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INTRODUCTION
In the  last  decade,  the number of research works published in the  area  of  artificial  olfaction has

increased notably, with important advances in chemical sensor technology, bio-inspired and engineering
based e-noses, and a broad range of algorithms to counteract drift and environmental cross-sensitivity, as
well as to improve efficiency in the recognition of chemical volatiles. Likewise, a promising transfer from
laboratories to real world applications has started, which despite the long and challenging road ahead,
vows for granting this forgotten sense the importance it has in the animal kingdom (Doty, 2015).

In this regard, mobile robot olfaction (MRO), the branch of robotics that addresses the integration of
gas and chemical sensors on-board mobile platforms, has also gained substantial relevance in the scientific
community due to the interesting advantages a mobile robot brings when compared with the traditional
approach based on networks of  static e-noses  (Tsujita,  Yoshino,  Ishida,  & Moriizumi,  2005).  First,  a
mobile robot usually carries only one e-nose, therefore a more sophisticated and powerful  (and more
expensive) model can be used, enabling the analysis of more complex compounds and the detection of
faster  changes in  the  gas  concentration  (Gonzalez-Jimenez,  Monroy,  Garcia,  & Blanco,  2011;  Ishida,
Kobayashi, Nakamoto, & Moriizumi, 1999; Sanchez-Garrido, Monroy, & Gonzalez-Jimenez, 2014; Werle
et al., 2002).  The calibration phase of the sensing devices is greatly simplified because of the reduced
number of e-noses, something that represents an important issue in large gas sensing networks (Esposito et
al., 2016). Also, MRO systems permit sampling at higher (and adaptive) resolutions, while still providing
the  required  accurate  localization  of  each  measurement.  Finally,  a  mobile  robot  can  leverage
environmental information provided by other sensors on board (anemometers, cameras, laser scanners,
etc.) to enhance the olfaction task, for example by detecting obstacles or changes in the environmental
conditions, and to process such data in an online fashion, allowing decision making.

Three are the main fields where gas-sensitive mobile robots have been proposed: volatile chemical
recognition,  which deals with the problem of identifying which of a set  of  categories a new volatile
sample belongs to, gas distribution mapping, where the objective is to obtain a truthful representation of
how volatiles  are  dispersed in  the  inspected area and their  respective concentrations,  and gas  source
localization, where the robot is commanded to localize the emission sources. In this chapter, achievements
made to each of these three fields are reviewed after a brief overview of the specific challenges of gas-
sensitive mobile robots.

SPECIFIC CHALLENGES OF GAS-SENSITIVE MOBILE ROBOTS

The  development  of  mobile  robot  olfaction  systems  is  not  a  trivial  problem,  and  despite  recent
achievements, the potential of gas-sensitive mobile robots has yet to be fully realized. Besides the inherent
complexity of artificial olfaction, new difficulties emerge when performing olfaction with a mobile robot.
In this section, a review of the main issues and technical solutions proposed so far is presented.

Chemical Sensors

While most animals, from simple bacteria to mammals, are empowered with a highly developed and
sharp sense of smell, sensors for robots with capabilities close to those of animals are not yet available.
One of their main drawbacks is related to the response speed. While the response time of an animal’s
chemoreceptor is in the order of 100ms (Beer & Ritzmann, 1993), typical gas sensors need several tens of
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seconds before their responses reach the steady state values (Pearce, Schiffman, Nagle, & Gardner, 2006).
For illustration, Figure 1 shows the rise and recovery times of a conventional metal oxide gas sensor when
exposed to a rapid excitation. As reported in (Monroy, Gonzalez-Jimenez, & Blanco, 2012) the adopted
solution to palliate this negative effect has been, in most cases, to slow down the locomotion of the robot
to a few cm/s, as in (Ishida, Suetsugu, Nakamoto, & Moriizumi, 1994). Yet, over the past years, different
hardware and software approaches have been proposed to overcome to a certain extent this important
limitation (Di Lello, Trincavelli, Bruyninckx, & De Laet, 2014; Fonollosa, Sheik, Huerta, & Marco, 2015;
Gonzalez-Jimenez, Monroy, & Blanco, 2011), enabling a higher speed for the robot and consequently
improving its effectiveness in real world applications.

