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Preface

Multichannel or colour signal processing is of principal importance in application areas
such as biomedicine, computer and machine vision, robotics, entertainment and multimedia
applications, industrial inspection, remote sensing and many others. It is well known that the
correct perception of colour can help in different tasks of image understanding and pattern
recognition. Unfortunately, noise and other impairments associated with the capturing or the
transmission apparatus can significantly degrade the value of the colour information carried
by the digital images. This usually decreases their perceptual fidelity and also decreases the
performance of the task for which the image was created. It comes therefore as no surprise
that the most common signal processing task is the noise filtering.

Besides the classical noise reduction filters we have fuzzy nonlinear noise reduction
methods. The added value of the usage of fuzzy set theory is its ability to model and to
reason with uncertainty. Since we can distinguish degrees of contamination of a pixel in
an image we know that uncertainty occurs when processing an image for noise reduction.
Fuzzy set theory and fuzzy logic allow us to model and to work with this uncertainty, and
to improve the quality of noise reduction. In general, a fuzzy filter for noise reduction
uses both numerical information and linguistic information (modelled by fuzzy set theory;
e.g. “small” and “large” pixel differences). This thesis concerns fuzzy nonlinear restoration
methods for reducing noise in digital greyscale and colour methods and for video-sequences.

The thesis is structured into six chapters. The first chapter gives a short introduction in
the field of fuzzy image processing, where we first describe how digital images are repre-
sented and which noise types we consider, followed by an introduction to the basic concepts
of fuzzy set theory. Additionally we describe which similarity measures are used to investi-
gate the quality of the processed images.

The second chapter focuses on the reduction of impulse noise in digital greyscale im-
ages. We describe two methods for the reduction of all kinds of impulse noise (i.e., fixed
valued, random valued and α-stable impulse noise). These two nonlinear filtering tech-
niques contain two separated steps: an impulse noise detection step and a reduction step
that preserves edge sharpness.

In chapter 3 we present three new impulse noise reduction methods for colour images.
Those filters are particularly effective for reducing all kinds of impulse noise while pre-
serving the edge sharpness and the colours. Colour images that are corrupted with impulse



ii Preface

noise are generally filtered by applying a greyscale algorithm on each colour component
separately or using a vector-based approach where each pixel is considered as a single vec-
tor. The first approach causes artefacts especially on edge and texture pixels. Vector-based
methods were introduced to overcome this problem. Nevertheless they tend to cluster the
noise and to receive a lower noise reduction performance. Therefore we successfully devel-
oped three alternative methods that process colour images in a more appropriate way.

• The first method uses a fuzzy detection phase which is followed by an iterative fuzzy
filtering technique. This method is an extension of the greyscale method discussed
in chapter 2, where the fuzzy detection method is mainly based on the calculation of
fuzzy gradient values and on fuzzy reasoning. The proposed fuzzy noise reduction
method calculates the differences between the colour components in order to use them
to preserve also the colour information itself.

• The second method also uses the differences between the colour components for the
detection of impulse noise and the preservation of these differences. The construction
of this filter involves three steps: (i) the estimation of the original histogram of the
differences between the colour components, (ii) the construction of suitable fuzzy sets
for representing the linguistic values of these differences and (iii) the construction of
fuzzy rules that determine the output.

• The main difference between the third method and other classical noise reduction
methods is that the colour information is taken into account to develop (i) a better
impulse noise detection method and (ii) a noise reduction method that filters only the
corrupted pixels.

Chapter 4 focuses on wavelet techniques. In particular, we investigate the usage of fuzzy
set theory in the domain of image enhancement using wavelet thresholding. We propose a
very efficient new fuzzy wavelet shrinkage method, which can be seen as a fuzzy variant of
a recently published probabilistic shrinkage method for the reduction of additive Gaussian
noise from digital greyscale images.

The reduction of additive noise in digital colour images is the subject of chapter 5. We
present a new filter, which computes fuzzy distances between the colour components of the
central pixel and the colour components of the pixels in its neighbourhood. These distances
determine in which degree each component should be corrected. Additionally we apply an
operator in order to reduce the colour distortions as much as possible. We illustrate that the
proposed method preserves the colours much better in comparison to other state-of-the-art
methods.

In chapter 6 we present a new fuzzy set based recursive scheme for motion detection and
noise reduction of image sequences. The new spatial-temporal filtering method deals with
Gaussian noise and unsteady illumination conditions both in temporal and spatial direction.
The main contribution of the proposed algorithm is the robust novel fuzzy recursive scheme
for the motion detection and temporal filtering. An input noisy sequence is processed with
a fuzzy motion detection in order to determine the membership degree in the fuzzy set
motion for each position. If that degree at a certain position is small we perform a temporal
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noise reduction method because we assume that no motion occurs at that position. In case
the degree at a certain position is large we perform only a spatial noise reduction method,
because we assume that this pixel is part of a moving object.

In the last chapter a comparative study is discussed for the noise reduction of greyscale
and colour images. State-of-the-art methods are compared with the methods presented in
this thesis for the three types of impulse noise, i.e. fixed valued, random valued and α-
stable impulse noise, and for the additive Gaussian noise. The results clearly show the
added valued of the developed methods in comparison to the state-of-the-art methods.





Nederlandse Samenvatting

Beeldverwerking is van groot belang in toepassingen zoals de biomedische wetenschap,
de extractie van informatie, robotica, entertainment en multimedia, industriële inspectie,
satellietbeelden en in vele andere gebieden. Het is een feit dat de juiste voorstelling en
weergave van kleuren van essentieel belang is bij het analyseren van digitale beelden en
herkennen van patronen in die beelden. Helaas veroorzaken de opname en transmissie van
beelden heel frequent een aantal afwijkingen (degradaties) die de beeldinformatie (zoals b.v.
de kleur) beschadigt. Dit gaat vaak gepaard met een verlaging van de perceptuele precisie
en de prestatie van de taken waarvoor de beelden werden gecreëerd. Het is daarom ook geen
erg grote verrassing dat de meest voorkomende signaalverwerkingstaak bestaat in het ver-
wijderen van ruis. Ruisverwijdering is een zeer essentieel onderdeel in de beeldverwerking
waarbij de verbeteringen op vlak van precisie, resolutie en ruisverwijdering synoniem staan
voor een hogere kwaliteit en een toename van de hoeveelheid informatie.

Naast de klassieke lineaire en niet-lineaire filters, werden de afgelopen jaren ook vaag-
logisch-gebaseerde filters (vage niet-lineaire filters) ontworpen voor ruisonderdrukking. De-
ze filters maken gebruik van vaaglogica en vaagverzamelingenleer, i.h.b. van vaagregels, om
expertenkennis te modelleren en in het ruisonderdrukkingsalgoritme in te bouwen. In veel
gevallen blijken deze filters effectief beter te presteren dan de klassieke methoden. Deze the-
sis legt dan ook de nadruk op vage niet-lineaire ruisonderdrukkingsmethoden voor het ver-
beteren van digitale grijswaarde- en kleurenbeelden alsook voor beeldsequenties (video’s).

Het proefschrift is onderverdeeld in zeven hoofdstukken. Het eerste hoofdstuk geeft
een korte inleiding in het domein van de vage beeldverwerking. Eerst bespreken we hoe
beelden voorgesteld worden en welke types ruis wij kunnen onderscheiden. Nadien intro-
duceren we de belangrijkste basisconcepten uit de vaagverzamelingenleer. Tenslotte worden
de belangrijkste similariteitsmaten voor het vergelijken van de kwaliteit van de ruisonder-
drukkingsmethoden besproken.

In het tweede hoofdstuk concentreren we ons op het ontruisen van impulsruis in digitale
grijswaardenbeelden. Twee specifiek voor dit ruistype ontworpen methoden komen aan
bod. Beide niet-lineaire ruisonderdrukkingstechnieken bestaan uit twee stappen, waarbij de
eerste stap ervoor zorgt dat de betreffende ruispixels gelokaliseerd zullen worden. In de
tweede stap worden vervolgens enkel de gedetecteerde pixels vervangen door een zo goed
mogelijke schatting.
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In hoofdstuk 3 presenteren we drie nieuwe vage ruisonderdrukkingsmethoden voor het
verwijderen van impulsruis in kleurenbeelden. Deze drie methoden zijn erg effectief voor
het verwijderen van impulsruis zonder dat de scherpte en de randen van het beeld vervormd
worden. We beschouwen drie types van impulsruis, namelijk willekeurig verdeelde impuls-
ruis, impulsruis met vaste waarden en α-stabiele impulsruis. De klassieke manieren om
kleurenbeelden die impulsruis bevatten te filteren, bestaan erin elke kleurencomponent af-
zonderlijk te filteren (component-gebaseerde aanpak) of een vector-gebaseerde aanpak te
gebruiken waarbij elke pixel beschouwd wordt als een geheel. De component-gebaseerde
aanpak veroorzaakt artefacten, vooral in gebieden die randen of andere textuur bevatten.
De vector-gebaseerde aanpak vermijdt de problemen van de component-gebaseerde aan-
pak. Helaas hebben deze vector-gebaseerde methoden de neiging om de impulsruis te
clusteren en behalen ze in het algemeen een slechtere ruisonderdrukkingscapaciteit dan
de component-gebaseerde methoden. Om op deze problematiek in te spelen werden drie
alternatieve methoden ontworpen waarbij kleuren op een meer geschikte manier gebruikt
worden.

• De eerste techniek gebruikt een vage detectie methode gevolgd door een iteratieve
vage ruisonderdrukkingsfilter. Deze methode is een uitbreiding van de grijswaarden-
methode uit hoofdstuk 2, waar de vage detectie methode hoofdzakelijk gebaseerd is
op de berekening van vage gradiëntwaarden. De speciaal voor kleurenbeelden ont-
worpen filter gebruikt de verschillen tussen de kleurcomponenten om de kleurinfor-
matie in het gefilterde beeld te behouden.

• De tweede techniek gebruikt de verschillen tussen de kleurcomponenten op een ana-
loge wijze. De constructie van deze tweede methode bestaat uit drie stappen: (i) de
schatting van het originele histogram van de verschillen tussen de kleurcomponen-
ten, (ii) de constructie van vaagverzamelingen voor de representatie van linguı̈stische
termen met betrekking tot de verschillen tussen de kleurcomponenten en (iii) de con-
structie van vaagregels die gebruikt worden om het uiteindelijke resultaat te bereke-
nen.

• De derde techniek tenslotte gebruikt de kleurinformatie niet enkel voor het ontruisen
maar ook voor het schatten en detecteren van de ruis.

In het vierde hoofdstuk onderzoeken we de mogelijkheid om vaagverzamelingenleer
te gebruiken om efficiënte wavelet-gebaseerde methoden te ontwikkelen. Meer bepaald
introduceren we een zeer efficiënte vage wavelet shrinkage methode, die beschouwd kan
worden als een vage variant van de recent gepubliceerde probabilistische shrinkage methode
voor het verwijderen van gaussische ruis in grijswaardenbeelden.

Het verwijderen van gaussische ruis in digitale kleurbeelden vormt het onderwerp van
hoofdstuk 5. Een speciaal voor kleurbeelden ontworpen ruisverwijderingsmethode wordt in
dit hoofdstuk besproken. Deze nieuwe filter berekent vage afstanden tussen de kleurcom-
ponenten van de centraal gelegen pixel en de kleurcomponenten van de pixels uit de directe
omgeving van de centraal gelegen pixel. Deze afstanden worden vervolgens gebruikt om
te bepalen in welke mate de centraal gelegen pixel gefilterd dient te worden. Daarenboven
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zal een tweede methode toegepast worden om de kleurartefacten, veroorzaakt door de filter,
zoveel mogelijk te reduceren. Wij tonen aan dat de ontwikkelde methode erin slaagt om de
oorspronkelijke kleuren beter te bewaren dan de andere methoden uit de literatuur.

In het zesde hoofdstuk bespreken we het ontwerp van een nieuwe vage recursieve me-
thode voor de bewegingsdetectie en het verwijderen van ruis in beeldsequenties (video’s).
Deze methode is ontworpen voor het verwijderen van gaussische ruis, zelfs bij onregel-
matige lichtbronnen. De belangrijkste vernieuwing in vergelijking met andere reeds be-
staande methoden is de robuuste nieuwe recursieve vage bewegingsdetectie die gebruikt
wordt voor het filteren zowel in tijd als ruimte. De ruisverwijdering gebeurt als volgt: voor
een gegeven ruissequentie bepalen we eerst de lidmaatschapsgraad in de vaagverzameling
beweging voor elke pixel. Vervolgens passen we een ruisverwijderingsmethode in de tijd
toe voor alle pixels waar blijkt dat de lidmaatschapsgraad in de vaagverzameling beweging
klein is, aangezien we dan mogen aannemen dat er geen verandering (beweging) plaats vindt
op deze plaats. In het geval van een hoge lidmaatschapsgraad passen we een ruimtelijke
ruisverwijderingsmethode toe aangezien de betreffende pixels dan deel uitmaken van een
bewegend voorwerp.

Om de prestatie van de ontwikkelde methoden te beoordelen is het noodzakelijk om
de resultaten van onze methoden te vergelijken met deze van andere filters voor ruison-
derdrukking. In het laatste hoofdstuk (hoofdstuk 7) voeren we daarom een uitgebreide
vergelijkende studie uit van verschillende klassieke, vaaglogisch-gebaseerde en wavelet-
gebaseerde methoden. Hierbij beperken we ons tot de drie gebruikelijke impulsruistypes,
zijnde willekeurig verdeelde impulsruis, impulsruis met vaste waarden en α-stabiele im-
pulsruis, en gaussische ruis zowel voor grijswaardenbeelden als voor kleurbeelden. Deze
experimentele studie bevestigt de goede prestaties van de in deze thesis besproken en ont-
worpen methoden.
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Symbols

�R the derivative value in direction R

μFs the membership function for a fuzzy set FS

ΔRG the differences between the red and the green colour component

PDF probability density function

CEN the centroid

MASS the support of a crisp set

O original noise-free reference image

N noisy input image

F filtered output image

O′, N ′, F ′ the normalized images, i.e., all pixel intensity values are divided by
2m − 1

(i, j) the pixel position

NR, NG, NB the indexes R,G and B indicate the colour component

2m − 1 m is the number of bits used to store a single intensity value

LH horizontal oriented (three dimensional) spatial wavelet band

HL vertical oriented (three dimensional) spatial wavelet band

HH diagonal oriented (three dimensional) spatial wavelet band

LL low-pass (approximation three dimensional) spatial wavelet band
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ANNF adaptive nearest-neighbourhood colour filter

ASVMF adaptive statistically switching VMF

ATMAV asymmetrical triangle fuzzy filter with moving average centre

ATMED asymmetrical triangle fuzzy filter with median centre

AVMF adaptive VMF

AWF adaptive weighted mean filter
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CWT continuous wavelet transform

DDF directional distance filter
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DWT discrete wavelet transform
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FDD fuzzy decision directed filter

FIND fuzzy impulse noise detection and suppression method
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FISF fuzzy inference system filter
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FMF fuzzy median filter
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FSB fuzzy similarity-based filter

FSVF fast similarity-based vector filter

FVRF adaptive fuzzy vector rand-order filter

FWM fuzzy WM

FWT fast wavelet transform

GF Gaussian filter
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Chapter 1

Introduction

The quantity of research published in the last ten years indicates a growing interest in the
area of (colour) image processing and analysis. Improvement of the quality of images has
always been one of the central tasks of digital image processing. In modern terms, improve-
ments in sensitivity, resolution and noise reduction have equated higher quality with greater
informational throughput. Image noise is an unwanted feature, which is either contained in
the relevant light signal or is added by the imaging process and it compromises a precise
evaluation of the light signal distribution, which should be measured.

In this thesis we developed several noise reduction methods for two well-known noise
types, i.e., impulse noise and additive noise. The results are published in several interna-
tional journals (incl. LNCS) [148, 150, 152, 184, 185, 186, 188, 189, 190, 191, 192, 194,
196, 262] and are presented at several conferences [143, 147, 149, 187, 193, 195, 259]. In
this chapter we give an introduction in the field of fuzzy image processing. This chapter is
organized as follows: in section 1.1 we give a short introduction to image processing where
we discuss the representation of digital images and the noise types that we use in this thesis.
Afterwards we introduce in section 1.2 the basic concepts of the fuzzy set theory. Similarity
measures are finally introduced in section 1.3.

1.1 Introduction to Image Processing

A lot of digital image processing methods were developed in the 1960s. But it was in the
1970s that digital image processing became really proliferated, when cheaper and faster
computers and hardware became available. From that time images could be processed in
real time (e.g., television standard conversion). With the fast computers and the developed
signal processing in the 2000s, digital image processing has become the most popular form
of image processing.

An image is digitized to convert it to a form which can be stored in a computer’s memory
or on some other form of storage media (e.g., hard disk or CD-ROM). This digitization
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procedure can be realised by a scanner, a video camera or a digital camera. Once the image
has been digitized, it can be operated upon by various image processing operations. Digital
cameras for example include dedicated digital image processing chips to convert the raw
data from the image sensor into a colour-corrected image in a standard image file format.
Moreover, many images taken from digital cameras need some further improvements to
increase their quality, which is done by specific digital image processing methods. Digital
image processing is typically done by special software programs that manipulate the images
in many different ways (e.g., image compression, image enhancement and restoration or
measurement extraction).

In the following section we explain how digital images are represented and which noise
types exist. In a second section we introduce the concept of fuzzy set theory which can be
applied in the field of digital image processing [50, 51, 52, 153, 230, 231, 232, 233, 234].

1.1.1 Representation of digital images

In digital image processing we can distinguish three types of images.
The first type concerns binary images (see Fig. 1.1 (a)). A binary image, also called a

bi-level or a two-level image, is a digital image that has only two possible values (black and
white) for each image element. Therefore we can model a n-dimensional binary image as a
crisp subset of Rn (with n ∈ N\{0}). For example, a n-dimensional image can be defined
as a subset A of Rn, with:

x /∈ A ⇐⇒ x is a black point in the image,

x ∈ A ⇐⇒ x is a white point in the image.

In practice however, a binary image is usually stored in memory as a bitmap, a packed
two-dimensional array of finite image elements (defined as a subset of Z 2).

Binary images often arise in digital image processing as masks or as the result of certain
operations such as segmentation, thresholding, and dithering. Some input/output devices,
such as laser printers, fax machines, and bi-level computer displays can only handle binary
images.

Monochrome (greyscale) digital images constitute the second type of images (see Fig.
1.1 (b)). A greyscale image does not only contain black and white image elements but
also grey values in between. A n-dimensional digital greyscale image can therefore be
represented as a Rn − [0, 1] mappingA,

A(x) = 0 ⇐⇒ x is a black point in the image,

A(x) = 1 ⇐⇒ x is a white point in the image,

A(x) ∈ ]0, 1[ ⇐⇒ x is a grey level image point.

where Rn is the universe of image points and [0, 1] the universe of image values (grey
values). Grey values are thus represented by values in the open interval ]0, 1[, where smaller
values correspond to darker grey levels and higher values correspond to lighter grey levels.
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Figure 1.1: The same image shown as the three image types: (a) the binary version (b) the greyscale
version and (c) a colour image version (RGB).

Digital greyscale images are often represented by a two dimensional array of image
elements, so a Z2 − [0, 1] mapping. An image point or position of an image I is therefore
specified by a row coordinate i and a column coordinate j. The image value (also called
intensity value) at such a position is called a pixel and will be denoted in this thesis as
I(i, j), for an image I and a position (i, j). For many practical applications an image value
or intensity value is situated in the interval [0, 2m − 1], with m the number of bits used
to store one single intensity value. Throughout this thesis we assume m = 8, because an
intensity value is usually stored as one byte (eight bits). Independent of the value of m, all
intervals can be reduced to the unit interval [0, 1] by dividing each intensity value by 2m−1.

Colour or multi-channel images are the third type of images (see Fig. 1.1 (c)). To
understand what colour images really are and how such images are represented we first
have to define what a colour is.

Colour

A colour is the brains reaction to a specific visual stimulus and can be seen as a combination
of a physical and a psychological phenomenon. Although we can precisely describe colour
by measuring its spectral power distribution, (physical: the intensity of the visible electro-
magnetic radiation at many discrete wavelengths) it leads us to a large degree of redundancy.
The reason for this redundancy is that the eye’s retina samples colour using only three broad
bands, roughly corresponding to red, green and blue light (the psychological phenomenon).
The signals from these colour sensitive cells (cones), together with those from the rods
(sensitive to intensity only), are combined in the brain to give several different “sensations”
of a colour. The sensations are:

• the brightness, which is the perception elicited by the luminance of a visual target.
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• the intensity, which is a measure of the power that is radiated from or incident on, a
surface over some interval of the electromagnetic spectrum. If the light is achromatic
(void of colour), its only attribute is its intensity or number (grey values).

• the radiance, which is the total amount of energy that flows from a light source.

• the hue, which refers to the gradation of colour within the optical spectrum (or visible
spectrum) of light, i.e., the hue describes a colour using the dominant wavelength of
the light.

• the lightness, which is the sensation of an area’s brightness relative to a reference
white in the scene.

• the saturation or purity, which is the colourfulness of an area judged in proportion to
its brightness. Saturation varies from neutral grey through pastel to saturated colours.
Roughly speaking, the more the power spectrum of the light is concentrated at one
wavelength, the more saturated will be the associated colour. It is possible to de-
saturate a colour by adding light that contains power at all wavelengths.

Because of the subjective and personal character of colour perception it is extremely dif-
ficult to attribute numbers of brain reactions to visual stimulus. That’s why there exists a
huge number of colour models. The aim of a colour model (abstract colour space) is to
aid the process of describing colours, either between people or between machines or pro-
grammes. Before we describe some of the most popular colour models, we want to mention
the differences between a colour model and a colour space.

Colour model versus colour space

As mentioned before, the human retina has three types of colour photoreceptor cone cells,
which respond to radiation with somewhat different spectral responds curves. A fourth
type of (non-colour) photoreceptor cells, the rods are also present in the retina. Rods are
effective only at extremely low light levels (night vision). Since there are exactly three
types of colour photoreceptors, three numerical components are necessary and sufficient to
describe a colour (called tri-chromatic theory). A colour is usually specified using three
(sometimes four) coordinates, or parameters. A colour model (also called abstract colour
space) is the specification of such a three-dimensional coordinate system. Each axis of the
coordinate system corresponds to the components of the specific colour model and can be
chosen arbitrarily, based on the application domain (e.g., printers, computer screens and
so on). Unfortunately, these coordinates don’t tell us what the colour looks like, but just
represent where the colour is located in the particular colour model. The colours that can be
represented using a particular colour model define then a colour space.

So each pixel of a colour image is a combination of d components (according to the
chosen axes system or colour model, mostly d = 3). A n-dimensional digital colour image
can therefore be represented as a Rn − [0, 1]d mapping, where Rn is the universe of image
points and [0, 1]d the universe of image values (colour values or even better vectors).

In literature there exists a huge number of colour models based on different coordinate
axes, which have respective strengths and weaknesses in comparison to each other. Be-
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low we only introduce a few: RGB, HSV, YIQ, XYZ and L*a*b*. For more background
information we refer to [183, 200].

RGB colour model

black

white

red

green

blue

cyan

magenta

yellow

Figure 1.2: Graphical representation of the
RGB colour model.

The RGB colour model is an additive colour
model, i.e., by mixing red, green and blue light
in different proportions it is possible to obtain a
wide range of colours. These red, green and blue
colours are called the primary colours. A colour
image can also be seen as a combination of three
component images of the same size as the colour
image, where the first, second and third greyscale
image are made of just the red, green and blue
primary colour, respectively. The colours that can
be represented with the RGB colour model form
a cube as shown in Fig. 1.2.

The RGB colour model itself is an abstract
colour model because it is not clear what the terms
‘red’, ‘green’ and ‘blue’ mean. By defining the

terms red, green and blue more precisely we obtain an “absolute colour space”. The most
common RGB colour spaces are sRGB (standard colour RGB space) and Adobe RGB. The
RGB colour model is used very commonly in computer systems (in CRT to display im-
ages) as well as in television, video and so on. The major drawback is that this model is
perceptually nonlinear and also device dependent. Perceptually nonlinear means that equal
differences in the RGB values do not correspond to equal differences in the perceived colour.
It takes a large change of RGB values to produce a perceivable difference at low intensities,
while a small change produces a visible effect at high intensities.

YIQ colour model

The idea behind the YIQ colour model [23, 183] is that the human eye is more sensitive to
changes in the brightness than to changes in the saturation and/or the hue. The Y -component
represents the luminance information (the brightness of a colour) and contains enough in-
formation to represent a greyscale image, in which case the two other components can be
eliminated (e.g., black-white television). The I andQ stand for ‘in-phase’ and ‘quadrature’
and represent the chrominance information. More specifically, I represents the saturation
(which varies in the orange-blue range) andQ represents the hue (which varies in the purple-
green range).

A colour (r, g, b) ∈ [0, 1]3 from the RGB colour model can be transformed to a colour
(y, i, q) ∈ [0, 1]3 in the YIQ colour space as follows:

y = 0.299r+ 0.587g + 0.114b,
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i = 0.595716r− 0.274453g− 0.321263b,
q = 0.211456r− 0.522591g+ 0.311135b.

HSV colour model

The HSV colour model [217] also defines a colour space in terms of three components
namely: the hue, the saturation and the value (Fig. 1.3).

black

white

hue

v
a
lu

e

saturation

Figure 1.3: Graphical repre-
sentation of the HSV colour
model.

• The ‘hue’ refers to the gradation of colour within
the optical spectrum, or visible spectrum of light and
ranges from 0◦ to 360◦.

• The ‘saturation’ is the intensity of a specific hue. It
is based on the colour’s purity: a highly saturated hue
has a vivid, intense colour, while a less saturated hue
appears more muted and grey. With no saturation at
all, the hue becomes a shade of grey. The saturation
ranges from 0% to 100%.

• The ‘value’ indicates the brightness (therefore HSV is
sometimes called HSB) of a colour and also ranges
from 0% to 100%. A minimal brightness (zero) cor-
responds to black while a maximal brightness corre-
sponds to the brightest version of that colour.

A colour (r, g, b) ∈ [0, 1]3 from the RGB colour model can be transformed to a colour
(h, s, v) ∈ [0, 1]3 in the HSV colour space as follows:

h =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h′ mod 360
360

if h′ mod 360 ≥ 0

360− (h′ mod 360)
360

if h′ mod 360 < 0,

s =
max{r, g, b} −min{r, g, b}

max{r, g, b} ,

v = max{r, g, b},
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where

h′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

60(g − b)
max{r, g, b} −min{r, g, b} if max{r, g, b} = r

60(b− r)
max{r, g, b} −min{r, g, b} + 120 if max{r, g, b} = g

60(r − g)
max{r, g, b} −min{r, g, b} + 240 if max{r, g, b} = b.

XYZ colour model

The ‘Commission Internationale d’Eclairage’ (CIE, or the International Commission on
Illumination) developed the first mathematical formula to convert the RGB colour model to
a perceptual system that uses only positive values, i.e., the transformation from the RGB to
XYZ was determined to avoid negative values at all wavelengths [120, 183, 200].

The human eye has receptors for short (S), middle (M) and long (L) wavelengths, also
known as blue, green, and red receptors. That means as explained before that one, in princi-
ple, needs three parameters to describe a colour sensation. A specific method for associating
three numbers (or tristimulus values) with each colour is called a colour space, of which the
CIE XYZ colour space is one of many such spaces. However the CIE XYZ colour space
is special, because it is based on direct measurements of the human eye, and serves as the
basis from which many other colour spaces are defined.

A colour (r, g, b) ∈ [0, 1]3 from the RGB colour model can be transformed to a colour
(x, y, z) ∈ [0, 1]3 in the XYZ colour space as follows:

x = 0.4124r+ 0.3576g+ 0.1805b,
y = 0.2126r+ 0.7152g+ 0.0722b,
z = 0.0193r+ 0.1192g+ 0.9505b.

L*a*b* colour model

The CIE has also developed a colour model where all the colours visible to the human
eye were described. It consists of three parameters representing the lightness of the colour
L, its position between magenta and green a and its position between yellow and blue b
(Fig. 1.4). The lightness L ranges from 0, which corresponds with black, to 100, which
indicates white. As shown on Fig. 1.4, negative values a correspond with green while
positive values correspond with magenta. The b value varies from blue (negative b values)
to yellow (positive b values).
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Figure 1.4: Graphical representation of
the L*a*b* colour model.

A colour (x, y, z) ∈ [0, 1]3 from the XYZ colour
model can be transformed to a colour (l, a, b) ∈
[0, 1]3 in the L*a*b* colour space as follows:

l = 116f(
y

y0
)− 16,

a = 500
(
f(

x

x0
)− f(

y

y0
)
)
,

b = 200
(
f(

y

y0
)− f(

z

z0
)
)
,

where

f(t) =

⎧⎨
⎩

t
1
3 for t > 0.008856

7.787t+ 16
116 otherwise.

The values x0, y0 and z0 are the CIE XYZ tristimulus values of the reference white. For
more background information we refer to [4, 13, 183, 200, 201].

1.1.2 Noise types

A major cause of loss of quality in the image has been alluded to noise in the electronics that
converts radiant energy to an electrical signal. This is the easiest degradation to measure and
is usually quoted by camera manufactures. However, it is not the sole source of degradation:
the camera’s lenses also distort the image and the detector itself may not respond as we
would like it to. Several sources of degradation may be identified [144]. However, noise in
an imaging system is defined as any deviation of the signal from its expected value. Before
introducing some of the most well-known noise types we have to make some agreements
about the notation used throughout this thesis:

• The image O denotes the original noise-free reference image.

• The image N denotes the noisy input image.

• The image F denotes the filtered (denoised) output image.

• The images O′, N ′ and F ′ denote the normalized images, i.e., all pixel intensity
values are divided by 2m − 1.

• A certain image position is denoted as (i, j), i.e., the pixel N(i, j) indicates the in-
tensity value of the noisy image at row i and column j.

• In the context of colour images we denote a pixel as N(i, j) = (NR(i, j), NG(i, j),
NB(i, j)), where NR, NG and NB are respectively the red, the green and the blue
component greyscale images of the colour image in the RGB colour space.

We distinguish between the following three noise types, impulse noise, additive noise
and multiplicative noise, which we discuss below:
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Impulse Noise

When an image is corrupted by impulse noise, only a part of the pixels is changed. The level
of impulse noise is expressed as a percentage that indicates the amount of corruption, e.g.,
20% impulse noise means that 80% of the image pixels were not changed (noise-free) and
20% of the image pixels were changed. The defining characteristic of this noise type is that
the intensity value of a noisy pixel bears no relation to the intensity values of the surrounding
pixels. Impulse noise is therefore denoted as independent noise. Typically, sources include
flecks or dust on the lens or inside the camera, or with digital cameras, faulty CCD elements.
Other sources include noisy sensors or communication channels [83].

In [72] impulse noise is described as follows: “A form of image corruption where image
pixels have their value replaced by the maximum value (e.g., 255).” This is not the correct
definition of impulse noise. In fact, more than one impulse noise type can be found in the
literature. In this thesis we distinguish the following three impulse noise types:

• fixed valued impulse noise: This is one of the most well-known impulse noise types
for digital images. Corrupted pixels for this type can only be equal to a few fixed
intensity values, i.e.:

N(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n1 with probability pr1
... ...

nq with probability prq

O(i, j) with probability 1−
q∑

k=1

prk,

(1.1)

where n1, ..., nq (with nk �= nl for k and l ∈ {1, ..., q}) are fixed intensity values from
the interval [0, 2m−1], withm the number of bits used to store a single intensity value
(mostly 8 bits).

In the case of saturated impulse noise (also called salt and pepper noise) there are
only two values n1 and n2, which are the maximal and minimal pixel value of the
considered interval (for m = 8 we have 255 and 0, respectively). This kind of noise
is a realistic noise modulation of overflow situations. Overflow of a signal occurs
whenever the signal is of excessive amplitude. In such cases the signal might be
clipped to the maximum value or it might overflow, resulting in the values being
much smaller than they should be.

• randomly distributed impulse noise: This impulse noise type is a more general noise
model in which a noisy pixel is taken as an arbitrary value in the dynamic range
according to some underlying probability distribution, i.e.:

N(i, j) =

{
O(i, j) with probability 1− pr
η(i, j) with probability pr,

(1.2)

where η(i, j) is an identically distributed noise value. As in the literature we will only
consider the uniform distribution in this thesis [2, 30, 248, 256].
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• α-stable distributed impulse noise: Recently, it has been shown [81, 87, 137] that a
α-stable distribution can approximate impulse noise more accurately than the other
models, because α-stable models tend to work well when the noise or signal data
contains “outliners” (and all signals do have outliners to some degree). The α-stable
distribution requires four parameters for complete description: (i) an index of sta-
bility α ∈ [0, 2[ also called the tail index, tail exponent or characteristic exponent,
(ii) a skewness parameter β ∈ [−1, 1], (iii) a scale parameter γ > 0 also called dis-
persion parameter and (iv) a location parameter θ ∈ R. The characteristic exponent
α controls the degree of impulsiveness: the impulsiveness increases as α decreases.
The Gaussian (α = 2) and the Cauchy (α = 1) distributions are the only symmetric
α-stable distributions that have closed-form probability density functions. A symmet-
ric α-stable (denoted as SαS) random variable is only described by its characteristic
function:

ϕ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(
iθt− γ|t|α(1 + iβ sgn(t) tan απ

2 )
)

for α �= 1

exp
(
iθt− γ|t|(1− 2iβ ln(t) sgn(t)

π
)
)

for α = 1,

(1.3)

where sgn(t) is the signum function, t ∈ R and i ∈ C is the imaginary unit (i =√−1). For more background information about α-stable noise models we refer to
[81, 87, 137].

Models with α < 2 can accurately describe impulse noise not only in digital images,
but also in telephone lines, underwater acoustics, low-frequency atmospheric signals,
fluctuations in gravitational fields and financial prices and many other processes.

For impulse noise modulation in digital images we assume, as in the literature, a
symmetric alpha stable bell-curve probability density function, i.e., we assume a zero
location θ = 0, a unit dispersion γ = 1 and a skewness parameter β = 0 that indicates
a symmetry around α.

In Fig. 1.5 we visualized the symmetric α-stable noise for a one dimensional signal
for different α’s. The horizontal axes indicate the index of the data (e.g., index 4000
indicates the 4000th input data) and the vertical axes indicate the corresponding noise.
For low α values (α < 1.0) we observe that a high level of impulse noise is obtained
with a lot of extreme outliners (see Fig. 1.5 (a)-(c)). For higherα values we obtain less
impulse noise but more additive noise (i.e., Gaussian noise (see further)), which can
be observed when we look at the range of the noise which decreases with increasing
α-values (e.g., for α = 1.9 the noise range is [−80, 60] while the noise range is
[−4000, 4000] for α = 1.1).
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Figure 1.5: The symmetric α-stable impulse noise for a one dimensional signal with (a) α = 0.1, (b)
α = 0.5, (c) α = 0.8, (d) α = 1.1, (e) α = 1.5 and (f) α = 1.9.
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Additive Noise

Another image independent noise type can often be described by an additive noise model,
where the recorded image N(i, j) is the sum of the original image O(i, j) and the noise
η(i, j):

N(i, j) = O(i, j) + η(i, j). (1.4)

The consequence of the image being corrupted by this noise type is that any pixel has a
value that differs from the expected one: it is equally likely to be increased or decreased by
an number that is random according to some distribution. In literature we can find several
distributions, e.g., Gaussian, Poisson, Laplacian, Cauchy and so on. The Gaussian (used in
this thesis) and the Poisson distribution is defined as follows:

• Gaussian distribution is a very good approximation of the noise that occurs in many
imaging systems and arises due to randomness superimposed on the signal being
captured or processed. The noise value at each pixel is given by an independent draw
from the same normal probability distribution. This noise value is often zero-mean μ
and described by its variance σ and the probability density function (pdf gaus) given
by:

pdfgaus(x;μ, σ) =
1

σ
√

2π
exp

(−x2

2σ2

)
, with x ∈ R.

• Poisson distribution is another common distribution for the noise value of a pixel and
is determined by the nature of light itself. Light is not a continuous phenomenon,
but occurs in discrete photons. These photons do not arrive in a steady stream, but
sometimes vary over time. Think of it like a flow of cars on a road; sometimes
they bunch together, sometimes they spread out, but in general there is an overall
average flow. Such discrete arrivals over a period of time are modelled statistically by
a Poisson distribution:

pdfpois(x;λ) =
λx exp(−λ)

x!
, with x ≥ 0 and λ ≥ 0.

Multiplicative Noise

Multiplicative noise is generally more difficult to remove from images than additive noise
and impulse noise, because the intensity of the noise varies with the signal intensity. It can
be modelled as:

N(i, j) = O(i, j) + η(i, j) ·O(i, j)
= [1 + η(i, j)] ·O(i, j).

(1.5)
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(a) (b)

(c) (d)

Figure 1.6: Illustration of the three noise types with (a) the noise-free “Enamel” image, (b) the
image corrupted with 20% randomly distributed impulse noise, (c) the image corrupted with additive
Gaussian noise with σ = 20 and (d) the image corrupted with multiplicative noise with σ = 20.

As can be seen, the noisy intensity valueN(i, j) depends on the original noise-free intensity
valueO(i, j). The noise η(i, j) can for example corresponds to a uniform distribution:

pdfuni(x;σ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2σ
√

3
if |x| ≤ √3σ

0 else

, with x ∈ R, (1.6)

where σ denotes the standard deviation of the noise. Higher noise levels correspond with
larger σ-values and vice versa.

Another example of signal dependent noise which sometimes is modelled as multiplica-
tive noise is called speckle noise. Speckle noise is generated due to constructive and de-
structive interference of multiple echoes returned from each pixel. As a result, a granular
pattern is produced in the image which corrupts significantly the appearance of the image
objects. Speckle noise mainly occurs in satellite images (SAR images), medical images
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(ultrasound images) and in television environments. The speckle noise model may also be
approximated as multiplicative, if the envelope signal received at the output of the beam
former of the ultrasound imaging systems is captured before logarithmic compression and
may be defined as:

N(i, j) = O(i, j)ηm(i, j) + ηa(i, j) (1.7)

whereN(i, j) represents the noisy observation (i.e., the recorded ultrasound image),O(i, j)
the noise-free pixel (that has to be recovered), ηm(i, j) the multiplicative and ηa(i, j) the
additive speckle noise components at position (i, j). Generally, the effect of the additive
component of the speckle in ultrasound images is less significant than the effect of the
multiplicative component. Thus, ignoring the term ηa(i, j), one can rewrite expression
(1.7) as:

N(i, j) = O(i, j)ηm(i, j). (1.8)

By applying the logarithmic function on both sides of expression (1.8) we are able to trans-
form the speckle noise into an additive one:

logN(i, j) = logO(i, j) + log ηm(i, j). (1.9)

where log ηm(i, j) is often considered to be white noise [3, 161]. The statistical properties
of speckle noise log ηm(i, j) were studied in [84].

