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Abstract— Odor source localization with mobile robots has
recently been subject to many research works, but remains a
challenging task mainly due to the large number of environmen-
tal parameters that make it hard to describe gas concentration
fields. We designed a new algorithm called Adaptive Lévy Taxis
(ALT) to achieve odor plume tracking through a correlated
random walk. In order to compare its performances with
well-established solutions, we have implemented three moth-
inspired algorithms on the same robotic platform. To improve
the performance of the latter algorithms, we developed a
rigorous way to determine one of their key parameters, the
odor concentration threshold at which the robot considers
to be inside or outside the plume. The methods have been
systematically evaluated in a large wind tunnel under vari-
ous environmental conditions. Experiments revealed that the
performance of ALT is consistently good in all environmental
conditions (in particular when compared to the three reference
algorithms) in terms of both distance traveled to find the source
and success rate.

I. INTRODUCTION
Finding sources of airborne chemicals with mobile robots

has many applications in various critical situations. In case
of natural hazards, such as avalanches, landslides or earth-
quakes, following blood odor cues may help to find and
rescue wounded humans. Security operations in airports
related to explosives or drugs also involve tracking of chem-
ical traces, as well as the removal of land mines or the
identification of pollutant leakages. All these examples reveal
the vast fields where robotic odor source localization may
play a part to efficiently save human lives or protect their
environment.

Chemical compounds released by a source are mainly
advected by the airflow, forming a three-dimensional odor
plume. As the plume travels away from the source, it
becomes more diluted due to molecular diffusion and tur-
bulence that mixes the odor molecules with clean air [1].
Therefore, addressing the odor source localization problem
in robotics consists of three consecutive phases [2]. First
of all, the robot needs to search for the odor plume in
the environment. As soon as it detects a gas concentration
higher than a given threshold, the plume acquisition phase
is completed. Then the second phase called plume tracking
starts. During this phase, the robot is supposed to approach
the source or obtain information about the source position by
sensing the plume. Finally, in the source identification phase,
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the position of the source should be declared, once the latter
is surely localized. This paper, along with the majority of
the works in this field, focuses on the second sub-problem.

Despite active studies addressing this problem, odor source
localization remains a very challenging task. This high level
of complexity comes from the large number of environ-
mental parameters that take part in plume formation, often
yielding concentration fields that can hardly be processed
analytically. In order to understand the problem, systematic
experiments are usually led in controlled environments in-
volving a pseudo-laminar flow with a fixed velocity. Such
a configuration can be modeled by the Advective-Diffusive
Equations (ADE) [3] used in realistic simulations. In [4],
Kowadlo and Russell provide an overview of a large number
of robotic algorithms for odor source localization, which
reflects very well the variety and richness of this research
field. In a wide perspective, one can establish four general,
partially overlapping categories, to classify odor plume track-
ing algorithms [5]: formation-based, probabilistic, map-based
and bio-inspired algorithms.

Formation-based algorithms involve multiple robots which
maintain a spatial formation. While the formation moves
upwind, its scale can adapt to follow concentration’s isoclines
to approach the source [6], [7]. This category requires at least
two robots and a mean of inter-robot relative positioning.
Probabilistic algorithms model the source location as a
probability distribution. Infotaxis [8] is an example of this
category, the robot moves towards the position providing
the highest gain of information. This requires to keep in
memory all data collected along a run. In the case the
plume varies strongly over time, further computations and
complexity has to be involved in algorithms in order not to
be mislead using too old samples. Map-based algorithms do
not necessarily focus on source detection, but usually aim
to build a concentration map of the search field. In this
category, the robots builds hypothesis based on naive physics
airflow mapping [9] or on more complex models like hidden
Markov plume model developed in [10] where probabilistic
inferences are also performed. Here again, unsteady flows
may generate contradictions among odor samples collected
that may require further complexity in the algorithms. Bio-
inspired algorithms take their inspiration from living beings
and traditionally combine chemo- and anemo-taxis. A long
list of species studied for this purpose is provided in [4]:
among others dung beetle, moths and Escherichia Coli bac-
teria take an important place. Various strategies exist in this
class: dung beetle- and moth-inspired algorithms rely on an
odor concentration threshold to know whether they are in or
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out of the plume and then behave accordingly [5], whereas E.
Coli algorithm performs a biased random walk [11]. Based
on the animal’s search strategy [12], random-walk models
have been designed to reproduce similar trajectories, which
yielded to Lévy Walk [13] and Lévy Taxis [14] algorithms.
The algorithms of this category are typically designed for
single robots and therefore not easily adaptable to multi-
robot systems. They are mostly reactive, which means that
the robot only processes the current (or very recent) state
of the field. Thus they require only very limited memory
and computational resources. The present paper works on
algorithms belonging to this category.