Figure 1. Rise and recovery phases of a metal oxide gas sensor response to a step gas concentration.
(A) 2D plot of the sensor response over time, where the shaded-blue region denotes the sensor exposure to

the analyte. (B) 3D gas distribution map generated from the readings of the gas sensor carried by a
mobile robot along a corridor. It can be appreciated how the recovery phase after the gas exposure last

for tens of seconds.

Slow  sensor  response  also  poses  a  significant  challenge  when  performing  volatile  chemical
discrimination. Gases disperse chaotically, led by turbulent advection, resulting in a concentration field
that consists of fluctuating, intermittent patches of high gas concentration (Balkovsky & Shraiman, 2002).
As a consequence, the sensor signals to be processed are noisy and dominated by the signal transient
component. Patterns obtained are consequently distorted because sensors with different selectivities tend
to have different response times (Schleif et al., 2016). Despite this, some recent works have addressed the
issue, presenting different perspectives which will be latter covered in this book.

Absence of Ground Truth

In real, uncontrolled environments, both indoor and outdoor, the dispersion of gases is dominated by
turbulent flows. A turbulent flow is that in which fluid particles move in a random and chaotic way within
the flow field  (Sklavounos & Rigas, 2004). Furthermore, environmental variables such as temperature,
pressure or humidity, as well as the airflow disruptions caused by the own robot movement, also have an
important impact in the gas dispersion. All this entails the impossibility to know the exact behavior of a
volatile release, and consequently, to have a ground truth of the nature and concentration of the chemical
volatiles. This undoubtedly represents one of the main drawbacks for conducting real experimentation,
and usually forces researchers to consider semi-controlled scenarios from which ground truth estimations
can be reasonable assumed (Monroy & Gonzalez-Jimenez, 2017). 

To cope with this problem, simulation tools with the capacity to properly handle the gas dispersion
phenomenon (e.g. based on computation fluid dynamics) can be used to perform extensive evaluations
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before moving to experimental trials. While there exist a few implementations of robotics-oriented gas
dispersion  simulation  frameworks,  most  of  them consider  simplified  environments,  are  developed  in
outdated robotic software platforms or rely on expensive, external software packages (Cabrita, Sousa, &
Marques, 2010; Monroy, Blanco, & Gonzalez-Jimenez, 2013; Pashami, Asadi, & Lilienthal, 2010).  One
exception is the newly developed GADEN simulator  (Monroy, Hernandez-Bennetts, Fan, Lilienthal, &
Gonzalez-Jimenez, 2017), an open source gas dispersion simulation framework aimed to mobile robotic
olfaction applications. GADEN enables the simulation of gas dispersal in any 3D environment (including
obstacles and realistic configurations), together with mobile robotic platforms and sensing devices (e.g.
MOX sensors,  anemometers,  etc.).  This  framework is  built  upon the robot  operating  system (ROS),
arguably, the most widespread robotics OS used in academia and industry.

Power Consumption, Weight and Size

A common characteristic of most current mobile robots is the fact that they run on batteries. This
entails the problem of balancing power consumption, payload and runtime, which becomes paramount for
unmanned aerial vehicles (UAVs). In this context, and far from the bulky and power-hungry laboratory
sensing devices (e.g. mass spectrometers), e-nose designs tailored for mobile robots have been proposed
(Aleixandre et al.,  2008; Gonzalez-Jimenez et al., 2011; Sanchez-Garrido et al., 2014) .  These robotic-
oriented e-noses, some of which are illustrated in Figure 2, seek reducing energy usage and weight, while
maintaining a decent efficiency in the detection and characterization of the chemical volatiles. However,
the precision and reliability of these systems is, in most cases, far from their laboratory counterparts.

Figure 2. Pictures of two portable e-nose designs developed for mobile robotics. (A) The multi-
chamber electronic nose - MCE-nose (Gonzalez-Jimenez et al., 2011), (B-C) prototype and detailed

inspection of a modular e-nose containing eight smart gas detector modules (Sanchez-Garrido et al.,
2014).
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GAS CLASSIFICATION WITH MOBILE ROBOTS

The classification of volatile substances is, possibly, the most studied application of e-noses among
the scientific community. It plays an important role for many industrial and medical applications including
disease detection and diagnosis in medicine, quality control in food processing chains, finding drugs and
explosives, or monitoring of pollution levels in air. Traditionally, this has been performed by analyzing the
response of the array of gas sensors that compose the e-nose, when exposed to pulse-like gas excitations
under well-controlled measurement conditions (i.e. temperature, humidity, exposure time, etc.) (Schaller,
Bosset, & Escher, 1998; Vergara et al., 2012). Yet, from the variety of potential applications that may
benefit from gas classification, some of them require to measure the environment continuously and at
different  locations.  They  include,  among  others,  city  odor  mapping,  pollution  monitoring  or  leak
detection.  Mobile  platforms  can  indeed  contribute  to  this  problem by  trading  off  temporal  coverage
against spatial coverage, enabling a high spatial resolution across large areas without the need for a large
number of sensing devices.

