1,783 research outputs found

    Fuzzy techniques for noise removal in image sequences and interval-valued fuzzy mathematical morphology

    Get PDF
    Image sequences play an important role in today's world. They provide us a lot of information. Videos are for example used for traffic observations, surveillance systems, autonomous navigation and so on. Due to bad acquisition, transmission or recording, the sequences are however usually corrupted by noise, which hampers the functioning of many image processing techniques. A preprocessing module to filter the images often becomes necessary. After an introduction to fuzzy set theory and image processing, in the first main part of the thesis, several fuzzy logic based video filters are proposed: one filter for grayscale video sequences corrupted by additive Gaussian noise and two color extensions of it and two grayscale filters and one color filter for sequences affected by the random valued impulse noise type. In the second main part of the thesis, interval-valued fuzzy mathematical morphology is studied. Mathematical morphology is a theory intended for the analysis of spatial structures that has found application in e.g. edge detection, object recognition, pattern recognition, image segmentation, image magnification… In the thesis, an overview is given of the evolution from binary mathematical morphology over the different grayscale morphology theories to interval-valued fuzzy mathematical morphology and the interval-valued image model. Additionally, the basic properties of the interval-valued fuzzy morphological operators are investigated. Next, also the decomposition of the interval-valued fuzzy morphological operators is investigated. We investigate the relationship between the cut of the result of such operator applied on an interval-valued image and structuring element and the result of the corresponding binary operator applied on the cut of the image and structuring element. These results are first of all interesting because they provide a link between interval-valued fuzzy mathematical morphology and binary mathematical morphology, but such conversion into binary operators also reduces the computation. Finally, also the reverse problem is tackled, i.e., the construction of interval-valued morphological operators from the binary ones. Using the results from a more general study in which the construction of an interval-valued fuzzy set from a nested family of crisp sets is constructed, increasing binary operators (e.g. the binary dilation) are extended to interval-valued fuzzy operators

    Vision Sensors and Edge Detection

    Get PDF
    Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing

    Fuzzy logic based approach for object feature tracking

    Get PDF
    This thesis introduces a novel technique for feature tracking in sequences of greyscale images based on fuzzy logic. A versatile and modular methodology for feature tracking using fuzzy sets and inference engines is presented. Moreover, an extension of this methodology to perform the correct tracking of multiple features is also presented. To perform feature tracking three membership functions are initially defined. A membership function related to the distinctive property of the feature to be tracked. A membership function is related to the fact of considering that the feature has smooth movement between each image sequence and a membership function concerns its expected future location. Applying these functions to the image pixels, the corresponding fuzzy sets are obtained and then mathematically manipulated to serve as input to an inference engine. Situations such as occlusion or detection failure of features are overcome using estimated positions calculated using a motion model and a state vector of the feature. This methodology was previously applied to track a single feature identified by the user. Several performance tests were conducted on sequences of both synthetic and real images. Experimental results are presented, analysed and discussed. Although this methodology could be applied directly to multiple feature tracking, an extension of this methodology has been developed within that purpose. In this new method, the processing sequence of each feature is dynamic and hierarchical. Dynamic because this sequence can change over time and hierarchical because features with higher priority will be processed first. Thus, the process gives preference to features whose location are easier to predict compared with features whose knowledge of their behavior is less predictable. When this priority value becomes too low, the feature will no longer tracked by the algorithm. To access the performance of this new approach, sequences of images where several features specified by the user are to be tracked were used. In the final part of this work, conclusions drawn from this work as well as the definition of some guidelines for future research are presented.Nesta tese é introduzida uma nova técnica de seguimento de pontos característicos de objectos em sequências de imagens em escala de cinzentos baseada em lógica difusa. É apresentada uma metodologia versátil e modular para o seguimento de objectos utilizando conjuntos difusos e motores de inferência. É também apresentada uma extensão desta metodologia para o correcto seguimento de múltiplos pontos característicos. Para se realizar o seguimento são definidas inicialmente três funções de pertença. Uma função de pertença está relacionada com a propriedade distintiva do objecto que desejamos seguir, outra está relacionada com o facto de se considerar que o objecto tem uma movimentação suave entre cada imagem da sequência e outra função de pertença referente à sua previsível localização futura. Aplicando estas funções de pertença aos píxeis da imagem, obtêm-se os correspondentes conjuntos difusos, que serão manipulados matematicamente e servirão como entrada num motor de inferência. Situações como a oclusão ou falha na detecção dos pontos característicos são ultrapassadas utilizando posições estimadas calculadas a partir do modelo de movimento e a um vector de estados do objecto. Esta metodologia foi inicialmente aplicada no seguimento de um objecto assinalado pelo utilizador. Foram realizados vários testes de desempenho em sequências de imagens sintéticas e também reais. Os resultados experimentais obtidos são apresentados, analisados e discutidos. Embora esta metodologia pudesse ser aplicada directamente ao seguimento de múltiplos pontos característicos, foi desenvolvida uma extensão desta metodologia para esse fim. Nesta nova metodologia a sequência de processamento de cada ponto característico é dinâmica e hierárquica. Dinâmica por ser variável ao longo do tempo e hierárquica por existir uma hierarquia de prioridades relativamente aos pontos característicos a serem seguidos e que determina a ordem pela qual esses pontos são processados. Desta forma, o processo dá preferência a pontos característicos cuja localização é mais fácil de prever comparativamente a pontos característicos cujo conhecimento do seu comportamento seja menos previsível. Quando esse valor de prioridade se torna demasiado baixo, esse ponto característico deixa de ser seguido pelo algoritmo. Para se observar o desempenho desta nova abordagem foram utilizadas sequências de imagens onde várias características indicadas pelo utilizador são seguidas. Na parte final deste trabalho são apresentadas as conclusões resultantes a partir do desenvolvimento deste trabalho, bem como a definição de algumas linhas de investigação futura