Bio-inspired algorithms in odor source localization are
among the most studied ones. A significant attention has
been given to moth’s behavior [4] [15] [16] [17] where three
main actions were identified: (i) surging upwind, (ii) casting
and (iii) spiraling. In fact, a moth tracks odor plumes in the
following way [18] [19]: when it senses high odor concen-
trations inside the odor plumes, (i) the moth moves upwind
to get closer to the source; if the odor’s intensity decreases,
(ii) it amplifies a casting movement yielding a sinusoidal
trajectory; if the plume is lost, (iii) it starts spiraling to find
it back. Based on this behavior, three algorithms have been
proposed in the literature: a first one, we call Casting, but
is also known as the dung beetle algorithm, relies only on
the second behavior, while the two others, called Surge-
Cast and Surge-Spiral, combine (i and ii) and (i and iii),
respectively. These algorithms have been deeply studied both
in simulations and real experiments in [5].

Unlike moth-inspired algorithms, Lévy Taxis is not di-
rectly inspired from one particular species, but tries to re-
produce what can be observed at many scales among a large
variety of living beings [13]. Originally designed to address
the plume finding phase, it is particularly interesting for its
relatively low complexity and its potential to dynamically
adapt to the environment to face discontinuous and peaky
plumes, thanks to its intrinsic stochasticity. We based our
work on this algorithm to push it further and extend its
environmental adaptability by considering odor concentration
gradients. We thus present a new algorithm called Adaptive
Lévy Taxis (ALT), which is based on Lévy Taxis (LT)
presented in [14]. ALT differs from LT as the movement
decision at each step is based on measured gradient of the
plume. This allows to continuously adapt the walk to the en-
vironment and thus better address the plume tracking phase.
The advantages of such an algorithm are: its independence
from absolute concentrations (which are usually affected by
sensor’s drift in time), its computational simplicity and its
suitability to address the plume tracking problem.

In order to evaluate this new algorithm, its performance
had to be compared with algorithms of the same class,
i.e. bio-inspired ones. As the three moth-inspired algorithms
mentioned above have already been subject to deep studies,
they have been chosen as reference for performance com-
parisons. Yet we pushed their development a step ahead and
managed to test them under new challenging conditions.

Therefore, the contributions of the present paper are the

following: (i) the development of the new ALT algorithm for
odor plume tracking, (2) the improvement of moth-inspired
algorithms by rigorously determining the odor concentration
threshold at which the robots considers itself inside or outside
the plume, and (3) the systematic performance evaluation
of ALT and three moth-inspired algorithms in various envi-
ronmental conditions. Although moth-inspired algorithms are
well-known, their performance has not been systematically
evaluated in realistic environments under various plume
conditions so far. We carried out experiments in a large
wind tunnel, studying the impact on the performance of
the algorithms of the two most important parameters, i.e.
the wind speed and the release rate of the odor source.
Particularly, the algorithms have been pushed to their limits
and assessed in critical conditions, such as in low wind speed
combined with high release rate, a scenario that generates
important gradients and strong discontinuities in the plume.

