) measures only 10 time-steps in length (less than
the block size NB = 12) and it wasn’t detected as
a recursive feasibility problem in table (1), most likely
because the points of interest did respect the constraint
at t = 0.6 (s) (2NBTs) and t = 0.9 (s) (3NBTs) (see close
up in figure). A simple solution for this is to use a small
slack variable in the constraints to protect the solution
from this small violations. To quantify this, the relative
distance between the constraint limit and the violation
was accumulated and is presented in table (1) where it
can be seen that the TV-Inc formulation presented the
least overall constraint violation, and naturally, the worst
is the Inc solution as expected from Table (1).

NB TV-Inc TV-Abs Inc Abs

1 0.000 0.000 0.000 0.000

2 0.003 0.003 0.004 0.003

3 0.005 0.005 0.006 0.000

4 0.017 0.017 0.016 0.000

5 0.000 0.000 0.097 0.107

6 0.061 0.061 0.093 0.213

7 0.210 0.210 0.280 0.324

8 0.074 0.074 0.496 0.517

9 0.082 0.082 0.192 0.211

10 0.341 0.341 0.458 0.000

11 0.108 0.108 0.280 0.000

12 0.415 0.415 1.480 0.279

Total 1.3169 1.3169 3.4014 1.6529

Table 2. Constraint Violation Comparison

Fig. 2. Example Performance Comparison with NB = 7

Figure (2) shows a comparison between all the 4 strategies
using a block size of NB = 7. This figure clearly illustrates



Fig. 3. Example TV-Inc Performance with NB = 12

the benefit of using the proposed time-varying method
leading to precise and visibly noticeable blocked actions
required for the swing-up and stabilization. To further
emphasize the resulting blocking concept, figure (3) clearly
exhibits a blocked input structure after t ≈ 2.5(s) when
the system is stabilized within the prediction horizon.
Finally, notice the system is able to get a sub-optimality
of ∆J < 0.8% with this block size (NB = 12) where sub-
optimality is defined as ∆J = (JNB

/J1 − 1)× 100.

NB TV-Inc TV-Abs Inc Abs

1 1044 1044 1044 1044

2 1075 1075 1077 1072

3 1089 1089 1095 1082

4 1096 1096 1105 1087

5 1101 1101 1113 1093

6 1103 1103 1124 1101

7 1106 1106 1141 1114

8 1122 1122 1132 1138

9 1119 1119 1128 1171

10 1122 1122 1142 1214

11 1130 1130 1150 1295

12 1169 1169 1165 1353

Total 13275 13275 13416 13763

Table 3. Unconstrained Optimization Cost (J)
Comparison using Saturated Control

Finally, table (3) presents the unconstrained case of the
solution where the proposed strategies (TV-Inc or TV-
Abs), outperform the others in the overall cost and in
some cases (NB = 12) giving a difference of up to ∆JTV −
∆JAbs = 17.62% sub-optimality reduction.

6. CONCLUSION

This paper proposed a time-varying shifting strategy for
blocked-based solutions of NMPC problems which have
problems with recursive feasibility guarantees and ill-posed
optimization. The formulation relies on fixing the attention
to absolute points in time in which decisions must be
made or constraints must be enforced, thus giving a set

of optimisation routines that run consistently from one
sample to the next.

The results suggest the proposed approach gives much
better performance and ensures that decisions can be made
whilst preserving recursive feasibility. In this work, only
the nominal case was studied and further testing is re-
quired to analyse the performance under with uncertainty.
However, it is important to recall that more rigorous ap-
proaches require substantially heavier computational loads
which are not aligned with the objectives of this study.

Future work will include analysing the computational load
of this formulation, which is expected to be significantly
reduced given the reduced number of degrees of freedom
and constraints that are imposed in the optimisation.
Furthermore, it will be merged with the ACADO toolkit
and bench-marked using qpOASES as QP the solver.
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Abstract—The application of predictive control methods in
real-time to fast systems, such as quad-rotors, remains a challenge
for its implementation in low-power embedded systems. This
paper presents the application of an Adaptive Laguerre-based
Model Predictive Controller (MPC) to the Attitude Stabiliza-
tion of a Quadrotor. The formulation uses an Online System
Identification algorithm based on Recursive Least Squares (RLS)
with forgetting factor for parameter estimation, and a Laguerre-
based Model Predictive Controller for achieving real-time calcu-
lation/update of the control law. The developed control system
was experimentally tested in a real quad-rotor, and the results
demonstrate its real-time applicability in a low-power embedded
platform.

Index Terms—MPC, Laguerre, Adaptive, UAV, Quadrotor

I. INTRODUCTION

Over the last decade, quad-rotors have become a very
popular research topic, given their relatively low-cost, complex
nonlinear dynamics and high maneuverability. This has led to
all kinds of different applications, such as surveillance, aerial
photography, surface mapping, search and rescue, inspection,
transport, military and the recently, more popular, FPV racing
[1]. Apart from their own inherent complexity, these vehicles
are constantly affected by external disturbances, such as wind,
as well as changes in the systems’ dynamics, which can
affect their performance and may require re-tuning to achieve
good stability characteristics. As an example, the payload
in transportation quad-rotors affects the inertia and mass
properties. Similarly, it is common to constantly attach/detach
components such as cameras, batteries and external sensors
to the vehicle, once again, changing the vehicle’s dynam-
ics. These challenges require the implementation of flexible
control schemes that are capable of dealing with these uncer-
tainties and sudden changes, and are therefore the motivation
behind using the adaptive predictive control scheme presented
in this paper.

Model Predictive Control is an advanced optimization-based
control strategy that uses an inner model of the system to
predict and optimize its future behavior [2], [3]. With the ad-
vances in computation platforms and optimization algorithms,
the implementation of predictive control algorithms to fast
system is now looking more feasible [1]. In the area of UAVs,
several authors have implemented MPC, or even Nonlinear
MPC, both in simulation and real experiments [1]. In [4], a

Laguerre-based MPC was developed and experimentally vali-
dated for an hexacopter based on the methodology described
in [5], but with no parameter estimation. Other authors, such
as [6] and [7] looked at the combination of nonlinear MPC
with parameter and state estimation techniques for improving
the systems’ performance, but only in simulation.

The main contribution of this paper is the formulation of
a simple SISO model of a quad-rotor, which differs from
models presented in [1] by including actuator (or possibly
sensor) dynamics. This model is then used by a real-time
feasible Laguerre-based MPC control law, able to match a
PD control law with the main advantage of including the
desired frequency content of the Laguerre Polynomials in the
design. Furthermore, this is combined with a computation-
ally inexpensive Online System Identification algorithm for
estimation of 3 parameters that define the systems dynam-
ics with the goal of achieving auto-tuning. Moreover, the
entire formulation is experimentally tested in a quad-rotor
UAV, and the tests demonstrate successful implementation in
the relatively new Beaglebone Blue board, which is a low-
power embedded platform. The entire formulation is available
from https://github.com/OscarJGV26/LaguerreMPC using ob-
ject oriented programming and Matlab codes. In summary, the
paper presents the application of a novel Adaptive Laguerre-
based Model Predictive Controller (MPC) for Attitude Stabi-
lization, experimentally tested in a Quad-rotor using relatively
new hardware.

Section II presents the full nonlinear attitude model of
a quad-rotor, and derives a linear SISO model to be used
by the formulation presented in this paper with its respec-
tive assumptions. Section III presents the formulated Online
System Identification using Recursive Least Squares (RLS)
with a forgetting factor and discusses important aspects to
be considered for its implementation. Section IV outlines the
Laguerre-based MPC formulation and discusses some impor-
tant remarks. Section V presents the results obtained from real
experiments where the system dynamics were automatically
excited using a sinusoidal signal for auto-tuning, and the
convergence and computational benefits of the overall control
systems are discussed. Finally, Section VI gives conclusions
and future work.



II. QUADROTOR MODELING

It is well known that the attitude model of a quad-rotor has
several sources of nonlinear dynamics such as quaternion/euler
dynamics, thrust relations and coriolis-centripetal crossed-
coupled angular velocity effects [6]. Nevertheless, many au-
thors have simplified them into linear models [4]. This section
presents the fully nonlinear attitude model of a quad-rotor, and
derives the associated simple linear SISO model to be used for
the control design presented in this paper.

Recalling the modeling done in [6], [4] and [2]; the full
nonlinear attitude dynamics of a quad-rotor can be represented
by:




q̇0
q̇1
q̇2
q̇3


 =

1

2




0 −p −q −r
p 0 r −q
q −r 0 p
r q −p 0







q0
q1
q2
q3


 (1)



ṗ
q̇
ṙ
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where [q0, q1, q2, q3]
T is the quaternion in the inertial

frame, [p, q, r]T are the angular velocities in the body axes
frame, [ω1, ω2, ω3, ω4]

T are the propellers’ angular velocities,
Ixx, Iyy, Izz are the vehicle’s inertias, kT , kτ are constants
relating the propellers’ angular velocities and thrust/torque
respectively, and l is the distance parallel to the respective
axis from center of gravity (CG) to the propeller.

The dynamics of the quaternion (1) are affected by the data-
fusion method used to correct drift, e.g. using accelerometer
data [8]. Therefore, in order to avoid being affected by this in
the Online System Identification phase, the formulation will
focus on the rate dynamics (2) and use a cascade proportional
control loop as common control loops. This can be improved
further by using a quaternion based control such as in [9] or
[10].

Now, assuming the cross-coupled angular velocity terms
are negligible around the operating point p ≈ q ≈ r ≈ 0,
and assuming that at this operation point there exist a linear
relationship between the input signal ui (i.e. the signal that
goes into the Electronic Speed Controllers (ESCs)) and the
propellers’ angular velocities ωi, the rate dynamics can now
be represented by:
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where K is a diagonal matrix with the gains of each axis given
by:

K =



kx 0 0
0 ky 0
0 0 kz


 (4)

L,M,N represent the allocated ”virtual moments” as in [11]
given by:
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and the resulting control allocation is given by:
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We introduce Z to represent a potential offset of ”thrust” to
be produced by each of the 4 motors. The derivation of the
control allocation matrices is out of the scope of this paper.

These dynamics represent a simple integrator and imple-
menting an MPC directly onto then result in a proportional
controller which is unlikely to give the desired tracking
performance in the rate dynamics whilst also being robust
to external disturbances. A key assumption for this model
is that the propeller angular velocities are ”instantaneously”
achieved, which is not true, and nevertheless, has been used by
many authors (see [1], [4]) Based on this potential problem,
the model was further augmented with unit-gain first-order
dynamics representing the actuators (or possibly even the sen-
sors) dynamics. Combining both models gives the following
second order dynamics with an integrator and with τ > 0
related to the time constant of the first order; these will be
used for the control law formulation.
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III. ONLINE SYSTEM IDENTIFICATION

Although the parameters of the dynamic model of a vehicle
can be calculated and pre-stored off-line using for example
CAD or system identification methods, the application of
online system identification allows quick recalculation of the
system’s true dynamic model and therefore, can enhance
the system performance. Additionally, it can be used for
supervisory control and fault-detection/isolation, as well as
fault-tolerant control; however this is outside the scope of this
paper.

A. Algorithm and Modeling

In this case, the Online System Identification was based
on the Recursive Least Squares (RLS) with forgetting factor



formulation presented in [12]. The algorithm equations are
given by:

ek = zk −ΨTΘ

K = PΨ
1+ΨTPΨ

Θk = Θk−1 +Kek

P = I−KΨT

λ P

(8)

where ek is the prediction error of the mode, Ψ is known
as the regressors vector, Θ is the parameters vector, P is the
covariance matrix, K is a Kalman-Filter-type gain and λ is
the forgetting factor. For our system, a forgetting factor of
λ = 0.999 was selected.

This formulation was combined with the assumed model
(7) given in the previous section. Although a classic approach
would formulate this model as a standard ARX model repre-
sented by a discrete difference equation of the form:

yk = a1yk−1 + a2yk−2 + b1uk−1 + b2uk−2 (9)

which has na = 2 recursive terms and nb = 2 exogenous
terms. In our case, we implemented the ∆ modeling and
identification approach given in [13]. This allows the embed-
ding of the desired model structure into the system whilst
also improving the precision of the coefficients by requiring
2 less coefficients to be estimated. Moreover, the learned
system must consider possible disturbances or un-modeled
biased errors. Therefore the parameters to be estimated were
augmented with a constant disturbance. The algorithm entry-
data (zk,Ψ) are then given by:

zk = yk − 2yk−1 + yk−2

Ψ =



yk−1 − yk−2

uk−1

1


 Θ =



a
b
d


 (10)

where y is a general output-variable, which in this case
represents the angular velocity of the vehicle, and uk is a
general input-variable, which in this case represent the ”virtual
moments”. Once the model is learned, by rearranging the
equations, the state space model to be used later (see eqn.
(13)) can be found.

B. Execution Rules and Parameter Constraints

The performance of the algorithm presented above is known
to converge to the real parameters if and only if: (i) the
assumed model (7), or in general, the entry data (10) can
actually represent the system dynamics, and (ii) if the sys-
tem is under persistent excitation periods [12]. Therefore, in
order to prevent unwanted adaptation and learning actions in
period of low excitation, several execution rules and parameter
constraints were implemented and are listed and explained
below based on the ideas discussed in [12], with the selected
thresholds for our system.

1) Run the RLS algorithm only when the ”angular accel-
eration” yk−1 − yk−2 > 5 is greater than a threshold
to provide sufficient excitation and avoid running the

algorithm when steady, e.g. when hovering. Addition-
ally, the criteria found in [12] based on the normalized
information was also used:

||PΨ||1
||P ||1||Ψ||1

< 0.1 (11)

2) Limit the trace of the co-variance matrix (P ) with

P =
klim
tr(P )

P if tr(P ) > klim (12)

to prevent it from becoming ill-conditioned and have
better control on the rate of convergence. A threshold
of klim = 10 was selected for our system.

3) Limit the range of parameters a and b to an expected
range to prevent incorrect modeling. For our system, the
thresholds −0.7 < a < 0, 0.05 < b < 0.3 for roll/pitch
axis, and 0.005 < b < 0.05 for yaw axis, were selected
and can be obtained considering variation in the time
constant and gain of the system.

4) Only update the control law (i.e. adapt) if the overall
uncertainty of your first two parameters/coefficients a, b,
which can be considered as the summation of P1,1 +
P2,2, is sufficiently small. This not only ensures that
adaptations are made when you can actually trust your
coefficients, but also when they are moving slowly. For
this system, a maximum trace of kmax = 0.0001 was
selected.

Remark 1 (Saturation): One thing to be careful with when
using this formulation is the saturation of the actuators.
Whenever this happens, the allocated control values do not
represent the same values of the ”virtual moments” in matrix
(6). Therefore, in this case, the system must recalculate the
actual allocated ”virtual moments” values with matrix (5) after
saturation.

IV. LAGUERRE-BASED MODEL PREDICTIVE CONTROL

Laguerre-based MPC uses a set of discrete orthonormal ba-
sis functions embedded into the design. The main motivations
behind using Laguerre are: (i) the possible recovery of the fully
optimal solution; (ii) the acceleration of the computation times
and (iii) a better frequency control on the system’s response.
Furthermore, by imposing a fast zero-decaying structure, it
prevents the optimization from becoming ill-conditioned in
case of plants with unstable/conditionally stable dynamics. The
methodology can be found in [14] and [5].

A. Model

One important difference in this implementation is the
model to be used. Most MPC implementations use the ∆
modeling approach where the system is augmented with an
integrator. However, based on the results from [15], it was
chosen to use a disturbance estimation model which indeed
gave better performance as well as improved control over
disturbance rejection, thus motivating its use for unbiased-
predictions. Furthermore, in order to consider a possible match
to a proportional-derivative (PD) controller, the model was



transformed to an equivalent by using a simple backward-
forward euler integration method. Finally, in order to be able
to formulate the unbiased optimization-index (16), the model
had to be represented with difference inputs (∆uk), rather than
the absolute values (uk). Thus, the state space model used for
this formulation is given by:

xk+1 = Axk +B∆uk

yk = Cxk
(13)

where:
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Ts is the sampling time and the state defined as xk =[
yk

yk−yk−1

Ts
dk uk−1

]T
, with dk being the disturbance

to be estimated. From now on, we will refer to ẏk = yk−yk−1

Ts
.

To estimate the disturbance a full Kalman Filter can be
employed as in [15], or alternatively, the disturbance can be
simply filtered with a unit-gain first-order discrete filter given
by:

dk = αdk−1+
(1− α)(ẏk − (1 + a)ẏk−1 +

b
Ts
uk−1)

(14)

where 0 < α < 1 is the tuning constant. For our system, a
value of α = 0.98 was selected.

B. Control Law

The derivation of the control law is based on finite horizon
optimal control using a relatively long horizon which is known
to give good stability characteristics [3], [16]. Given that the
purpose of the optimization is to calculate a control law in real-
time whilst preserving computational simplicity, dual-mode
approaches were avoided.

In this section, it will be shown that the formulation leads
to a control law of the form:

uk = uk−1 −Kxxk +Krrk +Kṙ ṙk (15)

where Kx, Kr and Kṙ vary depending on the system dynam-
ics.

To achieve this, a standard unbiased-optimization index of
the form:

J = (r − ŷ)T (r − ŷ) +∆ûTR∆û (16)

is defined, where ŷ =
[
yk+1 yk+2 · · · yk+Np

]T
and

∆û =
[
∆uk ∆uk+1 · · · ∆uk+Np−1

]T
represent the

vectors of predicted outputs and future input-increments tra-
jectories respectively, Np is the prediction horizon, and r =[
rk+1 rk+2 · · · rk+Np

]T
represents a reference trajec-

tory, typically a constant rk.
The unbiased-predicted output ŷ is represented by:

ŷ = Gxk +H∆û (17)

with

G =
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CA2
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CANp−1B · · · · · · CB




(18)

Now, the dynamics of the Laguerre Polynomials can be
found in [5] and are given by,
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where, aL is the decay-rate, β = (1 − a2L) and NL is the
number of Laguerre coefficients.

By taking L0 =
√
β
[
1 −aL · · · (−1)NL−1aNL−1

L

]T
as initial condition and iterating system (19) forward Np

times, the following input structure can be embedded into the
optimization

∆û = Lη (20)

where L =
[
LT
0 LT

1 · · · LT
Np−1

]T
and η =[

c1 c2 · · · cNL

]T
are the Laguerre coefficients [5]. For

our system, the number of Laguerre coefficients was fixed
with NL = 2 and the decay-rate was fixed at aL = 0.5, which
contains a desirable frequency response of the input. Figure
(1) shows the embedded input parameterization.

Fig. 1. First two Laguerre Polynomials.

By substituting equations (20) and (17) in (16), it can then
be derived that the optimization is of the standard Quadratic
Problem (QP) form:

J =
1

2
ηTEη + fT η (21)

where E = LTHTHL + LTRL, fT = −LTHT (r − Gxk).
This optimization will give the optimal Laguerre coefficients η
which can then be used to recover the solution in the original
space using (20). Recalling the receding horizon strategy
[5], only the first input is applied and the optimization is
recalculated in the following next step. If the system dynamics



are linear time-invariant, then, the unconstrained solution of
this QP is of the form of (15) with:

Kx = −
[
1 0 · · · 0

]
LE−1LTHTG (22)

and it can be shown that Kr = Kx(1). To further match a PD
controller and give better trajectory tracking, the control law
included a desired angular acceleration, ṙk = rk−rk−1

Ts
. Thus,

the final control law is given by (15) with Kṙ = Kx(2).
Remark 2 (Coding): Significant computation savings

can be achieved by proper coding and memory alloca-
tion of this optimization, e.g. by using recursive informa-
tion [2]. Efficient Matlab code for this is available from
https://github.com/oscarjgv26.

Remark 3 (Saturation): Because it is unconstrained, the
saturation of the actuators will be done using anti-windup
techniques as discussed in [4] as, in such cases, ∆ based
control laws are known to have good anti-windup properties.

V. EXPERIMENTAL RESULTS

This formulation was tested in an F450 quad-rotor frame
with EMAX MT2213 brushless motors, ESCs operating at
400 Hz and 1045 ABS propellers. The flight control system
running this formulation was a Beaglebone Blue running @
1000 MHz and the formulations were compiled using -O3 C
flag. The filter of both on-board gyroscope and accelerometer
was set at 10 Hz, and the resolutions were set at 2000
(deg/s) and 4G respectively. The accelerometer was fused
using the double-stage Kalman Filter presented in [8] but only
performing accelerometer correction with Q = 10−6I and
Racc = 0.1. The sampling time of the control system was
Ts = 20(ms) (50 Hz) and the prediction horizon was fixed at
Np = 50, i.e. Tp = 1 (s). The outer loop proportional gains
for the Roll and Pitch axis were both set on Kp = 4 and left
constant throughout the tests. The input range of each of the
motors was ui = [0, 1000], and the allocated moments (vi)
were saturated at approximately 60% of the overall hovering
throttle Z which depends on the mass, thus time-varying but
for our system, approximately vi = [−300, 300].

One of the most important, and also difficult things to
achieve was the stability of the combined online system
identification algorithm and control law update. This is be-
cause if the standard RLS algorithm is applied, the system
can diverge during periods of poor excitation which leads
to the need for the rules presented in section III-B. Another
important part was that, regardless of the identified model, or
in general, the performance of the online system identification
algorithm, there are still three constants that determine the
performance of the system, namely the input-weight R, the
disturbance estimation filter α and the Laguerre decay-rate
aL. For the purpose of this paper, these constants were fixed
at the values R = 0.1, α = 0.98, aL = 0.5, where ”stability”
and ”smoothness” were observed across the tests. However,
in general, these parameters do need to be assigned carefully,
in particular taking into account the possible embedded fre-
quency response of both Laguerre decay-rate and disturbance

estimation constant α which could have a substantial effect on
the system.

A. Flight Tests

To test the formulation, the system was excited in the roll
axis, starting from a poorly tuned control law, and moving
iteratively towards the optimal value. Figure (2) shows ap-
proximately 7 seconds of the flight test data. At the begin-
ning (t < 1), the system is showing the performance of
the poorly tuned control law. At t ≈ 1, an automatically
generated sinusoidal signal of φ = 50 sin(4π) in the roll
angle is implemented for approximately 3 seconds to provide
initial excitation and the online system identification starts
(see figure (3)). The control law starts updating at t ≈ 4
(see figure (4)) and maintains the same values after the pilot
terminates the sinusoidal excitation to test the performance.
As it can be seen, the ”chattering” of the inputs was reduced
to ±10, thus giving very precise corrections and reducing
actuator wear. Once again, the flight data is available at
https://github.com/OscarJGV26/LaguerreMPC.

Fig. 2. Excitation Data - Roll Axis

Furthermore, to test the full learning capabilities, the RLS
algorithm started from an empty parameter vector Θ =[
0 0 0

]T
during this test. The variation of the principal

estimated coefficients (a, b) can be seen in figure (3). As it
can be seen, they move near to the final value within less than
3 seconds whilst also staying within the constraints, and move
smoothly afterwards as the algorithm iterates .

During the same test, figure (4) shows the movement of
the control law parameters which can be seen to be moving
equally smoothly and do not change during the first 3 seconds
of the RLS algorithm where the uncertainty is still high. Sim-
ilar results were obtained for the other 2 axis (pitch/yaw) and
the formulation was able to tune all the axis simultaneously
with the sinusoidal signal within 10 sec.



Fig. 3. Online System Identification - Estimated Coefficients

Fig. 4. Control Law Gains

B. Computation Times

One of the requirements of this formulation is that it is able
to be run in real-time whilst performing other tasks such as
data-fusion, telemetry, data-logging and so forth. Table I shows
the computation times in miliseconds (tc) of the formulation,
where updates of the control law in 235 microseconds, and
execution of the online system identification in 4.8 microsec-
onds (per axis) can be seen, leaving more than enough time for
other tasks. Furthermore, it includes the computation times of
30 and 50 iterations for solving the Discrete Algebraic Ricatti
Equation (DARE) for comparison.

TABLE I
ONLINE COMPUTATION TIMES

Task tc(ms)
Control Law Execution on 3 axis 0.0033
Online System Identification on 3 axis (RLS) 0.0144
Laguerre MPC (NL = 2) 0.235
LQR (30 iterations of DARE) 0.165
LQR (50 iterations of DARE) 0.273

Although 30 iterations of DARE for computing the LQR
control law are faster, the tuning process of LQR didn’t
give good performance given the lack of frequency content
embedded into the optimization. Thus, the motivation behind
using Laguerre Polynomials was validated.

VI. CONCLUSION

This paper presented the implementation of a Laguerre-
based Model Predictive Control formulation coupled with Re-
cursive Least Squares with forgetting factor as an Online Sys-
tem Identification method for achieving adaptive self-tuning
control of a quad-rotor UAV in real-time. This formulation

was experimentally tested in a quad-rotor and could equally
be applied to other UAVs with similar dynamics using the
control allocation concept.

The developed control system combined the standard outer
loop proportional cascade loop control with a control allo-
cation strategy, an online system identification method and a
Laguerre-based Model Predictive Control.

The performance of the developed formulation was tested
using an automated sinusoidal signal for exciting the sys-
tem’s dynamics and the results demonstrate the capability
of the formulation to achieve self-tuning of the system in
real-time within less than 3 seconds per axis with overall
smooth performance of the parameters. A demonstration of
this implementation will be given at the conference.

Future work related to this formulation will be the extension
to the multi-variable system identification case and consider-
ation of other types of UAVs.
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Abstract: Non-linear model predictive control requires the use of efficient solutions and strategies for its implementation in fast/
real-time systems. A popular approach for this is the real-time iteration scheme, which uses a shifting strategy, namely the initial
value embedding, that shifts the solution from one sampling time to the next. However, this strategy together with other efficient
strategies such as move blocking, present a recursive feasibility problem. This study proposes a novel modified shifting strategy
which preserve both recursive feasibility and stability properties, as well as achieves a significant reduction in the computational
burden associated with the optimisation. The proposed approach is validated through a simulation of an inverted pendulum
where it clearly outperforms other standard solutions in terms of performance and recursive feasibility properties. Additionally,
the approach was tested on two computing platforms: a laptop with an i7 processor and a Beaglebone Blue Linux-based
computer for robotic systems, where computational gains compared to existing approaches are shown to be as high as 100
times faster.

1 Introduction
Non-linear model predictive control (NMPC) is an advanced non-
linear optimisation method for an optimal feedback control that
uses a mathematical model of a dynamical system to predict and
optimise its future performance. Its popularity comes from its
ability to handle constraints explicitly, as well as complex
multivariable non-linear dynamic systems [1]. One of the main
challenges is that the required optimisation represents a significant
computational burden, which has limited its application to
relatively slow systems such as chemical reactors [2]. However,
given the improvements in electronics in the last two decades, its
application to fast real-time systems is now looking more feasible
[3].

A key requirement for the implementation in real-time of
NMPC is the use of efficient solutions. Efficiency may come in
many different forms, from approximate solutions and inexact
mathematical representations to tailored coding, special hardware
such as field programmable gate arrays [4] and other strategies.

One of the most popular NMPC approaches nowadays is the
real-time iteration (RTI) scheme proposed in [5], where a set of
strategies are used to achieve real-time performance, namely the
initial value embedding (IVE), the approximated single SQP
solution, and the computations separation, offering solutions in the
microseconds range [6–8] whilst preserving stability guarantees
[9]. A tutorial-like paper of the latter is presented in [10]. Among
other solutions based on inexact and approximate solutions, the
authors of [11] propose an inexact mathematical representation,
which avoids having time-varying matrices and preserves stability
and recursive feasibility guarantees for a non-negligible region of
the state space. In [12], a similar approach based on adjoints and
inexact Jacobians is presented. In [13], the authors propose an
inexact updating scheme that allows a reduction in the number of
sensitivity updates required at each sampling time, by using a
curvature-like measure of non-linearity. The authors of [14]
propose a partially tightened NMPC that uses a Riccati-like
recursive equation combined with an interior-point like method that
uses logarithmic barriers to remove the constraints at later stages of
the prediction horizon. Finally, a common method for achieving
faster computation times is by reducing the number of degrees of
freedom; this can be done using input-parameterised solutions such
as move blocking and Laguerre polynomials [15] where an input-

structure is embedded into the decision variables. The authors of
[16] proposed methods for solving the blocked optimisation using
highly parallelisable algorithms, which allow for even faster
computation times. However, most works in this area, including [3,
16–18] have used blocking for NMPC with no regard to the
recursive feasibility problem it presents.