The three noise types (i.e., impulse noise, additive Gaussian noise and multiplicative
noise) are illustrate visually in Fig. 1.6.

1.2 Introduction to Fuzzy Set Theory

1.2.1 The classical set theory and its fuzzy extension

In mathematics, a set can be thought of as a collection of distinct objects considered as a
whole. The objects of a set are called elements or members. Let X be an ordinary nonvoid
set that will be called the universe of discourse (e.g., natural numbers N). Every ordinary
subset A of X partitions the universe into two disjoint parts: the part made up with those
elements that belong to A or satisfy the defining property (e.g., prime numbers) and the part
made up with those elements that do not belong to A or do not satisfy the property. This
sharp partitioning is an immediate consequence of classical binary logic underlying ordinary
set theory. A classical set can therefore be represented as the characteristic mapping shown
in definition 1.1. The class of the crisp sets in a universeX is denoted as P(X).

Definition 1.1. Let A be a subset of a universeX . The characteristic mapping, or indicator
mapping, μA of the set A is defined as a X-{0, 1} mapping:

μA : X → {0, 1}
x �→ 1, if x ∈ A
x �→ 0, if x /∈ A.
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Fuzzy sets are an extension of classical set theory and can be defined in a similar way.
In classical set theory the membership of elements in relation to a set is assessed in binary
terms according to a crisp condition - an element either belongs or does not belong to the
set (definition 1.1). In contrast, fuzzy set theory permits the gradual assessment of the
membership of elements in relation to a set. This means that the membership degrees range
between 0 and 1. The membership mapping is therefore a X-[0, 1] mapping.

Definition 1.2. Let X be a universe. A fuzzy set A in X is characterized as a X-[0, 1]
mapping μA:

μA : X → [0, 1]
x �→ μA(x), ∀x ∈ A.

So μA maps for each element x ∈ X the membership degree μA(x) of x in the fuzzy set A,
i.e., an element x in X belongs to the fuzzy set A with a membership degree of μA(x). For
simplification we will denote the membership degree μA(x) as A(x), i.e., we do not make
the difference between the fuzzy set and the membership function. The class of the fuzzy
sets in a universeX is denoted as F(X). Fuzzy sets are in fact an extension of classical set
theory since, for a certain universe, a membership function may act as an indicator function,
mapping all elements to either one or zero, as in the classical notation.

The following definitions are frequently used in fuzzy set theory:

Definition 1.3. The support of a fuzzy set A (denoted as supp A) in the universe X is
defined as:

supp A = {x ∈ X |A(x) > 0}. (1.10)

Definition 1.4. The kernel of a fuzzy set A (denoted as ker A) in the universe X is defined
as:

ker A = {x ∈ X |A(x) = 1}. (1.11)

Definition 1.5. The (weak) α-level of a fuzzy set A (denoted as Aα) in the universe X is
defined as:

Aα = {x ∈ X |A(x) ≥ α}, (1.12)

with α ∈ ]0, 1].

Aα denotes the set of elements of the universeX that belongs to A in a degree at least equal
to α.

Definition 1.6. The strong α-level or α-cut of a fuzzy set A (denoted as Aα ) in the universe
X is defined as:

Aα = {x ∈ X |A(x) > α}, (1.13)

with α ∈ [0, 1[.

Aα denotes the set of elements of the universe X that belongs to A in a degree strictly
greater than α.
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Example

In the following part we will illustrate (with an example) the advantage of fuzzy set theory
in comparison to classical set theory to solve a so called evaluation problem. An evaluation
problem tries to solve the following problem: let X be a universe of objects and let P be
any property. To determine which objects from the universe X do match and which do not
match the property P , we have to solve an evaluation problem.

Suppose that we have a universe of all possible greyscale intensity values in a certain
spatial neighbourhood around a given referenced greyscale value x 0. In this situation the
universe is equal to X = {x1, x2, x3, ..., xn}, with n the number of different greyscale
values and xi the ith greyscale value of the neighbourhood. For noise suppression we often
have to know which spatial neighbours of the greyscale value x 0 can be considered and
which can not be considered to be similar to x0. So we want to construct a subset Si with
all greyscale intensity values similar to the given central greyscale value x0. To judge about
the similarity between two intensity values we just use the Euclidean distance. In crisp set
theory we then have to define a certain threshold value to decide if two greyscale values can
be observed as similar or not, i.e.,

xi ∈ Si ⇔ |x0 − xi| ≤ threshold,

xi /∈ Si ⇔ |x0 − xi| > threshold.

In crisp set theory the decision about the similarity of two intensity values depends com-
pletely on the choice of the threshold value. A small change in the threshold value can lead
to a completely different conclusion. Such behaviour is of course not desirable in the devel-
opment of a robust noise suppressing method. The term ‘similarity’ is intrinsic vague and
should not be modelled as a crisp set. In the fuzzy approach the conclusion depends on the
membership function:

Si : X → [0, 1]
xi �→ Simx0(xi), ∀xi ∈ X,

where the membership function Simx0 indicates to what degree a given intensity is similar
to the reference intensity value x0. The following membership function, for example, can
be used

Simx0(xi) =
|x0 − xi|
2m − 1

,

with m the total number of bits used to store a single intensity value.

Membership functions

Of course we have to mention that fuzzy sets are often context-dependent and observer-
dependent. Although the knowledge of an exact value for the degree of membership for
each point in the universe is not really needed, it is sometimes useful to have some general
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shape for the membership function available. Such general shape functions will be depen-
dent on some parameters that can be adapted to the context as well as to the observer. The
following frequently used functions are discussed below: the S-function, the π-function,
the Π-function, the triangular function and the trapezoidal function (we have restricted our-
selves to the universe R).

Definition 1.7. The S-function depends on three real parameters α, β and γ (β = α+γ
2 and

α ≤ γ) and is given by:

S(.;α, β, γ) : R → [0, 1]
x �→ 0, ∀x ∈]−∞, α[

x �→ 2
(x− α
γ − α

)2

, ∀x ∈ [α, β[

x �→ 1− 2
(x− γ
γ − α

)2

, ∀x ∈ [β, γ[

x �→ 1, ∀x ∈ [γ,+∞[.

The S-function is very useful for the representation of increasing terms as old, high, large,
and so on. The complement of a S-function can of course be used for decreasing terms as
young, small, low and so on. The presence of the parameters α, β and γ makes it possible
to adapt the membership function without essentially changing its general shape. This is
of great importance in the representation of the knowledge of experts in knowledge based
systems.

Definition 1.8. The π-membership function results from a continuous linking of an S-
membership function and its reflected image. The π-membership function depends on two
real parameters β, β > 0, and γ and is defined as:

π(.;β, γ) : R → [0, 1]

x �→ S(x; γ − β, γ − β
2 , γ), ∀x ∈]−∞, γ[

x �→ 1− S(x; γ, γ + β
2 , γ + β), ∀x ∈ [γ,+∞[.

The parameter β in the previous definition is called the bandwidth, i.e., the distance between
the crossover points and γ is called the modal value i.e., π(γ;β, γ) = 1. A simplified
version of the S-function and the π-function is given by the triangular and the trapezoidal
membership function, respectively.

Definition 1.9. The triangular membership function Tri depends on two real parameters
α and β, with α ≤ β, and is given by:

Tri(.;α, β) : R → [0, 1]
x �→ 0, x ∈ ]−∞, α]

x �→ x− α
β − α, x ∈ ]α, β]

x �→ 1, x ∈ ]β,+∞[.
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Definition 1.10. The trapezoidal membership function Trap depends on four real parame-
ters α, β, γ and δ, with α ≤ β ≤ γ ≤ δ, and is given by:

Trap(.;α, β, γ, δ) : R → [0, 1]
x �→ 0, x ≤ α or x ≥ δ

x �→ x− α
β − α, x ∈ ]α, β[

x �→ 1, x ∈ [β, γ]

x �→ δ − x
δ − γ , x ∈ ]γ, δ[.

Fig. 1.7 shows the graphical representation of the previous definitions with (a) the S-
function, (b) the π-function, (c) the Tri-function and (d) the Trap-function.

Definition 1.11. The definition of the Π-function uses two continuous [0, 1] −[0, 1] map-
pings π1 and π2 that meet the following constraints:

π1(0) = 0, π1(1) = 1
x < y ⇒ π1(x) ≤ π1(y)

π2(0) = 1, π2(1) = 0
x < y ⇒ π2(x) ≥ π2(y).

The general Π-function Π(.;α, β, γ, δ) on X ⊆ R depends on four real parameters α, β, γ
and δ with α ≤ β ≤ γ ≤ δ and is defined as:

Π(x;α, β, γ, δ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, ∀x ∈ ]−∞, α] if α = β = inf X
0, ∀x ∈ ]−∞, α] if α ≤ β

π1

(x− α
β − α

)
, ∀x ∈ ]α, β] if α ≤ β

1, ∀x ∈ ]β, γ]

π2

(x− γ
δ − γ

)
, ∀x ∈ ]γ, δ] if γ < δ

0, ∀x ∈ ]δ,+∞[ if γ < δ

1, ∀x ∈ [γ,+∞[ if γ = δ = supX.

This Π function is a general membership function which for example includes the trape-
zoidal function of definition 1.10 (Fig. 1.7 (d)), where π 1(x) = x and π2(x) = 1− x for all
x ∈ [0, 1].

1.2.2 Fuzzy set operations

Operations on fuzzy sets are generalizations of the crisp set operations. In this section
we will discuss the generalization of the crisp complement (co), the crisp intersection (∩)
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Figure 1.7: Graphical illustration of (a) the S membership function, (b) the π membership function,
(c) the triangular membership function and (d) the trapezoidal membership function.

and the crisp union (∪) operator. We first introduce the following terms: fuzzy negation,
fuzzy conjunction and fuzzy disjunction [75]. These terms are extensions of the classical
binary logic operators ¬ (negation), ∧ (conjunction) and ∨ (disjunction). Besides negation,
conjunction and disjunction we also discuss the fuzzy implication [75], which is an extension
of the classical implication operator (→).

Definition 1.12. A fuzzy negation [249] N is a unary operator in [0, 1] and is defined as a
[0, 1]− [0, 1] mapping satisfying:

• Boundary conditions: N (0) = 1 and N (0) = 0. These two conditions are imposed
by the crisp results.

• Monotonicity (strictly decreasing):
(
∀ (x, y) ∈ [0, 1]2

) (
x ≥ y⇒N (x) ≤ N (y)

)
.

This means that if an object x belongs more to a setA than an object y, one necessary
has that y belongs more to the complement of A than x does.

• Involution: A strong fuzzy negation operator also satisfies the involution property,
i.e., (∀ x ∈ [0, 1]) (N (N (x)) = x).
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In most applications the original strong fuzzy negation of Zadeh N s is used and is defined
as Ns(x) = 1− x, for all x in [0, 1] (see [75]).

We also want to mention (i) the so-called parameterized strong negation operators of
Sugeno [212], defined by:

Nsugeno(x) =
1− x
1 + λx

, ∀x ∈ [0, 1] and with λ ∈ ]− 1,+∞[,

admitting an asymmetry in the grades of membership and “non membership” and (ii) the
strong negation operators defined by Yager [255]:

Nyager(x) = w
√

(1− xw), ∀x ∈ [0, 1] and with w ∈ [0,+∞[.

Definition 1.13. The N -complement coN A of a fuzzy set A in a universe X is defined by
the following fuzzy set:

(coNA(x)) = N (A(x)), ∀x ∈ X and with N a fuzzy negation.

Definition 1.14. A fuzzy conjunction [74, 249] C is a binary operator in [0, 1] and is defined
as a [0, 1]2 − [0, 1] mapping satisfying:

• Boundary conditions: C(1, 1) = 1 and C(0, 0) = C(1, 0) = C(0, 1) = 0. These two
conditions are also imposed by the crisp results.

• Increasing:
(
∀ (x, y, z) ∈ [0, 1]3

) (
x ≤ y⇒ C(x, z) ≤ C(y, z)

)
.

A semi-norm is a fuzzy conjunction which also satisfies:

• Additional boundary condition:
(
∀x ∈ [0, 1]

) (
C(1, x) = C(x, 1) = x

)
.

A triangular norm (denoted as t-norm) is a commutative and associative semi-norm, i.e., it
satisfies:

• Commutativity:
(
∀ (x, y) ∈ [0, 1]2

) (
C(x, y) = C(y, x)

)
.

• Associativity:
(
∀ (x, y, z) ∈ [0, 1]3

) (
C(x, C(y, z)) = C(C(x, y), z)

)
.

Below we mention the following basic triangular norms [61, 75]:

- The minimum t-norm TM :

TM (x, y) = min(x, y).

- The algebraic product t-norm TP :

TP (x, y) = x · y.

- The Łukasiewicz t-norm TL:

TL(x, y) = max(x+ y − 1, 0).
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- The weak t-norm TW :

TW (x, y) =

{
min(x, y), if max(x, y) = 1
0, otherwise.

- The Hamacher t-norm TH :

TH(x, y; γ) =
x · y

γ + (1− γ)(x+ y − x · y) , γ ≥ 0.

- The Dubois and Prade t-norm TDP :

TDP (x, y;α) =
x · y

max(x, y, α)
, α ∈ [0, 1].

- The Yager t-norm TY :

TY (x, y; p) = 1−min(1, p
√

(1− x)p + (1− y)p), p > 0.

- The Frank t-norm TF :

TF (x, y;λ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min(x, y), if λ = 0
TP (x, y), if λ = 1
TL(x, y), if λ = ∞
1− log

(λx − 1)(λy − 1)
λ− 1

, otherwise,

for all (x, y) in [0, 1]2 (four of them are illustrated graphically in Fig. 1.8).

Definition 1.15. The C-intersection A ∩C B of two fuzzy sets A and B in a universe X is
defined by the following fuzzy set:(

A ∩C B
)
(x) = C

(
A(x), B(x)

)
, ∀x ∈ X and C a fuzzy conjunction.

Definition 1.16. A fuzzy disjunction [61, 74] D is a binary operator in [0, 1] and is defined
as a [0, 1]2 − [0, 1] mapping satisfying:

• Boundary conditions: D(0, 0) = 0 and D(1, 1) = D(1, 0) = D(0, 1) = 1 (imposed
by the crisp results).

• Increasing:
(
∀ (x, y, z) ∈ [0, 1]3

) (
x ≤ y⇒D(x, z) ≤ D(y, z)

)
.

A semi-norm is a fuzzy disjunction which also satisfies:

• An additional boundary condition:
(
∀x ∈ [0, 1]

) (
D(0, x) = D(x, 0) = x

)
.
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Figure 1.8: The graphical representation of the t-norms TM , TP , TL and TW .
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A triangular conorm (denoted as t-conorm or s-norm) is a commutative and associative
semi-conorm, i.e., it satisfies:

• Commutativity:
(
∀ (x, y) ∈ [0, 1]2

) (
D(x, y) = D(y, x)

)
.

• Associativity:
(
∀ (x, y, z) ∈ [0, 1]3

) (
D(x,D(y, z)) = D(D(x, y), z)

)
.

Hereafter we summarize, as we did for the triangular norms, the most used triangular
conorms [75].

- The maximum t-conorm SM :

SM (x, y) = max(x, y).

- The probabilistic sum t-conorm SP :

SP (x, y) = x+ y − x · y.

- The Łukasiewicz t-conorm SL:

SL(x, y) = min(1, x+ y).

- The strong t-conorm SS :

SS(x, y) =

{
max(x, y), if min(x, y) = 0
1, otherwise.

- The Hamacher t-conorm SH :

SH(x, y; γ) =
x+ y − (2− γ) · x · y

1− (1− γ) · x · y , γ ≥ 0.

- The Dubois and Prade t-conorm SDP :

SDP (x, y;α) =
x+ y − x · y −min(1− α, x, y)

max(1− x, 1 − y, α)
, α ∈ [0, 1].

- The Yager t-conorm SY :

SY (x, y; p) = min(1, p
√
xp + yp), p > 0,

for all (x, y) in [0, 1]2 (four of them are illustrated graphically in Fig. 1.9).

Definition 1.17. TheD-unionA∪DB of two fuzzy sets A andB in a universeX is defined
by the following fuzzy set:(

A ∪D B
)
(x) = D

(
A(x), B(x)

)
, ∀x ∈ X and D a fuzzy disjunction.
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Figure 1.9: The graphical representation of the t-conorms SM , SP , SL and SS .
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The minimum triangular norm, the weak triangular norm, the maximum triangular co-
norm and the strong triangular conorm are special, because all the other norms T ∗ and
conorms S∗ can be placed as follows:

TW (x, y) ≤ T ∗(x, y) ≤ TM (x, y) ≤ SM (x, y) ≤ S∗(x, y) ≤ SS(x, y),

∀ (x, y) ∈ [0, 1]2. So the weak t-norm TW is the smallest, while the minimum t-norm
TM is the largest possible triangular norm. The smallest and largest triangular conorm is
respectively the maximum norm SM and the strong norm SS . In this thesis we have taken
this observation into account for the choice of a t-norm and a t-conorm.

Definition 1.18. A fuzzy implication I is a binary operator in [0, 1] and is defined as a
[0, 1]2 − [0, 1] mapping satisfying:

• Boundary conditions: I(1, 0) = 0 and I(1, 1) = I(0, 1) = I(0, 0) = 1 (imposed by
the crisp results).

• Decreasing in the first argument:(
∀ (x, y, z) ∈ [0, 1]3

) (
x ≤ y⇒ I(x, z) ≥ I(y, z)

)
.

• Increasing in the second argument:(
∀ (x, y, z) ∈ [0, 1]3

) (
y ≤ z⇒ I(x, y) ≤ I(x, z)

)
.

The most popular fuzzy implications [108] are summarized below.

- The Kleene-Dienes implication IKD:

IKD(x, y) = max(1 − x, y)
= SM (Ns(x), y).

- The Reichenbach implication IR:

IR(x, y) = 1− x+ x · y
= SP (Ns(x), y).

- The Łukasiewicz implication IL:

IL(x, y) = min(1, 1− x+ y)
= SL(Ns(x), y).

- The Zadeh implication IZ :

IZ(x, y) = max(min(x, y), 1 − x).
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Figure 1.10: The graphical representation of the fuzzy implications IKD , IL, IR and IZ .

- The Gödel implication IG:

IG(x, y) =

{
1, if x ≤ y

y, otherwise.

- The Goguen implication IGo:

IGo(x, y) =

⎧⎨
⎩

1, if x ≤ y

y

x
, otherwise,

for all (x, y) in [0, 1]2 (four of them are illustrated graphically in Fig. 1.10).

1.2.3 The Mamdani fuzzy inference systems

Fuzzy inference is the process of formulating the mapping from a given input to an output
using fuzzy logic. The mapping then provides a basis from which decisions can be made,
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or patterns can be discerned. Fuzzy inference systems are associated with fuzzy rule based
systems, fuzzy expert systems, fuzzy modelling, fuzzy associative memory, fuzzy logic
controllers and simply (and ambiguously) fuzzy systems. In the literature we distinguish
two main fuzzy inference systems known as: the Mamdani fuzzy inference system [134]
and the Takagi-Sugeno-Kang (TSK) fuzzy inference system [213, 215]. In this section
we discuss the Mamdani inference system, while the Takagi-Sugeno-Kang system will be
discussed in section 1.2.4.

The general structure of a Mamdani fuzzy inference system can be seen in Fig. 1.11,
where we distinguish the following steps:

1. The fuzzification of the input values (e.g., greyscale values or other measurements).
For each input we first have to define the fuzzy representation, i.e., we have to define
a proper membership function and all associated parameters of that function. The
used input variables and membership functions depend on the second step which uses
a rule-base.

2. The second step uses a rule-base. The general form of such a rule-base can be seen in
the following expression:

R1 : IF x1 is A1,1 AND x2 is A1,2 AND ... AND xn is A1,n THEN y is B1

R2 : IF x1 is A2,1 AND x2 is A2,2 AND ... AND xn is A2,n THEN y is B2

...
...

...
...

Rm : IF x1 is Am,1 AND x2 is Am,2 AND ... AND xn is Am,n THEN y is Bm

with n the number of input variables, m the number of rules and A j,1, Aj,2, ..., Aj,n
the n linguistic terms of rule j. Linguistic terms are defined by fuzzy sets. The IF part
of a rule is called the antecedent or premise while the THEN part of a rule is called
the consequent or conclusion. An example of such a rule is: if N(i, j) is dark AND
N(i+ 1, j) is bright AND N(i− 1, j) is bright then F (i, j) is bright.

The interpretation of such if-then rules involves different parts: firstly the evaluation
of the premises (which uses the fuzzification results from the previous step) and sec-
ondly the application of that result to the consequent (using a fuzzy implication or
using a composition based method where fuzzy conjunctions are used) to obtain the
activation degree of each rule. The activation degree of each rule indicates in how
much the corresponding rule is satisfied, i.e., how much this rule is true.

After calculating the activation degree of each rule we have to aggregate those values
to state a conclusion (this is the actual inference). This can give us for example a
non-convex fuzzy quantity (a fuzzy set on the set of real numbers R) as result. A
non-convex fuzzy quantityQ is a fuzzy set on the set of real numbers R that does not
satisfy the convexity condition:(

∀(x, y) ∈ R
2
)(
∀λ ∈ [0, 1]

)(
Q(λx+ (1 − λ)y) ≥ min(Q(x), Q(y))

)
.
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Fuzzification

Rule 1: IF … THEN

Rule 2: IF … THEN

Rule 3: IF … THEN

Rule m: IF … THEN

Inference Defuzzification

Input

Output

Input

Figure 1.11: A general scheme of a fuzzy inference system: for each input we calculate first the
corresponding membership degrees (fuzzification), then we calculate the activation degree of each rule
and aggregate all these activation degrees to obtain a result (inference), finally we have to calculate
the crisp output value of the fuzzy inference result (defuzzification).

3. The final step is to defuzzificate the output to obtain a crisp value, which is needed
to represent the output with a real number. The defuzzification can be seen as a
representation of a fuzzy quantity.

Step 1 is generally called the fuzzification, step 2 is called the inference and consist of
three substeps: the aggregation of each rule, the calculation of the conclusion of each rule
and the accumulation of all rules and step 3 is named the defuzzification step. All three
main steps are discussed in more detail in the following parts.

Fuzzification

The greyscale values or other specifications of an image have crisp values. This means that
they only have binary membership degrees. So to process such data in a fuzzy rule based
(inference) system they first have to be transformed into fuzzy quantities. Such a process
or transformation is called fuzzification. The intensity values of an image for example can
be represented by five fuzzy sets: very dark, dark, medium, bright and very bright. If an
intensity value ranges between zero (black) and 255 (white) then we can use the membership
functions shown in Fig. 1.12. A pixel with greyscale value 85 for example is a dark pixel
with a degree of 0.4 and a medium pixel with a degree of 0.2. This pixel is now represented
by membership degrees instead of the crisp value. The fuzzification depends on the form
and shape of the chosen membership functions, which in turn depend on the used rule-base
and the context of the method (goal of the inference system, e.g., noise reduction).
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Figure 1.12: Fuzzification of greyscale values of an image with five membership functions (fuzzy
sets). The greyscale value 85 for example will be transformed into the fuzzy membership de-
grees: μvery dark(85) = 0, μdark(85) = 0.4, μmedium(85) = 0.2, μbright(85) = 0 and
μvery bright(85) = 0.

Inference

As shown in Fig. 1.11 a fuzzy inference system contains a collection of if-then rules that
are used (together with the collection of membership functions) to reason about the input
data. This collection of rules is called a rule-base and contains premises (antecedent) and
conclusions (consequent). Premises in turn are composed by smaller parts (constraints). In
the array of noise suppression we can have for example the following two rules:

Rule 1:

IF N(i, j) is dark AND median
k,l∈ {−1,0,+1}

(N(i+ k, j + l)) is very bright

OR

N(i, j) is dark AND median
k,l∈ {−1,0,+1}

(N(i+ k, j + l)) is bright

THEN F (i, j) is bright

Rule 2:

IF N(i, j) is dark AND median
k,l∈{−1,0,+1}

(N(i+ k, j + l)) is medium
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THEN F (i, j) is medium

The inputs are the greyscale intensity value of the noisy image N(i, j) and the median
greyscale value of the nine pixels around N(i, j). The output is the filtered image value
F (i, j). In the cases where the rules exist in more than one part, the inference generally
consists of three different steps: aggregation, calculation of the conclusions and accumula-
tion.

1. The first part of the inference is the calculation of the activation degree of each rule. If
a rule contains several parts that are connected by a conjunction (AND) or a disjunc-
tion (OR), we first have to aggregate all membership degrees, obtained from the fuzzi-
fication step, to calculate the activation degree. The aggregation of the different parts
is realised by the fuzzy set operators of section 1.2.2, where we used triangular norms
and triangular conorms for respectively the conjunction and the disjunction operator.
So for a greyscale value N(i, j) = 85 and a median value of 169 (of the neighbour-
hood aroundN(i, j)) we have the following membership degrees: μ dark(85) = 0.4,
μvery bright(169) = 0, μbright(169) = 0.2 and μmedium(169) = 0.4 . If we use the
minimum t-norm and the maximum t-conorm we can calculate the activation degree
of the first rule as follows:

part 1: N(i, j) is dark AND median
k,l∈{−1,0,+1}

is very bright

= min(0.4, 0) = 0
part 2: N(i, j) is dark AND median

k,l∈{−1,0,+1}
(N(i+ k, j + l)) is bright

= min(0.4, 0.2) = 0.2

part 1 OR part 2 = max(0, 0.2) = 0.2

The calculation of the activation degree of the second rule becomes:

N(i, j) is dark AND median
k,l∈{−1,0,+1}

(N(i+ k, j + l)) is medium

= min(0.4, 0.4) = 0.4

2. The calculation of a conclusion for a particular rule uses the activation degree of that
rule to shape the output fuzzy set of that rule. This fuzzy set is represented by a mem-
bership function that is chosen to indicate the linguistic term of the consequent. If
the antecedent is only partially true (i.e., is assigned a value less than one), then the
output fuzzy set is truncated by the activation degree of that rule. This truncation can
be done in one of the two following ways [108]: (i) by using a fuzzy implication in-
troduced in definition 1.18 or (ii) by using a conjunction based approximation where
triangular norms (see definition 1.9) are used. If we look at the literature we observe
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that the second approach is the most popular. The conclusions in our example are for
the first rule “F (i, j) is bright” and for the second rule “F (i, j) is medium”. Both
linguistic terms are represented with the triangular membership functions shown in
Fig. 1.12. The calculation of the conclusion with the minimum operator (triangular
norm) cuts off the membership function bright (denoted as μ bright) at level 0.2 (=
activation degree of rule 1) and the membership function medium μmedium at level
0.4 (= activation degree of rule 2), while the product operator multiplies all member-
ship degrees with the activation degree. The output fuzzy sets for both rules and both
triangular norms can be seen in Fig. 1.13.

3. After obtaining the conclusion for all rules, expressed in terms of fuzzy quantities
(a fuzzy set on the set of real numbers R), we have to calculate the final output and
this is realised by aggregating all single results into one single output function. One
common method for the aggregation of all membership degrees is done by the max-
imum operator as illustrated in Fig. 1.14 for the two considered example rules. It
can be observed that we used the minimum triangular norm for the calculation of the
conclusion of the two rules.

Defuzzification

Sometimes it is useful to just examine the fuzzy subsets that are the result of the composition
process, but mostly (especially in the context of noise reduction) this fuzzy value needs to
be converted to a single number - a crisp value. This is what the defuzzification process
does. There exists a huge amount of defuzzification methods [238, 239] but only a few of
them are frequently used.

• In the centre of area method, the crisp value of the output variable is computed by
finding the value of the centre of gravity of the membership function for the fuzzy
output value. The final output value (in our example the filtered output intensity
value Fd(i, j) at position (i, j)) for this method is computed as follows:

Fd(i, j) =

e∑
z=b

z · μ(z)

e∑
z=b

μ(z)

(1.14)

where μ is the output membership function of the inference that is situated in the [b, e]
range. The index d in the notation Fd(i, j) indicates that the result is obtained from a
defuzzification method.

• In the maximum method, one of the values at which the fuzzy subset attains its max-
imum is chosen as the crisp value for the output. There are several variations of
this maximum method that differ only in what they do when there is more than one
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Figure 1.13: The calculation of the conclusion for (a) the first rule and (b) the second rule with (left)
the minimum operator and (right) the product operator.
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Figure 1.15: Two defuzzification methods of the output membership function of the inference with
(a) the average of maxima and (b) the local average of maxima.

value at which this maximum occurs. The average of maxima or mean of maxima
method (illustrated in Fig. 1.15 (a)), returns the average of the values z maxu at which
the maximum occurs, i.e.,

Fd(i, j) =
1
N

N∑
u=1

zmaxu , (1.15)

whereN is the number of crisp values zmaxu (horizontal axis of Fig. 1.15) and where
Fd(i, j) is the defuzzificated filtered output intensity value at position (i, j).

The local average of maxima or local mean of maxima method (illustrated in Fig.
1.15 (b)), returns the average of the values zmaxu at which local maximum occurs, i.e.,

Fd(i, j) =

N∑
u=1

μ(zmaxu ) · zmaxu

N∑
u=1

μ(zmaxu )

, (1.16)

where N is again the number of crisp values zmaxu and Fd(i, j) the defuzzificated
filtered output intensity value at position (i, j). The weights μ(zmaxu ) correspond to
the membership degrees (vertical axis) of the inference outputs.

1.2.4 The Takagi-Sugeno-Kang fuzzy inference systems

The difference between a Takagi-Sugeno-Kang (TSK) inference method discussed here and
the Mamdani inference system described in the previous subsection is the rule-base. The
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Mamdani inference system uses linguistic terms in the premises and the consequents while
the TSK inference system uses linguistic terms only in the premises and never in the con-
sequent. The consequents in the TSK model are crisp values, which are the solutions of a
linear equation. So a rule-base in this model can be expressed as:

R1 : IF x1 is A1,1 AND...AND xn is A1,n THEN y1 = f1(x1, ..., xn)
R2 : IF x1 is A2,1 AND...AND xn is A2,n THEN y2 = f2(x1, ..., xn)
...

...
...

...
Rm : IF x1 is Am,1 AND...AND xn is Am,n THEN ym = fm(x1, ..., xn)

where yu = fu(x1, ..., xn) is a linear function in the consequent of the u-th rule.
The function fu has the following general form:

fu(x1, x2, ..., xn) = q1x1 + q2x2 + ...+ qnxn + const

where the real parameters qu depend on the specific application. If the function fu is a first
order polynomial, then the resulting fuzzy inference is called a first order Sugeno fuzzy
model. A zeroth-order Sugeno fuzzy inference model (which is a special case of the Mam-
dani model) is a model in which the consequents of the rules are equal to constant values
instead of functions. The output value yu of each rule is weighted by the activation degree
μu(yi) of each rule. The calculation of the activation degree is done in the same way as for
the Mamdani system. The crisp output value of a TSK inference model is computed by:

F (i, j) =

n∑
u=1

μu(yu) · yu
n∑
u=1

μu(yu)

1.3 Similarity Measures

In the domain of image restoration it is necessary to have some objective measures to eval-
uate the quality of the developed filter in comparison with other state-of-the-art methods.
Such measures are often called similarity measures (because they express the similarity be-
tween two images) or objective image quality measures (quality assessment). Across all the
measures used in the literature we will use only the following quality measures:

• The mean square error (MSE), which is one of the most used quality measures in
image processing. This measure expresses the dissimilarity between two images, i.e.,
the smaller the MSE value between two images the more similar they are. It is defined
as:

MSE(F,O) =

N∑
i=1

M∑
j=1

(
O(i, j)− F (i, j)

)2

N ·M , (1.17)
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withO the original noise-free image and F the filtered image, both of sizeN×M . A
disadvantage of this quality measure is the strong dependence on the image intensity
scaling. A mean-square error of 100 for an 8-bit image (with pixel values in the
range [0, 255]) looks dreadful, but a MSE of 100 for a 10-bit image (pixel values
in [0, 1023]) is barely noticeable. To avoid such problems the PSNR measure was
invented and is, nowdays, used more frequently than the MSE. There exits a lot of
variants of the MSE: the root mean square error (RMSE =

√
MSE), the peak mean

square error (PMSE), the mean absolute difference (MAD) and so on.

• The peak signal to noise ratio (PSNR), which is one of the most commonly used
similarity measures. It is an engineering term for the ratio between the maximum
possible power of a signal (i.e., 2m − 1, with m the number of bits used to store one
single intensity value) and the power of corrupting noise that affects the reliability of
its representation. Because many signals have a very wide dynamic range, the PSNR
is usually expressed in terms of the logarithmic decibel scale. The PSNR is defined
as:

PSNR(F,O) = 10 log10

(2m − 1)2

MSE(F,O)
. (1.18)

• The signal to noise ratio (SNR), which is a term for the power ratio between a noise-
free signal and the background noise. In image processing, the SNR of an image is
usually defined as the ratio of the mean pixel value to the standard deviation of the
pixel values and is defined as:

SNR(F ) = 20 log10

(
μF
σF

)
, (1.19)

with

μF =
1

N ·M
N∑
i=1

M∑
j=1

F (i, j),

σF =
1

N ·M − 1

N∑
i=1

M∑
j=1

(
F (i, j)− μF

)2

,

where F is an image of size N ×M .

• The universal image quality index (UIQ) proposed in [247] does not use the tradi-
tional error summation as the MSE or PSNR but is designed by modelling any image
distortion as a combination of three factors: loss of correlation, luminance distortion
and contrast distortion. The quality measure is defined as:

UIQ(F,O) =
4σfo · f · o(

σ2
f + σ2

o

)
·
(
(f)2 + (o)2

) , (1.20)
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with

f =
1

N ·M
N∑
i=1

M∑
j=1

F (i, j), o =
1

N ·M
N∑
i=1

M∑
j=1

O(i, j),

σ2
f =

1
N ·M − 1

N∑
i=1

M∑
j=1

(
F (i, j)− f

)2

,

σ2
o =

1
N ·M − 1

N∑
i=1

M∑
j=1

(
O(i, j)− o

)2

,

σfo =
1

N ·M − 1

N∑
i=1

M∑
j=1

(
F (i, j)− f

)
·
(
O(i, j)− o

)
.

The dynamic range of this measure is [-1,1] where 1 indicates that the filtered image
F and the original image O are completely similar, while the lowest value -1 occurs
when F (i, j) = 2o+O(i, j) for all positions (i, j) of the image.

• The classes of similarity measures proposed by Van der Weken et. al. [235, 236, 237]
considered the human visual system to develop a perceptual uniform quality measure.
In these classes they used several state-of-the-art similarity measures between two
fuzzy sets. Three of them are:

M6(F
′, O′) =

N∑
i=1

M∑
j=1

min
(
F ′(i, j), O′(i, j)

)
N∑

i=1

M∑
j=1

max
(
F ′(i, j), O′(i, j)

) ,

MI3(F ′, O′) =

N∑
i=1

M∑
j=1

min
[
min

(
F ′(i, j), O′(i, j)

)
, min

(
1 − F ′(i, j), 1 − O′(i, j)

)]
N∑

i=1

M∑
j=1

min
[
max

(
F ′(i, j), O′(i, j)

)
, max

(
1 − F ′(i, j), 1 − O′(i, j)

)] ,

M1b(F
′, O′) = 1 −

√√√√( 1

N · M
N∑

i=1

M∑
j=1

∣∣∣F ′(i, j) − O′(i, j)
∣∣∣2 ),

where O′ and F ′ denote the original and the filtered normalized images. The neigh-
bourhood based similarity measures of Van der Weken et. al. [235, 236, 237] first
partition the two images F ′ and O′ into equal parts. If the i-th part is denoted as F ′

i
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andO′
i then we can define these measures as:

Mh
j (F ′, O′) =

1
n

n∑
i=1

wi ·Mj(F ′
i , O

′
i), (1.21)

with n the number of partitions, j the index to identify the used similarity measure
for sets (e.g., j = I3 for the measure MI3) and wi the weights that are defined as the
similarity between the homogeneityhomF ′

i
of the image partF ′

i and the homogeneity
homO′

i
of the image part O′

i, i.e.,

wi = s
(
homF ′

i
, homO′

i

)
.

The homogeneity of an image part is defined as:

homF ′
i

= s
(

max
(k,l)∈F ′

i

F ′
i (k, l), min

(k,l)∈O′
i

O′
i(k, l),

)
with s the similarity function between two values, given by:

s(x, y) = min
(
1,max(0,

6
5
− 2|x− y|)

)
.

• In order to objectively measure the performance of a noise reduction filter for colour
images we also use the normalized colour difference (NCD) [167] quality measure.
NCD is used because it approaches the human perception, which has to be taken into
account when the processed images are intended for human inspection. The NCD is
defined as:

NCDLAB(F,O) =

N∑
i=1

M∑
j=1

||ΔELAB||

N∑
i=1

M∑
j=1

||E∗
LAB||

, (1.22)

where ||E∗
LAB|| is the norm or magnitude of the original (in LAB transferred) colour

imageO, i.e.,

||E∗
LAB|| =

(
(L∗)2 + (a∗)2 + (b∗)2

)1/2

,

and ||ΔELAB|| the perceptual colour error. This colour error is defined as:

||ΔELAB|| =
(
(ΔL∗)2 + (Δa∗)2 + (Δb∗)2

)1/2

,

with ΔL∗, Δa∗ and Δb∗ the difference in the L∗, a∗ and b∗ components between the
filtered image F and the original colour images O.



Chapter 2

Impulse Noise in Digital
Greyscale Images

Removing or reducing impulse noise is a very active research area in image processing. In
this chapter we describe two new algorithms that are especially developed for reducing all
kinds of impulse noise in greyscale images, i.e., the Fuzzy Impulse noise Detection and
Reduction Method (FIDRM) and the Fuzzy Random Impulse Noise Reduction method
(FRINR). These two nonlinear filtering techniques contain two separate steps: an impulse
noise detection step and a reduction step that preserves edge sharpness. Experimental results
show that both methods provide a significant improvement on other existing filters.

