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RÉSUMÉ

Le domaine des véhicules aériens sans pilote de type multicoptères a connu une progression
substantielle au cours de la dernière décennie. La génération et le contrôle des trajectoires ont
été au centre des préoccupations de ce nouveau domaine, avec des méthodes qui permettent
d’exécuter des manœuvres complexes dans l’espace. Plusieurs efforts ont été faits pour exé-
cuter ces manœuvres en utilisant la commande non linéaire, notamment la commande par
platitude différentielle. Cependant, l’absence de théorie pour l’estimation des dérivées d’ordre
supérieur a empêché l’application expérimentale de plusieurs de ces techniques.

Ce travail explore tout d’abord l’approche par composition séquentielle pour l’exécution de
manœuvres à travers des fenêtres étroites. Cette technique implique la combinaison de plu-
sieurs contrôleurs théoriquement simples afin de produire un résultat complexe. Les résultats
expérimentaux réalisés dans le Laboratoire de Robotique Mobile et de Systèmes Automati-
sés à Polytechnique Montréal démontrent la validité de cette approche, en produisant des
manœuvres précises et répétables. Cependant, on atteint rapidement les limites d’une telle
méthode dans les applications du monde réel, du fait de son manque de précision initiale et
l’absence d’évaluation de faisabilité.

Ce mémoire se concentre ensuite sur le développement d’une architecture d’estimation d’état
basée sur le filtre de Kalman linéaire afin de fournir en temps réel des estimés des 2e et
3e dérivées de la position d’un quadricoptère (appelées respectivement accélération, et à-
coup ou jerk). Des filtres de complexités différentes sont développés afin d’incorporer toute
l’information disponible sur le système pour améliorer l’estimé résultant. On obtient alors
un estimateur d’état complet qui utilise les mesures de position et d’accélération, ainsi que
les entrées de commande, et fournit des estimés pour la rétroaction. Un contrôleur du jerk
augmenté basé sur la théorie de la commande optimale est ensuite développé afin de valider
cet estimateur. Il est conçu de façon à utiliser le jerk, l’accélération, la vitesse et la position du
drone ; sans rétroaction de chacun de ces termes, le système est alors instable. Des tests sont
effectués afin d’examiner les performances de l’estimateur et du contrôleur. Tout d’abord, le
quadricoptère est chargé de suivre diverses entrées de référence dans l’espace pour assurer
sa stabilité. Le contrôleur permet de suivre au plus près ces références, comme réalisé en
simulation. Le contrôleur doit ensuite suivre un changement de référence afin d’évaluer la
précision de l’estimateur développé. Les résultats montrent que l’estimation en temps réel
du jerk suit adéquatement les valeurs hors ligne. Pour autant que nous le sachions, c’est la
première mise en œuvre dans le monde réel du retour de jerk pour contrôler un multicoptère.
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ABSTRACT

The field of multirotor unmanned aerial vehicles (UAVs) has seen substantial progression in
the past decade. Trajectory generation and control has been a main focus in this domain,
with methods that enable the performance of complex three-dimensional maneuvers through
space. Efforts have been made to execute these maneuvers using concepts of nonlinear control
and differential flatness. However, a lack of theory for the estimation of higher-order deriva-
tives of a multirotor UAV has prevented the experimental application of several of these
techniques concentrated on trajectory control. This work firstly explores the existing con-
trol approach of sequential composition for the execution of quadrotor manoeuvres through
narrow windows. This technique involves the combination of several theoretically simple con-
trollers in sequence in order to produce a complex result. Experimental results conducted in
the Mobile Robotics and Automated Systems Laboratory (MRASL) at Polytechnique demon-
strate the validity of this approach, producing precise and repeatable manoeuvres through
narrow windows. However, they also show the limitations of such a method in real world
applications, notably its initial inaccuracy and lack of feasibility evaluation. This thesis then
focuses on the development of a state-estimation architecture based on linear Kalman fil-
ter techniques in order to provide a real-time value of a quadrotor UAV’s second and third
derivatives (referred to as acceleration and jerk, respectively). Filters of different complex-
ities are developed with the goal of incorporating all available system information into the
resulting estimate. A full-state estimator is produced that uses a quadrotor’s position and
acceleration measurements as well as control inputs in order to be usable for feedback. A
jerk-augmented controller based off of optimal control theory is then developed in order to
validate this estimator. It is designed in such a way to use the UAV’s jerk, acceleration,
velocity and position as design parameters and to be unstable without feedback in each of
these terms. Tests are conducted in order to examine the performance of both the estimator
and controller. Firstly, the quadrotor is commanded to track various reference inputs in 3D
space to ensure its stability. The controller tracks these references very closely to simulated
responses. The controller is then asked to follow a changing reference in order to evaluate the
precision of the developed estimator. Results show that the real-time estimation of the jerk
follows offline values adequately. To the best of our knowledge, this is the first application
to implement the feedback of a multirotor UAV’s jerk in real-world experimentation.
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CHAPTER 1 INTRODUCTION

1.1 Core Concepts

Recent years have seen an explosion of commercial and academic applications of multirotor
autonomous unmanned vehicles, or “UAVs”. These autonomous flying robots are characteri-
zed by their multiple rotating propellers fixed on a rigid frame. Their simple geometry and
input force characteristics make them ideal for theoretical applications of controls enginee-
ring.

Figure 1.1 AscTec Pelican Quadrotor

Multirotor UAVs can be designed to have 4, 6 or 8 propellers and come in a variety of
configurations. The AscTec Pelican, as seen in figure 1.1, flies using 4 propellers while the
AscTec Firefly, pictured in figure 1.2 has a 6 rotor configuration.

Many laboratories have used multirotor UAVs as platforms for the development and testing of
novel control techniques. Basic concepts of control and trajectory planning for a multirotor
UAV have been outlined by Mahoney, Kumar, and Corke in [4]. They presented methods
that enable the stabilization of a UAV as well as the ability to track 3D trajectories. In a
more specialized application, researchers at ETH Zurich [5] developed a method to balance
an inverted pendulum using a small quadrotor, as seen in figure 1.3.
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Figure 1.2 AscTec Firefly Hexarotor

Figure 1.3 Balancing an Inverted Pendulum

There are many other possible uses for mulitrotor UAVs that have been explored by re-
searchers in recent years. A collection of quadrotors can be used in order to safely monitor
the behaviour of forest fires [6]. Borowczyk et al. developed a method to automatically land
a quadrotor on moving surfaces up to 50 km/h, making retrieval of UAVs more feasible in
high-speed situations [7].

A main field of study in the field is the generation and execution of trajectories in 3D space.
Variations of this theme can permit a quadrotor to perch on an object, fly through narrow
windows, navigate through cluttered environments and execute acrobatic manoeuvres. This



3

work aims to treat several aspects of the problem of quadrotor trajectory generation.

1.2 Problem Definition

1.2.1 Trajectory Generation for Precise Aggressive Manoeuvres with a Quadro-
tor UAV

The initial focus of this Master’s project was the replication of results produced in [1]. This
paper had as a goal to autonomously fly a quadrotor through a narrow window at varying
angles, as well as land on several differently inclined surfaces. Figures 1.4 and 1.5 show
examples of the test results from this prior work.

Figure 1.4 Problem Definition : Original results showing a quadrotor flying through a 90°
window (taken from [1])

The main focus of the replication of this paper was on the successful passage of a quadrotor
through narrow windows. Four of the cases were chosen, namely :

— Passage through a 45° vertical window

Figure 1.5 Problem Definition : Original results showing a quadrotor perching on a 120°
surface (taken from [1])
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— Passage through a 60° vertical window
— Passage through a 90° vertical window
— Descent through a horizontal window

To be considered a success, the quadrotor must autonomously take off, hover to a desired
point in space, successfully navigate through a narrow window and recover to a stable hover
at the end of the manoeuvre. This execution must be reliable and repeatable.

1.2.2 Higher-Order State Estimation

The treatment of trajectory generation and control for multirotor UAVs is sometimes ap-
proached with nonlinear control techniques. Some of these techniques involve the feedback of
higher-order derivatives of the quadrotor’s state. The 3rd derivative of an object’s position
with respect to time is often referred to as its “jerk” :

j = d3x

dt3 (1.1)

When dealing with passenger vehicles, the jerk of an object or vehicle is related to the
level of comfort experienced by the passenger. As multi-rotor vehicles grow large enough to
accommodate human passengers, it could be useful to design a controller with the reduction
of jerk in mind. Unfortunately, due to a lack of available sensors it is difficult to measure
the jerk of a UAV. In the case of a large portion of academic applications, the available
measurements when dealing with multirotor UAVs are :

— World-frame position from an external motion capture system
— Linear body-frame accelerations from on-board accelerometers
— Rotational speeds from on-board gyrometers

A naive approach to estimate the jerk of the position of a UAV would be to directly diffe-
rentiate either the position signal three times or the acceleration signal once. The problem
with the direct differentiation of these signals is that measurement noise quickly degrades
the result to the point where the estimated jerk becomes unusable. A more realistic approach
is thus needed in order to be able to apply control techniques that include feedback terms
using jerk. Methods have been developed to estimate the jerk of an object using variations
of a linear Kalman filter, but few publications validate these estimators using experimental
data. To the best of our knowledge, none have used the estimate the jerk for the feedback
control of a multirotor UAV.
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1.3 Research Objectives and Organization of the Work

The first main objective of this work is to explore the results found in [1]. It would be
interesting to evaluate the effectiveness of the proposed control algorithms with a small
commercially available quadrotor. The aggressive trajectory generation framework should be
developed in simulation and then validated with laboratory testing. The MRASL offers an
ideal work space to test these methods with small UAVs in enclosed spaces.

The remainder of this work focuses on the development of a real-time estimator of the jerk
of a quadrotor and a controller that makes use of it. In short, the main objectives of this
ensuing section are :

— Develop an accurate state-estimator to estimate a multirotor UAV’s linear jerk in
real-time

— Develop a method to validate this estimator with experimental data using off-line
techniques

— Apply the validated estimate to a controller that reduces the jerk of the UAV using
optimal control techniques

— Validate the estimator and controller with laboratory testing

This work is organized as follows. Chapter 2 outlines the state of the art of quadrotor trajec-
tory generation and control. It also presents possible solutions to the jerk-estimation problem
as well as possible applications for the proposed estimator and controller. Chapter 3 presents a
mathematical model of the quadrotor as well as the empirical constants necessary for control
design. Chapter 4 describes the important elements of the test setup used for this work.
Chapter 5 presents results from the reproduction of [1]. Chapter 6 outlines the development
of a real-time jerk estimator and presents a method to validate such an estimator off-line.
Chapter 7 shows the development of a jerk-augmented controller for a quadrotor UAV that
uses optimal control techniques. Finally, Chapter 8 summarizes the results obtained in this
work and suggests future projects and improvements.
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CHAPTER 2 LITERATURE REVIEW

Research into quadrotor control has quickly become a large field encompassing many different
specializations. This section aims to give an overview of the state of the field. Section 2.1
provides references to some basic control systems references as well as typical examples of
how quadrotors can be modelled and controlled. As this work focuses on the performance of
aggressive manoeuvres for UAVs, a thorough examination of quadrotor trajectory generation
and control is presented in section 2.4. Some new and theoretical works on quadrotor control
require feedback of the jerk in order to function. Section 2.4.1 presents an examination of the
limited domain of real-time jerk estimation. Finally, examples of the potential application of
jerk estimation are presented in section 2.6

2.1 General Control Theory and Quadrotor Modelling

2.2 Control System Fundamentals

Some well-established texts are available for an introduction to analog and digital control
theory. Bishop and Dorf [8] give a good overview of basic analog control concepts for Single
Input/Single Output (SISO) linear systems. Rugh [9] expands these techniques and applies
them to multivariable linear systems. The techniques in these books rely on linear approxima-
tions of nonlinear systems. Khalil’s Nonlinear Systems [10] provides a background in nonlinear
control theory, wherein the full mathematical nature of a system is modeled and controlled. If
a controller is to be used in real-world applications, it is often important to take into account
the fact that control is often executed by microcontrollers or computer systems. Chen [11]
offers a detailed description of control system design of digital systems, including theory on
adapting controllers developed in the continuous domain to discrete applications.