In the case of tailored coding, a wide variety of toolkits exist
that facilitate the implementation of NMPC. One of the most
popular is the ACADO toolkit [19], an open source code capable of
exporting efficient automatically generated code. The authors of
[20] provide a tutorial-like paper for this toolkit. In [21], a toolkit
named VIATOC that also exports automatically generated code is
presented. Other toolkits such as CasADI and GRAMPC are also
discussed in [21]. Another important area of research is the
development of efficient QP solvers. Several solvers are available
nowadays such as qpOASES, FORCES, CVXGEN and qpDUNES
[20, 22, 23]. Furthermore, the solution of NMPC problems can be
done using simultaneous or sequential approaches as discussed in
[24] resulting in sparse or condensed QPs. The authors of [7]
concluded that using condensed QPs is computationally faster for
small- to medium-sized optimisations, whereas sparse solutions
have better performance for medium to large. However, one of the
main benefits of simultaneous approaches is that they present better
stability characteristics for unstable systems [8]. Finally, different
methods can be used for discretising an optimal control problem
(OCP) such as direct single/multiple-shooting and direct
collocation [6].

This paper focuses on a single-shooting condensed/sequential
NMPC approach. It uses the RTI scheme as a base line
methodology in which the proposed shifting strategy is embedded,
thus re-formulating the optimisation. Although the proposed
methodology is formulated using this specific approach, it is
possible to apply it using other approaches such as multiple-
shooting (sequential or simultaneous), as well as in combination
with other solutions and methods such as [16] or [25]. The
proposed approach uses concepts from the block-based solution for
linear MPC presented in [26] which are extended to an NMPC
formulation and merged with the RTI scheme. The key contribution
of this paper, which differs from both aforementioned works, is the
modified shifting strategy. By conceptualising the optimisation in
an absolute-time-frame, this allows the reduction of both the
number of degrees of freedom and constraints, whilst also
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preserving recursive feasibility guarantees and stability properties.
The proposed approach is shown to give computational benefits up
to 100 times faster than the standard RTI-NMPC solution.

The remaining part of this paper is organised as follows:
Section 2 presents a detailed description of the modelling,
prediction and optimisation methods to be used such as the RTI
scheme and the block-based solutions. Section 3 develops the main
ideas of the proposed shifting strategy presented in this paper and
gives a simple overall generic example. Section 4 gives clear
insight into important coding aspects for implementing the
proposed approach and an example code applied to the benchmark
problem of Section 5 is provided in [27, 28]. Section 5 presents a
benchmark of this method applied to a fully non-linear inverted
pendulum model and focuses mainly on the overall performance
and recursive feasibility properties of the different strategies that
were tested. Additionally, it presents the computation times of the
proposed approach implemented in two different systems: a laptop
with an i7 processor, and the aforementioned Beaglebone Blue
Linux-board [29]. Finally, Section 6 contains conclusions,
summarises the contribution of the paper and describes future
work.

2 Non-linear model predictive control
2.1 Modelling

Throughout this paper, discrete-time non-linear dynamics of the
following form will be considered:

xk + 1 k = f (xk k, uk k)
yk k = g(xk k, uk k)

(1)

where xk are the states, uk are the controls or inputs of the system
and yk are the outputs, with nx, nu and ny the number of states,
inputs and outputs, respectively. The notation k + 1 k reads ‘value
at k + 1 predicted at sample time k’, and will only be used in full
when needed for clarity.
 

Remark 1: Continuous-time models, can be discretised using
any integration method to reduce the infinite OCP to an
approximate but tractable and finite non-linear problem. This
allows simulating the system forward using the future nominal
input trajectory, and linearising along the resulting trajectory.

2.2 Prediction

By expanding a Taylor series up to first order terms, the system (1)
can be approximated by

xk + 1 = f (x̄k, ūk) + ∂ f (x̄k, ūk)
∂x̄k

δxk + ∂ f (x̄k, ūk)
∂ūk

δuk

= x̄k + 1 + Akδxk + Bkδuk

(2)

where δxk = xk − x̄k and δuk = uk − ūk represent the state and input
deviations from the nominal points at time step t = k, respectively,
and Ak = ∂ f (xk, uk)/∂xk and Bk = ∂ f (xk, uk)/∂uk represent the partial
derivatives of the system dynamics. Notice the deviation
δxk + 1 = xk + 1 − x̄k + 1 at time step t = k + 1 can be approximated by

δxk + 1 = Akδxk + Bkδuk (3)

Given that the nominal point x̄k + 1 and linearisation matrices
(Ak, Bk) of (2) depend parametrically on x̄k and ūk, and that at a
given sampling time t = k the value of x̄k is already given either by
measurements or by state estimation, the value of x̄k + 1 can only be
obtained by assuming (or guessing) a value for ūk. If values are
assumed/guessed for the future nominal input trajectory
Ū = ūk

T ūk + 1
T ⋯ ūk + Np − 1

T T, this allows the computation of the

predicted nominal state trajectory X̄ = x̄k + 1
T x̄k + 2

T ⋯ x̄k + Np
T T,

and linearisation matrices Ak and Bk at future time steps

t = k + 1, k + 2, …, k + Np, where Np is known as the prediction
horizon. This prediction assumption is known as single-shooting
[20]. Common MPC strategies such as GPC, also use a control
horizon Nu where the inputs after k + Nu − 1 are enforced to be the
same [30]. Let us consider Nu = Np for now as this is just a special
case of the blocked solution presented in Section 2.5.

Once X̄ is obtained using Ū, the prediction equation (3) can be
shifted forward

δxk + 2 = Ak + 1δxk + 1 + Bk + 1δuk + 1 (4)

Thus, substituting (3) into (4) gives

δxk + 2 = Ak + 1(Akδxk + Bkδuk) + Bk + 1δuk + 1

= Ak + 1Akδxk + Ak + 1Bkδuk + Bk + 1δuk + 1
(5)

By repeating the above process recursively for Np steps and
considering only the output of the system, the predicted deviations
from the nominal output trajectory can be represented in condensed
form by

δY^ = Gδxk + HδU^ (6)

where δY^ = Y^ − Ȳ = δyk + 1
T δyk + 2

T ⋯ δyk + Np
T T are the output

deviations, δU^ = U^ − Ū = δuk
T δuk + 1

T ⋯ δuk + Np − 1
T T are the

input deviations, and matrices G and H are given by

G =

C1A0

C2A1A0

⋮
CNpANp − 1⋯A1A0

(7)

H =

C1B0 O ⋯ ⋯
C2A1B0 C2B1 O ⋯

C3A2A1B0 C3A2B1 C3B2 ⋯
⋮ ⋮ ⋮ ⋱

CNpANp − 1⋯A1B0 CNpANp − 1⋯A2B1 ⋯ ⋯

(8)

where G has dimensions of Npny × nx, H has dimensions of
Npny × Npnu, Ck = ∂g(x̄k, ūk)/∂x̄k is the partial derivative w.r.t the
nominal state in (1), and O represents a matrix of zeros with the
same dimensions of CkBk. Notice the k notation in Ak and Bk has
been dropped for simplicity.

2.3 Optimisation

Once the prediction is formulated, a quadratic cost function
penalising the predicted errors between the reference trajectory Yr

and the predicted output trajectory Y^ , as well as penalising the
input trajectory U^ , can be formulated as

J = 1
2(Yr − Y^)TQ(Yr − Y^) + 1

2U^ TRU^
(9)

where Q is a positive semi-definite matrix penalising the predicted
errors with dimensions nyNp × nyNp and R is a positive definite
matrix penalising input deviations with dimension nuNp × nuNp.
The latter represents an unbiased performance index for the
inverted pendulum system when no disturbances are present, given
it stabilises at uk = 0. If other types of system are used, the cost
function (9) must be reformulated slightly, e.g. using unbiased
costs [31].

In the following, two types of solutions will be formulated: the
first one based on deviations of the nominal input trajectory δU^  and
the second one based on the input trajectory U^  directly. Although
both solutions give the same result, the inequality constraints are
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expressed differently. Let us first reformulate cost function (9) by
expressing it in the standard QP form

J = 1
2 zTEz + f Tz s . tMz ≤ γ (10)

where z is the decision variable to be optimised depending on
which formulation (deviations or absolute) is chosen, E is a
symmetric matrix formally known as the Hessian with dimensions
NE = Npnu × Npnu, f is a column-vector with dimension Npnu
typically referred as the linear term, and M and γ are a matrix and
vector, respectively, related to the inequality constraints. Equality
constraints can be implemented by selecting the upper and lower
limits of the inequality constraints to be the same.

2.3.1 Deviations formulation: Substituting expression (6) and the
definitions of Y^  and U^  into cost function (9) gives

J = 1
2(Yr − Ȳ − Gδxk − HδU^ )TQ(Yr − Ȳ − Gδxk − HδU^ )

+ 1
2(Ū + δU^ )TR(Ū + δU^ )

(11)

By optimising w.r.t δU^ , the optimisation has the standard QP
form (10) where E = HTQH + R and
f = − (HTQ(Yr − Ȳ − Gδxk) − RŪ). Input and output inequality
constraints are expressed relative to the nominal trajectory as

M =

I
−I
H

−H

, γ =

Umax − Ū
−(Umin − Ū)

Ymax − Ȳ − Gδxk

−(Ymin − Ȳ − Gδxk)

(12)

2.3.2 Absolute formulation: Similarly, substituting expression (6)
and the definition of Y^  and δU^  into cost function (9) gives

J = 1
2(Yr − Ȳ − Gδxk − HU^ + HŪ)TQ

(Yr − Ȳ − Gδxk − HU^ + HŪ) + 1
2U^ TRU^

(13)

Once again, by optimising w.r.t U^ , the optimisation has the
standard QP form (10) where E = HTQH + R and
f = − HTQ(Yr − Ȳ − Gδxk + HŪ). The input and output
constraints are expressed as follows:

M =

I
−I
H

−H

, γ =

Umax

−Umin

Ymax − Ȳ − Gδxk + HŪ
−(Ymin − Ȳ − Gδxk + HŪ)

(14)

Having defined the QP problem, any QP solver such as
qpOASES [22, 23] or quadprog MATLAB function can be used to
find the solution. In this paper, the Hildreth's primal-dual quadratic
programming procedure presented in [32] was used for the
simulations of Section 5.2 given its simplicity and ‘hot-starting’
capabilities. A fixed amount of iterations were done to obtain
predictable timings and accurate comparisons between the different
approaches.
 

Remark 2: For rigorous closed-loop stability guarantees,
suitable terminal costs or zero-terminal constraints must be added
by modifying the relevant matrices appropriately [6, 20, 33].

2.4 RSI scheme

The RTI scheme is a method developed by Diehl et al. [5] for non-
linear optimisation in optimal feedback control that is capable of
giving real-time performance based on strategies summarised in
the following subsections.

2.4.1 Initial value embedding: IVE uses the solution found in the
previous step in a shifted version, typically duplicating the last
input variable uk + Np k + 1 = uk + Np − 1 k, to obtain the nominal
trajectory over which the formulation will linearise and optimise.
Additionally, in the case of QPs with ‘hot-start’ capabilities such as
an active-set, it also uses a shifted version of the Lagrange
multipliers λ found in the previous optimisation.

2.4.2 Single SQP: One can further reduce the computational
burden and achieve predictable timings, by performing only a
single SQP, i.e. only linearise the optimisation once instead of re-
linearising over and over until convergence. This is reasonable
given that the optimisation is ‘hot-started’ from the previous
solution, which is expected to be close to the optimal solution,
provided no significant disturbances have entered the system.
Additionally, because the problem is forced to finish solving the
linearised QP rather fast to give a quick feedback correction, the
number of iterations or allowed time for solving the QP must be
limited. In general, the solution of the problem is not given exactly
but as an approximation that is expected to decrease the cost J at
each iteration. Moreover, one must be satisfied with finding a local
minimum and the solution can be subject to small approximation
errors given only one re-linearisation is done.

2.4.3 Computation separation: Computation separation is
arguably the most important strategy. It separates the computations
into feedback and preparation phases. A timing diagram illustrating
this can be found in [10, 34].

(a) Preparation phase: The preparation phase uses a predicted state
x̄^ k k − 1 as a starting point obtained from the last nominal input
trajectory in its shifted version to linearise and prepare a QP. The
standard RTI scheme only performs the aforementioned tasks and
solves the QP in the feedback phase, however, in this work a small
modification is used where the QP is iterated during preparation
assuming δxk = 0 to find the vector of Lagrange multipliers λ
which is then used to compute the solution as given in (15) or (16).
(b) Feedback phase: Once the state measurement becomes
available, the feedback phase quickly delivers an approximate
solution by calculating the predicted state deviation
δxk = xk − x̄^ k k − 1 and computing the ‘feedback phase’ parts of (15)
or (16), depending on which type of solution is being used. This
allows the optimisation to have robustness against noise,
disturbances and uncertainty. Because the state deviation δxk has an
effect, not only on the linear term f, but also in constraint vector γ
(see (11)–(14)), the standard RTI scheme recomputes them before
solving the QP.

To further elaborate on the strategy of computation separation,
notice that the value of δxk in cost functions (11) and (13) only
makes sense to be used in the context of the RTI scheme, in
particular, in the feedback phase. Assuming the vector of Lagrange
multipliers (λ), has been found by an appropriate QP in the
preparation phase, the solution for both types (deviations and
absolute), can be expressed as the summation of the QP result
which is calculated in the preparation phase, and the effect of δxk
which is calculated in the feedback phase of the RTI. From the QP
procedure presented in [32], it can be shown that the both solutions
are given by the expressions below:

(i) The deviations solution is given as
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U^ = Ū −

E−1 −(HTQ(Yr − Ȳ) − RŪ)
Unconstrained

+MTλ
Constrained

Preparation phase
+HTQGδxk
Feedback phase

(15)

(ii) The absolute solution is given as

U^ =

−E−1 −HTQ(Yr − Ȳ + HŪ)
Unconstrained

+MTλ
Constrained

Preparation phase
+HTQGδxk
Feedback phase

(16)

A general drawback of NMPC methods based on the RTI
scheme is that the predictions can be subject to approximation
errors given small deviation models are used and only one SQP
iteration is done, i.e. re-linearising the system only once.

2.5 Blocked solutions

A popular method for reducing the computational burden further is
by using blocked solutions, where the inputs or decision variables
are blocked in sections and assumed to have the same value [16,
17, 26, 35]. This allows a reduction in the number of degrees of
freedom and consequently the optimisation time. To achieve this,
an equality constraint of block size NB is embedded into the
optimisation as uk = uk + 1 = ⋯ = uk + NB − 1 across all the prediction
horizon. The latter can be represented by an input structure of the
form

δU^ = ℕδU^ (17)

U^ = ℕU^ (18)

where U^  (or δU^ ) is the blocked decision variable and ℕ is the
blocking matrix defined as

ℕ =

I O ⋯ O
O I ⋯ O
⋮ ⋮ ⋱ ⋮
O O ⋯ I

(19)

with dimensions Npnu × ⌈Np/NB⌉nu where the operator ⌈x⌉ rounds
the result towards infinity, I is a matrix containing NB vertically
blocked identity matrices of nu dimension and O is a matrix of
zeros of the same dimension. Obviously with NB = 1, the blocking
structure is just an identity and represents the same QP as (11) or
(13). Substituting (17) and (18) into cost functions (11) and (13),
respectively, leads to:

(i) Blocked deviations formulation

J = 1
2(Yr − Ȳ − Gδxk − HℕδU^ )TQ(Yr − Ȳ − Gδxk − HℕδU^ )

+ 1
2(Ū + δU^ )TR(Ū + δU^ )

(20)

(ii) Blocked absolute formulation

J = 1
2(Yr − Ȳ − Gδxk − HℕU^ + HŪ)TQ

(Yr − Ȳ − Gδxk − HℕU^ + HŪ) + 1
2(ℕU^ )TR(ℕU^ )

(21)

Optimising w.r.t the decision variables, (δU^ ) and (U^ ), results in the
modified Hessian (22) for both modified cost functions, (20) and
(21), respectively,

Eℕ = ℕT(HTQH + R)ℕ = ℕTEℕ (22)

which has reduced dimensions of NEℕ = ⌈Np/NB⌉nu × ⌈Np/NB⌉nu,
and the linear terms can be found to be, respectively:

(i) Blocked deviations linear term

f ℕ = − ℕT(HTQ(Yr − Ȳ − Gδxk) − RŪ) = − ℕ f (23)
(ii) Blocked absolute linear term

f ℕ = − ℕTHTQ(Yr − Ȳ − Gδxk + HŪ) = − ℕ f (24)

Finally, the constraint matrix M is modified to

Mℕ = ℕT −ℕT (Hℕ)T −(Hℕ)T T (25)

whereas the constraint vectors γ remain the same.
The modified Hessian Eℕ, linear term f ℕ and constraint matrix

Mℕ can be used to compress/decompress a pre-prepared QP, e.g. to
use the strategy with a given toolkit such as ACADO.

 
Remark 3: ℕ has NB vertically blocked identity matrices, so the

number of constraints related to the input can be reduced provided
the respective rows in γ of a given vertically blocked section are
equal. This is not the case when the solutions are based on
deviations to a shifted blocked input trajectory (IVE strategy of
RTI). In fact, unlike the unblocked case where both formulations
(absolute or deviations) result in exactly the same solution, in this
case, they will have different solutions because it is conceptually
different to embed a blocked structure into either the deviations or
absolute variables. However, if the shifting strategy proposed in
this paper is used, it will be seen that they give the same results as
a direct consequence of performing a consistent optimisation.

After the optimisation is solved, definitions (17) and (18) can be
used to recover the solution in the original variables. This results in
solutions (15) and (16) presented in the Section 2.4 to change to:

(i) Blocked deviations solution

U^ = Ū −

ℕEℕ
−1ℕT −(HTQ(Yr − Ȳ) − RŪ)

Unconstrained

+MTλ
Constrained

Preparation phase
+HTQGδxk
Feedback phase

(26)

(ii) Blocked absolute solution

U^ =

−ℕEℕ
−1ℕT −HTQ(Yr − Ȳ + HŪ)

Unconstrained

+MTλ
Constrained

Preparation phase
+HTQGδxk
Feedback phase

(27)

One of the advantages of blocking is that the problem or system
itself may require control actions in the future, and not all
congested in the beginning of the horizon as with standard GPC
approaches. This benefit can be seen in Fig. 1 where the predicted
optimal trajectory of both approaches is given for the inverted
pendulum problem presented in Section 5 and compared to the one
using the full decision vector. Notice although they all present
differences in the input solution, the solutions of position and angle
trajectories are nearly indistinguishable for the blocked and full
solutions, whereas the GPC solution clearly results in a different
trajectory. As expected, the predicted costs of all cases, full
decision, blocked and standard GPC were Jfull = 1872, Jblk = 1878
and Jstd‐gpc = 1994, respectively, which clearly shows the
superiority of blocking over the standard GPC approach.
Obviously, the GPC solution would adjust the input as the horizon
is moved forward (receding horizon) and might be able to perform
similarly in closed-loop. However, it is the inconsistency/ill-
posedness of the problem within each prediction that may
negatively affect the overall closed-loop solution in the long term,
especially when constraints come into play. This is discussed in
Section 3.2.
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3 Shifting strategy
This section presents the shifting strategy proposed in this paper
which represents the main contribution and has the main goal of
achieving faster computation times whilst preserving the stability
and recursive feasibility properties of the standard RTI scheme.

3.1 Sub-strategies

The three sub-strategies summarised next are used in the proposed
approach. These sub-strategies are explained further in the
following subsections and an overall example is given in Section
3.6.

3.1.1 Reducing the number of degrees of freedom: The
method uses an embedded input-structure, in this case blocked, for
reducing the degrees of freedom of the optimisation. Other input-
structures such as Laguerre or Kautz polynomials [15] were not
considered, but represent potential alternatives, although they
would present different recursive feasibility properties and overall
performance in the general case.

3.1.2 Reducing the number of shooting points: It selects a
reduced number of points of interest which sometimes are referred
to as shooting points. These shooting points represent the
constraints and future errors that are included in the optimisation,
and are not necessarily at every sampling time but rather spread
across the prediction horizon.

3.1.3 Absolute-time-frame shifting: It shifts the shooting points
and blocked-inputs structure in an absolute-time-frame, rather than
in a relative-time-frame (as implemented in standard NMPC/RTI
methods) to maintain consistency along the optimisation.

3.2 Consistent optimisation and recursive feasibility

One of the most important properties to maintain in an optimisation
is recursive feasibility [36]. This property is present in an
optimisation if and only if for a given feasible solution at time
t = k, all subsequent solutions at future times
t = k + 1, k + 2, …, k + ∞, remain feasible [26, 35]. At this point,
it is emphasised that recursive feasibility is not related to how an
initial feasible solution is found but rather, maintaining feasibility.
In the case of a RTI scheme, it is typically assumed that the
solution is initially close to an optimal and feasible solution for
nominal stability [9], thus initial feasibility is implied. Moreover,
strong recursive feasibility guarantees can be given when the
optimisation explicitly includes the solution from the previous
sampling time as a possible solution of the current optimisation,
also known as the tail [30, 31]. This is a direct result of performing
a consistent optimisation where at each time, the latter improves or

‘builds on top of’ the previous solution. This property is not
naturally present in blocked solutions and instead, at each sampling
time, the optimisation is forced to disregard the previous solution
and find a new one which is the main reason they may lack
recursive feasibility guarantees [15]. In other words, at each
sampling time the optimiser makes a plan which is then
immediately forced to disregard at the next sampling time.

3.3 Shifting strategy applied to blocked solutions

To solve the aforementioned problems, we propose the following
blocked solution which shifts the blocks in an absolute-time-frame
to maintain consistency in the ‘breaking points’ of the blocked
input. A similar approach is presented in [26], however, an
important difference with the proposed approach in this paper is
that they do not apply it in the context of the RTI where the IVE
approach is used, nor conceptualise it in an absolute-time-frame.
Moreover, they do not formulate it in the context of NMPC for
both types of solutions given above. Additionally, they use a time
varying horizon, whereas in the proposed approach, the horizon is
maintained constant through the use of the ideal horizon. Finally,
although the approach has similarities with lifted systems [37], it
has important differences given both measurements and control
actions are available at the all times and the strategy is applied to
reduce computation times whilst maintaining consistency and
recursive feasibility.

In simple terms, the proposed approach applies a set of blocking
structures sequentially, which guarantees that the previous solution
(i.e. the tail) is always included in the optimisation. By using this
method, the solution based on deviations can now be applied
consistently as it now represents the exact same solution given by
the absolute blocked formulation; this will be seen later in the
results Section 5.2.
 

Definition 1 (Shifting blocked sections): The proposed strategy
can be formally represented with the input equalities (28) and (29)
below, defined for time steps [k, k + NB − 1] with an horizon Np,
‘resetting’ at time step k + NB and repeating infinitely

uk + i + (n − 1)NB k + j = uk + nNB − 1 k + j

∀ j = [0, NB − 1]; ∀n = 1, Np − NB + j
NB

∀i = [ j, NB − 1]ifn = 1

∀i = [0, NB − 1]if1 < n < Np − NB + j
NB

+ 1

(28)

and for the last block (n = ⌈(Np − NB + j)/NB⌉ + 1),

uk + i + (n − 1)NB k + j = uk + imax + (n − 1)NB k + j

∀ j = [0, NB − 1]; ∀i = [0, imax]
(29)

with

imax = Np + j − 1 − Np − NB + j
NB

NB

where j is the time step, j = 0 giving the standard blocking
structure, n is the number of blocked sections, n = 1 being the first
one, and i is related to the size of the given blocked section. Notice
the latter changes as j → NB − 1 and the number of blocks n
depends on the selected prediction horizon. This will be explored
further in the following subsections.

As a quick example of definition 1, consider a simple SISO
optimisation with prediction horizon Np = 4 and block size
NB = 2. The proposed strategy would apply the two following
blocking matrices ℕ1 and ℕ2 sequentially, in order, and repeating
infinitely (ℕ1, ℕ2, ℕ1, …).

Fig. 1  Blocking versus GPC standard comparison with NB = 4
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ℕ1 =

1 0
1 0
0 1
0 1

, ℕ2 =

1 0 0
0 1 0
0 1 0
0 0 1

(30)

 
Lemma 1 (NB unique blocking matrices): When using

Definition 1 with a blocking size of NB, there will always be
exactly NB unique blocking matrices (ℕ) that include the tail,
maintaining consistency over time, hence preserving recursive
feasibility.
 

Proof: Consider only the first blocked section n = 1 of a given
blocking structure. By applying (28) to maintain consistency at any
time step k + j within that first block, the latter gives

uk + i k + j = uk + NB − 1 k + j

∀ j = [0, NB − 1]; ∀ i = [ j, NB − 1] (31)

Thus, the number of equalities i, i.e. the size of the first blocked
section NB1 = NB − j, decreases as j → NB − 1 leading to NB sizes
for the latter and consequently NB unique blocking structures ℕ.
Conceptually, the latter shrinks until reaching its limit and
‘resetting’ its size to NB as in ℕ1 of example (30). □

3.3.1 Ideal prediction horizon: Notice in the example (30), the
dimension of the resulting Hessian Eℕ would vary from
NEℕ = 2 × 2 to NEℕ = 3 × 3. This is undesirable behaviour given
that to achieve better computing performance, dynamic memory
allocation should be avoided. A work around to this problem is to
use an ideal prediction horizon which allows implementation of the
proposed shifting strategy without modifying the dimension of the
Hessian.
 

Lemma 2 (The ideal prediction horizon): When using Definition
1 to maintain recursive feasibility, the selected horizon Np must be
an integer multiple of the block size plus 1 to keep the Hessian
dimension NEℕ constant for any block size NB:
 

Proof: The expected size of the Hessian NEℕ for any block size
NB is given by

NEℕ =
Np − NB1

NB
+ 1 (32)

where NB1 is the length of the first blocked section (n = 1 of 28) of
a given blocking structure. For constant dimensions, the following
must hold:

Np − NB
NB

+ 1 = Np − i
NB

+ 1

∀i = [1, NB]
(33)

The latter can only be satisfied for all i and any NB by using
Np = nNB + 1, where n is an integer number. Substituting in (33)
gives

nNB + 1 − NB
NB

+ 1 = nNB + 1 − i
NB

+ 1 (34)

After some algebraic manipulation

n − 1 + 1
NB

= n + 1 − i
NB

(35)

because ⌈1/NB⌉ = 1 and ⌈(1 − i)/NB⌉ = 0 for all i, (35) holds. □
 

Algorithm 1: Ideal prediction horizon The following steps are
advised for selecting the ideal prediction horizon.

1. Select the desired block size NB.
2. Select a desired horizon Npdes > NB.
3. The closest ideal prediction horizon is then given by

Np = ⌈Npdes/NB⌉NB + 1 or Np = ⌊Npdes/NB⌋NB + 1. For better
stability properties, the upper one is suggested.

 
Theorem 1 (Shifting strategy applied to blocked solutions -

recursive feasibility): When using Definition 1 with Lemmas 1 and
2, recursive feasibility guarantees are recovered by always
including the tail.
 

Proof: Considering an optimal feasible solution with the
blocked structure given by Definition 1 at time k ( j = 0) with block
size NB:

uk + i + (n − 1)NB k = uk + nNB − 1 k

∀n = [1, ⌈ Np
NB

⌉ − 1]; ∀i = [0, NB − 1] (36)

and the last block containing a single input uk + Np − 1 k. The tail of
the solution will be automatically included at the next time step
k + 1 ( j = 1) giving

uk + i + (n − 1)NB k + 1 = uk + nNB − 1 k + 1

∀n = [1, ⌈ Np
NB

⌉ − 1]; ∀i = [1, NB − 1] (37)

and the last block containing two blocked inputs,
uk + Np − 1 k + 1 = uk + Np k + 1. The same is true ∀ j = [0, NB − 1]. □

3.3.2 Breaking points: shifting Lagrange multipliers: An
important concept in the proposed strategy is that of the ‘breaking
points’. As shown in Lemma 1, the first blocked section size NB1
shrinks until it reaches its limit. When this happens, we refer to it
as the ‘breaking point’ and the optimisation must apply a blocking
matrix ℕ where the first blocked section ‘resets’ and has the
original block size NB1 = NB such as ℕ1 in (30). This is relevant
when performing a constrained optimisation in the context of the
RTI scheme for hot-started solutions, as an active-set guess can be
provided.
 

Theorem 2 (Breaking points - shifting Lagrange multipliers):
When using definition 1 with Lemma 2, the Lagrange multipliers
(λ) active-set guess for hot started solutions must be shifted only
when the optimisation reaches the ‘breaking point’ to maintain
consistency.
 