2.1 Introduction

Impulse noise generates pixels with intensity values that are not consistent with their local
neighbourhood. In the presence of impulse noise, linear filters, which consist in multiplying
the image with a constant matrix to obtain a linear combination of neighbourhood values,
can produce blur, poor feature localization (i.e., the detection of edges or fine details) and
incomplete noise suppression [225]. To overcome these shortcomings many nonlinear filters
were proposed [15, 159].

One of the most popular nonlinear filters are the rank-order based filters, which are
widely used to improve the linear filters. The first and probably still the most widely used
rank-order filter is the standard median filter. The standard median filter exploits the rank-
order information (i.e., the order statistics) [45, 118] of the input data to effectively remove
impulse noise by substituting the considered pixel with the middle-position element (i.e.,
median) of the re-ordered input data. Since its inception, standard median filter has been
intensively studied [8, 9, 10, 11, 12, 24, 79, 97, 155] and extended to promising approaches
such as weighted median (WM) [27] and centre weighted median (CWM) [109] filters.
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These extensions tend to improve the standard median filter, which destroys too much details
that may be more objectionable than the noise.

The main idea of the WM filter, proposed by Brownrigg in 1984 [27], is to replace each
pixel by the median value in a signal group that consists of duplicated input signals chosen
from the sampled filter window. In other words a set of weighting parameters is used to
control the filtering performance in order to preserve more signal details than what standard
median filtering can accomplish. However, it is difficult to set the weights in actual signal
processing, and moreover the computation is expensive and slow when the weights become
large. The centre weighted median CWM filter, proposed by Ko and Lee in 1991 [109],
is a special case of the WM filter where only the signal currently under processing in the
filter window is duplicated (i.e., only the central pixel of the filtered window has a weighted
factor). CWM filters can be controlled by the centre weight so that a trade-off exists between
noise reduction and detail preservation. A disadvantage of the weighted median filters is that
they tend to change the noise-free pixels.

The main drawback of all the median based methods is that they replace intensity values
of every pixel in the image by the median value of its neighbours without considering if it
is noise-free or not. Therefore, in many cases it removes some desirable details, especially
when the window size is large. Intuitively, and ideally, the filtering should be applied to
corrupted pixels only while leaving the uncorrupted ones intact. Applying median filter
unconditionally across the entire image as practiced in the conventional schemes would in-
evitably alter the intensities and remove signal details of the uncorrupted pixels. Therefore,
a noise detection process to discriminate the uncorrupted pixels from the corrupted ones
prior to applying nonlinear filtering is highly desirable. Sun and Neuvo [214] and Floren-
cio and Schafer [73] have proposed their switching based median filtering methodologies
(called detection based median filters) by applying “no filtering” to preserve true pixels and
to apply the standard median filter to remove impulse noise. In other words they use a
decision-making process based on threshold functioning to control the median filter, so that
it can be activated only for contaminated pixels. The decision procedure of Sun and Neuvo
for example can be expressed as follows:

F (i, j) =

⎧⎪⎪⎨
⎪⎪⎩

med(i, j) if
∣∣∣N(i, j)−med(i, j)

∣∣∣ ≥ threshold

N(i, j) otherwise,

with

med(i, j) = median
−K ≤ k,l≤K

(
N(i+ k, j + l)

)
,

where N(i, j) is the input signal, F (i, j) is the filtered output, med(i, j) is the median
value of the (2K + 1)× (2K + 1) window aroundN(i, j). As illustrated, a hard threshold
value decides if the filtering is performed or not. This leads us to the following fundamental
concerns inherited in these classical detection based median filters:
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• The algorithms make use of a fixed noise detection threshold obtained at a pre-
assumed noise density level and hence they lack of adaptability to noise density vari-
ation. The mismatch between the designed algorithms and the actual noise density,
which is often unknown a priori, will cause noticeable and even substantial degrada-
tion in the filtering performance. So, it is difficult to practice threshold functioning on
local signal statistics. In general, the threshold function is obtained through expen-
sive experiments. Moreover, those hard switching schemes may work well for fixed
valued impulses, but poorly for random valued ones, or vice versa.

• When the noise density increases, more misclassifications of pixel characteristics will
occur and subsequently result in more degraded filtering performance. Therefore an
intelligent noise detection process is highly desirable and instrumental in correctly de-
tecting various types of pixel characteristics. In addition, an adaptive filtering scheme
is essential to effectively remove the corrupted pixels while preserving image details
when the pixel is misclassified. This indicates that both noise detection and corre-
sponding filtering operation are crucial to achieve good median filtering performance,
especially at high noise density interference.

Another class of median filters are the fuzzy rules learning based median methods,
which are controlled by fuzzy rules that judge about the existence of impulse noise. The
learning process is realised by training over the reference images, where some parts may
remain untrained; in other words, the generalization capability is poor. In addition, neuro-
fuzzy or fuzzy filters that process image data by using fuzzy inference techniques have been
shown to be efficient in suppressing impulsive noise. For example, fuzzy inference rule by
else action (FIRE) operators are a class of nonlinear operators that adopt the fuzzy reason-
ing approach to enhance the quality of images corrupted by impulse noise [175, 178, 180,
181, 182]. The class of nonlinear operators performs a very strong effect on noise cancel-
lation while preserving image details very well. However, in actual signal processing, it is
difficult to obtain fuzzy set parameters of membership functions precisely and approximate
reasoning accurately.

In this chapter we present two other fuzzy based algorithms that were developed to im-
prove the existing noise reduction methods so that important image structures are preserved
while the noise is reduced very efficient. Additionally, we use the general scheme shown in
Fig. 2.1 in order to distinguish fixed valued impulse noise from the random valued impulse
noise. The first step investigates if the input image was corrupted with a fixed (or nearly
fixed) valued impulse noise type. If fixed valued impulse noise is detected we determine
the corresponding noise intensities nk (see expression (1.1)). These noise intensities are
then used by the fixed valued impulse noise reduction method, i.e., the filtering method is
focused on these nk values only. After the fixed valued impulse noise reduction method or
after the first detection method if we did not detect fixed valued impulse noise we perform
a random valued impulse noise reduction method.

The rest of this chapter is structured as follows: section 2.2 describes the fixed valued
impulse noise detection and reduction method [193, 194]. The detection method is based on
the concept of fuzzy derivative values and on a fuzzy rule to distinguish between noise and
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Figure 2.1: Impulse noise reduction method for greyscale images.

noise-free pixels. The reduction method finally tends to remove the fixed valued impulse
noise from the image and is realised by filtering all intensity values equal or similar to the
detected noise intensities. Moreover, this method can be applied locally in order to eliminate
the randomly distributed noise. Nevertheless we have developed another noise reduction
method for the random valued impulse noise case [187, 189]. This method is discussed in
section 2.3 and also consists in a detection and a filtering stage. The detection method for
this filter determines which pixels are considered as noise and which can be assumed to be
noise-free, so that the image structure will be preserved as much as possible. Sections 2.4
and 2.5 finally present some test results and the conclusion, respectively.

2.2 Fixed Valued Impulse Noise

In this section we introduce a new two step filter called “Fuzzy Impulse noise Detection
and Reduction Method” (FIDRM) [193, 194]. This new filter has two separated steps or
phases: the detection phase and the filtering phase. The detection phase uses fuzzy rules
to determine whether a pixel is corrupted with fixed valued impulse noise or not. When
fixed valued impulse noise is detected we try to identify the intensity values of the noisy
pixels, which we denote as nk (with k ∈ {1, ..., q} and 1 ≤ q < 2m − 1). Moreover
some parameters will be determined, which will be passed to the filtering phase to construct
the fuzzy set impulse noise. Intensity values that have a membership degree one (zero) in
this fuzzy set are noise (noise-free) for sure. After the detection phase our fuzzy filtering
technique focuses only on the nk values, i.e., the filtering is concentrated only on the real
fixed valued impulse noisy pixels.
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Figure 2.2: The 3 × 3 neighbourhood window around the pixel (i, j).

2.2.1 Fuzzy impulse noise detection method

Our noise detection method uses fuzzy derivative values as introduced with the GOA filter
[151, 227, 228] to determine if a certain pixel is corrupted with impulse noise or not. In
the following paragraph we first explain what fuzzy derivative values are and how they are
applied in this context.

Fuzzy derivative values

For each pixelN(i, j) of the noisy input image N (that is not a border pixel) we consider a
3× 3 neighbourhood window as shown in Fig. 2.2. Each neighbour with respect to N(i, j)
corresponds to one direction {NW = North West, N = North, NE = North East, W = West,
E = East, SW = South West, S = South, SE = South East}. Each such direction with
respect to N(i, j) can also be linked to a certain position (also indicated in Fig. 2.2 (right)).
The derivative�(k,l)N(i, j) is defined as the difference:

�(k,l)N(i, j) = N(i+ k, j + l)−N(i, j) with k , l ∈ {−1, 0, 1}, (2.1)

where the pair (k, l) corresponds to one of the eight directions and N(i, j) is called the
central pixel of the derivative�(k,l)N(i, j).

The eight derivative values (according to the eight different directions or neighbours)
are called the basic derivative values. One such derivative value with respect to N(i, j)
can be used to determine if the central pixelN(i, j) is corrupted with impulse noise or not,
because if this derivative value is quite large then it may indicate that some noise is present
at the central pixel N(i, j). One single large derivative value is of course not sufficient to
conclude that the central pixelN(i, j) was corrupted with impulse noise, because of the two
following reasons:
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1. A (extremely) large derivative value also occurs when the neighbouring pixels are
corrupted with impulse noise instead of the central pixel. By using only one single
basic derivative value it is not possible to decide whether the central pixel or one of
its neighbours is noisy.

2. There is also a second circumstance where natural large derivative values occur,
namely when an edge is passing through the neighbouring window or when the win-
dow is situated in an array with a lot of fine details. A good detection method must
also incorporate this issue, so that the edges will not be destroyed or made blurry.

To handle the first problem we do not only consider one single derivative value to detect
noise but we combine all eight different derivative values to make a conclusion. When
one derivative value is large for one direction but small for all other directions then we can
conclude that the large derivative value is caused by a noisy neighbouring pixel and not
by the central pixel. Otherwise we expect more than only one large derivative value if the
central pixel is corrupted.

By using not only one basic derivative value for each direction, but one basic and two
related derivative values for each direction, we solve the second problem. The two related
derivative values in the same direction, are determined by the central pixels perpendicluar to
the considered direction. Fig. 2.3 (a) illustrates the calculation of the two related derivative
values in the SE-direction (i.e., for (k, l) = (+1,+1)). The basic derivative value in the
SE-direction�(+1,+1)N(i, j) is shown in the middle of the figure. The related derivative
value �(+1,+1)N(i − 1, j + 1) is situated to the right of the basic derivative value, while
the related derivative value �(+1,+1)N(i + 1, j − 1) is situated on the left of the basic
derivative value. The central pixels of both related derivative values (i.e., N(i − 1, j + 1)
and N(i+ 1, j − 1)) are perpendicluar to the considered direction (i.e., the SE direction).

With the basic derivative value and the two related derivative values a fuzzy rule is
created to make the distinction between an edge (or texture) pixel and a noisy pixel. This is
illustrated in Fig. 2.3 (b). Here we see an edge that is passing through the SE-direction. So
in this case the basic derivative value�(+1,+1)N(i, j) will be large, while the central pixel
is noise-free. Therefore we also investigate the two related derivative values� (+1,+1)N(i+
1, j − 1) and�(+1,+1)N(i− 1, j + 1), which will be large too. In such a situation, where
all three derivative values are large, we can conclude that the central pixel is an edge pixel
in spite of the basic derivative is large.

In Table 2.1 we give an overview of the involved derivative values: each direction R
(column 1) corresponds to a position (Fig. 2.2) with respect to a central position. Column
2 gives the basic derivative for each direction, column 3 gives the two related derivative
values. In Fig. 2.4 and Fig. 2.5 we illustrate the basic and related derivative values for all
eight directions with respect to a central pixel.

The eight fuzzy derivative values for each of the eight directions are defined by a fuzzy
rule. The values of these fuzzy derivative values indicate in which degree the central pixel
N(i, j) can be seen as an impulse noise pixel for the corresponding direction. The fuzzy
derivative value �F

RN(i, j) for direction R (R ∈ {NW, N, NE, E, SE, S, SW,W}), is
calculated by the following fuzzy rule:
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Figure 2.3: Involved central pixels for the calculation of the related derivative values in the SE-
direction (a) and an example of an edge (b).

Table 2.1: Involved derivative values to calculate the fuzzy derivative.

R basic derivative related derivative values
NW �NW N(i, j) �NW N(i+ 1, j − 1), �NW N(i− 1, j + 1)
N �N N(i, j) �N N(i, j − 1), �N N(i, j + 1)
NE �NE N(i, j) �NE N(i− 1, j − 1), �NE N(i+ 1, j + 1)
E �E N(i, j) �E N(i− 1, j), �E N(i+ 1, j)
SE �SE N(i, j) �SE N(i− 1, j + 1), �SE N(i+ 1, j − 1)
S �S N(i, j) �S N(i, j − 1), �S N(i, j + 1)
SW �SW N(i, j) �SW N(i− 1, j − 1), �SW N(i+ 1, j + 1)
W �W N(i, j) �W N(i− 1, j), �W N(i+ 1, j)
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Figure 2.4: Involved central pixels for the calculation of the basic and related derivative values in (a)
the NW -direction, (b) the N -direction, (c) the NE-direction and (d) the W -direction.
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Figure 2.5: Involved central pixels for the calculation of the basic and related derivative values in (a)
the E-direction, (b) the SW -direction, (c) the S-direction and (d) the SE-direction.
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Fuzzy Rule 2.1. Defining the fuzzy derivative�F
RN(i, j) for direction R:

IF | �R N(i, j)| is large AND | �′
R N(i, j)| is small

OR | �R N(i, j)| is large AND | �′′
R N(i, j)| is small

OR �RN(i, j) is large positive AND �′
RN(i, j) is large negative AND

�′′
RN(i, j) is large negative

OR �RN(i, j) is large negative AND �′
RN(i, j) is large positive AND

�′′
RN(i, j)

)
is large positive

THEN �F
RN(i, j) is large

where�RN(i, j) is the basic derivative value and�′
RN(i, j) and�′′

RN(i, j) are the two
related derivative values for the direction R.

As mentioned in the introduction (see subsections 1.2.3 and 1.2.4) the terms large, small,
large negative and large positive are linguistic terms, i.e., non-deterministic terms. These
terms can be represented by fuzzy sets. These fuzzy sets in turn are represented by mem-
bership functions. In Fig. 2.6 (a) we show the membership function LARGE (for the fuzzy
set large) and the membership function SMALL (for the fuzzy set small). In Fig. 2.6 (b)
we pictured the membership function LARGE NEGATIVE (for the fuzzy set large nega-
tive) and the membership function LARGE POSITIVE (for the fuzzy set large positive).
The horizontal axes of the membership functions shown in Fig. 2.6 represent all the pos-
sible derivative values (i.e., the interval [0, 255] for (a) and [−255, 255] for (b)), while the
membership degrees ∈ [0, 1] are shown on the vertical axis.

The fuzzy rule contains some conjunctions and disjunctions. We have used the product
as triangular norm and the probabilistic sum as triangular conorm (see definition 1.14 and
definition 1.16). With these norms we can for example translate the sub-rule

“ | �R N(i, j)| is large AND | �′
R N(i, j)| is small ”,

as (
LARGE (| �R N(i, j)|) · SMALL (| �′

R N(i, j)|)
)
,

where LARGE and SMALL are the membership functions shown in Fig. 2.6(a). These
two membership functions depend on the two parameters c and c ′. According to the follow-
ing three observations we have defined appropriate values for these parameters:

1. Derivative values for a given direction R that are situated in the interval [0,30] are
most likely non-edge and non-noisy pixels but just pixels laying in a homogeneous
region as illustrated in Fig. 2.7(b).

2. Edge pixels commonly or noise pixels (more exceptionally) have derivative values
that are situated in the interval [30,70]. This is illustrated in Fig. 2.7(c). Here we also
assign a very low membership degree because these pixels are mostly non-noisy.
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Figure 2.6: The membership functions (a) SMALL and LARGE, (b) LARGE NEGATIVE and
LARGE POSITIVE.

3. Derivative values for a given direction R that are situated in the interval [70,140] are
edge pixels or noisy pixels (see Fig. 2.7(d)). In this interval there is some kind of
uncertainty about the classification of pixels (edge or noisy). This is expressed by the
membership degrees in the fuzzy set impulse noise (see Fig. 2.9) between zero (no
impulse noise for sure) and one (impulse noise for sure).

4. Finally derivative values for a given direction R that are larger than 150 are most
likely noise pixels or large contour pixels as shown in Fig. 2.7(e). Because these
pixels can be categorized as noisy for sure, we assign a membership degree one in the
fuzzy set impulse noise.

Since we are searching for noise pixels, we choose c ∈ [50, 80] and c ′ ∈ [100, 150], which
were found experimentally to be good choices for our method.

By observing the Fuzzy Rule 2.1 we see the following sub-rule: If the basic derivative
for some direction R is large positive (large negative) and the two related derivative values
in the same direction R are both large negative (large positive) then the fuzzy derivative
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Figure 2.7: For a noisy “Cameraman” image (a) we display (in white): all pixels where | �SE

N(i, j)| ∈ [0, 30] (b), | �SE N(i, j)| ∈ [30, 70] (c), | �SE N(i, j)| ∈ [70, 140] (d), | �SE

N(i, j)| > 150 (e).

value in this directionR should be large. In order to use this rule to detect impulse noise we
must choose parameters a′, a, b and b′ carefully. According to the following reasoning we
have determined suitable intervals for these parameters (see Fig. 2.6 (b)): edges can cause
large basic and large related derivative values but in contrast to noise, edges always create
large positive or large negative derivative values. So if an edge generates large derivative
values (basic and related) then these values will almost always have the same signs. Noise
in edge regions causes a mixture of large positive and large negative derivative values. Of
course we only can take into account derivative values that are not close to zero. Therefore
we choose a ∈ [−15,−10], b ∈ [10, 15], a′ ∈ [−25,−15] and b′ ∈ [15, 25].

After choosing a triangular norm and a triangular co-norm (the product and probabilistic
sum) we can finally calculate the activation degree of the “IF-THEN” rule. This activation
degree indicates the degree in which�F

RN(i, j) can be considered as large. In other words,
the calculated activation degree will be used as a membership degree for�F

RN(i, j) in the
fuzzy set large (the consequent of Fuzzy Rule 2.1).
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First detection method

The detection step must finally decide whether a certain central pixel N(i, j) is corrupted
with impulse noise or not. To realize this we use the following fuzzy rule.

Fuzzy Rule 2.2. Defining when a central pixel N(i, j) is corrupted with impulse noise:

IF most of the eight�F
RN(i, j) are large

THEN the central pixel N(i, j) is an impulse noise pixel

This Fuzzy Rule 2.2 will be translated as: if for a certain central pixel N(i, j) more than
half of the fuzzy derivative values (thus more than four for a non-border pixel) are part of
a (weak) α-level of the fuzzy set large (see section 1.2), then we conclude that this pixel is
an impulse noise pixel. As seen in the introduction the (weak) α-level of a fuzzy set is the
crisp set of all points in the universe of discourse such that the corresponding membership
degrees in the set are greater than or equal to α. We use a very low α, i.e., α ∈]0, 0.1], so
that we detect most of the noisy pixels.

If the impulse noise is uniform distributed we can perform the filter phase, where the
activation degree of the Fuzzy Rule 2.2 for a certain pixel N(i, j) is used to indicate the
membership degree in the fuzzy set impulse noise. Besides the described local detection
above, where we detect if a certain pixel is noisy or not we also execute a second global
detection method (next paragraph), where we detect fixed (or near to fixed) valued impulse
noise. This additional information is used to improve the filtering method for the fixed
valued impulse noise case as described in this section.

Second detection method

The goal of the second detection phase is to detect fixed valued impulse noise, so that
we can use the additional information to improve the first detection phase. All pixels that
have a non-zero activation degree of Fuzzy Rule 2.2 are collected into a histogram (e.g.,
Figs. 2.8(b) and 2.8(d)). The vertical axis in such histograms indicates the number of noise
detections for each possible greyscale intensity value on the horizontal axis (which varies
from 0 to 255).

Such histograms are used to investigate the presence of fixed valued impulse noise.
Two such noise histograms are shown in Fig. 2.8. The first noise histogram (Fig. 2.8(b))
corresponds to the case where an image is corrupted with fixed valued impulse noise only
(Fig. 2.8(a)). Here we can observe that the noise histogram only contains some peaks. In the
second example (Fig. 2.8(c)) we illustrated a cameraman image corrupted with a mixture of
fixed valued impulse noise and additive Gaussian noise. The corresponding noise histogram
(Fig. 2.8(d)) contains not only peaks but also areas with a lot of detected pixels around some
extreme values.

If the noise histogram does not contain any peaks at all, then we conclude that the image
is not corrupted with a fixed valued impulse noise type. But in the case we detect at least one
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Figure 2.8: (a) A “Cameraman” image corrupted with 20% impulse noise
(
(n1, n2, n3, n4) =

(25, 75, 200, 225)
)

(b) the corresponding histogram of the detected noise pixels. (c) A cameraman
image corrupted with 10% impulse noise

(
(n1, n2) = (25, 225)

)
plus additive Gaussian noise with

σ = 5. (d) The corresponding histogram of the detected impulse noise pixels.

peak we will use this additional information to improve the local detection method. In order
to decide if the histogram contains peaks or not, we look at the intensity value (horizontal
axis) with the highest number of detection (vertical axis), denoted as max detected. We use
the following condition: If

maxdetected
2m−1∑
q=0

HIST (q)

> 0.08, (2.2)

then we assume that the image was corrupted with fixed valued impulse noise. HIST
denotes the noise histogram, while HIST (q) indicates the number of selected noise pixels
with intensity value q. Experimental results have shown that ratios above 0.08 correspond
to peaks in the histogram (then we can observe peaks visually). Therefore we decided
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Figure 2.9: The membership function “impulse noise” in the case of fixed valued impulse noise.

to improve the local detection method, by a global one, only when the expression (2.2)
mentioned above is satisfied (i.e., the noise histogram contains at least one peak).

Next, when condition (2.2) is satisfied, then we determine all intensity values which
have a rate higher than 0.08, i.e., all intensity values val, where

HIST (val)∑2m−1
q=0 HIST (q)

> 0.08. (2.3)

We denote these selected intensity values by nk, for k ∈ {1, ..., t}, where t is the total num-
ber of selected intensity values. Experimentally we have found that the minimum threshold
value should be around 0.08. The values nk will be used to define our membership function
(Fig. 2.9) for the fuzzy set impulse noise explained in the next paragraph.

Fuzzy set impulse noise

For each pixel the property “impulse noise pixel” can be reviewed. This property can be
represented by a fuzzy set. In the case of fixed valued impulse noise we calculate a corre-
sponding membership function as illustrated in Fig. 2.9. This membership function actually
is a simplification of the obtained noise histogram (e.g., Fig. 2.8(d)).

This membership function is a combination of different smaller membership functions.
Namely for each selected integer value nk (see previous paragraph) we can construct an ap-
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propriate membership function (denoted as μnoise pk
) as shown in the following expression:

μnoise pk
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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0, (∀x ≤ ak) or (∀x ≥ dk)

2
( x− ak
bk − ak

)2

, ∀x ∈ ]ak, ak+bk

2 ]

1− 2
( x− bk
bk − ak

)2

, ∀x ∈ ]ak+bk

2 , bk[

1, ∀x ∈ [bk, ck]

1− 2
( x− ck
dk − ck

)2

, ∀x ∈ ]ck, ck+dk

2 ]

2
( x− dk
dk − ck

)2

, ∀x ∈ ] ck+dk

2 , dk[

(2.4)

The membership function impulse noise μ impulse shown in Fig. 2.9 is then defined by:

μimpulse

(
N(i, j)

)
= max

k∈{1,...,q}

(
μnoise nk

(N(i, j))
)
, (2.5)

where N(i, j) is the intensity value at position (i, j).
The parameters (ak, bk, ck, dk) appearing in expression (2.4) are used to define the range

of each of the selected intensity values nk. As shown in Fig. 2.8 we can have two kinds of
histograms namely: Fig. 2.8 (b) histograms containing only peaks (having a very small
range) and Fig. 2.8 (d) histograms containing peaks with an enlarged environment (having a
larger range). In order to distinguish between these two kinds of histograms we have made
the following observation: (i) low estimated standard deviation of the noise σ (introduced in
[260]) generally corresponds to histograms containing only peaks, while a large estimated
standard deviation of the noise σ (ii) generally corresponds to histograms containing peaks
with an environment. Therefore we use the following expressions to calculate the parame-
ters:

ak = nk − THRa
bk = nk − THRb THRb =

2
3
THRa

ck = nk + THRc THRc =
2
3
THRd

dk = nk + THRd,

(2.6)

with THRa = THRd = min(20, �σ�), where �σ� is the largest integer value smaller
than the standard deviation (variance) of the noise σ. Our noise estimation is based on the
edge image produced by the Sobel operator [83]. For more information we refer to [260].
This approach of selecting parameters is especially developed to denoise images which are
corrupted with a mixture of impulse noise and Gaussian noise. When �σ� > 20, then
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we restrict THRa and THRd to be 20 to prevent overfiltering. Otherwise this large σ-
value can lead to an extremely wide membership function, which would cause some kind
of blurring of the image.

So finally, for a certain pixel N(i, j) we defined the membership degree denoted as
μimpulse(N(i, j)) that indicates if the pixel is (fixed valued) impulse noise (which corre-
sponds to a large degree) or not (which corresponds to a small degree).

2.2.2 Fuzzy filtering method

The output of the detection phase are the membership degrees in the fuzzy set impulse noise
for all intensity values. These degrees, denoted as μ impulse(N(i, j)), are used by the filter-
ing phase in order to reduce the fixed valued impulse noise, while preserving the important
image structures as much as possible. The filtering phase contains several iterations to filter
out all possible impulse noise. The major differences between the iterations are summarised
as follows:

• Each iteration uses the modified (filtered) image of the previous iteration.

• Each iteration uses the same number of pixels (i.e., nine) but with different neigh-
bours. Fig. 2.10 illustrates this for the first, second, third and fourth iteration. The
idea behind this changing window size is the fact that impulse noise is sometimes
clustered around some pixels or in certain regions (it is also possible as a side ef-
fect of the filtering method, especially for high initial impulse noise). Using different
neighbours for different iterations practically solves this problem (it improves the
restoration capability) and makes the filtering method faster.

• In addition to the different window we also modify the membership function “impulse
noise” in the case of fixed valued impulse noise by changing the parameters a k, bk,
ck, dk of expression (2.6). In the e-th iteration (with e ≥ 2) these parameters are
given by:

aek =
1
2
(ae−1
k + nk), bek =

1
2
(be−1
k + nk),

cek =
1
2
(ce−1
k + nk), dek =

1
2
(de−1
k + nk).

Since this change will reduce the range of the membership function and therefore also
the number of investigated pixels for an imageN , it will speed up the execution time.
We reduce the range of the function, because the number of noisy pixels was already
reduced in the previous iteration.

The general filtering method is applied for all image pixels N(i, j) that belong to the
support of the fuzzy set impulse noise, i.e., that have a non-zero membership function
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Centra

1st iteration

2nd iteration

3th iteration

4th iteration

Figure 2.10: The used neighbourhood windows for the first, second, third and fourth iteration, where
each square represents one pixel.

μ(N(i, j)) > 0. The filtering method for the e-th iteration can be expressed as follows:

Fe(i, j) =

+1∑
k=−1

+1∑
l=−1

(
1− μe

(
F (i+ e · k, j + e · l)

))
· F (i+ e · k, j + e · l)

+1∑
k=−1

+1∑
l=−1

1− μe
(
F (i+ e · k, j + e · l)

) ,

where the membership function μe is equal to the activation degree of Fuzzy Rule 2.2 in
the case of randomly distributed impulse noise and is equal to the membership function
μimpulse with parameters nk, aek, bek, cek and dek for the fixed valued impulse noise case.

2.2.3 Stop criteria

Finally we have to define where the iteration process has to be stopped. If we denote # e as
the number of pixel values that belong to the support of the fuzzy set impulse noise in the
eth (e ≥ 2) iteration, then we apply the following stop criteria:

1. If there are no pixel values that belong to the support of the fuzzy set impulse noise
(#e = 0) in any iteration e (e ≥ 2).

2. If #e is equal to #e−1. This indicates that the resulting pixels (pixels that still belong
to the support of the fuzzy set impulse noise) aren’t noisy.
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3. If #1 ≥ #2 ≥ ... ≥ #e−1 ≥ #e holds then we can define Δe = #e−1 −#e. When
Δe is (very) small then we decide to stop too.

2.3 Randomly Distributed Impulse Noise

In this section we introduce a new two-step fuzzy filter that adopts a fuzzy logic approach
for the enhancement of greyscale images corrupted with randomly distributed impulse noise.
This new filter is called Fuzzy Random valued Impulse Noise Reduction method (FRINR)
[187, 189] and consists of a fuzzy detection mechanism and a fuzzy filtering method to
remove the random valued impulse noise from corrupted images. This method is an im-
provement of the method described in section 2.2, where we use the activation degree of
Fuzzy Rule 2.2 in the case of randomly distributed impulse noise.

The FRINR method described here consists of two separated phases: the detection phase
and the filtering phase. The detection phase is a combination of two fuzzy algorithms,
which are complementary to each other and which are combined together to obtain a more
robust random valued impulse noise detection method. Both algorithms use fuzzy rules to
determine whether a pixel is corrupted with impulse noise or not. After the application of
the two fuzzy algorithms, our fuzzy filtering technique focuses only on those pixels which
are detected by both algorithms, i.e., the filtering is concentrated on the real impulse noise
pixels. The filtering method (second phase) consists of a fuzzy averaging where the weights
are constructed using a predefined fuzzy set. The details of both phases are given in the
following subsections.

2.3.1 Fuzzy detection method

The proposed detection method is composed of two subunits that are both used to define
corrupted impulse noise pixels. The first subunit investigates the neighbourhood around a
pixel to conclude if the pixel can be considered as impulse noise or not. The second subunit
uses fuzzy derivative values (expression (2.1)) to determine the degree in which a pixel
can be considered as impulse noise and the degree in which a pixel can be considered as
noise-free.

First detection unit

We consider a two dimensional input image denoted as N . The goal of the first detection
unit is to determine if a certain image pixel N(i, j), at position (i, j), is corrupted with
impulse noise or not. Therefore we observe the elements in a (2K + 1)× (2K + 1) (with
K ≥ 1) window centred around N(i, j). Next, we calculate the mean difference in this
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window denoted as g(i, j):

g(i, j) =

K∑
k=−K

K∑
l=−K

∣∣∣N(i+ k, j + l)−N(i, j)
∣∣∣

(2K + 1)2 − 1
. (2.7)

Corrupted impulse noise pixels generally cause large g(i, j) values, because impulse noise
pixels normally occur as outliners in a small neighbourhood (we consider K = 1) around
the central pixel. On the other hand we also found that the g(i, j) value can be relatively
large in case of an edge pixel. Therefore we considered the following two values denoted
as g(i, j) and g∗(i, j):

g∗(i, j) =

K∑
k=−K

K∑
l=−K

g(i+ k, j + l)

(2K + 1)2
. (2.8)

If both values (g(i, j) and g∗(i, j)) are large, then the pixel can be considered as an edge
pixel instead of a noisy one. So when the two values (g(i, j) and g ∗(i, j)) are very similar we
conclude that the pixel is noise-free. Otherwise, if the difference between g ∗(i, j) and g(i, j)
is large then we consider the pixel as noisy. This can be implemented by the following fuzzy
rule:

Fuzzy Rule 2.3. Defining when a central pixel N(i, j) is corrupted with impulse noise:

IF |g∗(i, j) − g(i, j)| is large

THEN the central pixel N(i, j) is an impulse noise pixel

In this rule, large can be represented by a fuzzy set. A fuzzy set in turn can be represented
by a membership function. An example of a membership function LARGE (for the cor-
responding fuzzy set large), which is entitled as μ large, is pictured in Fig. 2.11. From this
function we can derive membership degrees. If the difference |g ∗(i, j)−g(i, j)| for example
has a membership degree one (or zero) in the fuzzy set large, it means that this difference
is considered as large (or not large) for sure. Membership degrees between zero and one
indicate that we do not know for sure if such difference is large or not, so that the difference
is large to a certain degree. In Fig. 2.11 we see that we have to determine two important
parameters a and b. The parameter a is equal to the lowest g(i + k, j + l) value in the
(2K + 1)× (2K + 1) window around the central pixel, i.e.,

a(i, j) = min
−K≤k,l≤K

(g(i+ k, j + l)). (2.9)

So, a(i, j) corresponds to the g(i + k, j + l) coming from the most homogeneous region
aroundN(i, j), which should correspond to the region with the smallest number of impulse
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0 Differences

LARGE

Membership degree

Figure 2.11: The membership function LARGE denoted as μlarge.

noise pixels. Experimental results have shown that the best choice for parameter b(i, j) is
b(i, j) = 1.2 a(i, j), i.e., the larger the parameter a, the larger the uncertainty interval [a, b]
should be.

So, the outputs of the first detection method are the membership degrees in the fuzzy set
impulse noise for each pixel separately. The membership function that represents this fuzzy
set is denoted as μimpulse. The corresponding membership degrees (∈ [0, 1]) are calculated
using fuzzy rule 2.3. The activation degree of this rule is used to determine the membership
degree μimpulse, i.e., μimpulse(N(i, j)) = μlarge(|g∗(i, j)− g(i, j|)).

Second detection unit

As for the first detection unit, also for the second one we want to calculate the degree in
which a certain pixel N(i, j) can be considered as impulse noise. Both units are comple-
mentary to each other, i.e., by combining them we obtain a more robust detection method
that improves the global performance. This second detection method is based on the fixed
valued impulse noise method of section 2.2, i.e., this method also uses the concept of basic
and related derivative values.

Again we use a (2K + 1) × (2K + 1) (we have used K = 1) neighbourhood around
N(i, j) as illustrated in Fig. 2.2 and the basic and related derivative values for each of the
eight directions aroundN(i, j) (Table 2.1 and Fig. 2.4 - 2.5).

For each direction we calculate a membership degree in the fuzzy set impulse noise
(denoted as γRimpulse for direction R) and the membership degree in the fuzzy set impulse
noise-free (denoted as γRfree for direction R). This is realised by the following fuzzy rules
2.4 and 2.5.

Fuzzy Rule 2.4. Defining when a central pixel N(i, j) is corrupted with impulse noise for
a certain direction R:
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IF
(
| �R N(i, j)| is not large

)
AND

(
| �′

R N(i, j)| is large
)
AND(

| �′′
R N(i, j)| is large

)
OR(
| �R N(i, j)| is large

)
AND

(
| �′

R N(i, j)| is not large
)
AND(

| �′′
R N(i, j)| is not large

)
OR(
| �R N(i, j)| is large

)
AND

(
| �′

R N(i, j)| is large
)
AND(

| �′′
R N(i, j)| is not large

)
OR(
| �R N(i, j)| is large

)
AND

(
| �′

R N(i, j)| is not large
)
AND(

| �′′
R N(i, j)| is large

)
THEN the central pixelN(i, j) is an impulse noise pixel in directionR

Fuzzy Rule 2.5. Defining when a central pixel N(i, j) is not corrupted with impulse noise
for a certain direction R:

IF
(
| �R N(i, j)| is large

)
AND

(
| �′

R N(i, j)| is large
)
AND(

| �′′
R N(i, j)| is large

)
OR(
| �R N(i, j)| is not large

)
AND

(
| �′

R N(i, j)| is not large
)
AND(

| �′′
R N(i, j)| is not large

)
THEN the central pixelN(i, j) is impulse noise-free in direction R

The basic derivative is denoted as�RN(i, j), while the two related derivative values are
indicated as�′

RN(i, j) and�′′
RN(i, j), respectively. Fuzzy rule 2.4 determines when a cer-

tain pixel N(i, j) can be observed as impulse noise. For the conjunctions and disjunctions
we have used triangular norms defined in definition 1.14 and triangular conorms defined in
definition 1.16. We use the product (probabilistic sum) and the minimum (maximum) for
the triangular norm (triangular conorm). Next we use the standard negatorN s(x) = 1− x,
with x ∈ [0, 1] as fuzzy negation.

So the truth value of the first subfact of Fuzzy Rule 2.4, i.e.:(
| �R N(i, j)| is not large

)
AND

(
| �′ N(i, j)| is large

)
AND

(
| �′′ N(i, j)| is large

)
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is calculated by:(
1− μlarge(| �R N(i, j)|)

)
· μlarge(| �′

R N(i, j)|) · μlarge(| �′′
R N(i, j)|),

where we used the product triangular norm and where μ large has the same shape as in Fig.
2.11 using the following parameters a and b:

a(i, j) =

( K∑
k=−K

K∑
l=−K

g(i+ k, j + l)
)
− g(i, j)

(2K + 1)2 − 1
,

(2.10)

b(i, j) = 1.2 · a(i, j).
So, a(i, j) corresponds to the average of the g(i+k, j+l) values. By using these parameters
we managed the incorporation of regions containing edges, because these non-homogeneous
regions automatically increase the value of a(i, j) and b(i, j). Derivative values in non-
homogeneous regions are labeled as large if they are large in comparison to their neighbours.
In homogeneous regions we will get smaller values of a(i, j) and b(i, j), which will cause
a much stronger detection method.

The outputs of the second detection unit are the eight membership degrees in the fuzzy
set impulse noise for the eight directions around a certain position (i, j) i.e., the degrees
γRimpulse(N(i, j)) and the eight membership degrees in the fuzzy set impulse noise-free for
the eight directions around a certain position (i, j), i.e., the degrees γ Rfree(N(i, j)). The
degrees γRimpulse(N(i, j)) and γRfree(N(i, j)) are calculated using fuzzy rules 2.4 and 2.5,
respectively.

2.3.2 Fuzzy filtering method

We combine both detection units to determine the pixels where the filtering method should
be applied, i.e., we apply the filtering method on pixels that are determined as noisy in
both units. Pixels having a non-zero membership degree in the fuzzy set impulse noise for
the first detection unit, i.e., μimpulse(N(i, j)) > 0, are considered as noisy. In the second
detection unit we consider two fuzzy sets namely impulse noise and impulse noise-free in
order to decide if a pixel is considered as noisy or not. Here we have decided that if∑

R∈{N,...,S}
γRimpulse(N(i, j)) ≥

∑
R∈{N,...,S}

γRfree(N(i, j)), (2.11)

then impulse noise is considered atN(i, j). So, the filtering method will be applied to pixels
where both restrictions are satisfied, i.e.:

μimpulse(N(i, j)) > 0,
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(2.12)∑
R∈{N,...,S}

γRimpulse(N(i, j)) ≥
∑

R∈{N,...,S}
γRfree(N(i, j)).