As mentioned previously, the discrimination of gases performed with a gas-sensitive robot presents a
number of additional  challenges when compared to standard analyte identification,  mostly due to the
differences in the measurement conditions and the fact that the sensor signals to be processed are noisy
and dominated by the signal transient behavior. Most of the research in this direction has focused on three
topics: impact analysis of the motion speed of the sensing device, study of which robot trajectory yields
higher classification rates, and exploration of new feature sets to feed the pattern recognition algorithm. In
this context,  one of  the  first  works was presented by Trincavelli  and coauthors  (Trincavelli,  Lout,  &
Coradeschi, 2009), who used a robot carrying an e-nose and conducted a preliminary investigation on the
most  suitable  path to  optimize the classification accuracy,  taking into account  the possible effects of
environmental variables on the signals collected along that path. The authors concluded that the movement
strategy  of  the  robot  clearly  affects  the  properties  of  the  e-nose  signals,  therefore  being  possible  to
enhance the classification performance by optimizing the robot trajectory. 

On this same topic, Monroy and Gonzalez-Jimenez  (Monroy & Gonzalez-Jimenez, 2017) empirically
analyzed the impact of the robot motion speed on the classification performance. The authors presented a
large experimental dataset composed of 240 inspections of an indoor scenario, driving a mobile robot at
four different speeds, under the presence of two gas sources. Two questions were addressed: (i) What is
the relationship (if  any)  between the motion speed of  an e-nose which is  continuously sampling the
environment and the classification accuracy?, and (ii) How must the classifier be trained to get the best
possible performance?. The authors reaffirmed the conclusions from (Trincavelli et al., 2009), stating that
an important deterioration in the classification performance (up to 30% in some of the configurations
tested) was appreciated when the e-nose was sampling the environment in movement. Furthermore, they
concluded that training the classifier with data collected at a few different motion speeds (from the range
of possible velocities) should be enough to palliate this negative effect. Thus, and according to this study,
training of the pattern recognition algorithm must be carried out with data collected in motion, in order to
not deteriorate too much the classification performance. 

An interesting work reaching similar conclusions is that presented by Vergara et al.  (Vergara et al.,
2013), which does not employ an e-nose in motion to gather the gas samples, but considers different wind
velocities (which may be seen as the counterpart of moving the sensing device). The authors compiled an
extensive dataset with nine static e-noses placed within a wind tunnel to evaluate the performance of
several  sensor  arrays  working  in  open  sampling  settings.  Different  locations  of  the  e-noses,  heater
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voltages, wind speeds, and chemical volatiles compose the list of variables that make this dataset one of
the most complete currently available. Particularly, two important conclusions where highlighted by the
authors with regard to the wind speed: the classification performance was affected by the wind speed used
during training, and that, in order to increase the robustness of the system against air flow variations, one
may want to train the system at all the expected system conditions.  

Naturally, not only the motion of the gas sensing device must be taken into account. As reported in
(Trincavelli & Loutfi, 2010), the feature selection process is also of great importance. In this work the
authors analyzed multiple features to determine those which are more robust to changes in the sampling
trajectory and less dependent of the experimental setup. Two feature selection algorithms were proposed
and compared to improve the performance of an olfactory robotic system. Experiments were performed in
three different scenarios (two indoor and one outdoor) with four moving strategies, attempting to vary the
interaction of the robot with a possible plume. 