2.3 Quadrotor Modelling and Control

The basis on which a control system is designed is its mathematical model. There are different
types of quadrotor model that can be chosen depending on the desired area of application. The
simplest of these is the result of a linearization about an equilibrium point. Examples of this
type of linear model are used in [12] and [13]. Nguyen, Saussié and Saydy [12] develop a linear
model for a quadrotor and use it with a fault-tolerant controller to improve performance in the
event of actuator faults. Tran et al. [13] use a similar model and creates simple LQR (Linear
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Quadratic Regulator) and PID (Proportional Integral Derivative) controllers to maintain a
static position in the presence of wind.

Nonlinear models and methods can also be used in order to control quadrotor UAVs. Simula-
tion results in [14] showed how to control a quadrotor directly from a nonlinear model using
feedback-linearization techniques. The nonlinear model used did not take into account actua-
tor effects and was based on Euler angles. Other nonlinear techniques such as back-stepping
and sliding-mode control were tested experimentally in [15] with varying degrees of success.

Quadrotors have been used for a wide variety of complex tasks. They have been shown to
effectively balance an inverted pendulum [5], tie knots and build bridges [16],[17] and use
robotic manipulators [18] to name only a few.

2.4 Trajectory Generation and Control

A core problem in quadrotor control is the generation and execution of feasible trajectories.
Because of their generally light-weight designs and relative mathematical simplicity, quadro-
tors have often been used to perform complex high-speed manoeuvres and tasks. The ability
to generate and then converge onto a desired trajectory has been treated in many ways. Some
of these applications are practical in nature and do not offer theoretical guarantees on the
convergence onto a trajectory, while others give mathematical proof.

Linear approaches to trajectory tracking are possible and relatively easily implementable. A
time-variant linear quadratic regulator (TVLQR) was developed in [19] in order to navigate
through cluttered indoor environments. This thesis also proved useful because it used the
same hardware that is available in the MRASL.

Other technical works have been produced using the Crazyflie 2.0 quadrotor. Luis and le Ny
[2] adapt a Linear Quadratic Tracking (LQT) controller to function with the Crazyflie to
track various simple trajectories. In the process, it gives detailed descriptions of the physical
properties of the drone, as well as outlines the implementation of the controller for experi-
mental tests. Hanna [20] develops a simple controller and implements it with an earlier model
of the Crazyflie. Forster [21] provides a full identification of the Crazyflie 2.0 quadrotor.

Another simple way to define a quadrotor trajectory is through a technique called waypoint
navigation. In this method, a trajectory is defined by a sequence of points with associated ve-
locities. This technique is presented in [22] and validated experimentally for 2D trajectories. A
version of this technique is then expanded to three dimensions and combined with sequential
composition techniques to perform aggressive manoeuvres through narrow windows in [1].
This paper proved to be a very important one in the field of quadrotor trajectory generation,
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providing the basis for a number of other publications. However, its method depends on an
iterative tuning technique that makes it impractical for real-world applications.

In order to eliminate the tuning phase of the aggressive manoeuvres, theoretical development
based on the feasibility of trajectories needed to be done. This led to a focus on the property of
differential flatness of a desired output. In short, an output of a system is termed differentially
“flat” if it can be expressed only by its derivatives and system inputs. The consequence of an
output being differentially flat is that it can be feasibly executed using the available input
signals of a system.

An important example of this concept is applied in [23], where a quadrotor’s position is
demonstrated to be differentially flat considering propeller speeds and the fourth derivative
of its position - or “snap”. The authors then proceed to define feasible polynomial trajectories
that numerically minimize the level of snap experienced by the UAV. This enables a quadrotor
to fly quickly through static and moving hoops while respecting the desired trajectory.

Another application of differential flatness concepts is presented in [24]. The differential
flatness of the quadrotor is used in order to effectively perch on inclined surfaces, as in [1], but
this time without an iterative tuning phase. Its controller was based on results presented in
[25], where a nonlinear controller based off of the special Euclidean group SE(3) is developed
to avoid problems with Euler angles and quaternions.

The concept of differential flatness is also treated in [26]. The authors of this paper develop
a controller that implements minimal snap trajectories and uses a nonlinear controller. This
controller was based on dynamic inversion theory and performed feedback of acceleration
measurements.

De Almeida [27] solves the aggressive flight through windows problem with an emphasis on
the numerically stable nature of the trajectory solution. It addresses issues relating to the
ill-conditioning issues of the quadratic programming problem that arises when optimising a
trajectory for minimal snap.

Another approach to the problem of flying through narrow gaps was presented in [28]. It also
made use of polynomial trajectories in order to plan a path through windows angled up to 45
degrees. It also does so without the need for external motion capture systems. Rather than
use concepts of minimal snap, trajectories are generated to minimize the jerk of the overall
trajectory. The selection process for these trajectories is executed using results presented in
[29], which develops a computationally efficient way to produce trajectories that fall within
a feasible range of input propeller forces.

Rather than use trajectories that minimize the snap of the trajectory, some works apply dif-
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ferential flatness to produce trajectories that minimize their jerk. Yu et al. [30] and Rakgowa
[31] both use such an approach.

Other techniques such as model predictive control (MPC) have been used to execute trajec-
tories. DeCrouzaz [32] proposes such a method with a Sequential Linear Quadratic (SLQ)
controller and applied it to an AscTec Firefly hexacopter as well as a Rezero ball-balancing
robot.

Another problem with trajectory tracking for quadrotors arises when it is carrying a dynamic
payload. Tang [33], Taylor [34], Foehn [35] and Palunko [36] all treat the problem of generating
manoeuvres with an attached swinging payload.

2.4.1 General State Estimation

The underlying assumption in all of the preceding papers is that there are elements of a
quadrotor’s state that are available in real-time for feedback. Most of these applications only
require feedback of position, velocity, orientation and angular velocity. Some applications,
such as [26] and [37] use feedback of acceleration as well. As a result, methods to acquire
such measurements have been developed in detail.

The problem of combining data from multiple sensors to provide a full-state estimation is
treated in [38]. This book is a good resource for robotics in general, but specifically for multi-
sensor data fusion. Estimators presented in [39] provide a way to estimate a quadrotor’s
attitude based on gyrometer and accelerometer measurements. Extended Kalman Filters
described in [40] allow full-state estimation from multiple sensors. [41] provided a way to
estimate a quadrotor’s position based on on-board camera data. [42] uses multiple refinements
of a quadrotor’s dynamic model to improve its real-time state estimate.

2.5 Estimation of Jerk

Possible solutions to the problem of real-time estimation of a vehicle’s state have been pro-
posed in [3], [43], [44] and [45]. A continuous linear Kalman and H∞ filter were developed
in [3] for the purpose of evaluating the jerk of an object in real time using only a noisy
acceleration signal. However, its estimate either had significant delay, or substantial noise,
that made it unsuitable for the purpose of control of a UAV. It contained a model for the
accelerometer noise that included a coloured noise component, which could take into account
high frequency vibrations from spinning propellers.
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[43] developed an extended Kalman filter in order to track evasive flying targets using radar.
They compared a state-estimation based on an acceleration model with an augmented esti-
mator that includes the behaviour of the jerk. Simulations showed that including the jerk in
their model improved the overall estimate of the state of the evasive target.

[45] produced an unscented Kalman filter (UKF) and an extended Kalman filter in order
to generate a full state estimate for a flexible joint. The proposed nonlinear five bar linkage
control scheme required a feedback of the jerk in order to be stable. Simulations showed that
both the UKF and EKF had the capacity to track the jerk of the components of the five bar
linkage.

Although there has been limited development in terms of jerk estimation in the field of
robotics, multiple estimators have been proposed for automotive applications. An estimation
of the jerk was also developed in [44] in order to evaluate the intention of a driver. They used
a linear Kalman Filter (LKF) combined with a high-gain filter in order to estimate the jerk
of a vehicle based on torque requests from a driver.

Another analysis of driver intention based on jerk was presented in [46]. A jerk model was
used in [47] in order to improve performance of an automotive cruise control application ; a
controller was then developed to effectively avoid collisions while limiting the maximum jerk
experienced by the vehicle. A high-order nonlinear observer was proposed in [48] to track the
state of a quadrotor up to jerk, but was only validated by simulation.

In terms of quadrotor applications, only one work was found that treated the estimation of
jerk explicitly. An estimator produced in [49] used a Kalman filter with an augmented state
vector that included the jerk and snap (referred to as jounce in this work). However, this was
only used in order to increase the accuracy of position estimates in an outdoor environment.
The article lacked a detailed analysis of the performance of the estimation of jerk and snap
and did not use these estimates for feedback.

2.6 Potential Applications

A possible use for the estimation of jerk could come with the consideration of rider comfort
for a large autonomous vehicle. Results presented in [50] showed a strong relation between
the high levels of jerk caused by the longitudinal roughness of a road and a degradation of
rider comfort.

Problems associated with high levels of jerk also occur when position estimation comes from
on-board cameras. Motion-blur caused by high levels of rotation rate (which is directly related
to linear jerk) caused significant enough blurring of camera data to force researchers in [41]
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to minimize the jerk of their calculated trajectories. Test results from a ground-based robot
performing mapping operations in [51] also suffered from high levels of acceleration rate.

Applications of real-time estimates of the jerk have been produced in the field of nonlinear
quadrotor control. However, because of difficulty of estimation, some works have actively
tried to avoid doing so. A controller designed in [52] was produced specifically to eliminate
the need for a feedback of the jerk.

An exact feedback linearization of the quadrotor results in the need for a feedback of the
jerk, as seen in [53]. This work presents a nonlinear controller with an associated observer,
but does not validate with experimental results.

The feedback of jerk appears again in [54]. This article develops a controller using feedback
linearization techniques in order to guarantee the convergence of a quadrotor onto a 3-D
trajectory. The controller, however, requires feedback of the quadrotor’s jerk and acceleration
in order to be stable. The paper did not attempt to estimate the jerk and only validated its
contributions via simulation.

2.7 Conclusions on the State of the Art

The field of quadrotor trajectory generation and control has grown significantly in the last
decade. A increase of interest in nonlinear control concepts in new works has led to more theo-
retically complex solutions to this problem. However, a lack of development in higher-order
state estimation has prevented many of these applications from being validated experimen-
tally. This absence of actual testing of controller configurations is a significant gap in the
field. This is the main reason for the focus on testing and experimentation in this work.
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CHAPTER 3 MATHEMATICAL MODEL OF A QUADROTOR UAV

In order to design a control system for a quadrotor UAV, a proper mathematical model must
be defined. This chapter outlines a typical nonlinear model for a quadrotor and resulting
first-order linearization. Various independent reduced models are then extracted from this
linearization, which become practical during the controller design process. Empirical values
for the Crazyflie 2.0 used in testing are then presented.

3.1 Nonlinear Model

This section introduces the nonlinear model of a quadrotor UAV as presented in [12]. A
body-fixed frame {B} is defined at the center of mass of the quadrotor, with the z-axis
pointing downwards and the x- and y-axis along the arms according to the so-called plus
“+” configuration (Fig. 3.1). The “×” configuration corresponds to the case where the x-
and y-axis are between the arms.

CM

xb

yb

zb

Yaw

Roll
Pitch

ω1

ω3

ω2

ω4

T1

T3 T4

T2

Figure 3.1 Quadrotor configuration

This frame is related to the inertial frame {N} by a position vector p = [x y z]> and three
Euler angles Φ = [φ θ ψ]>, representing respectively roll, pitch and yaw. The rotation matrix
resulting from a yaw-pitch-roll sequence is as follows :

RB/N =


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 (3.1)
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where cx = cos x and sx = sin x. The rotation matrix is orthogonal, thus RN/B = R>B/N. The
angular velocity of frame {B} with respect to frame {N} expressed in frame {B} is denoted
ω = [p q r]> and the transformation matrix for angular velocities is H(Φ). Therefore, one
has :

Φ̇ = H(Φ)ω, H(Φ) =


1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

 (3.2)

in which tx = tan x. Combined with Eq. 3.2, the equations of motion are written as :

mv̇ = mg + RN/BF (3.3)

IBω̇ = −ω × IBω + M (3.4)

where v = [vx vy vz]> = ṗ, F and M denote the forces and torques created by the rotors in
frame {B}, g = [0 0 g]> the gravity vector in frame {N}, m the mass of the quadrotor and IB

the inertia matrix about the center of mass. Because of the symmetric structure, the inertia
matrix is assumed to be diagonal, i.e., IB = diag (Ixx , Iyy, Izz) with Ixx = Iyy. Each rotor i
creates thrust force Ti in the direction of −zb, producing forces and moments. The force and
moment expressions are given by

F =


0
0
−f

 , M =


uφ

uθ

uψ

 (3.5)

where f represents the total thrust, uφ and uθ the rolling and pitching moments and uψ the
yawing moment due to the reaction torques of the rotors.