Proof: Consider the following unblocked Lagrange multipliers
related to positive input constraints (M ≤ umax):

λ = λk k, λk + 1 k, …, λk + Np − 1 k (38)

The usual shifting strategy used by the RTI is

λk + i k + i > 0 active if λk + i k + i − 1 > 0
λk + i k + i = 0 inactive if λk + i k + i − 1 = 0

∀i = [0, Np − 1]
(39)

Now for simplicity, consider an ideal prediction horizon
Np = NB + 1. When the proposed shifting input structure given by
Definition 1 is used, it requires only two lambdas λ1 k + j, λ2 k + j  for
the two blocked sections where
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λ1 k + j = λk + i k + j = λk + NB − 1 k + j

∀ j = [0, NB − 1]; ∀ i = [ j, NB − 1] (40)

for the first blocked section with initial block size NB, and

λ2 k + j = λk + NB + i k + j = λk + NB + j k + j

∀ j = [0, NB − 1]; ∀i = [0, j] (41)

for the second blocked section. Applying the RTI IVE shifting (39)
combined with equalities (40) and (41), and considering the
‘breaking point’ of definition (1) happens at k + NB gives

λ1 k + NB > 0 active if λ2 k + NB − 1 > 0
λ1 k + NB = 0 inactive if λ2 k + NB − 1 = 0 (42)

at that time step. The same holds for the rest of the blocks where

λi k + NB > 0 active if λi + 1 k + NB − 1 > 0
λi k + NB = 0 inactive if λi + 1 k + NB − 1 = 0

∀i = [1, NEℕ]
(43)

□

3.4 Shifting strategy applied to shooting points

The concept of a reduced number of points of interest is already
used in the shooting methods, e.g. [3, 18], however, they do not
apply the shifting strategy proposed in this paper where the points
are kept in an absolute-time-frame. The proposed approach of this
paper builds on top of the conceptual ‘breaking points’
aforementioned for the input-blocking and selects a subset of future
errors and output constraints directly at the end of each blocked
input for the optimisation.
 

Definition 2 (Shifting shooting points): The proposed approach
can be formally represented by selecting a subset of references,
outputs and output constraints given by

ek + nNB k + j = rk + nNB k + j − y^k + nNB k + j

ymin ≤ y^k + nNB k + j ≤ ymax

∀n = [1, NEℕ − 1]; ∀ j = [0, NB − 1]
(44)

where j is the time step, n is related to number of shooting points,
and the last point of the prediction horizon

ek + Np + j k + j = rk + Np + j k + j − y^k + Np + j k + j

ymin ≤ y^k + Np + j k + j ≤ ymax
(45)

is always included. To select the points at the end of each blocked
input, the time step j must be ‘in phase’ with the time step j used by
Definition 1.
 

Remark 4: Selecting a given subset of output errors or output
constraints can be achieved by selecting the respective rows of
matrices H, G, Yr, Ȳ , M, γ.
 

Theorem 3 (Shooting points - recursive feasibility): The tail of
the optimisation is automatically included by using Definition 2,
giving recursive feasibility guarantees.
 

Proof: Consider an optimal solution for the shooting points:

r^ = rk + NB k, rk + 2NB k, …, rk + (NEℕ − 1)NB k, rk + Np k

Y^ = y^k + NB k, y^k + 2NB k, …, y^k + (NEℕ − 1)NB k, y^k + Np k
(46)

that satisfies the constraints Ymin ≤ Y^ ≤ Ymax, i.e. is feasible at time
k. By using (44) and (45) for time step k + 1 ( j = 1), the

optimisation will keep looking at the same output errors and
constraints at all the points (i.e. the tail), except the last one.

r^ = rk + NB k + 1, …, rk + (NEℕ − 1)NB k + 1, rk + Np + 1 k + 1

Y^ = y^k + NB k + 1, …, y^k + (NEℕ − 1)NB k + 1, y^k + Np + 1 k + 1
(47)

The only difference from the aforementioned variables to be used
for the optimisation is the error
ek + Np + 1 k + 1 = rk + NB + 1 k + 1 − y^k + Np + 1 k + 1. If there were no reference
changes and a sufficiently big horizon is used, this error would
make a negligible change to the cost J and therefore, the
optimisation would be able to follow the plan obtained at the
previous time step k, provided the previous decisions can be
replicated (i.e. the tail of the decision variables is available). It is
noted that a rigorous guarantee requires invariant sets/terminal
modes [31]. Nonetheless, works such as [2, 7, 8, 10, 20] have
shown excellent performance without them, both in real systems
and simulations. Moreover, because only one linearisation of the
optimisation is performed in the RTI scheme, the constraint
satisfaction will be subject to the accuracy of the linearisation
process. This is a common problem for any RTI scheme variation.

Although this proof is derived by selecting shooting points at
the conceptual ‘breaking points’, it is a general result and holds,
independently of whether blocked approaches were used or not. In
other words, if a non-blocked input-parameterisation was used, it
would still guarantee recursive feasibility for the shooting points
provided the tail of the decision variables is always available.
Without the proposed shifting strategy, no recursive feasibility
guarantee can be given without the use of soft-constraints, ie. slack
variables, which would relax the feasibility problem entirely. □
 

Theorem 4 (Shooting points - shifting Lagrange multipliers): As
in Theorem 2, the Lagrange multipliers (λ) must be shifted only
when the optimisation reaches the ‘breaking points’ to maintain
consistency. This holds even for non-blocked solution. This proof
is similar to Theorem 2 thus is omitted.

3.5 Stability, optimality and convergence

As discussed in Remark 2, the stability of this scheme may be
guaranteed with the use of zero-terminal constraints [6], or suitable
terminal weights such as infinite horizon costing [20] which would
make the resulting closed-loop sequence of costs to have Lyapunov
stability. Indeed, the typical zero-terminal constraint proof can be
seen directly in the assumption of Theorem's 3 proof where new
information would add negligible terms to the cost and remain
feasible. In the case of infinite horizon costing, a local LQR control
law may be used to stabilise the system in the terminal region after
Nu control actions as in [20], however in some cases, the state may
not be able to get inside the terminal region in one SQP iteration as
performed by the RTI Scheme. Moreover, the required assumptions
of the RTI Scheme discussed in [10] must be considered to achieve
global optimality, including that the optimisation is initialised at
the global optimum, and that there are no abrupt reference or state
jumps. Finally, as per all SQP methods, the convergence of the
numerical solution may be subject to appropriate step-size
selection (typically full for RTI [10]), and the accuracy of the
linearisation process.

3.6 Example of the overall shifting strategy

To understand the overall strategy, consider the simple generic
example given in (30) with the ideal prediction horizon Np = 5,
and the same block size NB = 2. By dropping the absolute notation
k + i k + j and applying the overall shifting strategy, the selected
shooting points and constraints for both blocking structures
expressed relative to the ‘current’ time step, would lead to
considering cost function (9) subject to the two set of variables and
constraints defined in Table 1, used in sequence and repeating
infinitely (1st, 2nd, 1st, …) for the optimisation. The optimisation
can then be prepared by selecting appropriate matrices and vectors
for Yr, G, H, M, γ.
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Remark 5: Notice the entire future input trajectory is

constrained in the optimisation given the blocking input-structure
used, however, the output constraints only constrain the shooting
points. This will be seen in the results Section 5.2.

To give a comprehensive visualisation of the strategy, Fig. 2
shows the predicted trajectories in the relative time frame of three
subsequent optimisation problems for the inverted pendulum
problem presented in Section 5 when the strategy is using a block
size of NB = 4. It is noticeable how the shooting points at times
approximately 0.2 ≤ t ≤ 0.4 (s) are kept at the constraint limits.
Moreover, notice how most of the time, the shooting points and the
blocked inputs are moving left horizontally indicating that the
resulting optimal of all three optimisations, in absolute time, are
nearly identical.

4 Efficient coding
This section presents the algorithms and computational savings
used to achieve efficient coding of the entire NMPC optimisation

presented in Section 2 together with the proposed shifting strategy
of this paper presented in Section 3.
 

Algorithm 2: Efficient H and G computation
In order to fill the H and G matrices efficiently, the following

algorithm uses dummy variables TG and TH to calculate the
required rows of the matrices recursively. Assuming TG 0 = [A0]
and TH 0 = [B0] as starting points, it can be shown that all
subsequent sub-matrices required by the H and G matrices are
determined by

TG k = Ak TG k − 1, TH k = Ak TH k − 1 Bk

∀k = [1, …, Np − 1] (48)

The values are then assigned into the corresponding rows and
columns of H and G, and only the rows of the ‘shooting points’ are
stored as discussed in Section 3. In the case the output has a non-
linear relation to the state, matrices TG and TH must first be
multiplied (separately) with the appropriate Ck (see (7) and (8)).

Once these matrices are filled, a significant number of
computations can be avoided by taking advantage of the nature of
the operations as in [7]. Furthermore, memory used should be pre-
allocated avoiding dynamic memory allocation at all cost. Finally,
it is important to NEVER repeat the same operation twice. Below
we present a list of the computational savings that can be achieved.

1. The value of Hℕ can be obtained by the summation of the
respective columns in the H matrix. We will refer to this
operation as Hℕ = Hℕ.

2. The computation of the modified Hessian can be done as
Eℕ = Hℕ

TQHℕ + ℕTRℕ.
3. The operation ℕTRℕ corresponds to the summation of

penalisation values of the corresponding blocked inputs. This
values can be gathered in a vector rℕ and added directly to the
diagonal.

4. The operation ℕTRŪ represents the summation of the inputs in
the block multiplied by the respective penalisation.

5. Assuming Q is diagonal, the values on the diagonal (q) can be
multiplied individually to the rows of Hℕ in QHℕ operation of
the Hessian [7]. We will refer to this operation as HQℕ.

6. If Q is diagonal or symmetric, QT = Q, therefore
ℕTHTQ = HQℕ

T .
7. Given the Hessian is symmetric, only the lower (or upper)

triangular values need be calculated; the rest can be duplicated
[7].

8. Given the Hessian is symmetric, a Cholesky decomposition is
used to calculate the inverse of the Hessian efficiently by
calculating only lower (or upper) triangular values and
duplicating the rest.

9. An efficient version of Hildreth's QP provided [32] was
developed, avoiding repeated computations by storing relevant
results required by the optimisation.

10. The recovery of the original solution (full sized vector) from
the blocked solution is done programmatically, rather than
through (18) or (17).

Based on the ideas presented in this section, the proposed
strategy can significantly reduce the memory required for the
optimisation. In particular, this allows the reduction of matrix
E → Eℕ, gradient f → f ℕ, constraint matrix M → Mℕ, prediction
matrix H → Hℕ, as well as constraint vector γ, nominal output
vector Ȳ  and state-to-output prediction matrix G by selecting only
the rows related to the shooting points. However, if the
methodology is meant to be used to compress/decompress a given
QP, as explained in Section 2.5, the optimisation could add up to
half the memory (depending on the block size – half at NB = 2) for
storing the compressed QP matrices (Eℕ, f ℕ, Mℕ, γ).

Table 1 Shifting strategy example
Seq. 1st 2nd
refs.

Yr =
rk + 2

rk + 4

rk + 5

Yr =
rk + 1

rk + 3

rk + 5

outputs
Y^ =

yk + 2

yk + 4

yk + 5

Y^ =
yk + 1

yk + 3

yk + 5

input
structure

U^ = ℕ1U
^

or δU^ = ℕ1δU^

ℕ1 =

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

U^ = ℕ2U
^

or δU^ = ℕ2δU^

ℕ2 =

1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

constr.
u− ≤

uk

uk + 2

uk + 4

≤ u+

y− ≤
yk + 2

yk + 4

yk + 5

≤ y+

u− ≤
uk

uk + 1

uk + 3

≤ u+

y− ≤
yk + 1

yk + 3

yk + 5

≤ y+

 

Fig. 2  Shifting example with NB = 4 starting from j = 1 of Definition 1, in
relative time frames
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The ideas and computational savings gathered up to this section
are implemented in the MATLAB and C++ codes given in [27, 28]
for the benchmark presented in the following section.

5 Inverted pendulum – a benchmark
The inverted pendulum is a non-linear system widely used by
academics, known to present several control challenges such as
non-linear and non-minimum phase dynamics, physical constraints
and under-actuation (multiple outputs–single input), where the task
is to drive the pendulum to its upright position, and simultaneously
control its position in a rail. This makes it an interesting and
challenging benchmark for NMPC.

The application of NMPC to a real inverted pendulum was
succesfully achieved in [34] using modest hardware. An impressive
application to a real triple inverted pendulum is presented in [38]
where a non-linear optimisation using a collocation point is to
calculate the solution offline, however, they do not apply it in a
receding horizon context nor do they apply it using the RTI
scheme. Other authors have used it extensively for benchmark
simulations such as [1, 6, 10, 13, 14, 20].

This section presents a benchmark of the proposed approach in
a non-linear inverted pendulum for comparing the performance of
the different strategies presented in this paper. The results show
that by applying the proposed approach, the system achieves better
performance and presents better recursive feasibility properties,
which is a consequence of a consistent optimisation. Furthermore,
it will be seen that the proposed approach can have computational
gains up to 100 times faster on an i7 laptop, and up to 70 times
faster on a relatively low power Linux-based embedded platform
such as the aforementioned Beaglebone Blue, which would
otherwise render the application of NMPC to this system
unfeasible.

5.1 System modelling

Several variations of the mathematical model of an inverted
pendulum have been used, some of which are more complex than
others. For our simulation, we used the mathematical model
presented in [33] which contains two main non-linearities, namely,
the gravitational effect, gsin(θ), and the non-linear torque-
relationship cos(θ)u of the bar-link with the input u (or car
acceleration p̈ = u). The model is given by the following
differential equations:

θ̈
p̈

= −bθ̇ + gsinθ + cosθu
u

(49)

Assuming the state x = θ θ̇ p ṗ T, the system was simulated
using a forward Euler integration method. Considering θ and p as

the relevant outputs leads to the following linearisation matrices of
the state-space model (3):

Ak =

1 T 0 0
Tαk (1 − Tb) 0 0
0 0 1 T
0 0 0 1

, Bk =

0
Tcθk

0
T

Ck = 1 0 0 0
0 0 1 0

(50)

where T is the sampling time, cθk = cosθk, sθk = sinθk and
αk = gcθk − sθkuk. The parameters used were b = 0.3 and
g = 9.81 m/s2, and the simulation was done using a sampling time
of T = 0.025 s. Only the position of the car and the angle were
considered as outputs (ny = 2) and the constraints of the system
were considered as −10 ≤ u ≤ 10 (m/s2) and −1 ≤ p ≤ 1 (m).

5.2 Simulations

All the simulation tests were done in the nominal case (no noise, no
disturbances, no uncertainty) given that the prime interest is in the
‘inner’ recursive feasibility, stability properties and computational
efficiency; disturbance rejection and noise cancellation can be
addressed separately using offset-free optimisations [18, 39] and
observer/estimator design or filters [30–32, 40], respectively. The
simulation was initialised with the state x = π 0 0 0 , and
was run for Ts = 8 s, allowing the system to swing up in ‘one shot’
or ‘two shots’ (see Fig. 3). For the initial guess, a future nominal
input trajectory of zeros Ū = O was used which represents the free
response of the system, a condition from which any optimisation
could be initialised.

A desired prediction horizon of Npdes = 50 (Tp = 1.25 s) was
selected and the ideal prediction horizon was then acquired
depending on the selected block size (NB). For a reference, the
ideal horizon is displayed next to the block size in parenthesis in all
the tables. Regarding the tuning parameters, the optimisation was
done using Q = I and an input penalisation of R = 0.1I. Moreover,
a terminal cost (last two values in Q diagonal) of Q f = 500 was
used for both, angle and position, as a ‘soft’ zero-terminal
constraint to improve the stability characteristics of the underlying
optimisation.

5.2.1 Performance and recursive feasibility comparison: To
assess the performance and recursive feasibility properties of the
proposed approach, the system was tested with four possible types
of solution (deviations/absolute with/without the proposed shifting
strategy) and for different block sizes (NB). Moreover, to compare
the performance, two QP solvers were used in this comparison,
namely the MATLAB R2018a quadprog function using the
interior-point method and Hildreth's QP presented in [32], which is
an active-set primal-dual type of QP that allows for hot-starting the
solution (initial guess for λ). In the former, the solution did not
have a limit in iterations or time (solved to optimallity), and the
latter performed a fixed number of 20 iterations (approximated
solution) when the unconstrained solution did not satisfy the
constraints. In the particular case of non-shifted solution based on
deviations, the constraints remained in the full-sized vector.
Additionally, in the case of the MATLAB quadprog function, every
time it returned an infeasibility flag, it was counted and the
previous solution was used explicitly; this represents essentially
open-loop control (no feedback), thus is a risk. The number of
infeasibilities presented in a given type of solution is shown in
brackets in Table 2. Finally, the solution of the optimisation was
always saturated to respect the input constraints regardless of the
result from the QP.

Table 2 gathers the comparison of the costs for all the different
types of solutions where JDev − Shi f t represents the cost of the
deviations solution with the proposed shifting strategy, JAbs − Shi f t
the cost of the absolute solution, and so on. For reference, costs
less than 2000 swung up the system in ‘one shot’, costs greater

Fig. 3  Example performance comparison with NB = 6 using quadprog
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than 2000 but less than 3000 swung up the system in ‘two shots’,
and costs above 3000 means the optimisation was not able to
stabilise the system (see Fig. 3). The following summarises the
main results from Table 2.

1. In both QPs (quadprog and Hildreth's), the results from the
proposed deviation and absolute formulations with the shifting
strategy are exactly the same (columns 1 and 2, and columns 5
and 6 equal). This is a direct result of what has been said
repeatedly throughout the paper: consistency. Moreover, no
infeasibilities were recorded for both types of solutions when
using quadprog.

2. The solution giving deviations without shifting presented a
significant number of infeasibilities (239), and worse

performance when solving to optimality (quadprog) than when
using an approximate solution (Hildreth's). This is a direct
result of inconsistency combined with the fact that Hildreth's
does not check for infeasibility and therefore feedback is
always applied.

3. Although there were some differences in the results between
both QP's for the proposed approach (i.e. columns 1 and 2 ≠
columns 5 and 6), most likely given that Hildreth's QP did not
converge to the solution in the 20 iterations (slow convergence
rate of λ [32]), they gave similar results for all the cases
(columns 1 and 2 ≃ 5 and 6).

4. Overall, the best ‘Total’ cost is given by the proposed shifting
strategy and the absolute non-shifted formulation gave the
worse results.

5. For block sizes NB = 10, 11, non of the solutions was able to
swing up the system in ‘one shot’. This is unsurprising and
linked to the obvious observation that there are sensible block
sizes.

6. In both QP's, suboptimalities
ΔJ = (JNB/J1 − 1) × 100 < 13.26% where obtained through all
the ‘one shot’ solutions which give acceptable performance
such as the ones given in both Figs. 3 and 4.

7. Notice block sizes NB = 2, 7 presented even better
performance than the original full size vector NB = 1. This is
because in the linearisation process, the optimisation might
take a different ‘branch’ of the solution that improved further
AFTER re-linearisation. Moreover, allowing the intermediate
constraints to be violated may relax the solution and lead to
better performance at the cost of having to accept the
violations. Finally, the optimisation is done in a finite horizon
where both block sizes have slightly longer prediction horizon
which could result in better overall predictions.

Fig. 3 shows an example response with block size NB = 6
where it can be seen that the optimisation was able to swing up and
stabilise the system in ‘one shot’ using the proposed shifting
strategy (both deviations/absolute giving same result). In contrast,
it took ‘two shots’ for the non-shifted solution based on deviations
and the optimisation failed completely in the case of the absolute
non-shifted solution.

Another value that was compared was the summation of the
absolute violation to the position constraints for different block
sizes (NB). In other words

∑
∀k

vk, where vk = pk − 1 if pk > 1
0 else (51)

The results of this are gathered in Table 3, where VT‐Shift
represents the total violation of the proposed shifting strategy
(deviations and absolute are the same), and VDev and VAbs the total
violation of the deviation and absolute non-shifting solutions,
respectively. Additionally, given that the proposed shifting strategy
is only supposed to enforce the constraints in the shooting points,
the summation of the constraint violation at this particular points
was stored separately and is represented by VS−Shift in the table. The
following summarise the main results from Table 3.

1. In the full optimisation case (quadprog), there were no
violations of the constraints at the shooting points
(VS − Shi f t = 0) when using the proposed strategy.

2. In the approximated optimisation case (Hildreth's), only 3
significantly small (1 mm) violations occurred on the shooting
points. Notice as the block size increases, the number of
constraints in the optimisation is reduced. This ultimately
allows the QP to find the active set in less iterations, resulting
in no violations on the shooting points at bigger block sizes
whilst performing slightly better because of the relaxation of
the intermediate constraints.

3. Although the non-shifted solutions gave presumably ‘good’
results for the Hildreth's case, they present significant cost
suboptimalities. Moreover, the non-shifted deviation solution

Table 2 Cost comparison for different block sizes NB using
shifting and non-shifting strategies, and using quadprog
MATLAB function and Hildreth's QP for solving the
optimisation
QP Quadprog Hildreth's
NB

(Np)
JDev‐Shift JAbs‐Shift JDev JAbs JDev‐Shift JAbs‐Shift JDev JAbs

1
(50)

1101 1101 1101 1101 1102 1102 1102 1102

2
(51)

1099 1099 1105
[17]

1119
[8]

1102 1102 1108 1130

3
(52)

1104 1104 2732
[18]

1239 1103 1103 1114 1238

4
(53)

1138 1138 2758
[32]

2475 1140 1140 1135 2787

5
(51)

1194 1194 1224
[14]

4118 1244 1244 1218 3952

6
(55)

1168 1168 2436
[18]

4002 1177 1177 1237 3715

7
(57)

1098 1098 2438
[26]

2197 1098 1098 1245 2201

8
(57)

1183 1183 2533
[38]

2173 1192 1192 1285 2293

9
(55)

1207 1207 2361
[20]

3514 1220 1220 2697 2230

10
(51)

2524 2524 2544
[27]

3475 2555 2555 2448 3474

11
(56)

2776 2776 2284
[15]

3448 2714 2714 4392 3447

12
(61)

1244 1244 4432
[14]

3397 1247 1247 2203 3399

total 16,835 16,835 27,948
[239]

32,258
[8]

16,894 16,894 21,185 30,969

 

Fig. 4  Shifting strategy response with NB = 12 using Hildreth's QP
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requires the full decision vector (not the blocked vector) to be
constrained, thus removing part of the computational benefit.

To illustrate the concept of satisfying the constraints in the
shooting points, Fig. 4 shows the response of the system with block
size NB = 12 where it can clearly be seen that the solution satisfies
the constraints (at the very limits) at the shooting points, which in
this case are at times t = [0.925, 1.225] = [3NB + 1, 4NB + 1]T .
The ‘extra step’ in both shooting points is due to the computation
separation strategy of the RTI which uses a predicted state, thus
always optimising relative to ‘one step ahead’ and applying the
feedback phase in the next sampling time when the measurement
of the state is available. This can clearly be seen in the input
response where the first decision is at t = 0.025 s instead of t = 0 s.
Another important thing to notice is that the solution clearly
exhibits the blocking structure, in particular, after t > 3 when the
system is stabilised within the prediction horizon. Finally, a
particular drawback of the proposed approach is that it only
guarantees satisfying constraints at the shooting points by fixating
all attention to them, therefore a small slack is required to protect
the non-shooting points from small constraint violations. The
selection of the slack size itself is a non-trivial task but could be
selected based on Monte Carlo simulations, analysing the system
from a variety of conditions, and obviously would be increased as
the block size increases. In general, this is a problem from which

most direct methods suffer because of the discretisation of the
problem and thus is not unique to the proposal in this paper.

5.2.2 Computation time comparison: A core topic of interest is
the computation time benefits achieved by the proposed strategy.
Notice that the latter benefits from two main parts: (i) the first
being the reduction in the number of degrees of freedom and points
of interest which by itself would lend to faster unconstrained
solutions, and (ii) the second being the reduction of the number of
constraints which would otherwise lack the recursive feasibility
guarantees if they were not reduced in the absolute-time-frame
used by the proposed approach.

In order to properly test the computation times, the strategy was
tailored to be executed with a given block size NB and its ideal
prediction horizon Np which define the sizes of the matrices to be
used. Each block size was programmed separately as a MATLAB
function, and MATLAB C Coder was used to produce tailored C++
code to perform the optimisation. Regarding the QP iterations, the
interest was on how fast the prepared QPs could be run, therefore
the optimisation performed exactly 20 steps of Hildreth's QP when
the unconstrained solution did not satisfy the constraints,
independently of whether the active set was found or not. This is a
realistic scenario given a situation may arise in a real system where
the optimisation can only run for a given maximum number of
iterations. Three execution times were of interest, namely: 

1. Preparation: The total time required to compute QP matrices
Eℕ, f ℕ, Mℕ, γ; referred to as QPp in Table 4.

2. Unconstrained solution: The preparation time plus obtaining
the unconstrained solution and computing the feedback gain
Kx = Eℕ

−1HℕQ
T G to be used in the feedback phase; referred to as

QPu in Table 4.
3. Constrained solution: The unconstrained solution time plus the

time required to perform exactly 20 QP iterations of Hildreth's
QP; referred to as QPc in Table 4.

The resulting C++ code can be found in [28] and was tested on
two different systems: a laptop running Ubuntu 18.04 with an
i7-5700HQ 64-bits processor running @3.5 GHz with 12 GB of
DDR3 RAM @ 1.6 GHz; and a Beaglebone Blue embedded
platform running Real-Time (RT) Debian with an ARM Cortex-A8
32-bits processor running @ 1 GHz. Given that the latter is a 32-bit
system, the code was also produced and tested in 32-bits format on
both systems. The simulation was done 1000 times and the
minimum execution times for all cases were stored. This represents
the fastest computation time that the approaches could obtain if a
real time OS was used given the exact same computations/QP

Table 3 Constraint violation comparison for different block
sizes NB, using shifting and non-Shifting strategies, and
quadprog MATLAB function and Hildreth's QP for solving the
optimisation
QP quadprog Hildreth's
NB (Np) VT‐Shift VS‐Shift VDev VAbs VT‐Shift VS‐Shift VDev VAbs

1 (50) 0 0 0 0 0 0 0 0
2 (51) 0.002 0 0.004 0.006 0.002 0.001 0.002 0
3 (52) 0.009 0 0.017 0 0.008 0 0.010 0
4 (53) 0.002 0 0.064 0 0.002 0.001 0.012 0
5 (51) 0 0 0.044 0.106 0 0 0.030 0.040
6 (55) 0.003 0 0.094 0.178 0.003 0 0.040 0.301
7 (57) 0.171 0 0.300 0 0.171 0 0.089 0
8 (57) 0.114 0 0.423 0 0.108 0.001 0.021 0.094
9 (55) 0 0 0.406 0.059 0 0 0.100 0.008
10 (51) 0.032 0 0.686 0 0.026 0 0.334 0
11 (56) 0.069 0 0.313 0 0.156 0 0.214 0
12 (61) 1.055 0 0.986 0 1.033 0 0.055 0
Total 1.457 0 3.337 0.349 1.511 0.003 0.908 0.444

 

Table 4 Comparison of computation times (in microseconds) for different block sizes NB in 32/64 bit formats on two different
systems: Ubuntu 18.04 (Intel i7-5700HQ 64-bit @ 3.5 GHz) & Beaglebone Blue running RT Debian (ARM Cortex-A8 32-bit @ 1 
GHz)
Sys Ubuntu 18.04 (i7-5700HQ @ 3.5 GHz) Beaglebone Blue (ARM Cortex-A8 @ 1 GHz)
Bits 64-bits 32-bits 64-bits 32-bits
NB (Np) QPp QPu QPc QPp QPu QPc QPp QPu QPc QPp QPu QPc

1 (50) 165 276 2646 144 248 2291 6393 14326 108567 6689 14879 119865
2 (51) 41 60 427 35 53 415 2239 3459 19800 2144 3359 21586
3 (52) 26 34 185 22 30 172 1756 2204 8568 1598 2043 9211
4 (53) 21 25 85 18 22 77 1628 1863 5250 1456 1680 5100
5 (51) 17 19 57 15 17 52 1440 1575 3496 1372 1493 3493
6 (55) 19 21 52 16 17 46 1619 1729 3252 1390 1487 3077
7 (57) 19 21 45 17 18 41 1706 1794 2962 1655 1734 2996
8 (57) 18 19 39 16 17 35 1693 1761 2634 1426 1492 2439
9 (55) 17 18 33 15 15 29 1572 1625 2306 1447 1495 2235
10 (51) 14 15 26 12 13 23 1312 1352 1860 1146 1182 1717
11 (56) 17 18 29 14 15 26 1552 1593 2105 1366 1403 1938
12 (61) 20 20 32 17 18 29 1819 1861 2357 1602 1639 2172
gain 12 18 102 12 19 100 5 11 58 6 13 70
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iterations are performed. The resulting computing times are
gathered in Table 4 and the following summarises the main results.