The output of the filtering method for the input pixel N(i, j) is denoted as F (i, j) and
is calculated as follows:

F (i, j) =
(
1− λ(i, j)

)
· out+ λ(i, j)N(i, j),

(2.13)

out =

L∑
k=−L

L∑
l=−L

N(i+ k, j + l) w(i+ k, j + l)

L∑
k=−L

L∑
l=−L

w(i+ k, j + l)

.

The filtering method uses a (2L+1)× (2L+1) (not necessary equal toK) neighbourhood
around N(i, j) as shown in expression (2.13). Each N(i + k, j + l) is multiplied by a
corresponding weight w(i + k, j + l) indicating in which degree the pixel should be used
(explained later) to filter the central pixel. The parameter λ(i, j) is finally used to control
the amount of correction.

To determine the weights, we used the pixels from the (2K + 1) × (2K + 1) neigh-
bourhood around N(i, j) (with the same K as in the detection method). These pixels are
then sorted so that the window is denoted as: [x1, x2, ..., x(2K+1)2 ] with x1 and x(2K+1)2

the lowest and highest intensity value from the corresponding window, respectively.
We do not replace the corrupted pixels by their median of the neighbours, but neverthe-

less we try to use the other pixels in the neighbourhood as well. When the (2K+1)×(2K+
1) neighbourhood is very homogeneous we know that median based algorithms are working
very well, but when we have non-homogeneous neighbourhoods it is better to incorporate
the knowledge of the other pixels as well as to improve the filtering performance. Therefore
we constructed a fuzzy set similar to calculate the corresponding weights w(i + k, j + l).
This fuzzy set is represented by the membership function SIMILAR, pictured in Fig. 2.12
and denoted as μsim. The membership value indicates in which degree a certain intensity
value can be observed as similar to the observed neighbourhood. Pixels having a degree
of one (zero) are (not) similar for sure to the corresponding neighbourhood. So the weight
w(i + k, j + l) is defined as w(i + k, j + l) = μsim(N(i + k, j + l)). The membership
function is determined by means of four parameters. To define these parameters (p 1, p2, q1
and q2) we first calculate the mean differences ρ, i.e.:

ρ(i, j) =

(2K+1)2∑
k=2

(xk − xk−1)

(2K + 1)2 − 1
(2.14)
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Figure 2.12: The membership function SIMILAR denoted as μsim.

Using this ρ(i, j), the parameters are determined as follows:

x(i, j) = median
−K≤k,l≤K

(
N(i+ k, j + l)

)
p1(i, j) = x(i, j)− ρ(i, j)
p2(i, j) = x(i, j)− 1.1ρ(i, j) (2.15)

q1(i, j) = x(i, j) + ρ(i, j)
q2(i, j) = x(i, j) + 1.1ρ(i, j)

Homogeneous regions have very similar pixels, which cause very low ρ(i, j) values,
because the differences between the pixel intensity values are also low. In these situations
we obtain parameters (p1(i, j), p2(i, j), q1(i, j) and q2(i, j)) that are very close to the me-
dian (the center of the fuzzy set) and therefore the filtering performance is similar to the
performance of the median based filters. On the other hand we will get an improvement in
cases of non-homogeneous windows, because we still incorporate the information of all the
neighbouring pixels aroundN(i, j) as well.

Finally we reduce the correction process for the central pixels N(i, j) having a very
high weight w(i, j) because if the corresponding weight is very high, it means that these
pixels seem to be similar to their neighbourhood in spite of the fact that the pixel is detected
as noise. Therefore we define the parameter λ(i, j) to be equal to the weight of the center,
i.e., λ(i, j) = w(i, j).

2.4 Performance

To judge the quality of the developed filters we have to compare them with several existing
filters for impulse noise. In chapter 7 we will present a comparative study [147, 148, 152]
between our developed methods and a huge number of existing filters. The aim of this
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(a) (b)

(c) d)

Figure 2.13: The test-images used to illustrate the performance of the two filters described in this
chapter: (a) the “Lena” image, (b) The “Barbara” image, (c) the “Boats” image and (d) the “Peppers”
image.

section is to give an idea of the visual and numerical results. For this purpose we have used
four 512 × 512-sized test-images shown in Fig. 2.13 with (a) the “Lena” image, (b) the
“Barbara” image, (c) the “Boats” image and (d) the “Peppers” image.

In Figs. 2.14 - 2.17 we show the visual results of the fuzzy impulse noise detection and
reduction method (FIDRM) for 5%, 30% and 60% fixed valued impulse noise (i.e., salt and
pepper noise) for the four test-images respectively. These visual results illustrate that the
FIDRM effectively reduces the fixed valued impulse noise, while it preserves the structures
of the image quite well. Even for an extremely high level of fixed valued impulse noise
we obtain satisfying results. Besides the visual results, we show in Figs. 2.18 - 2.20 some
numerical results as well.

In Fig. 2.18 we illustrate the peak signal to noise ratios (PSNR, see expression (1.18))
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of the filtered images obtained by the FIDRM method for several noise versions of the
four test-images. The horizontal axes of these figures show the PSNR values of the noisy
images, so the smaller these values the higher the noise level was. The numerical results
were compared with the piecewise linear fuzzy inference rule by else action (PWLFIRE)
[175] and the median filter of size 3 × 3 and 7 × 7. From Fig. 2.18 (a)-(d) we see that the
proposed FIDRM method clearly outperforms the other three methods in terms of PSNR.

In Fig. 2.19 and Fig. 2.20 we illustrate the numerical results of the FIDRM method
in terms of the universal image quality index (UIQ) (expression (1.20)) and the similarity
measure Mh

6 (defined in expression (1.21)). The horizontal axes of these figures show the
UIQ respectively the M h

6 values of the noisy images. The smaller these values the higher
the noise level was. From both figures we observe that the best numerical results were again
obtained from the FIDRM method, which confirms the results of Fig. 2.18.

In Figs. 2.21 - 2.24 we show the visual results of the fuzzy random valued impulse noise
reduction method (FRINR) for 5%, 30% and 60% randomly distributed impulse noise for
the four test-images. These visual results illustrate the noise reduction performance of the
FRINR, which are quite good for the random valued impulse noise case. The corresponding
numerical results in terms of PSNR, UIQ and M h

6 are shown in Figs. 2.25 - Fig. 2.27. For
all similarity measures we observe that the FRINR method outperforms the PWLFIRE and
the median filters of different window size.

Finally in Fig. 2.28 we illustrate the time complexity of the two proposed methods, i.e.,
we pictured the average execution time with respect to the number of input pixels. We
observe that: (i) the time complexity of both methods is linear and (ii) the execution time
depends on the noise type and the amount of corruptions.
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(a) (c)

(b) (d)

Figure 2.14: The restoration of several corrupted “Lena” (512 × 512) images with (a) 5% salt and
pepper noise (PSNR = 18.45db) and (b) 30% salt and pepper noise (PSNR = 10.68db). The output of
the FIDRM is shown in (c) for 5% salt and pepper noise (PSNR = 45.79db) and (d) for 30% salt and
pepper noise (PSNR = 36.60db).
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(a) (c)

(b) (d)

Figure 2.15: The restoration of several corrupted “Barbara” (512×512) images with: (a) 5% salt and
pepper noise (PSNR = 18.24db) and (b) 30% salt and pepper noise (PSNR = 10.48db). The output of
the FIDRM is shown in (c) for 5% salt and pepper noise (PSNR = 37.07db) and (d) for 30% salt and
pepper noise (PSNR = 29.10db).



68 Impulse Noise in Digital Greyscale Images

(a) (c)

(b) (d)

Figure 2.16: The restoration of several corrupted “Boats” (512 × 512) images with: (a) 5% salt and
pepper noise (PSNR = 18.47db) and (b) 30% salt and pepper noise (PSNR = 10.69db). The output of
the FIDRM is shown in (c) for 5% salt and pepper noise (PSNR = 41.30db) and (d) for 30% salt and
pepper noise (PSNR = 31.97db).
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(a) (c)

(b) (d)

Figure 2.17: The restoration of several corrupted “Peppers” (512×512) images with: (a) 5% salt and
pepper noise (PSNR = 18.31db) and (b) 30% salt and pepper noise (PSNR = 10.56db). The output of
the FIDRM is shown in (c) for 5% salt and pepper noise (PSNR = 44.31db) and (d) for 30% salt and
pepper noise (PSNR = 33.48db).
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Figure 2.18: The numerical results in terms of the peak signal to noise ratios (PSNR) of the FIDRM
in comparison to the PWLFIRE and the median filter of size 3 × 3 and 7 × 7 for respectively: (a) the
“Lena” image, (b) the “Boats” image, (c) the “Barbara” image and (d) the “Peppers” image.
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Figure 2.19: The numerical results in terms of the universal image quality index (UIQ) of the FIDRM
in comparison to the PWLFIRE and the median filter of size 3 × 3 and 7 × 7 for respectively: (a) the
“Lena” image, (b) the “Boats” image, (c) the “Barbara” image and (d) the “Peppers” image.
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Figure 2.20: The numerical results in terms of the Mh
6 similarity measure as defined in expression

(1.21) of the FIDRM in comparison to the PWLFIRE and the median filter of size 3 × 3 and 7 × 7
for respectively: (a) the “Lena” image, (b) the “Boats” image, (c) the “Barbara” image and (d) the
“Peppers” image.
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(a) (c)

(b) (d)

Figure 2.21: The restoration of several corrupted “Lena” (512 × 512) images with: (a) 5% ran-
dom valued impulse noise (PSNR = 22.30db) and (b) 30% random valued impulse noise (PSNR =
15.07db). The output of the FRINR is shown in (c) for 5% random valued impulse noise (PSNR =
40.53db) and (d) for 30% random valued impulse noise (PSNR = 33.54db).
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(a) (c)

(b) (d)

Figure 2.22: The restoration of several corrupted “Barbara” (512 × 512) images with: (a) 5% ran-
dom valued impulse noise (PSNR = 21.95db) and (b) 30% random valued impulse noise (PSNR =
14.67db). The output of the FRINR is shown in (c) for 5% random valued impulse noise (PSNR =
33.04db) and (d) for 30% random valued impulse noise (PSNR = 25.32db).
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(a) (c)

(b) (d)

Figure 2.23: The restoration of several corrupted “Boats” (512 × 512) images with: (a) 5% ran-
dom valued impulse noise (PSNR = 22.50db) and (b) 30% random valued impulse noise (PSNR =
15.17db). The output of the FRINR is shown in (c) for 5% random valued impulse noise (PSNR =
36.56db) and (d) for 30% random valued impulse noise (PSNR = 29.63db).



76 Impulse Noise in Digital Greyscale Images

(a) (c)

(b) (d)

Figure 2.24: The restoration of several corrupted “Peppers” (512 × 512) images with: (a) 5% ran-
dom valued impulse noise (PSNR = 21.96db) and (b) 30% random valued impulse noise (PSNR =
14.71db). The output of the FRINR is shown in (c) for 5% random valued impulse noise (PSNR =
37.73db) and (d) for 30% random valued impulse noise (PSNR = 32.28db).
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Figure 2.25: The numerical results in terms of the peak signal to noise ratios (PSNR) of the FRINR
in comparison to the PWLFIRE and the median filter of size 3 × 3 and 7 × 7 for respectively: (a) the
“Lena” image, (b) the “Boats” image, (c) the “Barbara” image and (d) the “Peppers” image.

2.5 Conclusion

In this chapter we presented two impulse noise detection and reduction methods. The first
method is called the fuzzy impulse noise detection and reduction method and uses a fuzzy
detection and an iterative filtering algorithm. This filter is especially developed for reducing
all kinds of fixed (or near to fixed) impulse noise. Its main feature is that it leaves the pixels
which are noise-free unchanged. A fixed valued impulse noise detection method is proposed
so that we can distinguish fixed from random valued impulse noise. In the random valued
impulse noise case a more appropriate impulse noise reduction method can be applied: the
fuzzy random valued impulse noise reduction method (FRINR). This FRINR consists of two
fuzzy detection methods and a fuzzy filtering algorithm. This filter is especially developed
for reducing all kinds of random valued impulse noise. Its main advantage is that it removes
impulse noise very well while preserving the fine image structures. In chapter 7 we compare



78 Impulse Noise in Digital Greyscale Images

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

UIQ of the noisy image

U
IQ

 o
f t

he
 fi

lte
re

d 
im

ag
e

FRINR
PWLFIRE
Median (3x3)
Median (7x7)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

UIQ of the noisy image

U
IQ

 o
f t

he
 fi

lte
re

d 
im

ag
e

FRINR
PWLFIRE
Median (3 x 3)
Median (7 x 7)

(a) (b)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

UIQ of the noisy image

U
IQ

 o
f t

he
 fi

lte
re

d 
im

ag
e

FRINR
PWLFIRE
Median (3 x 3)
Median (7 x 7)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

UIQ of the noisy image

U
IQ

 o
f t

he
 fi

lte
re

d 
im

ag
e

FRINR
PWLFIRE
Median (3 x 3)
Median (7 x 7)

(c) (d)

Figure 2.26: The numerical results in terms of the universal image quality index (UIQ) of the FRINR
in comparison to the PWLFIRE and the median filter of size 3 × 3 and 7 × 7 for respectively: (a) the
“Lena” image, (b) the “Boats” image, (c) the “Barbara” image and (d) the “Peppers” image.



2.5 Conclusion 79

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

0.6

0.7

0.8

0.9

1

M
6
h of the noisy image

M
6h  o

f t
he

 fi
lte

re
d 

im
ag

e

FRINR
PWLFIRE
Median (3 x 3)
Median (7 x 7)

0.4 0.5 0.6 0.7 0.8 0.9
0.5

0.6

0.7

0.8

0.9

1

M
6
h of the noisy image

M
6h  o

f t
he

 fi
lte

re
d 

im
ag

e

FRINR
PWLFIRE
Median (3 x 3)
Median (7 x 7)

(a) (b)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

0.6

0.7

0.8

0.9

1

M
6
h of the noisy image

M
6h  o

f t
he

 fi
lte

re
d 

im
ag

e

FRINR
PWLFIRE
Median (3 x 3)
Median (7 x 7)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

0.6

0.7

0.8

0.9

1

M
6
h of the noisy image

M
6h  o

f t
he

 fi
lte

re
d 

im
ag

e

FRINR
PWLFIRE
Median (3 x 3)
Median (7 x 7)

(c) (d)

Figure 2.27: The numerical results in terms of the Mh
6 similarity measure as defined in expression

(1.21) of the FRINR method in comparison to the PWLFIRE and the median filter of size 3 × 3 and
7 × 7 for respectively: (a) the “Lena” image, (b) the “Boats” image, (c) the “Barbara” image and (d)
the “Peppers” image.
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Figure 2.28: The average execution time of the proposed FIDRM and FRINR method.

the performance of the two proposed methods in comparison to a huge number of other
state-of-the-art methods. From those results we can conclude that both methods outperform
most of the existing methods and can be used effectively to reduce impulse noise from
digital images.



Chapter 3

Impulse Noise in Digital Colour
Images

In this chapter we present three new impulse noise reduction methods for colour images.
Those filters are particularly effective for reducing all kinds of impulse noise (randomly
distributed and fixed valued impulse noise) while preserving the edge sharpness. Colour
images that are corrupted with impulse noise are generally filtered by applying a greyscale
algorithm on each colour component separately or using a vector based approach where
each pixel is considered as a single vector. The first approach causes artefacts especially on
edge and texture pixels. Vector based methods were successfully introduced to overcome
this problem. Nevertheless the current state-of-the-art vector based methods tend to cluster
the noise and to obtain a lower noise reduction performance. Experimental results show that
the proposed methods provide a significant improvement on existing filters.

This chapter is organized as follows: in section 3.1 we introduce the classical noise
reduction methods in colour images and we indicate the shortcomings of these methods.
Afterwards we discuss the three proposed methods, i.e., FIDRMC, HFC and INRC in sec-
tions 3.2 - 3.4. Experiments and conclusions can be found in section 3.5 and section 3.6,
respectively.

3.1 Introduction

Over the last years a huge number of fuzzy based noise reduction methods were developed,
e.g., the histogram adaptive fuzzy filter (HAF) [245, 246], the well-known fuzzy inference
by else action filters (FIRE, DSFIRE, PWLFIRE) [175, 178, 180, 181, 182], the adaptive
weighted fuzzy mean filter (AWFM) [110, 116, 115], the fuzzy median filter (FMF) [6, 7],
the iterative fuzzy control based filter (IFCF) [66, 65], the fuzzy impulse noise detection
and reduction method (FIDRM) [194], the adaptive fuzzy switching filter (AFSF) [252], the
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fuzzy similarity based filter (FSB) [219], the fuzzy random valued impulse noise reduction
method (FRINR) [189] and so on. These fuzzy filters are mainly developed for images cor-
rupted with fat-tailed noise like impulse noise. They outperform rank-order filter schemes
(such as the median filter). Although these filters are especially developed for greyscale im-
ages, they can be used to filter colour images by applying them on each colour component
separately, independent of the other components. This approach generally introduces many
colour artefacts mainly on edge and texture elements. To overcome these problems several
nonlinear vector based approaches were successfully introduced. One of the most important
families of nonlinear filters, which take advantage of the theory of robust statistics [45, 94]
is based on the ordering of vectors in a predefined sliding window [125, 167]. Generally,
when the vectors are ranked using the reduced ordering principle by means of a suitable dis-
tance or similarity measure, the lowest ranked vectors are those that are closest to the other
vectors in the window. Outliers can generally be identified by observing the highest rank in
the window. In literature we find several order statistics, three of the most popular are the
vector median filter (VMF), the basic vector directional filter (BVDF) and the directional
distance filter (DDF).

We will briefly explain the general ideas behind the vector based approaches. Let us
denote the input colour image as N and let W be a window of size n + 1. The image
vectors or pixels in this windowW are denoted as vj for j = 0, ..., n. The distance between
two vectors vk and vl is denoted as ρ(vk, vl). For each vector in the filtered window, a
global accumulated distance (denoted as δ) to all the other vectors in the window has to be
calculated, i.e.,

δj =
n∑

i=0,i�=j
ρ(vj , vi).

The ordering of the δ’s: δ(0) ≤ δ(1) ≤ ... ≤ δ(n) implies the same ordering of the vectors
(pixels): v(0) ≤ v(1) ≤ ... ≤ v(n). Given this ordering, where the lowest ranked vector v (0)

corresponds to the vector with the lowest accumulated distance δ (0), the output of the filter
is v(0).

In this sense, the vector median filter (VMF) [14, 19] uses the City-Block (L 1, also
called taxi-metric) or the Euclidean (L2) distance criterion to define ρ for the ordering of
the vectors. The extension or modification of the basic VMF method resulted in several
filters: the combination of the VMF with linear techniques has been used to improve its
performance in the suppression of Gaussian noise [14, 243]. Other approaches have been
introduced with the aim of speeding up the VMF by using a linear approximation of the
Euclidean distance [18] and by designing a fast algorithm when using the L 1 norm. On
the other hand, the VMF has been extended to fuzzy numbers in [32] by means of fuzzy
distances.

The vector directional filters [222] represent a different type of vector filters. These
filters use the directions of the image vectors to perform an ordering of the pixels. The basic
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vector directional filter (BVDF) [221] uses the angular ordering criterion i.e.,

ρ(vk, vl) = arccos
( vkv

t
l

|vk||vl|
)
. (3.1)

So the output of BVDF is the vector v(0) whose direction is the maximum likelihood esti-
mation (MLE) of the directions of the input vectors.

Since the vector directions are associated with their chromaticity, the angular criterium
may give a better result than VMF based techniques in terms of colour preservation. On
the other hand the disadvantage of this method is that the BVDF uses only directional in-
formation so that achromatic noise can not be eliminated from the image. The directional
distance filter (DDF) [100] overcomes this problem by combining both magnitude (VMF)
and direction (BVDF) in the distance criterion.

The main drawback of these standard colour filters is that they are designed to perform
a fixed amount of smoothing so that they are not able to adapt to local image statistics.
For this reason a huge number of alternative vector filters were already developed. Two
recently published papers have proven to outperform the classical ones: the fast similarity
based impulse noise removal vector filter (FSVF) [141, 206] that uses (fuzzy) metrics to
order the vectors and the adaptive vector median filter (AVMF) [125] that uses a switching
mechanism where only those pixels that are likely to be noisy are filtered and the rest of the
pixels are left unchanged.

Another extension of the VMF [126] is called the adaptive statistically-switched vector
median filter (ASVMF), which uses a more complex statistical based switching procedure.
The t-student test vector median filter (tTVMF) [29] assumes that the neighbours of the
colour under processing follow some multi-normal distribution. Each colour component is
checked to belong to the corresponding distribution with a high confidence level. If at least
one of the components does not belong to the distribution then the corresponding colour
pixel is considered as noisy and the VMF operation is applied. In [205] the peer group
concept is used for the detection method in the peer group switching filter (PGSF). This is
performed by calculating the distances between the central vector and its neighbours and
counting the number of neighbours whose distance to the central pixel exceeds a predefined
threshold. Detected pixels are finally replaced by the output of the vector median filter,
while the non-detected pixels remain unchanged. In [92] a fuzzy inference system (FISF)
for detecting impulses in colour images is combined with a switching scheme to select
between an identity filter output and the output from a proposed L-filter design. This L-filter
is designed to exploit the ordering techniques of the vector median filters. The final output
is calculated by using the optimal magnitude and direction of the vectors. Another vector
based filter which uses fuzzy concepts is the modified fast adaptive similarity based vector
filter (MFSVF) [141]. This method uses a technique based on fuzzy similarity between
vectors to perform a vector ordering and outputs the lowest ranked vector. This ordering
technique gives some privilege to the central pixel in the window so that it will be the
lowest ranked vector except when it is noisy.

Several other vector based impulse noise reduction methods can be found in the liter-
ature [127, 167], nevertheless all these methods have the same major drawbacks, i.e., (i)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: The illustration of some state-of-the-art techniques for the coloured “Barbara” image with
(a) a noise-free part of the image, (b) the same part corrupted with 20% random valued impulse noise,
(c) the VMF, (d) the ASVMF, (e) the FIDRM, (d) the FRINR.
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the higher the noise level is the lower the noise reduction capability is in comparison to the
componentwise approaches and (ii) they tend to cluster the noise into a larger area, which
makes it even more difficult to reduce. The reason for these disadvantages is that the vector
based approaches consider each pixel as a whole unit, while the noise can appear in only
one of the three components. In the extreme case where the neighbourhood for example
contains nine pixels where only one of the three components of each pixel is corrupted then
the vector based approaches cannot filter out this noise by using a 3× 3 window, while only
9 of the 27 components are noisy.

The disadvantages of the state-of-the art methods are illustrated in Fig. 3.1 where a part
of the coloured “Barbara” image was corrupted with 20% random valued impulse noise. In
this figure we show the filtered images of two vector based approaches (i.e., the VMF and
the ASVMF) and the two greyscale methods proposed in chapter 2 (i.e., the FIDRM and
the FRINR). The VMF reduces the noise quite well but also destroys a lot of fine details
and introduces some clusters of noise. The edge preservation of the ASVMF is a little
bit better but a lot of colour artefacts appear. The FIDRM and the FRINR preserve the
structures of the image much better than the two vector based approaches but have also the
major problem of colour artefacts that appear especially on the edges. The motivation of the
development of better impulse noise reduction methods for colour images is obvious, i.e.,
we would like to have filters which reduce the noise effectively while preserving the fine
structures of the image but also the colour information so that no additional artefacts appear.
In the following three sections we present three alternative colour filters for the reduction of
(fixed and random valued) impulse noise.

The first method [184, 186] uses a fuzzy detection phase which is followed by an iter-
ative fuzzy filtering technique. Since this method is an extension of the FIDRM filter dis-
cussed in chapter 2 it is called the Fuzzy Impulse noise Detection and Reduction Method for
Colour images (FIDRMC). The fuzzy detection method is mainly based on the calculation
of fuzzy derivative values and on fuzzy reasoning. The detection phase is very similar to
the FIDRM one, i.e., it determines three separate membership functions for the fixed value
impulse noise case or membership degrees for the random valued impulse noise case that
are passed to the filtering step. These membership functions or degrees will be used as a
representation of the fuzzy set impulse noise. Our proposed new fuzzy denoising method is
especially developed for reducing impulse noise in colour images. It calculates the colour
component differences in order to use them to preserve also the colour information itself.

The second method [185, 190] is called the Histogram based Fuzzy Colour filter (HFC).
This method also uses the colour component differences for the detection of impulse noise
and the preservation of the colour component differences. The construction of the HFC filter
involves three steps: (i) the estimation of the original histogram of the colour component
differences, (ii) the construction of suitable fuzzy sets for representing the linguistic values
of these differences and (iii) the construction of fuzzy rules that determine the output.

The third method [143, 192] discusses an alternative technique which gives a good noise
reduction performance while much less artefacts are introduced. The main difference be-
tween this method and other classical noise reduction methods is that the colour information
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is taken into account to develop (i) a better impulse noise detection method and (ii) a noise
reduction method that filters only the corrupted pixels while preserving the colours and the
edge sharpness. This method is called Impulse Noise Reduction method for Colour images
(INRC).

3.2 Fuzzy Impulse Noise Reduction Method for Colour
Images (FIDRMC)

The proposed FIDRMC method [184, 186] uses the same detection method, applied on
each colour component separately, as proposed in section 2.2. The output of this detection
method is formed by the membership degrees in the fuzzy set impulse noise for the red,
green and blue components which are denoted as μRimpulse, μ

G
impulse and μBimpulse, respec-

tively. These degrees are used by the new colour filtering method in order to reduce the
impulse noise while preserving the colour differences and edges. For simplification we de-

note a colour image pixelN(i, j) as N(i, j) =
(
NR(i, j), NG(i, j), NB(i, j)

)
, whereNR,

NG and NB are respectively the red, the green and the blue component greyscale images.
In contrast to other well-known colour filters our filtering phase is not based on the

intensity values but on the differences between intensity values in the different components.
We use the following functions:

MRG(i, j) = NR(i, j)−NG(i, j),
MRB(i, j) = NR(i, j)−NB(i, j),
MGR(i, j) = −MRG(i, j), (3.2)

MGB(i, j) = NG(i, j)−NB(i, j),
MBR(i, j) = −MRB(i, j),
MBG(i, j) = −MGB(i, j).

For each of these arrays of differences we also can derive the corresponding fuzzy set im-
pulse noise. The membership degrees in this fuzzy set are calculated by the following rules:

Fuzzy Rule 3.1. Calculating the membership degree in the fuzzy set impulse noise for the
colour difference between a red and a green component.
IF NR(i, j) is impulse noise OR NG(i, j) is impulse noise
THEN (MRG(i, j) is impulse noise) AND (MGR(i, j) is impulse noise)

Fuzzy Rule 3.2. Calculating the membership degree in the fuzzy set impulse noise for the
colour difference between a red and a blue component.
IF NR(i, j) is impulse noise OR NB(i, j) is impulse noise
THEN (MRB(i, j) is impulse noise) AND (MBR(i, j) is impulse noise)
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Fuzzy Rule 3.3. Calculating the membership degree in the fuzzy set impulse noise for the
colour difference between a green and a blue component.
IF NG(i, j) is impulse noise OR NB(i, j) is impulse noise
THEN (MGB(i, j) is impulse noise) AND (MBG(i, j) is impulse noise)

These fuzzy rules use the output of the detection phase where for example “NR(i, j) is
impulse noise” is represented by μRimpulse(NR(i, j)). The membership degrees in the fuzzy
set impulse noise for the functions of expression (3.2) systematically have similar names:
for example we denote μRG(MRG(i, j)) as the membership degree in the fuzzy set impulse
noise at position (i, j) for theMRG function. So if for example the red component of a pixel
is corrupted (indicated by large membership degree μRimpulse(NR(i, j))) and the green and
blue component are noise-free (indicated by small membership degrees μGimpulse(NG(i, j))
and μBimpulse(NB(i, j))) then we know that the colour differences red-green and red-blue
are noisy (resulting in large membership degrees μRG(MRG(i, j)), μRB(MRB(i, j)),
μGR(MGB(i, j)) and μBR(MBR(i, j))).

The filter will only be applied to colour components that belong to the support of the
fuzzy set impulse noise (i.e., having a membership degree greater than zero). The other
colour components are not changed. We will illustrate the filtering method by means
of an example. So assuming that a certain red component pixel NR(i, j) is noisy (i.e.,
μRimpulse(NR(i, j)) > 0) then we distinguish between the following cases:

• CASE A: If the green and blue component of pixelN(i, j) is noise-free (i.e.
μGimpulse(NG(i, j)) = μBimpulse(NB(i, j)) = 0) then the filtered red component at
position (i, j) becomes:

FR(i, j) = 1
2

(
NG(i, j) + ΔRG(i, j)

)
+ 1

2

(
NB(i, j) + ΔRB(i, j)

)
.

• CASE B: If the green componentNG(i, j) is noisy and the blue componentNB(i, j)
is noise-free (i.e., μGimpulse(NG(i, j)) > 0 and μBimpulse(NB(i, j)) = 0) then the fil-
tered red component at position (i, j) becomes:

FR(i, j) = NB(i, j) + ΔRB(i, j).

• CASE C: If the green component NG(i, j) is noise-free and the blue component
NB(i, j) is noisy (i.e., μGimpulse(NG(i, j)) = 0 and μBimpulse(NB(i, j)) > 0) then the
filtered red component at position (i, j) becomes:

FR(i, j) = NG(i, j) + ΔRG(i, j).

• OTHERWISE: The filtered red component at position (i, j) becomes:
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FR(i, j) =

i+K∑
k=i−K

j+K∑
l=j−K

NR(k, l) ·
(
1− μR(NR(k, l))

)
i+K∑

k=i−K

j+K∑
l=j−K

1− μR(NR(k, l))

.

Here, ΔRG(i, j) and ΔRB(i, j) are the estimated colour component differences that are
calculated as follows:

ΔRG(i, j) =

i+K∑
k=i−K

j+K∑
l=j−K

MRG(k, l) ·
(
1− μRG(MRG(k, l))

)
i+K∑

k=i−K

j+K∑
l=j−K

1− μRG(MRG(k, l))

,

ΔRB(i, j) =

i+K∑
k=i−K

j+K∑
l=j−K

MRB(k, l) ·
(
1− μRB(MRB(k, l))

)
i+K∑

k=i−K

j+K∑
l=j−K

1− μRB(MRB(k, l))

.

During the first iteration we use a 3 × 3 window around a central pixel (i.e., K = 1).
The basic idea behind the presented filtering method is to correct the impulse pixels while
preserving the colour component differences (CASE A-C). If all three colour components at
a certain position (i, j) are noisy then we execute a local filtering method (the OTHERWISE
case, which is similar to [193, 194]).

After the first iteration it is possible as a side effect (especially with high initial impulse
noise) that the impulse noise is now clustered around one or more pixels. To reduce these
noisy pixels some additional (recursive) iterations are performed that are quite similar to
the first iteration. Each iteration uses the modified image of the previous iteration and a
different window. The changing window was already illustrated in subsection 2.2.2 (Fig.
2.10), where a 3 × 3 window (i.e., K = 1) is used in the first iteration. This changing
window is used to avoid future clustering and it also speeds up the execution time. We
always use a window of (2K + 1)2 pixels (including the centre). After each iterations
most of the corrupted pixels are corrected and therefore we reduce (halve) the range of the
membership functions (Fig. 2.9) so that we also reduce the number of investigated pixels in
the next iteration. More detailed information about this and the stop criteria can be found in
subsections 2.2.2 and 2.2.3, respectively.
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3.3 Histogram Fuzzy Colour Filter (HFC)

A new impulse noise reduction method for colour images, called histogram based fuzzy
colour filter (HFC) [185, 190], is presented here. The HFC filter is particularly effective for
reducing high (fixed and random valued) impulse noise in digital images while preserving
edge sharpness. This alternative technique is developed in order to reduce the number of
artefacts that are introduced by the classical methods. The main difference between the
new proposed method and these classical vector based methods is the usage of differences
between the colour components for the detection of impulse noise and the preservation of
the colours. The construction of the HFC filter involves three steps: (i) the estimation of
the original histogram of the colour component differences, (ii) the construction of suitable
fuzzy sets for representing the linguistic values of these differences and (iii) the construction
of fuzzy rules that determine the output.

In this alternative colour filtering scheme, each pixel is filtered according to (i) the mag-
nitude difference between a central pixel and their neighbours for each component sepa-
rately, (ii) the colour component differences. The colour component differences are used
for two purposes. The first purpose is to estimate the original component differences at
each position and as second purpose these estimated differences are used to filter out im-
pulse noise while preserving the colour component differences. If we for example could
estimate the original colour component difference for a certain position, i.e., if we know
the difference red-green, the difference red-blue and the difference green-blue, then we can
improve or modify a greyscale filtering mechanism that is used for colour images. Firstly
we can improve the current detection methods and secondly we can improve the filtering
methods by preserving the colour component differences. The proposed HFC method in-
corporates these ideas in the sense that the colour component differences are preserved.
This filter is especially developed for the impulse noise case, but should be a motivation to
construct other colour preserving filters that deal with other kinds of noise as well.

The proposed method (HFC) consists of three different steps: (i) the noise detection (ii)
the colour component difference estimation and (iii) the filtering method.

Step 1. The noise detection: In the first step of the proposed method we calculate the mem-
bership degree in the fuzzy set noise for each colour component at each position. The
calculation of the membership degrees in the fuzzy set noise is explained in subsec-
tion 3.3.1.

Step 2. The estimation of the colour component differences: The second step of the proposed
method estimates the noise-free colour component differences, i.e., between the red-
green components, the red-blue components and the green-blue components at each
position of the image. This is realised as follows: first we observe the input differ-
ences where both components have a small membership degree in the fuzzy set noise.
For those differences we calculate the membership degrees in the three fuzzy sets
small, medium and large. After that, we calculate the (fuzzy-) averages in a certain
neighbourhood for the three fuzzy sets small, medium and large over all input dif-
ferences. Finally we take as the estimation of the colour component difference the
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average value, which is closest to a predefined reference value. The detailed explana-
tion of the colour difference estimation can be found in subsection 3.3.2.

Step 3. The filtering method: In the final step of the proposed colour method we calculate the
filtered output value of each colour component at each position separately. Compo-
nents that have a zero membership degree in the fuzzy set noise are left unchanged
so that the sharpness is preserved. Only components that have a non-zero member-
ship degree are processed at this stage. The filtering method combines the estimated
colour component differences computed in the second step and the membership de-
grees in the fuzzy set noise obtained from the first step to filter out the impulse noise
while preserving the colour component differences. The detailed discussion of this
step can be found in subsection 3.3.2.

3.3.1 Noise detection and histogram estimation

For simplification we again denote a colour image pixel N(i, j) as N(i, j) =
(
NR(i, j),

NG(i, j), NB(i, j)
)

, where NR, NG and NB are respectively the red, the green and the

blue component greyscale images. The first step of our proposed method is to construct
a fuzzy set noise. The goal is to derive membership degrees in the fuzzy set noise for
each colour component of the image. These degrees will be denoted as μ noise so that

μnoise

(
NR(i, j)

)
for example indicates the membership degree in the fuzzy set noise for

the red component of the pixel N(i, j). The calculation of these degrees depends on the
noise type. If the image is corrupted with fixed valued impulse noise then we first compute
a membership function denoted as f(x) for x ∈ {0, 1, ..., 2m − 1}. Such a function deter-
mines the membership degrees of each possible intensity value in the fuzzy set noise, i.e.,

μnoise

(
NR(i, j)

)
= f

(
NR(i, j)

)
. In the case of random valued impulse noise we have to

calculate the membership degree for each colour component separately.

Fixed valued impulse noise

We begin with the detection of fixed valued impulse noise and the calculation of the corre-
sponding membership function denoted as f(x), with x an intensity value.

First we calculate for each colour component a histogram of intensity values coming
from the most likely corrupted impulse noise pixel pigments. These histograms are denoted
as hnoiseR , hnoiseG and hnoiseB for the images NR, NG and NB , respectively. The calculation
of these histograms is illustrated for the red component imageNR:

1. We divide the corrupted greyscale images (NR,NG,NB) intoM blocks of size V ×V
(we used V = 5), denoted as N bl

R , N bl
G , N bl

B with bl ∈ {1, ...,M}.
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2. To decide which intensities of each block should be included in the histograms, we
first determine the following parameters (illustrated for a blockN bl

R ):

p1 = max
(i,j)∈Nbl

R

(
N bl
R (i, j)

)
, p2 = min

(i,j)∈Nbl
R

(
N bl
R (i, j)

)
,

m1 = median
(i,j)∈Nbl

R

(
N bl
R (i, j)

)
, m2 = average

(i,j)∈Nbl
R

(
N bl
R (i, j)

)
,

with p1 and p2 the maximum and minimum intensity values of the block andm 1 and
m2 the median and the average values of the block N bl

R . Then we decide to include
p1 in the histogram hnoiseR if the following condition is satisfied:

|m1 − p1| > |m1 −m2| or |m2 − p1| > |m1 −m2|.

In the same way we include p2 in the histogram hnoiseR if:

|m1 − p2| > |m1 −m2| or |m2 − p2| > |m1 −m2|.

The reason why this method works relatively well is that impulse noise pixels gener-
ally only occur as outliners in comparison to its neighbourhood and that fixed valued
impulse noise pixels will be detected much more frequently than detected pixels com-
ing from a homogeneous region.

The idea behind this calculation is that impulse noise in a local window can usually be
identified by the minimum and maximum intensity values, because pixel values that are
corrupted with impulse noise are generally extreme ones compared with the other intensity
values. This also explains why all the median based filters reduce impulse noise very well.