Note that the equations 3.2, 3.3 and 3.4 are valid for both “+” and “×” configurations with
the variables being defined accordingly to the axis systems in use.

3.2 Model linearization

The nonlinear model in Eqs. 3.2, 3.3, and 3.4 is trimmed and linearized by assuming hovering
flight (f = mg, uφ = uθ = uψ = 0) with null yaw (ψ = 0). This yields the classical linearized
equations :

∆ẍ = −g∆θ Ixx∆φ̈ = ∆uφ
∆ÿ = g∆φ Iyy∆θ̈ = ∆uθ

m∆z̈ = ∆f Izz∆ψ̈ = ∆uψ
(3.6)
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where ∆ denotes the deviation of a variable from its equilibrium value. 1 A corresponding
state-space model is then ∆ẋ = A∆x + B∆u

∆y = C∆x + D∆u
(3.7)

where the state vector ∆x, the input vector ∆u and the output vector ∆y are chosen as
follows :

∆x =
[
∆x ∆y ∆z ∆vx ∆vy ∆vz ∆φ ∆θ ∆ψ ∆p ∆q ∆r

]>
(3.8)

∆u = [∆f ∆uφ ∆uθ ∆uψ]> (3.9)

∆y = [∆x ∆y ∆z ∆φ ∆θ ∆ψ]> (3.10)

The state-space matrices are consequently given by :

A =



03 I3 03 03

03 03

0 −g 0
03g 0 0

0 0 0

03 03 03 I3

03 03 03 03



,B =



03×4

0 0 0 0
0 0 0 0

−1/m 0 0 0

03×4

0 1/Ixx 0 0
0 0 1/Iyy 0
0 0 0 1/Izz



(3.11)

C =



I3 03 03 03

03 03 I3 03


, D = 06×4 (3.12)

Many of the system’s input/output characteristics can be decoupled. For instance, referring

1. For most of the state variables, the equilibrium value is simply 0.
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to equation 3.6, the state-space equivalent of the relation between the input thrust and the
quadrotor’s height can be expressed as :∆ż

∆v̇z

 =
0 1

0 0

∆z
∆vz

+
 0
−1/m

∆f (3.13)

Which shows that, in terms of the linearized model, the height of the UAV is only dependent
on the total thrust generated by the propellers. Similarly, lateral and longitudinal models
can be extracted. 

∆ẋ
∆v̇x
∆θ̇
∆q̇

 =


0 1 0 0
0 0 −g 0
0 0 0 1
0 0 0 0




∆x
∆vx
∆θ
∆q

+


0
0
0

1/Iyy

∆uθ (3.14)

The lateral reduced model can also be expressed :


∆ẏ
∆v̇y
∆φ̇
∆ṗ

 =


0 1 0 0
0 0 g 0
0 0 0 1
0 0 0 0




∆y
∆vy
∆φ
∆p

+


0
0
0

1/Ixx

∆uφ (3.15)

Finally the reduced model for yaw control is :

∆ψ̇
∆ṙ

 =
0 1

0 0

∆ψ
∆r

+
 0

1/Izz

∆uψ (3.16)

3.3 Properties of the the Crazyflie 2.0

In this work, all flight tests were performed with the Crazyflie 2.0 quadrotor. For the purpose
of these tests, mathematical constants inherent to the quadrotor were necessary. Most of
these model parameters have already been described in [21, 19, 2, 20] as well as on internet
sources. Other elements, such as the characteristics of the on-board accelerometers needed
to be identified by testing. This section outlines a compilation of the information available
on the Crazyflie 2.0.

3.3.1 Mass, Geometry and Inertia

The mass of the Crazyflie 2.0 with and without Vicon marker was measured with a scale in
the MRASL. As for the drone’s inertial properties, a rigorous identification of the Crazyflie’s
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inertia matrix was conducted in [21]. These values can be found in table 3.1 :

Table 3.1 Crazyflie 2.0 Mass, Moment of Inertia and Arm Length

m (without Vicon Marker) 0.029 kg
m (with Vicon Marker) 0.032 kg

Ixx = Iyy 6.410179 · 10−6 kg.m2

Izz 9.80228 · 10−6 kg.m2

d 39.73 · 10−3 m

The layout of the Crazyflie’s propellers is in what is called the “×” configuration, meaning
they are at 45 degree angle with respect to the body-frame axes. This can be seen in figure
3.2 :

Figure 3.2 Crazyflie 2.0 “×” Mode

3.3.2 Motor Characteristics

The characteristics of the thrust and moments produced have been described in several ways.
This subsection presents an overview of the thrust properties that have been proposed. One
interesting set of behaviours is the complete relation between input signal and output thrust.
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In terms of the Crazyflie 2.0, the overall desired thrust is commanded by setting the value of
a PWM 2 register. This value can be between 0− 65535, corresponding to the range between
0 and maximum thrust. Because of this high resolution, it makes numerical sense to express
this value as a fraction of the maximum PWM value. Test results presented on the Crazyflie’s
website 3 were adapted to express this relation, shown in figure 3.3 :

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of Max PWM

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
h
ru

s
t 
(N

)

Measured Thrust

Least Squares

T = 0.2612 PWM2+0.3536 PWM-0.001

Figure 3.3 Total Thrust Produced as a Function of PWM Register Fraction

A second-order polynomial provided a good fit for this relation. Inverting it, the equivalent
PWM value for a desired total force could then be calculated as in equation 3.17.

PWM = 65535 ∗
−0.3536 +

√
0.35362 + 4 · 0.2612 · (T + 0.001)

2 · 0.2612 (3.17)

The relation between PWM values and the resulting force coming from individual motors
was also determined in [21].

In control theory, the forces and torques created by each propeller i is often modelled as
being a function of the square of the angular velocity of the propeller :

2. Pulse Width Modulation
3. https ://wiki.bitcraze.io/misc :investigations :thrust
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Ti = kfω
2
i (3.18)

τi = kτω
2
i (3.19)

where kf and kτ are the force and moment coefficients, respectively. Theoretical approxima-
tions of the values of kf and kτ were shown in [2] and are compiled in table 3.2 :

Table 3.2 Crazyflie 2.0 Theoretical Motor Constants

kf 3.1582 · 10−10 N/rpm2

kτ 7.9379 · 10−12 N/rpm2

With these values and “×” configuration of figure 3.3, the total thrust and motor allocation
can be expressed in terms of rotor velocities :


f

uφ

uθ

uψ

 =



kf (ω2
1 + ω2

2 + ω2
3 + ω2

4)
dkf√

2
(−ω2

1 − ω2
2 + ω2

3 + ω2
4)

dkf√
2

(−ω2
1 + ω2

2 + ω2
3 − ω2

4)

kτ (−ω2
1 + ω2

2 − ω2
3 + ω2

4)


(3.20)

A relation between PWM register value and propeller angular velocity was found in [21] :

ωi(rad/s) = 0.04076521 · PWM + 380.8359 (3.21)

It is important to note, however, that in real-time flight, significant firmware modifications
to the Crazyflie 2.0 are needed to directly control the motors. Efforts to run a completely
off-board controller that commanded rotor speeds directly were made in [19], but produced
dissatisfactory results.

Finally, an empirical analysis of the z-axis torque produced by each motor was made. It was
found to follow the following relation :

τi(Nm) = 5.96 · 10−3Ti + 1.563383 · 10−5 (3.22)
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3.3.3 Motor Time Constant

The motor actuators were modeled to respect a first-order transfer function according to :

T (s)
Tc(s)

= 1
τs+ 1 (3.23)

where Tc is the commanded force and τ was found to have a value of 45 ms after identifica-
tion. Because the implemented Kalman filter uses commanded virtual snap commands, this
relation improves the accuracy of real-time estimation of the Crazyflie’s state.

3.3.4 Sensor Identification

For this work, the quadrotor’s acceleration and position measurements were needed in order
to complete the augmented-stated estimator presented in chapter 6. However these signals
are not perfect and contain measurement noise. In order to effectively use these signals,
an identification of their properties was necessary. Due to the high rate of rotation of the
Crazyflie’s propellers, measurements taken by the accelerometer were prone to high levels of
measurement noise. In order to quantify this noise, a simple test was performed. The drone
was fastened to a stable flat surface as seen in figure 3.4 and sent a constant PWM value of
15000 for 60 seconds. A gaussian distribution was then fit to the resulting data in order to
obtain a reasonable value for the white-noise variances. The results can be seen in figure 3.5.

Figure 3.4 Test Bench for Accelerometer Variance Data
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Figure 3.5 Signal Identification for Acceleration Measurements

A similar procedure was performed to determine the precision of the Vicon position measu-
rements. A Vicon marker was placed at the volume origin of the flight arena and its position
was recorded for 60 seconds. the resulting data can be seen in figure 3.6.

These tests revealed important information about the quality of the on-board and off-board
measurements. Both displayed close to gaussian behaviour, validating the assumption that
the involved noise is a uniform white noise. For the accelerometer, noise variance had a
range between 0.11 in the x-axis direction to 0.21 in the y-axis direction. As for the position
variances, the collected data demonstrated how precise the Vicon setup was. Variances ranged
from 2.43 · −9 to 1.13 · 10−8. Using these results, resulting conservative estimates of signal
variances were created and compiled in table 3.3.
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Figure 3.6 Vicon Signal Properties

Table 3.3 Crazyflie 2.0 White Noise Signal Variances

Measurement Variance

Position
x 1.5 · 10−8

y 1.5 · 10−8

z 1.5 · 10−8

Acceleration
x 3 · 10−1

y 3 · 10−1

z 3 · 10−1
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CHAPTER 4 EXPERIMENTAL SETUP FOR TESTING

Passing from simulation to experimental validation is a non-trivial step in the development
of new quadrotor applications. This chapter aims to outline the necessary equipment and
framework for the application of the control elements presented in the rest of this work.
Section 4.1 outlines the specifics of ROS (Robotics Operating System), a necessary piece of
software for communication between the related systems during testing. Section 4.2 presents
the details of the Vicon motion capture system used for quadrotor positioning. Section 4.3
discusses the use of Matlab for off-board control and data collection. Technical details of the
Crazyflie 2.0 are presented in section 4.4.

4.1 ROS

ROS is an open-source, meta-operating system commonly used in the field of robotics. It
serves as the link between all of the necessary hardware used during testing. It is a complex
tool, and a detailed description of ROS concepts can be found on their website 1. However,
there are a few fundamental elements of the ROS framework that are useful to know in order
to understand how signals are sent between machines. Elements of note include :

— Nodes
— Topics
— Messages
— Master
— Packages

These elements are described in the following subsections.

4.1.1 Nodes

In the ROS network, a node is simply a process that performs computation. They can be
in the form of MATLAB script, C++ code, Python code, etc. Nodes are connected to each
other on the ROS network to form a graph. A typical ROS node can read (referred to
as “subscribing”) information from the network, execute a calculation and then publish an
output to the network. The code related to the off-board control of the drone is an example
of this. First, the control node must subscribe to position, velocity, orientation and angular
rate data from the network. It then computes desired forces and orientations, which are then

1. http ://wiki.ros.org/ROS/Concepts
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published to the ROS network. This information is accessed via ROS topics and is structured
according to a desired message type.

4.1.2 Topics

A topic is is a named bus that allows nodes to transfer data to one another. Topics are defined
on the ROS network, and have a specific structure that can contain multiple data streams.
For instance, data from the on-board IMU of the Crazyflie 2.0 is received by an associated
radio antenna connected to a computer on the ROS network. This data can be accessed in a
terminal using the rostopic echo command :

In this example, a user is manually accessing data from the Crazyflie ROS node by subscribing
to the Crazyflie topic and reading from IMU data organized in the form of a ROS message.
Messages are discussed in the following subsection.