1. For the constrained solution, the optimisation was able to get
computation times QPc up to 102 times faster in the laptop
when using 64-bits, and 100 times faster when using 32-bits
format. In the case of the embedded system (Beaglebone Blue),
the optimisation was able to get computation time QPc up to 70
times faster when using 32-bits, and only 58 times faster when
using 64-bits.

2. Gains of up to 19 and 13 times faster were observed for the
unconstrained solution, and up to 12 and 6 times faster for the
preparation in the laptop and the embedded system,
respectively.

3. The fastest execution time in all the cases is obtained with
block size NB = 10. This is because this block size, has the
smallest ideal prediction horizon (Np = 51) with the smallest
Hessian size of 6 × 6 (⌈ 51

10 ⌉) and only 24 constraints (6 × 4). In
contrast, the optimisation with block size NB = 1 has a Hessian
size of 50 × 50 and 200 constraints (50 × 4).

4. The block size of NB = 1 would render the application
unfeasible in the embedded system (Beaglebone Blue) given
that the optimisation would not be able to finish within a
sampling time (T = 0.025 s). However, in all the cases the
computation time quickly drops to less than 8% with a block
size of NB = 3.

6 Conclusion
This paper presents a novel shifting strategy based on efficient
blocked solutions for NMPC combined with the RTI scheme. The
proposed strategy uses a set of blocking structures which if applied
sequentially automatically include the tail of the solution hence
preserving recursive feasibility guarantees whilst reducing the
degrees of freedom and the input-related constraints. Additionally,
the proposed approach uses a reduced amount of points of interest,
sometimes called shooting points, which represent output errors
and output constraints that must be satisfied, and a stability and
recursive feasibility guarantee is presented for the infinite horizon
case, or for when the system includes special terminal conditions
such as zero-terminal constraints or infinite horizon costing.
Finally, it presents a set of algorithms and computational savings
that can be used to code the proposed approach efficiently.

The overall resulting strategy is tested using an inverted
pendulum as a benchmark where the proposed approach clearly
outperforms the standard solutions in recursive feasibility
properties and general performance, giving suboptimallities
ΔJ < 13% and fully satisfying the constraints at the shooting points
when a full optimisation is performed. Finally, the computational
benefits of the proposed approach were evaluated in two physical
systems: an i7 laptop and a Beaglebone Blue embedded system,
where computation times up to 100 and 70 times faster were
possible.

Future work related to the proposed strategy will be to merge
the approach with the ACADO toolkit allowing it to use the
efficient sensitivity generation and integration methods it contains,
as well as a variety of QP solvers, and ultimately, the automatic
code generation for its implementation in real robotic and
mechatronic systems such as UAVs using, for example, the
Beaglebone Blue Linux-based computing platform.
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Abstract: This study presents a novel fast non-linear model predictive control approach for a parallel double inverted pendulum.
The approach uses dual-mode closed-loop predictions to obtain numerically robust optimal solutions. Moreover, it uses the real-
time iteration (RTI) scheme to reduce the computational burden and achieve real-time performance. Furthermore, two main
modifications are proposed which significantly improve the performance of the RTI scheme in the presence of large
disturbances, namely; additional energy-based costs, and a hybrid switching scheme. Finally, the approach uses a non-standard
discretised model combined with an online system identification scheme to address parameter uncertainty, and with an
extended Kalman filter for state-estimation. The resulting performance is validated through both simulations and experimental
results .

1 Introduction
Non-linear model predictive control (NMPC) is an advanced
optimal control strategy able to handle complex and constrained
non-linear dynamic systems [1]. Although NMPC has a long
history of development, its deployment had been restricted to the
process industry where relatively slow processes allowed time to
compute the required control algorithms [2]. However, recent
progress in computing performance has enabled its application in
many systems through the use of efficient solutions [1, 3, 4]. One
of the most successful and popular approaches for fast NMPC is
the real-time iteration (RTI) scheme, originally developed in [5]. Its
efficiency is based on the fact that NMPC is required to
successively solve optimal control problems (OCPs) which are
closely linked to each other [1]. An excellent tutorial-like paper
detailing the main differences between the RTI NMPC and
standard NMPC is given in [1]. Moreover, the efficiency of the
overall approach depends largely on how the algorithms are
programmed, as well as the platforms in which they are deployed,
e.g. using embedded hardware such as field-programmable gate-
arrays [6]. To address this, several toolkits containing efficient
autogeneration routines are available such as the ACADO toolkit
[3], VIATOC and CasADi [7], to name a few. Furthermore, the
underlying optimisation may be solved using simultaneous or
sequential approaches which lead to sparse or condensed OCPs.
Authors in [4] concluded condensing-based approaches are faster
for small to medium systems, whereas sparse solutions give a
better overall performance for large scale optimisations and deal
better with unstable systems [8]. Finally, direct methods are
commonly used to discretise the problem, typically by using
multiple or single-shooting discretisations [8, 9].

The (double) inverted pendulum is a complex multivariable
non-linear system that presents many challenges such as input-
output constraints as well as underactuated, unstable and non-
minimum phase dynamics [10]. For this reason, it has been used
extensively for benchmarking of NMPC, though mostly for
simulation works such as [1, 3, 7], and similar systems such as
cranes studied in [6]. Nonetheless, experimental contributions have
been achieved in [10–12], and furthermore discussed within. In
[10], a triple pendulum swing up was achieved by using a two-
degrees of freedom control structure which used offline
optimisation to compute a feedforward trajectory, and a feedback
controller to stabilise the system along it. In [11], a fast NMPC
scheme for a twin parallel pendulum was developed which used a

control-parameterisation where the decision variable was able to
take only 3 possible values. Finally, authors from [12] presented an
NMPC for a single inverted pendulum.

In this paper, we propose a novel condensed single-shooting
Dual Mode NMPC based on the RTI Scheme for a parallel double
inverted pendulum, which differs from all previous works such as
[1, 3, 7, 10–12] for the general inverted pendulum problem. The
proposed approach cancels the unstable dynamics of the inverted
pendulum through the use of closed-loop predictions [13] giving
solutions with up to 6 orders of magnitude better numeric
conditioning than the standard NMPC. This can be critical for
matrix inversion when using low precision computing, and is
something that was found to be ignored in all the works found in
the literature. Indeed, no current toolkit offers support to address
this for condensing based NMPC optimisation. On the other hand,
we propose two main modifications to improve the performance of
the RTI Scheme in the presence of large disturbances, namely;
additional energy-related costs, and a hybrid switching scheme.
These modifications were observed to produce much smoother
responses than the standard NMPC. Finally, the entire scheme uses
a non-standard discretised model which is combined with an online
system identification (OSI) algorithm based on recursive least
squares (RLS) and delta modelling approaches, to address
parameter uncertainty. The whole approach is validated through
both simulations and experimental results. The benefits when
compared to [10, 11] were faster performance, and the use of
online optimisations, thus allowing large disturbances and model
updates. A video of the resulting performance can be found at
(https://youtu.be/7E-SXi3YKQohttps://youtu.be/7E-SXi3YKQo),
and the data of the experiments are available in https://doi.org/
10.24433/CO.8048147.v1 [14] along with a C++ code
implementing the approach using the EIGEN library.

The paper is organised as follows: Section 2 introduces the
mathematical models of the pendulum along with the proposed
discretisation scheme. Section 3 presents a detailed derivation of
the proposed dual-mode fast NMPC approach based on the RTI
Scheme along with the two aforementioned modifications required
to improve the RTI performance, which overall represents the main
contribution of the paper. Sections 4 and 5 present background on
the extended Kalman filter (EKF) and OSI frameworks used for
this work without a detailed derivation as both are well known in
the literature. Section 6 presents the details of the experimental
setup and discusses the experimental results of the proposed
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approach. Finally, Section 7 presents conclusions, summarises the
contribution of the paper and describes future work.

2 Mathematical modelling
In this section we present the equations of motion for the parallel
double inverted pendulum depicted in Fig. 1 based on the
assumption that the pendulums' will have a negligible effect on the
cart. Moreover, a discretisation of the system is presented based on
a backward-forward Euler scheme which will be used for the
NMPC, EKF and OSI, presented in the following sections.

2.1 Equations of motion

The equations of motion for the double inverted pendulum can be
derived by using Lagrange formalism [10]. As this is well known,
this paper uses the model from [11] with additional friction terms,
given by (1a) and (1b)

p̈ = f m ṗ + ku (1a)

θ̈i = aiθ̇i + bisin θi + cicos θi f m ṗ + ku
∀i = [1, 2]

(1b)

where p is the position of the car; u is an input signal to the system
which in this case is a pulse width modulated (PWM) signal for the
motor driver; the i index represents the variable or parameter
related to the ith pendulum; k is a constant that relate the PWM
with the force and mass of the system; θi are the angles of the ith
pendulum; f m and ai are viscous friction constants;
bi = (milig)/(mili2 + Ii) are the pendulums' gravity related terms;
ci = bi/g are the acceleration-torque related constants; g is the
gravity constant; and mi, li, Ii, are the mass, length and moment of
inertia of each pendulum, respectively. In this paper, the relevant
coefficients of the model will be found by the OSI algorithm
presented in Section 5. Note that the sign of certain coefficients
might be subject to the specific experimental setup depending on
orientation, e.g. positive cart motion to the left or positive angle
rotation CCW, however, all the viscous friction constants ( f m and
ai) must always be negative. Moreover, it should be noted that
though counter-intuitive, the lengths of the arms should be different
to achieve better controllability of the system [11], particularly in
the presence of noise which causes a significantly increased
amount of input shattering as the lengths become closer. This was
validated through simulations to select appropriate length
differences for our particular system.

This model is valid for our particular experimental setup given
two conditions are true; both pendulum's masses are much lower
than the cart, and the motor driver used has a regenerative braking
feature which further cancels out any possible uncontrolled
movement of the cart. In the case where the cart motion is indeed
affected by the pendulum's motion, a subordinate controller can be
developed to cancel this effects as in [10], or the full non-linear

model can be included in the general NMPC framework as it has
been shown in [3].

2.2 Discretisation

This paper uses a ‘direct approach’ which requires to ‘first
discretise, then optimise’ [6]. Thus, we now look to discretise the
equations of motion (1a) and (1b) which will allow us to simulate
and linearise the system for both NMPC and EKF frameworks.
This can typically be done using some form of integration method
such as the explicit Euler method or explicit Runge Kutta methods
[1].

For this work, a forward Euler method was considered at first,
following similar works as in [10, 12], however, based on the
observation that only position and angles are measured by the
system, this scheme was modified to a forward-backward Euler
scheme including an extra previous input uk − 1, thus augmenting the
state to obtain a non-minimal state space (NMSS) [15]. This was
motivated by observing that the position dynamics (1a) represent a
linear second-order model which is known to have an exact ZOH
discretisation of the form:

pk + 1 = (1 + e f mT)pk − e f mT pk − 1 + b1uk + b2uk − 1 (2)

which can also be represented by,

pk + 1 = (2 − a)pk − (1 − a)pk − 1 + b1uk + b2uk − 1 . (3)

Consider now the backward Euler approximations:

ṗk = pk − pk − 1

Ts
p̈k + 1 = ṗk + 1 − ṗk

Ts
(4)

(3) can be rearranged as:

pk + 1 − 2pk + pk − 1

Ts
2 p̈k + 1

= − a(pk − pk − 1)
Ts ṗk

+ b1uk + b2uk − 1 .
(5)

After some algebraic manipulation combining (1a), (5) and (4), the
following position acceleration model can be obtained:

p̈k + 1 = f m ṗk + k1uk + k2uk − 1 (6)

where f m, k1, and k2 are some equivalent coefficients. This position
acceleration model essentially represents a forward Euler
approximation using 2 previous inputs (uk, uk − 1) instead of only 1
(as in the standard method), and plays a critical role in the
discretisation of the pendulum dynamics (8).

Similarly, considering the backward Euler approximations:

θi
˙

k =
θik − θik − 1

Ts
θi
¨

k + 1 = θi
˙

k + 1 − θi
˙

k
Ts

(7)

and giving a forward-Euler step in (1b) combined with the position
acceleration model (6) results in the following angular acceleration
model for the ith pendulum:

θ̈ik + 1 = aiθ̇ik + bisin θik + cicos θik f m ṗk + k1uk + k2uk − 1

∀i = [1, 2]
(8)

Combining (4)–(8), and considering the state
xk = [p, θ1, θ2, ṗ, θ̇1, θ̇2, uk − 1]k, the simulation step is then given as

xk + 1 = xk + Ts f (xk, uk) (9a)

f (xk, uk) = f up
T , f down

T , (uk − uk − 1)/Ts
T (9b)

Fig. 1  Diagram from [11]
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f up =
ṗk + Ts f 1

θ̇1k + Ts f 2

θ̇2k + Ts f 3

f down =
f 1

f 2

f 3

(9c)

f 1 = f m ṗk + k1uk + k2uk − 1 (9d)

f 2 = a1θ̇1k + b1sin θ1k + c1cos θ1k f 1 (9e)

f 3 = a2θ̇2k + b2sin θ2k + c2cos θ2k f 1 (9f)

where Ts is the sampling time. It is noted that the last term of
function (9b) was only used to represent the propagation of the
input x7k + 1 = uk = uk − 1 + Ts(uk − uk − 1)/Ts and does not represent,
in any way, a ‘derivative of the input’ u̇k = (uk − uk − 1)/Ts which
would lead to a completely different integration scheme if more
intermediate steps were computed [1].

This discretisation differs slightly from the standard forward
Euler method in the sense that the latter would compute a forward-
Euler step on the higher derivative states (p, θ1, θ2). However, as
stated previously, given only position and angle's measurement
were available, the backward Euler approximations (4) and (7)
were used instead to use the latest information of the system.
Moreover, it would only take into account uk for simulation
purposes. Nonetheless, this modification was observed to produce
much better predictions in offline analysis of the system
identification process for both, position and angle dynamics, and in
fact, increasing the number of previous input terms uk − j was be
able to improve them even further, possibly given that it
accommodates some unmodelled higher-order motor dynamics
which are known to be at least second-order in the angular
velocity; third-order in the angular position; which can be
accounted for using convolution/FIR models. However, the system
was observed to get good performance whilst only including two
previous input terms, uk and uk − 1.

3 Non-linear model predictive control
In this section, a dual mode NMPC scheme based on the closed-
loop paradigm [16] is proposed to cancel the open-loop unstable
dynamics of the double inverted pendulum for numerical
robustness of the optimisation. Furthermore, to enable real-time
performance, the optimisations are performed within the RTI
scheme which allows the constrained optimisation to be solved
within the microsecond range [6]. Finally, a modification to the
standard cost used for inverted pendulum control is proposed based
on energy considerations along with a hybrid switching scheme
which overall significantly improves the convergence of the
algorithm, particularly for large disturbances, a situation where the
assumptions for local-asymptotic closed-loop stability of the RTI
scheme are lost. Simulations are presented along the section to
illustrate the significance of the proposed approach.

3.1 Stable predictions and optimisation

In this paper, we are looking to optimise the system performance
along a given prediction horizon Np by minimising the cost
function (10), defined as

J = 1
2(Yr − Y^)TQ (Yr − Y^) + 1

2U^ TRU^ s . t . (10a)

x^k = x0 (10b)

x^k + i k = f (x^k + i − 1 k, u^k + i − 1 k) (10c)

y^k + i k = g(x^k + i k) (10d)

Umin ≤ U^ ≤ Umax (10e)

Ymin ≤ Y^ ≤ Ymax (10f)

where xk ∈ ℝnx, uk ∈ ℝnu and yk ∈ ℝny are the states, inputs and
outputs of the system, respectively; the notation ‘k + 1 k’ reads
‘predicted value at k + 1 considered at sample time k’, and will
only be used in full when needed for clarity; Q > 0 ∈ ℝNpny × Npny

and R > 0 ∈ ℝNpnu × Npnu are positive-definite matrices for
penalising output-errors and inputs, respectively, typically selected
as Q = blkdiag([qk + 1, qk + 2, …, qk + Np]) where qk + Np is typically
referred to as the terminal weight, and R = ruINpnu × Npnu;
Yr = [rk + 1

T , rk + 2
T , …, rk + Np

T ]T ∈ ℝNpny, Y^ = [y^k + 1
T , y^k + 2

T , …, y^k + Np
T ]T

∈ ℝNpny, U^ = [u^k
T, u^k + 1

T , …, u^k + Np − 1
T ]T ∈ ℝNpnu are references,

outputs and inputs column-vectors, respectively; (10b) is the initial
condition; (10c) are the state dynamics; (10d) is the function that
relates the output with the states; (10e) are the input constraints;
and (10f) are the output constraints. For our particular system, the
outputs are typically selected as in [1, 10, 12] as
yk + i = [ ṗ, θ̇1θ̇2, p, θ1, θ2]k + i (ny = 6), and the references are selected
as rk + i = 0, 0, 0, pr, θ1r, θ2r k + i.
 

Remark 1: Stability of the resulting closed-loop system can be
typically ensured by having long horizons with zero-terminal
constraints and/or proper terminal weights [6].

Cost function (10) for system (9a) represents a non-convex non-
linear programming problem which is difficult to solve. Sequential
quadratric programming (SQP) is a popular alternative where the
cost is linearised at a given point to formulate a linearised quadratic
program (QP) and find an optimal search direction, typically based
on the Newton method, that eventually drives the solution to the
local optimal. Notice in the case of predictive control, future state
trajectories x^k + i required for the linearisation are only defined after
a given input trajectory u^k + i − 1 has been applied through the state
dynamics (10c) with the initial condition (10b). A workaround to
this are shooting methods which use an ‘initially guessed’ nominal
input trajectory, Ū = [ūk

T, ūk + 1
T , …, ūk + Np − 1

T ]T ∈ ℝNpnu to generate
nominal state and output trajectories,
X̄ = [x̄k + 1

T , x̄k + 2
T , …, x̄k + Np

T ]T ∈ ℝNpnx and
Ȳ = [ȳk + 1

T , ȳk + 2
T , …, ȳk + Np

T ]T ∈ ℝNpny, respectively, by simulating the
system with Ū using initial condition (10b) and state dynamics
(10c).

The standard NMPC single-shooting approach would linearise
the system along this resulting trajectories with a first-order Taylor
Series on the state dynamics, the output-state function, and the
input. However, given the open-loop unstable dynamics of the
inverted pendulum in its upright equilibrium, closed-loop dual-
mode prediction models were motivated [16]. The linearised model
at a given time step k is then given by,

x^k + 1 = x̄k + 1 + δx^k + 1 = x̄k + 1 + Akδx^k + Bkδu^k (11a)

y^k = ȳk + δy^k = ȳk + Ckδxk (11b)

u^k = ūk + δuk = ūk − Kkδxk + δc^k (11c)

where Kk is a stabilising gain obtained from solving the time-
varying discrete algebraic Ricatti equation backwards in time along
the nominal state trajectory using the same Q and R weights as in
[10], and:

Ak = ∂ f (x^k, u^k)
∂x^k

x̂k = x̄k
ûk = ūk

Bk = ∂ f (x^k, u^k)
∂u^k

x̂k = x̄k
ûk = ūk

(12a)

Ck = ∂g(x^k)
∂x^k x̂k = x̄k

(12b)

Notice this dual-mode prediction model differs from common
dual-mode schemes in the sense that standard methods would
select a gain K, typically a constant one, which stabilises the
system to the origin when the system is in the terminal region [17].
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In contrast, our approach uses dual-mode closed-loop models to
stabilise the predictions and achieve better numerical performance
as in [13]. This is because we aim to deal with the situation when
the system is not in the terminal region, and finding a stabilising
gain that does the swing up whilst satisfying the constraints is, in
general, not a trivial task for our system.

By substituting δu^k = − Kkδx^k + δc^k from (11c) in (11a), a
stable state deviation model can be obtained as,

Φk = Ak − BkKk (13a)

δx^k + 1 = Φkδx^k + Bkδc^k (13b)

Propagating model (13b) Np steps forward starting from an initial
state mismatch δx0, leads to the following predictions matrices for
all future inputs and outputs, U^  and Y^ , are condensely represented
by,

Y^ = Ȳ + δY^ = Ȳ + Gδx0 + HδC^ (14a)

U^ = Ū + δU^ = Ū + Dδx0 + FδC^ (14b)

where δx0 = x0 − x̄0 is the initial condition mismatch which forms a
part of the RTI scheme, δC^  are now the decision variables,

G =

g1

g2

⋮
gNp

H =

h1, 1 0 ⋯ 0
h2, 1 h2, 2 ⋱ ⋮
⋮ ⋱ ⋱ 0

hNp, 1 hNp, 2 … hNp, Np

(15a)

D =

d1

d2

⋮
dNp

F =

Inu 0 ⋯ 0
f 2, 1 Inu ⋱ ⋮
⋮ ⋱ ⋱ 0

f Np, 1 f Np, 2 … Inu

(15b)

where Inu is a nu × nu identity matrix, G ∈ ℝNpny × nx,
H ∈ ℝNpny × Npnu, D ∈ ℝNpnu × nx, F ∈ ℝNpnu × Npnu, and

gi = Ci ∏
k = 0

i − 1
↶

Φk (16a)

hi, j =

CiBj − 1, i = j

Ci ∏
k = j

i − 1
↶

Φk Bj − 1, i > j
(16b)

di =

−Ki − 1, i = 1

−Ki − 1 ∏
k = 0

i − 2
↶

Φk, i > 1
(16c)

f i, j =

−Ki − 1Bj − 1, i = j + 1

−Ki − 1 ∏
k = j

i − 2
↶

Φk Bj − 1, i > j + 1

∀i = [1, Np] ∀ j = [1, Np]

(16d)

where the i index refers to the ith matrix-row of matrices G,H,D
and F, and its conceptually related to the outputs predicted i steps
ahead; and the j index refers to the jth matrix-column of matrices
H and F, and its conceptually related to the decision variables j
steps into the future.

Substituting the stable linearised prediction models (14) in (10)
and rearranging in terms of the decision variable δC^  to obtain the
standard QP format gives;

J = 1
2δC^ T

EδC^ + δC^ T
f + const s . t . (17a)

E = HTQH + FTRF (17b)

f = − HTQ(Yr − Ȳ − Gδx0) − FTR(Ū + Dδx0) (17c)

MδC^ ≤ γ (17d)

M =

F
−F
H

−H

γ =

Umax − Ū − Dδx0

−(Umin − Ū − Dδx0)
Ymax − Ȳ − Gδx0

−(Ymin − Ȳ − Gδx0)

(17e)

with E known as the Hessian, f typically referred as the linear term,
and M and γ are the constraint matrix and vector, respectively.
Notice (10b)–(10d) are implicit in the linearisation of U^  and Y^ .
Moreover, note the not all the outputs may be required to be
constrained which can be done by selecting (or computing) only
the relevant rows of M and γ. In our particular system, only the
position outputs will be constrained.

By derivating (17a) w.r.t. the decision variable δC^  and equating
to zero ((∂J /∂C^ ) = 0), the well known unconstrained solution can
be found to be δC^ = − E−1 f . For constrained solutions, any QP
solver can be used to compute the optimal deviation δC^  after
having defined E, f , M, γ. For our experiments, an efficient version
of the active-set based primal-dual Hildreth's QP found in [15] was
used given its simplicity and its ability to be hot-started which is
required for achieving fast implementation of the overall scheme.
After solving the optimisation, the corrected input U^  can then be
recovered by (14b). Only the first input is applied to the system and
the process is repeated which is the well known ‘receding horizon’
strategy [11].

3.1.1 Stability and numerical robustness: Because this model
produces the same predictions for a given δU^ = Dδx0 + FδC^  than
using the standard model without the stable predictions, and
because δU^  can always be calculated exactly through the inversion
of F which is always invertible, the solution for U^  is the same as
the one given by the standard approach using unstable predictions,
and therefore presents the same stability and convergence
properties of the standard single-shooting approach. The benefit of
it is that the predictions matrix H is now stable w.r.t the decision
variable δC^  which leads to a numerically robust Hessian inversion
required by the optimisation. This allows the prediction horizon to
be increased as much as required without sacrificing numerical
robustness. For reference, in our particular system, the condition
number (c.n.) of the Hessian at the upward equilibrium when using
the proposed approach was around the unit magnitude
(Ec . n . = 2.5 × 100); the c.n. without using the approach was
(Ec . n . = 5 × 106), 6 orders of magnitude larger which indeed shows
severe numerical issues given it comes close to singular as the c.n.
increases.

Finally, for the interest of the reader, the standard NMPC
condensed single-shooting solution can be recovered by enforcing
Kk + i = O, ∀i = [0, Np − 1] which would then use the unstable
predictions.

3.2 Real time iterations

Ideally, the fully converged NMPC would relinearise cost function
(10) until no deviation is required δC^ = O [1]. However, this is not
computationally tractable in practice given one must give a
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solution at every time-step within the available time and avoid
solving a problem that is only ‘getting older’ [9]. A very successful
and popular approach to address this is to use the RTI scheme
which exploits the fact that NMPC is required to successively solve
optimisations which are closely related to each other. The method
benefits from the fast contraction rate of Newton-type
optimisations and achieves convergence of the solution ‘on the fly’,
using the current predictions and measurements rather than through
offline reference trajectories [1]. The overall RTI scheme is based
on three well-defined strategies.

3.2.1 Initial value embedding: The input trajectory obtained in
the previous sampling U^

k = [u^k k
T , u^k + 1 k

T , …, u^k + Np − 1 k
T ]T is used in a

shifted version to hot start the solution in the next sampling time,
typically by duplicating the last value
U^

k + 1 = [u^k + 1 k
T , u^k + 2 k

T , …, u^k + Np − 1 k
T , u^k + Np − 1 k

T ]T. Moreover, in the
case of active-set based QP, the lagrange multipliers λ related to the
constraints of the optimisation can also be used for hotstarting the
QP in a shifted version.

3.2.2 Single SQP: Only a single linearisation of the QP is
performed given the solution is hot started from the previous
solution which is expected to be close. In the case where the
previous solution was indeed close to the optimal solution and no
significant disturbances have entered the system, this approach can
be proved to have nominal local-asymptotic closed-loop stability
[18]. In general, the solution is not given exactly but as an
approximation that decreases the sub-optimality of cost J at each
iteration. Moreover, one must be satisfied with finding a local
minimum, and the solution will be subject to small approximation
errors given only one re-linearisation is done.

3.2.3 Computation separation: To avoid the delay related to the
computations required by the optimisation, we divide them into
preparation and a feedback phase. A timing diagram that illustrates
this is given in [1].

1. Preparation Phase: Uses a predicted nominal state x̄^ k + 1 k
obtained with the current input and states to compute the
matrices E,M and vectors f , γ required by the optimisation
assuming δx0 = 0.

2. Feedback Phase: As soon as the state xk + 1 becomes available,
the deviation δx0 = xk + 1 − x̄^ k + 1 k is used to complete the
calculation of f and γ and the optimal correction δU^  to the
current trajectory U^ .

A slight modification was implemented in our test where the
deviation δx0 was only applied to the linear term f and the QP was
iterated assuming δx0 = 0 to find the active set λ before the state
xk + 1 was available. By doing so, the solution is now given by (18),
which allows the preparation phase part (U^

pre − computed) to be pre-
computed prior to the arrival of the measurement, and only the
feedback correction U^ = Ū − U^

pre − computed − Kxδx0 is required to
be computed when the state becomes available, with
Kx = FE−1(HTQG + FTRD) − D

U^ = Ū + Dδx0

Feedback Phase

−FE−1 −(HTQ(Yr − Ȳ) − RŪ)
Unconstrained

+MTλ
Constrained

Preparation Phase (Ûpre − computed)

+(HTQG + FTRD)δx0

Feedback Phase
.

(18)

This modification completely removes the time-delay related to
the iterations of the QP required to be done by the standard RTI in
the feedback phase. By including this term δx0 in the linear term f,

the stability characteristics of the overall RTI scheme are
preserved, however, given the term is ignored for the calculation of
the constrained correction E−1MTλ, the system may present small
output constraint violations depending on how large is the
deviation from the predicted state at a given time. However, this
modification is justified considering that feasibility guarantees for
output constraints in the presence of disturbances are, in general,
difficult to achieve without using robust approaches or slack
variables (soft-constriants) which are outside the scope of this
paper. Nonetheless, the system presented excellent performance in
constraints satisfaction as it will be seen in the experimental results
presented in Section 6.