The  classification  of  multiple  volatile  substances  with  an  e-nose  in  motion  is  still  an  open  and
challenging research topic. Recent works keep proposing new feature selection algorithms and feature sets
to enhance the performance, as in (Hernandez-Bennetts, Schaffernicht, & Pomareda-Ses, 2014) where the
authors proposed to employ the sensor amplitude as an additional feature, or the application of statistical
tools to exploit the temporal correlation of the e-nose data (Monroy & Gonzalez-Jimenez, 2015; Monroy,
Palomo, Lopez-Rubio, & Gonzalez-Jimenez, 2016). Furthermore, like in the case of a network of fixed e-
nose, the calibration and drift  compensation of the sensors composing the e-nose is also an important
drawback to consider. In this regard, works like (De Vito, Massera, Piga, Martinotto, & Di Francia, 2008;
Esposito et al., 2016) have presented different approaches to cross-calibrate different e-noses without the
need to perform a tedious and costly laboratory calibration. These proposals are indeed fundamental when
the MRO system is to be deployed for long times (drift and ageing), or when multiple mobile e-noses are
set up simultaneously (Hasenfratz, 2015).

Related to environmental  monitoring applications,  there  are  works where a  gas  measuring device
sensing the air quality is carried by a person (Zappi, Bales, Park, Griswold, & Šimuni, 2012), a bike (Elen
et al., 2013; Monroy, Gonzalez-Jimenez, & Sanchez-Garrido, 2014), public transport vehicles (Hasenfratz
et  al.,  2015) or  even drones  (Neumann, Bartholmai,  Schiller,  Wiggerich,  & Manolov,  2010;  Pobkrut,
Eamsa-ard, & Kerdcharoen, 2016). Despite sampling the environment in motion, most of the works does
not perform a classification phase to discriminate the type of gas, but rather employs an array of gas
sensors with disjoint selectivity (i.e. one sensor for each analyte to monitor, and usually discarding the
cross-selectivity  among  classes).  An  interesting  remaining  question  is  whether  the  concentration
measurements of the different pollutants can also be improved by taking into account the motion speed of
the sensing device.

GAS DISTRIBUTION MAPPING

Gas distribution mapping (GDM) is the process of creating a representation of how gases spread in an
environment  from  a  set  of  spatially  and  temporally  distributed  measurements  of  relevant  variables.
Foremost,  these measurements include the gas concentration itself,  but may also comprise wind flow,
pressure or temperature, among other representative variables. 

Many gas distribution models were developed back in the early 90s to tackle atmospheric dispersion
(Holmes & Morawska, 2006). These models estimate the distribution of airborne materials at the different
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atmospheric-scales given a set of environmental and topographic conditions. Yet,  such models are not
suitable for local scales, not being designed to capture all the relevant aspects of gas propagation with a
sufficient level of detail, as in the case of complex indoor and outdoor settings. Given that analytical
solutions are intractable, it  is then common practice to divide the space into a regular lattice of cells
(gridmap), and then estimate a probability density function (pdf) of the gas concentration at each cell of
the grid (see Figure 3). A crucial aspect when updating this gridmap is the fact that the majority of current
e-noses are point sampling devices, that is, observations are only representative of the very near air around
the e-nose. Moreover, given the ephemeral nature of gases (due to the mechanisms that rule gas dispersion
(Shraiman & Siggia, 2000), the information conveyed by a given measurement quickly vanishes as time
goes by. The latter is the reason why most GDM approaches aims at modeling the time-averaged gas
distribution  (Lilienthal,  Reggente, Trincavelli,  Blanco, & Gonzalez-Jimenez, 2009; Loutfi,  Coradeschi,
Lilienthal,  &  Gonzalez-Jimenez,  2008;  Stachniss,  Plagemann,  &  Lilienthal,  2009),  being  the  works
presented in  (Asadi, Pashami, Loutfi, Lilienthal, & Gouma, 2011; Marjovi & Marques, 2014; Monroy,
Blanco, & Gonzalez-Jimenez, 2016) the only notable exceptions.

Figure 3. (A) The 2D map is commonly represented by a lattice where each cell keeps the estimate of
gas concentration by means of a probability density function, represented here as a Gaussian density in

the vertical axis (From (Blanco, Monroy, Gonzalez-Jimenez, & Lilienthal, 2013)).