With the three obtained histograms hnoiseR , hnoiseG and hnoiseB we finally calculate the
three membership functions fR(x), fG(x) and fB(x) that indicate the membership degrees
of the red, green and blue intensity values in the fuzzy set noise. The calculation of the
membership degree of a red intensity value k (i.e., fR(k)) is realised with the following
fuzzy rule:

Fuzzy Rule 3.4. Defining the membership degrees fR(k) for a red intensity value k in the
fuzzy set noise:

IF
hnoiseR (k)

2m−1∑
l=0

hnoiseR (l)

is large THEN k is a noisy red intensity (i.e., fR(k) is large)

In this rule, the fuzzy set large can be represented by the membership functionμ large shown
in Fig. 3.2. As illustrated, we use two parameters a and b. Optimal values are experimentally
found to be a = 0.05 and b = 0.15. So we finally get
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a b

1

0

large

Membership degree

[0, [��

Figure 3.2: The membership function μlarge.

fR(k) = μlarge

⎛
⎜⎜⎜⎜⎜⎝

hnoiseR (k)
2m−1∑
l=0

hnoiseR (l)

⎞
⎟⎟⎟⎟⎟⎠ .

In the fixed valued impulse noise case we have to expect at least one intensity value that
has a membership degree one in the fuzzy set noise, otherwise we can conclude that the
image is not corrupted with the fixed valued impulse noise. In this case we have to execute
the random valued impulse noise detection method (explained below).

Random valued impulse noise

In this part we explain a two-step detection method that is used in the case of random
valued impulse noise. The purpose of this detection method is to determine the membership
degrees μnoise(NR(i, j)) for all intensity values separately (i.e., for each colour component
of each position). The detection method is explained for the red component image N R, but
is applied for the two other components in the same way. The aim of the first detection step
is to determine mainly large impulse noise, so that the second step can concentrate on the
detection of the small impulse noise.

In the first step we create a histogram of 26 classes of the intensities of a (2K + 1) ×
(2K+1) (we usedK = 2 or 3) neighbourhood around the central pixel (i.e., the intensities
are divided by 10 so that for example all intensity values between 100 and 109 are grouped
together in one class). We then define the class(es) where the maximum number of elements
are located. Let us denote this class as j. In Fig. 3.3 we illustrated how the calculation of
such histograms is done, i.e., we observe how to obtain the 26 classes. The class with the
maximum, denoted as class j, in our example is class 23.
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Figure 3.3: Illustration of the histogram that is used for the first random valued impulse noise detec-
tion step.

All pixels that are located in a class that is not connected to the class j are detected as
noise. A class k is not connected if there exists at least one class between the maximum
class j and the class k that has no elements in it. In the example shown in Fig. 3.3 we detect
three noise pixels with intensities equal to 41, 116 and 174. Each pixel can be detected at
most (2K + 1)2 times. The number of detection for a certain pixel NR(i, j) is denoted as
#(NR(i, j)).

The idea behind the first detection step is based on the following two observations: (i)
impulse noise pixels are detected more frequently than other pixels so that they have a high
#(NR(i, j)) value and (ii) impulse noise pixels generally are not similar to the median of
a certain (2L+ 1)× (2L+ 1) neighbourhood around it. This neighbourhood can be taken
smaller than the previous one, i.e., L ≤ K (we have used L = 2). The two observations are
used to formulate the following fuzzy rule in order to detect impulse noise pixels.

Fuzzy Rule 3.5. Defining when a central pixel NR(i, j) is corrupted with impulse noise:

IF #(NR(i, j)) is large AND the difference
∣∣∣ median
−L≤k,l≤L

(
NR(i+k, j+l)

)
−NR(i, j)

∣∣∣
is large

THEN the central pixelNR(i, j) is an impulse noise pixel

Analogously to Fuzzy Rule 3.4, we represent the linguistic terms large as fuzzy sets, where
the corresponding membership function (denoted as μ ′

large and μ′′
large for large #’s and

large differences, respectively) is shown in Fig. 3.2. For the membership function μ ′
large

we have found experimentally that the best parameters are a = 0 and b = 0.72 · (2K + 1) 2,
i.e., 72% of the maximal detections. For the membership function μ ′′

large we have found
experimentally that a = 1.09 · p(i, j) and b = 1.35 · p(i, j), where p(i, j) is defined as:
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p(i, j) = max(p1, p2) with

p1 =
∣∣∣ max
−L≤k2,l2≤L

([
median

−L≤k,l≤L

(
NR(i+ k, j + l)

)
−NR(i+ k2, j + l2)

]
≤ 0

)∣∣∣,
(3.3)

p2 = min
−L≤k2,l2≤L

([
median

−L≤k,l≤L

(
NR(i+ k, j + l)

)
−NR(i+ k2, j + l2)

]
≥ 0

)
,

where (k2, l2) �= (k, l). If we sort all intensities of the (2L+1)× (2L+1) neighbourhood,
then we can define the parameters p1 and p2 as the intensity values located at the left respec-
tively right of the median value in the sorted list. The (fuzzy) output of the first detection
step is denoted as ηnoise(NR(i, j)) (i.e., the activation degree of Fuzzy Rule 3.5).

Since the first step of the random valued impulse noise detection method detects mainly
large impulse noise pixels we also need a second step in order to detect also small impulse
noise. The second step is explained with an example shown in Fig. 3.4. This figure shows a
certain 5× 5 window around some investigated pixel. We also use the results of the first de-
tection method, i.e., the window on the right shows the membership degrees in the fuzzy set
noise ηnoise(NR(i, j)). The additional detection method first sorts all the intensities which
have a membership degree lower than one in the fuzzy set noise (i.e., η noise(NR(i, j)) < 1)
without the investigated central pixel. The maximum and minimum of that neighbourhood
are denoted as pmax and pmin and are used to improve the first detection step. Next we use
the parameter q(i, j) defined as:

q(i, j) = max
(
|NR(i, j)− pmin|, |pmax −NR(i, j)|

)
. (3.4)

This parameter is used in Fuzzy Rule 3.6 to define the final output of the random valued
impulse noise detection method, which is denoted as μnoise(NR(i, j)).

Fuzzy Rule 3.6. Improvement of the first detection method:
IF q(i, j) is large OR the central pixel NR(i, j) is detected in the first step

THEN the central pixelNR(i, j) is an impulse noise pixel

Again, we use the membership function shown in Fig. 3.2 where we have found experimen-
tally that the best parameters are a = 1.09(pmax − pmin) and b = 1.35(pmax − pmin). By
using these parameters we take into account the structure information of the neighbourhood
itself. In a homogeneous region we can observe that the minimum and maximum are very
close so that small impulse noise can be detected very effectively. In an edge region we can
avoid the detection of important structure pixels since the difference between the maximum
and minimum is large.

Histogram estimation

As mentioned before we do not filter componentwise but we use the information about the
differences. Hence, for a corrupted colour image N , we also use the functions (or two-
dimensional arrays) defined in expression (3.2). These functions are used to estimate the
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Figure 3.4: Illustration of the second step of the impulse noise detection method.

histograms of all the colour differences (red-green, red-blue and green-blue). We illustrate
the estimation for the red-green functionMRG. The estimation of the histogram, that ranges
between−2m − 1 and +2m − 1 (between−255 and 255 form = 8), is denoted as hRG.

Each red-green difference (i.e.,MRG(i, j)) is included in the histogram hRG if and only
if the membership degree in the fuzzy set noise for both components is zero, in other words

if μnoise
(
NR(i, j)

)
= 0 and μnoise

(
NG(i, j)

)
= 0.

The three obtained histograms hRG, hRB and hGB are used to configure some parame-
ters (subsection 3.3.3), which are used in the filtering step discussed below.

3.3.2 Filtering method

The filtering phase can be splitted into two stages: (i) first we calculate the differences
between the colour components in a certain neighbourhood around a processed central pixel
and afterwards (ii) we use this information to filter the colour pigments of the centre, without
destroying the differences.

Estimation of the colour differences

As mentioned before we use the functions introduced in expression (3.2) to calculate the dif-
ferences between the colour components in a certain neighbourhood around a central pixel.
For simplification we first transfer the values of these functions from [−(2m−1), (2m−1)]
(with m the number of bits used to store a single intensity value (mostly m = 8)) into the
unit interval [0, 1]. Windows of size (2K + 1) × (2K + 1) (we recommend K = 1) are
used to scan across the normalized functions (expression (3.2)), where the output associated
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with the centre of a certain window is denoted as Δ. So the output value ΔRG(i, j) for ex-
ample indicates the calculated difference between the red and the green colour component
at position (i, j). The elements of such a window, used to scan for example across the nor-
malizedMRG function centred at (i, j), are denoted as follows: rg1 = MRG(i− 1, j − 1),
rg2 = MRG(i− 1, j), rg3 = MRG(i− 1, j + 1), rg4 = MRG(i, j − 1), rg5 = MRG(i, j),
rg6 = MRG(i, j + 1), rg7 = MRG(i+ 1, j − 1), rg8 = MRG(i+ 1, j), rg9 = MRG(i+
1, j+ 1). For each element of these windows we calculate the three membership degrees in
the corresponding fuzzy sets small, medium and large. This is realised by the bell-shaped
membership functions ηSMALL, ηMEDIUM and ηLARGE:

ηSMALL(rgk) =

⎧⎪⎪⎨
⎪⎪⎩

1 if rgk ≤ c1
1

1 +
(
rgk − c1
a1

)2b1
if rgk > c1 (3.5)

ηMEDIUM (rgk) =
1

1 +
(
rgk − c2
a2

)2b2
(3.6)

ηLARGE(rgk) =

⎧⎪⎪⎨
⎪⎪⎩

1

1 +
(
rgk − c3
a3

)2b3
if rgk ≤ c3

1 if rgk > c3

(3.7)

with k = 1, 2, ..., 9. The parameters a1, a2, a3, b1, b2, b3, c1, c2 and c3 are derived in
subsection 3.3.3.

The first stage of the filtering method is illustrated by an example for the estimation of
the differences between the red and the green component at position (i, j). This example
is shown in Fig. 3.5, where we use two input subimages of the two noisy images NR and
NG. With these two subimages we calculate the subfunction MRG, in our example with
(rg1, rg2, rg3, rg4, rg5, rg6, rg7, rg8, rg9) = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) as
illustrated in Fig. 3.5. In the first step the membership degrees of these nine input values in
the three fuzzy sets small, medium and large are calculated. Parallel with the fuzzification
step we apply the Fuzzy Rule 3.7:

Fuzzy Rule 3.7. Defining the membership degrees for the elements rgk in the fuzzy set
noise-free:

IF
(
NRk is not noise

)
AND

(
NGk is not noise

)
THEN rgk is noise-free

The result of this rule is indicated by the fuzzy variable mk in Fig. 3.5. This variable
indicates the membership degree of the element rgk in the fuzzy set noise-free. The index
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rg1 rg2 rg3

rg4 rg5 rg6

rg7 rg8 rg9

0.1 0.2 0.3

0.4 0.5 0.6

0.7 0.8 0.9

INPUT:

0.0 0.0 0.7

1.0 0.0 0.0

0.0 0.2 1.0

0.0 0.0 1.0

0.8 0.0 0.0

1.0 0.0 0.5

1.0 1.0 0.0

0.0 1.0 1.0

0.0 0.8 0.5

STEP 1

Fuzzification

wi

1.000 1.000 1.000

1.000 0.362 0.071

0.006 0.000 0.000

0.000 0.000 0.008

0.208 1.000 0.908

0.102 0.000 0.000

0.000 0.000 0.000

0.007 0.270 0.985

1.000 1.000 1.000

STEP 2

Fuzzy Rules

W k (RG = k kT2 m w ),

1.000 1.000 0.000

0.000 0.362 0.071

0.000 0.000 0.000

0.000 0.000 0.000

0.000 1.000 0.908

0.000 0.000 0.000

0.000 0.000 0.000

0.000 0.270 0.985

0.000 0.800 0.500

STEP 3

Fuzzy Average
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Figure 3.5: Block diagram for the calculation of the difference between the red and the green neigh-
bourhood around the central position (i, j). We use the minimum triangular norm for T1, product
triangular norm for T2 and standard negation.

k varies from 1 to 9 in order to select one of the window values. We will use this index
frequently during the rest of this section. The expression “NRk is not noise” is implemented

by 1−
(
μnoise(NRk)

)
, where we used the standard negatorNs(x) = 1− x, for x ∈ [0, 1].

The conjunction in fuzzy rule 3.7 (T1 in Fig. 3.5) is represented by the minimum.
The second step applies respectively the fuzzy rules 3.8 - 3.10 to calculate the fuzzy

weights indicated as wRGk in Fig. 3.5:

Fuzzy Rule 3.8. Defining the fuzzy weights for the fuzzy set small:

IF
(
rgk is noise-free

)
AND

(
rgk is small

)
THEN wSMALL

RGk is large

Fuzzy Rule 3.9. Defining the fuzzy weights for the fuzzy set medium:
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IF
(
rgk is noise-free

)
AND

(
rgk is medium

)
THEN wMEDIUM

RGk is large

Fuzzy Rule 3.10. Defining the fuzzy weights for the fuzzy set large:

IF
(
rgk is noise-free

)
AND

(
rgk is large

)
THEN wLARGERGk is large

Those weights indicate the membership degrees of the element rgk in the fuzzy sets small
noise-free, medium noise-free and large noise-free. The conjunction of these fuzzy rules is
represented by the product triangular norm.

In step 3 we calculate the fuzzy averaging with the normalized input values, which is fol-
lowed by the last step where the output ΔRGN(i, j) is determined. The output ΔRGN(i, j)
is equal to one of the three fuzzy averaging values that is closest to the referenced value
Δ
pRG N(i, j). In the exceptional case where the referenced value is situated between two
fuzzy averages (outputs), the output value is then equal to the fuzzy averaging value that has
the highest sum

∑9
i=1 wRGi. If this sums, for the two outputs, are equal too, then the mean

value between the two fuzzy averaging values is taken. This follows the fuzzy inference
rule based on the Takagi-Sugeno approach [215]:

ΔRGC(i, j) is

⎧⎪⎪⎨
⎪⎪⎩

small if
Δ
pRG N(i, j) is small

medium if
Δ
pRG N(i, j) is medium

large if
Δ
pRG N(i, j) is large

(3.8)

where
Δ
pRG N(i, j) is defined as the reference difference for the red - green components:

Δ
pRG N(i, j) =

9∑
k=1

rgk ·mk

9∑
k=1

mk

. (3.9)

The variable mk is defined by the fuzzy rule 3.7 and is also pictured in Fig. 3.5. In the

exceptional case, where
∑9

k=1 mk is equal to zero,
Δ
pRG N(i, j) becomes:

Δ
pRG N(i, j) = median

−1≤k,l≤+1
NR(i+ k, j + l)− median

−1≤k,l≤+1
NG(i+ k, j + l)

= median
1≤k≤9

NRk −median
1≤k≤9

NGk (3.10)

where we calculate the differences between the median of the red neighbourhood and the
median of the green neighbourhood. So we finally obtain the following output differences
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for a certain position (i, j):

Δ′
RGN(i, j) =

(
ΔRGN(i, j) · 2(2m − 1)

)
− (2m − 1)

Δ′
RBN(i, j) =

(
ΔRBN(i, j) · 2(2m − 1)

)
− (2m − 1)

Δ′
GBN(i, j) =

(
ΔGBN(i, j) · 2(2m − 1)

)
− (2m − 1)

Δ′
GRN(i, j) = −Δ′

RGN(i, j)
Δ′
BRN(i, j) = −Δ′

RBN(i, j) (3.11)

Δ′
BGN(i, j) = −Δ′

GBN(i, j)

where Δ′
RGN , ..., Δ′

BGN are the colour differences ΔRGN , ..., ΔBGN transformed from
the unit interval into the [−(2m − 1),+(2m − 1)] interval. For clarity, the output value
Δ′
RGN(i, j), for example, expresses the estimated original noise-free colour difference be-

tween the red and the green colour component at position (i, j). These output values are
further used by the filtering method in order to preserve the colour differences.

Noise reduction method

The calculated intensity differences in a local neighbourhood around a central pixel at po-
sition (i, j) are finally used to filter the colour components that are corrupted with impulse
noise. Each colour component that has a zero membership degree in the fuzzy set noise
is seen as a noise-free component and is not filtered at all. So only those components that
have a non-zero membership degree in the fuzzy set noise are changed, i.e., for the red
components satisfying μnoise(NR(i, j)) > 0.

The filtering method distinguishes four different cases, which can be illustrated for a
noisy red component pixel NR(i, j) (i.e., μnoise(NR(i, j))) where FR(i, j) denotes the
filtered output value:

- CASE 1: IF μnoise

(
NG(i, j)

)
> 0 and μnoise

(
NB(i, j)

)
> 0

THEN FR(i, j) =

9∑
k=1

(
1− μnoise(NRk)

)
NRk

9∑
k=1

(
1− μnoise(NRk)

)

- CASE 2: IF μnoise

(
NG(i, j)

)
= 0 and μnoise

(
NB(i, j)

)
> 0
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THEN FR(i, j) = NG(i, j) + Δ′
RG(i, j)

- CASE 3: IF μnoise

(
NG(i, j)

)
> 0 and μnoise

(
NB(i, j)

)
= 0

THEN FR(i, j) = NB(i, j) + Δ′
RB(i, j)

- CASE 4: IF μnoise

(
NG(i, j)

)
= 0 and μnoise

(
NB(i, j)

)
= 0

THEN FR(i, j) = 0.5
(
NG(i, j)+Δ′

RG(i, j)
)

+0.5
(
NB(i, j)+Δ′

RB(i, j)
)

In the first case it can happen that
9∑

k=1

(
1− μnoise(NRk)

)
= 0 (which is exceptional). In

this situation the output valueFR(i, j) is equal to the median of all involved intensity values.

3.3.3 Calculation of the parameters

Given the estimated histograms hRG, hRB and hGB for colour differences, we now explain
how to derive the parameters (a1, b1, c1), (a2, b2, c2) and (a3, b3, c3). These parameters are
respectively used to define the membership functions ηSMALL, ηMEDIUM and ηLARGE
(expressions (3.5) - (3.7)). This configuration is inspired by the histogram adaptive filter
[245, 246]. We also made the ranges (specified by b1, b2 and b3) much larger than re-
spectively c1, c2 and c3 so that impulse noise is apt to be filtered out by the membership
functions. For this purpose we set b1 = b2 = b3 = 17. Next, we use the following statis-
tics of the estimated histograms: the probability density (denoted as PDF ), the mass that
corresponds to the support of a crisp set (denoted as MASS) and the centroid (denoted as
CEN ). For the rest of this subsection we concentrate on the calculation of the parame-
ters (a1, c1), (a2, c2) and (a3, c3) for the membership functions ηSMALL, ηMEDIUM and
ηLARGE for intensity differences between red and green. The calculation of the parameters
for the other differences is very similar. So we start with the following calculations of the
centroid of the total histogram hRG:

PDFRG(z) =
hRG(z)

2m−1∑
k=−(2m−1)

hRG(k)

,

(3.12)

CENRG
MEDIUM =

2m−1∑
k=−(2m−1)

k

2m+1 − 1
PDFRG(k),
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where PDFRG(z) is the probability density function for the histogram hRG for index z
(z ∈ [−(2m − 1), 2m − 1]). Next we split the histogram hRG into two parts, with splitting
point M =

⌊
2(2m − 1) · CENRG

MEDIUM − (2m − 1)
⌋
, where �x� is the largest integer

value smaller than x. We then calculate the probability density function for each of these
two parts:

PDFRGpart1(z) =
hRG(z)

M∑
k=−(2m−1)

hRG(k)

,

(3.13)

PDFRGpart2(z) =
hRG(z)

2m−1∑
k=M+1

hRG(k)

.

For each of these two parts we now calculate the centroid:

CENRG
SMALL =

M∑
k=−(2m−1)

k

2m+1 − 1
PDFRGpart1(k),

(3.14)

CENRG
LARGE =

2m−1∑
k=M+1

k

2m+1 − 1
PDFRGpart2(k).

So actually we have divided the histogram hRG into three equal parts with centroids
CENRG

SMALL, CENRG
MEDIUM and CENRG

LARGE . We finally calculate the mass of each
part by the following expressions:

MASSRGSMALL =

M1∑
k=−(2m−1)

hRG(k)

2m−1∑
k=−(2m−1)

hRG(k)

, MASSRGMEDIUM =

M2∑
k=M1+1

hRG(k)

2m−1∑
k=−(2m−1)

hRG(k)

,

MASSRGLARGE =

2m−1∑
k=M2+1

hRG(k)

2m−1∑
k=−(2m−1)

hRG(k)

,
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Figure 3.6: Three membership functions: (a) ηSMALL, (b) ηLARGE and (c) ηMEDIUM .

with

M1 =
⌊
(2m − 1) ·

(
CENRG

MEDIUM + CENRG
SMALL

)
− (2m − 1)

⌋
,

M2 =
⌊
(2m − 1) ·

(
CENRG

MEDIUM + CENRG
LARGE

)
− (2m − 1)

⌋
.

The valuesMASS and CEN obtained from the estimated histogram hRG are respectively
used for the parameters a and c, with c1 = CENRG

SMALL, c2 = CENRG
MEDIUM , c3 =

CENRG
LARGE and a1 = MASSRGSMALL, a2 = MASSRGMEDIUM , a3 = MASSRGLARGE.

After the configuration is done, the membership functions are completely specified. In Fig.
3.6 we visualize an example of the membership functions of expressions (3.5)-(3.7).
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3.4 Impulse Noise Reduction Method for Colour Images
(INRC)

In this section a novel fuzzy (fixed and random valued) impulse noise detection and reduc-
tion method for colour images is presented [143, 192]. In comparison to the vector based
approaches and similar to the two other proposed methods (i.e., the FIDRMC and the HFC
filter) the fuzzy noise detection method is performed in each colour component separately.
This implies that a fuzzy membership degree (within [0, 1]) in the fuzzy set noise-free will
be assigned to each colour component of each pixel. When processing a colour, the pro-
posed detection method examines two different relations between the central colour and its
neighbouring colours to perform the detection: it is checked both (i) whether each colour
component value is similar to the neighbours in the same colour band and (ii) whether the
value differences in each colour band corresponds to the value differences in the other bands.
In the following, the method is described in more detail.

3.4.1 The impulse noise detection method

Since we are using the RGB colour-space, the colour of the image pixel at position (i, j)
is denoted as the vector N(i, j) which comprises its red (R), green (G), and blue (B) com-
ponent, so N(i, j) = (NR(i, j), NG(i, j), NB(i, j)). Let us consider the use of a sliding
filter window of size n × n, with n = 2c + 1 and c ∈ N, which should be centred at the
pixel under processing. The colours within the filter window are indexed according to the
scheme shown in Fig. 3.7 for the 3 × 3 case. For larger window sizes the indexing is per-
formed in an analogous way. The colour pixel under processing is always represented by
N0 = (N0

R, N
0
G, N

0
B).

First, we compute the absolute value differences between the central pixel F 0 and each
colour neighbour as follows:

ΔNk
R = |N0

R −Nk
R|,

ΔNk
G = |N0

G −Nk
G|, (3.15)

ΔNk
B = |N0

B −Nk
B|,

where k = 1, . . . , n2−1 and ΔNk
R,ΔN

k
G,ΔN

k
B denote the value difference with the colour

at position k in the R, G and B component, respectively. Now, we want to check if these
differences can be considered as small. Since small is a linguistic term, it can be represented
as a fuzzy set. We compute the membership degree in the fuzzy set small 1 using the 1− S-
membership function over the computed differences. This function is defined as follows

1− S(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if x ≤ α1

1− 2
(
x−γ1
γ1−α1

)2

if α1 < x < α1+γ1
2

2
(
x−α1
γ1−α1

)2

if α1+γ1
2 ≤ x < γ1

0 if x ≥ γ1

(3.16)
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Figure 3.7: Vector index in the filter window.
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Figure 3.8: Illustration of 1 − S-membership function behaviour.

where we have experimentally found that α1 = 10 and γ1 = 50 obtain satisfying results in
terms of noise detection. In this case we denote 1− S by S1, so that S1(ΔNk

R), S1(ΔNk
G),

S1(ΔNk
B) denote the membership degrees in the fuzzy set small1 of the computed differ-

ences with respect to the colour at position k. The behaviour of the S 1 function is shown in
Fig. 3.8. Now, we use the values S1(ΔNk

R), S1(ΔNk
G), S1(ΔNk

B) for k = 1, . . . , n2 − 1
to decide whether the values N 0

R, N0
G and N 0

B are similar to its component neighbours.
The calculation of the membership degree in the fuzzy set noise-free is illustrated for the R
component only but is performed in an analogous way for the G and B component. Some
of the neighbours could be corrupted with noise and therefore the values of S 1(ΔNk

R) for
k = 1, ..., n2−1 are sorted in descending order so that only the most relevant differences are
considered. The value occupying the j-th position in the ordering is denoted by S 1(ΔN

(j)
R ).

Next, the similarity to the neighbour values is determined by checking that the value dif-
ference should be small with respect to, at least, a certain number K of neighbours. The
number K of considered neighbours will be a parameter of the filter and its importance is
discussed in detail in subsection 3.4.3. So, we apply a fuzzy conjunction operator (the prod-
uct t-norm) among the first K ordered membership degrees in the fuzzy set small 1. The
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conjunction is calculated as follows:

μRsim =
K∏
j=1

S1(ΔN
(j)
R ), (3.17)

where μRsim denotes the degree of similarity of N 0
R with respect to K of its neighbours in

the most favourable case. Notice that in the case that N 0
R is noisy a low similarity degree

μRsim should be expected.
The next step of the detection process is to determine whether the observed differences

in the R component of the processed colour corresponds to the same observations in the G
and B component. We want to check if these differences agree at least for a certain number
K of neighbours. Then, for each neighbour we compute the absolute value of the difference
between the membership degrees in the fuzzy set small1 for the red and the green and for the
red and the blue components, i.e., |S1(ΔNk

R) − S1(ΔNk
G)| and |S1(ΔNk

R) − S1(ΔNk
B)|,

where k = 1, . . . , n2 − 1, respectively. Now, in order to see if the computed differences
are small we compute their fuzzy membership degrees in the fuzzy set small 2. The 1 − S-
membership function is also used but now we used α2 = 0.10 and γ2 = 0.25, which also
have been determined experimentally. In this case we denote the membership function as
S2. So we calculate

μRGsimk
= S2(|S1(ΔNk

R)− S1(ΔNk
G)|),

μRBsimk
= S2(|S1(ΔNk

R)− S1(ΔNk
B)|), (3.18)

where μRGsimk
and μRBsimk

denote the degree in which the observed difference in the red com-
ponent is similar to the observed difference in the green and blue components with respect
to the colour located at position k, respectively. Now, since we want to require that the dif-
ferences are similar with respect to at leastK neighbours, the values of μRGsimk

and μRBsimk
are

also sorted in descending order, where μRGsim(j)
and μRBsim(j)

denote the values ranked at the
j-th position. Consequently, the joint similarity with respect to K neighbours is computed
as

μRGsim =
K∏
j=1

μRGsim(j)
, μRBsim =

K∏
j=1

μRBsim(j)
, (3.19)

where μRGsim and μGBsim denote the degree in which the observed differences for the red com-
ponent are similar to the observed differences in the green and blue components, respec-
tively. Notice that ifN 0

R is noisy andN 0
G andN 0

B are not, then the observed differences can
hardly be similar and therefore, low values of μRGsim and μRBsim are expected.

Finally, the membership degree in the fuzzy set noise-free forN 0
R is computed using the

following fuzzy rule 3.11

Fuzzy Rule 3.11. Defining the membership degrees μN
0
R

free for the red componentN 0
R in the

fuzzy set noise-free:
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IF μRsim is large AND μRGsim is large AND μGsim is large OR

μRsim is large AND μRBsim is large AND μBsim is large
THEN the noise-free degree of N 0

R is large

A colour component is considered as noise-free if (i) it is similar to some of its neighbour
values (μRsim) and (ii) the observed differences with respect to some of its neighbours are
similar to the observed differences in some of the other colour components (μRGsim andμGBsim).
In addition, the degrees of similarity of the other components values with respect to their
neighbour values, i.e., μGsim and μBsim, are included so that a probably noisy component
(with a low μGsim or μBsim value) cannot be taken as reference for the similarity between the
observed differences. The fuzzy rule 3.11 contains four conjunctions and one disjunction.
Since we use the product triangular norm to represent the fuzzy AND (conjunction) operator
and the probabilistic sum co-norm to represent the fuzzy OR (disjunction) operator the

noise-free degree of N 0
R which we denote as μN

0
R

free is computed as follows:

μ
N0

R

free = μRsimμ
RG
simμ

G
sim + μRsimμ

RB
simμ

B
sim − μRsimμRGsimμGsimμRsimμRBsimμBsim. (3.20)

Analogously to the calculation of noise-free degree for the red component described

above, we obtain the noise-free degrees of N 0
G and N 0

B denoted as μN
0
G

free and μN
0
B

free as
follows

μ
N0

G

free = μGsimμ
RG
simμ

R
sim + μGsimμ

GB
simμ

B
sim − μGsimμRGsimμRsimμGsimμGBsimμBsim,

(3.21)

μ
N0

B

free = μBsimμ
RB
simμ

R
sim + μBsimμ

GB
simμ

G
sim − μBsimμRBsimμRsimμBsimμGBsimμGsim.

By using the standard negator Ns(x) = 1 − x, with x ∈ [0, 1] we can also derive the

membership degree in the fuzzy set noise for each colour component, i.e., μN
0
R

noise = 1 −
μ
N0

R

free, where μnoise denotes the membership degree in the fuzzy set noise. An example of
the detection performed by the method is shown in Fig. 3.9.

3.4.2 The noise reduction method

In this subsection the proposed denoising method is discussed. It uses the novel fuzzy
noise detection method described in subsection 3.4.1. When some component of a colour is
regarded as noisy (not noise-free) in some degree it will be filtered (smoothed) in a propor-
tional degree. The estimated value is computed using the information of the other colour
components in order to better estimate the original value without introducing colour arte-
facts.

Analogously to the previous subsection we consider a n×n filter window where we use
the same indexation as in Fig. 3.7. For each colour component of each pixel we compute
a fuzzy weight that is used afterwards to estimate the filter output as a weighted average of
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(a) (b) (c) (d)

Figure 3.9: Example of the performance of the proposed noise detection method, with (a)-(d) a detail
of the “Lena” image contaminated with 10% random valued impulse noise in each colour channel,
and the computed noise-free degrees.

the values in the window. In the following we illustrate the computation for the R case and
it should be performed analogously for the G and B cases. The calculation of the weights
is different for the central pixel (being denoised) and the neighbours which are used to
estimate the noise-free output. The calculated weight for the centre is denoted as WN0

R
and

for a neighbour is denoted asWNk
R
, k = 1, . . . , n2−1. The weight of the central pixelWN0

R

corresponds to its membership degree in the fuzzy set noise-free, i.e., WN0
R

= μ
N0

R

free. This
is done in order to filter the value proportionally to its noise degree. For the computation
of the neighbour weights we also take into account the noise-free degree of the component
being denoised. If the component, being denoised, is regarded as noise-free then the weights
of the neighbours are set equal to zero so that no weighing is performed and the processed
pixel remains unchanged. The idea behind the calculation of the neighbour weights is that
the weight should be large if (i) the neighbour is considered as noise-free, i.e., the degree

μ
Nk

R

free is large and (ii) the G or B component are similar to the G or B component of the
processed colour. The following fuzzy rule is used to determine the weight of the neighbour
located at position k.

Fuzzy Rule 3.12. Determine the weight WNk
R

for the red neighbour componentN k
R:

IF μ
N0

R

free is not large AND μN
k
R

free is large AND S1(ΔNk
G) is large AND μN

k
G

free is large
OR

μ
N0

R

free is not large AND μN
k
R

free is large AND S1(ΔNk
B) is large AND μN

k
B

free is large
THEN WNk

R
is large
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Again, neither fuzzyfication nor defuzzyfication is needed. The product and probabilistic
sum are used to represent the triangular norm and co-norm, respectively. Additionally we

used the standard negation so that “μN
0
R

free is not large” can be substituted by “μN
0
R

noise is
large”. So the weight WNk

R
is computed as

WNk
R

= μ
N0

R

noiseμ
Nk

R

freeS1(ΔNk
G)μN

k
G

free + μ
N0

R

noiseμ
Nk

R

freeS1(ΔNk
B)μN

k
B

free −
μ
N0

R

noiseμ
Nk

R

freeS1(ΔNk
G)μN

k
G

free · μN
0
R

noiseμ
Nk

R

freeS1(ΔNk
B)μN

k
B

free (3.22)

The underlying idea behind the proposed weighing procedure is that if two colours have
similar G or B components then it is observed that the R component is also similar.

By applying the weighted average operation, the estimation of the R component value
N̂0
R is done as follows

N̂0
R =

n2−1∑
k=0

WNk
R
Nk
R

n2−1∑
k=0

WNk
R

(3.23)

The proposed method achieves a good estimation of the original value except whenW Nk
R

=
0, ∀k ∈ {0, . . . , n2 − 1}. In this case some artefact values may be produced. This situa-
tion may occur in two cases: (i) if all components of the colour being denoised are noisy,

i.e., μN
0
R

free � μ
N0

G

free � μ
N0

B

free � 0, then no appropriate similarities can be found, that is,
S1(ΔNk

G) = S1(ΔNk
B) = 0, ∀k ∈ {0, . . . , n2 − 1}. This results in (see fuzzy rule 2 and

expression (3.22)) WNk
R

= 0, ∀k ∈ {0, . . . , n2 − 1} and (ii) regardless whether the colour
being denoised has some noise-free component or not, in a extremely noisy neighbourhood
it may also happen that S1(ΔNk

G) = S1(ΔNk
B) = 0, k = 1, . . . , n2 − 1. We propose to

prevent possible inappropriate behaviour by performing a weighted vector median (WVM)
operation if any of those mentioned cases is detected. The WVM over a n 2 − 1 size vec-

tor population outputs the vector Nj∗ for which j∗ = argj min
n∑

k=−n
W j ||Nj − Nk||,

where W j denotes the weight of the colour vector located at position j and || · || denotes
the Euclidean norm. We propose to weigh each colour vector N j according to its global
noise-free degree which we denote by μNj

free. The global noise-free degree of a colour
vector is computed as the conjunction of the noise-free degrees of their components so,

μNj

free = μ
Nj

R

freeμ
Nj

G

freeμ
Nj

B

free. In order to avoid noisy vectors influencing the output computa-
tion, only those vectors which are noise-free in some degree are used to compute the output.
So the vector population comprises all vectors for which μNj

free > 0. Finally, in the ex-

treme case that μNj

free = 0, ∀j ∈ {0, . . . , n2 − 1} the WVM cannot be applied and then, we
perform the vector median operation since it is known to exhibit a very robust performance.
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Figure 3.10: The performance of the proposed INRC filtering method in terms of PSNR and NCD
as a function of the K parameter, where (a)-(b) correspond with the “Lena” image contaminated with
random valued impulse noise and (c)-(d) with fixed valued impulse noise.

3.4.3 The parameter setting

Determining an appropriate parameter setting is a very important task that has to be carried
out in order to obtain successful filtering results. In this subsection we analyze the filter
performance as a function of the K parameter in order to determine an appropriate setting
for it.

We took different images and we contaminated them with random and fixed valued im-
pulse noise varying its percentage from 1% to 50%. We computed the performance (PSNR
and NCD) achieved by the proposed filter using a 3× 3 filter window for all possible values
of K ∈ {1, . . . , 8}. The performance achieved by the different values of the K parameter
is shown in Fig. 3.10 for the “Lena” image. Similar results are also observed for other im-
ages. The results in Fig. 3.10 seem to indicate that the most appropriate values of the K
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(a) PSNR = 15.56 (b) PSNR = 28.86 (c) PSNR = 30.48

(d) PSNR = 16.16 (e) PSNR = 30.05 (f) PSNR = 33.21

(g) PSNR = 21.94 (h) PSNR = 36.84 (i) PSNR = 34.97

(j) PSNR = 22.75 (k) PSNR = 38.99 (l) PSNR = 35.87

Figure 3.11: The filter performance, with (a) and (d) the “Lena” image corrupted with 20% random
and fixed valued impulse noise, respectively, (b) and (e) the output of the INRC filter with a 3 × 3
window and K = 2, (c) and (f) the output of the proposed INRC two-step filter. In (g) and (j) we
show the “Lena” image with 5% random and fixed valued impulse noise, respectively, (h) and (k) the
output of the INRC filter with a 3×3 window and K = 2, (i) and (l) the output of the proposed INRC
two-step filter.



3.5 Experiments 111

parameter are K = 2, 3 whereK = 2 is preferred for a low percentage of noise andK = 3
for a higher percentage of noise. When the images are contaminated with low-medium per-
centages of noise, this setting K = 2, 3 make the filter able to properly detect and reduce
impulse noise while preserving noise-free image areas, specially edges and textures. How-
ever, when the percentage of noise is high it is observed that some clusters of similar noisy
pixels may occasionally appear in the noisy images. Using a value of K = 2, 3 may not
be able to reduce clusters of noisy pixels larger or equal to 3 or 4 pixels. This behaviour is
shown in Figs. 3.11 (b) and (e). This problem can be solved by using a larger value for K
(maybe K = 4, 5), but in this case the performance for low densities of noise would be far
from optimal (see Fig. 3.10) because the detail-preserving ability is not so good as it is for
lower values of K . Instead of this, we propose to perform a filtering based on a two-step
approach. In the first step the noisy image is filtered using a 3 × 3 window and K = 2. In
this step, isolated noisy pixels are reduced while uncorrupted edges and details are properly
preserved. In the second step, the image is now filtered using a 5 × 5 window and K = 5.
This step is intended to remove possible clusters of noisy pixels that may still remain in
the image. The performance achieved by this second step is shown in Fig. 3.11 (c) and (f).
When the image is corrupted with a low percentage of noise and no noisy clusters appear all
impulses are reduced in the first step and the second step has almost no effect. Additionally
we can observe in Fig. 3.11 (g) - (l) that the details of the images are properly preserved by
both filtering steps.

3.5 Experiments

In this subsection the performance of the three proposed filtering procedures, which are
called fuzzy impulse noise detection and reduction method for colour images (FIDRMC),
histogram fuzzy colour filter (HFC) and impulse noise reduction method for colour images
(INRC), is compared to the performance of other state-of-the-art filters. The set of filters
chosen for the comparison includes some filters for greyscale images applied in a com-
ponentwise way (Median filter, UF, HAF, AFSF and FRINR), some vector filters (VMF,
ASVMF, AVMF, tTVMF, PGSF and FISF). Notice that some of the mentioned filters are
also based on fuzzy concepts (HAF, AFSF, FRINR, FISF and FIDRMC). We used the three
test-images shown in Fig. 3.12, which have been corrupted with different percentages of
fixed and random valued impulse noise. We used the following percentages: 5%, 10%,
15%, 20%, 30%.