3.3 Improving RTI NMPC performance

A major issue with the RTI scheme is that the solution might give
very poor performance whenever an abrupt change is made, e.g.
when there is an abrupt change in the reference of the system [1],
or a large fault or disturbance enters the system, which may lead to
leaving the region of contraction of the Gauss–Newton method and
in some cases may even lead to instability of the system [6]. In
these cases, the previous solution will not be close to the optimal,
and therefore, the method would need to quickly find a suitable
correction from the previous solution. This issue may be addressed
by adding suitable end weights and other regularity conditions [6].
However, to address this issue, this paper takes a different
approach with two main modifications to the standard approach of
NMPC of an inverted pendulum such as [1, 3, 7, 12], namely: an
additional energy based cost; and a hybrid switching scheme.

3.3.1 Energy-based costs: Motivated by the fact that a common
strategy for the swing-up of the pendulum are energy-based control
laws [11], along with the fact that standard cost terms defined for
inverted pendulum NMPC, e.g. [1, 12], do not actually capture the
requirement of ‘swinging-up’ but rather a more restrictive cost
requiring the optimisation to drive the angles to the desired
reference without considering other upward equilibrium points, the
outputs and references used for the cost function (10) were
modified to include two extra terms related to the potential energy
of both pendulums Eθi = cos θi as

yk = ṗ, θ̇1, θ̇2, p, θ1, θ2, cos θ1, cos θ2 k (19a)

rk = 0, 0, 0, pr, θ1r, θ2r, cos θ1r, cos θ2r k . (19b)

 
Remark 2: With this modification, the optimisation now has

ny = 8 outputs.
Some of the relevant properties of this added term are:

1. Boundedness: The error ek = cos θ1r − cos θ1 is always bounded
at ek = [ − 2, 0] for the upright position, and ek = [0, 2] for the
downside position. This in general would make the additional
term of the linear term (f ) bounded.

2. Singularity: The derivative w.r.t. the added term (Ci = − sin θi)
required by (14a) has a singularity at any Nπ multiple given
the sensitivity matrix is zero. Thus, if the system is at a steady
condition, e.g. all other errors zero, the optimisation would
have no sensitivity on it, therefore, not reacting or causing any
movement. Although the system can be confined inside an
incorrect singularity, if the system is started at any other
sufficiently non-singular point, the optimisation will eventually
drive the solution to the desired singularity.

By penalising the energy term much higher than the angles
directly, the optimisation is more relaxed, essentially aiming to
drive the potential energy of the pendulum to the desired state
Eθi = cos θi → cos θir whilst accepting swinging up in either
direction. This is because if at a given time the system cannot
swing the pendulums up in a given direction, the optimisation
would naturally select the other direction which is not the case
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when the standard costs are used, and the solution was observed to
be severely affected when the system reached this infeasibility
condition. After a series of simulations, it was concluded that
imposing higher penalties on this added terms instead of the angles
directly, resulted in much better convergence properties than when
using the standard cost, which in turn resulted in a larger region of
contraction of the Gauss–Newton method. Moreover, notice the
stability of the resulting scheme can still be guaranteed by
imposing heavy terminal weights in the additional terms to emulate
zero-terminal constraints, even though the sensitivity at that
condition dissipates, which in turn leads to having the original
problem once the system has reached the terminal region.

To visualise the benefits of this approach, a comparison
simulation is given in Fig. 2 where the predicted and closed-loop
trajectories are plotted, with and without focusing on the added
energy term. For clarity, the predicted responses that presented the
erratic behaviour are signalled. As it can be seen from (Fig. 2b), the
optimisation penalising only the angles presented major erratic
behaviour in the input at times 0.5 < t < 1,and significant
differences between predicted and closed-loop responses leading to
ill-posed optimisation [16]. In contrast, the optimisation that
focused effort on the added energy-cost (Fig. 2a) presented smooth
and much better overall closed-loop performance.

Although this approach might not be immediately generalisable
for other control systems and applications, it is very common to
find trigonometric terms in robotics systems and mechatronic
applications that arise from rotation matrices. This naturally brings
the question of whether it is better to target a desired potential
energy or an angle directly when dealing with multi-link robots.
Indeed, it is well known that the understanding of the inverted
pendulum dynamics helped with the development of many robotic
applications nowadays, thus its generalisation to multi-link robotic
problems, eg. triple inverted pendulum in series [10], could lead to
a significant improvement in performance in a broader spectrum of
applications, particularly when using the RTI scheme.

3.3.2 Hybrid switching scheme: As discussed previously,
penalising the energy-related terms lead to smoother responses.

However, because of aforementioned singularity problem, if only
the energy terms are penalised instead of the angles directly, the
optimisation would have no sensitivity to potential energy errors at
the equilibrium, and would only be sensitive to angular velocity
errors. Moreover, if a sufficiently small penalty was imposed on
the angles, the optimisation could converge to upright positions
were the angle errors were essentially ignored.

To avoid this problem whilst preserving the smoothness of the
added energy terms during the swing up phase, a hybrid approach
was used where the optimisation would switch between different
weightings depending, not only on the region in which the angles
where but also the time that they have been there.

The hybrid switching scheme is given by

qθi =
1, tlin < 2
10, tlin ≥ 2 (20)

where qθi is the weight of the ith pendulum angle error; and tlin is
the time that has elapsed since cos θi > 0.9, i.e. the time the system
has been in the ‘linear’ zone.

Regarding the stability of this proposed hybrid scheme, it
should be noted that both penalisation terms of qθi were stable for
our particular system, and the only reason for this change was to
preserve the smoothness of the system during the swing up phase.
As the change was implemented when the system was already in
the terminal region, the cost of both selected weights dissipated to
zero within the available horizon, which in turn made the change
between both weights stable. Essentially, the selection of these
different terms changes the frequency response of the system to a
more ‘rigid’ or fast response for angle perturbations. Indeed, this
approach could be used for fault-tolerant applications where the
system momentarily has to undergo through a ‘softer/smoother’ set
of actions to bring the system back to its target before regaining a
more ‘reactive’ state.

4 State estimation – extended Kalman filter
As the only position and angle measurements were available in our
system, a standard EKF was used for the purpose of state
estimation. As this is a well-known method in the literature, the
details of this are omitted and only the relevant equations and steps
are provided.

The EKF uses the following prediction-correction type
framework:

Fig. 2  Example comparison of predicted (dashed-lines) and closed-loop (thick lines) responses with (2a) and without (2b) energy costs with parameteres
defined in table 1; Ts = 0.02 (s); Np = 75; x0 = [0, 0, 0, 0, 1.51, 4.45, 0]T; Ū0 = O (free-response); Qwith = diag([1, 0.1, 0.1, 100, 1, 1, 10, 10]),
Qwithout = diag([1, 0.1, 0.1, 100, 10, 10, 0, 0]), and R = 0.001
(a) With, (b) Without

 
Table 1 Identified parameters for the double inverted
pendulum (4)
Motor Coeffs. Pend 1 Coeffs. Pend 2 Coeffs.
f m −4.67 a1 −0.129 a2 −0.107
k1 0.0174 b1 38.4 b2 49.6
k2 0.0477 c1 3.95 c2 5.11
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1. Prediction Step: The state, output and covariance at time k are
estimated based on the previously estimated state and
covariance as

x^k k − 1 = x^k − 1 k − 1 + Ts f (x^k − 1 k − 1, uk − 1) (21a)

Pk k − 1 = Ak − 1Pk − 1 k − 1Ak − 1
T + QEKF (21b)

where QEKF > 0 is the process noise; and Pk k − 1 is the
covariance matrix.

2. Correction Step: As soon as the outputs of the system become
available, the correction step is then given by

y^k k − 1 = g(x^k k − 1) (22a)

x^k k = x^k k − 1 + KEKF (yk − y^k k − 1) (22b)

Pk k = (I − KEKFCk)Pk k − 1 (22c)

KEKF = Pk k − 1Ck
T CkPk k − 1Ck

T + REKF
−1 (22d)

where REKF > 0 is the output noise covariance matrix, and

Ck = ∂g(x̂k k − 1)
∂x̂k k − 1

.

 
Remark 3: As system (9a) is a NMSS, the input-related state

(x7) must be included in the measurement for observability. The
proof of this is out of the scope of this paper.

5 Online system identification
In this section, an OSI scheme based on RLS with a forgetting
factor combined with a delta-modelling approach [19] is presented.
The latter was used for the purpose of learning/adapting the
parameters of the discrete model (9a), particularly f m, k1, k2, ai, bi, ci.
As this is a well-known method in the literature, the details of this
are omitted and only the relevant equations and steps are provided.

The RLS algorithm with forgetting factor (λ) is given by

z~k = zk − ΨTΘk k − 1 (23a)

KRLS = Pk k − 1Ψ λ + ΨTPk k − 1Ψ
−1

(23b)

Θk k = Θk k − 1 − KRLSz~k (23c)

Pk k = λ−1 Pk k − 1 − KRLSΨTPk k − 1 (23d)

where Ψ is known as the regressors vector, Θk k is the parameters
vector, Pk k is a covariance matrix of appropriate dimensions, and λ
is the forgetting factor, typically selected as 0.98 < λ < 1.

For our system, the definition of Ψ, Θk k and zk for both,
position and pendulum dynamics, are given by;

1. Position dynamics:

Ψ = [ ṗk − 1, uk − 1, uk − 2]T (24a)

zk = p̈k = pk − 2pk − 1 + pk − 2

Ts
2 (24b)

Θk k = [ f m, k1, k2]T . (24c)
2. Pendulum dynamics:

Ψ = [θ̇ik − 1, sin θik − 1, cos θik − 1 p̈k]T (25a)

zk = θ̈ik = θk − 2θk − 1 + θk − 2

Ts
2 (25b)

Θk k = [ai, bi, ci]T (25c)

which can be derived from the position and angle acceleration
models (6) and (8), and also represent the use of the Delta –
modelling approach [19], which is known to numerically perform
better than ARX models for a system with fast sampling times. The
coefficients were then extracted to be used in both NMPC and EKF
frameworks presented previously.

On the other hand, several execution rules discussed in [20, 21]
were implemented to shut-down the algorithm to protect it from
periods of poor excitation which can lead to the rapid grow of
covariance matrix Pk k.

The implemented shut-down rules were:

1. The trace of the covariance Pk k was limited by

Pk k = klim
tr(Pk k)

Pk k if tr(Pk k) > klim (26)

to prevent it from becoming ill-conditioned, where for our
particular system klim = 10. Additionally, the limitation of the
covariance trace allows for better control of the rate of
convergence of the parameters.

2. The range of the parameters of both models were limited
according to offline analysis, as well as based on the
uncertainty of expected models coefficients. In particular, a
threshold of ±15% was imposed for the coefficients bi and ci
calculated from the expressions given in Section 2.1, as well as
forcing the negative sign of the friction terms f m and ai.

If the RLS algorithm moved any of the coefficients outside
the available range, they were simply saturated.

3. The RLS algorithms were only run when the system was
detected to be moving, in particular, when the angular velocity
was greater than a threshold, and kept running for a maximum
of 2 s after this conditions were satisfied to be able to capture
‘decaying’ dynamics. Specifically, the thresholds used were:

∥ ṗk ∥ > 0.4 m
s ∥ θ̇ik ∥ > 0.5 rad

s (27)

This ensured that the system was properly excited.
4. The model used for the NMPC was only updated if the

uncertainty of the coefficients, captured in the covariance
matrix Pk k was lower then a threshold. For this system, the
uncertainty was simply considered as the trace of the
covariance matrix, although a more accurate distribution of the
uncertainty could be extracted by using the so-called Chi-
squared (χ2) distribution.

Although the rules for shut-down did improve the performance
of the OSI as a potential adaptive controller, a proper excitation
signal is required for better model estimation such as PRBS or
frequency sweep (chirp), as without there is no guarantee that the
model estimation would be accurate or even stable, thus no
stability guarantee of the combined methodology could be
provided, which is generally known. The overall performance of
this algorithm can be seen in Fig. 3 and will be discussed in the
results Section 6.1. 

6 Experimental results
The test bench used for the experiments is depicted in Fig. 4. The
cart is driven by a brushed 24 V DC motor via a toothed belt and a
toothed-pulley of 0.05 (m) diameter. The DC motor is driven by a
Cytron MD30C Motor Driver operated using the sign-magnitude
drive with an 8-bit resolution PWM at a frequency of 20 kHz via a
micro controller unit (MCU). Three incremental encoders are used
to measure both pendulum angles and the DC motor rotation. The
resolution of both pendulum encoders and the motor are 4000 and
2040 counts per revolution, respectively, which are processed by
the MCU, leading to angle and position resolutions of 9 × 10−2° and
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7.7 × 10−5 (m), respectively. The sampling time of the system is
handled by the MCU and kept constant at Ts = 20 (ms). Every
sampling time, encoders data is streamed via (UART) serial
communication to a PC where the calculations related to proposed
NMPC approach, OSI and EKF are performed. After the control
action is calculated via the RTI scheme, it is sent back to the MCU
which generates the motor signals. Due to network communication
delays, the motor signal was always implemented exactly 5 ms
after the encoders data was streamed to have a constant behaviour
at least. Fig. 5 shows an control diagram detailing the interaction
between the different components. 

6.1 Online system identification

To test the OSI algorithm presented in Section 5, the system was
excited using a random input 30 < ∥ u ∥ < 60, which reversed
every time the system crossed a maximum limit of the position
∥ x ∥ > 0.15 (m) in the current direction. All the parameters were
started from completely unknown values Θ0 = O with a forgetting
factor of λ = 0.995 and initial covariance matrices as
P0 = 1000I3 × 3. The resulting performance of the overall OSI
algorithm can be seen in Fig. 3. As it can be seen, the system
presented very fast convergence rates, giving settling times for all
the parameters of τs < 2 (s), indicating that the models are indeed
well defined. The resulting parameters after 1 min of excitation are

Fig. 3  Online system identification example
 

Fig. 4  Test bench photograph
 

Fig. 5  Control diagram
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gathered in Table 1, and the input-output data is available in https://
doi.org/10.24433/CO.8048147.v1 [14]. Notice the theoretical
relationship ci = bi/g stated in Section 2 is very close to the one
observed in the resulting parameters. Finally, although the system
was only tested for OSI, it could work using the available
adaptation mechanism provided proper rules are used to avoid the
periods of poor excitation, as discussed in [20].

6.2 Swing up, stabilisation and disturbance rejection

Regarding the optimisation setup, the cart has a maximum range
for the position of −0.35 < x < 0.35 and the PWM input was
constrained to −200 < uPWM < 200 despite the actual maximum
being 255 (8-bit) to avoid wearing of the DC motor which defined
the constraints to be included in the optimisation. Furthermore, the
DC motor presented a dead-zone non-linearity of udz ≃ 30 which
was removed by implementing the conditional function (28),
adjusting constraints to −200 + udz < u < 200 − udz and using u in
the relevant models to simulate and linearise the system.

uPWM =
u + udz, u > 0
u − udz, u < 0 (28)

The prediction horizon for the NMPC was set at
Np = 75 (Tp = 1.5 (s)) leading to 600 outputs, 75 decision variables
and 300 constraints to be optimised. The output and input weights
were selected as
qk + i = diag([1, 0.1, 0.1, 100, qθ1, qθ2, 10, 10]) ∀i = [1, Np − 1] and
R = 0.003I which were observed to give good balanced between
fast swing up performance and input chattering due to noise at the
steady state. A terminal weight qk + Np = 10qk + i was selected for the
last values of the prediction horizon when tlin > 2 (s), emulating
soft zero terminal constraints to improve the stability
characteristics of the optimisation [6]. Moreover, a tailored C++
code available in https://doi.org/10.24433/CO.8048147.v1 [14] was
developed using EIGEN library following suggestions of [4, 6],
and was tested in a laptop running Ubuntu 18.04 with an Intel
i7-5700 HQ @ 2.7 GHz giving computation times of tunc < 800 μs
for the unconstrained solution and tcon < 2500 μs for the
constrained one when doing 10 iterations of an efficient version of
Hildreth's QP found in [15]. Finally, the EKF weights were set at
QEKF = diag([0.1, 0.1, 0.1, 0.0001, 0.0001, 0.0001, 1]) and
REKF = diag([0.0001, 0.0001, 0.0001, 1]) based on the variance of
the errors observed in an offline analysis of the system
identification process.

The resulting performance of the overall scheme can be seen in
Fig. 6 starting from the rest position at the lower equilibrium and
introducing large disturbances at t ≃ 9 (s) and t ≃ 17 (s). As it can

be seen, the system clearly exhibits much faster performance than
[11] giving settling times of τs ≃ 1.4 (s) for the swing up
manoeuvre and of τ ≃ 2.5 (s) after large disturbances. Moreover,
the system presented smooth input shapes during the swing up
phases as a result of the added energy costs and the hybrid
switching scheme. Furthermore, notice the position constraint is
clearly satisfied at t ≃ 17 (s) after the disturbance was given,
demonstrating good handling of the rapid active-set changes by the
QP. Finally, in some cases the position presented small steady-state
error and the well-known limit cycle, however, this can be removed
using standard methods such as integral control or disturbance
estimation methods which are not the focus of the paper, and
therefore were omitted. For the interest of the reader, an overall
video is provided in (https://youtu.be/7E-SXi3YKQohttps://
youtu.be/7E-SXi3YKQo) where the results can be seen, and the
input-output data is available in https://doi.org/10.24433/
CO.8048147.v1 [14].

7 Conclusion
This paper presents a novel NMPC approach based on the RTI
scheme for the swing-up and stabilisation of a parallel double
inverted pendulum with experimental validation. The approach
uses dual-mode closed loop predictions for the state deviation
model to cancel the unstable open-loop dynamics of the double
inverted pendulum which improve the numerical conditioning of
the optimisation. For this particular system, the proposed approach
was observed to have a condition number 6 orders of magnitude
lower than the standard solution which can be critical for matrix
inversion when using low precision computing. Moreover, two
important modifications were introduced for the improvement of
the RTI scheme in the presence of large disturbances, namely;
additional energy-related costs and a hybrid switching scheme. The
aforementioned modifications were observed to produce much
smoother responses when compared to the standard single-shooting
RTI NMPC. The approach was able to compute approximate
constrained solutions in tc < 2500(μs), and a C++ code
implementing it can be found in https://doi.org/10.24433/
CO.8048147.v1 [14]. Finally, the approach was combined with an
OSI Scheme based on RLS to address parameter uncertainty.

An overall video of the resulting performance is provided in
(https://youtu.be/7E-SXi3YKQohttps://youtu.be/7E-SXi3YKQo),
and the data obtained throughout the tests is available in https://
doi.org/10.24433/CO.8048147.v1 [14].

To the best of the authors' knowledge, this is the first
contribution presenting numerical and experimental results for the
swing-up and stabilisation of a parallel double inverted pendulum
in the presence of large disturbances based on NMPC using the
RTI method. Future work will include the extension to the
multiple-shooting scheme along with further analysis of the closed-
loop performance with adaptation mechanism active as well as
offset-free methods to cancel possible input-output disturbances.
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Abstract: Ocean wave energy is one of the most concentrated sources of renewable energy.
However, until now it has not reached the economic feasibility required to be commercialised.
To improve the efficiency of wave energy converters several advanced control strategies have
been proposed, including Model Predictive Control (MPC). Nevertheless, the computational
burden of each optimisation problem is a drawback of conventional (Full-DoF) MPC, which
typically limits its application for real-time control of systems. In this paper, a Moving Window
Blocking (MWB) approach is proposed to speed-up the time required for each optimisation
problem by reducing the number of decision variables. Numerical simulation of a single device
point absorber wave energy converter controlled by this scheme confirms the potential of this
approach.

Keywords: Wave energy converters, Model predictive controller, Moving window blocking.

1. INTRODUCTION

Ocean wave energy is one of the most concentrated re-
newable energy sources, and its resources are huge in a
many of countries around the globe (Sheng, 2019). The
estimated worldwide potential of ocean wave power is
32 000 TW h (Mørk et al., 2010), which is more than the
worldwide electricity consumption of about 25 721 TW h
(International Energy Agency, 2019).

The development and implementation of wave energy
converters (WEC) may have several benefits, especially for
those countries having abundant wave energy resources.
Examples of the benefits range from individual benefits for
the country such as increasing of their renewable energy
matrix and guaranteeing energy supply diversity (Sheng,
2019), to global benefits by confronting the problems of
climate change and the difficult challenge of reducing
the dependency on conventional energy resources such as
fossils or nuclear energy.

To date, wave energy technologies are technically imma-
ture for reliable and economical energy generation (Sheng,
2019). One of the biggest challenges is how to improve
the efficiency of wave energy converters. To address this
issue, several control strategies have been proposed to alter
the dynamic behaviour of the device in order to maximise
the extracted energy. Model Predictive Control (MPC) is
a well-developed control strategy within Academia and
Industry communities which takes into account constraints
whilst optimising a given cost function (Faedo et al.,
2017). Although MPC can have explicit offline solutions
(H.J.Ferreau, H.G. Bock, 2008), this is not tractable for

the WEC problem given the large amount of variation
present in the wave excitation forces which are external
disturbances to the optimisation. Thus, for this appli-
cation, MPC requires an online solution where at each
sampling time, solves an Optimal Control Problem (OCP)
to produce an optimal control sequence, the first of which
is applied to the plant as the control action (Li and Bel-
mont, 2014). However, one of the drawbacks of MPC is the
computational burden required to solve the OCP.

To reduce the computational burden of the optimisation,
a popular approach is to use input-parameterisation tech-
niques which allow to reduce the number of degrees of free-
dom of the optimisation. Several input-parameterisation
have been proposed such as Laguerre Polynomials (Wang,
2004), as well as orthonormal parameterisations based
on collocation points, typically referred as pseudospectral
methods (Garcia-Violini and Ringwood, 2019).

In this paper, a Moving Window Blocking (MWB) MPC
approach is proposed with the idea of reducing the compu-
tational time required to solve the OCP at each sampling
time, and the resulting performance is compared with
the Full-DoF MPC strategy and Generalised Predictive
Control (GPC).

The remaining part of this paper is organised as fol-
lows: Section 2 presents the mathematical model for the
WEC considered in this study. Full-DoF Model Predictive
Control and, more specifically, a detailed description of
the proposed Moving Window Blocking MPC approach
is given in Section 3. The results of the simulations are
presented and commented in Section 4. Finally, the con-
clusions and future work are set out in Section 5.



2. WEC MODELLING

For the development of the mathematical model of a
wave energy converter (WEC), a heaving semi-submerged
sphere is considered as in Figure 1. The hydrodynamic
model is developed from first principles. Applying New-
ton’s second law to the partially submerged sphere, the
dynamics of the sphere are described by:

m z̈(t) = Fg −
∫∫

S(t)

P (t)n dS + FPTO(t) (1)

Where m is the floater mass, z is the vertical displacement
of the body relative to its hydrostatic equilibrium position,
Fg is the force due to gravity, FPTO(t) is the force exerted
by the Power Take-Off systems (PTO) (controller input
u(t)), P (t) is the pressure on an element dS on the buoy
wetted surface, n is a vector normal to the surface element,
dS and S is the submerged wetted surface.

Obody

Oxz

xbody
η

PTO

x

z

Fig. 1. A general wave energy converter with 1-DoF: heave

From (1), several models can be derived, depending on
the complexity, computational time and accuracy desired.
In this study, a linear hydrodynamic model is considered.
For linear models, assuming the fluid is in-compressible,
in-viscid and irrotational 1 , (1) is typically solved using
potential flow theory, in which the potential problem is lin-
earised and computed around the position of equilibrium.
Considering small displacements, and seabed as reference
system, (1) is rewritten as follows:

m z̈(t) = Fres(t) + Frad(t) + Fexc(t) + FPTO(t), (2)
where Fres(t) is hydrostatic restoring force, Frad(t) is the
radiation force, and Fexc(t) the excitation force due to
the incoming wave. The hydrostatic restoring force Fres(t)
represent the spring-like effect of the surrounding ocean
water into the buoy, and is determined by kh hydrostatic
stiffness and z(t) absorber position:

Fres(t) = −kh z(t) (3)

The excitation force Fexc(t) describes the interactions
between the incident waves and the body at its place
of equilibrium, and is represented by the convolution of
the excitation impulse response kexc with the otherwise
undisturbed free-surface elevation η at the centre of the
body:

Fexc(t) =

∫ t

−∞
kexc(t− τ) η(τ) dτ (4)

1 This is a standard assumption in the wave energy literature (Faedo
et al., 2017).

Similarly, the radiation force Frad(t) is a damping/inertial
force associated with waves radiated by the absorber
oscillating in calm water scenario, and is expressed by the
added mass µ∞ and the convolution product between the
radiation impulse response krad and the absorber velocity
ż(t):

Frad(t) = −µ∞ z̈(t)−
∫ t

−∞
krad(t− τ) ż(τ) dτ (5)

The convolution kernels kexc, krad and the frequency-
independent added mass µ∞ are computed numerically
using boundary element methods (BEMs). In this study
the open source NEMOH (Penalba et al., 2017) was em-
ployed. Combining (3)-(5) with (2) gives the widely used
equation (in WEC studies) Cummins’ equation (Cummins,
1962):

m z̈(t) =− khz(t)− µ∞z̈(t)−
∫ ∞

−∞
krad(t− τ)ż(τ)dτ

+

∫ ∞

−∞
kexc(t− τ)η(τ)dτ + FPTO(t)

(6)
At this point, a few statements can be made from (6).
First, since the excitation force Fexc(t) depends on the
undisturbed free-surface elevation η(t), it can be con-
sidered as an independent input to the system. Second,
(6) is represented in state-space form for control strat-
egy implementation and third, the direct computation of
the convolution integral in (5) in time-domain simulation
is computationally expensive and cumbersome (Roessling
and Ringwood, 2015). To avoid the direct computation
of the convolution integral at every time step, several
methods to approximate the integral have been proposed
(Yu and Falnes, 1995; Roessling and Ringwood, 2015;
Pérez and Fossen, 2008). Approximating the convolution
integral in (5) by a state-space system with the state vector
xr(t) ∈ Rn is a common approach, where the input to
the system is the velocity of the absorber (v = ż) and
the approximation of the convolution integral term of the
radiation force is the output:

ẋr(t) = Ar xr(t) + Br ż(t)∫∞
−∞ krad(t− τ)ż(τ) dτ ≈ Cr xr(t)

(7)

This system is later included as a part of the overall
model that describes the motion of the absorber. It is
important to clarify that the system states in (7) have
no physical meaning, but still contain information on the
condition of the surrounding fluid (Cretel et al., 2011). In
this study the state space matrices Ar, Br, and Cr were
computed by the open source toolbox FOAMM (Finite
Order Approximation by Moment-Matching, based on the
theoretical foundations presented in Faedo et al. (2018))
Defining the state and output vectors, xc ∈ Rn+2 and
yc ∈ R2, for the linear time-invariant state-space system:

xc =

[
z
ż
xr

]
yc =

[
z
ż

]
(8)

the whole dynamics of the WEC is given by:
ẋc(t) = Ac xc(t) +Bc Fpto(t) +Bc Fexc(t)

yc(t) = Cc xc(t)
(9)

in which Ac ∈ R(n+2)x(n+2), Bc ∈ R(n+2)x1, Cc ∈ R2x(n+2),
are defined as:



Ac =




0 1 0
−kh
m+µ∞

0 −Cr

m+µ∞
0 Br Ar


 Bc =

[
0
1
0

]
Cc =

[
1 0 0
0 1 0

]

where 0 denotes a zero matrix of required dimensions.

By discretising system (9), and replacing Fpto and Fexc
for u and uexc, respectively, to use standard nomenclature,
results in a general discrete state-space of the form.

xk+1 = Adxk +Bduk +Bduexck (10a)
y
k

= Cdxk (10b)

For this study, a discretisation of a zero-order hold was
considered using a sampling time of Ts = 0.1s. The
resulting state space matrices are given in section 4.

3. MODEL PREDICTIVE CONTROL

3.1 General Objective

In this paper, Model Predictive Control was used as gen-
eral optimal control methodology with the general purpose
of maximising the mechanical energy Eabs absorbed by the
PTO system over a time horizon, defined as:

Eabs = −
∫ t+T

t

u(τ)ż(τ)dτ (11)

Furthermore, real WEC systems will typically present po-
sition, input and input increments (slew rates) constraints
related to physical limits which can be handled naturally
by the MPC formulation. To benefit from the moving
window blocking approach presented in subsection 3.4, this
paper focuses particularly on the case where the WEC
is within a “safe” operating region (operating within the
position constraints, but without making contact with the
end-stops). The device should be locked in a survival mode
when exposed to extreme sea conditions (Sheng, 2019);
this is reasonable given it is generally not possible to
guarantee output feasibility (such as the buoy positions)
for dynamics systems under significant disturbances. In
simple terms, if a big enough wave is applied to the system,
it might not even be possible to prevent it from reaching
the limits, regardless of the input selection. An alternative
might be to use soft-constraints for some output violations,
however, this is out of the scope of this paper.