It is the task of a GDM algorithm to extrapolate sparse measurements, both spatially and temporally,
to obtain an estimation of the gas dispersal for the entire environment. Several efforts addressing this
problem have been proposed in the robotics literature. Farell et al., (Farrell, Pang, & Li, 2003) presented a
hidden Markov model  based approach to estimate the location of odor source based on mapping the
plume. Marques et al. (Marques, Martins, & de Almeida, 2005) proposed a mapping methodology based
on neural network regression and an advection-diffusion model by means of a reduced order Kalman
filter. Lilienthal and Duckett  (Lilienthal & Duckett, 2004) presented a grid-mapping technique based on
Gaussian  density  functions,  modeling  the  likelihood of  each  observation  in  the  grid  as  a  decreasing
Normal distribution with respect to the distance from the point of measurement. This method was later
extended for the case of multiple odor sources  (Loutfi et al., 2008) and to the three-dimensional case
(Reggente, Lilienthal, Pardo, & Sberveglieri, 2009). It was further shown how gas distribution mapping
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methods can be embedded into a Blackwellized particle filter to account for the uncertainty about the
position of the robot (Lilienthal, Loutfi, Blanco, Galindo, & Gonzalez-Jimenez, 2007).

Stressing the importance that probability and uncertainty have on any mobile robotic system, recent
approaches  provide  in  addition  to  the  most-likely  value  of  the  gas  distribution,  an  estimate  of  the
associated uncertainty (via a variance value as illustrated in Figure 4). Stachniss et al.  (Stachniss et al.,
2009) proposed an approach using Gaussian process mixture models (GPM), treating gas distribution
modeling as a regression problem. The components of the mixture model and the gating function, which
decides to what component a data point belongs, were learned using Expectation Maximization (EM). At
the same time, in (Lilienthal, Reggente, Trincavelli, Blanco, & Gonzalez-Jimenez, 2009), Lilienthal et al.
carried out two parallel estimation processes, one for the mean and another for the variance, understanding
the latter as the variability of the gas readings, not the uncertainty in the estimation which is the standard
in  probabilistic  estimators.  Results  demonstrated  that  although  providing  similar  maps  to  previous
approaches, this method had the advantage of scaling better to larger training datasets and to possess a
simpler learning procedure. In (Blanco et al., 2013), an approach to obtain the variance of each map cell is
proposed employing a sparsified Kalman filter. 

Figure 4. Example of a gas distribution map generated by a mobile robot. (A) Occupancy map of the
environment (white represents obstacles and the source location is depicted as a cross inscribed within a

circle) and robot path during the inspection (white-solid line). (B) Map of the estimated gas concentration
and (C) associated uncertainty.(Adapted from (Monroy, Blanco, et al., 2016)).

Exploiting  the  availability  of  other  sensors  onboard  the  robot,  some  works  have  considered  the
presence  of  obstacles  in  the  environment  (Monroy,  Blanco,  et  al.,  2016),  introduced  wind  flow
measurements as secondary variables (Reggente & Lilienthal, 2010), and even considered the modeling of
homologous wind maps to exploit the strong correlation between gas dispersion and wind flow conditions
(Monroy, Jaimez, & Gonzalez-Jimenez, 2017). With respect the number of robots, it is common practice
to face GDM with a swarm of robots  (Marjovi & Marques, 2014; Nguyen, Kodagoda, Ranasinghe, &
Dissanayake, 2014). This approach enables measuring multiple locations simultaneously, but introduces
the  problems of  cross-calibration between the different  e-noses,  and the  communication between the
robots in the swarm. These problems are also shared by applications that mount multiple e-noses on other
mobile platforms, such as buses  (Hasenfratz, 2015), or bikes  (Zappi et al., 2012) for creating pollution
maps.
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Up to date multiple approaches based on different  mathematical  and statistical  models have been
presented.  Yet,  a  key hurdle  to  provide a  formal  and serious  comparison among them is  the  lack of
experimental datasets with ground truth.  This is a one of the main limitations for the development of
precise and trustable GDM algorithms in real robots. Waiting for a breakthrough in the chemical sensing
technology  that  could  provide  such  ground  truth,  the  only  intermediate  solution  is  to  employ
computational fluid dynamic tools which, not modeling whole the dispersion phenomena, allow us to
gather reasonable accurate simulated data with ground truth.

GAS SOURCE LOCALIZATION

Gas source localization is likely the most studied research area and direct application of an olfactory
mobile robot. Traditionally, it has been divided into three stages: first, explore the environment looking for
the presence of a chemical  release,  then search for the source guided by chemical  and other sensing
stimuli, and finally the so called source declaration, that is, verification of the identified source location.
The first stage can be considered a trigger event, not being usually carried as an active stage, but run on
the background while the robot is performing other non-related olfaction operations such as patrolling,
exploration,  delivering, etc. If  while performing these tasks,  the e-nose on-board the robot detects an
abnormal concentration level, then the gas source localization task is triggered and the search process
begin. Therefore, the rest of this section will focus on the other two stages, the search and declaration of a
gas source. More detailed information can be found in the review (Kowadlo & Russell, 2008).