4.1.3 Messages

In ROS, a message is a data structure designed to enable the transfer of data between nodes.
They are accessed by nodes via topics on the ROS network. Some examples of message types
are :

— integer
— floating point
— boolean
— pose

Messages can store simple data, such as integer or boolean values, but can also be built to
store sensor data from an IMU, or position and orientation values from a positioning system.
Custom messages can also be built in order to store data structures that are not included in
the default message types.

4.1.4 Master

The ROS master provides naming and registration services to the rest of the nodes in the
ROS system. In other words, it allows the nodes in the ROS network to find and communicate
with one another. Once nodes have established contact, they communicate directly with one
another. In order to initiate the Master, the roscore command must be used :
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4.1.5 Packages

In ROS, a package is a collection of files and folders that can contain nodes, libraries, datasets
or any code that can be a useful independent collection of code. They are made to be easily
reusable in different projects. For instance, in the case of this work, individual ROS packages
were used to interface with Vicon, MATLAB and the Crazyflie 2.0 respectively. Packages
can be created by manufacturers in order to enable interfacing with their products or users
who want to build their own framework for robotics testing. Introductory tutorials on how to
build packages and start simple ROS projects can be found on the dedicated ROS website 2.

4.1.6 Overview of ROS Network During Testing

The overall architecture of the ROS network for the tests can be seen as in figure 4.1. The
controller node receives data from Vicon, Crazyflie, a joystick and a user-written “goal” node.
This node interfaces with MATLAB and makes communication with the off-board controller
simpler. The joystick node is used simply as a safety feature, and only sends whether a button
is being pushed in order to allow the continuation of testing.

4.2 Vicon

In order to quickly and precisely measure the position of the quadrotor during testing, the
MRASL relies on a Vicon motion-capture system. The system consists of a collection of 12
specialized cameras set up around the perimeter of the MRASL’s flight arena. Each of these
cameras tracks a desired number of Vicon markers within its field of view (Figs 4.2 and 4.3).

Combining data from all 12 cameras, high-frequency (100 Hz) estimates of position can be
made to a precision of less than 1 mm. This makes Vicon a useful tool when trying to validate
new types of control systems that require feedback of position and velocity.

Vicon also gives the option to track the orientation of objects in real-time. If multiple Vicon
markers are attached to a rigid object, Vicon can use their displacements to estimate its
rotation in 3D space. However, because of the small size of the quadrotor used in testing
and the configuration of its firmware, only one marker was used and only its position was
read explicitly by Vicon. Orientation estimates were read directly from inertial measurements
on-board the Crazyflie.

2. http ://wiki.ros.org/ROS/Tutorials
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Figure 4.1 ROS Node Architecture, from [2]

Figure 4.2 MRASL Flight Arena



26

Figure 4.3 Vicon Camera Used during Testing

4.3 MATLAB

For engineering researchers, MATLAB is an indispensable tool for the simulation of new
concepts. In the scope of this work, it was also useful for the implementation of controllers
during testing. In order to facilitate the experiments performed, MATLAB/Simulink was
used with the following add-on packages :

— ROS Package
— Real-Time Pacer
— Stateflow

4.3.1 ROS Package

Rather than create ROS nodes in compiled C++ or Python code, it can be practical to
develop control nodes directly in Simulink. This makes changes to control structure as well
as the visualization of data considerably easier for someone who is well-versed in the envi-
ronment. In order to have MATLAB communicate as a node in the ROS network, the ROS
add-on package must be used. After setup, this package offers blocks that can subscribe to
and publish from topics on the ROS network. In the case of this work, blocks from the ROS
package were used to subscribe to topics providing Vicon position data and Crazyflie sensor
data. Based off of this data, control inputs could then be calculated and published to the
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ROS network.

4.3.2 Real-Time Pacer

For the estimation modules used in this project, it was important for each time-step to run
at a fixed frequency. By default, Simulink is intended for computer simulation and is thus
designed to run as quickly as possible. This means that without management, while the state
estimators used were expecting data at a frequency of 100 Hz, the actual control loop could
be running much more quickly. Using the Simulink real-time package helped to solve this
issue. The precision requirements for each time-step were relatively coarse (0.001 s), so the
solution did not require the use of an actual real-time operating system (RTOS). Instead,
the real-time package compared the simulation time with the clock of the PC being used and
delayed the next time-step until the total time elapsed was 0.01 seconds. After this delay, the
simulation clock was allowed to advance and new measurements, state estimates and control
inputs could be calculated.

The package used was from a third party and can be found online 3.

4.3.3 Stateflow

In the case of testing, there can be multiple modes of operation and controllers. For example,
a single test run for an aggressive trajectory as presented in chapter 5 begins with the
motors not spinning for several seconds. The drone is then commanded to track a desired
setpoint in 3D space and hover. After the drone has attained this point and reached null
velocity, the drone then switches from a hover controller to a trajectory tracking controller
with different architecture, followed by attitude control and finally hover control to finish
the manoeuvre. Each of these controller switches has a different set of conditions in order to
occur. Using conventional logic gates or user-defined functions in Simulink is possible, but
inevitably creates cumbersome block diagrams that are not intuitive to read. The Simulink
stateflow package enables much more elegant development of mode-switching algorithms and
logic operations. More information can be found on MATLAB’s website 4.

4.4 Crazyflie 2.0 Quadrotor

The drone used for testing in this work was the Crazyflie 2.0 nanoquadrotor. It is an open-
source, programmable UAV that can be safely used indoors. For academic applications, it

3. http ://freesourcecode.net/matlabprojects/66903/real-time-pacer-for-simulink
4. http ://www.mathworks.com/help/stateflow/getting-started.html
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has a radio antenna called the Crazyradio PA that can plug directly into a USB port. This
enables an off-board PC to send command signals to the drone at a rate of up to 100 Hz.
The Crazyflie comes with a pre-programmed on-board attitude controller with the structure
shown in figure 4.4 :

Figure 4.4 Crazyflie 2.0 Attitude Controller 5

With the commands sent to the Crazyflie 2.0 being :

— Desired roll angle φ (deg)
— Desired pitch angle θ (deg)
— Desired yaw rate r (deg/sec)
— Desired overall thrust, expressed as a value between 0-65535

The on-board attitude controller receives these signals and executes 2 internal control loops.
The outermost loop receives the desired roll and pitch angles and processes them at 250 Hz
in a PID controller. It generates desired angular rates and sends them to an inner rate loop.
This loop executes another PID controller at 500 Hz and controls for desired angular rates
p, q, r. An off-board component of the attitude controller was added to the stock controller
architecture in order to maintain constant yaw angle ψ throughout testing. This consisted of
a PI controller that executed at 100 Hz.

The output of the on-board attitude controller is then combined with the desired overall
thrust in order to calculate the desired rotor speeds :

ω1,des

ω2,des

ω3,des

ω4,des

 =


1 −1/2 −1/2 −1
1 −1/2 1/2 1
1 1/2 1/2 −1
1 1/2 −1/2 1




ωe + ∆T

∆φ

∆θ

∆ψ

 (4.1)
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where ωe is the PWM value necessary for a stable hover, ∆T is the desired deviation from
the ωe and ∆φ,∆θ and ∆ψ are the outputs of the PID rate-loop.

The overall organization of communication between devices in testing can be seen in figure
4.5. On-board sensor data along with Vicon position data are simultaneously sent to an off-
board PC with MATLAB running. Using this information, desired angles and thrusts are
calculated and sent back to the CF2 via the Crazyradio PA radio antenna.
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CHAPTER 5 AGGRESSIVE TRAJECTORY GENERATION

The development and execution of complex maneuvers for quadrotors has been the topic of
many research papers in recent years. The ability to pass through narrow passageways at
high velocities has been demonstrated with medium-sized quadrotors optimized for research
purposes, notably by Mellinger, Michael and Kumar in [1]. This paper used a relatively
simple approach to generate such trajectories involving the sequencing of several simple
controllers to obtain a desired result. Their results showed that with a relatively simple
control architecture, many possible types of complex maneuvers are possible. The technique
of sequential composition was used in order to perform the passage of a quadrotor through
narrow windows at varying angles as well as perching on inclined surfaces.

This chapter aims to validate such a control architecture by replicating their results in the
MRASL’s flight arena at Polytechnique Montreal. Section 5.1 outlines the various controllers
that were proposed in [1] and briefly discusses how they are implemented in testing. Section
5.2 describes how these controllers are sequenced in order to generate desired trajectories
through windows. Finally, section 5.3 outlines the results of testing.

5.1 Control Design

The control architecture of the project consists of 3 main types of controller :
— an on-board attitude controller ;
— an off-board hover controller ;
— an off-board 3D trajectory controller.

The “on-board” controllers are implemented in the firmware of the Crazyflie 2.0 and ran at
either 250 Hz or 500 Hz on the device. The “off-board” controllers are managed in MAT-
LAB/Simulink and executed at 100 Hz over the Crazyflie’s Crazyradio FM transmitter an-
tenna. In order to achieve the desired maneuvers, these controllers are sequenced in a specific
order. A detailed description of each controller follows.

5.1.1 Attitude Controller

The goal of the attitude controller controller used in [1] was to achieve a desired angle in a
given settling time. It was a proportional-derivative controller with the following form :
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ω1,des

ω2,des

ω3,des

ω4,des

 =


1 −1/2 −1/2 −1
1 −1/2 1/2 1
1 1/2 1/2 −1
1 1/2 −1/2 1




ωe + ∆T

∆φ

∆θ

∆ψ

 (5.1)

∆φ = kp,φ(φdes − φ) + kd,φ(pdes − p) (5.2)

∆θ = kp,θ(θdes − θ) + kd,θ(qdes − q) (5.3)

∆ψ = kp,ψ(ψdes − ψ) + kd,ψ(rdes − r) (5.4)

where the gains k{p,d},{φ,θ,ψ} of the controller were tuned to produce a desired time-response.
As discussed in section 4.4, the on-board attitude controller of the Crazyflie 2.0 has a similar
structure. It is also augmented with integral components. This controller was tuned to have
a 2% step response of time of 0.4 seconds. Validation of this controller is shown in section
5.3.

5.1.2 Hover Controller

The off-board hover controller’s goal is to attain a specified position in 3-D space within a
given settling time. In order to be able to methodically find desired gains, the structure of
the hover controller is slightly different from the one presented in [1] :

r̈i,des = −kp,iri + ki,i

∫
(ri,des − ri)dt− kd,iṙi (5.5)

With ri,des denoting the quadrotor’s x, y, and z desirced position in the world-frame and
ri the actual position. Note that this controller configuration is essentially a state-feedback
controller with integral action. Considering the non-linear system described in equation 3.3,
and adding the attitude controller presented in section 5.1.1, we can produce a linearized
system with the desired angles and total thrust as inputs and r, ṙ as outputs. Using ei-
genstructure assignment techniques with output feedback on the measured positions and
velocities, gains kp,i, ki,i and kd,i can be found numerically. For certain maneuvers, it would
be desirable to operate with an arbitrary yaw angle ψ. Linearizing (3.3), we can express the
desired accelerations as a function of the desired roll, pitch and yaw angles :
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r̈1,des = g(θdes cos(ψdes) + φdes sin(ψdes)) (5.6)

r̈2,des = g(θdes sin(ψdes)− φdes cos(ψdes)) (5.7)

r̈3,des = 8kFωe
m

∆T (5.8)

inverting these functions gives :

φdes = 1
g

(r̈1,des sin(ψdes)− r̈2,des cos(ψdes)) (5.9)

θdes = 1
g

(r̈1,des cos(ψdes) + r̈2,des sin(ψdes)) (5.10)

∆T = m

8kFωe
r̈3,des (5.11)

Depending on the phase of the maneuver, the gains of this controller are modified to fulfill
specific requirements. In the first phase of each maneuver, it is important to be able to
maintain a precise position in space. The first set of gains is thus designed to be the “stiffer”
of the two sets, and is tuned to have a settling time of 5 seconds with an overdamped response.
The hover controller is also used in the recovery stage. In this phase, the goal of the controller
is just to ensure the stability of the quadrotor given potentially significant initial conditions.
The second set of gains is designed to be stiff enough to prevent the quadrotor from touching
the ground during recovery but not so stiff as to saturate the motors and destabilise the
system.