Since the proposed INRC method uses a two-step procedure we also filtered the test-
images with the proposed filters using an analogous two-step design. The first step uses a
3 × 3 filter window where we used the (optimal) parameter setting suggested in the corre-
sponding papers. After the first step we performed a second step where we used a 5 × 5
window size and where the corresponding (optimal) parameters were changed accordingly
to the number of pixels in the window. In Tables 3.1-3.6 we illustrate the performance
achieved by all filters in terms of the PSNR and NCD objective quality measures. The per-
formance of the state-of-the-art methods included in the tables corresponds with the best
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(a) (b) (c)

Figure 3.12: The three test images used for the comparison: (a) “Parrot”, (b) “Baboon”, (c) “Boat”.

performance achieved by the first or second step. Numbers followed by a ∗ indicate that the
best performance is achieved in the first step. If no ∗ is shown then the best performance is
achieved by the second step.

The numerical results in terms of PSNR and NCD are illustrated in Tables 3.1-3.6. Ad-
ditional results [148, 152, 195] can be found in chapter 7. In Table 3.1-3.2 we illustrate
the performance for the “Parrot” image (Fig. 3.12 (a)) corrupted with random valued im-
pulse noise and fixed valued impulse noise, respectively. Analogously we show the results
for the “Baboon” image (Fig. 3.12 (b)) and for the “Boat” image (Fig. 3.12 (c)) in Tables
3.3- 3.4 and in Tables 3.5 -3.6, respectively. From these Tables we can make the following
conclusions:

• For the fixed valued impulse noise we observe that the FIDRMC and HFC filter ob-
tains the best numerical results (both PSNR and NCD are the best), while the INRC
method is the second best filter. We also observe that, in spite of the good numerical
results for the fixed valued impulse noise, the FIDRMC does not obtain such good
results for the random valued impulse noise case in comparison to the INRC method.

• For the random valued impulse noise we see that the INRC method obtains the best
PSNR values, which indicates that this method obtains the best filtering capability.
Additionally we see that the INRC method obtains one of the best NCD values,
which indicates that the colour information is preserved. Other filters such as the
UF, Median, FRINR, FIFS and HFC sometimes (for higher impulse noise levels) ob-
tain slightly better NCD values but worse PSNR values in comparison to the INRC
method. From the visual results we see that, in spite of better NCD values, the vector
based and greyscale methods have some important disadvantages in comparison to
the proposed alternative colour methods.

• From the three test-images we can conclude that the best numerical results for the
fixed valued impulse noise case were achieved by the following filters: (1) FIDRMC
and HFC, (2) the INRC method, (3) FRINR, (4) AFSF (for high level) and (4) tVMF
and (5) PGSF (for low level). For the random valued impulse noise we observe that
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.13: Experimental results for visual comparison: (a) Detail of the “Parrot” image with 10%
of random valued impulse noise in each colour channel and outputs of (b) VMF, (c) ASVMF, (d)
FRINR, (e) UF, (f) FISF, (g) FIDRMC, (h) HFC, (i) INRC.

the best results for low and for high noise is obtained by the INRC method, followed
by FRINR, HFC, FIDRMC and UF.

• We see that the three proposed methods outperform almost all filtering methods for
all test-images in all noise circumstances. This indicates that colour should be treated
in a more appropriate way than vector approaches do in order to obtain good noise
reduction methods.

Figs. 3.13- 3.15 confirm these numerical results visually. In Fig. 3.13 and Fig. 3.15 we
illustrate the denoising capability of the three proposed methods and several other state-
of-the-art methods for a part of the “Parrot” and a part of the “Baboon” image corrupted
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Table 3.1: Some experimental results in terms of PSNR and NCD using the “Parrot” image corrupted
with different densities of random valued impulse noise.

Filter 5% 10% 15% 20% 30%
PSNR NCD PSNR NCD PSNR NCD PSNR NCD PSNR NCD

None 21.60 6.7 18.47 13.2 16.69 19.5 15.41 25.1 13.68 35.7
VMF 31.43∗ 1.9∗ 30.77∗ 2.3∗ 29.51∗ 3.0∗ 28.88 3.4 27.69 4.3

ASVMF 33.88∗ 0.8∗ 30.80∗ 1.9 30.09 2.2 29.70 2.4 28.14 3.7
AVMF 31.42∗ 1.7∗ 29.52∗ 3.1 28.06 4.3 27.06 5.5 25.31 8.2
tTVMF 33.00∗ 1.1∗ 31.19∗ 1.8∗ 30.22∗ 2.5 29.75 2.7 28.12 3.5
PGSF 33.07∗ 1.2∗ 30.62 2.2 29.43 3.2 28.48 4.2 25.47 7.0
FISF 33.59∗ 1.1∗ 32.00∗ 1.7∗ 30.59∗ 2.4∗ 29.23∗ 3.0∗ 27.35 4.3

Median 31.65∗ 2.2∗ 31.25∗ 2.6∗ 30.47∗ 3.1∗ 29.44 3.5 28.47 4.2
UF 33.23∗ 1.6∗ 32.86∗ 1.9∗ 32.13∗ 2.3∗ 31.57∗ 2.7∗ 29.89∗ 3.5

HAF 30.19∗ 3.5 28.90 5.0 27.14 7.2 25.84 9.3 23.26 14.1
AFSF 33.13∗ 1.2∗ 31.72∗ 2.0∗ 31.29 2.3 30.53 2.9 27.98 4.9
FRINR 38.02∗ 0.6∗ 34.02 1.3 33.68 1.7 32.38 2.1 28.82 4.0

FIDRMC 35.82∗ 1.0∗ 33.94∗ 1.4∗ 32.99 1.9∗ 31.84 2.4 29.84 3.6
HFC 33.56∗ 0.9∗ 33.07∗ 1.2∗ 32.59∗ 1.4∗ 31.92∗ 1.9∗ 30.18∗ 2.9∗

INRC 38.74∗ 0.6∗ 35.37∗ 1.2 34.03 1.8 32.92 2.4 30.08 4.1

Table 3.2: Some experimental results in terms of PSNR and NCD using the “Parrot” image corrupted
with different densities of fixed valued impulse noise.

Filter 5% 10% 15% 20% 30%
PSNR NCD PSNR NCD PSNR NCD PSNR NCD PSNR NCD

None 22.41 3.9 19.15 7.9 17.33 12.3 16.18 16.4 14.35 24.6
VMF 31.76∗ 1.7∗ 31.36∗ 1.9∗ 31.18∗ 2.0∗ 30.85∗ 2.1∗ 29.99∗ 2.5∗

ASVMF 35.22∗ 0.4∗ 34.55∗ 0.6∗ 32.69∗ 1.0∗ 31.13∗ 1.6∗ 30.32 1.9
AVMF 33.95∗ 0.8∗ 32.37∗ 1.5∗ 31.48∗ 2.2 30.40∗ 3.1 29.06 4.3
tTVMF 38.39∗ 0.3∗ 34.34 0.6 32.98 0.9 32.65 1.1 31.29 1.7
PGSF 37.04∗ 0.4∗ 34.16∗ 0.9 32.73 1.3 31.80 1.7 30.11 2.9
FISF 34.67∗ 0.8∗ 33.26∗ 1.0∗ 32.75∗ 1.2∗ 32.20∗ 1.5∗ 30.45∗ 2.1∗

Median 31.95∗ 2.0∗ 31.69∗ 2.1∗ 31.53∗ 2.2∗ 31.34∗ 2.3∗ 30.76∗ 2.7∗

UF 33.78∗ 1.3∗ 33.18∗ 1.4∗ 32.89∗ 1.5∗ 32.60∗ 1.6∗ 32.07∗ 2.0∗

HAF 31.24∗ 2.4∗ 31.03∗ 2.4∗ 30.99∗ 2.5∗ 30.96∗ 2.6∗ 30.83∗ 2.7∗

AFSF 34.08∗ 0.8∗ 33.61∗ 1.0∗ 33.52∗ 1.2∗ 33.24∗ 1.3∗ 32.91∗ 1.6∗

FRINR 41.17∗ 0.3∗ 38.20∗ 0.5∗ 35.99∗ 0.9∗ 34.79 1.0 34.58 1.3
FIDRMC 52.34∗ 0.1∗ 48.35∗ 0.2∗ 45.27∗ 0.2∗ 43.1∗ 0.3∗ 40.40∗ 0.5∗

HFC 51.69∗ 0.1∗ 48.29∗ 0.1∗ 46.38∗ 0.2∗ 44.6∗ 0.3∗ 43.37∗ 0.4∗

INRC 41.28∗ 0.2∗ 37.71∗ 0.4∗ 36.87 0.6 35.88 0.7 35.09 1.0
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Table 3.3: Some experimental results in terms of PSNR and NCD using the “Baboon” image cor-
rupted with different densities of random valued impulse noise.

Filter 5% 10% 15% 20% 30%
PSNR NCD PSNR NCD PSNR NCD PSNR NCD PSNR NCD

None 21.98 5.4 18.95 10.5 17.18 15.5 16.0 19.9 14.18 28.5
VMF 22.95∗ 4.6∗ 22.68∗ 5.0∗ 22.35∗ 5.5∗ 21.9∗ 6.2 21.46 6.9

ASVMF 24.91∗ 2.4∗ 24.19∗ 3.6∗ 22.89∗ 5.1 22.1 5.4 21.64 6.4
AVMF 24.71∗ 2.5∗ 23.91∗ 3.7∗ 23.09∗ 5.0 22.4∗ 6.0 21.32 8.0
tTVMF 24.59∗ 2.8∗ 23.72∗ 3.8∗ 23.17∗ 4.7∗ 22.8∗ 5.3∗ 21.84∗ 6.7
PGSF 25.22∗ 2.1∗ 24.00∗ 3.2∗ 22.83∗ 4.3 22.0 5.3 20.95 7.3
FISF 25.29∗ 2.8∗ 24.08∗ 3.8∗ 23.33∗ 4.6∗ 23.0∗ 5.1∗ 21.75∗ 7.0∗

Median 23.02∗ 5.3∗ 22.82∗ 6.1∗ 22.60∗ 6.6 22.3∗ 6.9 21.74 7.7
UF 24.17∗ 4.0∗ 23.94∗ 4.6∗ 23.65∗ 5.3∗ 23.4∗ 5.9∗ 22.72∗ 6.9

HAF 23.05∗ 5.8∗ 22.77 6.5 22.40 7.4 21.9 8.6 20.81 11.0
AFSF 24.09∗ 4.4∗ 23.80∗ 5.4∗ 23.44∗ 5.9 23.0∗ 6.5 22.28 8.0
FRINR 29.12∗ 2.0∗ 26.85∗ 3.5 25.25 4.7 24.6 5.8 22.82 8.6

FIDRMC 26.09∗ 3.0∗ 25.48∗ 4.1∗ 24.72∗ 5.2∗ 24.0∗ 6.3∗ 22.86 8.0
HFC 25.29∗ 2.3∗ 25.13∗ 2.8∗ 24.76∗ 3.4∗ 24.4∗ 4.0∗ 23.55∗ 5.4∗

INRC 30.64∗ 1.4∗ 28.88∗ 2.3∗ 27.03 3.2 26.0 4.1 24.24 6.0

Table 3.4: Some experimental results in terms of PSNR and NCD using the “Baboon” image cor-
rupted with different densities of fixed valued impulse noise.

Filter 5% 10% 15% 20% 30%
PSNR NCD PSNR NCD PSNR NCD PSNR NCD PSNR NCD

None 22.24 3.5 19.21 7.1 17.53 10.4 16.36 13.8 14.52 21.0
VMF 23.00∗ 4.5∗ 22.90∗ 4.6∗ 22.81∗ 4.7∗ 22.68∗ 4.8∗ 22.36∗ 5.1∗

ASVMF 25.33∗ 1.8∗ 25.33∗ 1.9∗ 25.08∗ 2.2∗ 24.59∗ 2.8∗ 22.50∗ 4.7
AVMF 25.26∗ 1.6∗ 24.96∗ 1.9∗ 24.68∗ 2.2∗ 24.35∗ 2.6∗ 23.58∗ 3.6∗

tTVMF 28.42∗ 1.0∗ 27.34∗ 1.4∗ 25.94∗ 2.1∗ 24.98∗ 2.7∗ 23.95∗ 3.5∗

PGSF 26.80∗ 1.1∗ 25.88∗ 1.5∗ 25.14∗ 1.9∗ 24.27∗ 2.5∗ 23.01 3.6
FISF 25.80∗ 2.3∗ 25.35∗ 2.6∗ 24.95∗ 2.9∗ 24.20∗ 3.5∗ 23.37∗ 4.2∗

Median 23.09∗ 4.8∗ 23.03∗ 5.1∗ 22.96∗ 5.4∗ 22.87∗ 5.6∗ 22.64∗ 6.2∗

UF 24.29∗ 3.5∗ 24.14∗ 3.8∗ 24.00∗ 4.0∗ 23.86∗ 4.3∗ 23.42∗ 5.0∗

HAF 23.29∗ 5.0∗ 23.27∗ 5.2∗ 23.25∗ 5.4 23.21∗ 5.4 23.17∗ 5.5
AFSF 24.25∗ 3.7∗ 24.27∗ 4.0∗ 24.23∗ 4.4∗ 24.19∗ 4.7∗ 24.09∗ 5.3∗

FRINR 30.88∗ 1.0∗ 30.08∗ 1.5∗ 28.80∗ 2.0∗ 27.13∗ 2.7 26.10 3.5
FIDRMC 44.69∗ 0.1∗ 41.60∗ 0.2∗ 39.45∗ 0.2∗ 38.77∗ 0.3∗ 36.2∗ 0.5∗

HFC 44.66∗ 0.1∗ 41.75∗ 0.1∗ 40.12∗ 0.2∗ 39.07∗ 0.3∗ 37.4∗ 0.4∗

INRC 31.91∗ 0.8∗ 30.77∗ 1.1∗ 29.60∗ 1.5∗ 28.69 1.8 27.56 2.5
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Table 3.5: Some experimental results in terms of PSNR and NCD using the “Boat” image corrupted
with different densities of random valued impulse noise.

Filter 5% 10% 15% 20% 30%
PSNR NCD PSNR NCD PSNR NCD PSNR NCD PSNR NCD

None 21.75 6.3 18.78 12.1 16.99 17.8 15.79 22.8 13.99 32.5
VMF 30.28∗ 2.9∗ 29.42∗ 3.2∗ 28.20∗ 3.8∗ 26.70∗ 4.3 25.46 5.1

ASVMF 33.06∗ 1.1∗ 29.62∗ 2.4∗ 27.68 3.0 27.26 3.3 26.10 4.5
AVMF 31.61∗ 1.5∗ 29.25∗ 2.8∗ 27.38∗ 4.0 26.19 5.0 24.56 7.3
tTVMF 31.98∗ 1.6∗ 30.30∗ 2.4∗ 29.03∗ 3.1∗ 27.85∗ 3.7 26.22 4.4
PGSF 33.42∗ 1.1∗ 30.30∗ 2.1 28.45 3.1 27.24 4.0 24.64 6.4
FISF 31.63∗ 1.7∗ 30.14∗ 2.4∗ 29.01∗ 3.0∗ 27.80∗ 3.5∗ 25.16∗ 4.9

Median 30.56∗ 3.3∗ 29.90∗ 3.8∗ 29.01∗ 4.4∗ 27.99∗ 4.7 26.13 5.5
UF 33.08∗ 2.1∗ 32.13∗ 2.5∗ 31.32∗ 3.0∗ 30.46∗ 3.5∗ 28.67∗ 4.5

HAF 29.04∗ 4.2 27.68∗ 5.3 26.57 6.7 25.56 8.1 23.21 11.4
AFSF 33.18∗ 1.8∗ 31.51∗ 2.7∗ 29.98 3.3 29.02 4.0 27.02 6.0
FRINR 36.80∗ 0.9∗ 32.38 1.9 31.28 2.5 30.10 3.1 27.14 5.2

FIDRMC 34.25∗ 1.7∗ 32.41∗ 2.3∗ 31.00 3.0∗ 29.79 3.7 27.95 5.0
HFC 30.29∗ 0.9∗ 30.08∗ 1.2∗ 29.70∗ 1.4∗ 29.19∗ 1.8∗ 27.96∗ 2.9∗

INRC 38.48∗ 0.8∗ 34.77∗ 1.5∗ 32.84 2.1 31.36 2.8 29.10 4.4

Table 3.6: Some experimental results in terms of PSNR and NCD using the “Boat” image corrupted
with different densities of fixed valued impulse noise.

Filter 5% 10% 15% 20% 30%
PSNR NCD PSNR NCD PSNR NCD PSNR NCD PSNR NCD

None 22.30 3.8 19.23 7.5 17.45 11.2 16.18 15.0 14.43 22.6
VMF 30.78∗ 2.7∗ 30.32∗ 2.8∗ 30.00∗ 2.9∗ 29.53∗ 3.0∗ 28.56∗ 3.3∗

ASVMF 35.24∗ 0.6∗ 34.00∗ 0.9∗ 32.67∗ 1.2∗ 30.14∗ 1.9∗ 27.85 2.7
AVMF 35.46∗ 0.6∗ 33.96∗ 1.0∗ 32.84∗ 1.5∗ 31.63∗ 1.9∗ 29.49∗ 3.0
tTVMF 37.39∗ 0.6∗ 33.65∗ 1.0∗ 32.31∗ 1.3∗ 30.92 1.7 30.05∗ 2.3∗

PGSF 37.66∗ 0.5∗ 34.96∗ 0.9∗ 33.02∗ 1.3 31.21 1.7 29.35 2.8
FISF 32.73∗ 1.3∗ 31.88∗ 1.6∗ 31.25∗ 1.7∗ 30.43∗ 2.2∗ 29.08∗ 2.8∗

Median 31.02∗ 2.9∗ 30.75∗ 3.1∗ 30.50∗ 3.3∗ 30.17∗ 3.5∗ 29.40∗ 3.9∗

UF 33.58∗ 1.8∗ 33.09∗ 2.0∗ 32.59∗ 2.2∗ 31.96∗ 2.4∗ 30.70∗ 3.0∗

HAF 29.84∗ 3.4∗ 29.71∗ 3.5∗ 29.65∗ 3.6∗ 29.55∗ 3.7∗ 29.34∗ 3.8∗

AFSF 34.49∗ 1.2∗ 34.02∗ 1.5∗ 33.59∗ 1.7∗ 32.98∗ 2.0∗ 32.20∗ 2.4∗

FRINR 42.05∗ 0.4∗ 38.54∗ 0.7∗ 35.39∗ 1.1∗ 33.24 1.5 32.36 1.9
FIDRMC 48.71∗ 0.1∗ 46.66∗ 0.2∗ 44.18∗ 0.3∗ 41.65∗ 0.4∗ 38.9∗ 0.6∗

HFC 49.77∗ 0.1∗ 46.85∗ 0.2∗ 45.41∗ 0.3∗ 43.61∗ 0.4∗ 41.94∗ 0.6∗

INRC 41.44∗ 0.4∗ 37.82∗ 0.6∗ 35.79 1.0∗ 34.91 1.2 33.65 1.8
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.14: Experimental results for visual comparison: (a) Detail of the “Boat” image with 20% of
fixed valued impulse noise and outputs of (b) VMF, (c) ASVMF, (d) FRINR, (e) AFSF, (f) PGSF, (g)
FIDRMC, (h) HFC, (i) INRC.

with 10% and 30% random valued impulse noise, respectively. Fig. 3.14 illustrates the
performance in case of fixed valued impulse noise for a part of the “Boat” image. The main
observations from those figures are:

• From those images we observe the main problem of the filtering algorithms that are
applied componentwise, i.e., they introduce (impulse like) colour artefacts in het-
erogeneous areas like edges or fine texture areas. By applying a method on each
colour component separately it often happens that colour component differences are
destroyed.

• The vector based approaches do not introduce many artefacts but tend to cluster the
noise in larger areas, which makes it much more difficult to reduce the remaining
noise. Additionally we observe that the results from the vector based approaches tend
to make the images much blurrier (smoother) than the other methods so that important
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image structures are destroyed.

• The best visual results for both impulse noise types were obtained by the three pro-
posed methods. We observe that the INRC method reduces the noise very well, while
preserving the colour information and the important image features like edges and
textures. The HFC filter works fine for fixed valued impulse but also destroyed more
image structures than the INRC and FIDRMC do. The FIDRMC reduces the noise
very well but also more colour artefacts can be observed in comparison to the HFC
and the INRC method.

From both the numerical and visual results we can conclude that the proposed methods
can be advised for both noise types, i.e., for the fixed valued and random valued impulse
noise. The INRC method generally outperforms all other methods except for the fixed
valued impulse noise case, where the FIDRMC filter and the HFC clearly outperform all
other methods. The reason why the FIDRMC and the HFC outperform all other state-of-
the-art methods is because it uses a fixed valued impulse noise detection method. So if the
method detects fixed valued impulse noise then it concentrates on the fixed values only. If
we also include such a fixed valued impulse noise detection method in the INRC method
then we probably would obtain at least as good results as the HFC and the FIDRMC.

Finally we also have investigated the time complexity of the three proposed methods.
Time complexity refers to a function describing how much time it will take an algorithm
to execute, based on the parameters of its input (in our case: the number n of pixel used).
The exact value of this function is usually ignored in favour of its order, expressed in the so-
called Big-O notation (this is based on the limit of the time complexity function as the values
of its parameters increase without bound). All the algorithms described here (including
the proposed method) have a linear time complexity (i.e. O(n)). This means that if the
number of pixels are multiplied by two (2n) that the execution time will be twice as long
(i.e. 2O(n)). In Figs. 3.16-3.17 we illustrate the mean execution time (vertical axis) of
several methods for several images of different size (horizontal axis). In Fig. reftimecomp2,
we illustrate the time complexity of the FIDRMC and the HFC method. In Fig. 3.17 we
observe that the INRC method is faster than one iteration of the VMF using the taxi-metric
and window size 5×5, but slower than one iteration of the VMF using the Euclidean distance
and window size 3× 3. Additionally we show that the proposed method is generally faster
than one-iteration of the AFSF and the PGSF filters. This gives an idea of the execution
time of the proposed INRC method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.15: Experimental results for visual comparison: (a) Deatil of the “Baboon” image with 30%
of random valued impulse noise in each colour channel and outputs of (b) VMF, (c) ASVMF, (d)
FRINR, (e) AFSF, (f) PGSF, (g) FIDRMC, (h) HFC, (i) INRC.

3.6 Conclusion

In this chapter we presented three impulse noise reduction methods for colour images. We
illustrated that the main differences between these methods and other state-of-the-art tech-
niques is the usage and the preservation of the colour differences. Additionally we showed
with the INRC method that we can improve not only the noise reduction but also the im-
pulse noise detection by incorporating the colour information. The main advantages of the
three methods can be summarised as: (i) impulse noise (for low and high noise levels) is re-
duced effectively, (ii) edge sharpness is preserved and (iii) much less blurring or new colour
artefacts are introduced. Numerical measures, such as PSNR and NCD, and visual ob-
servations illustrate that the proposed methods outperform most of the well-known filters.
We have clearly illustrated that colour images should be treated differently from methods
for greyscale images and existing vector based approaches in order to increase the visual
performance. In spite of the already satisfying results of those methods we believe that a lot
of promising research should still be done in that field.
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Figure 3.16: The time complexity of the proposed FIDRMC and HFC method.
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Figure 3.17: The time complexity of the proposed INRC method in comparison with the VMF (3×3)
using the Euclidean distance, the VMF (5×5) using the taxi-metric, the AFSF and the PGSF method.





Chapter 4

Additive Noise in Greyscale
Images

This chapter focuses on wavelet techniques. In particular, we investigate the usage of fuzzy
set theory in the domain of image enhancement using wavelet thresholding. We propose
a very efficient new fuzzy wavelet shrinkage method [191], which can be seen as a fuzzy
variant of a recently published probabilistic shrinkage method [162] for reducing additive
Gaussian noise in digital greyscale images. Experimental results show that the proposed
method can efficiently and rapidly remove additive Gaussian noise. Numerical and visual
observations show that the proposed method outperforms current fuzzy non-wavelet meth-
ods and is comparable with some recent but more complex wavelet techniques. We also
illustrate the main differences between this version and its probabilistic counterpart and
show the improvements.

This chapter is organized as follows: in section 4.1 we give a short introduction to the
concepts of the wavelet transform. Afterwards we introduce in section 4.2 the ideas of
wavelet thresholding and indicate why fuzzy set theory can be used in that domain. The
discussion about the developed fuzzy shrinkage method can be found in section 4.3. The
experiments and conclusion can be found in section 4.4 and section 4.5, respectively.

4.1 Wavelets

It is well-known from Fourier theory [26] that a signal can be expressed as the sum of a,
possibly infinite, series of sines and cosines. This sum is also called a Fourier expansion.
The Fourier transform, used in functional and signal analysis, provides the frequency com-
position, i.e., frequency spectrum of a signal. The Fourier representation might be able to
determine all the frequencies, but it makes it impossible to recover the particular space coor-
dinates in case of images where a certain change has occurred. Specifically, the Fourier basis
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functions (sines and cosines) have infinitely small width in the frequency domain and are
infinitely long in the time (space) domain. This yields a perfect localization in the frequency
domain, but with no information at all about time (spatial) location of these frequencies in
a signal.

In image processing the information concerning the location of certain local frequency
components (discontinuities) becomes especially important. In [78] Gabor introduces a
method to represent a one-dimensional signal in two dimensions, with time and frequency
as coordinates, so that a space-frequency analysis can be performed. Here the frequency
of the components and their location are known only to finite precision. This comes from
the Heisenberg’s uncertainty principle [76], which, in signal processing terms, states that
neither the exact frequency nor the exact time of occurrence of this frequency in a signal
can be determined. In a time-varying signal such as a wave, it is meaningless to ask about
the frequency spectrum at a single moment in time because the measure of frequency is the
measure of a repetition recurring over a period of time. In order to determine the frequencies
accurately, the signal needs to be sampled for a finite (non-zero) time.

The wavelet transform or wavelet analysis is probably the most well-known solution to
overcome the shortcomings of the Fourier transform. In wavelet analysis a fully scalable
modulated window is used. The window is shifted along the signal and for every position
the spectrum is calculated. This process is repeated several times with a slightly shorter
or longer window for every new cycle. Finally the result is a collection of time-frequency
representations of the signal, all with different resolutions. Because of this collection of
representations, we can speak of a multiresolution analysis. In the case of wavelets we
normally do not speak about time-frequency representations but about time-scale repre-
sentations, scale being in a way the opposite of frequency, because the term frequency is
reserved for the Fourier transform.

4.1.1 The continuous wavelet transform

The fundamental idea behind wavelets is to analyse a signal according to scale. The wavelets
are functions that oscillate like a wave in a limited portion of time or space and vanish
outside of it. Wavelets are localized basis functions, that are suitable for representing short-
time events. We can stretch (to meet a given scale) and shift a particular chosen wavelet
while looking into its correlations with the analysed signal. In wavelet analysis, the scale
that we use to look at data plays a special role. Wavelet algorithms process data at different
scales or resolutions. This is very similar to observing a displayed object or signal (e.g.
printed or displayed on screen) from various distances. It is often said that wavelets can see
both the forest and the trees. If we look at a signal with a large window, we would notice
large features. Analogously, if we look at a signal with a small window, we would notice
small features.

The continuous wavelet transform (CWT) of a signal f is defined as:

γ(s, τ) =
∫ ∞

−∞
f(x)ψ∗

s,τ (x)dx, = 〈f, ψs,τ 〉. (4.1)
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Figure 4.1: Some wavelets obtained from the Mexican hat mother wavelet function ψ(x) = (1 −
2x2) exp(−x2).

where ψ∗
s,τ (x) denotes the complex conjugation of ψs,τ (x). The equation 4.1 illustrates

how a function f is decomposed into a set of basis functions ψ s,τ , called the wavelets. The
variables s and τ represent the scale and translation, respectively and indicate the dimension
after the wavelet transformation. The wavelets (wavelet family) are generated from a unique
prototype function ψ, the so-called mother wavelet, by scaling and translation. The mother
wavelet oscillates, averages to zero

∫∞
−∞ ψ(x)dx = 0 and is well localized (i.e, rapidly

decreases to zero when |x| tends to infinity). By convention it is centred around x = 0, and
has a unit norm.

The mother wavelet ψ, generates the other wavelets ψs,τ , s > 0, τ ∈ R, of the family by
changing the scale s (i.e., by dilation) and by changing the position τ (i.e., by translation),

ψs,τ (x) =
1√
s
ψ

(
x− τ
s

)
, (4.2)

where 1/
√
s is used for energy normalization across the different scales.

In Fig. 4.1 we illustrated several wavelets that are obtained from the Mexican hat mother
wavelet ψ(x) = (1 − 2x2) exp(−x2) [250]. Additionally in Fig. 4.2 we have shown the
complex mother wavelet function which is known as the Morlet function [85] and which is
defined as ψ(x) = C exp(−x2

2 ) exp(i5x), where the constant C is used for normalization
in view of reconstruction.

Obviously it is important to note that the wavelet transform offers a great degree of
freedom in the choice of a wavelet, i.e., the wavelet basis functions are not specified. In
this way the wavelet transform differs from the Fourier transform, or other transforms. The
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Figure 4.2: Some wavelets obtained from the Morlet hat complex mother wavelet function ψ(x) =
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2
) exp(i5x).

theory of wavelet transform deals with the general properties of the wavelets and wavelet
transforms only. The original function f can be reconstructed with the inverse wavelet
transform given by

f(x) =
1
Cψ

∫ ∞

−∞

∫ ∞

−∞
γ(s, τ)ψs,τ (x)dτ

ds

|s2| , (4.3)

where Cψ =
∫∞
−∞

|ψ̂(ζ)|2
|ζ| dζ is called the admissibility constant and where ψ̂(ζ) is the

Fourier transform of ψ(x). To guarantee the inverse wavelet transform, the admissibility
constant has to satisfy the so-called admissibility condition: 0 < Cψ < +∞. The admissi-
bility condition [133] implies ψ̂(0) = 0, so that the Fourier transform vanishes at the zero
frequency. This means that the wavelets must have a band-like spectrum and that a wavelet
must integrate to zero.

The continuous wavelet transform CWT as described above has the following three main
characteristics:

• The first feature is that the CWT is highly redundant. In expression (4.1) the wavelet
transform is calculated by continuously shifting a continuously scalable function over
a signal and calculating the correlation between the two. The inverse wavelet trans-
form of the CWT permits us to reconstruct the signal by an integration of all the
projections of the signal onto the wavelet basis. Therefore the obtained wavelet coef-
ficients will be highly redundant, which for some practical applications (not including
noise reduction) is not desired [202].
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• The second characteristic is that we have an infinite number of wavelets in the wavelet
transform and this should be reduced to a more manageable number.

• Another characteristic we observe is that the wavelet transform can only be calculated
numerically. Nevertheless for practical applications we need fast algorithms that are
able to exploit the power of the wavelet transform.

4.1.2 The multiresolution analysis

There are two ways to introduce wavelets: one is through the continuous wavelet transform
and another is through the multiresolution analysis [44, 101, 131, 132, 209, 210]. A mul-
tiresolution analysis (MRA) or multiscale approximation (MSA) is the design method of
most of the practically relevant discrete wavelet transform (DWT) and the justification for
the algorithm of the fast wavelet transform (FWT). Before introducing the main concepts of
the MRA we first start with a short refreshment about function spaces.

If a set {ϕi}i∈Z is complete for space S, then all f ∈ S can be decomposed as: f =∑
i ciϕi and there exists a dual set {ϕ̃i} such that the expansion coefficients ci are cal-

culated as ci = 〈ϕ̃i, f〉. A complete and linearly independent set {ϕ i}i∈Z is a basis of
S. Furthermore its dual set {ϕ̃i} is also a basis and it is biorthogonal to the primal one:
〈ϕi, ϕ̃j〉 = δi−j , where δi is the Kronecker Delta. An important special case is when the
set {ϕi} constitutes an orthonormal basis, where 〈ϕi, ϕj〉 = δi−j , i.e., the dual basis is now
equal to the primal one.

If the set {ϕi} is complete and if there exist real constants A,B > 0 such that

∀f ∈ S,A||f ||2 ≤
∑
i

|〈ϕi, f〉|2 ≤ B||f ||2, (4.4)

then this set is called a frame where the constants A and B are called frame bounds. Addi-
tionally the functions ϕi are in general not linearly independent and represent a redundant
(overcomplete) set. Note that when a frame becomes minimal, i.e., if no more redundant
elements can be removed then it becomes a so-called Riesz basis. A sequence of vec-
tors in a space S is called a Riesz sequence if there exist constants 0 < α ≤ β such that:
α(
∑

i |ci|2) ≤ ||
∑

i ciϕi||2 ≤ β(
∑

i |ci|2). In a finite-dimensional space every basis is a
Riesz basis.

If we are dealing with finite energy signals f ∈ L2(R), then a multiresolution analysis
of the space L2(R) is defined as a double infinite nested sequence of closed subspaces
{0} ⊂ Vj ⊂ L2(R), with j ∈ Z and with the following properties [37]:

1. Vj ⊂ Vj+1 (nested spaces)

2. the scale invariance: f ∈ Vj ⇔ f ◦H2 ∈ Vj+1, j ∈ Z,

3. the shift invariance: f ∈ Vj ⇔ f ◦ T−2−jk ∈ Vj , k ∈ Z,

4.
+∞⋃
j=−∞

Vj = L2(R) and
+∞⋂
j=−∞

Vj = {0},
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5. A scaling function (father wavelet) φ ∈ L2(R), with a non-vanishing integral, exists
so that the collection {φ ◦ T−l}l∈Z forms a stable Riesz basis of V0.

with H2(x) = 2x, Ty(x) = x− y.
The multiresolution analysis (MRA) is called orthogonal if {φ◦T−l}l∈Z is an orthogonal

basis for V0. We will use the following terminology: a level of a multiresolution analysis is
one of the subspaces Vj and one level is coarser (respectively finer) with respect to another
whenever the index of the corresponding subspace is smaller (respectively larger).

Condition 5 means that any function f ∈ V0 can be written uniquely as f(x) =∑
k∈Z

f∗
kφ(x − k) with convergence in the L2(R)-sense and there exist constants α and

β that satisfy the Riesz condition which implies that φ has a stable shift basis. The shifted
versions of the scaling function φ0,k(x) = φ(x − k) form a Riesz basis for V0 so that any
f ∈ V0 can be written as:

f(x) =
∑
k

akφ0,k(x), k ∈ Z, x ∈ R. (4.5)

Since φ ∈ V0 ⊂ V1, a finite sequence of coefficients {ck} (called wavelet coefficients) exist
(ck = 2〈φ, φ ◦ T−k ◦ H2〉 for |k| ≤ N and ck = 0 for |k| > N with N the number of
vanishing moments) the scaling function satisfies:

φ(x) =
∑
k

ckφ(2x− k), k ∈ Z, x ∈ R. (4.6)

This functional equation has several different names: the refinement equation, the dilation
equation or the two-scale difference equation.

In an orthogonal multiresolution analysis, the spaces W j denote the orthogonal com-
plement (i.e., the difference between Vj and Vj+1 in subspace sense) of Vj in Vj+1, i.e., a
space that satisfies:

Vj+1 = Vj ⊕Wj . (4.7)

We note that the spaceWj is not necessarily unique. This space contains the detail informa-
tion needed to go from an approximation at resolution j to an approximation at resolution
j + 1. Consequently we have

V0 ⊕
j∑

k=0

Wj =
j⊕

k=−∞
Wj = Vj+1 and

∞⊕
k=−∞

Wj = L2(R). (4.8)

A function ψ is a wavelet if the collection of functions {ψ ◦ T−l}l∈Z is a Riesz basis of
W0. The collection of wavelet functions {ψs,τ}s,τ∈Z is then a Riesz basis of L2(R). Since
the wavelet ψ is an element of V1, a sequence {dk} exists such that:

ψ(x) =
∑
k

dk φ(2x− k), k ∈ Z, x ∈ R. (4.9)
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Figure 4.3: A few examples of scaling functions φ and corresponding wavelet functions ψ for the
orthogonal Daubechies wavelet: (a) db2, (b) db4, (c) db6 and (d) db10.

The wavelet and the scaling equation give a relation between the shape of the wavelet and
scaling function. The relationship between the wavelet and the scaling function is de-
fined in terms of low-pass coefficients ck (expressed in (4.6)) and high-pass coefficients
dk (expressed in (4.9)). By the orthogonality of the φk and ψk, we obtain the relation
dk = (−1)kc1−k.

As in the continuous wavelet transform the (mother) wavelet ψk oscillates, averages
to zero

∫∞
−∞ ψk(x)dx = 0 and is well localized. Some scaling φ(x) and wavelet ψ(x)

functions for the orthogonal Daubechies wavelet [101] are illustrated in Fig. 4.3, i.e., the
db2, db4, db6 and db10.

So as mentioned before Wj is called the detail space and is generated by the wavelet
function, while the Vj , generated by the scaling function, is called the approximation space.
A family of wavelets is obtained by translations and dilations (generally by a factor of 2),
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i.e.,

φj,k(x) =
√

2jφ
(
x− 2jk

2j

)
,

(4.10)

ψj,k(x) =
√

2jψ
(
x− 2jk

2j

)
,

with (j, k) ∈ Z2 and where {φj,k} generates the Vj space and {ψj,k} spans the Wj space.
We now can decompose fj+1 ∈ Vj+1 = Vj⊕Wj into its components fj ∈ Vj and gj ∈Wj ,
i.e.,

fj(x) =
∞∑

k=−∞
λj,k φj,k(x),

(4.11)

gj(x) =
∞∑

k=−∞
γj,k ψj,k(x),

where λj,k = 〈f, φj,k〉 are the scaling coefficients and γj,k = 〈f, ψj,k〉 are called the
wavelet coefficients for scale j and position k. According to this we can decompose the
signal f as:

f(x) =
J∑

j=−∞

∞∑
k=−∞

γj,k ψj,k(x) +
∞∑

k=−∞
λj,k φJ,k(x), (4.12)

where the second term, containing the scaling basis φJ,k replaces the aggregation of in-
finitely many details (J + 1 < j < ∞). Note that because of the dilation of the scaling
and wavelet basis in expression (4.10), for normalization purpose, the coefficients c k and
dk used in expression (4.6) and (4.9) for the scaling and the wavelet function should be
normalized as: c′k = 1√

2
ck and d′k = 1√

2
dk. These coefficients practically represent the

low-pass and high-pass discrete filter coefficients of the wavelet (orthonormal) transform.
Finally we want to mention that in a more general case the multiresolution analysis is

not orthogonal so that the synthesis and analysis (scaling and wavelet) functions are dif-
ferent. The dual scaling function φ̃ and the dual wavelet function ψ̃ become necessary to
generate a dual multiresolution analysis with subspaces Ṽj and W̃j . The scaling and wavelet
coefficients become:

λj,k = 〈f, φ̃j,k〉 γj,k = 〈f, ψ̃j,k〉. (4.13)

The dual sets {φ̃j,k}k∈Z and {ψ̃j,k}k∈Z span the spaces Ṽj and W̃j , respectively. Addition-
ally we have that Ṽj⊥Vi and W̃j⊥Wi, for i �= j and Ṽj⊥Wj and W̃j⊥Vj , for all j. The
generalization to biorthogonal wavelets has been considered to gain more flexibility.
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4.1.3 The fast wavelet transform

The main idea behind the DWT is that a time-scale representation of a digital signal is
obtained using different filtering techniques. The CWT was computed by changing the
scale of the analysis window, shifting the window in time, multiplying by the signal and
integrating over all times. In the discrete case, filters of different frequencies are used to
analyse the signal at different scales. The signal is passed through a series of high-pass
filters to analyse the high frequencies, and it is passed through a series of low-pass filters
to analyse the low frequencies. This fast discrete transform algorithm was introduced by
Mallat [131, 133, 132] and is therefore also called the Mallat-tree decomposition or which
is usually also referred in literature as the discrete wavelet transform (DWT).