In the present paper, after a description of the algorithms
involved in the study, the evaluation setup, the metrics, and
the sampling procedures applied to real world experiments
are explained in detail. The obtained results are then pre-
sented and discussed.

II. ALGORITHMS

A. Lévy Taxis

In 2009, Pasternak et al. presented Lévy Taxis [14] as a
novel algorithm for finding odor plume (i.e. plume acqui-
sition phase). It is a search strategy of the same category
as Correlated Random Walk (CRW) [20] and Lévy Walk
(LW) [13]. These are random search algorithms that share
the same global process: the agent starts from a random
point and has to move in the space, according to a governing
law, in order to find the odor plume. At each step, the robot
should walk to a point determined by a move length (Ml)
(AKA step length) and a turning angle (Ta), which are both
calculated based on a fixed probability distribution. The main
differences between these search strategies are the choice of
the probability distributions determined by the value of their
key parameters.

Lévy Taxis combines the Ml probability distribution of
Lévy Walk and the Ta probability distribution of Correlated
Random Walk. Hence Ml and Ta of each step are calculated
using Eq. (1) and Eq. (2),

Ml = Lmin.r
1

1−µ (1)

with Ml the move length, r a random variable uniformly
distributed r ∈ [0, 1], Lmin the minimum move length, and µ
(Lévy-index) the move length’s key parameter (1 < µ ≤ 3).

Ta =

[
2 · arctan

(
1− γ
1 + γ

· tan(π · (r− 0.5))

)]
+ bias (2)

Where Ta is the turning angle, r a random variable uniformly
distributed r ∈ [0, 1] and γ the turning angle’s key parameter
that shapes the distribution (0 ≤ γ ≤ 1). The bias is the
upwind angle: this brings the center of the distribution at
the upwind direction, to make the latter the most probably
chosen value. Table I presents the governing laws of the



TABLE I
GOVERNING LAWS AND KEY PARAMETERS OF RANDOM WALKS

(ADAPTED FROM [14])

Move Length
(Ml)

µ
Turning Angle

(Ta) γ

Brownian Walk Asymptotically
Gaussian-like 3 Uniform 0

Lévy Walk Power Law 1<µ≤3 Uniform 0
Correlated
Random Walk

Asymptotically
Gaussian-like 3 Wrapped

Cauchy 0≤γ≤1

Lévy Taxis Power Law 1<µ≤3 Wrapped
Cauchy 0≤γ≤1

algorithms presented in [14] as well as the values of their
key parameters.

The value of the key parameters µ and γ are chosen before
the start of the algorithm and they are kept constant during
a run. However, at each step, a random value r is picked in
a uniform distribution [0, 1], based on which Ml and Ta are
calculated. Once a new point in the space has been chosen
to be sampled, the agent walks towards it with a constant
speed.

All these search algorithms have been evaluated in [14]
using a chemical plume data set for different pairs of the key
parameters. The performance of each setup has been assessed
by measuring the detection success rate (i.e. percentage of
successful runs over a total of 50 runs) as well as the path
directness (i.e. the percentage ratio of the shortest distance
between the start point and the plume detection point over
the total traveled distance).

Comparing the performance of all these algorithms to-
gether shows that both LW and LT yield the best detection
success rate (≈ 85%) with µ = 2.8 and both CRW and
LT give the best path directness (≈ 10%) using γ = 0.05
[14]. This implies that LW have the best success rate but
tends to travel more to find the plume, compared to CRW.
On the other hand, CRW finds a more direct path to the
plume, but has a lower detection success rate. Yet, as LT
cleverly combines their governing laws, it brings together the
best success rate obtained from LW and the shortest traveled
distance from CRW.

In addition to its remarkable performance, LT has the
advantage of being environmentally adaptive: since it uses
the upwind angle as a bias for the navigation, the strategy is
continuously adapted to the environment of the experiment.
These two significant assets of the LT algorithm have been
the main inspirations for this work: using Lévy Taxis to
address the plume tracking phase by introducing chemo-taxis
and thus designing the new algorithm we called Adaptive
Lévy Taxis (ALT).