The discrete-time objective function is thus chosen as:

min Jk =

Np∑

i=1

uk+i−1żk+i (12a)

s.t. umin ≤ uk+i−1 ≤ umax (12b)
∆umin ≤ ∆uk+i−1 ≤ ∆umax (12c)

where Np is the prediction horizon. Note that this cost
considers the force u and velocity ż at different time steps
(k+ i− 1 and k+ i). This is chosen to ensure causality of
the solution as discussed in Li and Belmont (2014).

3.2 Predictions

Following the methodology described in Cretel et al.
(2010), the state space model (10) is augmented with the

previous input uk−1 to use the input increment ∆uk as the
decision variable resulting in:

xk+1 = Axk +B∆uk +Bwuexck (13a)
yk = Cxk (13b)

where the state is now xk = [xTk uk−1]T ∈ Rn+3, the output
is yk = [yT

k
uk−1]T ∈ R3, and

A =

[
Ad Bd
0 1

]
B =

[
Bd
1

]
Bw =

[
Bd
0

]
C =

[
Cd 0
0 1

]

This change will allow simple expressions for input and
input rate constraints, as well as the computation of the
product (uk+i−1żk) through an appropriate matrix Q as
discussed in Cretel et al. (2010, 2011). By propagating
the model (13a) Np times forward, all future outputs
Ŷ = [yTk+1, y

T
k+2, · · · , yTk+Np

]T ∈ R3Np are given by:

Ŷ = Gxk +H∆Û +HwÛw (14)

where ∆Û = [∆ûk,∆ûk+1, · · · ,∆ûk+Np ]T ∈ RNp are the
future input increments; Ûw = [ûwk

, ûwk+1
, · · · , ûwk+Np

]T

∈ RNp are the future wave excitation forces; and matrices
G ∈ R3Np×(n+3) and H ∈ R3Np×Np are defined as:

G =




CA
CA2

...
CANp




T

H =




CB 0 · · · 0

CAB CB
. . .

...
...

. . . . . . 0
CANp−1B · · · CAB CB




where 0 are zeros matrices with the same dimensions of
CB, and Hw is defined as H using Bw instead.

3.3 Standard Optimisation

Having defined the prediction models, a standard quadratic
cost function can be formulated as,

J =
1

2
Ŷ TQŶ (15)

To compute the product (uk−1żk), the penalisation matrix
Q ∈ R3Np×3Np is selected as a block diagonal matrix with
the inner matrices qk+i defined as,

Q =




qk+1 0 · · · 0

0 qk+2
. . .

...
...

. . . . . . 0
0 · · · 0 qk+Np




qk+i =

[
0 0 0
0 0 1
0 1 0

]

∀i = [1, Np]

(16)

It is interesting to note that although matrix Q is not
positive definite, which is a common requirement for
standard MPC problems, it does result in a positive
definite Hessian as defined in (17) for the WEC model,
which results in a convex optimisation problem.

By substituting the output predictions (14) in (15), re-
arranging in terms of the decision variables (∆Û), and
including input and input rate constraints, the standard
quadratic program (17) is obtained.

J =
1

2
∆ÛTE∆Û + ∆ÛT f s.t. M∆Û ≤ b (17a)

E = HTQH f = HTQ(Gxk +HwÛw) (17b)

M =



I
−I
D
−D


 b =




∆umax1
−∆umin1

(umax − uk−1)1
(−umin + uk−1)1


 (17c)



where E ∈ RNp×Np is a matrix known as the Hessian; f ∈
RNp is a column-vector; M ∈ R4Np×Np is the constraint
matrix; b ∈ R4Np is the constraint vector; I ∈ RNp×Np

is an identity matrix; D ∈ RNp×Np is a lower triangular
matrix; and 1 ∈ RNp column-vector is a column vector of
ones.

Having defined E, f,M, b, the optimisation can then be
solved using any QP solver such as quadprog function of
Matlab, QP OASES (H.J.Ferreau, H.G. Bock, 2008), etc.
At each sampling time, only the first input is applied to
the system and the process is repeated, which is the well
known receding horizon control strategy.

3.4 Moving Window Blocking

In this paper, we used a blocking approach where the
input is parameterised in blocks of size Nb having equal
values, e.g. uk = uk+1 = · · · = uk+Nb−1 for the first block,
uk+Nb

= uk+Nb+1 = · · · = uk+2Nb−1 for the second block,
etc., thus allowing the decision variables to be spread
over the prediction horizon, as opposed to the standard
Generalized Predictive Control (GPC) approach where the
decision variable are "congested" at the beginning, and
left constant after a “control horizon" (Rossiter, 2018).
An example comparison of this is visualised in Fig. 2 for
the WEC system defined in section (2), and is further
discussed in the results section. This distinctive feature
of the blocking approach is important for this application
for two main reasons: firstly, the solution obtained from
the original problem using full degrees of freedom applied
to the WEC system is constantly saturated as seen in
Fig. 2, thus can be accurately represented by blocks; and
secondly, depending on the wave future values, it might
be more important to have decisions available at the
future, example when the wave reaches its crest and trough
(maximum/minimum values).

The aforementioned blocking parameterisation can be
achieved by defining a blocking matrix (N) for the decision
variables (∆Û) of the form:

∆Û = N∆Û (18a)

N =




n 0Nb
· · · 0Nb

0Nb
n

. . .
...

...
. . . . . . 0n

0Nb
· · · 0Nb

n


 n =

[
1

0Nb−1

]
(18b)

where Û ∈ RNu are the blocked decision variables which
have reduced dimensions of Nu = dNp

Nb
e n ∈ RNb , and

0v ∈ Rv is a column-vector of v zeros. For simplicity, Np
should be selected as a multiple integer of the block size
Nb, otherwise the last n in the diagonal might be different.

Moreover, as discussed in Cagienard et al. (2007), the ap-
plication of standard blocking approaches has an inconsis-
tent nature, and suffers from recursive feasibility problems
given the decision in the previous time step cannot be
replicated which is detrimental to the performance. To ad-
dress this, the Moving Window Blocking (MWB) approach
developed in Cagienard et al. (2007) proposed to shift the
set of Nb admissible blocking matrices Ni along with the
moving horizon resulting in an input parameterisation of
the form.
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Fig. 2. Predicted Trajectories for Buoy Position z and
Input u.

∆Û = Ni∆Û ∀i = [1, Nb] (19a)

Ni =




n1 0Nb−i · · · 0Nb−i

0n n
. . .

...
...

. . . . . . 0Nb

0Nb−2+i · · · 0Nb−2+i nf




n1 =

[
1

0Nb−i

]

nf =

[
1

0Nb−2+i

]

(19b)

where n and 0v are defined as in (18). Notice the first and
final block (n1,nf ) are shrinking and expanding, respec-
tively. This parameterisation is then applied sequentially
i = 1 → Nb until the first block reaches its limit, and
resets to its original size (i = 1).

By substituting the MWB input parameterisation in the
standard quadratic program (17), the application of the
MWB approach then leads to formulating and solving Nb
different quadratic programs sequentially and repeating
infinitely i = 1 → Nb, 1 → Nb, 1 → · · · as the horizon
moves forward defined as:



J =
1

2
∆ÛTE[i]

N ∆Û + ∆ÛT f [i]N s.t. M
[i]
N ∆Û ≤ b (20a)

E
[i]
N = NTi HTQHNi = NTi ENi (20b)

f
[i]
N = NTi HTQ(Gxk +HwÛw) = NTi f (20c)

M
[i]
N =




Ni
−Ni
DNi
−DNi


 b =




∆umax1
−∆umin1

(umax − uk−1)1
(−umin + uk−1)1


 (20d)

where E[i]
N ∈ RNu×Nu is the “compressed” Hessian, which

can be pre-stored for faster computations. On the other
hand, the “compressed” linear term f

[i]
N ∈ RNu can also be

pre-stored by separating the values in f [i]N = f
[i]
1Nxk+f

[i]
2N Ûw

with f [i]1N = NTi HTQG and f [i]2N = NTi HTQHw. Moreoever,
it is trivial to derive that when using the blocking matrix
Ni as defined in (19), the constraint matrix have redundant
zero rows ∀i, and can be reduced to,

M
[i]
N = MN =



IN
−IN
DN
−DN


 bN =




∆umax1N
−∆umin1N

(umax − uk−1)1N
(−umin + uk−1)1N




(21)

where MN ∈ R4Nu×Nu is the "reduced" constraint matrix,
bN ∈ R4Nu is the "reduced" constraint vector, IN ∈
RNu×Nu is an identity matrix, DN ∈ RNu×Nu is a lower
triangular matrix, and 1N ∈ RNu is column-vector of ones,
all of which have reduced dimensions Nu = dNp

Nb
e when

compared to the original constraint terms (17c), thus can
lead to significant computational benefits as discussed in
the results section. Once the optimisation is solved, the
original decision vector can be recovered using (19).

4. RESULTS

In this section, we present the simulation results of the
control of a point-absorber WEC using Full-DoF MPC,
GPC and the proposed Moving Window Blocking (MWB)
MPC approach. The WEC model considered is a heaving
semi-submerged sphere reacting against a fixed reference
(see Fig. 1), with a radius of 5 m and draft of 5 m, mass
m = 2.6831× 105 kg placed in deep water. A sampling
time of Ts = 0.1s was used. The hydrodynamic coefficients
were computed using the open source NEMOH (Penalba
et al., 2017). The convolution integral in the radiation
force (5) is approximated by a state-space model of order
6 (See (7)). Here the state-space matrices are computed
using the toolbox FOAMM, which is based in the moment-
matching method (Faedo et al., 2018). The resulting state
space matrices for the discretised model of (10) are given
by (22). The Matlab code and results presented in this
paper are available through a Code Ocean compute capsule
https://doi.org/10.24433/CO.0481002.v1 (Guerrero-
Fernandez and Gonzalez Villarreal, 2019).

To focus on the comparison of the control strategies, which
is the main driver of this study, perfect knowledge of the
future wave forces Ûw and state xk is considered during
the simulation time. The wave elevation of the irregular
sea wave was built using the JONSWAP (Joint North Sea
Wave Project) spectrum discretised in frequency between
0.02 Hz to 0.80 Hz, corresponding to 1.25 s to 50 s periods

respectively, with a frequency step of ∆f = 5.2× 10−3 Hz.
Considering a significant wave height H0 = 2.0 m and
wave peak period Tp = 10.0 s. Fig. 3 shows the resulting
excitation force on the buoy, with a force range from
8.7119× 105 N to −8.5133× 105 N.

Here, it is considered the Full Degrees Of Freedom (Full-
DoF) MPC as the control strategy which delivers the
maximum possible extracted energy (100% efficiency).
For the optimisation setup, a prediction horizon of 10 s
(Np = 100) was used with a block size of Nb = 5
for the MWB approach which resulted in Nu = 20
decision variables. To perform a fair comparison, the GPC
approach used the same amount of decision variables
compressed at the beginning of the prediction horizon.
Moreover, matrix Bd of (22) was re-scaled/normalized to
avoid numeric conditioning problems of the optimisation.
Finally, constraints on the input and input increment
were considered as ||uk+i|| ≤ 200kN and ||∆uk+i|| ≤
200kN ∀i = [0, Np − 1] , respectively.

Fig. 4 shows the energy extracted for the different con-
trollers studied in this paper, and the final value of the
energy extracted at the end of the 600 s simulation is
shown in Table 1. The results show that the proposed
MWB approach offers almost the same amount of en-
ergy compared to the maximum feasible (Full-DoF MPC),
with an efficiency of 98.79 %. On the other side GPC is
ranked third in the amount of energy extracted, with an
efficiency of 92.84 %. Moreover, Zoom A in Fig. 4, shows
the bidirectional reactive power flowing between the PTO
and the absorber, condition required for the active control
strategies to maximise the extracted energy (Pecher and
Kofoed, 2017).

On an interesting note, it can be seen that Full-DoF
unconstrained MPC with input saturation failed to ex-
tract energy altogether as seen in Table 1. It is for this
precise reason that the whole approach was particularly
formulated considering the input and input rate con-
straints as key parts, which can be captured efficiently
using the MWB approach. An alternative is to add an
extra quadratic penalization term on the input of the form
(Jλ = J + λ

∑
u2k+i−1 ∀i = [1, Np]) to the cost function

(12a) as discussed in Li and Belmont (2014), however,
this causes disagreements between the terms, inevitable
leading to suboptimalities. To perform a fair comparison,
a brute-force search was performed to select the value of
λ = 1.12 which achieved the highest energy absorption for
the unconstrained (λ) penalised Full-DoF MPC solution
with an efficiency of 88.71, thus still resulting in worse
performance than both, GPC and MWB.

Table 1. Energy Extracted for 600 s simulation
using Full-DoF MPC, MWB MPC, GPC and
Full-DoF Unconstrained MPC (with and with-

out additional λ penalization terms)

Method Energy extracted [MJ] Efficiency [%]

FDoF MPC 306.974 100
FDoF Unc. MPC −328.738 LOSS
FDoF Unc. MPC (λ) 272.318 88.71
MWB MPC 303.274 98.79
GPC 285.000 92.84
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Fig. 3. Excitation force uexck for a irregular sea condi-
tion built using the JONSWAP spectrum, with wave
height H0 = 2.0 m and wave peak period Tp = 10.0 s
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Fig. 4. Energy Extracted tendency for 600 s simulation
using Full-DoF MPC, MWB MPC, GPC and Full-
DoF Unconstrained MPC (with/without λ terms)

Fig. 2 shows the predicted trajectories of the buoy position
and the control input u for the three MPC solutions,
namely: the Full-DoF MPC, the MWB and the GPC.
From the lower plot of Fig. 2, it can clearly be seen how
the MWB approach embeds the blocked parameterisation,
distributing the decision variables along the prediction
horizon with the sequential shrinking approach (first block
size of 4 → i = 2) visible in the zooms A and B,
respectively. In contrast, in the GPC approach, all the
decision variables are calculated for the beginning of the
prediction horizon and kept constant after a certain time
which leads to a significant difference in the predicted
trajectory of the control action.

On the other hand, the predicted trajectories of the buoy
position can be seen in the upper plot of Fig. 2 where the
solutions for both, Full-DoF MPC and MWB MPC, are
practically indistinguishable, with negligible differences
visible in zooms a, b and c. This visual agreement is sup-
ported by the suboptimality given in Table 1. In contrast,
this can not be said about the GPC approach, where
one can see the significant differences in the predicted
trajectories, most likely related to the differences in the
available control action trajectories. In simple terms, the
GPC approach is unable to replicate the position trajec-
tory when using the same number of decision variables
compressed in the beginning of the prediction horizon.

With regard to the computation times used to solve the
optimal problem at each time step, Table 2 summarises
relevant optimisation statistics of each method employed
in this study when using the interior point method of
Matlab R2018b “quadprog" function in a normal PC with
an Intel i5-7500 @ 3.4 GHz CPU, and 8 GB @ 2.4 GHz
DDR4 RAM. On average, the proposed MWB approach
makes it possible to solve the optimal problem 12.6 times
faster compared to the Full-DoF MPC. The reason for
this gain in the computation time is due to the fact
that, in this case, the number of decision variables and
constraints are reduced by 5 times (Nb = 5), ie. from
Np = 100 to Nu = 20 decision variables, and from
4Np = 400 to 4Nu = 80 constraints, which ultimately
leads to faster and lower amount of iterations required
by the QP to solve the problem. Similar comments of
the timing statistics can be made for the GPC strategy,
with the main drawback being a performance degradation
(efficiency of 92.84 %). Finally, it can be seen that the
MWB presented the smallest standard deviation for both
average timing statistics, thus leading to an optimisation
with more consistent/repeatable behaviour.

Table 2. Statistics of the Optimisation

Method Avg. opt.
time [ms]

Avg. num. of
QP iterations

Avg. opt. time
per iter. [ms] Gain

MPC FDoF 19.78± 2.75 8.19± 0.79 2.42± 0.27 -
MWB MPC 1.58± 0.23 6.75± 0.98 2.37± 0.04 12.6
GPC 1.39± 0.51 7.37± 1.17 1.93± 0.10 14.2

5. CONCLUSION

The control strategies presented in this study are intended
to maximise the energy production of a generic point-
absorber wave energy converter subject to input and input
rate constraints related to physical limits. The system
benefits from the ability of Model Predictive Control to

Ad=




0.9905 0.0997 −0.0003 −0.0002 0.0003 0.0004 −0.0005 0.0015
−0.1896 0.9899 −0.0048 −0.0049 0.0057 0.0084 −0.0096 0.0297
−0.0253 0.2166 0.7789 0.2342 −0.2682 0.1451 −0.2394 0.1985
−0.0021 0.0171 −0.0373 1.0167 −0.0214 0.0111 −0.0190 0.0156
−0.0361 0.3052 −0.3113 0.3019 0.5081 0.6650 −0.3376 0.2792
0.0013 −0.0474 0.0476 −0.0472 −0.4112 0.8425 0.0486 −0.0465
−0.0217 0.1850 −0.1887 0.1830 −0.2292 0.1236 0.7820 0.3332
0.0015 −0.0201 0.0203 −0.0199 0.0232 −0.0160 −0.1424 0.9675




Bd=




0.0123
0.2465
0.0329
0.0028
0.0469
−0.0017
0.0282
−0.0019




·10−6 Cd=




1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0




T

(22)



include future information of both wave forces and phys-
ical constraints. Moreover, to reduce the computational
burden, it uses Moving Window Blocking approach where
the decision variables are parameterised through a set
of input-blocking matrices which result in a sequence of
Quadratic Programs of reduced size to be solved sequen-
tially and repeating infinitely. This allows solutions up to
13.10 times faster with sub-optimalities as low as 98.8 %
when compared to the Full Degrees of Freedom MPC
optimal solution. Although both, the Full-DoF MPC and
the proposed MWB MPC approach are computationally
feasible for this particular single WEC device model, the
proposed control strategy could be a key methodology for
implementing Centralised Model Predictive Control for
wave farms. The solution of the proposed approach was
further compared with GPC, as well as with two version
of Unconstrained Full-DoF MPC, one of which was shown
to result in a complete loss of energy extraction.

Future work will include the assessment of the solution
using real-time embedded hardware such as FPGAs, as
well as faster QP solvers such as QP OASES. Moreover,
the application will be extended to wave farms using a
centralised optimisation framework, and compared with
decentralised/distributed approaches as well as with other
parameterisation such as collocation points based on pseu-
dospectral methods. Finally, the mathematical models and
MPC formulation will be extended to the nonlinear case,
and will include further modeling such as actuator dynam-
ics and future wave force predictions.

Ultimately, enhancing peer collaboration and transparency,
the findings provided in this paper and the Matlab code
used in the simulation are accessible through a Code
Ocean compute capsule (https://doi.org/10.24433/
CO.0481002.v1) (Guerrero-Fernandez and Gonzalez Vil-
larreal, 2019).
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Abstract: This paper addresses the problem of controlling an Autonomous Surface Vehicle
(ASV) in rough sea-states, with a view towards minimising wave-induced forces, whilst
maintaining headway. This is a challenging control application since, and as is derived in the
paper, the interaction between the vessel and the wave disturbance is nonlinear and coupled.
This subsequently motivates the novel application of the Real Time Iteration Scheme (RTI)
for Nonlinear Model Predictive Control (NMPC) of the ASV. Analysis of the resulting control
signal provides an important insight into the role of the wave encounter frequency. Specifically,
by actuating at twice the average wave encounter frequency, the nonlinear controller is able to
reduce the wave forces, compared to an open-loop controller that achieves the same average
velocity.

Keywords: Nonlinear and optimal marine system control, autonomous surface vehicle,
nonlinear model predictive control, real time optimization.

1. INTRODUCTION

With the potential to replace manned vessels for dirty
operations such as cleaning up oil spills, (Kim et al., 2012),
dangerous ones, like those found in mine sweeping, or dull
monotonous tasks like patrolling, (Oleynikova et al., 2010),
the need for autonomous surface vehicles is increasing.
This growth in use necessitates an increase in the ability of
the ASV to handle more extreme ocean environments, such
as rough seas, in a similar or superior manner as human
pilots.

Traditional path following controllers may neglect ocean
disturbances, (Lekkas and Fossen, 2014; Oh and Sun, 2010;
Çimen and Banks, 2004), or consider only ocean drift
forces, (Peymani and Fossen, 2013). Larger vessels, such
as container ships can often assume ocean disturbances to
be planar for most conditions in sea state 3 or below on the
Douglas Scale. For larger vessels in the presence of waves,
constraining roll is important for reducing sea-sickness and
damage to cargo (Li et al., 2009, 2010).

However, smaller sea going vessels of the magnitude of
tens of meters or smaller are greatly impacted by waves.
Reinhart et al. (2010) use a priori optimized control path
templates to find that tacking in littoral waves reduces
bow diving. This behavior is used in a path planning
algorithm which, when the angle between desired direction
of travel and the main wave direction is smaller than a
predefined threshold a secondary point is added to the
path to increase the angle and to create this tacking
behaviour. A PID controller is used to maintain the
planned path without knowledge of the ocean environment
which reduces the bow diving but does not eliminate it.
With a set maximum pitch and roll constraint, Ono et al.
(2014), calculates feasible safe velocity regions for use in

path planning in rough seas. The model used a direct
input, that is the input is the velocity of the system,
allowing it to move from one safe velocity region to the
next in one time step. On a boat this would not be possible,
and the boat would have to move through unsafe velocity
regions and potentially capsize or bow dive. Therefore, in
this work we propose an optimal control strategy that is
based upon a first-principles model of the ASV and wave
interaction dynamics, with a view towards minimising
wave induced forces whilst maintaining headway.

The rest of the paper is organized as follows; section 2
presents the derivation of a low-order state space model
that describes the coupled dynamics between the ASV
and a wave, section 3 introduces the control problem
formulation, section 4 presents the results and discussion
from the simulations, and section 5 concludes the paper,
and discusses future work.

2. SYSTEM MODEL

2.1 ASV Dynamics

The ASV model is based upon a simplified description of
the Halcyon ASV: more details of the 6 degrees of freedom
(DOF) model can be found in (Heins et al., 2017). For
the purpose of developing initial control strategies this
paper examines the 1 DOF scenario, with the changes
and simplifications from the full model noted below. The
simplification is based upon the following assumptions.

• The model degrees of freedom are restricted to for-
wards (surge) motion only.

• There are no water-current or wind-induced forces.
• Actuation is restricted to the propeller input only (no

steering).



• The wave induced forces arise from a single wave
harmonic.
• The vessel is heading directly into the oncoming

waves.

The equations of motion of the boat in the surge direction
are as follows:

χ̇(t) = ν(t), (1a)

ν̇(t) =
D(ν(t)) + τp(ν(t), ζ(t)) + τνw(ν(t), η(t))

M
, (1b)

ζ̇(t) =
−1

κ
ζ(t) +

1

κ
u(t). (1c)

The system has five states, x = [χ, ν, ζ, η, η̇]
T

, with χ(t)
being the position in the boat reference frame at time t,
ν(t) is the surge velocity of the boat, ζ(t) is the propeller
speed, u(t) is the propeller control input, and η(t) and
η̇ are wave states defined in the following section. In the
above equations D(ν(t)) is the drag term, τp(ν(t), ζ(t)) is
the propulsion from the propellers, κ is the propellor time
constant, and τνw(ν(t), η(t)) is the wave force in the surge
direction, derived in the next section. Table A.1 in the
appendix list the parameters employed in this paper. The
surge drag force equation is as follows:

D(ν(t)) = −1

2
ρSC∗f (ν(t))ν(t)2, (2)

where S is the wetted hull surface area and ρ is the
density of water. The modified resistance curve, C∗f (ν(t)),is
approximated by the following 6th order polynomial:

D(ν(t)) = −1

2
ρS(p1ν(t)6 + p2ν(t)5 + p3ν(t)4 + p4ν(t)3

+ p5ν(t)2 + p6ν(t) + p7)ν(t)2, (3)

where px are constant coefficients defined in appendix A.2.
The thrust from the dual propellers is modelled by:

τp(ν(t), ζ(t)) = 2Kτρd
4ζ(t)2, (4)

where d is the propeller diameter and where the thrust
parameter Kτ is given by:

Kτ (J) = K{1}τ J2 +K{2}τ J +K{3}τ , (5)

where, K
{i}
τ are thrust polynomial constants defined in

appendix A.3, and the advance ratio, J , is:

J =
ν(t)

ζ(t)d
. (6)

2.2 Wave Environment and Forces

The force exerted on the boat by the wave is calculated
using a Response Amplitude Operator (RAO) (Fossen,
2011). The full model uses look-up tables to find the values
dependent on the conditions. In the case of the surge
direction, the force RAO is appoximately an affine function
of the surge velocity and wave frequency, as shown in
Figure 1. The phase RAO is assumed to be constant for all
boat velocities at a specific wave frequency. For the force
RAO, the force is linearly dependent on the velocity, as
well as linearly dependent on the wave frequency. Selecting
a wave frequency, the dimensionalized force RAO can be
approximated by the following equation:

ρg|F ν(ν(t))| ≈ aν(t) + b, (7)

where a = 23.18, b = 10845, for the wave frequency, ω,
of 0.5 rad/s. Note, the force RAO magnitude, |F ν(ν(t))|,
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Fig. 1. Surge RAOs at various frequencies and veloci-
ties.The plot is dimensionlized with ρ and g

typically uses a subscript to indicate first order wave forces
or second order drift forces. This paper only discusses first
order wave forces so the subscript is excluded.

Wave Environment The force imparted on the boat from
the wave is dependent upon the wave height and boat
position. For a single harmonic in the surge direction the
wave elevation is defined as:

ξ(χe, t) = ah cos(kχe − ωt+ ε), (8)

where ah is the wave amplitude, ε is an arbitrary added
phase, and χe ∈ R is the boat’s position in an inertial
reference frame. Assuming the boat’s χ-axis coincides with
the fixed reference frame χe-axis, χe can be described in
the boat’s body fixed frame by (Pérez and Blanke, 2002):

χe = χ0 +

∫
ν(t) dt. (9)

Inserting (9) into (8) and setting χ0 = 0 results in the
wave elevation described in the boat’s reference frame:

ξ(χ, t) = ah cos

(∫
ν(t) dt− ωt− ε

)
. (10)

With the deep water dispersion relation k = ω2/g is
assumed, the wave force term in (1b) is a function of the
force RAO (7) and the wave elevation (10):

τνw(ν(t), η(t)) = −ρg|F ν(ν(t))|ah

cos

(
ωt+

ω2

g

∫
ν(t) dt+ φRAO + ε

)
, (11)

where g is the acceleration due to gravity, |F ν(ν(t))| is the
force RAO, and φRAO is the phase RAO which is assumed
constant at 1.502 radians. Note, typical notation for the
wave frequency ω, wave amplitude ah, and ε include a k
subscript to indicate each wave component, however, to
avoid confusion with the discrete time indices later, and
since this paper only concerns a single wave component,
the subscript has been dropped.

Next, the wave harmonic is decoupled from the height
and force RAO to simplify use in state space form and
is redefined as:

η(t) := cos

(
ωt+

ω2

g

∫
ν(t) dt+ φRAO + ε

)
. (12)



The dynamics of η(t) are obtained by differentiating (12)
with respect to time. The resulting expressions are some-
what involved, but can be simplified significantly by per-
forming an order of magnitude analysis to retain only the
leading-order terms under the following set of assumptions:

• ω ∈ [0.30, 0.75] rad/s. This is justified by observing
that the vast majority of wave energy in a typical
wave energy spectrum is concentrated in this band.
• ν(t) ∈ [0, 10] m/s. This is the typical operating range

in surge velocity for the ASV studied.

• ω2

g ν̇(t)� ω + ω2

g ν(t) so it is neglected.

With these assumptions the first derivative is:

η̇(t)≈−
(
ω+

ω2

g
ν(t)

)
sin

(
ωt+

ω2

g

∫
ν(t)dt+φRAO+ε

)
.

(13)

The second derivative is:

η̈(t) ≈ −
(
ω +

ω2

g
ν(t)

)2

η(t). (14)

The term ω+ ω2

g ν(t) is the encounter frequency of the boat

to a wave in a head sea.