The DWT analyses the signal at different frequency bands with different resolutions by
decomposing the signal into a coarse approximation and detail information. This is realised
by applying the two functions namely the scaling and wavelet function, which are associated
with the low-pass and the high-pass filters, respectively. If the approximation (low-pass)
analysis and the synthesis filters (denoted as h̃ and h respectively) are determined, then the
wavelet (high-pass) analysis and synthesis filter are followed as g̃(n) = (−1)nh(1 − n)
and g(n) = (−1)nh̃(1 − n). A key idea of wavelets is to separate the incoming signal
into averages (smooth parts) and differences (rough parts). In Fig. 4.4 the signal is denoted
by the sequence f(x). The procedure starts with passing a signal or sequence through a
half band digital low-pass filter h̃(n). Filtering a signal corresponds to the mathematical
operation of convolution of the signal with the response of the filter. The convolution in
discrete time is defined as follows:

f(n) × h(n) =
∞∑

k=−∞
f(n) · h(n− k). (4.14)

At each level j the high-pass filter produces detail information w j while the low-pass
filter associated with the scaling function produces the coarse approximation s j . A half band
low-pass filter removes all frequencies that are higher than half of the highest frequency
in the signal. In Fig. 4.4 we actually show the decomposition into three levels of a one-
dimensional signal f(x). After the filtering, half of the samples can be eliminated according
to the Nyquist-Shannon rule [156, 198, 199]. The signal is therefore subsampled by two.
After the subsampling of the first decomposition we have obtained the detail coefficient
(denoted as wj ) and the scaling coefficients (denoted as sj with j ∈ {0, 1, ...N} where N
indicates the maximum of decompositions). The s j coefficients can be further decomposed
iteratively by applying a low-pass and high-pass filter on it. The scaling coefficients s j can
be seen as a averaged image while the detail coefficients can be seen as a difference image.

Subsampling a signal corresponds to reducing the sampling rate, or removing some of
the samples of the signal. For example, subsampling by two means dropping every other
sample of the signal. Upsampling a signal corresponds to increasing the sampling rate of
a signal by adding new samples to the signal. For example upsampling by two refers to
adding a new sample (usually a zero or an interpolated value), between every two samples
of the signal.
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Figure 4.4: A three-level one-dimensional wavelet decomposition.
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Figure 4.5: A three-level one-dimensional wavelet reconstruction level.

Fig. 4.5 shows the reconstruction of the original signal from the wavelet coefficients.
Basically, the reconstruction is the reverse process of the decomposition. The approximation
and detail coefficients at every level are upsampled by two and passed through the low-pass
h(n) and high-pass g(n) synthesis filter and then added together. This process is continued
through the same number of levels as in the decomposition process to obtain the original
signal.

The extension of the one-dimensional wavelet transform to a two-dimensional wavelet
transform for image denoising can be done in a separable or in a non-separable manner. In
a separable 2D wavelet transform, the wavelet and scaling functions at a particular scale
or level j satisfy: ψLH = ψφ, ψHL = φψ, ψHH = ψψ and φLL = φφ. Particular
applications such as texture recognition show that separable wavelet expansions have some
shortcomings. For these purposes non-separable wavelets are capable to detect sufficiently
precise structures that are not only horizontal, vertical or diagonal but arbitrarily oriented.
For more information about the non-separable wavelet transform we refer to [22, 36, 43, 47,
121, 139, 140, 145, 251].

A one-dimensional wavelet transform is applied to all image rows and columns sepa-
rately in order to realize a two-dimensional wavelet transform. The results of this transform
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are further decomposed using the one-dimensional wavelet transform in the other direction,
and so on. The two-dimensional decimated decomposition is illustrated in Fig. 4.6. This
(separate) transform is also illustrated on a real test-image shown in Fig. 4.7. Here we illus-
trate a three-level decimated decomposition of a two-dimensional noise-free image and the
same image corrupted with additive Gaussian noise with σnoise = 15.

The two-dimensional wavelet transform decomposes an image into subbands at different
resolution scales and of three possible orientations, by a specific combination of the low-
pass and high-pass filters as shown in Fig. 4.6. The detail wavelet coefficient of scale j
are denoted as wHHj , wLHj , wHLj and corresponds to the diagonal, the horizontal and the
vertical oriented image structures, respectively. The scaling coefficient s j+1 corresponds to
the approximation (low-pass) subband which roughly corresponds with the averaging. The
sj+1 coefficients can then be further decomposed into a next resolution level j + 2.

The decompositions shown in Fig. 4.4 and Figs. 4.6 - 4.7 correspond to the decimated
or stationary wavelet decomposition because of the subsampling and upsampling. This dec-
imated biorthogonal wavelet transform is certainly the most widely used wavelet transform
algorithm (JPEG2000). While the biorthogonal wavelet transform has led to a success-
ful implementation of image compression, results were far from optimal for other applica-
tions such as filtering, deconvolution, detection, or more generally, analysis of data. This
is mainly due to the loss of the translation-invariance property in the decimated wavelet
transform, leading to a large number of artefacts when an image is reconstructed after mod-
ification of its wavelet coefficients. For this reason, some physicists and astronomers prefer
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Figure 4.7: A three-level two-dimensional decimated wavelet decomposition for a noise-free bird
(upper) image and a corrupted version of it (lower image, corrupted with Gaussian noise with σnoise =
15). In the decomposed images we showed all large positive values as very bright and all large negative
values as dark.
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(a) (b) (c) (d)

Figure 4.8: A two-level two-dimensional non-decimated wavelet decomposition for a noise-free bird
image. The first row shows the first level decompositioin, while the second row corresponds to the
second level with (a) the low approximation band LL, (b) the LH-bands that represent the horizontal
oriented details, (c) the HL-bands that represent the vertical oriented details and (d) the HH bands that
represent the diagonal oriented details.

to continue working with the non-decimated wavelet transform [5], even if the price to pay
is (i) a great amount of redundancy in the transformation (i.e., there are much more pixels
in the transformed data than in the input image) and (ii) perfect reconstruction is not pos-
sible (i.e., an image cannot be reconstructed from its coefficients). For some applications
like fractal analysis, these drawbacks have no impact because there is no need to apply a
reconstruction and computers can support the redundancy. For other applications where
reconstruction is needed, some researchers have chosen an intermediate approach, which
consists of keeping the filter bank construction with fast and dyadic algorithms, but elim-
inating the subsampling (and upsampling) step in the orthogonal wavelet transform. This
approach is called the non-decimated or undecimated wavelet transform. It has been found
[207] that the reconstruction using an undecimated wavelet transform can improve the result
by more than 2.5dB (in terms of PSNR) in denoising applications.

The non-decimated wavelet transform is also illustrated on the “Bird” test-image shown
in Fig. 4.8. Here we illustrate a two-level non-decimated decomposition of a two-dimensio-
nal noise-free image. It can be seen that all wavelet bands have the same size as the input
image, so no subsampling is applied.
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4.2 Wavelet Thresholding

In general, image denoising imposes a compromise between noise reduction on the one hand
and preserving significant image details on the other hand. To achieve a good performance,
a noise reduction algorithm should adapt itself to the spatial context. The wavelet trans-
form [171] (section 4.1) significantly facilitates the construction of such spatially adaptive
algorithms, due to its energy compactification property: it compresses the essential informa-
tion into a few large coefficients which represent the image details along several resolution
scales.

Typical wavelet based denoising methods consist of three steps: (i) the computation
of the discrete wavelet transform (DWT) or a non-decimated wavelet transform, (ii) the
removal of noise from the wavelet coefficients and (iii) the reconstruction of the enhanced
image by using the inverse wavelet transformation. Due to the linearity of the wavelet
transform, additive noise in the image domain remains additive in the transform domain. If
ws,d(i, j) and ys,d(i, j) denote the noisy, respectively the noise-free wavelet coefficients of
scale s and orientation d, then we can model the additive noise in the transform domain as:

ws,d(i, j) = ys,d(i, j) + ns,d(i, j), (4.15)

where ns,d(i, j) is the corresponding noise component. In this chapter we restrict ourselves
to additive Gaussian noise.

The second step in the wavelet denoising procedure usually consists of shrinking the
wavelet coefficients: the coefficients that contain primarily noise should be reduced to neg-
ligable values, while the ones containing a significant noise-free component should be re-
duced less. A common shrinkage approach is the application of simple thresholding non-
linearities to the empirical wavelet coefficients [31, 54, 55]: if the coefficient’s magnitude
is below the threshold T it is reduced to zero, otherwise it is kept or modified. Shrinkage
estimators can also result from a Bayesian approach, in which a prior distribution of the
noise-free data (e.g., Laplacian [88], generalized Gaussian [146, 163, 203], Gaussian Scale
Mixture [170]) is integrated in the denoising scheme. The simplest Bayesian methods as-
sume statistically independent data and rely on marginal statistics only [34, 146, 203, 242].

However, algorithms that exploit the different kinds of dependencies between the wa-
velet coefficients can result in better denoising performance, compared with the ones de-
rived using an independence assumption. The wavelet coefficients are statistically depen-
dent mainly due to two properties of the wavelet transform of natural images: (1) large
coefficients propagate across the scales (interscale dependencies), and (2) if a coefficient
is large/small, some of the neighbouring coefficients are also likely to be large/small (in-
trascale dependencies).

Recently, non-Gaussian bivariate distributions capturing the interscale dependency were
proposed [40], and corresponding nonlinear shrinking functions were derived from these
distributions using Bayesian estimation theory. Interscale dependencies among the wavelet
coefficients are also often modelled with Hidden Markov Trees (HMT) [38, 172]. Related
methods [95, 130, 163] use Markov Random Field (MRF) models for capturing intrascale
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(spatial) dependencies among the wavelet coefficients. It has been proved, that it is useful to
combine the first order statistical properties of the coefficient magnitudes and their evolution
across scales within a joint statistical distribution model [163].

Many other techniques combine inter- and intrascale dependencies. For example, de-
noising methods based on Gaussian Scale Mixture models often employ the neighbouring
coefficients on the same and adjacent scales [170]. Locally adaptive window based meth-
ods [136, 162] are highly performant despite their simplicity. Local contextual HMT models
have been developed, which capture both interscale and intrascale information [62, 63].

The general idea behind wavelet thresholding is: if a certain wavelet coefficient and its
neighbouring coefficients are small enough we know that this coefficient is noisy and should
be put equal to zero. Coefficients above a certain threshold contain the most important im-
age structures and should not be reduced, but coefficients with values around the threshold
contain both noise and signals of interest. A good threshold is generally chosen so that
most coefficients below the threshold are noise and values above the threshold are signals
of interest. In such a situation it can be advantageous to use fuzzy set theory as a kind of
soft-threshold method.

In this chapter we propose a very efficient fuzzy wavelet shrinkage method [191], which
can be seen as a fuzzy variant of a recently published probabilistic shrinkage method [162]
for reducing additive Gaussian noise from digital greyscale images. The main advantages of
the new method are: (i) the complexity of the method is much lower than the probabilistic
one [162] (which results in a lower execution time), (ii) we do not lose any noise reduction
performance and (iii) by adding new fuzzy rules it should be easily extendable to incorporate
other information as well (e.g. interscale or interband information), to further improve the
noise reduction performance (future work).

In section 4.3 we discuss the proposed fuzzy shrinkage method. Experimental results
are presented in section 4.4 and section 4.5 concludes the chapter.

4.3 Fuzzy Shrinkage Method

We develop a novel fuzzy wavelet shrinkage method [191], which is a fuzzy-logic variant
of the recent ProbShrink method of [161, 162]. The method of [162] defines for each coef-
ficient ws,d(i, j) two hypotheses: H1: signal of interest present (|ys,d(i, j)| > σ) and H0:
signal of interest absent (|ys,d(i, j)| ≤ σ). The method was named “Probabilistic Shrink-
age” method (ProbShrink) because it shrinks each coefficient according to the probability
that the coefficient presents a signal of interest given its value ws,d(i, j) and given a lo-

cal spatial activity indicator xs,d(i, j) as follows: ŷs,d(i, j) = P
(
H1|ws,d(i, j), xs,d(i, j)

)
ws,d(i, j). The local spatial activity indicator was defined as the average magnitude of the
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surrounding wavelet coefficients within a local window. In our notation, we may write:

xs,d(i, j) =

( K∑
k=−K

K∑
l=−K

|ws,d(i+ k, j + l)|
)
− |ws,d(i, j)|

(2K + 1)2 − 1
, (4.16)

with K the window-size. The method of [162] proceeds by estimating the conditional
probability density functions of ws,d(i, j) and xs,d(i, j) given H1 and H0 and by using
the corresponding likelihood ratios:

ξ(ws,d(i, j)) =
P
(
ws,d(i, j)|H1

)
P
(
ws,d(i, j)|H0

)
,

(4.17)

η(xs,d(i, j)) =
P
(
xs,d(i, j)|H1

)
P
(
xs,d(i, j)|H0

)
.

The shrinkage factor is then expressed as

ŷs,d(i, j) =
γs,d(i, j)

1 + γs,d(i, j)
ws,d(i, j), (4.18)

where γs,d(i, j) = ρ · ξ
(
ws,d(i, j)

)
· η
(
xs,d(i, j)

)
is the generalized likelihood ratio with

ρ = P (H1)/P (H0).
In this chapter, we put the main idea of [162] into a fuzzy logic framework and develop

a novel “Fuzzy Shrinkage” (FuzzyShrink) method. Namely, we also express the shrinkage
factor for the wavelet coefficient ws,d(i, j) as a function of ws,d(i, j) and xs,d(i, j), but in-
stead of estimating the likelihood ratios for these measurements, we impose on them fuzzy
membership functions. Our shrinkage factor will also express how likely it is that a coef-
ficient is a signal of interest, but we shall accomplish this by using the appropriate fuzzy
norms and conorms as opposed to the Bayesian formalism and probabilities.

4.3.1 Defining membership functions and a fuzzy rule

Our reasoning in defining the fuzzy shrinkage rule is the following: if both the neigh-
bourhood around a given position (i, j) and the wavelet coefficient at this position itself
(ws,d(i, j)) contain mainly large (small) coefficients then we have enough indication that we
have a signal of interest (noise). If the wavelet coefficient ws,d(i, j) is small but the neigh-
bourhood around a given position (i, j) contains mainly large coefficients then it is wise to
give more importance to the neighbourhood instead of the wavelet coefficient w s,d(i, j) to
judge if the value is a signal of interest or not. Otherwise we would give more importance
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to one single value (that does not correspond to the neighbourhood), which of course is
less robust. In this situation (i.e., a small ws,d(i, j) but a large neighbourhood) we should
conclude that the position (i, j) is a signal of interest, despite the fact that the coefficient
is probably lower than the given threshold. This leads us to the Fuzzy Rule 4.1 introduced
below, where the variable xs,d(i, j) represents the average of the wavelet coefficients in the
(2K + 1)× (2K +1) neighbourhood around a given position (i, j). This variable indicates
if the corresponding neighbourhood contains mainly large or small wavelet coefficients.

Fuzzy Rule 4.1. The definition of the membership degrees in the fuzzy set
signal of interest of the wavelet coefficient ws,d(i, j) with scale s and orientation d:

IF
(
|xs,d(i, j)| is a large variable AND |ws,d(i, j)| is a large coefficient

)
OR |xs,d(i, j)| is a large variable

THEN ws,d(i, j) is a signal of interest

In Fuzzy Rule 4.1 we can distinguish two linguistic variables for the consequent: (i)
large wavelet coefficients |ws,d(i, j)| and (ii) large neighbourhood values |xs,d(i, j)|. Both
linguistic terms are modelled as fuzzy sets. The membership functions that are used to
represent the two fuzzy sets of (i) large wavelet coefficient |ws,d(i, j)| and (ii) large neigh-
bourhood value |xs,d(i, j)|, are denoted as μw and μx, respectively. We use triangular
membership functions shown in Fig. 4.9 (a) and (b).

From these figures we see that our method depends on three parameters. As in many im-
age processing methods it is important that each filtering method is adapted to the noise situ-
ation (noise level). Therefore we have related all these parameters to the standard deviation
of the noise. Good choices for the parameters are: T1 = σ, T2 = 2σ and T3 = 2.9σ−2.625,
with σ the standard deviation of the noise, which is estimated with the median estimator pro-
posed by Donoho and Johnstone [56]. Those threshold values were obtained experimentally
by optimising their performance on several test images with several noise levels.

The membership functions for the two fuzzy sets are shown in Fig. 4.9. These functions
can be seen as a kind of lookup-tables for the likelihood ratios of the probabilistic versions
[162].

In Fuzzy Rule 4.1 we can observe an intersection and a union of two fuzzy sets. The
intersection A ∩ B of two fuzzy sets A and B is generally specified by a binary mapping
D leading to: (A ∩B)(y) = D(A(y), B(y)). The union A ∪B of two fuzzy sets A and B
is specified by a binary mapping S leading to: (A ∪ B)(y) = S(A(y), B(y)). As already
discussed in section 1.2.2, triangular norms (roughly the equivalent of AND operations)
and triangular conorms (roughly the equivalent of OR operations) are used to represent the
intersection and the union of two fuzzy sets, respectively. Some well-known triangular
norms together with their dual triangular conorm were discussed in section 1.2.2. From all
possible triangular norms (T ∗) the minimum norm (TM ) is the largest and the weak norm
(TW ) is the smallest. From all possible triangular conorms (S ∗) the strong norm (SS) is the
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Figure 4.9: (a) The membership function LARGE VARIABLE denoted as μx for the fuzzy set large
variable and (b) The membership function LARGE COEFFICIENT denoted as μw for the fuzzy set
large coefficient.

largest and the maximum norm (SM ) is the smallest:

TW ≤ T ∗ ≤ TM ≤ SM ≤ S∗ ≤ SS . (4.19)

One could get the impression that Fuzzy Rule 4.1 is redundant, since we generally think in
terms of classical binary logic where we have that (x ∧ y) ∨ x ≡ x, with x and y binary
truth values. In fuzzy logic we have this equivalence only for the minimum triangular norm
and the maximum triangular conorm (TM , SM ). Therefore we choose a t-norm (with his
dual conorm) which is situated in between the two extremes: the product (T P ) and the
probabilistic sum (SP ). The effect of these norms in comparison with (TM , SM ) is that the
“truth” value of an expression as (x ∧ y) ∨ x can increase if y equals a value higher than
zero, i.e., (x ∧ y) ∨ x ≥ x, for {x, y} ∈]0, 1[. If for example x = y = 0.5, then we have
a truth value equal to 0.5 · 0.5 + 0.5 − 0.5 · 0.5 · 0.5 = 0.625 with the (TP , SP ), which
is higher than the truth value obtained by the (TM , SM ) (i.e., max(min(0.5, 0.5), 0.5) =
0.5). So, the antecedent (|xs,d(i, j)| is large variable AND |ws,d(i, j)| is large coefficient)
can be translated into the truth value: μx(|xs,d(i, j)|) · μw(|ws,d(i, j)|), where μx and μw
are the membership functions for the fuzzy set large variable and large coefficient,
respectively. In the next subsection we explain how to shrink the wavelet coefficients of a
noisy image.

4.3.2 Output of the Method

The shrinkage rule of the proposed method for scale s, direction d and position (i, j) is
calculated as follows:

ŷs,d(i, j) = γ
(
ws,d(i, j), xs,d(i, j)

)
· ws,d(i, j), (4.20)

with ŷs,d(i, j) the shrunk output coefficient and where γ(ws,d(i, j), xs,d(i, j)) is the de-
gree of activation of Fuzzy Rule 4.1 for the wavelet coefficient w s,d(i, j). This value indi-
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cates the membership degree in the fuzzy set signal of interest for the wavelet coefficient
ws,d(i, j). A membership degree value of 1 means that the corresponding coefficient is a
signal of interest (and should not be changed), while a degree zero indicates that the coeffi-
cient is certainly not a signal of interest (and should be set equal to zero). A value between
zero and one indicates that we do not know quite sure if this coefficient is a signal of interest
or not. This means that the coefficient is a signal of interest only to a certain degree. The
calculation of the value γ(ws,d(i, j), xs,d(i, j)) is computed as follows:

γ
(
ws,d(i, j), xs,d(i, j)

)
= α+ μx(|xs,d(i, j)|)− α · μx(|xs,d(i, j)|)

(4.21)

with α = μx(|xs,d(i, j)|) · μw(|ws,d(i, j)|)
Actually, the parameter α can be seen as the fuzzy counterpart of the generalized likelihood
ratio used in the probabilistic version [162]. One can see that the product and probabilistic
sum are used for the triangular norm and conorm, respectively.

4.4 Experiments

In this section we present some experimental results. For an extensive comparative study
[148, 149, 150, 152] we refer to chapter 7. Here we compare our new fuzzy wavelet based
shrinkage method with (i) other well-known fuzzy filters and (ii) recently developed wavelet
based methods. More precisely we have:

• FUZZY: the GOA filter [151, 227, 228], FRINR [189] (fuzzy random valued impulse
noise reduction method), HAF [245] (histogram adaptive fuzzy filter), EIFCF [65]
(extended iterative fuzzy control based filter), SFCF [66, 65, 69] (smoothing fuzzy
control based filter), DWMAV [112, 111] (decreasing weight fuzzy filter with mov-
ing average centre), GMAV [112, 111] (Gaussian fuzzy filter with moving average
centre), AFSF [252] (the adaptive fuzzy switching filter), FSB [219] (fuzzy similarity
based filter) and AWFM [110, 115] (adaptive weighted fuzzy mean filter).

• WAVELET: the bivariate wavelet shrinkage function proposed by Şendur [39], the
feature based wavelet shrinkage method proposed by Balster [16] and the probabilis-
tic shrinkage function proposed by Pižurica [162].

We used a redundant wavelet transform with the Haar wavelet, four resolution scales and a
neighbourhood of size 9 × 9 (K = 4) for both the probabilistic version and the proposed
one. As a measure of objective dissimilarity between a filtered image F and the original
noise-free one O, we use the peak signal to noise ratio (PSNR) from expression (1.18) in
section 1.3.

In order to get a clear idea of the performance of all mentioned methods we carried out
experiments for three well-known test images: “Lena”, “Peppers” and “Barbara”, each of
size 512 × 512. The numerical results for the corrupted versions (for σ = 5, 20, 30 and 40)
are shown in Table 4.1. From this table we can make the following conclusions:
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• The wavelet based methods perform generally better than the state-of-the-art fuzzy
non-wavelet based methods for the additive noise type. Wavelet based methods re-
duce the noise quite well for both low and high σ values, while the fuzzy based
methods only perform well for higher noise levels.

• The only fuzzy based method that obtains comparable results to the wavelet ones
is the GOA filter. This filter even results in the best PSNR value for the “Peppers”
image corrupted with σ = 30 and 40 additive Gaussian noise. But the GOA filter
is developed only for a specific group of images like the “Lena” and the “Peppers”
image. If an image contains regions with lots of fine details, texture or contours (like
grass, hair etc.) then the GOA filter destroys such structures, which is confirmed by
the low PSNR values for the “Barbara” image.

• Generally, the best numerical results were obtained by the proposed and the prob-
abilistic shrinkage method. The proposed fuzzy shrinkage method performs very
similar to the probabilistic one.

The visual performance of the best numerical filters can be seen in Fig. 4.10 where
we show the denoised versions of the “Barbara” image corrupted with σ = 40 additive
Gaussian noise. It is shown that the proposed and the probabilistic shrinkage method do not
only yield the highest PSNR values (Table 4.1), but also the best visual results. The other
wavelet based methods reduce the noise well but introduce typical wavelet compression
artefacts. From Fig. 4.10 (f) we see that the GOA filter destroys more image structures than
the wavelet based method, which results in a blurrier image. We can also conclude that the
other state-of-the-art fuzzy based methods are not able to obtain such good visual results as
the wavelet based methods.

Previous experiments have clearly confirmed that the proposed method performs at least
as well as the probabilistic method of [162]. In this paragraph we will illustrate that the pro-
posed method, which can be viewed at http://www.fuzzy.ugent.be/FuzzyShrink.html, has a
lower complexity than the probabilistic version. The proposed FuzzyShrink method is im-
plemented in a very similar way as the ProbShrink method, which can be downloaded at the
website: http://telin.ugent.be/∼sanja/Sanja files/Software/ProbShrink.zip.

In Table 4.2 we compare the execution times of the two methods for the noise reduction
of one wavelet band of size 512 × 512. The comparison is done by implementing both
methods in the same programming language namely Java (not Matlab because Matlab is an
interpreted language, which uses many precompiled C-files so that the comparison would
not be correct). The main difference between both methods is that the probabilistic method
has to estimate the (image dependent) distributions first before the filtering can be started
while the fuzzy shrinkage method can be applied directly. This fuzzy shrinkage method
uses membership functions shown in Fig. 4.9 that work as a kind of lookup-tables for the
likelihood ratios of the probabilistic versions [162]. This explains why the proposed method
is less complex. The execution time for the distribution estimation of [162] does not depend
on the used neighbourhood size. Even if we observe the execution time of the denoising
methods only we see that the fuzzy shrinkage method is faster. This small difference is
analysed in Table 4.3, where we compared the number of operations that have to be carried
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Table 4.1: PSNR results for the (512×512-) “Lena”, “Peppers” and “Barbara” image corrupted with
additive Gaussian noise with σ = 5, 20, 30 and 40 and several fuzzy and wavelet based denoising
methods.

Lena Peppers Barbara
σ 5 20 30 40 5 20 30 40 5 20 30 40

Noise 34.2 22.1 18.6 16.1 34.2 22.1 18.6 16.1 34.2 22.1 18.6 16.1
New 38.2 32.4 30.5 29.2 37.1 32.0 30.5 29.3 37.2 29.7 27.5 25.9

ProbShrink 38.3 32.3 30.4 29.2 37.1 32.0 30.5 29.3 37.2 29.4 27.1 25.5
BiShrink 37.4 31.2 29.3 28.1 35.7 31.0 29.3 28.1 36.2 28.2 26.1 24.8
Balster 37.2 31.5 29.8 28.5 34.4 31.7 30.1 28.9 35.8 27.6 25.3 24.0
GOA 36.4 31.2 29.5 28.3 35.6 31.7 30.0 28.6 33.9 25.8 24.2 23.5

FRINR 34.9 26.2 23.8 21.3 34.3 25.4 22.2 20.4 34.2 23.7 21.4 20.2
HAF 33.7 29.5 26.9 24.8 33.1 28.8 26.2 24.0 25.3 24.4 23.3 21.1

EIFCF 33.6 29.3 27.2 25.5 33.8 29.5 27.3 25.6 25.5 24.6 23.7 22.8
SFCF 33.1 29.4 26.2 23.5 33.1 29.4 26.3 23.6 25.8 24.8 23.3 21.6

DWMAV 33.2 29.6 27.2 25.2 32.9 29.4 27.1 25.1 25.2 24.4 23.5 22.6
AFSF 34.5 27.6 25.0 23.0 34.4 27.6 24.9 22.9 26.0 23.9 22.5 21.2
FSB 33.8 28.8 25.5 23.1 33.7 28.9 25.7 23.3 25.2 23.9 22.6 21.2

AWFM 34.3 29.2 26.1 22.1 34.2 29.4 25.2 23.0 26.1 24.5 22.9 22.9

Table 4.2: Comparison between the proposed fuzzy shrinkage method (FuzzyShrink) and the proba-
bilistic shrinkage method (ProbShrink) in terms of the execution time (ms) for the denoising method
of a noisy wavelet band of size (512 × 512).

Execution time in ms
K = 1 K = 2 K = 3 K = 4

FuzzyShrink Total 58.5 108.0 179.3 273.5

ProbShrink Denoising 63.4 110.6 195.8 282.0
Distribution estimation 179.9 180.0 180.3 180.3

Total 243.3 290.6 376.1 462.3
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.10: The restoration of a magnified part of the “Barbara” image corrupted with additive Gaus-
sian noise (σ = 40): (a) the noise-free part (b) the noisy part (c) the proposed filter, (d) ProbShrink,
(e) BiShrink, (f) GOA, (g) EIFCF (h), HAF, (i) DMWAV.

out to perform the denoising method for one wavelet band only. We observe that the number
of logical operations is very similar. But if we know that memory operations cause more
time to be done than all other operations we see why the probabilistic method is slower.

In Fig. 4.11 we illustrate the mean execution time of both methods (for a neighbourhood
size of 5 × 5 and 9 × 9 (i.e., K = 2 and K = 4, respectively)) and the fuzzy non-wavelet
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Table 4.3: Comparison between the proposed fuzzy shrinkage method (FuzzyShrink) and the proba-
bilistic shrinkage method (ProbShrink) in terms of the number of operations necessary for the denois-
ing methods for a noisy wavelet band of size (N ×M) with η = M · N (exclusive the number of
operations necessary to calculate the distribution estimation).

Execution time in ms
+ - / * memory

FuzzyShrink (4 + (2K + 1)2)η 6η 3η 4η ((2K + 1)2)η
ProbShrink (5 + (2K + 1)2)η η 2η 5η ((2K + 1)2 + 3)η
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Figure 4.11: Comparison of the mean execution time for the ProbShrink method of [162], the GOA
filter of [227] and the proposed FuzzyShrink method with a windowsize K = 4 and a windowsize
K = 2.

based GOA filter [227]. We observe that the non-wavelet based method GOA performs
much faster than the two wavelet based algorithms. The main two reasons for this difference
are (i) in wavelet based methods, the images have to be transformed into the wavelet domain
and (ii) for both methods we used a redundant wavelet transformation, so that the number
of data becomes larger. The second observation that can be made from Fig. 4.11 is that
the proposed method is significantly faster than the probabilistic shrinkage method, which
confirms that the proposed method is less complex than the probabilistic one.
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4.5 Conclusion

In this chapter an alternative wavelet based soft-computing method [191] for the recently
published probabilistic shrinkage method of Pižurica [162] for the reduction of additive
Gaussian noise in digital images was proposed. Experimental results show that the pro-
posed method obtains the same noise reduction performance as the probabilistic one, which
outperforms the current fuzzy based algorithms and some recently published wavelet based
methods. We illustrated that the proposed method clearly reduces the complexity of the
probabilistic shrinkage method in terms of execution time. An additional advantage of the
method is the possibility to incorporate more information (e.g. interscale and/or colour in-
formation) by adding other fuzzy rules to improve the noise reduction performance. Future
work should be done on this promising issue in order to improve noise reduction perfor-
mance.



Chapter 5

Additive White Gaussian Noise in
Colour Images

In this chapter we present a new fuzzy filter (the fuzzy colour preserving Gaussian noise
reduction method (FCG)) for the reduction of additive noise in digital colour images [188].
The filter consists of two sub-filters. The first sub-filter computes fuzzy distances between
the colour components of the central pixel and the colour components of the pixels in its
neighbourhood. These distances determine in which degree each component should be cor-
rected. All performed corrections preserve the colour component distances. The goal of
the second sub-filter is to correct the pixels where the colour components differences are
corrupted so much that they appear as outliers in comparison to their environment. Experi-
mental results show the feasibility of the proposed approach. We compare with other noise
reduction methods by numerical measures and visual observations. We also illustrate the
performance of the proposed method as pre-processing step for edge detection.

5.1 Introduction

As already mentioned in chapter 3, in the last years the area of vector filters (multichan-
nel, multispectral, multicomponent) signal processing has dramatically increased [52, 86,
124, 165, 167, 183, 200, 201, 220, 233, 241]. Numerous filtering techniques are based on
multivariate order statistics [8, 17, 160, 216], which were developed to improve the compo-
nentwise filtering techniques, i.e., the pixel value rearranging and chromatic shifting. The
fact that different types of noise contaminated colour images in distinct ways poses a major
challenge for the vector filtering techniques [15, 127, 167]. Most of the vector filters were
specially designed to remove impulse noise (see chapter 3). Some adaptive vector filters,
such as the adaptive nearest-neighbour colour filter (ANNF) [168], the adaptive vector di-
rectional filter [166] and the multichannel filter proposed in [122] yield output by a robust
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weighting estimation based on all image vectors in the filter window. They are designed
to cope with additive and mixed noise corruption, but at the cost of possible image edges
and details smearing. Some fuzzy vector filtering techniques [92, 223] have tried to com-
bine different types of standard vector filters together by a large number of fuzzy rules. In
addition to the drawback mentioned in chapter 3, all these vector based approaches do not
obtain the same noise suppression as the more complex wavelet based methods for the addi-
tive Gaussian noise case. Most componentwise wavelet based methods clearly outperform
the vector based approaches.

In Fig. 5.1 we illustrate the noise reduction performance of the Fuzzy Shrinkage (wavelet
based) method proposed in chapter 4 and the GOA (fuzzy based) filter proposed in [151,
227, 228]. We observe the main problem that occurs when we apply greyscale techniques
on each colour channel separately, i.e., colour artefacts appear especially on edges and fine
texture elements. In this chapter we will discuss a very simple alternative noise reduction
method for colour images. We will illustrate that colour images have to be processed in
a different way. The proposed method can be combined with existing methods in order to
obtain an efficient noise reduction method that also preserves the colour information. In Fig.
5.1 (e) and (f) we illustrate the improvement that can be achieved by applying the method
discussed in this chapter as an colour preserving method.

The rest of this chapter is organized as follows: in section 5.2 we describe the construc-
tion of the first sub-filter, followed by the explanation of the second sub-filter in section 5.3.
Experimental results and conclusions are presented in sections 5.4 and 5.5.

5.2 First Fuzzy Sub-filter

The general idea is to average a pixel using other pixel values from its neighbourhood, but
simultaneously take into account the important image structures such as edges and colour
component distances, which should not be destroyed by the filter. The main concern of the
first sub-filter is to distinguish between local variations due to noise and local variations due
to image structures such as edges. This is realised by using the colour component distances
instead of component differences as done by most current filters. For example: to filter a
certain red component at position (i, j) we use the distances between red-green and red-
blue components of a certain neighbourhood centred at (i, j) instead of using only the red
component values of that neighbourhood. The difference between this new proposed filter
[188] and other vector based approaches as [86, 165, 240, 241] is that we do not calculate
the distances between pixels considered as three-dimensional vectors (distances between
two pixels where a pixel is considered as a vector), but we use three distances between two-
dimensional vectors (distances between red-green, red-blue and green-blue) together with
three fuzzy rules to calculate the weights used for the Takagi-Sugeno fuzzy model [215]
(section 1.2.4) as explained in the next subsection.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: The restoration of a noisy coloured “Boats” image with (a) the noise-free part, (b) the
same part contaminated with additive Gaussian noise with σ = 20, (c) the Fuzzy Shrinkage method,
(d) the GOA method, (e) an improvement of the Fuzzy Shrinkage method and (f) an improvement of
the GOA method.
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5.2.1 Fuzzy distances

The red, green and blue component at a certain pixel position of a noisy normalized input
image N ′ is denoted as N ′

R(i, j), N ′
G(i, j) and N ′

B(i, j), respectively. So for each pixel
position we have three components that define the colour. For each pixel position (i, j)
we define the following couples: the couple red-green denoted as rg(i, j) = (N ′

R(i, j),
N ′
G(i, j)) the couple red-blue denoted as rb(i, j) = (N ′

R(i, j), N ′
B(i, j)) and the couple

green-blue denoted as gb(i, j) = (N ′
G(i, j), N ′

B(i, j)). To filter the current image pixel
at position (i, j) we use a window of size (2K + 1) × (2K + 1) centred at (i, j). Next
we assign to each of the pixels in the window certain weights, namely: with parameters
k, l ∈ {−K, ...,K} we have wR(i + k, j + l), wG(i + k, j + l) and wB(i + k, j + l) for
the red, green and blue component at position (i+ k, j+ l), respectively. These weights are
assigned according to the following fuzzy rules, where a Takagi-Sugeno fuzzy model [215]
was used:

Fuzzy Rule 5.1. The first fuzzy rule defines the weightwR(i+k, j+l) for the red component
of the neighbourN ′

R(i+ k, j + l), i.e.:

IF the distance between the couple rg(i, j) and rg(i+ k, j + l) is small

AND the distance between the couple rb(i, j) and rb(i+ k, j + l) is small

THEN the weight wR(i+ k, j + l) is large

Fuzzy Rule 5.2. The second fuzzy rule defines the weight wG(i + k, j + l) for the green
component of the neighbourN ′

G(i+ k, j + l), i.e.:

IF the distance between the couple rg(i, j) and rg(i+ k, j + l) is small

AND the distance between the couple gb(i, j) and gb(i+ k, j + l) is small

THEN the weight wG(i+ k, j + l) is large

Fuzzy Rule 5.3. The third fuzzy rule defines the weight wB(i + k, j + l) for the blue
component of the neighbourN ′

B(i+ k, j + l), i.e.:

IF the distance between the couple rb(i, j) and rb(i+ k, j + l) is small

AND the distance between the couple gb(i, j) and gb(i+ k, j + l) is small

THEN the weight wB(i+ k, j + l) is large

The idea behind these simple fuzzy rules is to assign large weights to the neighbours which
have colours that are similar to the centre. For colour images it is important to treat pixels
as colours and not as three separate colour components. When only the separate colour
components are considered, more artefacts are introduced, especially on the details of ob-
jects. “Similar” is expressed in terms of the distances from Fuzzy Rules 5.1-5.3 in order to
incorporate the colour component distances information.
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0

1

distance

Membership degree

p

Fuzzy set small

Figure 5.2: A membership function SMALL denoted as μS and given by expression (5.2).