B. Adaptive Lévy Taxis

As mentioned earlier, Lévy Taxis has the advantage to
adapt the search operation to the environment by orienting
the agent to the upwind direction. However, the stochastic
nature of this algorithm prevents it from being successful in
the plume tracking phase, using only the wind direction as

bias. An agent performing LT in this phase would constantly
go out of the plume just after finding it and thus, would have
to restart the search for the plume all over again. Indeed,
LT does not perform chemo-taxis as its movements are not
influenced by odor cues. In order for the agent to stay in the
plume once it is found, this type of algorithms needs to adapt
the walk to the odor concentration as well, so it can find its
path to the source. Thus, we propose to dynamically change
the key parameters (i.e. µ and γ) of the ALT algorithm,
according to the odor gradients measured. This modification
enables ALT to address the odor plume tracking problem.

At each step, the odor concentration is measured and
compared to the one of the previous step to calculate the
local gradient ∇C between the current sampling position
and the previous one. We then use the value of the local
gradient to tune the key parameters of the governing laws
before taking a new step – instead of keeping their value
constant over the run which is the case in the original Lévy
Taxis algorithm developed in [14].

In long-term exposures (i.e. in the case where the robot
moves slowly and each sample is the average of many con-
centration measurements), when the average local gradient
is strongly positive, it theoretically means that the robot is
closer to the source compared to the previous step, so the
next step can be a long move straight towards the upwind
direction, i.e. exploitation. On the other hand, in the case
where the gradient is around zero, as the agent does not get
any strong clue about the variation of the plume, it takes
a short move in a random direction in order to promote
exploration. The former case corresponds to key parameters
µ and γ tending to 1, while in the latter µ tends to its
maximal value 3 and γ to its minimal value 0.

Eq. (3a) and Eq. (3b) show the relationship between the
gradient of odor concentration ∇C and the key parameters
µ and γ, while Fig. 1 and Fig. 2 present how the latter
influences the probability distribution of Ml and Ta.

µ =

{
µmin, if |∇C| > θ

µmax − |∇C|
θ (µmax − µmin), otherwise

(3a)

γ =

{
γmax, if |∇C| > θ

γmin + |∇C|
θ (γmax − γmin), otherwise

(3b)

Where ∇C is the gradient of odor concentration and θ the
threshold beyond which the values of µ and γ remain at µmin
and γmax respectively. These boundaries were set based on
Pasternak’s work [14].

Besides adapting key parameters during the run, the gra-
dient serves another purpose: as it is calculated after taking
one step, it brings information about the rightness of the last
decision on Turning Angle (Ta). Therefore, the heading of
the robot can be used as a complementary information to the
wind direction for the bias used in the calculation of the Ta.
For instance, if after taking one step the gradient is positive,
which means that the last direction was the right decision,
the angle for the next step should be biased not only by the
local wind direction but also by the forward direction. Thus,
in ALT, the bias for Ta is taken as an average of the heading



Fig. 1. Ml distribution according
to its governing parameter µ ∈ [1.1;
2.9]. Ml itself varies between 0.1
and 2.0.

Fig. 2. Ta distribution in function
of γ ∈ [0; 1]. γ = 0 yields a uni-
form distribution while γ = 1 yields
Ta = 0 anyway.

of the robot and the upwind angle, unlike LT which only
takes into account the local wind direction. This acts as a
low-pass filter that prevents the heading from varying too
much in one step.

However, in case the gradient is negative, which means
the last chosen direction was not a right one (the robot is
probably not heading towards the source), only the upwind
angle is used as bias. Therefore the robot tends to move
upwind to encounter a higher odor concentration.