Source Search

This stage involves searching of the gas release point, primarily relying on the chemical sensed data,
but also on the wind flow or the objects and structure of the scenario. The success of this stage heavily
relies on how well the given algorithm adjust itself to the environmental conditions, which determine the
way in which odor is dispersed. In this sense, gas source localization strategies can be classified into those
designed to work under the presence of a chemical plume, also known as plume tracking strategies, and
those which do not relay on the existence of a well formed, downwind plume.

Plume Tracking

At medium Reynolds values, odor dispersal occurs mainly through carriage by the background fluid
currents (advection), causing an odor plume to form downflow of the source (Kowadlo & Russell, 2008).
In most real scenarios, this plume is not straight and continuous, but given the time-varying nature of flow
fields and the predominance of turbulence over diffusion, plumes tend to meander, become patchy and, to
a far lesser extent, spread out. This results in peak concentration values much higher than the average, and
fluctuations in the instantaneous gradients in magnitude and direction. Furthermore, the plume structure
can even change if the direction of air or water flow shifts considerably. Therefore, occasional failures are
almost inevitable in the tracking of plumes (Pearce et al., 2006), being a key for success not only the track
of the plume but also the plume recovery mechanisms to relocate the lost plume in case of failure.

As  in  the  case  of  gas  distribution  mapping,  research  on plume tracking  robots  started with pure
chemotactic approaches  (Kazadi, Goodman, Tsikata, Green, & Lin, 2000; Menzel & Goschnick, 2000).
They involve taking measurements of the chemical concentration at more than one spatially separated
position, and determining the chemical gradient, which is used to move towards the source (see Figure 5).
In most occasions, algorithms for searching for an odor source are based on local sensing and the reactive
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behaviors of microbes, insects, or crustaceans. Such strategies involve tracking the plume along its entire
length,  which can be a limitation as it  is time consuming and may not  always be possible.  Proposed
strategies include Braitenberg approaches  (Lilienthal & Duckett, 2003a; Russell, 2003), where a pair of
bilateral chemical sensors, each directly controlling the speed of a wheel, either the opposite wheel in
cross-coupling, or the wheel on the same side, are used to reach the source; Algorithms based on  E. coli
bacteria  (Marques, Nunes, & de Almeida, 2002), rooted in gradient navigation through the plume; and
other methods,  like in (Ishida, Zhu, Johansson, & Moriizumi, 2004), exploited the airflow obstructions
generated  by  the  robot  shape,  and  the  consequent  disparity  between  the  responses  of  upwind  and
downwind sensors, to determine the moving direction. Experimental results have demonstrated that pure
chemotactic  approaches  are  relatively  ineffective  under  real  conditions  where  turbulence  dominates,
attributing  their  low  success  rate  to  the  susceptibility  of  the  algorithms  to  rapid  fluctuations  in  the
chemical concentration and the fact that the concentration gradient along the plume centerline is extremely
small except in the vicinity of the source.

Figure 5. Illustration of chemotactic plume tracking approaches. (A) Navigation based on
concentration gradients detected by comparison of the left and right chemical sensor outputs. (B) Three

different plume recovery algorithms in case of lost. Robot 1 is programmed to back up when neither
sensor detects chemical. Robot 2 performs random walk. Robot 3 mimics the behavior of a male silkworm
moth. When one of the sensors is stimulated, the robot surges in that direction to track a plume. When the
chemical signal is lost, the robot performs zigzag walk and circling to relocate the lost plume. (Adapted

from (Pearce et al., 2006)).