5.1.3 3D path following

The goal of the 3D path following controller is to follow defined trajectories in 3D space. The
trajectories are defined by a set of points with associated velocities. In the case of this paper,
these trajectories are limited to simple line segments between points rT (i) with assigned yaw
angles ψT (i) (Fig. 5.1). At each moment, the controller evaluates which point rT (i) on the
trajectory is closest to the quadrotor and executes a specific control algorithm. In order to do
this, we define t̂, the unit tangent vector of the trajectory associated with rT (i) and desired
velocity vector ṙT (i).
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Figure 5.1 Line Segment Trajectory

The position error is defined as :

ep = ((rT (i)− r) · n̂)n̂ + ((rT (i)− r) · b̂)b̂ (5.12)

where n̂ is chosen to be a unit vector orthogonal to t̂, and b̂ is chosen orthogonal to n̂ and
t̂. Here, only the normal and binormal error is considered. This ensures that the position
controller will only force the quadrotor onto the line segment trajectory and not cause it to
“catch up” to the next point. The velocity error is defined as :

ev = ṙT (i)− ṙ (5.13)

The desired accelerations of the Crazyflie 2.0 can then be calculated according to the following
control law :

r̈i,des = kp,iei,p + kd,iei,v + r̈i,T (i) (5.14)

where r̈i,T (i) corresponds to optional feed-forward acceleration elements of the trajectory.
While potentially useful in situations where the trajectory involves high accelerations, this
component is set to 0 for the tests that were performed. The resulting desired overall thrusts
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and Euler angles can be calculated as in equations 5.9 through 5.11

5.2 Trajectory Generation for Window Maneuvers

Using a combination of the controllers presented in section 5.1, various complex maneuvers
can be generated. This paper focuses on three of the maneuvers developed in [1] :

— flight through a 60 degree inclined vertical window
— flight through a 90 degree inclined vertical window
— descent through a horizontal window

Each of these maneuvers follows a specific sequence of controllers (Fig. 5.2).

Figure 5.2 Maneuver Sequence (taken from [1])

Each sequence’s goal is to reach a goal state G with specified position rG velocity vG, yaw
angle ψG and roll angle φG with zero angular velocity and pitch angle. We use the same
sequence as in [1] :

1. Hover control with stiff gains to a start position rs

2. 3D path following to a desired position rL with desired velocity vL and yaw angle ψdes
3. Attitude control to desired roll angle φdes and yaw angle ψdes and zero pitch angle θ

4. Attitude control to zero roll and pitch angles φ, θ and desired yaw angle ψdes
5. Hover control with soft gains to a final position

5.2.1 Initial Parameter Selection

A first choice for the values of rL, vL and rs can be made by working backwards from the goal
state G. Assuming that the roll angle behaves as a critically damped second-order system
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with settling time Ts while maintaining a constant overall thrust α ·mg, we can estimate the
sum of the forces on the system and integrate backwards to find vL and rL. rs can then be
found using :

rs = rL − l
vL
‖vL‖

(5.15)

where l is the overall length of the line segment trajectory chosen for the 3D path following
controller.

5.2.2 Parameter Adaptation

In order to render the maneuver more accurate, the parameters chosen in the previous section
are iteratively modified during testing. The maneuver is first refined for k trials in order to
ensure that at the end of the first attitude phase (phase 3) the roll angle is within 2% of the
desired angle. The desired roll angle φ is tuned accoring to the following algorithm :

φk+1
C = φkC + γφ(φG − φkact) (5.16)

where γφ is a constant chosen to be between 0 and 1. After the desired attitude behaviour is
achieved, we turn to the velocity at the end of phase 3. For each type of maneuver, we control
for a desired velocity as the Crazyflie passes through the window. The velocity is tuned in a
similar fashion to the desired roll :

vk+1
C = vkC + γv(vG − vkact) (5.17)

where γv is an adaptation constant chosen between 0 and 1. We then run the maneuver 15
times in order to observe the mean position r̄act at the end of phase 3. Finally, the entire
trajectory is shifted in order to force it through the desired position of the window according
to the following rule :

rL = rL + (rG − r̄act) (5.18)

rs = rs + (rG − r̄act) (5.19)

Note that because of the simplified nature of the model used as well as the “open-loop” beha-
viour of the quadrotor between phases 3 and 4, this adaptation procedure is an unfortunate
yet necessary step in order to ensure the accuracy of the aggressive maneuvers.
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5.3 Test Results

5.3.1 Attitude Controller

We first analyse the response of the roll angle during phase 3 to verify that it satisfies the
behaviour hypothesized in section 5.2.1. We generate a vertical velocity and command a
desired angle of 90 degrees for 0.6 seconds :

0 0.1 0.2 0.3 0.4 0.5 0.6

Time(s)

-20

0

20

40

60

80

100

R
o
ll 

A
n
g
le

 (
d
e
g
)

Attitude Response to Step Command

Figure 5.3 Attitude Response

We see that the on-board controller provided with the Crazyflie 2.0 provides a somewhat
underdamped response to a large step command in φdes. Its 2% settling time is very close to
4 seconds however, and is acceptable for the purposes of the considered maneuvers.

5.3.2 Vertical Window

5.3.2.1 60 Degrees

The goal state G for the case of the 60 degree vertical window was :

— rG =
[
0 0 1.75

]>
m

— vG =
[
0 2 0

]>
m/s

— φG = π/3 rad
— ψG = π/2 rad
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We maintain a constant overall thrust of 1 · mg throughout the attitude control phases (3
and 4). After 1 iteration, the desired roll angle of the quadrotor remained within 2 degrees of
the goal value φG. The next step was to iterate for the desired velocity at the end of phase 3.
The maneuver converged to a satisfactory value after 4 iterations of the algorithm presented
in equation 5.17 (Fig. 5.4).
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Figure 5.4 Velocity Improvement for 60 degree window

Figure 5.5 shows deviations from the mean position r̄act obtained after 15 trials of the sixty
degree maneuver. We see that the maneuver is precise to within a range of less than 10 cm in
the x and z directions. The standard deviations of the final positions through the 60 degree
vertical window were 0.0423 and 0.0308 in the x and z directions respectively. The mean x-z
position through the window’s plane was found to be

[
−0.288 1.602

]
m. The final goal state

was shifted by the deviation of the mean position from the desired position.

The maneuver was then tested with the window in place. A visualization of a representative
test-run can be seen in figure 5.6. Each snapshot of the Crazyflie in the above graphic cor-
responds to a 0.1 second increment in experiment time. Here we see the quadrotor initially
at rest. It then accumulates speed and follows an automatically generated trajectory until
it crosses the plane defined by rL and vL. The quadrotor then controls for a 60 degree roll
angle for 0.4 seconds until it reaches the plane of the window. The desired attitude is then
reset to 0 for roll and pitch angles for 0.4 seconds. It finally implements the hover controller
in order to achieve its final stationary position.
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Figure 5.5 Precision of 60 Degree Vertical Window Maneuver, α = 1.0

Figure 5.6 60 Degree Vertical Window Maneuver
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5.3.2.2 90 Degrees

We perform the same procedure for a vertical window at 90 degrees with the following goal
state :

— rG =
[
0 0 1.75

]>
m

— vG =
[
0 2 0

]>
m/s

— φG = π/2 rad
— ψG = π/2 rad

The velocity adaptation phase showed a slower convergence to the desired velocities (Fig.
5.7).
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Figure 5.7 Velocity Improvement for 90 Degree window

Because this maneuver operates further outside of the linearized space considered in the
controller design, it seems that the approximations used were less precise than for the previous
maneuver. This also became clear when observing the position precision (Fig. 5.8). Here, the
possible x position values of the Crazyflie 2.0 varied within a range of over 30 cm and had
a significantly higher standard deviation with respect to both axes than in the 60 degree
case. The parameter α was decreased in order to decrease the lateral acceleration during the
attitude phase and thus hopefully improve the precision of the maneuver (Fig. 5.9).

Just by decreasing the overall thrust through phases 3 and 4, the standard deviation of
the quadrotor position in the plane of the window decreased by almost 50%. The z direction
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Figure 5.8 Precision of 90 Degree Vertical Window Maneuver, α = 1.0
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standard deviation decreased as well. The trade-off with lowering the value of α is it effectively
decreases the thrust being delivered at the beginning of the final hover phase. Because of the
motor dynamics, the desired propeller speeds require more time to be reached, and thus more
vertical space to recover. This phenomenon becomes more important in an area with limited
vertical space (i.e low ceilings). A visualization of a representative test-run can be seen in
figure 5.10.

Figure 5.10 90 Degree Vertical Test

5.3.3 Descent Through Horizontal Window

The goal state for vertical descent maneuver was as follows :

— rG =
[
0 0 2

]>
m

— vG =
[
0 0 −0.6

]>
m/s

— φG = π/2 rad
— ψG = 0 rad

Here, it was found that for the limited space of the flight arena available, only relatively
small values for the z velocity were realistic for producing a repeatable maneuver with stable
recovery. We again refined the launch velocity in order to achieve the goal state through the
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window (Fig. 5.11). We see a similar rate of convergence to that of the 90 degree vertical
window. Regardless of the soft hover controller gains chosen, the recovery stage of the ma-
nuever only generated reliable stable results with higher values of α. This is once again due
to the limitations of the motor actuators. As in the vertical window case, the high value
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Figure 5.11 Velocity Improvement for Descent through a Horizontal Window

of α reduced the precision of the maneuver (Fig. 5.12). We see once again, as for the 90
degree window case with α = 1, the user must accept a relatively large margin of error in the
precision of the maneuver. It is clear that for a confined space such as the flight arena used,
the controller architecture proposed must be modified to increase the stability of phase 5. A
typical test run can be seen in figure 5.13.

5.4 Conclusion

Results presented in [1] of a control architecture enabling aggressive flight through windows
were reproduced and validated with limited success. The process of sequential composition of
trajectories enabled precise, repeatable maneuvers at the cost of time-consuming adaptation
phases that would not be feasible in real world applications. Much of the error produced
in testing can be attributed to multiple simplifications that could be considered in future
testing. In terms of the 3D path-following controller, only line segments with unrealistic
instantaneous accelerations to goal velocities were considered. More realistically achievable
minimal snap trajectories have been proposed and developed in [23]. In terms of the nonlinear



44

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

X Position (m)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Y
 P

o
s
it
io

n
 (

m
)

σ
x
 =0.03618

σ
y
 = 0.08612

Figure 5.12 Results for 15 tests of a Vertical Descent. X-Y position deviation of the quadrotor
as it passes through the horizontal plane of the window

Figure 5.13 Horizontal Window Test Run



45

model, several simplifications were made that greatly reduced the accuracy of the maneuvers.
Using a nonlinear trajectory controller such as the one presented in [54] could provide a more
mathematically rigorous solution to this problem. Furthermore, increasing the complexity of
the problem by applying an aerodynamic model similar to the one presented in [13] could
improve upon the hypotheses used in section 5.2.1.

The advantage of the techniques used in this chapter is the simplicity of each individual
component. However, in order to make these manoeuvres more applicable in the real world,
a more complex and elegant solution is necessary. Results in [54] enable the convergence
of a quadrotor onto a sufficiently smooth 3D trajectory. This solution, however, requires a
feedback of higher-order elements of its state, including acceleration and jerk. These elements
are rarely used and seldom appear in control literature, mainly due to difficulty in their
estimation. The following chapters describe an effort to fill this gap in the field.
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CHAPTER 6 REAL-TIME JERK ESTIMATION OF A QUADROTOR UAV

A critical component of any control system application is the ability to accurately measure
the state of the system being controlled. For a UAV, the necessary elements for stable flight
are usually its position, velocity, orientation and angular velocity. However, as mentioned in
section 5.4, there exist control applications that rely on the feedback of higher-order elements
- namely the acceleration and jerk of a vehicle. Unfortunately, at this time there exists no
easily available jerk sensor for these purposes. Furthermore, with applications using UAV’s
with rotating propellers, data extracted from on-board accelerometers is often affected by
high levels of noise. Any resulting control application using the feedback of the jerk and
acceleration therefore must rely on estimation techniques, for which there is only a minimal
amount of existing theory. This chapter aims to develop a method for the estimation of the
jerk that can be immediately applied to control applications. It outlines several types of
linear Kalman filter (LKF) with different levels of complexity and attempts to demonstrate
the most reliable method for testing. It also describes a method for validating the quality of
the estimate offline using a bounded least-squares technique.