Pseudo code of the Adaptive Lévy Taxis algorithm
while (step < stepLimit) do

Sample odor (cc) and read current position (pc)
Calculate odor gradient ∇C = cc − cp
Adapt parameters µ and γ using Eq. (3a) and Eq. (3b)
Calculate Ml and Ta using Eq. (1) and Eq. (2)
Apply Ml and Ta to pc to get next goal (Gx, Gy)
previous odor (cp) ← current odor (cc)
previous position (pp) ← current position (pc)
while ((Gx, Gy) is not reached) do

Move towards (Gx, Gy)
if (Source is found) then

Declare success and Terminate algorithm
else if (Wall is encountered) then

Declare failure and Terminate algorithm
end if

end while
step← step+ 1

end while
Declare failure

The pseudo-code above provides an overview of the
proposed ALT. In this algorithm, at the beginning of each
step, the position of the agent as well as the local wind
direction and the odor concentration are logged. Then the
odor gradient is calculated using the last step’s log. Using
this information, Ml and Ta are calculated to determine the
goal towards which the agent has to walk. Once the source
is found, which is determined thanks to an external input,
the agent declares success and terminates the algorithm.
In case the robot reaches the limits of the experimentation
area, it declares failure and terminates. On top of that, we
used a limit for the number of steps, for the agent to avoid

spending too much experimentation time wandering far from
the source. If this steps limit is reached, the algorithm also
declares failure.

C. Moth-inspired Algorithms

Many studies analyzed how moths use odor source lo-
calization to find food. Three main algorithms have already
been implemented and tested by Thomas Lochmatter in [5].

The algorithms, along with different parameters and ex-
pected trajectories, are presented in detail in this section.
All of them are dependent at least on two parameters: the
threshold Oth determining whether the robot is in or out of
the plume and the distance Dlost that a robot travels sampling
the field below the threshold Oth before considering being
out of the plume. Additionally, each algorithm has its own
set of parameters taken as the ones that came out as being
the most promising in Lochmatter’s work [5].

1) Casting Algorithm: The Casting algorithm performs
casting only. It relies on the wind direction as it zigzags with
a fixed angle ±β relative to the upwind direction. The agent
first moves upwind with an angle +β. If the plume is lost
for a distance greater than Dlost, the robot turns crosswind
until it finds back the plume. Then, it continues upwind but
this time heading −β. The same process continues until the
source is found. The value used for β angle is 20° which
proved to yield a good performance in [5].

2) Surge-Cast Algorithm: The Surge-Cast algorithm com-
bines two behaviors identified in moths: casting and upwind
surge. It slightly differs from the previous algorithm in the
sense that the robot moves upwind with an angle β always
equal to 0°. When the plume is lost, i.e. the robot has traveled
more than Dlost out of the plume, it turns +90° and heads
crosswind to find back the plume. If after traveling a distance
greater than Dcast (43 cm based on [5]) the plume is still not
found, the agent makes a +180° turn and heads crosswind
in the other direction to find the plume. In case the plume
is found while moving crosswind, the robot goes on a little
bit deeper into the plume before heading upwind again.

3) Surge-Spiral Algorithm: The Surge-Spiral algorithm
is based on spiraling and upwind surge behaviors. As the
previous algorithm, the agent starts moving upwind but, if
the plume is lost, it performs an Archimedean spiral to find
the plume back. The spiral is made by adding a quantity
DSpeed to the speed of one wheel and subtracting it from
the other one. This quantity DSpeed is called Differential
Speed and is calculated by Eq. (4),

DSpeed =
dgap√
step

(4)

with dgap the coefficient that defines how tight the spiral
is, and step the current discretization step. At each step,
the differential speed is thus calculated and summed to
or subtracted from the constant forward speed. The dgap
parameter has been set to 58 cm as suggested in [5].

Defining the Odor Threshold

In moth-inspired algorithms, one of the most important
parameter is the odor threshold Oth on which they rely to



determine whether the agent is in or out of the plume. In
previous studies [5], this threshold was determined intuitively
by visualizing the odor distribution along the cross section
of the wind tunnel where the operation starts. In our case,
as we worked with various environmental conditions and
needed to compare results of different setups, we derived
a mathematical approach based on the Advective-Diffusive
Equations (ADE) to determine this threshold in a rigorous
way. ADE are expressed in (5) with C the odor concentration
at a given location, t the time, D the diffusion coefficient, ~v
the wind speed and R the source or sink’s rate.