2.3 Combined State Space Model

The combined surge and wave dynamics can be expressed
in linear time varying form as shown in (Tomás-Rodŕıguez
and Banks, 2010). Here, in (15), it is clear to see the
coupling between the boat velocity and the wave state. The
force of the wave imparted on the boat in the (2,4) term is
dependent on both the velocity of the boat and the wave
state, while in the (5,4) term, the square of the encounter
frequency can be seen. Linearization of this system about
a fixed velocity loses this coupling. This motivates the use
of a nonlinear control technique.

3. CONTROLLER DESIGN

The following section presents the design of a Nonlinear
Model Predictive Controller based on a condensed single-
shooting approach to optimise the performance of vehicle
according to a used defined cost function. The optimisation
is implemented within the Real Time Iteration Scheme
(RTI) (Diehl et al., 2005) which is a popular method to
achieve real-time performance.

3.1 NMPC Controller

Considering a discrete-time representation of the general
nonlinear system (15), the objective is to minimize a cost
function of the form,

J = (Yr − Ŷ )TQ(Yr − Ŷ ) + (Ur − Û)TR(Ur − Û) (16a)

s.t.

xk = x0 (16b)

xk+1 = f(xk, uk), (16c)

yk = g(xk, uk), (16d)

Umin ≤ Û ≤ Umax (16e)

Ymin ≤ Ŷ ≤ Ymax (16f)

where xk ∈ Rnx are the states of the system at time k,
uk ∈ Rnu are the inputs, and yk ∈ Rny are the outputs.
Moreover, Q > 0 ∈ RNpny×Npny and R > 0 ∈ RNpnu×Npnu

are positive definite matrices for penalizing output and
input errors, respectively; Yr, Ŷ , Ur, Û are column-vectors
containing future output references, output predictions,
input references and input predictions, respectively; and
the optimisation subject to initial condition (16b), state
dynamics (16c), state-output function (16d), and input
and output constraints (16e) and (16f).

Cost function (16) is a Nonlinear Programming Prob-
lem (NLP), which is in general difficult to solve. Pop-
ular alternatives are Sequential Quadratic Programming
(SQP) methods which form a linearized Convex Quadratic
Program to find an optimal search direction which
eventually drives the solution towards the local opti-
mum. In predictive control, the linearization of the cost
function is only defined after the future inputs and
states trajectories are defined. To address this, single-
shooting methods use an initially guessed nominal in-
put trajectory Ū = [ūTk , ū

T
k+1, · · · , ūTk+Np−1]T which

can be used to obtain the nominal state and output
trajectories, X̄ = [x̄Tk+1, x̄

T
k+2, · · · , x̄Tk+Np

]T and Ȳ =

[ȳYk+1, ȳ
T
k+2, · · · , ȳTk+Np

]T , respectively, by propagating the

input through the state dynamics (16c) and obtaining the
respective outputs through output function (16d).

By taking a first order Taylor approximation, with a slight
abuse of notation, all future inputs and outputs can then
be obtained starting from an initial condition mismatch
δx0 related to the Real-Time Iteration Scheme as,

Û = Ū + δÛ (17a)

Ŷ = Ȳ + δŶ = Ȳ +Gδx0 + FδÛ (17b)

where matrices G and F are defined as

G =




C1A0

C2A1A0

...
CNp

ANp−1 · · ·A1A0


 , (18a)




χ̇(t)

ν̇(t)

ζ̇(t)

η̇k(t)

η̈k(t)




=




0 1 0 0 0

0 −D(ν(t))
M

τp(ν(t),ζ(t))
M −ρg|F

u(ν(t))|ah
M 0

0 0 − 1
κ 0 0

0 0 0 0 1

0 0 0 −
(
ω + ω2

g ν(t)
)2

0







χ(t)

ν(t)

ζ(t)

ηk(t)

η̇k(t)




+




0

0
1
κ

0

0



u(t) (15)



F =




C1B0 O · · · · · ·
C2A1B0 C2B1 O · · ·
C3A2A1B0 C3A2B1 C3B2 · · ·

...
...

...
. . .

CNpANp−1 · · ·A1B0 CNpANp−2 · · ·A2B1 · · · · · ·


 .

(18b)
and,

Ak =
∂f(x̂k, ûk)

∂x̂k

∣∣∣∣x̂k=x̄k
ûk=ūk

Bk =
∂f(x̂k, ûk)

∂ûk

∣∣∣∣x̂k=x̄k
ûk=ūk

(19a)

Moreover, this paper focuses on regulating the average
boat velocity and minimizing the wave forces defined as:

τw = τ̄w +
∂τw(ν̄k, η̄k)

∂νk
δνk +

∂τw(ν̄k, η̄k)

∂ηk
δηk. (20)

thus, resulting in the output matrix defined as:

Ci =

[
0 1 0 0

0 ∂τw(ūk,η̄k)
∂νk

0 ∂τw(uk,ηk)
∂ηk

]
. (21)

The wave force in the surge direction does not vary by a
large amount with a change in velocity which can be seen
in Figure 1. Using an additional tuning parameter in the
force RAO equation, (7) can be rewritten as:

|F νk (νk)| = α(aνk) + b, (22)

where α is the additional tuning weight which can be used
to virtually increase the change in the wave force with
respect to the boat velocity.

To obtain a desired average velocity, the rows of the
linearized prediction model (17b) related to the velocity
are averaged over the prediction horizon.

Optimization Substituting input and output linearised
prediction models (17a) and (17b) in the original cost
function (16), and rearranging the cost in terms of the

decision variable δÛ (condensing approach) results in the
standard QP form:

J =
1

2
δÛTHδÛ + δÛT f + C (23a)

s.t.

MδÛ ≤ γ (23b)

H = FTQF +R (23c)

f = −
[
FTQ(Yr − Ȳ −Gδx0)−R(Ū − Ur)

]
(23d)

M =



I
−I
F
−F


 γ =




Umax − Ū
−(Umin − Ū)

Ymax − Ȳ −Gδx0

−(Ymin − Ȳ −Gδx0)


 (23e)

Having defined this, any QP solver of choice can be used
to solve (23a). Once the optimal input deviation, δÛ , is
obtained, equation (17a) is used to recover the actual
input. Only the first input is applied to the system, and the
process is then repeated, which is the well known receding
horizon strategy.

3.2 Real Time Iteration Scheme

The Real Time Iteration (RTI) scheme, is a strategy that
enables real-time performance for Nonlinear Optimal Con-
trol. The following is a brief explanation of the procedure.

Initial Value Embedding (IVE) It uses the solution found
in the previous step in a shifted version, typically dupli-
cating the last input variable uk+Np|k+1 = uk+Np−1|k, to
obtain the nominal trajectory over which the formulation
will linearise and optimise.

Single SQP To further reduce the computational burden
and achieve predictable timings, only a single step of
the SQP is performed. This is reasonable given that
the solution is “hot-started” from the previous solution,
which is expected to be close to the optimal solution,
provided no significant unknown/unexpected disturbances
have entered the system.

Computation Separation Separates the computations
into preparation and feedback phases to avoid the com-
putation delay related to the preparation of the QP. Dia-
grams showing the timings of these phases can be found
in Gros et al. (2016).

(1) Preparation Phase: In between sampling times, the
preparation phase uses a predicted nominal state for
the next sampling time x̄0 = x̂k|k−1 as a starting
point obtained from the last state xk−1|k−1 and last
input uk−1|k−1 which allows the preparation of the
QP main matrices H,M,F, etc., and partially, vectors
f and γ.

(2) Feedback Phase: Once the current state measurement
becomes available the feedback phase calculates the
state mismatch δx0 = x0− x̄0, finishes the calculation
of f and γ, and solves the QP. In some cases,
it may be beneficial to run the QP prior to the
state measurement assuming δx0 = 0 to obtain an
estimate of the Lagrange multipliers, λ, related to the
inequalities constraints. In this strategy, the optimal
solution obtained from the RTI can be shown to have
the form as presented in Wang (2011):

Û = Ū−

H−1




Unconstrained︷ ︸︸ ︷
−(FTQ(Yr − Ȳ )−RŪ)

Constrained︷ ︸︸ ︷
+MTλ︸ ︷︷ ︸

Preparation Phase

+FTQGδx0︸ ︷︷ ︸
Feedback Phase




(24)

4. SIMULATION RESULTS

The boat was simulated heading directly into oncoming
waves with the propellers being the only actuation. The
wave was a single harmonic with a wave height of 1
meter and a frequency of 0.5 rad/s. The NMPC had a
prediction horizon of 200 steps ahead, with the sample
period 0.08 seconds resulting in a prediction window of 16
seconds which captures just over one complete harmonic.
The simulation was run for 30 seconds. The weights of
the NMPC were Qu = 10 for penalizing deviations of the
average velocity from the desired average,Ru = 1.4× 10−7

penalizing deviations from Ur, and the tuning weight in
(22) is set as α = 100. The following shows a comparison
between a constant propeller input which produces an
average 5 m/s velocity and the NMPC controller with a
desired average velocity of 5 m/s.

Figure 2 shows the velocity profiles of the open loop
controller and the NMPC controller compared to the
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Fig. 2. The top plot shows the velocity profiles of the two
controllers. The bottom plot shows the wave state η.
The velocity profile shows a global minimum for the
NMPC controlled boat when η is maximum and a
local minimum when η is minimum.

wave state, η. A clear difference in the velocity profiles
can be seen. The open loop controller has an oscillating,
single harmonic velocity resulting from changes only in
the wave force, while the NMPC scenario has a more
complex velocity profile. A global minimum of velocity for
the NMPC controller occurs when the wave state is at its
maximum, while a local minimum velocity for the NMPC
controller occurs at the minimum of the wave state. Both
the local and global maximum velocity occurs when the
wave state is at zero. This behavior allows the boat to
maintain the desired average velocity while reducing peak
wave forces.

The resulting force on the boat can be seen in Figure 3.
This figure shows the weighted wave force as calculated
from (22). The base force, that which the boat would
experience at 0 m/s, is subtracted from this figure to better
show the difference in the two scenarios. Figure 4 shows the
input for both controllers as it compares to the wave state.
The NMPC input frequency appears to be twice that of the
wave. This double harmonic is confirmed when looking at
Figure 5. This figure shows the amplitude spectrum of the
input signal to the propeller for NMPC. In the simulation,
with an average velocity of 5 m/s the average encounter
frequency of the boat is 0.628 rad/s, which has a small
peak in the amplitude spectrum, while a much larger peak
in seen at 1.256 rad/s or double the average encounter
frequency. This can be explained by the fact that for each
wave period, the minimal wave force occurs twice. NMPC
exploits this by having the velocity profile shown in Figure
2, with peaks during the minimal wave force time.

5. CONCLUSION AND FUTURE WORK

This paper formulated and solved the problem of min-
imizing wave-induced forces upon an ASV heading into
ocean waves. Because of the velocity-dependent encounter
frequency, linearization of the dynamics removes the im-
portant coupling between the vessel and the wave, hence
motivating the use of a NMPC which can benefit both,
from the future prediction of the wave, as well as the ability
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Fig. 3. Wave force comparison between the two controllers.
Note: The base wave force is subtracted to more
clearly show the difference in the two controllers.
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Fig. 4. The top plot shows the propeller input profiles of
the two controllers. The bottom plot shows the wave
state η.
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Fig. 5. An amplitude spectrum of the NMPC controller
input



to handle nonlinear dynamics and constraints. Moreover,
a key finding of this study was observed in the velocity
and input profiles required to minimize wave forces which
resulted in twice the average encounter frequency. Further
studies will seek to use this coupling concept to explore
other degrees of freedom such as pitch and roll as well as
the additional input of steering, and use NMPC’s ability
to reduce forces and satisfy constraints to handle more
complex sea states.
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Appendix A. MODEL PARAMETERS

Table A.1. Halcyon Parameters

Name Symbol Value

Mass M 11000 kg
Max Surge Velocity νmax 10 m/s
Propeller Diameter d 0.622 m
Propeller Time Constant κ 1.8 s
Wetted Surface Area S 36.36 m2

Water Density ρ 1025 kg/m3

Wave Amplitude ah 1 m
Wave Frequency ω 0.5 rad/s
Acceleration due to Gravity g 9.81 m/s2

Phase RAO φRAO 1.502 radians
Force RAO Slope a 23.18 N/(m/s)
Force RAO Intercept b 10845 N
RAO Tuning Weight α 100

Table A.2. p Constant Coefficients

p1 −9.22× 10−7 p5 −5.52× 10−3

p2 3.14× 10−5 p6 2.49× 10−3

p3 −4.00× 10−4 p7 1.70× 10−2

p4 2.31× 10−3

Table A.3. K
{i}
τ Thrust Polynomial Constants

K
{1}
τ 0.0041

K
{2}
τ -0.5002

K
{3}
τ 0.6008
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Dual Mode Stable Prediction Models for
Numerically Robust Fast Nonlinear Model

Predictive Control using Real Time Iterations
Oscar J. Gonzalez V., Anthony Rossiter

Abstract—This paper presents a novel Dual-Mode Nonlinear
Model Predictive Control Scheme that uses stable prediction
models for condensing based multiple-shooting frameworks that
result in numerically robust optimisations. The proposed ap-
proach uses Time-Varying gains obtained from solving the Time-
Varying Discrete Algebraic Ricatti Equation to stabilize the
multiple-shooting trajectory, and proves the equivalency of the
solution with the standard approach. Moreover, to achieve real-
time performance, the approach uses the Real-Time Iteration
Scheme, and an algorithm for its efficient implementation is
provided. Simulations of an inverted pendulum, and its extension
to the triple inverted pendulum, are presented along the paper to
demonstrate the advantages and disadvantages, focusing on the
numeric conditioning, the disturbance rejection properties, and
the computational performance.

Index Terms—Nonlinear Model Predictive Control (NMPC),
Dual Mode, Real-Time Iterations (RTI), Multiple Shooting,
Sequential Quadratic Programming (SQP), Nonlinear Optimiza-
tion, Numerical Conditioning, Inverted Pendulum

I. INTRODUCTION

IN recent years, Nonlinear Model Predictive Control
(NMPC) has gained a significant amount of attention

as an advanced optimal control strategy [1], [2], [3]. Its
popularity lies mainly in its ability of handling complex
nonlinear dynamics and constraints. A key challenge for its
implementation is the development of efficient solutions that
allow fast/real-time performance [1], [2], [3]. One of the most
successful approaches to tackle this is the Real-Time Iteration
(RTI) Scheme, originally proposed in [4], which exploits the
fact that NMPC is required to successively solve Optimal
Control Problems (OCP) which are closely linked to each
other [3]. Moreover, the efficiency of the resulting approach
depends largely on how the algorithms are programmed, as
well as the platforms in which they are deployed, e.g. using
Field-Programmable Gate-Arrays (FPGA) [2]. To address this,
several toolkits exist such as the ACADO toolkit [1], VIATOC
and CasADi [5], to name a few, offering efficient autogen-
eration routines aimed at giving extremely fast performance
and releasing the burden of programming NMPC routines
manually. Furthermore, the underlying optimisations can be
solved using simultaneous or sequential approaches leading
to sparse or condensed OCPs [6], [7]. Work by [7] concluded

O. Gonzalez was with The University of Sheffield, Sheffield, UK e-mail:
ojgonzalezvillarreal1@sheffield.ac.uk

A. Rossiter is with The University of Sheffield, Sheffield, UK e-mail:
j.a.rossiter@sheffield.ac.uk
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that condensing based approaches, where states are eliminated
from the decision variables, are faster for small to medium
OCPs, whereas simultaneous/sparse approaches, where the
states are kept as decision variables, give better overall perfor-
mance for large-scale optimisations, and can deal successfully
with unstable systems [6]. Finally, the optimisation can be
done using a variety of methods such as collocation points
[1], [8] and single/multiple shooting [2], [8].

On the other hand, the quality of the solutions is subject to
the numeric accuracy used, and more importantly, the numeric
conditioning of the formulated optimisation, particularly for
condensing based approaches [9]. To address this issue, closed-
loop dual-mode prediction models have been used extensively,
although mostly for linear MPC, with fewer works found for
NMPC. It is noted that dual-modes can be applied based
on open-loop or closed-loop paradigm as discussed in [10],
where the former, switches between two controllers depending
on whether the state is inside the terminal region [11], [12],
[13], and the latter imposes a stabilizing gain across all the
prediction horizon and uses additional deviation variables for
constraint handling [10], [14], [9], [15]. Dual-mode for NMPC
based on the open-loop paradigm was originally proposed in
[16] which guarantees stability for stable systems by using
a single stabilizing gain K based on the Linear Quadratic
Regulator (LQR) solution that stabilizes the state to the
origin in the terminal region. Other works such as [17], [18],
[12] also use this idea. Work by [19] used a PI controller
instead for the terminal region. Work by [11] proposed an
adaptive quasi-infinite NMPC which updated the LQR gain
and terminal weights online based on the current steady-state
target/reference and the model parameters obtained by the
adaptation. Other approaches such as [20], [1], initialize the
nonlinear optimisation with the LQR trajectory, and improve
it from there. It is important to note that all of this approaches
are better suited for stable systems as it is known that unstable
systems are better handled by the closed-loop paradigm [10],
[14] or, as mentioned earlier, by simultaneous approaches [6].
Dual-mode based on the closed-loop paradigm was originally
proposed for state-space linear MPC in [9]. Similarly, work
from [15] have used the closed-loop paradigm for NMPC
with a single locally stabilizing gain K across the entire
prediction to stabilize the system around a given steady state
target/reference. Finally, work by [21], [22] used a time-
varying controller calculated offline, to stabilize the system
around a pre-defined periodic trajectory, which arguably could
be refered to as “linear” MPC, as discussed in [3].
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A key issue that has not yet been addressed for condensing
based NMPC is: how can the system be stabilized around any
trajectory that emerges from the nonlinear optimisation?. In-
deed, it is possible that the trajectory presents highly unstable
dynamics before even getting close to the steady state tar-
get/reference (as it is the case of the triple pendulum), and non
of the currently available toolkits offers a generic methodology
or option for prestabilizing the system to allow condensing
approaches to be used for unstable systems. Moreover, the
importance of numeric conditioning of the optimisation for
unstable systems, and consequently, how this affects or not the
solution, is commonly overlooked or simply ignored. Finally,
the ability to use the reduced numeric accuracy to obtain faster
solutions is not commonly exploited.

This paper aims to address the aforementioned issues and
proposes a generalisable method to tackle condensing based
multiple-shooting NMPC frameworks for unstable systems.
The proposed methodology uses the dual-mode approach
based on the closed loop paradigm to obtain stable prediction
models that improve the numerical properties of the optimi-
sation. The approach uses time-varying gains Kk obtained
from solving the Time-Varying Discrete Algebraic Ricatti
Equation (DARE) to stabilize the multiple-shooting trajectory
(as opposed to common approaches where a single linear
terminal control law aims at stabilizing the state to the origin),
and prove its equivalency with the standard multiple-shooting
solution. Moreover, to achieve real-time performance, the
method is combined with the RTI Scheme, and a general
algorithm for its implementation is provided.

The paper is organized as follows: Section II starts by
defining the general models and OCPs of interest. Sections
II-A and II-B present a detailed derivation of the proposed
approach including the definition of the dual-mode stable
prediction models based on the multiple-shooting approach,
and discuss the general form of the resulting optimal solution.
Section II-C presents the key contribution of this paper,
theorem 1; which establishes the equivalency between our
proposed approach and the standard solution, resulting in
the same stability and convergence properties, with several
advantages and disadvantages discussed further in section II-D.
Details related to the RTI Scheme are introduced in section
II-E, and an algorithm split in two parts (preparation and
feedback phases of RTI) is given in section II-F summarizing
the whole methodology. Section III presents a first example
of its application with simulations of an inverted pendulum
focusing on numeric conditioning, disturbance rejection and
computational performance. To provide a more complete ex-
ample, section IV presents a simulation of a swing up and
stabilization of the triple inverted pendulum system where the
standard condensing based NMPC failed to solve the opti-
misation altogether, and discusses the numeric conditioning
and disturbance rejection properties. Finally, section V emits
conclusions, summarizes the contribution of this paper and
presents future work.

For the interest of the reader, the Matlab and C++ files used
to generate the results discussed in this paper can be found in
[23].

II. NONLINEAR MODEL PREDICTIVE CONTROL

This paper focuses on discrete-time models of the form,

xk+1|k = f(xk|k, uk|k) (1)

where xk ∈ Rnx , uk ∈ Rnu are states and inputs column-
vectors, respectively. The notation “k+ 1|k” reads, “predicted
value at time-step k + 1 calculated at time step k”, and will
only be used for clarity when needed.

Remark 1. If the system is in continuous-time, direct tran-
scription methods can be used to obtain a discrete model,
typically using integration methods such as Forward Euler or
Explicit Runge-Kutta as in [3].

We now seek to optimise the predicted performance of
system (1) along a given prediction horizon Np by minimizing
cost function (2) defined as;

J = (Xr−X̂)TQ(Xr − X̂) + (Ur − Û)TR(Ur − Û) (2a)
s.t. xk = x0 (2b)

x̂k+i = f(x̂k+i−1, ûk+i−1) ∀i = [1, Np] (2c)

Umin ≤ Û ≤ Umax (2d)

Xmin ≤ X̂ ≤ Xmax (2e)

where Q > 0 ∈ RNpnx×Npnx and R > 0 ∈
RNpnu×Npnu are positive definite matrices for penalizing
state and input errors, respectively, typically selected as
Q = blkdiag([qk+1, qk+2, . . . , qk+Np ]) where qk+Np is
typically referred to as the terminal weight, and R =
ruI

Npnu×Npnu ; Xr = [xTrk+1
, xTrk+2

, · · · , xTrk+Np
]T ∈

RNpnx , X̂ = [x̂Tk+1, x̂
T
k+2, · · · , x̂Tk+Np

]T ∈ RNpnx ,
Ur = [uTrk , u

T
rk+1

, · · · , urk+Np−1
]T ∈ RNpnu , Û =

[ûTk , û
T
k+1, · · · , ûk+Np−1]T ∈ RNpnu are future state ref-

erences, states, inputs references and input column-vectors,
respectively; (2b) is the initial condition; (2c) are the state dy-
namics; and (2d) and (2e) are the inputs and state constraints,
with Xmax/Xmin ∈ RNpnx and Umax/Umin ∈ RNpnu .

Remark 2. If appropriate, terminal constraints for the state
xmin ≤ x̂k+Np

≤ xmax can be imposed for stability [2] by
selecting appropriate vectors for Xmin, Xmax.

To solve this optimisation we now look to apply Sequen-
tial Quadratic Programming (SQP) methods where the cost
is linearized at a given trajectory, resulting in a linearized
Convex Quadratic Program (QP) which can be used to find
an optimal search direction, typically based in the Newton-
method, that eventually converges to the local-optimal. Notice
the linearisation of the trajectory is only defined after a
given input/state pairs have been applied through dynam-
ics (2c). A popular alternative are shooting methods which
use an “initially guessed” nominal input trajectory Ū =
[ūTk , ū

T
k+1, · · · , ūTk+Np−1]T ∈ RNpnu and nominal state tra-

jectory X̄ = [x̄Tk+1, x̄
T
k+2, · · · , x̄Tk+Np

]T ∈ RNpnx to linearize
the OCP along the trajectory.

A. Dual Mode Stable Prediction Models
The standard multiple-shooting NMPC approach linearises

the system along this trajectories using first order Taylor
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Series for the state and the inputs, and imposes an additional
continuity term (dk of equation (3b)) for the propagation of
the state. However, in this paper we look to address the issue
that arises when the system presents unstable dynamics, and
therefore present unstable predictions w.r.t. to the decision
variables.

Dual-mode prediction models based on the closed loop
paradigm [10] offer a viable solution to cancel the unstable
dynamics of the system as originally developed and discussed
in [9] for linear state-space GPC. However, as opposed to the
linear case where a single linear gain K, typically obtained
from LQR, can be used to pre-stabilize the system to the
origin, a non-linear system may require time-varying, possibly
nonlinear gains. Moreover, giving it may be difficult to find a
generic stabilizing gain (linear or nonlinear) that satisfies con-
straints and stabilizes any system to the origin, this approach
aims at using time-varying gains that aim at stabilizing the
current guess of the optimal trajectory (X̄, Ū) instead.

To achieve this, the linearisation of the model is then given
by,

x̂k+1 − x̄k+1 = δx̂k+1 = Akδx̂k +Bkδûk + d̄k+1 (3a)
d̄k+1 = f(x̄k, ūk)− x̄k+1 (3b)

ûk − ūk = δûk = −Kkδx̂k + δĉk (3c)

where,

Ak =
∂f(x̂k, ûk)

∂x̂k

∣∣∣∣x̂k=x̄k
ûk=ūk

Bk =
∂f(x̂k, ûk)

∂ûk

∣∣∣∣x̂k=x̄k
ûk=ūk

(4)

and Kk is a stabilizing gain obtained from solving the Time-
Varying Discrete Algebraic Ricatti Equations (DARE) (5)
backwards in time along the nominal state/input trajectories,
starting from (x̄k+Np−1, ūk+Np−1, PNp

= qk+Np
) using qk+i

and ru weights defined previously as in [24];

Pk = qk +ATk Pk+1Ak + (BTk Pk+1Ak)TKT
k (5a)

KT
k = (ru +BTk Pk+1Bk)−1BTk Pk+1Ak (5b)

Remark 3. Note that this pre-stabilization scheme emerges
from a secondary “inner” optimisation which has a different
cost/objective than the original cost (2), ie. the objective of
stabilizing the multiple shooting trajectory itself. However,
it will be proved in theorem (1) that after combining both
optimisation methods, the solution to the original problem is
exactly same.

By substituting δûk = −Kkδx̂k + δĉk from (3c) in (3a), a
stable linearisation model can be obtained as,

Φk = Ak −BkKk (6a)
δx̂k+1 = Φkδx̂k +Bkδĉk + d̄k+1 (6b)

After propagating model (6b) Np steps forward starting from
an initial state mismatch δx0, all future inputs and state, Û
and X̂ , are condensely represented by;

X̂ = X̄ + δX̂ = X̄ +D +Gδx0 +HδĈ (7a)

Û = Ū + δÛ = Ū + S +Wδx0 + FδĈ (7b)

where δx0 = x0 − x̄0 is an initial condition mismatch which
forms part of the RTI Scheme, δĈ are now the inputs of the
system, and,

D =




d̃1

d̃2

...
d̃Np


G =




g1

g2

...
gNp


H =




h1,1 0 · · · 0

h2,1 h2,2
. . .

...
...

. . . . . . 0
hNp,1 hNp,2 . . . hNp,Np




(8a)

S =




s1

s2

...
sNp


W =




w1

w2

...
wNp


F =




f1,1 0 · · · 0

f2,1 f2,2
. . .

...
...

. . . . . . 0
fNp,1 fNp,2 . . . fNp,Np




(8b)

where D ∈ RNpnx , G ∈ RNpnx×nx , H ∈ RNpnx×Npnu , S ∈
RNpnu , W ∈ RNpnu×nx , F ∈ RNpnu×Npnu , and with a slight
abuse of notation by dropping the k+ i→ i indexes, the inner
matrices are defined through the following recursions as,

d̃i =

{
d̄i

d̄i + Φi−1d̃i−1

i = 1
i > 1

(9a)

gi =

{
Φi−1

Φi−1gi−1

i = 1
i > 1

(9b)

hi,j =

{
Bj−1

Φi−1hi−1,j

i = j
i > j

(9c)

si =

{
Onu

−Ki−1d̃i−1

i = 1
i > 1

(9d)

wi =

{
−Ki−1

−Ki−1gi−1

i = 1
i > 1

(9e)

fi,j =

{
Inu×nu

−Ki−1hi−1,j

i = j
i > j

(9f)

We now look to use the condensing approach where, by
substituting the stable linearized prediction models (7) in (2)
and rearranging in terms of the decision variable δĈ results
in the standard QP format (10a).

J =
1

2
δĈTEδĈ + δĈT f + const s.t. (10a)

E = HTQH + FTRF (10b)

f = −
[
HTQ(Xr − X̄ −D −Gδx0)−

FTR(Ū + S +Wδx0 − Ur)
]

(10c)

MδĈ ≤ γ (10d)

M =




F
−F
H
−H


 γ =




Umax − Ū − S −Wδx0

−(Umin − Ū − S −Wδx0)
Xmax − X̄ −D −Gδx0

−(Xmin − X̄ −D −Gδx0)


 (10e)

with E known as the Hessian, f typically referred as the
linear term, and M and γ are the constraint matrix and vector,
respectively. In some cases, not all the states may be required
to be constrained which can be done by selecting/computing
only the appropriate rows of M .
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B. The Optimal Solutions

By derivating (10a) w.r.t. the decision variable δĈ and
equating to zero ( ∂J

∂δĈ
= 0), the well known unconstrained

solution can be found to be,

δĈunc = −E−1f (11)

For constrained solutions, any QP solver such as QPOases
or Matlab function “quadprog” can be used to compute the
optimal solution after having defined (E, f,M, γ), which is
known to have a form of δĈopt = δĈunc + δλĈ, ie. the
unconstrained solution plus a deviation due to constraints (λ
- Lagrange Multipliers) [25].

