148 research outputs found

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 Versión preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment

    Airborne chemical sensing with mobile robots

    Get PDF
    Airborne chemical sensing with mobile robots has been an active research areasince the beginning of the 1990s. This article presents a review of research work in this field,including gas distribution mapping, trail guidance, and the different subtasks of gas sourcelocalisation. Due to the difficulty of modelling gas distribution in a real world environmentwith currently available simulation techniques, we focus largely on experimental work and donot consider publications that are purely based on simulations

    Exploration-Exploitation Model of Moth-Inspired Olfactory Navigation

    Full text link
    Navigation of male moths toward females during the mating search offers a unique perspective on the exploration-exploitation (EE) model in decision-making. This study uses the EE model to explain male moth pheromone-driven flight paths. We leverage wind tunnel measurements and 3D tracking using infrared cameras to gain insights into male moth behavior. During the experiments in the wind tunnel, we add disturbance to the airflow and analyze the effect of increased fluctuations on moth flights in the context of the proposed EE model. We separate the exploration and exploitation phases by applying a genetic algorithm to the dataset of moth 3D trajectories. First, we demonstrate that the exploration-to-exploitation rate (EER) increases with distance from the source of the female pheromone, which can be explained in the context of the EE model. Furthermore, our findings reveal a compelling relationship between EER and increased flow fluctuations near the pheromone source. Using the open-source pheromone plume simulation and our moth-inspired navigation model, we explain why male moths exhibit an enhanced EER as turbulence levels increase, emphasizing the agent's adaptation to dynamically changing environments. This research extends our understanding of optimal navigation strategies based on general biological EE models and supports the development of advanced, theoretically supported bio-inspired navigation algorithms. We provide important insights into the potential of bio-inspired navigation models for addressing complex decision-making challenges

    Adaptive Lévy Taxis for Odor Source Localization in Realistic Environmental Conditions

    Get PDF
    Odor source localization with mobile robots has recently been subject to many research works, but remains a challenging task mainly due to the large number of environmental parameters that make it hard to describe gas concentration fields. We designed a new algorithm called Adaptive Lévy Taxis (ALT) to achieve odor plume tracking through a correlated random walk. In order to compare its performances with well-established solutions, we have implemented three moth-inspired algorithms on the same robotic platform. To improve the performance of the latter algorithms, we developed a rigorous way to determine one of their key parameters, the odor concentration threshold at which the robot considers to be inside or outside the plume. The methods have been systematically evaluated in a large wind tunnel under various environmental conditions. Experiments revealed that the performance of ALT is consistently good in all environmental conditions (in particular when compared to the three reference algorithms) in terms of both distance traveled to find the source and success rate

    Bio-Inspired, Odor-Based Navigation

    Get PDF
    The ability of moths to locate a member of the opposite sex, by tracking a wind-borne plume of odor molecules, is an amazing reality. Numerous scenarios exist where having this capability embedded into ground-based or aerial vehicles would be invaluable. The main crux of this thesis investigation is the development of a navigation algorithm which gives a UAV the ability to track a chemical plume to its source. Inspiration from the male moth\u27s, in particular Manduca sexta, ability to successfully track a female\u27s pheromone plume was used in the design of both 2-D and 3-D navigation algorithms. The algorithms were developed to guide autonomous vehicles to the source of a chemical plume. The algorithms were implemented using a variety of fuzzy controllers and ad hoc engineering approaches. The fuzzy controller was developed to estimate the location of a vehicle relative to the plume: coming into the plume, in the plume, exiting the plume, or out of the plume. The 2-D algorithm had a 60% to 90% success rate in reaching the source while certain versions of 3-D algorithm had success rates from 50% to 100%

    A 3-D Bio-inspired Odor Source Localization and its Validation in Realistic Environmental Conditions

    Get PDF
    Finding the source of gaseous compounds released in the air with robots finds several applications in various critical situations, such as search and rescue. While the distribution of gas in the air is inherently a 3D phenomenon, most of the previous works have downgraded the problem into 2D search, using only ground robots. In this paper, we have designed a bio-inspired 3D algorithm involving cross-wind Levy Walk, spiralling and upwind surge. The algorithm has been validated using high-fidelity simulations, and evaluated in a wind tunnel which represents a realistic controlled environment, under different conditions in terms of wind speed, source release rates and odor threshold. Studying success rate and execution time, the results show that the proposed method outperforms its 2D counterpart and is robust to the various setup conditions, especially to the source release rate and the odor threshold

    Design and Performance Evaluation of an Infotaxis-Based Three-Dimensional Algorithm for Odor Source Localization

    Get PDF
    In this paper we tackle the problem of finding the source of a gaseous leak with a robot in a three-dimensional (3-D) physical space. The proposed method extends the operational range of the probabilistic Infotaxis algorithm [1] into 3-D and makes multiple improvements in order to increase its performance in such settings. The method has been tested systematically through high-fidelity simulations and in a wind tunnel emulating realistic conditions. The impact of multiple algorithmic and environmental parameters has been studied in the experiments. The algorithm shows good performance in various environmental conditions, particularly in high wind speeds and different source release rates

    On the use of autonomous unmanned vehicles in response to hazardous atmospheric release incidents

    Get PDF
    Recent events have induced a surge of interest in the methods of response to releases of hazardous materials or gases into the atmosphere. In the last decade there has been particular interest in mapping and quantifying emissions for regulatory purposes, emergency response, and environmental monitoring. Examples include: responding to events such as gas leaks, nuclear accidents or chemical, biological or radiological (CBR) accidents or attacks, and even exploring sources of methane emissions on the planet Mars. This thesis presents a review of the potential responses to hazardous releases, which includes source localisation, boundary tracking, mapping and source term estimation. [Continues.]</div

    Drones and Sensors Ecosystem to Maximise the “Storm Effects” in Case of CBRNe Dispersion in Large Geographic Areas

    Get PDF
    The advancements in the field of robotics, specifically in the aerial robotics, combined with technological improvements of the capability of drones, have increased dramatically the use of these devices as a valuable tool in a wide range of applications. From civil to commercial and military area, the requirements in the emerging application for monitoring complex scenarios that are potentially dangerous for operators give rise to the need of a more powerful and sophisticated approach. This work aims at proposing the use of swarm drones to increase plume detection, tracking and source declaration for chemical releases. The several advantages which this technology may lead to this research and application fields are investigated, as well as the research and technological activities to be performed to make swarm drones efficient, reliable, and accurate
    corecore