6.1 Linear Jerk Estimator

6.1.1 Estimation Based only on Accelerometer Data

Depending on the physical system being studied, there are several options for how to design
an estimator for the jerk. The first attempt made in this project was to estimate the jerk
using only measurements from the accelerometers. Details of this estimator are outlined in
subsection 6.1.1.1. The estimate was then augmented using a precise measurement of position
in subsection 6.1.3.

6.1.1.1 Kalman Filter with Coloured Noise Input

A Kalman filter similar to the one presented in [3] was developed. This approach models the
jerk as being the result of a random walk process and models the noise as being the sum
of white noise and coloured noise components. This could be useful in terms of taking into
account the component of noise produced by the rotating propellers of a UAV. The model of
the system is depicted in figure 6.1.
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Figure 6.1 Random Walk Process (taken from [3])

Figure 6.1 shows how the estimator output y is modeled as a function of system disturbance
ωd and measurement noise vc and vw. The signal vc is passed through a first order low-pass
filter F in order to approximate the behaviour of coloured noise. F is defined to have the
following dynamic :

η̇ = ΦFη + ΓFvc (6.1)

v = HFη + dvc (6.2)

where ΦF ,ΓF , HF and d can be chosen to produce the desired frequency response. The
variances of ωd, vw and vc are defined as as σ2

d , σ2
w and σ2

c respectively. The signals ωd,
vw and vc can then be expressed as ωd = σdω1, vw = σwω2 and vc = σcω3, respectively.
ωi(i = 1, 2, 3) are considered to be mutually independent zero-mean white noise processes
with unit variances. The resulting system has the following state-space representation :

ẋ = Ax + Bω (6.3)

y = Cx + Dω (6.4)

where

x =
[
x1 x2 η>

]>
(6.5)

ω =
[
ω1 ω2 ω3

]>
(6.6)
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and

A =


0 1 0
0 0 0
0 0 ΦF

, B =


0 0 0
σd 0 0
0 0 σcΓF

 (6.7)

C =
[
1 0 HF

]
, D =

[
0 σw dσc

]
(6.8)

Using the same procedure developed in [3], a continuous Kalman filter estimate can be
developed that takes into account the correlation between the dynamic noise term and the
observation noise term in eq. 6.3. The time derivative of the state estimate x̂ can be expressed
as :

˙̂x = Ax̂ + K(y−Cx̂) (6.9)

where K is the Kalman filter gain matrix given by :

K = PC>(DD>)−1 + BD(DD>)−1 (6.10)

where P is the symmetric positive definite matrix, solution of the following Riccati equation

P(A−BD(DD>)−1C)> + (A−BD(DD>)−1C)P−PC>(DD>)−1CP

+B
(
I−D>(DD>)−1D

)
B> = 0 (6.11)

In application, this 2nd order filter is then discretized using a bilinear transformation with a
sample time of 0.01 s.

6.1.1.2 Simulation Results

To evaluate the validity of the Kalman filter with coloured noise component, simulations
were run for coloured and white noises with variances σ2

c = 0.05 and σ2
w = 0.001 respectively.

System disturbance variance σ2
d was altered as a design parameter. Figure 6.2 shows the

estimator response with σ2
d = 50. This value of σd gives both a delayed response and significant

error in the jerk and acceleration estimates. The value of σd must be increased in order to
obtain a usable estimate for real-time applications.
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Figure 6.2 Estimated Acceleration and Jerk using Accelerometer Data, σ2
d = 50
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Figure 6.3 Estimated Acceleration and Jerk using Accelerometer Data, σ2
d = 500

Figure 6.2 shows the estimator response for σ2
d = 500. Here the estimator places more confi-

dence in the acceleration measurement, giving a faster yet noisier response in both jerk and
acceleration estimates.
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Figure 6.4 Estimated Acceleration and Jerk using Accelerometer Data, σ2
d = 5000
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Figure 6.5 Estimated Acceleration and Jerk using Accelerometer Data, σ2
d = 105

Using only acceleration measurements, the most reliable estimate came when σ2
d = 5000 as

seen in figure 6.4. When σ2
d was chosen to be higher such as in figure 6.5, the effects of

measurement noise degraded the resulting estimate to the point where it became unusable.
In general, however, this method was shown to be unsatisfactory for a precise and reliable
estimate of the acceleration and jerk.
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6.1.2 Method for a Standard Discrete Linear Kalman Filter

The Kalman filter used in section 6.1.1.1 was developed using a continuous system and then
discretized. Using a discrete Kalman filter can add useful information and potentially improve
the overall estimate. A discrete Kalman filter is used for a state-space LTI system of the form :

x(i+ 1) = Ax(i) + Bu(i) + Gω(i) (6.12)

y(i) = Cx(i) + Du(i) + Hω(i) + v(i) (6.13)

with input u, process noise ω and measurement noise v having the following characteristics :

E[ω(n)] = E[v(n)] = 0 (6.14)

E[ω(n)ω>(n)] = Q (6.15)

E[v(n)v>(n)] = R (6.16)

A Kalman filter can then be constructed according to :

x̂(i+ 1|i) = Ax̂(i|i− 1) + Bu(i) + L(i)(y(i)−Cx̂(i|i− 1)−Du(i)) (6.17)

where the Kalman filter gain L(i) is found by solving the discrete Riccati equation :

L(i) = (AP(i)C> + N̄)(CP(i)C> + R̄)−1 (6.18)

M(i) = P(i)C>(CP(i)C> + R̄)−1 (6.19)

Z(i) = (I−M(i)CP(i)(I−M(i)C)> + M(i)R̄M(i)>) (6.20)

P(i+ 1) = (A− N̄R̄−1C)Z(i)(A− N̄R̄−1C)> + Q̄ (6.21)

where :

Q̄ = GQG> (6.22)

R̄ = R + HQH> (6.23)

N̄ = GQH> (6.24)

P(i) = E[(x− x̂(i|i− 1))(x− x̂(i|i− 1))>] (6.25)

Z(i) = E[(x− x̂(i|i))(x− x̂(i|i))>] (6.26)
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A current discrete-time estimator was implemented that makes use of the current state mea-
surements. It takes the values of x̂(i|i− 1) and y(i) and generates :

x̂(i|i) = x̂(i|i− 1) + M(i)(y(i)−Cx̂(i|i− 1)−Du(i)) (6.27)

Using this general structure, the problem could then reduced to defining the system parame-
ters and choosing the appropriate Q and R matrices.

6.1.3 Kalman Filter using Position and Acceleration Measurements

As discussed in Introduction, the acceleration is often not the only measurement available.
The next logical step to improve the jerk estimate was to include a position measurement.
Two estimators were developed to use these measurements. The first was a Kalman filter
considering the measurement disturbance as purely white noise, and another using the co-
loured noise model described in section 6.1.1.1.

6.1.3.1 White Noise Kalman Filter

The simple white noise Kalman filter was developed according to the system in figure 6.6.

Figure 6.6 Random Walk Process with Acceleration and Position Measurement

An added benefit to using this filter as opposed to the filter developed in section 6.1.1.1 is
that it provides a full estimate of the system from jerk through position. This way, a second
estimator is not needed to estimate the vehicle’s velocity. The state-space representation of
this system is :

ẋ = Ax + Gω (6.28)

y = Cx + v (6.29)
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where the vectors are :

x =
[
x1 x2 x3 x4

]>
(6.30)

ω = ωd (6.31)

v =
[
vp vw

]>
(6.32)

and the associated matrices are given by :

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

,G =


0
0
0
1

 (6.33)

C =
1 0 0 0

0 0 1 0

 (6.34)

The discrete-time equivalent is then :

x(i+ 1) = Adx(i) + Gdω(i) (6.35)

y(i) = Cdx(i) + v(i) (6.36)

where the matrices are :

Ad =



1 T
T 2

2
T 3

6
0 1 T

T 2

2
0 0 1 T

0 0 0 1


,Gd =



T 4

24
T 3

6
T 2

2
T


(6.37)

Cd =
1 0 0 0

0 0 1 0

 (6.38)

with T the sampling period. A value of T = 0.01s is used for the purposes of simulations as
well as tests in subsequent sections. The system covariance matrices Q and R :

Q = σ2
d (6.39)

R = diag(σ2
z , σ

2
a) (6.40)
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6.1.3.2 Coloured Noise Kalman Filter

The coloured-noise Kalman filter is augmented to include the position estimate. Its state-
space representation is as follows :

ẋ = Ax + Gω (6.41)

y = Cx + v (6.42)

where the vectors are given by

x =
[
x1 x2 x3 x4 η

]>
(6.43)

ω =
[
ωd vc

]>
(6.44)

v =
[
vp vw

]>
(6.45)

and the matrices by

A =



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 ΦF


,G =



0 0
0 0
0 0
1 0
0 ΓF


(6.46)

C =
1 0 0 0 0

0 0 1 0 H

 (6.47)

The discrete-time equivalent is :

x(i+ 1) = Adx(i) + Gdω(i) (6.48)

y(i) = Cdx(i) + v(i) (6.49)
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with

Ad =



1 T
T 2

2
T 3

6 0

0 1 T
T 2

2 0

0 0 1 T 0
0 0 0 1 0
0 0 0 0 eΦFT


,Gd =



T 4

24 0
T 3

6 0
T 2

2 0
T 0
0 1− e−ΓFT


(6.50)

Cd =
1 0 0 0 0

0 0 1 0 H

 (6.51)

and

Q = diag(σ2
d, σ

2
c ) (6.52)

R = diag(σ2
z , σ

2
a) (6.53)

6.1.3.3 Simulation Results

Subject to the same combination of coloured and white measurement noise, it was possible
to obtain a very similar estimation performance with both estimators. The two estimators
are shown in response to a white noise with variance σ2

c = 0.05 and σ2
w = 0.001. Figure 6.7

shows a performance improvement from results obtained in section 6.1.1.2. The estimator
responses for the coloured and white noise estimators generated virtually identical results. It
was concluded that the added complexity of the estimator defined in [3] did not significantly
improve the quality of the estimate when adding the position measurement.
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Figure 6.7 Estimated Acceleration and Jerk using Acceleration and Position Measurement.

6.1.4 Estimator with Virtual-Jerk Rate Command as System Input

The most complete version of Kalman filter that was developed used the virtual jerk rate
command from the controller developed in chapter 7. the system is the same as the one
described in section 6.1.3 with a slight modification of the system noise variables, i.e.,

ẋ = Ax + Bu + Gω (6.54)

y = Cx + v (6.55)

with

x =
[
x1 x2 x3 x4

]>
(6.56)

u = uvs (6.57)

ω =
[
ωaz ωjz

]>
, (6.58)

v =
[
vz va

]>
(6.59)
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Where ωaz and ωjz are system disturbance inputs and uvs is a virtual command that would
theoretically influence the fourth derivative of the position of the quadrotor. The resulting
A,B,C,G matrices are :

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,B =


0
0
0
1

 (6.60)

C =
1 0 0 0

0 0 1 0

 ,G =


0 0
0 0
1 0
0 1

 (6.61)

The discrete-time equivalent is :

x(i+ 1) = Adx(i) + Bdu(i) + Gdω(i) (6.62)

y(i) = Cdx(i) + v(i) (6.63)

with

Ad =



1 T
T 2

2
T 3

6
0 1 T

T 2

2
0 0 1 T

0 0 0 1


,Bd =



T 4

24
T 3

6
T 2

2
T


(6.64)

Cd =
1 0 0 0

0 0 1 0

 ,Gd =



T 3

6
T 4

24
T 2

2
T 3

6
T

T 2

2
0 T


(6.65)

and system covariance matrices Q and R :

Q = diag(σ2
z , σ

2
vz
, σ2

az
, σ2

jz) (6.66)

R = diag(σ2
zm
, σ2

am
) (6.67)
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where the system disturbance variances σ2
jz ,σ2

az
,σ2
vz

and σ2
z can be adjusted in order to ac-

count for the uncertainty of the model used. Measurement noise variances σ2
am

and σ2
zm

are
properties of the measurement devices. The main advantage to using this technique is that it
incorporates yet another source of information for estimating the jerk. The amount of confi-
dence that this virtual command actually reflects the behaviour of the object being tracked
can be adjusted using the variances of ωaz and ωjz .