    Fuzzy logic-based approach to wavelet denoising of 3D images produced by time-of-flight cameras

    Get PDF
    In this paper we present a new denoising method for the depth images of a 3D imaging sensor, based on the time-of-flight principle. We propose novel ways to use luminance-like information produced by a time-of flight camera along with depth images. Firstly, we propose a wavelet-based method for estimating the noise level in depth images, using luminance information. The underlying idea is that luminance carries information about the power of the optical signal reflected from the scene and is hence related to the signal-to-noise ratio for every pixel within the depth image. In this way, we can efficiently solve the difficult problem of estimating the non-stationary noise within the depth images. Secondly, we use luminance information to better restore object boundaries masked with noise in the depth images. Information from luminance images is introduced into the estimation formula through the use of fuzzy membership functions. In particular, we take the correlation between the measured depth and luminance into account, and the fact that edges (object boundaries) present in the depth image are likely to occur in the luminance image as well. The results on real 3D images show a significant improvement over the state-of-the-art in the field. (C) 2010 Optical Society of Americ

    Image synthesis based on a model of human vision

    Get PDF
    Modern computer graphics systems are able to construct renderings of such high quality that viewers are deceived into regarding the images as coming from a photographic source. Large amounts of computing resources are expended in this rendering process, using complex mathematical models of lighting and shading. However, psychophysical experiments have revealed that viewers only regard certain informative regions within a presented image. Furthermore, it has been shown that these visually important regions contain low-level visual feature differences that attract the attention of the viewer. This thesis will present a new approach to image synthesis that exploits these experimental findings by modulating the spatial quality of image regions by their visual importance. Efficiency gains are therefore reaped, without sacrificing much of the perceived quality of the image. Two tasks must be undertaken to achieve this goal. Firstly, the design of an appropriate region-based model of visual importance, and secondly, the modification of progressive rendering techniques to effect an importance-based rendering approach. A rule-based fuzzy logic model is presented that computes, using spatial feature differences, the relative visual importance of regions in an image. This model improves upon previous work by incorporating threshold effects induced by global feature difference distributions and by using texture concentration measures. A modified approach to progressive ray-tracing is also presented. This new approach uses the visual importance model to guide the progressive refinement of an image. In addition, this concept of visual importance has been incorporated into supersampling, texture mapping and computer animation techniques. Experimental results are presented, illustrating the efficiency gains reaped from using this method of progressive rendering. This visual importance-based rendering approach is expected to have applications in the entertainment industry, where image fidelity may be sacrificed for efficiency purposes, as long as the overall visual impression of the scene is maintained. Different aspects of the approach should find many other applications in image compression, image retrieval, progressive data transmission and active robotic vision