δC

δt
= ∇ · (D∇C)−∇ · (~vC) +R (5)

As demonstrated in [21], the profile at a downstream
distance x of the source in an open space is a Gaussian
function given by Eq. (6), where M is the mass input and
Dt the turbulent coefficient of diffusivity.

C(x, t) =
M√

4πDtt
· exp( −x

2

4Dtt
) (6)

The standard deviation σ of such a Gaussian is given in
Eq. (7).

σ =
√

2Dtt (7)

On this basis, we consider being out of the plume if the
concentration measured is below concentrations theoretically
present in the interval [µ̄-σ, µ̄+σ], with µ̄ a position on the
axis aligned with the mean direction of the wind passing by
the source. Considering a statistically representative data set
of samples taken along a long enough crosswind section of
length L, the probability of occurrence of a sample marked
as out is given by Eq. (8).

Pth = 1− 2σ

L
(8)

Pth is therefore considered as the probability threshold
to which a concentration Oth can be matched based on the
aforementioned data set collected.

A special caution has to be exercised as experiments are
led in a bounded environment. In order for the plume shape
not to be significantly affected by the walls separated by a
distance dW , Eq. (9) must be respected.

dW > 6σ (9)

As 99.73% of the plume is contained within the interval
[µ̄ − 3σ, µ̄ + 3σ], this condition implies that no more than
0.27% of the odor plume is stacked somewhere and ne-
glected. This condition was respected in all our experiments.

main drawbacks of this approach is that Dt is dependent
on many parameters and thus requires a special attention
to be determined trustfully. That is why, for each setup, a
constant threshold Pth was determined manually based on
a visualization of the cumulative distribution function based
on the samples taken across wind along the starting point
of the robot in the arena. Another one is that this relies on
the validity of the ADE, which is an approximation of the
microscopic stochastic reality. Yet, this allowed similarity
among all runs of a particular setup.

Fig. 3. Schema of the wind tunnel setup taken from [5].

Fig. 4. A picture of the wind tunnel
showing the pump, a camera and the odor
outlet. The white sheet of paper surround-
ing the source was used to allow the robot
know the source is reached when it rolls
over it.

Fig. 5. A Khepera IV robot
equipped with an odor sensing
board and an anemometer board
stacked on top.

III. EXPERIMENTAL EVALUATIONS

A. Environment

As the evaluation of ALT was led in various environmental
conditions involving setups that were, as far as we know, not
tested in other studies, it was necessary to repeat the same
experiments with reference algorithms (i.e. the three moth-
inspired algorithms) to assess the quality of performances
obtained. No comparisons were made with LT, as the two
algorithms do not address the same phase of the problem.

All algorithms were tested on Khepera IV robots [22] [23]
in a wind tunnel of 20 × 4 × 2 m3, setting the maximum
speed to 1 m/s and focusing on the upper part of the
channel, see Fig. 3-5. To enable Khepera IV robots to sense
odor concentrations, we used the chemical sensing and wind
sensor boards developed by Lochmatter [5].

ALT was evaluated in wind speeds ranging from 0.1 m/s
to 1.0 m/s. As odor source, we used an electric pumping
device vaporizing ethanol in the air through a thin pipe,
which allowed us to control the release rate in percentage.
The robot and the source were placed at the center of the
wind tunnel, initially 7 m far from each other, see Fig. 3.
Moreover, during the experiments, the position of the robot
has been tracked and logged using the positioning system
SwisTrack [24] which relies on 3 synchronized cameras
covering an 8 m long section of the wind tunnel. This data
has then been used to calculate performances. The latter is
the result of 10 runs for every configuration and metrics used
are presented below.