After solving the optimisation, an expansion step is applied
by using the linearized models (7a) and (7b) to obtain both, the
nominal state trajectory X̄ [i+1] = X̂ [i] and the nominal input
trajectory Ū [i+1] = Û [i], for the next iterations over which the
SQP will re-linearize and optimize the QP. Only the first input
is applied to the system and the process is repeated which is
the well known “receding horizon” strategy.

C. The Equality of the Solutions

Theorem 1. The Equality of the Solutions
The solution with the proposed dual mode stable prediction

models is exactly the same as the standard solution.

Proof. The standard solution, ie. the one that uses the predic-
tions with Kk = O, results in F = I , S = W = O, and
therefore δĈ = δÛ which results in the following prediction
matrices;

X̂ = X̄ +D1 +G1δx0 +H1δÛ (12a)

Û = Ū + δÛ (12b)

with an unconstrained solution of the form,

δÛ =
(
HT

1 QH1 +R
)−1 (

HT
1 Q(Xr − X̄ −D1 −G1δx0)

−R(Ū − Ur)
)

= −E−1
1 f1 (13)

In contrast, our approach uses prediction models,

X̂ = X̄ +D2 +G2δx0 +H2δĈ (14a)

Û = Ū + S +Wδx0 + FδĈ (14b)

and has an unconstrained solution of the form,

δÛ = S +Wδx0 + F
(
HT

2 QH2 + FTRF
)−1 [

HT
2 Q(Xr

−X̄ −D2 −G2δx0)− FTR(Ū + S +Wδx0 − Ur)
]

(15)

Notice the D1/D2 − G1/G2 − H1/H2 notation has been
used to distinguish the two state prediction models. However,
because both models produce exactly the same predictions for
a given δU , ie. X̂ = X̄ +D1 +G1δx0 +H1δÛ = X̄ +D2 +
G2δx0 +H2δĈ and Û = Ū + δÛ = Ū + S +Wδx0 + FδĈ,
then the following hold;

D2 = D1 +H1S (16a)
G2 = G1 +H1Wδx0 (16b)
H2 = H1F (16c)

Substituting equation (16c) in (15) and rearranging it in terms
of the Hessian E1 of the standard solution (13) gives;

δÛ = S +Wδx0 + F
(
FTE1F

)−1

FT
[
HT

1 Q(Xr − X̄ −D2 −G2δx0)

−R(Ū + S +Wδx0 − Ur)
]

(17)

Given F is always invertible because of the identity matrix in
the diagonal, and E1 is always invertible because is positive
definite, the terms related to the inverse of the inner product
are given by;

F
(
FTE1F

)−1
FT = F (F−1E−1

1 FT
−1

)FT

= E−1
1 (18)

Substituting equations (16b), (16a) and (18) in (17) gives,

δÛ = S +Wδx0

+E−1
1

[
HT

1 Q(Xr − X̄ −D1 −H1S −G1δx0 −H1Wδx0)
)

−R(Ū + S +Wδx0 − Ur)
]

(19)

Rearranging terms,

δÛ = S +Wδx0 − E−1
1 E1(S +Wδx0)

+E−1
1

[
HT

1 Q(Xr − X̄ −D1 −G1δx0)−R(Ū − Ur)
]

= E−1
1

[
HT

1 Q(Xr − X̄ −D1 −G1δx0)−R(Ū − Ur)
]

= −E−1
1 f1 (20)

Thus, the equality of the solutions (II-C) and (13) holds.
A similar but slightly longer proof holds for constrained

solutions, given the same constraints are imposed which in
turn would lead to the same constraint corrections to the
unconstrained solution;

X̂ = X̄ + δX̂ + δλX̂ (21a)

Û = Ū + δÛ + δλÛ (21b)

Moreover, notice this proof also holds for single-shooting sce-
narios where the system is linearized along the state trajectory
X̄ obtained with Ū resulting in dk = Onx∀k = [1, Np], and
consequently in S = D = ONpnx .

D. Stability, Convergence and Numerical Robustness

Because the solution given by our proposed approach is ex-
actly the same as the one given by the standard single/multiple-
shooting solution as proved by theorem (1), the convergence
and stability properties are exactly the same. However, the
benefit of the proposed approach is that the prediction ma-
trix H is now stable w.r.t. the decision variable δĈ which
leads to a numerically robust Hessian inversion required by
the optimisation. This allows longer prediction horizons for
unstable systems without sacrificing numerical robustness of
the solution, as well as possibly the use of less accurate inverse
solutions and weaker numeric precision representations such
as floats for computing purposes. Although the numeric advan-
tages are particularly present when using condensed/sequential
solutions, the methodology can also be used for simultaneous
approaches.
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The aforementioned benefits were particularly observed for
the inverted pendulum systems used in the benchmark sections
III and IV with significant condition numbering differences of
the Hessian when the approach is not used, and in some cases,
giving singular Hessian or failing the solve the optimisation
altogether (as it is the case of the triple pendulum). The
main disadvantage of the proposed approach is that it requires
slightly longer computation times, particularly due to the
computations related to the solution of Time-Varying DARE
backwards in time to obtain Kk; the computations Φk, S, W
and F ; and the fully dense constraint matrix which prevents
the use of the special case available in standard QPs where
the constraints in the inputs are imposed through an identity
matrix I rather than dense matrix F . Moreover, if an interior
point method is used to solve the optimization, assuming the
system was linearised over a feasible input trajectory Ū , an
initial feasible point for Û is not necessarily achieved by
δĈ = ONpnu , as opposed to directly imposing δÛ = ONpnu

in the standard method which would be feasible. An alternative
is to initialize δĈ = F−1(ONpnu − S −Wδx0), which is the
required δĈ to obtain δÛ = ONpnu that is easily present in
the standard solution.

E. Real Time Iterations

To achieve real-time performance of the optimisation, the
Real-Time Iteration Scheme originally developed in [4] was
used. The latter is briefly summarized in this section, and
for more details, the reader is refered to [3] which gives an
excellent tutorial like paper of this method.

The scheme consists of 3 strategies for the multiple-shooting
approach:

1) Initial Value Embedding:
It uses a shifted version of the solution for the nom-
inal state and input trajectories obtained in the previ-
ous time step to hot-start the trajectories over which
the SQP will linearise, typically duplicating the last
input ūk+Np−1|k = ûk+Np−2|k−1, and shifting the
state X̄k|k−1 = [x̂Tk+1|k−1, . . . , x̂

T
k+Np−1|k−1, x̂

T
k+Np|k]T ,

where x̂k+Np|k = f(x̄k+Np−1|k−1, ūk+Np−2|k−1).
2) Single SQP Iteration:

It performs only a single SQP iteration given the hot-
started trajectory is expected to be close, provided no
significant disturbances have entered the system. As-
suming the latter and other conditions discussed in [3]
are satisfied, the scheme can guarantee local asymptotic
closed-loop stability.

3) Computation Separation:
It separates the computations required for the optimisa-
tion into preparation and feedback phases to avoid the
computation delays required by the optimisation:

a) Preparation Phase: In between sampling times k−1→
k, it uses the predicted state for the next sampling
time x̄0 = x̂k|k−1 as an initial condition of (2)
which enables the computation of all the matrices
required by the optimisation (D,G,H, S,W,F,E,M ),
and partially the calculation of (f and γ) given the
dependancy on δx0.

b) Feedback Phase: As soon as the state is available, it
calculates δx0 = x0− x̄0, completes the calculation of
f and γ, and solves the QP.

F. Algorithm

To summarize the overall methodology, this section provides
a generic algorithm for the overall implementation of the
approach. The algorithm is divided into the preparation and
feedback phases of the RTI Scheme, namely algorithms (1)
and (2). Although it may seem slightly different calculations
are used, note that the terms D and S are implicit in the update
of X̄ and Ū in lines 31 and 29, respectively, of algorithm
(2); and similarly, the terms related to Gδx0 and Wδx0 are
included in lines 3 and 4, respectively, of algorithm (1), all of
which are used for the calculation of f and γ.

Algorithm 1: Feedback Phase
Data: x0, X̄, Ū ,Xr, Ur, E,M,G,H,W,F,Q,R

1 —————- Update —————-
2 Calculate δx0 = x0 − x̄0;
3 Update X̄ = X̄ +Gδx0;
4 Update Ū = Ū +Wδx0;
5 Calculate f = −[HTQ(Xr − X̄)− FTR(Ū − Ur)];

6 Calculate γ =




Umax − Ū
Ū − Umin
Xmax − X̄
X̄ −Xmin


;

7 —————- Optimize —————-
8 δĈ=QPSolver(E, f,M, γ);
9 —————- Expansion Step —————-

10 X̄ = X̄ +HδĈ;
11 Ū = Ū + FδĈ;
12 —————- Result —————-

Result: uk = Ū(1), X̄, Ū

III. EXAMPLE 1: THE INVERTED PENDULUM

To evaluate the performance of the proposed methodology,
the inverted pendulum was used as a first example commonly
used as a benchmark given it presents challenging underactu-
ated, unstable and non-minimum phases nonlinear dynamics
in the upward equilibrium subject to input and state constraints
[26], [24], [27]. It is worth mentioning that although the
numeric conditioning problem is naturally present in higher
order systems (eg. 10-100 states), it can also be present in
low-order systems such as the system at hand, and given
condensing based approaches are naturally better suited for
small to medium sized optimisations, this system was selected
as a first example. Nonetheless, a higher order system such as
the triple inverted pendulum (8 states) will be considered in
section IV.

In this paper, a simplified model of the inverted pendulum
available in [28] was used which is given by.

p̈ = fmṗ+ ku (22a)

θ̈ = aθ̇ + b sin(θ) + c cos(θ)(fmvk + kuk) (22b)
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Algorithm 2: Preparation Phase

Data: X̄, Ū , Q,R,Np
1 Obtain x̄0 from X̄ obtained in the previous time

(x̄0 = x̄k|k−1);
2 Shift Ū and X̄;
3 —————- Forward —————
4 for k = 0 to Np do
5 Store Ak, Bk, dk
6 end
7 —————- DARE Backwards —————-
8 Initialize PNp

= qk+Np
;

9 for k = Np − 1 to 0 do
10 Compute

Pk = qk +ATk Pk+1Ak + (BTk Pk+1Ak)TKT
k ;

11 Store KT
k = (r +BTk Pk+1Bk)−1BTk Pk+1Ak;

12 Store Φk = Ak −BkKk

13 end
14 —————- Main Matrices —————-
15 Initialize F = I;
16 for k = 1 to Np do
17 if k == 1 then
18 Store d̃k = dk;
19 Store gk = Ak−1;
20 Store hk,1 = Bk−1;
21 Store wk = −Kk−1;
22 else
23 Store d̃k = dk +Ak−1d̃k−1;
24 Store gk = Ak−1gk−1;
25 Store hk,1→k = [Ak−1hk,1→k−1, Bk−1];
26 Store sk = −Kk−1wk−1;
27 Store wk = −Kk−1gk−1;
28 Store fk,1→k−1 = −Kk−1hk,1→k−1;
29 Store ūk−1 = ūk−1 + sk
30 end
31 Store x̄k = x̄k + d̃k;
32 end
33 Form M = [FT ,−FT , HT ,−HT ]T ;
34 Calculate E = HTQH + FTRF ;
35 —————- Result —————-

Result: X̄, Ū , G,H,W,F,E,M

Considering the state xk = [v, ω, p, θ]T with v = ṗ and ω = θ̇
and using a forward-euler integration method the simplified
model is given by;

xk+1 = xk + Tsf(xk, uk) (23a)

f(xk, uk) =




fmvk + kuk
aωk + b sin(θk) + c cos(θk)(fmvk + kuk)

vk
ωk




(23b)

where Ts = 0.02 (s) is the sampling time; p is the position;
v is the velocity; θ is the pendulums’ angle; ω is the pen-
dulums’ angular velocity; and uk is the input of the system.
Furthermore, the coefficients were defined as fm = −4.67;
k = 0.065; a = −0.129; b = 38.4; and c = 3.95.

Finally, constraints in the input and position were imposed
as −170 < u < 170 and −0.35 ≤ p ≤ 0.35, respectively.

A. Numerical Performance Evaluation

To evaluate the performance of our methodology, the op-
timisation was done for different prediction horizons using
weights qk+i = diag([0.1, 0.1, 10, 10]) ∀i = [1, Np − 1],
ru = 0.001 to penalize the state and input errors. A terminal
weight of qk+Np

= 10qk+i was imposed in the last state of the
horizon xk+Np

to improve stability properties of the optimi-
sation. All the simulations started at the lower equilibrium in
steady state xr = x0 = [0, 0, 0, π]T , and a reference change
to the upward equilibrium (xr = [0, 0, 0, 0]) was given by
introducing it at the end of the prediction horizon to achieve
better performance of the RTI Scheme as discussed in [3].
Notice the required input to stabilize the inverted pendulum
in the upper equilibrium is zero, thus Ur = ONpnu .

To analyze the numerical robustness of the optimisation, the
condition number (c.n) of the Hessian E was calculated and
compared between both, the standard and the proposed novel
solution using different numeric precision (floats and doubles),
and the maximum c.nmax of each solution was gathered in
table I for all prediction horizons.

To visualize this differences, an example performance of
the optimisation is given in figure 1 for the solution with
prediction horizon Np = 75 where the c.n. is plotted for
both solutions along with the resulting trajectories. It can be
seen that the standard solution gives a condition number of
up to c.n. = 1.39e + 06, and presents a difference between
both solutions of nearly 6 orders of magnitude larger, which
is fairly significant considering the relatively short prediction
horizon used. Looking further at table I, the condition number
of the standard solution increased as the prediction horizon in-
creased giving differences of up to 13 orders of magnitude for
Np = 150, and the Hessian becoming singular for Np = 200
when using double precision and for Np > 75 when using float
precision. This ultimately prevents the standard methodologies
from using floating precision which leads to faster computation
times as detailed in table II. In contrast, the proposed solution
maintained steady at c.nmax ≈ 3.58 ∀Np independent of
the numeric precision. It should be mentioned that common
prediction horizons for the inverted pendulum are relatively
long (2 to 4 seconds [3], [27]), which is approximately the
time required to swing up and stabilize the system. However,
other systems such as the ball-plate apparatus of [29] can
present numeric conditioning problems in as low as 1 second,
for which the proposed approach offers a viable solution.

Precision Double Float
Np DM STD DM STD
75 3.58 1.39e+06 3.58 2.28e+06

100 3.58 4.52e+08 3.58 (Singular)
125 3.58 1.47e+11 3.58 (Singular)
150 3.58 5.02e+13 3.58 (Singular)
200 3.58 (Singular) 3.58 (Singular)

Table I: Maximum Condition Numbers Comparison for Dif-
ferent Prediction Horizons and Numeric Precision. STD and
DM refer to the standard and dual mode solution, respectively.
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Figure 1: Example numerical conditioning using double pre-
cision with initial condition x0 = [0, 0, 0, π]T , Np = 75.
STD and DM refer to the standard and dual mode solution,
respectively.

Remark 4. It should be noted that the numerical conditioning
problem can also be changed by selecting a different number of
shooting points as well as the number of intermediate steps of
the discretization and linearisation process [3]. However, this
doesn’t tackle the source of the problem, nor does it provide a
general methodology to address it using an arbitrary/desired
number of elements to be selected by the user.

For the interest of the reader, a Matlab code reproducing
the results of figure 1 and table I is given at [23].

B. Disturbance Rejection Comparison

Another interesting result was obtained when comparing the
responses against disturbance rejection which were observed to
present small differences despite the equality of the solutions
proven by theorem (1). This was particularly present when
using long horizons and, more importantly, when using the
weak inverse function “inv(A)” of Matlab to obtain the un-
constrained solution, which is known to be less accurate than
solving a linear system using A\b. To test this, a disturbance of
xk = xk+[0, 0.5, 0, 0]T was injected at t = 7 (s) (continuation
from figure 1 - system in upper equlibirum) for which the
unconstrained solution satisfies. Figure 2 shows an example of
this where the predicted and closed-loop responses are plotted
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Figure 2: Disturbance Response - Prediction and Closed Loop
Comparison for Np = 150 when using Matlab “inv(A)”
function. Disturbance of xk = xk+[0, 0.5, 0, 0]T was injected
at t = 7 (s). STD and DM refer to the standard and dual mode
solution, respectively.

after the disturbance is injected. Only the initial predicted
trajectories were plotted to avoid saturation. As it can be
seen, the predicted trajectories of the angle using the standard
solution (orange dashed curve with markers - visible in the
upper right corner) diverged significantly from the closed loop,
which in essence resulted in an ill-posed optimization [10]
and caused the closed loop solution (magenta dash-dotted
curves) to differ as it can be seen from all 3 responses (angles,
position and inputs). In contrast, the predictions of the angle
using proposed dual mode approach (blue dotted curve -
visible in the lower left corner) are indistinguishable from the
closed-loop response (cian - solid line curve). Interestingly, the
closed-loop responses were identical before the introduction
of the disturbance, which suggest that this problem is clearly
related to the numeric conditioning of matrix G whose norm
grows as big as ||G|| ≥ 2.49e + 08, thus affecting the linear
term f significantly when ||δx0|| >> 0.

It is noted that this anomaly ONLY happened when using
the weak inverse function, and it was not present when
using the command A\b to obtain the unconstrained solution
resulting in the exact same solutions as expected from theorem
(1). Nonetheless, it offered an important insight into another
potential advantage of the overall methodology.

C. Computation Times

As discussed earlier, the methodology has the disadvantage
that further computations are required when compared to the
standard approach. To evaluate this, a C++ code based on
the EIGEN library was developed following suggestions from
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[2], [7] by using the recursive calculations, pre-storage and
avoiding unnecessary zero-computations. Moreover, to assess
the computation times for the constrained case, 10 iterations
of a reduced version of general Primal-Dual Interior Point
Methods available in [30], [31], [32] were computed, including
the efficient solution of the system (24) with δC̄, λ̄ guesses

[
E −MT

ΛMT C

] [
pδC
pλ

]
=

[
−f − EδC̄ +MT λ̄

µ− Cλ̄

]
(24)

the selection of the initial guess, and the selection of the
appropriate step size α that satisfies Mδ(C̄ [i] +αpδC)−γ ≥ ε
and λ̄[i] + αpλ ≥ ε, where C = diag(MδC̄ [i] − γ) and
Λ = diag(λ̄). For more information, the reader is referred
to [31]. The resulting code is available in [23].

Remark 5. For proper operation of the interior point, the
constraints must be put in the form MδĈ ≥ γ, ie. both must
be negated.

The developed code was run 1000 times for the conditions
previously discussed, and the average computation times were
stored. The code was compiled using -O3, -mavx and -mfma
C-flags to specify the optimisation level, auto-vectorization
(avx), and fused multiply-add (fma) operations, respectively,
and was tested in a Laptop running Ubuntu 18.04 with an i7-
5700 HQ @ 2.7 GHz Intel Processor, and a DDR3 RAM
@ 1.6 GHz. A detailed comparison between the average
computation times in microseconds is given in table II for
prediction horizon Np = 75 using both, the standard and the
proposed solution, as well as using different numeric precision
(doubles/floats) which allow faster computations. For clarity
of where the algorithm introduces the additional computation
times, they were decomposed in several intermediate steps,
namely; Forward: the time required to generate and store
dk, Ak, Bk ∀ k = [0, Np]; DARE: Computation of DARE
backwards Kk ∀k = [0, Np − 1] and computing Φk ∀ k =
[0, Np − 1]; Matrices: Computation of all main matrices and
vectors (D,G,H, S,W,F,E, f,M, γ); Inversion: Solution of
δC = −E−1f , required for the unconstrained solution; QP
Steps: Computation of 10 iterations of the Interior-Point QP
solution; Unconstrained: Summation of all the steps required
for the unconstrained solution; and Constrained: Average
constrained computation time.

As it can be seen, the method introduces additional compu-
tations mainly in DARE and the computation of all the matri-
ces, particularly because of the computation of S,W,F, f, γ.
Nonetheless, the proposed solution remains remarkably close
to the standard solution, with only 13% to 20% additional
computation time for the unconstrained cases of both preci-
sions; and 3.3% to 3.9% for the constrained cases of both
precisions, which is reasonable given the large advantage of up
to 3.89 million times better numeric conditioning. Moreover,
because the floating point solution using the proposed dual-
mode approach is now non-singular, it can be used to solve
the optimisation up to 1.5− 2 times faster.

IV. EXAMPLE 2: THE TRIPLE INVERTED PENDULUM

To further illustrate the benefits of the proposed methodol-
ogy and provide a more complete example that further shows

Precision Double Float
Step DM STD DM STD

Forward 5 5 3 3
DARE 5 0 4 0

Matrices 306 270 204 168
Inversion 35 35 25 25

10 IP-QP Steps 2190 2149 1044 1037
Unconstrained 351 310 236 196
Constrained 2541 2459 1280 1233

Table II: Comparison of Average Computation Times in
microseconds (µs) for prediction horizon Np = 75 and
double/float numeric precision. STD and DM refer to the
standard and dual mode solution, respectively.

its generalisation capabilities for higher order systems, this
section presents its application to a triple inverted pendulum
which is a considerable more complex nonlinear system than
the single inverted pendulum. Indeed, due to its highly unstable
dynamics, the standard condensing based multiple shooting
NMPC approach was unable to solve this problem altogether,
independently of the prediction horizon used. Thus, this pro-
vides an example of a problem that previously was unable
to be solved using the latter which further stresses out the
importance of the contribution.

In this paper, the equations of motion for a point-mass triple
pendulum provided in [33] were used, combined with the cart
acceleration differential equation (22a) with the assumption
that the pendulums will have no effect on the cart. This
assumption is standard in many approaches present in the
literature as the pendulums’ effects can be canceled using
subordinate/inner acceleration/velocity controllers for the cart
as described in [26], [24].

Thus, the equations are given by:

p̈ = fmṗ+ ku (25a)

M(θ)θ̈ = −N(θ)θ̇2 −Rθ̇ − P (θ)− f(θ)(fmṗ+ ku) (25b)

where M(θ), N(θ), R, P (θ) and f(θ) are defined as in [33],
and the specific parameters used for our simulation are given in
table III. Assuming the state xk = [v, ω1, ω2, ω3, p, θ1, θ2, θ3]T

with v = ṗ and ωi = θ̇i, the system was simulated and
linearised using Ns = 2 steps of forward euler method as
described in [3] with a sampling time of Ts = 0.02(s). The
inner step was required to improve the accuracy and stability
of the integration method as the system is known to present
highly chaotic behavior [33].

Remark 6. Given the complexity of the system, Matlab’s
Symbolic Toolbox was used to obtain the expressions of the
linearisation terms.

m1 0.3 L1 0.3 R1 0.1 g 9.81
m2 0.27 L2 0.27 R2 0.1 fm −4.67
m3 0.243 L3 0.243 R3 0.1 k 0.065

Table III: Triple Pendulum Parameters

Regarding the optimisation setup, a prediction hori-
zon of Tp = 2 (s)(Np = 100) was selected,
and the penalization weights were selected as qk+i =
diag([0.1, 0.2, 0.3, 0.4, 10, 20, 30, 40]) ∀i = [1, Np − 1] with
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the terminal weight selected as qk+Np
= 100qk+i, and the

input penalisation term as ru = 0.001. As in the previous
example, all the simulations started from the lower equilibrium
in steady state (xr = x0 = [0, 0, 0, 0, 0, 0, 0, 0]T ), and a
reference of xr = [0, 0, 0, 0, 0,−π, π,−π]T was introduced
at the end of the prediction horizon. Moreover, to relax the
optimisation (as it is indeed a much more difficult problem),
the position was constrained to −0.5 ≤ p ≤ 0.5 whilst keeping
the same input constraints as for the single inverted pendulum
of section III, ie. (−170 ≤ u ≤ 170).

To further improve the performance of the underlying SQP
method, an additional exponentially decaying penalisation
term defined as δ(ru)k+i = 1000ru(α)i ∀i = [1, Np] with
α = (0.01)

1
Np was imposed on the input deviation δÛ which

modified the original cost function (10a) to:

JδR = J +
(
δÛ
)T

δR
(
δÛ
)

(26)

where δR = diag([δ(ru)k+i]) ∈ RNpnu×Npnu , which modi-
fied the Hessian E and linear term f to:

EδR = HTQH + FT (R+ δR)F (27a)

fδR = −
[
HTQ(Xr − X̄ −D −Gδx0)− (27b)

FTR(Ū − Ur)− FT (R+ δR)(S +Wδx0)
]

Although the performance can also be improved by using
proper step-size of the Newton-method, this additional term
was motivated by observing that the prediction errors due to
linearisation grow as they move forward through the horizon.
Therefore, by preventing large deviations at the beginning
of the horizon, the prediction errors in future time-steps are
reduced which consequently improves the contraction rate of
the underlying Newton-method. On the other hand, it can be
proved that the solution with this added penalisation term only
affects the rate of convergence towards the solution, but does
not change the solution itself. Finally, it is trivial to show that
theorem 1 still holds with this modification.

Figure 3 shows a T = 10(s) simulation of a swing-up and
stabilization of the triple inverted pendulum problem with a
disturbance of xk = xk + [0, 0, 0, 0.1, 0, 0, 0, 0]T introduced
at t = 5 (s) for which the unconstrained solution satisfies.
Of particular interest is the figure on the lower-right corner
where the steady state condition number (c.n.)ss ≈ 252 can
be seen which, for this system, is naturally much higher than
that of the single inverted pendulum presented in figure 1.
Indeed, the latter undergoes critic points during the swing
up reaching a maximum of (c.n.)max ≈ 811, approximately
3.2 times higher, which once again shows the complexity of
the system at hand. Nonetheless, the method preserves the
expected properties of low conditioning number which protect
the solution from numerical instability, and the resulting
controller is observed to perform well against disturbances.

Remark 7. It is worth noting that linearising the system at
the upward equilibrium without the proposed approach had a
condition number of the ”would-be” optimisation of (c.n.) =
3.07 × 1023. Thus, considering the solution can undergo the
aforementioned critic points, it is not surprising the standard
method was unable to be applied.

V. CONCLUSION

This paper presents a novel Dual-Mode NMPC method-
ology that uses stable prediction models to obtain numeri-
cally robust solutions for condensing based multiple shooting
NMPC frameworks which are particularly well suited for
unstable systems. A proof of the equivalency of the solution
with the standard single/multiple-shooting solution is given,
which consequently results in the exact same stability and
convergence properties. The method uses a stabilizing gain
obtained from solving the Time-Varying DARE backwards
in time along the shooting trajectory. The proposed ap-
proach differs from all previously proposed Dual-Mode NMPC
schemes in the sense that it aims at stabilizing the trajectory
using time-varying gains, rather than stabilizing the states to
the origin as the standard methodologies, typically using a
single gain obtained from LQR. Although the methodology
was derived particularly for a multiple-shooting sequential
(condensing-based) solution, it can be applied for multiple-
shooting scenarios using simultaneous approaches. To achieve
real-time performance, the NMPC was deployed using Real-
Time Iterations, and an overall algorithm is presented along
the paper summarizing the proposed approach. Simulations of
an inverted pendulum, and its extension - the triple inverted
pendulum, are presented focusing on the numerical condition-
ing, disturbance rejection and computation time differences
compared with the standard solution, demonstrating the ad-
vantages and weaknesses of the methodology. It is noted that
the triple inverted pendulum case was unable to be applied
with the standard method, which provides further evidence of
the importance of this contribution.

Having observed the benefits of the proposed approach
which clearly result in significant improvements whilst offer-
ing a general procedure to tackle unstable systems for NMPC,
future work will aim to merge the proposed approach with the
ACADO toolkit which currently offers no option for stable-
predictive models in their auto-generation routines, despite
the generic extension steps required. Moreover, to reduce the
computation time of the optimisation, efficient parameterised
solutions based on Laguerre polynomials [34] or Blocking
approaches [29] will be explored.

To the best of the authors knowledge, this is the first
paper offering a generalisable dual mode closed-loop paradigm
for multiple shooting condensing-based NMPC schemes, and
proving the equality of the latter with the standard solution.
The MATLAB and C++ files used to obtain the results in this
paper can be found in [23].
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