Performance was then improved by combining chemotaxis with anemotaxis,  exploiting the strong
directional cue that the flow direction brings when acting under turbulent flows. Several methods have
been  proposed  to  exploit  information  from  chemical  concentration  and  fluid  flow  measurements
(anemometric data), among them is the dung beetle or zigzag method, which involves moving upwind
within  the  odor  plume  in  a  zigzagging  fashion  (see  Figure  6A).  Each  time  the  plume  boundary  is
encountered, the robot turns back into the plume. Reported implementations include that in (Ishida et al.,
1999), which  employed a basic “odor probe” composed of four pairs of a semiconductor gas sensor and a
hot  wire  anemometer,  each  pair  spaced  90º  with  respect  the  other,  (Farrell,  Pang,  &  Li,  2005) for
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underwater  robots,  or  (Russell,  2006) for  the  case  of  3D.  Other  approaches  exploiting  anemotactic
information  are  the  plume-center  upwind search  (Ishida,  Nakayama,  Nakamoto,  & Moriizumi,  2005;
Marques, Almeida, & de Almeida, 2003) or the silkworm moth strategy, also known as the surge-cast
algorithm (Lochmatter & Martinoli, 2009b). The former involves moving towards the center of the plume
whilst tracking upwind, assuming that higher concentrations are likely to be found at the plume centerline.
The latter is based on the studied behavior of how male silkworm moths locate female mates by tracking a
pheromone release. In a nutshell, a robot in the plume moves straight upwind until it loses the plume
(surge phase), then, it tries to reacquire the plume by moving cross-wind (cast phase), first on one side and
then on the other (see Figure 6B). Different versions of this  behavior have been presented both with
procedural algorithms, and with neural networks (Pyk et al., 2006). 

Figure 6. Illustration of (A) the zigzag algorithm (Ishida et al., 1994) and (B) the surge-cast
algorithm (Lochmatter & Martinoli, 2009b). The robot continuously measures the gas concentration, and

at some points (indicated by stars) also the wind direction. (Adapted from (Neumann, Hernandez-
Bennetts, Lilienthal, Bartholmai, & Schiller, 2013)).

As reported in (Lochmatter & Martinoli, 2009a), the main drawback of these anemotactic strategies is
the fact that under realistic, turbulent environments, a great difficulty exists in accurately determining the
wind flow direction.  The latter  entails,  in  most  occasions,  a  major  impact  on the success  rate  when
compared  with  laboratory  results.  In  addition,  obstacles  will  not  only  negatively  influence  the
performance, but require, in many cases, to substantially modify the algorithm  (Lochmatter,  Heiniger,
Martinoli, Pardo, & Sberveglieri, 2009).

Turbulence Dominated Search

In  most  real  environments,  the  strong  predominance  of  turbulence  as  the  dispersal  mechanism,
together with the presence of obstacles, lead to chaotic dispersion patterns where the chemical downwind
plume breaks down into intermittent gas patches. Moreover, for indoor scenarios, the low strength of wind
flows does not guarantee the formation of chemical plumes, being the movement of other entities (e.g.
people, or the own robot) responsible of the chaotic dispersion of the gases. This entails that most plume
tracking algorithms are unable to localize the source, as there is not such a thing as a chemical plume to
follow.

Researchers have attempted to overcome this limitation by developing systems that go beyond purely
reactive control, for example by exploiting other information sources available on the mobile robot. One
of the first alternatives to appear was the combination of traditional strategies with vision based systems.
This approach enables robots to identify candidates from a distance, thus dramatically diminishing the
effective search space and greatly enhancing the ability to locate an odor source when a downwind plume
is not well formed or even inexistent. Yet, only very basic algorithms have been proposed so far (Ishida,
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Tanaka, Taniguchi, & Moriizumi, 2004; Loutfi, Coradeschi, Karlsson, & Broxvall, 2004), most of them
relaying on strong assumptions about knowledge of the source shape or color, for detection of the visual
candidates. 

Moreover,  some engineered plume-tracing strategies  have also been presented,  such as  fluxotaxis
(Zarzhitsky, Spears, Thayer, & Spears, 2004), a multirobot based approach in which computational fluid
dynamics techniques are applied, infotaxis  (Vergassola, Villermaux, & Shraiman, 2007) a gradient-free
method exploiting the expected entropy of  future  samples  to  guide the robot  search,  or  the  SPIRAL
algorithm (Ferri et al., 2009), a source location strategy for indoor environments with no strong airflows
(see Figure 7). More recently, and facing more challenging environmental conditions such as time-varying
airflows, Li et al proposed a novel probabilistic approach based on a particle filter (J. G. Li, Meng, Wang,
& Zeng, 2011). Their main contribution was the estimation of the chemical source location while the robot
performs exploratory behaviors, not necessarily requiring it to navigate towards it. In this line, Ping et al
proposed a behavior-action based method (Ping, Xiao-fang, & Ai-dong, 2014), combining multiple search
strategies  with visual  recognition,  and in  (Hernandez-Bennetts,  Schaffernicht,  Stoyanov,  Lilienthal,  &
Trincavelli, 2014) and (Bonow & Kroll, 2013), the authors proposed the use of a TDLAS range gas sensor
to localize a gas source by applying tomography principles.