B. Metrics

Distance overhead and success rate are the two metrics
used to estimate algorithmic performances. Distance over-
head is the ratio of the distance traveled by the robot (dt)
over the length of the shortest path linking the start point
and the point where source is declared (du). This is easily
expressed mathematically in Eq. (10).

d0 =
dt
du

(10)

A lower d0 means a better performance and the best
achievable result is d0 = 1. One of the advantages of con-
sidering the distance overhead is that it does only indirectly
reflect the time spent in the experiment, but it does not
penalize an algorithm requiring lots of turns - which is time
consuming for a non-holonomic vehicle. Furthermore, this
takes out the actual robot’s speed profile over the path from
the metric.

The second metric, the success rate sr, is the ratio of the
number of successes (i.e. finding the source within a specific
time window without hurting a wall) over the total number
of experiments, as expressed in Eq. (11).

sr =
#success

#runs
(11)

C. Odor Sampling

Each time the robot needs to sample the odor concentra-
tion, it takes 5 samples and then retains the highest value in
order to filter noise. We chose a sampling rate of 10 Hz in
order to respect the response time of MiCS-5521 CO/VOC
sensors [25] in our active sniffing setup. Additionally, for
the results to be comparable in terms of measured absolute
odor concentration in all the configurations, a baseline (B0)
was sampled out of the plume before each run. This cancels
out the influence of sensor drift as well as temperature and
humidity variations on the data. The procedure is shown by
Eq. (12) which implies discarding the first 200 samples and
then subtracting 500 (arbitrary value) from the average of
800 other samples to work with lower yet positive values.

B0 =

1000∑
n=201

Sn
800
− 500 (12)

with Sn the nth raw sample. The obtained odor baseline B0

is then subtracted from all further samples. The relationship
between measurements and ppm units was not established.

D. Results

Fig. 6 provides typical trajectories for all four algorithms.
Figures 7, 8 and 9 show the performance of moth-inspired
algorithms in different setups. They were used to explore
environmental parameters ranges yielding to challenging
operational conditions for the algorithms. Box-plots represent
the distance overhead which is, in most cases, below a factor
2. The success rate for each setup is presented using bars at
the top.

All three moth-inspired algorithms have remarkable per-
formances in setups with high release rate (50%) and high

Fig. 6. Trajectories obtained in the wind tunnel with a wind speed of
1.0 m/s and a release rate of 10%: (a, e) Casting, (b, f) Surge-Cast,
(c, g) Surge-Spiral and (d, h) Adaptive Lévy Taxis algorithm. (a-d) show
successful runs (not necessarily the best one in terms of performance) while
(e-h) show failed runs.

Fig. 7. Performances of the Casting algorithm in the wind tunnel.

wind speed (≥ 0.5 m/s). This is due to the shape of
the plume in such conditions where the source emits a fair
amount of odor patches and the wind folds the plume in the
center. Thus, it is easily tracked in these conditions. This is
the common point of all the three algorithms; however, each
of them reacts differently to more critical conditions.

Fig. 7 shows that Casting is very sensitive to extreme
environmental conditions. In our experiments, it has been
unsuccessful when the wind speed was low (0.1 m/s) or
when the release rate of the source was set as low as 10%.
On the other hand, in case the conditions are suitable for
this algorithm to work, it yields remarkable results, both in
terms of success rate and distance overhead, as we can see for
release rate ≥ 30% and wind speed ≥ 0.5 m/s. Fig. 6 (a)



Fig. 8. Performances of Surge-Cast algorithm in the wind tunnel.

Fig. 9. Performances of Surge-Spiral algorithm in the wind tunnel.

and (e) refer to trajectories obtained with this algorithm. In
case of a rich odor plume, the agent needs to make very little
maneuvering to reach the source. But in case of a sparse
plume, it might lose the plume very easily and do not find
it again, which leads to failure (the case in Fig. 6 (e)).