    Color Image Processing based on Graph Theory

    Full text link
    [ES] La visión artificial es uno de los campos en mayor crecimiento en la actualidad que, junto con otras tecnologías como la Biometría o el Big Data, se ha convertido en el foco de interés de numerosas investigaciones y es considerada como una de las tecnologías del futuro. Este amplio campo abarca diversos métodos entre los que se encuentra el procesamiento y análisis de imágenes digitales. El éxito del análisis de imágenes y otras tareas de procesamiento de alto nivel, como pueden ser el reconocimiento de patrones o la visión 3D, dependerá en gran medida de la buena calidad de las imágenes de partida. Hoy en día existen multitud de factores que dañan las imágenes dificultando la obtención de imágenes de calidad óptima, esto ha convertido el (pre-) procesamiento digital de imágenes en un paso fundamental previo a la aplicación de cualquier otra tarea de procesado. Los factores más comunes son el ruido y las malas condiciones de adquisición: los artefactos provocados por el ruido dificultan la interpretación adecuada de la imagen y la adquisición en condiciones de iluminación o exposición deficientes, como escenas dinámicas, causan pérdida de información de la imagen que puede ser clave para ciertas tareas de procesamiento. Los pasos de (pre-)procesamiento de imágenes conocidos como suavizado y realce se aplican comúnmente para solventar estos problemas: El suavizado tiene por objeto reducir el ruido mientras que el realce se centra en mejorar o recuperar la información imprecisa o dañada. Con estos métodos conseguimos reparar información de los detalles y bordes de la imagen con una nitidez insuficiente o un contenido borroso que impide el (post-)procesamiento óptimo de la imagen. Existen numerosos métodos que suavizan el ruido de una imagen, sin embargo, en muchos casos el proceso de filtrado provoca emborronamiento en los bordes y detalles de la imagen. De igual manera podemos encontrar una enorme cantidad de técnicas de realce que intentan combatir las pérdidas de información, sin embargo, estas técnicas no contemplan la existencia de ruido en la imagen que procesan: ante una imagen ruidosa, cualquier técnica de realce provocará también un aumento del ruido. Aunque la idea intuitiva para solucionar este último caso será el previo filtrado y posterior realce, este enfoque ha demostrado no ser óptimo: el filtrado podrá eliminar información que, a su vez, podría no ser recuperable en el siguiente paso de realce. En la presente tesis doctoral se propone un modelo basado en teoría de grafos para el procesamiento de imágenes en color. En este modelo, se construye un grafo para cada píxel de tal manera que sus propiedades permiten caracterizar y clasificar dicho pixel. Como veremos, el modelo propuesto es robusto y capaz de adaptarse a una gran variedad de aplicaciones. En particular, aplicamos el modelo para crear nuevas soluciones a los dos problemas fundamentales del procesamiento de imágenes: suavizado y realce. Se ha estudiado el modelo en profundidad en función del umbral, parámetro clave que asegura la correcta clasificación de los píxeles de la imagen. Además, también se han estudiado las posibles características y posibilidades del modelo que nos han permitido sacarle el máximo partido en cada una de las posibles aplicaciones. Basado en este modelo se ha diseñado un filtro adaptativo capaz de eliminar ruido gaussiano de una imagen sin difuminar los bordes ni perder información de los detalles. Además, también ha permitido desarrollar un método capaz de realzar los bordes y detalles de una imagen al mismo tiempo que se suaviza el ruido presente en la misma. Esta aplicación simultánea consigue combinar dos operaciones opuestas por definición y superar así los inconvenientes presentados por el enfoque en dos etapas.[CA] La visió artificial és un dels camps en major creixement en l'actualitat que, junt amb altres tecnlogies com la Biometria o el Big Data, s'ha convertit en el focus d'interés de nombroses investigacions i és considerada com una de les tecnologies del futur. Aquest ampli camp comprén diversos m`etodes entre els quals es troba el processament digital d'imatges i anàlisis d'imatges digitals. L'èxit de l'anàlisis d'imatges i altres tasques de processament d'alt nivell, com poden ser el reconeixement de patrons o la visió 3D, dependrà en gran manera de la bona qualitat de les imatges de partida. Avui dia existeixen multitud de factors que danyen les imatges dificultant l'obtenció d'imatges de qualitat òptima, açò ha convertit el (pre-) processament digital d'imatges en un pas fonamental previa la l'aplicació de qualsevol altra tasca de processament. Els factors més comuns són el soroll i les males condicions d'adquisició: els artefactes provocats pel soroll dificulten la inter- pretació adequada de la imatge i l'adquisició en condicions d'il·luminació o exposició deficients, com a escenes dinàmiques, causen pèrdua d'informació de la imatge que pot ser clau per a certes tasques de processament. Els passos de (pre-) processament d'imatges coneguts com suavitzat i realç s'apliquen comunament per a resoldre aquests problemes: El suavitzat té com a objecte reduir el soroll mentres que el real se centra a millorar o recuperar la informació imprecisa o danyada. Amb aquests mètodes aconseguim reparar informació dels detalls i bords de la imatge amb una nitidesa insuficient o un contingut borrós que impedeix el (post-)processament òptim de la imatge. Existeixen nombrosos mètodes que suavitzen el soroll d'una imatge, no obstant això, en