6.1.5 Simulation Results

This version of the estimator was then simulated using the controller developed in chapter
7. It was asked to track a reference input of 1 m from a resting position. To test its ability
to reject outside disturbances, an external force was input at 20 seconds. The resulting step
response can be seen in figure 6.9. In the case of this simulation, the following parameters
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Figure 6.8 Profile of Disturbance Input for Estimator Simulation

were used. The optimal control Q and R matrices were chosen as :

QLQR = diag(6, 10, 0, 1, 6) (6.68)

RLQR = 1 (6.69)
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which generated the following state-feedback gains :

K =
[
5.5839 6.4932 3.4942 0.9676 −2.0708

]
(6.70)

The parameters of the jerk estimators were chosen as follows for the estimator including
control input :

QKal = diag(5 · 10−3, 5 · 10−4) (6.71)

RKal = diag(1.5 · 10−8, 3 · 10−1) (6.72)

It would be interesting to compare this estimator to the one developed in the previous section.
For these purposes, we establish the parameters for a jerk estimator using only acceleration
and position estimates :

QKal = 5 · 103 (6.73)

RKal = diag(1.5 · 10−8, 3 · 10−1) (6.74)

The resulting estimates are shown in figures 6.10 and 6.11

Figure 6.10 shows the jerk response of the first 10 seconds of the simulation. What becomes
immediately obvious is the difference in level of noise between the measurement-only esti-
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mator and the one using the control input. The latter displays a much lower signal to noise
ratio and tracks the true value more accurately.
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In the seconds following the disturbance input, as presented in figure 6.10, we see the perfor-
mance of both estimators when the jerk of the quadrotor is at higher levels (order of 100 vs.
0.5). Neither estimator had the capacity to respond immediately to the disturbance. However,
after 0.1 seconds, The estimator with control input quickly converges to the true value, while
the acceleration/position estimator fails to react in any substantial way. It can be concluded
that including the control input does in fact improve the quality of the estimate of the jerk.

6.2 Estimator Validation

6.2.1 Bounded Least-Squares Offline Validation

Validating the developed controllers using actual test data instead of simulations proved to
be a significant problem. The main issue in trying to determine the accuracy of the developed
estimators came with the fact that there was no way to directly measure the jerk of the moving
vehicle. The solution chosen was an offline technique that fitted a least-squares polynomial to
the Vicon position data. This polynomial was then differentiated 3 times in order to represent
the "actual" jerk of the vehicle in the zw direction. The curve fitting problem was as follows :

min
x

1
2 ‖Cx− d‖2 (6.75)

s.t. :


Ax ≤ b

Aeqx ≤ beq
lb ≤ x ≤ ub

(6.76)

where x ∈ Rn+1 is the vector of the coefficients of the desired nth order polynomial, d ∈ Rm

is a column vector of the m collected position data points and C ∈ Rm×(n+1) is the matrix
corresponding to the time values of the simulation from t1 to t2, i.e.,

C =


tn1 tn−1

1 . . . t01
... ...
tn2 tn−1

2 . . . t02

 (6.77)

In order to better approximate the initial conditions of the section of data to be fitted, it
was useful to apply equality constraints at the beginning and end of the desired time period.
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These constraints were expressed in the Aeq and Beq matrices :

Aeq =


ntn−1 (n− 1)tn−2 . . . t 1 0

n(n− 1)tn−2 . . . 1 0 0
n(n− 1)(n− 2)tn−3 . . . 1 0 0 0

 , Beq =


v(t)
a(t)
j(t)

 (6.78)

where t is a time value at which the velocity, acceleration or jerk are known.

6.2.2 Initial Curve-Fitting Results

To evaluate the performance of the estimator, tests were run with the MRASL’s Crazyflie
2.0 nanoquadcopter. To simplify the results, the estimator was only run for the zw direction.
In order to determine the world-frame acceleration measurement equivalent, the body-frame
acceleration measurements and rotated by a reliable on-board orientation estimate. Results
for the offline method and the white-noise Kalman filter with position and acceleration mea-
surements are presented in figure 6.12. It shows the Vicon data for a short section of the
quadrotor’s zw trajectory overlayed with a least-squares fit computed as in section 6.2.2. The
fit is not perfect, but closely follows the behaviour of the acquired data. The most notable
differences are the discrepancies in the curvature of the polynomial and data at the end of the
trajectory segment. This could cause a large difference in the real-time and offline estimations
of the acceleration and jerk of the trajectory.

Figure 6.13 shows velocity estimates for the first derivative of the offline polynomial, a Kalman
Filter using only position data and the white noise Kalman filter presented in section 6.1.3.
The Kalman filter with both acceleration and position measurements generated significantly
closer results to the offline result than the position only filter. This shows how using the
accelerometer values would also be beneficial in situations where only the velocity and position
are needed.

The initially generated polynomial was then differentiated again in order to estimate the true
acceleration during the test. The dotted data in figure 6.14 corresponds to the world-frame
acceleration measured by the accelerometer. The other two lines represent the real-time and
offline estimates respectively. The real-time estimate follows the offline generated curve rea-
sonably well until around 2s, when the acceleration of the polynomial rapidly increases. This
difference can be attributed to a discrepancy in the bounds of the least-squared algorithm.
More strict boundary conditions should be put on the generated polynomial.

The final state generated was the jerk. Figure 6.15 reveals how the measurement noise from
the accelerometer has a significant effect on the jerk estimate. Furthermore, the offline gene-
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Figure 6.13 Off-Line Velocity Results

rated curve’s jerk rapidly increases after t = 2s. The importance of the bounds was shown
to indeed be substantial in finding an accurate offline estimation of the jerk. However, the 2
curves do generally follow each other, and after making certain refinements it is conceivable
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Figure 6.15 Off-Line Jerk Results

that the real-time and offline estimates could be accurate enough to be usable in a real-time
control situation.
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CHAPTER 7 JERK-AUGMENTED CONTROL

This chapter outlines the development of a controller that makes use of the estimation tech-
niques presented in chapter 3. Controllers based on the reduced linearized model of a quadro-
tor are created in order to smoothly track reference inputs in x, y and z directions. Section 7.1
outlines the theoretical basics of the jerk-augmented controller and applies them to control
the height of a quadrotor. Section 7.2 presents the optimal control techniques used to deter-
mine the desired gains for the jerk-augmented controller. These techniques are then expanded
to control the x and y position of the vehicle in section 7.3.

7.1 Jerk-Augmented Height Control of a Quadrotor UAV

As discussed in introduction, limiting the jerk of a vehicle could be of interest for passenger
vehicle applications. However, the jerk does not explicitly appear in the mathematical model
presented in chapter 3. In order to be able to include the vertical acceleration and jerk of
the quadrotor in the control design, the system must be augmented. To this end, we define
a virtual command uvs which delivers a virtual snap command to the quadrotor :

uvs ≡
d2

dt2

(
∆f

m

)
(7.1)

The reduced height model presented in equation 3.13 is then augmented to include uvs :
∆ż
∆v̇z
∆ȧz
∆j̇z


︸ ︷︷ ︸

∆ẋ

=


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

A


∆z
∆vz
∆az
∆jz


︸ ︷︷ ︸

∆x

+


0
0
0
1


︸︷︷︸

B

uvs (7.2)

which is in canonical controllable form. One notable element of this system is that it is
unstable without a feedback of the jerk. This can be shown by analyzing the characteristic
equation of the system with state feedback. The virtual snap command is defined as a function
of the augmented state-variables :

uvs = −K∆x (7.3)
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with K =
[
kz kvz kaz kjz

]
. The resulting closed-loop system has the following characte-

ristic equation :

P (s) = det(sI4 − (A−BK))

= s4 + kjzs
3 + kazs

2 + kvzs+ kz

which, by the Routh-Hurwitz criterion, cannot be stable if kjz = 0 [8]. In order to ensure null
steady-state error, feedback by integral-action can be introduced as well :

∆ż
∆v̇z
∆ȧz
∆j̇z
∆żi


︸ ︷︷ ︸

∆ẋaug

=



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
−1 0 0 0 0


︸ ︷︷ ︸

Aaug



∆z
∆vz
∆az
∆jz
∆zi


︸ ︷︷ ︸

∆xaug

+



0
0
0
1
0


︸︷︷︸
Baug

uvs (7.4)

The expression for uvs is then :

uvs = −K∆xaug (7.5)

However, in practice, only the vertical force f can be commanded. The resulting value of f
can be calculated according to :

∆f =
∫∫

m · uvsdt (7.6)

f(0) = fe = −mg (7.7)

ḟ(0) = f̈(0) ≡ uvs(0) = 0 (7.8)

The overall control structure can be seen in figure 7.1.

7.2 Gain Calculation using Optimal Control Theory

The matrix gain K must then be chosen in a such way that the jerk of the quadrotor can
be limited. In order to achieve this, LQR 1 optimal control method is used. The following
performance criterion is minimized in order to find suitable feedback gains :

J = 1
2

∫ ∞
0

(x>augQxaug + u>vsRuvs)dt (7.9)

1. Linear Quadratic Regulator.
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Figure 7.1 Jerk-augmented Control Structure

where Q ≥ 0 is a positive semi-definite matrix corresponding to a weighting on the augmented
state variables and R > 0 is a positive scalar representing a weighting on the control input
uvs. With the augmented state vector xaug, the acceleration as well as the jerk experienced by
the quadrotor can be explicitly used as design parameters. The resulting gains are calculated
by solving the algebraic Riccati equation :

PA + A>P−PBR−1B>P + Q = 0 (7.10)

with P is a positive definite matrix. The feedback gain matrix K is then given by

K = R−1B>P (7.11)

Using this technique, a desired system response can be achieved in order to actively punish
high levels of jerk. For instance, figure ?? shows the simulated step response for two control-
lers. The first controller is a state-feedback controller that only uses feedback of the position
and velocity of the quadrotor. The second is a jerk-augmented controller that was tuned
using the techniques presented in this section. Both are tuned to give an overdamped res-
ponse with settling time of 6 seconds. The first plot of figure ?? shows the position response
of each controller configuration. The experienced jerk as well as the integral of the square
of the jerk are presented in the second and third plots respectively. What becomes clear is
that for the same settling time, the jerk-augmented controller has the capacity to produce
significantly lower values of jerk.
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7.3 Jerk-Augmented Control in the x- and y-Axis

The controller developed in sections 7.1 and 7.2 can also be used to limit the translational
jerk in the x and y directions. To do so, the reduced lateral and longitudinal models of the
quadrotor are examined. The reduced longitudinal model is presented in equation 7.12.


∆ẋ
∆v̇x
∆θ̇
∆q̇

 =


0 1 0 0
0 0 −g 0
0 0 0 1
0 0 0 0




∆x
∆vx
∆θ
∆q

+


0
0
0

1/Iyy

My (7.12)

Similarly, The lateral reduced model can be expressed as in equation 7.13 :
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∆ẏ
∆v̇y
∆φ̇
∆ṗ

 =


0 1 0 0
0 0 g 0
0 0 0 1
0 0 0 0




∆y
∆vy
∆φ
∆p

+


0
0
0

1/Ixx

Mx (7.13)

In the linearized space, the x and y positions of the quadrotor are indirectly related to the
input momentsMy andMx respectively. In practice, position control and attitude control are
often treated as separate problems. This is due to the availability of orientation measurements
at a much higher frequency than the off-board position measurements. Consequently, the
reduced x and y models can be further separated into attitude and position components.
Equations 7.14 and 7.15 demonstrate this with the longitudinal model.