Figure 7. Illustration of the SPIRAL algorithm for gas source localization. The robot performs spiral
movements, stopping to sample the gas concentration. If current measurements suggest that the robot is

closer to the source (referred as a hit), it starts a new spiral movement. 
(Adapted from (Ferri et al., 2009)).

Finally,  as  introduced  in  previous  sections,  gas  distribution  mapping  techniques  have  also  been
proposed to pinpoint the location of one or multiple chemical sources  (Lilienthal et al., 2009; Monroy,
Blanco, et al., 2016). These generic methods do not rely on the presence of a plume, neither on strong
assumptions about the environmental conditions, however, their limitation resides in the time necessary to
sweep the entire environment, and their bad scalability as the environment enlarges. 

Source Declaration

The declaration of the chemical source corresponds to the last phase of the gas source localization
task. Its purpose is to inspect the candidate locations provided by the search algorithm, and to verify the
presence of the gas source. In many cases, this task is relegated to a human operator, which analyzing the
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data offered by the robot (e.g. the robot path followed during the search stage, the gas distribution map
created, or just the current gas and wind measurements) is in charge of declaring the gas source location,
or a failure in the search stage. Yet, different approaches have been proposed to declare the gas source
location autonomously, in most occasions derived on the basis of empirical studies.

Initial works based source declaration on the intuitive fact that gas concentration in the vicinity of the
gas source should be higher. Approaches like (Grasso & Atema, 2002) proposed heuristic strategies based
on gas sensor saturation over empirically set thresholds, while Cowen & Ward  (Cowen & Ward, 2002)
sharpen the declaration by comparing the chemical concentration at different heights. Hayes et al. (Hayes,
Martinoli,  & Goodman, 2002) mentioned a source declaration method which identified the source by
detecting a series of contiguous odor hits, provided that such frequency of odor patches is likely to occur
only near the source. 

More sophisticated methods based on machine learning were proposed to improve the declaration of
the  gas  source  under  more  realistic  environments.  In  (Weissburg  et  al.,  2002) the  authors  based  the
declaration of the gas source attending to the studied chemical patterns a gas source generates, while in
(Lilienthal et al., 2004) the declaration was approached as a classification problem, using neural networks
and support  vector machines.  As reported in  (Cabrita & Marques,  2013), the problem with these and
similar strategies is the need of a training phase, and the assumption that the source characteristics during
training would be similar to the odor sources found during normal operation. More general approaches,
resorting to concentration gridmaps to achieve odor source declaration, were presented in  (Lilienthal &
Duckett, 2003b; Marques, Nunes, & De Almeida, 2003). Later, Li (W. Li, 2006) conducted experiments
on underwater vehicles, constructing a source identification zone based on chemical detection points, and
more recently (J.-G. Li, Meng, Wang, & Zeng, 2010), proposing a particle filter approach to locate and
declare the gas source. Similarly, in (Neumann et al., 2013) the authors presented a novel pseudo-gradient-
based  plume  tracking  algorithm  and  a  particle  filter-based  source  declaration  approach,  testing  the
proposal with a gas-sensitive micro-drone. 

Recent approaches like (Cabrita & Marques, 2013; Wang et al., 2016), have tackled the problem from
a multi-robot approach and mass flux divergence theory, relaying in the simultaneous measurement of gas
concentration and fluid flow at different locations of the environment to analyze the presence of sources.

CONCLUDING REMARKS

Gas sensitive mobile robots are not yet a reality. Most of the works mentioned through this chapter
present only simulations or laboratory-based experimentation, where some control over the environmental
conditions and the chemical sensors is performed.  Development of chemical sensors designed for mobile
robots is indeed a necessary subject for future work. More robust and efficient sensors are needed to
overcome limitations such as the long response times, ageing or drift, drawbacks that hinder gas sensitive
mobile robots to be deployed in real world applications.

Besides the limitations imposed by technology, that will hopefully banish with time, future work is
needed to develop design strategies which enable a mobile robot with the capabilities to detect, recognize
and locate  chemical  releases,  to  be  useful  in  a  variety of  scenarios  such  as  homes,  manufactures  or
emergency areas. 
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