molts casos el procés de filtrat provoca emborronamiento en els bords i detalls de la imatge. De la mateixa manera podem trobar una enorme quantitat de tècniques de realç que intenten combatre les pèrdues d'informació, no obstant això, aquestes tècniques no contemplen l'existència de soroll en la imatge que processen: davant d'una image sorollosa, qualsevol tècnica de realç provocarà també un augment del soroll. Encara que la idea intuïtiva per a solucionar aquest últim cas seria el previ filtrat i posterior realç, aquest enfocament ha demostrat no ser òptim: el filtrat podria eliminar informació que, al seu torn, podria no ser recuperable en el seguënt pas de realç. En la present Tesi doctoral es proposa un model basat en teoria de grafs per al processament d'imatges en color. En aquest model, es construïx un graf per a cada píxel de tal manera que les seues propietats permeten caracteritzar i classificar el píxel en quëstió. Com veurem, el model proposat és robust i capaç d'adaptar-se a una gran varietat d'aplicacions. En particular, apliquem el model per a crear noves solucions als dos problemes fonamentals del processament d'imatges: suavitzat i realç. S'ha estudiat el model en profunditat en funció del llindar, paràmetre clau que assegura la correcta classificació dels píxels de la imatge. A més, també s'han estudiat les possibles característiques i possibilitats del model que ens han permés traure-li el màxim partit en cadascuna de les possibles aplicacions. Basat en aquest model s'ha dissenyat un filtre adaptatiu capaç d'eliminar soroll gaussià d'una imatge sense difuminar els bords ni perdre informació dels detalls. A més, també ha permés desenvolupar un mètode capaç de realçar els bords i detalls d'una imatge al mateix temps que se suavitza el soroll present en la mateixa. Aquesta aplicació simultània aconseguix combinar dues operacions oposades per definició i superar així els inconvenients presentats per l'enfocament en dues etapes.[EN] Computer vision is one of the fastest growing fields at present which, along with other technologies such as Biometrics or Big Data, has become the focus of interest of many research projects and it is considered one of the technologies of the future. This broad field includes a plethora of digital image processing and analysis tasks. To guarantee the success of image analysis and other high-level processing tasks as 3D imaging or pattern recognition, it is critical to improve the quality of the raw images acquired. Nowadays all images are affected by different factors that hinder the achievement of optimal image quality, making digital image processing a fundamental step prior to the application of any other practical application. The most common of these factors are noise and poor acquisition conditions: noise artefacts hamper proper image interpretation of the image; and acquisition in poor lighting or exposure conditions, such as dynamic scenes, causes loss of image information that can be key for certain processing tasks. Image (pre-) processing steps known as smoothing and sharpening are commonly applied to overcome these inconveniences: Smoothing is aimed at reducing noise and sharpening at improving or recovering imprecise or damaged information of image details and edges with insufficient sharpness or blurred content that prevents optimal image (post-)processing. There are many methods for smoothing the noise in an image, however in many cases the filtering process causes blurring at the edges and details of the image. Besides, there are also many sharpening techniques, which try to combat the loss of information due to blurring of image texture and need to contemplate the existence of noise in the image they process. When dealing with a noisy image, any sharpening technique may amplify the noise. Although the intuitive idea to solve this last case would be the previous filtering and later sharpening, this approach has proved not to be optimal: the filtering could remove information that, in turn, may not be recoverable in the later sharpening step. In the present PhD dissertation we propose a model based on graph theory for color image processing from a vector approach. In this model, a graph is built for each pixel in such a way that its features allow to characterize and classify the pixel. As we will show, the model we proposed is robust and versatile: potentially able to adapt to a variety of applications. In particular, we apply the model to create new solutions for the two fundamentals problems in image processing: smoothing and sharpening. To approach high performance image smoothing we use the proposed model to determine if a pixel belongs to a at region or not, taking into account the need to achieve a high-precision classification even in the presence of noise. Thus, we build an adaptive soft-switching filter by employing the pixel classification to combine the outputs from a filter with high smoothing capability and a softer one to smooth edge/detail regions. Further, another application of our model allows to use pixels characterization to successfully perform a simultaneous smoothing and sharpening of color images. In this way, we address one of the classical challenges within the image processing field. We compare all the image processing techniques proposed with other state-of-the-art methods to show that they are competitive both from an objective (numerical) and visual evaluation point of view.Pérez Benito, C. (2019). Color Image Processing based on Graph Theory [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/123955TESI
    • …
    corecore