∆ẋ
∆v̇x

 =
0 1

0 0

∆x
∆vx

+
 0
−g

∆θ, (7.14)
∆θ̇

∆q̇

 =
0 1

0 0

∆θ
∆q

+
 0

1/Iyy

∆My (7.15)

The system in equation 7.15 can be tuned to have a desired step response so that a reference
angle can be achieved according to a desired dynamic. This behaviour can then be modeled as
an actuator dynamic when considering the system in equation 7.14. Taking this into account,
a virtual snap command in the x direction can be defined :

uvs ≡
d2

dt2
(
−g∆θ

)
(7.16)

The separated longitudinal model is then augmented to include the virtual snap command :
∆ẋ
∆v̇x
∆ȧx
∆j̇x

 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




∆x
∆vx
∆ax
∆jx

+


0
0
0
1

uvs (7.17)
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and finally, as in the case with height control :

∆θ =
∫∫ uvs

−g
dt (7.18)

θ(0) = θe = 0 (7.19)

θ̇(0) = θ̈(0) ≡ uvs(0) = 0 (7.20)

The identical method can then be applied for control in the y direction. The result is a
controller that can actively limit the translational jerk of a multirotor UAV in all directions.
It is structured in such a way that it can be easily implemented with remote-control type
quadrotors such as the Crazyflie 2.0.

7.4 Test Results

Testing the developed controller and estimator proved to be a complex undertaking. This
is because it relied on several co-dependent components that had yet to be validated indi-
vidually. Results in chapter 3 showed that estimation of the jerk was at least possible in
principle, but the most complete version of the estimator that incorporated the control input
had yet to be implemented. The jerk-augmented controller performed adequately in simula-
tion, but was was shown to be affected by measurement noise. The most difficult practical
obstacle in testing the proposed estimator and controller was finding the correct parame-
ters for the real-time jerk estimator. Nevertheless, the proposed solution was successfully
implemented in the MRASL. The details of the performed tests are presented in this section.

The controllers were then tuned for the performed tests. To control the height of the Crazyflie
2.0, the jerk-optimal controller was implemented in Simulink and developed for discrete real-
time operation. For the purpose of the initial tests, the optimal control Q and R matrices
were chosen as :

Q = diag(6, 15, 0, 0.1, 6) (7.21)

R = 1 (7.22)

which generated the following state-feedback gains :

K =
[
5.7382 6.1429 2.3634 0.4845 −2.2632

]
(7.23)

In order to avoid drift in the x-y plane in the initial tests, hover controllers developed as in
chapter 3 were used to set the desired yaw, pitch and roll angles.
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7.4.1 Height Response to Reference Input

The first tests were performed to demonstrate the feasibility of the developed components.
The jerk-augmented controller was only implemented to control the height of the quadrotor,
while standard state-feedback controllers were used to eliminate drift in the x-y plane. After
a takeoff period to distance the vehicle from areas where ground effect was significant, the
quadrotor was commanded to track a reference input height of 2 m, as shown in figure 7.3.

The first subplot of figure 7.3 shows the measured height of the quadrotor alongside the
expected simulation result and bounded least-squares fit. All three curves follow each other
very closely. The similarity between the measured height and the simulation curve validates
the overall controller structure and demonstrates the applicability of such a controller in
real-world uses. The quality of the least-squares fit ensures that its derivatives will produce
precise offline estimates of the Crazyflie’s velocity, acceleration and jerk.

The second subplot shows the real-time estimate of the velocity of the quadrotor with the
first-derivative of the offline curve. Except for some noise in the real-time estimation, the two
curves show almost identical behaviour. We conclude that the real-time velocity estimate is
more than adequate.

The real-time estimate, second derivative of the least-squares curve and accelerometer data
are presented in the third subplot of figure 7.3. The real-time estimate, presented in red,
followed the offline estimate relatively well. Even though a significant amount of noise ma-
nifested itself in the real-time estimate, it was at substantially lower levels than if the raw
accelerometer data was used directly. This shows an improvement over a direct IMU approach
to measuring acceleration in real-time.

The fourth subplot shows an initial attempt to show the validity of the real-time estimate of
the jerk. The third derivative of the offline curve is superimposed on the real time estimate
and simulation values to a step input. Unfortunately, the signal to noise ratio of the jerk signal
in this version of the test is too low to make a conclusion with respect to the validity of the
estimator for real-time values of the jerk. However, when comparing the offline curve to the
simulation curve, the implemented controller generated lower values of jerk than expected
in simulation. This shows that the controller still has the capacity to limit the jerk of a
quadrotor. To further investigate and show the quality of the real-time jerk estimator, a
different test configuration must be used.
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Figure 7.3 Test Response to Step Input

7.4.2 Tests in the x-y Plane

A validation of the real-time estimate of the jerk generated inconclusive results because the
levels of jerk experienced by the Crazyflie 2.0 were so low that they fell below a level that
could be evaluated visually. As a result, an experimental setup was produced in order to
produce artificially high levels of jerk. The jerk-augmented controller was first implemented
for control in the x-y plane and tuned to react quickly with no limitation of the jerk. To do
so, the optimal control Q and R matrices were chosen as in equation 7.24. Because of the
symmetry of the reduced lateral and longitudinal models, the same weighting parameters
were used :

Q = diag(6, 0, 0, 0, 9) (7.24)

R = 10 (7.25)
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which corresponds to a weighting only on the position and integral error of position. The
vehicle’s x-y velocities, accelerations and jerk are ignored in the performance criterion. This
generated the following state-feedback gains for control in the x direction :

K =
[
−2.1824 −2.2697 −1.4060 −0.5333 0.9239

]
(7.26)

for the y direction, the calculated gains were simply the negative values of the above gains.
The on-board attitude controller as used in chapter 3 was implemented to receive desired
angle commands. The controller was set to give a second order response with double poles at
−20. A reference input was created and sent to follow a Lissajou curve defined as follows :

x = sin(t) (7.27)

y = cos(2t)

z = 1

As this is not a trajectory tracking controller, the quadrotor was not expected to follow
the curve exactly. The goal was to make it change direction quickly enough to generate
measurable levels of jerk. The behaviour of the y position of the Crazyflie can be seen in
figure 7.4.
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Figure 7.4 Test Response to Step Input

As in the step response test, the position data was collected and fit with a least-squares
polynomial to validate the estimation techniques that were used. Because of the sinusoidal
nature of the generated reference input, the quadrotor did indeed change direction at hi-
gher velocities and frequencies. The offline approximation of the experienced velocity of the
quadrotor in the y direction can be seen to be closely followed by the real-time estimate.
For the acceleration, the estimator had a similar performance to the step input case. The
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main difference seen in this test configuration is in the subplot representing the jerk of the
quadrotor in the y axis. The offline curve shows a distinctly sinusoidal behaviour at higher
magnitudes than in the step input case. At these higher levels of jerk, the performance of
the real-time estimator is revealed to successfully track the actual values of the jerk with
some significant levels of noise. However, even with this noise, the quadrotor remained stable
and was able to respond adequately to a changing reference input. We conclude that even
though the level of noise in the jerk and acceleration signals was relatively high, the real-time
jerk estimation using an LKF produced satisfactory and usable results. Implementing these
techniques with sensors that are more isolated from vibration could drastically improve the
precision of resulting state-estimates.

7.4.3 Comparison of Jerk Levels

One of the main purposes of the jerk-augmented controller developed in this chapter is to
limit the levels of jerk of a quadrotor. In order to validate this property, another set of
tests was performed with the goal of reproducing simulation results shown in figure 7.2.
Two controllers were tuned to have a settling time of close to 5 seconds. The first controller
followed a standard state-feedback architecture and was tuned using LQR techniques. The
second was a jerk-augmented controller tuned as in section 7.1. The quadrotor was then
commanded to track a height of 1.5m, producing results as shown in figure 7.5 and 7.6.
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Figure 7.5 shows the position response to a reference input of 1.5m. Both LQR and jerk-
augmented controllers cross into the 2 percent settling threshold at similar times, with the
jerk augmented controller reaching slightly before the LQR controller. This implies that in
terms of settling time, these two controllers perform at equivalent levels. The true difference
between these controllers becomes apparent when analyzing the jerk of the quadrotor over
this period.
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Figure 7.6 Jerk Response Comparison

Figure 7.6 Shows the calculated offline curves corresponding to the levels of jerk experien-
ced by both controllers. The jerk of the reference-tracking trajectory produced by the LQR
controller exceeded 1.5m/s3 while the jerk-augmented controller limited levels of jerk to well
below 1m/s3. This shows the jerk-augmented controller’s ability to limit a quadrotor’s jerk
while respecting constraints corresponding to settling time. This result is promising and could
lead to potential future applications where limitation of the jerk is necessary.
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CHAPTER 8 CONCLUSION

8.1 Synthesis of Work

This work aimed to explore the field of trajectory generation and control. Firstly, a reproduc-
tion of the important work presented in [1] was conducted in the MRASL. Results showed
that the theoretically simple approach used enabled the reproducible and precise execution
of aggressive manoeuvres through windows. The tests also demonstrated the capabilities of
the MRASL’s flight arena as well as the potential of the Crazyflie 2.0 quadrotor used.

The remainder of this work contains four main contributions. The first is the development
and experimental validation of a real-time jerk estimator for quadrotors. Of the multiple
possible solutions presented, the most effective implementation of real-time jerk estimation
was a linear Kalman filter that made use of position and acceleration measurements as well as
input commands. The result was an estimator that accurately tracked the jerk of a quadrotor
UAV in real-time with a precision that was high enough to be used for state-feedback. The
second contribution is an offline estimation technique by bounded least-squares curve-fitting
that gives a reasonable approximation of the actual jerk experienced by a vehicle. By setting
reasonable boundary conditions of a high-order polynomial curve, this method proved to
be a reasonably precise way to evaluate an otherwise unmeasurable quantity. The third
contribution is a jerk-augmented LQR controller that can explicitly limit the jerk of the
height of a quadrotor. This controller was combined with the estimator in order to show
the possible practical applications of both elements. Using simulations that included realistic
values of measurement noise and actuator response, the controller showed promising results.

The final and most important contribution of this work was the validation of the estimator
and controller during experimental tests. Several works in the field of trajectory generation
and control have produced control architectures that require the feedback of the jerk of a
UAV in order to be stable. However, no work could be found that validates these architectures
with testing. To the best of our knowledge, the experimental validation presented in this work
is the first time that a feedback of the jerk has been used for the control of a quadrotor UAV.

8.2 Limitations of the Proposed Solution

Some of the limitations of the solution treated in chapter 5 are well-documented. The main
drawback of the sequential composition technique used is the need for a multi-trial iterative
refinement process in order to ensure the accuracy of the aggressive window manoeuvres.
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A second limitation of the sequential composition method is that it offers no guarantee of
the quadrotor’s ability to stabilize after passing through the window. Different values for the
overall thrust delivered during the attitude control phase as well as different gain values for
the soft hover controller must be simulated and tested in order to come up with a reliably
stable end phase. Augmenting the overall thrust decreased the precision of the manoeuvres
while decreasing the overall thrust made it more difficult for the quadrotor to stabilize. In
terms of the gains of the soft-hover controller, a similar behaviour was observed. Tuning the
gains to have a short settling time caused a saturation of the motors, while “softening” the
controller to have a longer settling time caused the quadrotor to drop closer to the ground
before stabilizing. If the controller’s settling time was too long, the quadrotor would hit the
ground before stabilizing.

The main limitation of the proposed jerk estimation techniques was its basis in the linear
approximation of the quadrotor model. In operations far outside of this linearization, the
estimator would fail to accurately estimate the jerk experienced by the quadrotor. However,
this simple estimator structure was chosen because of the limited availability of experimental
evaluation of jerk estimation techniques. This estimator was intended to be a proof of concept
for future applications of jerk feedback.

Both the estimator and jerk-augmented controller were shown to be somewhat sensitive to
accelerometer noise. The operation of the UAV used during experiments was therefore limited
by the high level of measurement noise (variances on the order of σ2 = 0.3) of the on-board
accelerometers. In order improve the behaviour of the controller, and to enable the estimator
to place a higher weighting on the acceleration measurements, it would be necessary to use
a quadrotor with vibration isolation of the on-board IMU.

8.3 Future Improvements

Future work could focus on the implementation of control elements presented in chapters 6-7
towards the execution of the manoeuvres presented in chapter 5. An example of this could
include the calculation of feasible minimal-snap trajectories as presented in [23] and their
execution by a feedback-linearization controller as presented in [54]. The latter work is a
nonlinear controller that requires a feedback of the jerk in order to be stable and guarantees
the convergence of a quadrotor onto a sufficiently smooth 3D trajectory. These proposed
improvements could eliminate the need for the iterative process outlined in [1].
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