The results of Surge-Cast algorithm are also affected by
low release rate and low wind speed, according to Fig. 8.
However, as this algorithm makes the agent follow the wind
speed without any shift, it has more chances in extreme
setups, compared to Casting, as it starts downstream of the
source. Surge-Cast has the best distance overhead of the three
moth-inspired algorithms and performed particularly well in
lowest release rate (10%) and lowest wind speed (0.1 m/s).
Fig. 6 (b) and (f) show two exemplar trajectories of this
algorithm.

The Surge-Spiral algorithm, unlike the two others,

Fig. 10. Performances of ALT algorithm in the wind tunnel.

yields outstanding success rates in all the setups, ac-
cording to Fig. 9. In case of difficult setups (e.g., wind
speed = 0.1 m/s and release rate = 50%), in which Casting
and Surge-Cast fail in the majority of the experiments, spiral-
ing has a satisfactory success rate (≥ 7/10), but a relatively
high distance overhead. In fact, this spiraling strategy helps
the robot to eventually re-acquire the plume after losing it.
However, it also implies taking more steps, compared to the
two previous algorithms, which lead to a higher distance
overhead. Fig. 6 (c) shows how Surge-Spiral manages to
find the plume back using a simple spiral trajectory, while
Fig. 6 (g) shows how it sometimes fails to do so.

Fig. 6 (d) and (h) show two trajectories obtained in two
experiments (a success and a failure) by our newly devel-
oped ALT algorithm. The numerical results are presented
in Fig. 10. Based on the information obtained from the
reference methods, different parameters combinations were
tested, giving priority to extreme release rates. As it is shown,
the average distance overhead in all setups is lower than 1.2
(i.e. close to 1.0 that is the best possible value). In addition,
ALT shows satisfactory results (≥ 5/10) in terms of success
rate in all configurations. The consistency of these good
results in all the setups is a remarkable performance, not
achieved by moth-inspired algorithms.

IV. DISCUSSION

As mentioned while reporting the results of experiments,
ALT yielded remarkable performance in all setups, which is
an advantage over moth-inspired algorithms that are sensitive
to environmental conditions. Moreover, this new algorithm
presents another asset: if encountering walls was not con-



sidered as a failure, then the only limit of this algorithm
would be the one applied to the number of steps. In case of a
wall free arena, a robot performing ALT, could eventually be
able to reacquire the plume after losing it (yielding to 100%
success rate), thanks to the stochastic search properties of this
algorithm. Indeed, convergence in 3D was demonstrated in
[26] for a Lévy Flight. In contrast, moth-inspired algorithms,
such as Casting or Surge-Cast, once they lose the plume, have
severe difficulties to re-acquire it. The only moth-inspired
competitive algorithm from this perspective is the Surge-
Spiral, an algorithm which would be also 100% successful in
case of a wall-free arena at the price of a very high distance
overhead. Probably, only a smart combination of casting,
surging, and spiraling, as it actually happens in real moths,
would be competitive with our ALT algorithm in all different
environmental conditions.

V. CONCLUSION

A new algorithm called Adaptive Lévy Taxis (ALT) has
been developed to address the plume tracking in odor
source localization. It has the novelty to yield consistent
performance in different environmental conditions, unlike
previous algorithms of the bio-inspired category, such as
moth-inspired algorithms. The latter have also been reviewed
in this work by improving their odor threshold determination
process. The new ALT and the well-known moth-inspired
algorithms have all been examined in extreme environmental
conditions and their results have been thoroughly reported
and discussed.

Thanks to its consistency, this new ALT algorithm can find
its application in environments where atmospheric conditions
are either unknown or too complex for other algorithms.

Finally, to go further with this new approach of ALT, one
can try to calculate the odor gradient using more than two
samples. This may increase the performance of the algorithm.
Furthermore, a collaborative strategy based on ALT could be
developed, involving multiple agents sharing odor samples.
This would allow to calculate the odor gradient every single
step, replacing the need of memory by communication.
Finally, the same approach can be implemented for a drone
in order to perform odor source localization in 3D.
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