The distance between two couples is calculated according to the Minkowski’s distances.
This is illustrated in expression (5.1) for the red - green couple.

D
(
rg(i, j), rg(i+ k, j + l)

)
=

[(
N ′
R(i+ k, j + l)−N ′

R(i, j)
)δ

(5.1)

+
(
N ′
G(i+ k, j + l)−N ′

G(i, j)
)δ]1

δ .

Generally we use the Euclidean distance where δ = 2. Nevertheless, it is possible to use
other δ’s too (e.g., δ = 1 the Hamming distance).

To compute the value that expresses the degree to which the distance of two couples is
small, we make use of the fuzzy set small. A membership function SMALL, denoted as μ S ,
is used to represent this fuzzy set and is shown in Fig. 5.2. An alternative definition for the
membership function SMALL is given by expression (5.2).

μS(x) =

⎧⎪⎨
⎪⎩

(p− x
p

)2

, if x ≤ p

0 , if x > p

(5.2)

with p ∈]0,
√

2] for the normalized input image N ′.
We not only define one fuzzy set small but three such fuzzy sets, one for each couple

(red-green, red-blue and green-blue). All these fuzzy sets depend on a parameter p as seen
in expression (5.2) and Fig. 5.2. These parameters, which are denoted as p rg, prb and pgb,
are determined adaptively as follows:

prg(i, j) = max
k,l∈Ω

(γrg(i, j, k, l)),

prb(i, j) = max
k,l∈Ω

(γrb(i, j, k, l)), (5.3)
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pgb(i, j) = max
k,l∈Ω

(γgb(i, j, k, l)),

where Ω defines the (2K+1)×(2K+1) neighbourhood around the central pixel, i.e., k, l ∈
{−K,−K+1, ..., 0, ...,K− 1,K} and where γrg(i, j, k, l), γrb(i, j, k, l) and γgb(i, j, k, l)
were used as simplified notation for the following distances:

γrg(i, j, k, l) = D
(
rg(i, j), rg(i+ k, j + l)

)
,

γrb(i, j, k, l) = D
(
rb(i, j), rb(i+ k, j + l)

)
, (5.4)

γgb(i, j, k, l) = D
(
gb(i, j), gb(i+ k, j + l)

)
.

So the parameters prg(i, j), prb(i, j) and pgb(i, j) are equal to the maximal distance be-
tween the red-green, red-blue and green-blue components in a (2K + 1)× (2K+ 1) neigh-
bourhood around the central pixel (i, j). γrg , γrb and γgb of expression (5.4) are used to
calculate the weights as introduced by Fuzzy Rules 5.1- 5.3. These rules use the intersec-
tion of two fuzzy sets, modelled here by the algebraic product t−norm. This means for
instance that the fuzzification of the antecedent of Fuzzy Rule 5.1 is μS1(γrg(i, j, k, l))
· μS2(γrb(i, j, k, l)), where μS1 and μS2 are equal to the membership function SMALL
shown in expression (5.2) with parameter prg(i, j) and prb(i, j), respectively. The ob-
tained value (μS1(γrg(i, j, k, l)) · μS2(γrb(i, j, k, l))) is called the activation degree of
the fuzzy rule and is used to obtain the corresponding weight, i.e., wR(i + k, j + l) =
μS1(γrg(i, j, k, l)) · μS2(γrb(i, j, k, l)).

5.2.2 Output of the first fuzzy sub-filter

So the weights wR(i, j), wG(i, j) and wB(i, j) are calculated as follows:

wR(i+ k, j + l) = μS1

(
γrg(i, j, k, l)

)
· μS2

(
γrb(i, j, k, l)

)
,

wG(i+ k, j + l) = μS1

(
γrg(i, j, k, l)

)
· μS3

(
γgb(i, j, k, l)

)
,

wB(i+ k, j + l) = μS2

(
γrb(i, j, k, l)

)
· μS3

(
γgb(i, j, k, l)

)
,

where μS1, μS2 and μS3 are equal to the membership function SMALL shown in expression
(5.2) with parameter prg(i, j), prb(i, j) and pgb(i, j), respectively.

The output of the first sub-filter can finally be illustrated for the red component, where
the output image is denoted as F , i.e.:

FR(i, j) =

+K∑
k=−K

+K∑
l=−K

wR(i+ k, j + l) ·NR(i+ k, j + l)

+K∑
k=−K

+K∑
l=−K

wR(i+ k, j + l)

. (5.5)
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The filtering method for the green and blue component is analogous to the red one.

5.3 Second Fuzzy Sub-filter

The second sub-filter is used as a complementary filter to the first one. The goal of this
sub-filter is to improve the first method by reducing the noise in the colour components
differences without destroying the fine details of the image. This is realised by calculating
the local differences in the red, green and blue environment separately. These differences
are then combined to calculate the local estimation of the central pixel.

5.3.1 Details of the second method

Similar as in the first method we use a window of size (2L+ 1)× (2L+ 1) (where L is not
necessary equal to the parameter K of the first sub-filter (section 5.2)) centred at (i, j) to
filter the current image pixel at position (i, j). Next we calculate the local differences (also
called gradients or derivatives) for each element of the window denoted as LDR, LDG

and LDB for the red, green and blue environment, respectively. If the output image of the
previous sub-filter is denoted as F , then the differences are calculated as follows:

LDR(k, l) = FR(i+ k, j + l) − FR(i, j),
LDG(k, l) = FG(i+ k, j + l) − FG(i, j), (5.6)

LDB(k, l) = FB(i+ k, j + l) − FB(i, j),

for all k, l ∈ {−L, ..., 0, ...,+L}. The calculation of these differences is illustrated in Fig.
5.3. These differences are finally combined to calculate the following correction terms:

ε(k, l) =
1
3

(
LDR(k, l) + LDG(k, l) + LDB(k, l)

)
, (5.7)

i.e., we calculate the average of the difference for the red, green and blue component at the
same position.

5.3.2 Output of the second subfilter

Finally the output of the second subfilter, denoted as Out, is determined as follows:

OutR(i, j) =

+L∑
k=−L

+L∑
l=−L

(
FR(i+ k, j + l) + ε(k, l)

)
(2L+ 1)2

,

OutG(i, j) =

+L∑
k=−L

+L∑
l=−L

(
FG(i+ k, j + l) + ε(k, l)

)
(2L+ 1)2

, (5.8)
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Figure 5.3: An illustrating scheme of the calculation of the correction terms ε(k, l) for a 3×3 window
(L = 1), denoted as WR, WG and WB for the red, green and blue neighbourhood respectively.

OutB(i, j) =

+L∑
k=−L

+L∑
l=−L

(
FB(i+ k, j + l) + ε(k, l)

)
(2L+ 1)2

,

with OutR(i, j), OutG(i, j) and OutB(i, j) the red, green and blue component of the out-
put image and where ε(k, l) is the correction term for the neighbouring pixelFR(i+k, j+l),
FG(i+ k, j + l) and FB(i+ k, j + l).

5.4 Simulation Results

The performance of the discussed filter has been evaluated and compared with several other
existing filters dealing with additive noise. An extensive comparative study is given in
chapter 7, while this section compares the proposed method [188] only with the following
ones:
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• Fuzzy filters based on the median filter: the FMF [6, 7] (fuzzy median filter), the
TMED [112, 111] (symmetrical triangle fuzzy filter with median centre), the ATMED
[112, 111] (asymmetrical triangle fuzzy filter with median centre) and the GMED
[112, 111] (Gaussian fuzzy filter with median centre).

• Fuzzy filters based on the average filter: TMAV [112, 111] (symmetrical triangle
fuzzy filter with average centre), ATMAV [112, 111] (asymmetrical triangle fuzzy
filter with moving average centre), GMAV [112, 111] (Gaussian fuzzy filter with
moving average centre) and DWMAV [112, 111] (decreasing weight fuzzy filter with
moving average centre).

• The fuzzy control based filters. These filters correct a certain central pixel value
according to some features of some luminance (pixel values) differences between the
central pixel value and some neighbour pixel values. In the literature we meet: the
IFCF [65, 69] (iterative fuzzy control based filter), the MIFCF [65, 69] (modified
IFCF), the EIFCF [65, 69] (extended IFCF) and the SFCF [66, 65] (smoothing fuzzy
control based filter).

• The fuzzy similarity filter [98, 218, 219] (FSB), where the local similarity between
some patterns is used.

• The GOA filter [151, 227, 228], which uses fuzzy derivative estimations to distinguish
between local variations due to noise and due to image structures.

• The fuzzy random valued impulse noise reduction method [189] (FRINR), which is
mainly developed to reduce a mixture of impulse noise and additive or multiplicative
noise.

• FBF: The fuzzy bilateral filtering proposed in [142] is a fuzzy extension of the well-
known technique proposed in [220]. The main advantage of this method is that edges
and image details are preserved by means of an appropriate nonlinear combination of
the colour vectors in a neighbourhood. The pixel colours are combined based on their
spatial closeness and photometric similarity.

• TLS: the total least square filtering method for reducing additive noise from digital
images was proposed in [90, 91]. This method was developed to reduce the contri-
bution from the irrelevant image patches, which sharps the edges and reduces edge
artefacts at the same time.

• HMT: the hidden Markov tree method proposed in [172, 173]. This statistical signal
and image processing technique captures the key features of the joint probability den-
sity of the wavelet coefficients, i.e., Hidden Markov trees capture the primary aspects
of the image structures in the wavelet domain. The HMT method of [172, 173] uses
a Bayesian approach, so that they were able to incorporate the knowledge of image
structures into a “smart” wavelet shrinkage rule that takes into account coarse scale
information while processing fine scale wavelet coefficients.

• 3D-DFT: the recently developed denoising method in the 3D transform domain com-
bines a sliding-window transform with block-matching proposed in [42]. This method
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process blocks within an image in a sliding manner and utilize the block-matching
concept by searching for blocks that are similar to the currently processed one. The
matched blocks are stacked together to form a 3D array and due to the similarity
between them, the data in the array exhibit a high level of correlation. The method
exploit this correlation by applying a 3D de-correlating unitary transform and effec-
tively attenuate the noise by shrinkage of the transform coefficients. The subsequent
inverse 3D transform yields estimates of all matched blocks. After repeating this pro-
cedure for all image blocks in sliding manner, the final estimate is computed as the
weighed average of all overlapping block estimates.

• BLS-GSM, which stands for “Bayesian Least Squares - Gaussian Scale Mixture” was
proposed in [169, 170]. This method is based on a statistical model of the wavelet
coefficients of an over-complete multi-scale oriented basis. Neighbourhoods of co-
efficients at adjacent positions and scales are modelled as the product of two inde-
pendent random variables: a Gaussian vector and a hidden positive scalar multiplier.
The latter modulates the local variance of the coefficients in the neighbourhood and is
thus able to account for the empirically observed correlation between the coefficients
amplitudes. Under this model, the Bayesian least squares estimate of each coefficient
reduces to a weighted average of the local linear estimate over all possible values of
the hidden multiplier variable.

• BiShrink: the bivariate shrinkage denoising method proposed in [40, 41]. This wavelet
based shrinkage method considers the dependencies between the coefficients and
their parents in detail. For this purpose, non-Gaussian bivariate distributions were
proposed, and corresponding nonlinear shrinkage functions were derived from the
models using Bayesian estimation theory.

• ProbShrink: the recently developed probabilistic shrinkage method proposed in [162].
This method estimates the probability that a given coefficient contains a significant
noise-free component. All the probabilities are estimated assuming a generalized
Laplacian prior for noise-free sub-band data and additive Gaussian noise. As for
most of the other methods we have applied the greyscale method on each colour
component.

• Lucchese: the chromatic filtering scheme proposed in [124] for digital colour images.
The chromatic content of a colour image is encoded in the CIE u ′v′ chromaticity co-
ordinates whereas the achromatic content is encoded as the CIE Y tri-stimulus value.
The major characteristics of this filter are: (i) the elimination of colour smearing
effects along edges between bright and dark areas (ii) the possibility of processing
chromatic components in a non-iterative fashion through linear convolution opera-
tions and (iii) the consequent amenability to computationally efficient implementa-
tions with fast Fourier transform.

• NLCDM: the nonlinear complex diffusion method proposed in [82] tries to unify
smoothing and enhancement to obtain a denoised image. They generalized the linear
and nonlinear scale spaces in the complex domain, by combining the diffusion equa-
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(a) (b) (c)

(d) (e)

Figure 5.4: The five test images: (a) a (512 × 512) coloured “Texture” image, (b) a (512 × 512)
coloured “Aerial” image, (c) the coloured (900 × 600) “Bird” image, (d) the (512 × 512) coloured
“Baboon” image and (e) the (512 × 512) coloured “Lena” image.

tion with the simplified Schrödinger equation. The analysis of the complex diffusion
showed that the generalized diffusion had properties of both forward and inverse dif-
fusion. One important observation was that the imaginary part could be regarded as
an edge detector after rescaling by time, when the complex diffusion coefficient ap-
proaches the real axis. Based on this observation, the authors developed this nonlinear
complex method for ramp preserving denoising.

In this section we used the following five coloured test images: a “Texture”, an “Aerial”
and the “Lena” and the “Baboon” (Mandrill) image of size 512× 512 and the “Bird” image
of size 900× 600. Those test images are shown in Fig. 5.4.
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From experimental results we found that our method obtains the best numerical and
visual performance with a window-size (K,L) = (1, 1) (i.e., a 3 × 3 neighbourhood for
both methods) for low level of additive noise and (K,L) = (2, 1) for higher level of additive
noise (i.e., a 5 × 5 neighbourhood for the first and a 3 × 3 neighbourhood for the second
method). Fig. 5.5 illustrates the resulting PSNR values for different window-sizes for the
“Lena” and “Baboon” image which were corrupted with different levels of additive noise.
We observe that we can improve the filtering capability by using a larger window-size only
for a very high level of noise and therefore we have chosen a window-size of (K,L) =
(2, 1).

Numerical results that illustrate the denoising capability of the new method and some of
the state-of-the-art methods are pictured in Table 5.1 and Table 5.2. The first table shows the
peak signal to noise ratios for the “Lena” image, the “Bird” image and the “Aerial” image
that were corrupted with Gaussian noise for σ = 5, 20 and 30. Table 5.2 shows the peak
signal to noise ratios for the “Baboon” image that was corrupted with Gaussian noise for
σ = 5, 10, 20, 30 and 40 and for the “Texture” image corrupted with Gaussian noise for
σ = 5, 20 and 30. The PSNR value of the noisy image and the best performing filter were
shown in bold. From these tables we can make the following conclusions:

• The fuzzy control based filters, the similarity based filter, the mean based filters and
the median based filters tend to make the images blurrier so that fine details are
smoothed away and edges become less sharp. The reason is that these filters try
to reduce the noise by using an average or median based system which causes the
noise to be smoothed away.

• One of the best numerical and visual results (see below) is obtained by the 3D-DFT
method.

• The numerical results generally illustrate that the wavelet based methods obtain a
better noise reduction than most of the fuzzy based method.

• The proposed method performs relatively well for the five test-images in comparison
to some filters which were developed for one particular group of images like the GOA
or the FRINR. The filtering performance of the proposed method is clearly better
than the fuzzy control based filters, the similarity based filter and the median based
filters. Moreover, we see that the proposed fuzzy based method can really compete
against the more complicated wavelet based methods so that we can conclude that this
filter can be applied to all kinds of colour images corrupted with additive Gaussian
noise. In cases where the proposed method does not obtain the best PSNR value
(especially for the “Lena” images) we can observe that this new method is always
the second best or one of the best methods. The main advantage of this filter is
that noise is suppressed very well while fine details and edges do not lose much
sharpness. Additionally the visual results illustrate that the proposed method restores
the original colour components differences much better than other methods. This
method can also be used as an additional filter for some wavelet based methods. This
is illustrated by the last line of these tables where we applied our proposed method
after the probabilistic shrinkage method.
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Figure 5.5: The analysis of the optimal image size for two test-images (a) the “Lena” and (b) the
“Baboon” image.
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Table 5.1: Comparative results in PSNR of different filtering methods for various distortions of Gaus-
sian noise for the (512×512) coloured “Lena”, (900×600) “Bird” and (512×512) coloured “Aerial”
image Fig. 5.4.

PSNR (dB)
Lena Bird Aerial

σ 5 20 30 5 20 30 5 20 30
Noise 34.16 22.31 18.92 34.17 22.32 18.93 34.10 22.11 18.59

Median 34.67 28.63 25.77 37.96 29.43 26.23 26.91 24.95 23.43
FMF 36.65 28.04 24.85 37.94 28.57 25.18 34.79 26.08 23.87
Mean 33.83 29.82 27.30 37.93 31.04 27.96 26.46 25.39 24.37

ATMED 34.36 29.30 26.62 38.00 30.30 27.15 26.80 25.25 24.41
ATMAV 33.84 29.44 26.81 37.81 30.61 27.42 26.51 25.31 24.43
GMED 34.31 28.55 25.88 37.17 29.40 26.34 26.74 24.79 24.25
GMAV 34.09 29.55 26.92 38.04 30.58 27.47 26.53 25.37 24.52
TMAV 34.77 29.31 26.57 38.36 30.23 27.07 27.01 25.33 24.46
TMED 34.45 28.33 25.49 37.42 29.07 25.90 26.87 24.82 23.86

DWMAV 33.83 29.82 27.31 37.93 30.94 27.96 26.46 25.39 24.60
FSB 34.33 29.04 25.77 37.96 29.96 26.16 26.70 24.97 24.27
IFCF 33.97 29.47 27.23 37.08 30.22 27.70 27.19 25.55 24.37

MIFCF 34.48 29.28 26.70 37.44 29.79 27.00 27.60 25.75 24.31
EIFCF 33.90 29.43 27.23 37.08 30.18 27.71 27.19 25.45 24.38
SFCF 33.62 29.57 26.45 37.16 30.54 26.87 26.42 25.61 23.97
FBF 36.57 29.83 27.16 34.56 25.75 23.91 34.76 26.57 24.23

FRINR 37.44 28.27 25.34 37.98 28.90 25.51 34.15 23.36 20.76
GOA 36.91 31.21 29.43 34.35 31.23 29.74 27.50 23.97 23.49

Proposed 37.15 30.55 28.92 37.83 31.91 30.07 32.26 27.52 25.68
HMT 37.77 30.71 28.53 28.53 32.13 29.63 31.93 26.29 24.83
TLS 39.26 32.21 30.41 40.78 33.33 30.93 30.82 26.35 25.08

BLS-GSM 33.24 32.56 30.58 36.31 34.32 30.95 26.20 26.13 25.43
BiShrink 39.29 32.49 30.44 41.19 34.09 31.71 30.83 26.47 25.13

ProbShrink 39.38 32.47 30.39 41.33 34.13 31.97 29.69 26.21 24.83
Lucchese 32.15 30.34 25.62 34.11 32.11 27.51 26.16 25.61 23.08
NLCDM 36.00 28.52 27.72 39.10 30.37 29.98 27.65 25.42 23.55
3D-DFT 39.75 32.94 30.97 41.20 34.29 32.03 34.84 26.01 24.17

Prob+New 40.07 33.26 31.59 42.07 34.65 32.35 30.26 26.23 25.05

Fig. 5.6 and Fig. 5.7 confirm these numerical results visually. In Fig. 5.6 we illustrate the
denoising capability of the best numerical filters for a magnified part of the “Baboon” image
corrupted with additive Gaussian noise with σ = 30. The magnified part of the “Baboon”
image corresponds with the black square shown in Fig. 5.4 (d). In Fig. 5.7 we demonstrate
the Sobel [83] edge images for the filtered versions of Fig. 5.6. The main observations are:

• It can be observed that the GOA filter does not only remove noise but also fine details
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Table 5.2: Comparative results in PSNR of different filtering methods for various distortions of Gaus-
sian noise for the (512 × 512) coloured “Baboon” image and (512 × 512) coloured “Texture” image
Fig. 5.4.

PSNR (dB)
Baboon Texture

σ 5 10 20 30 40 5 20 30
Noise 34.2 28.22 22.28 18.87 16.54 34.13 22.12 18.53

Median 24.70 24.38 23.41 22.28 21.13 29.12 26.14 24.29
FMF 34.61 29.65 25.19 22.72 20.92 26.83 27.12 24.60
Mean 24.45 24.30 23.74 22.96 22.09 35.53 25.60 24.38

ATMED 24.66 24.42 23.65 22.68 21.43 28.29 25.98 24.22
ATMAV 24.51 24.32 23.64 22.75 21.03 26.85 25.19 23.61
GMED 24.57 24.18 23.22 22.16 21.57 28.67 26.06 24.35
GMAV 24.54 24.39 23.75 22.83 21.61 27.32 26.30 24.91
TMAV 24.84 24.57 23.75 22.71 21.66 28.96 26.62 24.94
TMED 24.66 24.33 23.31 22.11 20.91 28.97 26.12 24.47

DWMAV 24.45 24.30 23.74 22.96 22.09 26.83 25.60 24.35
FSB 24.69 24.42 23.44 22.16 20.91 28.67 26.31 24.78
IFCF 24.91 24.62 23.84 22.97 21.74 27.12 25.56 24.39

MIFCF 25.49 25.18 24.23 23.13 21.74 28.89 26.60 24.92
EIFCF 24.89 24.60 23.83 22.99 21.73 27.03 25.60 24.49
SFCF 25.01 24.88 24.19 22.86 21.31 28.79 26.83 24.89
FBF 34.51 29.26 25.71 23.89 22.51 34.95 27.16 25.17

FRINR 34.13 30.95 26.60 24.09 22.28 34.16 23.99 21.63
GOA 29.28 27.44 22.59 21.92 21.52 33.76 27.00 25.28

Proposed 36.59 31.92 26.95 25.13 23.61 35.34 28.59 26.28
HMT 34.51 30.22 26.37 24.26 22.95 35.37 27.15 25.02
TLS 34.39 30.46 26.60 24.53 23.26 35.29 28.54 26.57

BLS-GSM 26.72 26.72 26.56 25.19 21.14 29.41 28.32 25.95
BiShrink 33.77 30.51 26.94 24.94 23.60 35.73 28.08 25.99

ProbShrink 34.64 30.50 26.55 24.57 23.23 35.94 28.38 26.28
Lucchese 25.86 25.70 25.53 24.00 21.25 29.06 27.36 24.97
NLCDM 27.16 26.67 25.12 23.36 21.69 29.41 26.36 24.14
3D-DFT 35.95 31.32 27.19 25.02 23.04 36.37 27.84 25.75

Prob+New 35.58 31.59 27.73 25.25 23.78 37.28 29.43 27.21
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and texture elements of the image. This causes also too much smoothed arrays on the
edges and contours, which make the output image less sharp. The disadvantages of
the GOA filter become visible if we look at the edge image produced with the Sobel
operator from Fig. 5.7 (j). We observe that only large edges are still intact while small
edges were destroyed.

• From Fig. 5.6 we also observe that the noise reduction capability of the EIFCF, the
FBF, the HMT and the GMAV filter is less efficient than the other methods and the
edges become much blurrier. We also observe that these methods produce edge im-
ages where (i) most of the edges and details are visible but (ii) also much noise is not
eliminated yet.

• The best visual performance is obtained by the proposed method, the BLS-GSM,
the BiShrink, the TLS and the ProbShrink method. The main improvement of the
proposed method can be seen in the small details of the images where we observe that
the colours are preserved much better than the other complex wavelet based methods.
The proposed method is the only method where the colour component distances are
preserved well. From Fig. 5.7 we observe that the good noise suppression of these
filters also leads to very good edge images where most noise was eliminated.

In the following experiment we try to find a measure indicating how well the edges are
preserved by each method. First we compute the edge images of all filter output by using
the Sobel-operator. Next we compared the obtained edge results with the edge image of a
noise-free version. We have calculated the percentage of not detected edges, i.e., edges that
appear in the edge image of the noise-free version but do not appear in the edge image of the
filter output. Some percentages for the “Baboon” and “Bird” image are shown in Table 5.3
(case 1). Additionally we calculated the percentage of wrong detected edges, i.e., edges that
appear in the edge image of the filter output but do not appear in the original edge image of
the noise-free version. Table 5.3 (case 2) illustrates this for the “Baboon” and “Bird” image.
From this table it can be observed that the proposed method detects much more real edges
than most of the other methods. On the other hand, in case 2 we observe that the proposed
method causes a little bit more edges, which were not visible in the original edge image.
Nevertheless it is shown that the edges preservation of the proposed method is better than
most of the other methods since the total percentage of errors is smaller than most of the
other methods.

The previous results have shown that the proposed method outperforms most current
fuzzy and numerical (NLCDM) additive noise reduction filters and is comparable with many
recently developed wavelet based and statistically based filters. One of those state-of-the-art
wavelet based method is called ProbShrink [162] (section 4) and is based on the probability
that a given coefficient represents a significant noise-free component. We have made an
additional comparison of our new method with the more complex ProbShrink method. Nu-
merical results for the “Lena” and the “Baboon” images are shown in Fig. 5.8. On these fig-
ures we distinguish three filters: (i) our proposed method, (ii) the wavelet filter ProbShrink
and (iii) first applying ProbShrink and afterwards also our new method. For the “Lena” im-
age we see that the ProbShrink method performs better than the proposed method, while the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.6: The restoration of a noisy (512 × 512) coloured “Baboon” image with (a) a noise-free
part (see Fig. 5.4), (b) the same part contaminated with additive Gaussian noise with σ = 30, (c) the
proposed method, (d) BLS-GSM, (e) BiShrink, (f) 3D-DFT, (g) ProbShrink, (h) HMT, (i) FBF, (j)
GOA, (k) EIFCF, (l) GMAV.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.7: The resulting edge images produced by the Sobel operator for the restored coloured
“Baboon” image with (a) the noise-free case, (b) the edge image of the contaminated image with
additive Gaussian noise with σ = 30, (c) the proposed method, (d) BLS-GSM, (e) BiShrink, (f)
3D-DFT, (g) ProbShrink, (h) HMT, (i) FBF, (j) GOA, (k) EIFCF, (l) GMAV.
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Table 5.3: Case 1: The percentage (%) of not detected edges by the Sobel operator and Case 2: The
percentage (%) of wrong (over-)detected edges by the Sobel operator.

CASE 1 CASE 2
Baboon Bird Baboon Bird

σ 5 15 30 10 30 5 15 30 10 30
FSB 29.58 34.05 36.22 14.69 14.19 2.92 5.35 1.38 3.58 16.97
FBF 4.63 20.00 26.96 12.50 13.89 5.04 7.13 1.48 4.02 17.36
GOA 25.69 29.08 64.31 31.27 37.72 3.09 5.30 2.39 2.37 2.86

Proposed 14.73 16.55 22.43 11.58 17.25 4.88 8.55 7.76 3.33 7.92
HMT 14.70 17.07 31.67 13.10 21.47 10.50 2.03 6.41 3.12 5.81
TLS 13.21 25.80 38.11 13.51 23.90 11.67 1.33 3.39 2.03 2.61

BiShrink 19.85 28.46 38.98 12.97 23.18 2.07 3.68 4.47 3.02 4.65
ProbShrink 22.00 31.82 45.20 13.60 24.40 1.55 2.55 2.84 2.11 3.08
3D-DFT 8.03 15.55 31.82 12.78 25.14 18.58 3.57 8.55 2.02 2.57

Prob+New 19.88 29.54 44.02 13.25 24.13 4.05 3.28 2.37 1.72 2.51
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Figure 5.8: The performance of the proposed method in comparison to the state-of-the art wavelet
based method called ProbShrink from [162] and the combination of ProbShrink and the proposed
method.

opposite can be observed for the “Baboon” image. Nevertheless, from both figures we see
that the mixture of both methods generally obtains the best performance in terms of PSNR
values. This is also illustrated in Table 5.1 and Table 5.2.

We also visualized the differences of both methods and the combination of both methods
in Fig. 5.9 where we present a magnified part of the “Lena” image corrupted with Gaussian
noise with σ = 20 and the results of the three methods. The magnified part of the “Lena”
image corresponds with the black square shown in Fig. 5.4 (e). In Fig. 5.9, it is shown that
the wavelet method reduces noise a little bit better than the proposed method, while the
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(a) (b) (c)

(d) (e)

Figure 5.9: The visible performance of the methods compared in Fig. 5.8 with (a) a magnified part
of the “Lena” image, (b) the same part corrupted with additive Gaussian noise with σ = 20, (c) the
ProbShrink filter, (d) the proposed method and (e) the combination of ProbShrink and the proposed
method.

proposed method does not destroy the colour component differences as ProbShrink does
for some pixels. By combining both methods we obtain a good denoised image where the
colour component differences are restored so that no outliers appear at the edges.

Our future research will be concentrated on the improvement of such wavelet based
methods with fuzzy set theory for greyscale and colour images. We also want to con-
struct other fuzzy filtering methods for colour images to suppress other noise types as well
(speckle noise, stripping noise, etc.).

5.5 Conclusion

In this chapter we proposed a new fuzzy filter called the the fuzzy colour preserving Gaus-
sian noise reduction method (FCG) for additive noise reduction in digital colour images.
The main advantages of this new filter are the denoising capability and the reconstruction
capability of the destroyed colour component differences. A numerical measure, such as
the PSNR, and visual observations showed convincing results. We illustrated that the pro-
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posed method generally outperforms most of the other fuzzy filters and that it has not been
developed for one specific kind of images. Moreover we showed that the proposed method
achieves a comparable noise reduction performance to the more complex wavelet based
methods. We also illustrated that we get a better performance (numerically as well as vi-
sually) when a wavelet based method (e.g. the “Fuzzy Shrinkage” method of chapter 4) is
combined with our proposed method. Future research can be focused on this issue and on
the construction of other fuzzy wavelet filtering methods for colour images to suppress other
noise types as well (speckle noise, stripping noise, etc.).





Chapter 6

Noise Reduction of Image
Sequences using Fuzzy Logic
Motion Detection

In this chapter we present a new fuzzy based recursive scheme for the motion detection
and the noise reduction of image sequences. The new spatial-temporal filtering method
deals with Gaussian noise and unsteady illumination conditions both in temporal and spatial
direction [196, 259, 262].

The main contribution of the proposed algorithm is the robust novel fuzzy recursive
scheme for the motion detection and temporal filtering. An input noisy sequence is pro-
cessed with a fuzzy motion detection in order to determine the membership degree in the
fuzzy set motion for each position. If that degree at a certain position is small we perform a
temporal noise reduction method because we assume that no motion occurs at that position.
In case the degree at a certain position is large we perform only a spatial noise reduction
method, because we assume that this pixel is part of a moving object.

We evaluate the proposed motion detection algorithm using two criteria: (i) robustness
to noise and to changing illumination conditions and (ii) motion blur produced by the tem-
poral recursive denoising method. Additionally, we make comparisons in terms of noise
reduction with other state-of-the-art video denoising techniques.

It has to be mentioned that this method was developed in close cooperation with Vladi-
mir Zlokolica.

6.1 Introduction

Image sequences or videos are often corrupted by noise, caused by e.g. bad reception of
television pictures. For certain applications such as television and surveillance, these cor-
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ruptions can often be approximated by an additive Gaussian noise model.

Video denoising is generally achieved through some linear or nonlinear operation on
a set of neighbouring pixels (in the spatial-temporal sense). The defined spatial-temporal
neighbourhood can be either defined through estimated motion trajectory (motion estima-
tion and compensation) or by nearest spatial-temporal neighbourhood (motion detection and
exclusion). A thorough review of noise reduction algorithms for digital image sequences is
presented in [107], where it is illustrated that motion detection is very crucial in video de-
noising. The motion detection problem is generally quite complex because it is not always
easy to distinguish illumination changes from real motion and because of the aperture prob-
lem (caused by a narrow field of view). The well-known “aperture problem” [71, 211, 244]
refers to the impossibility of determining the two-dimensional motion when a signal only
contains a single orientation. For example, a local analyzer that sees only the vertical edge
of a square can only determine the horizontal component of the motion. Whether the square
translates horizontally to the right, diagonally up and to the right, or diagonally down and
to the right, the motion of the vertical edge will be the same.

The “close to perfect” solutions for the motion detection tend to be very time-consuming.
However, in many applications it is sufficient to detect changes in the scene rather than ac-
tual motion, and even to detect only some of the changes. For some applications such as
video sequences with relatively big static background areas some less complex solutions
(e.g. motion detection and exclusion filters) perform equally well with respect to the more
time consuming motion compensated filters. However, for advantageous performance of the
“motion detection-exclusion” video denoising algorithms a reliable and noise robust motion
detection is needed.

In this chapter we consider motion detection in terms of robust change detection against
noise and slowly varying illumination conditions. This means that our method will not be
able to distinguish completely changes due to motion from changes due to rapidly varying
illumination, scene-cuts, fast camera zoom and so on. In spite of these restrictions, there are
numerous applications for this kind of motion detection scheme: it can be used for surveil-
lance objectives, e.g. to monitor a room in which there is not supposed to be any motion, or
the detection results can be a useful input for more advanced, higher level video processing
techniques, like the tracking of objects through time (e.g. [53, 208, 254]). Other applica-
tions are noise removal [25, 49, 57, 96, 157, 164, 261] and deinterlacing [21, 226], where
one applies temporal filtering depending on the outcome of the motion detector. Given the
outlined restrictions, the main problem to be tackled is to distinguish image noise from real
changes in picture intensity. Additionally, we try to adapt the method to changing illumi-
nating conditions both in the spatial and the temporal direction. A trivial and very fast (but
not very good) solution for pixel-by-pixel change detection is to simply subtract the grey
levels of successive frames, and to conclude that the pixel has changed when the difference
exceeds a given threshold. Because only one pixel is considered at a time, the computational
cost is quite low. While this technique works reasonably well at low noise levels, the per-
formance degrades rapidly with increasing noise level. Also, in practice the threshold has to
be tuned to the noise level, which must be estimated on a global or local basis. To tackle the
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noise problem, some more sophisticated techniques are needed. One could examine regions
with more than one pixel, and define and calculate some characteristic functions (e.g., the
spatial average in a window of pixels) as in [93, 204, 254], at the expense of an increased
complexity. In this chapter, we propose an alternative approach for motion detection and
video denoising. We restrict ourselves to a recursive algorithm requiring a small number of
computations.

The idea is to use a soft threshold, which is adapted to the local grey scale statistics and
to the spatial context of the pixel. The resulting method is highly insensitive to noise as
well as to slow illumination changes. Moreover, it is locally adaptive, i.e., it is self-adapting
to spatially varying noise. In [1, 123, 174], some more complex techniques to obtain a
threshold based on the noise or signal properties are proposed, and applied to simple frame
differencing. Our method is different, since (i) it uses data from a longer period of time and
(ii) the threshold is adapted to both temporal and spatial information. It is quite obvious
that different applications require different approaches. In the case of motion detection for
tracking, it is important that more or less only “real” motion is detected: the goal is to detect
moving objects. This means, on the one hand, that if the input sequence is noisy, we do
not want the noise to be labelled as motion, while on the other hand, it is less important
to detect every single changed pixel of an object. In the case of motion detection for noise
reduction, where the detection result is used for temporal filtering, undetected changes can
lead to (unwanted) motion blur. This blur is of course much more relevant to image quality
than falsely labelled pixels due to noise. By using fuzzy logic we aim to define a confidence
measure with respect to the existence of motion, to be called hereafter the membership
degree in the fuzzy set motion. Based on the defined membership degree we optimize
temporal denoising and motion detection.

The rest of the chapter is organized as follows: in section 6.2 we present the general
framework of the algorithm for simultaneous motion detection and noise reduction. Sub-
sequently, the proposed fuzzy recursive motion detection [196, 259, 262] is explained in
section 6.3. In section 6.4 we propose the recursive temporal noise reduction and the spatial
noise reduction method. Finally, experimental results are given in section 6.5 and conclu-
sions are drawn in section 6.6.

6.2 The Proposed Scheme for Simultaneous Motion Detec-
tion and Noise Reduction

In this section we present our proposed algorithm for simultaneous motion detection and
noise reduction. The method is intended for processing image sequences corrupted with
additive Gaussian noise, which is not necessarily stationary in space and time, and with
spatial-temporal illumination changes. The general framework of the proposed algorithm is
illustrated in Fig. 6.1.

We first process a noisy input sequence with the fuzzy motion detection using the cur-
rent noisy frame and the previous temporally processed frame in order to determine the
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INPUT:

noisy frame
Fuzzy motion detection Recursive temporal
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denoised frame
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Figure 6.1: Scheme of the proposed algorithm

membership degree in the fuzzy set motion. We denote a noisy input pixel at position (i, j)
and frame t as Nin(i, j, t), while Np(i, j, t − 1) indicates the pixel at position (i, j) of the
previous temporally processed frame t− 1. The membership degree in the fuzzy set motion
is expressed as a real number between two extremes, namely zero (no motion for sure) and
one (motion for sure), as explained in section 1.2. More precisely, in order to calculate
the membership degree in the fuzzy set motion for a certain pixel N in(i, j, t), we combine
several pixels from the two-dimensional neighbourhood of the difference image Δ, which
is calculated as:

Δ(i, j, t) = |Nin(i, j, t)−Np(i, j, t− 1)|. (6.1)

These differences are combined, by using a fuzzy rule based system (section 6.3), to
form the membership degree in the fuzzy set motion for the central pixel. This calculated
membership degree can be used for two goals: (i) for tracking and (ii) for video denoising.
In this chapter we only consider video denoising, for tracking we refer to [258]. In the
proposed denoising algorithm the membership degrees in the fuzzy set motion, denoted as
θ(i, j, t), are used to determine two signal depending parameters α(i, j, t) and β(i, j, t).
These two parameters are used for the temporal recursive filtering and for the spatial-
temporal adaptation of the algorithm to a changing noise level and illumination (section
6.4).

Based on the determined parameter β(i, j, t) we perform a spatial-temporal adaptation
of the noise variance σ(i, j, t) for each position (i, j, t). Only for the first frame (i.e., t = 0)
we estimate the noise standard deviation using the method proposed in [260] (for the whole
frame, i.e., σ(i, j, t) = σ0). After the first frame we adapt it throughout the sequence for
each position, separately. This spatial local estimation of the standard deviation of the noise
σ(i, j, t) is realised by recursive averaging as illustrated in the following expression.

σ(i, j, t) =
(
1− β(i, j, t)

)
δ(i, j, t) + β(i, j, t)σ(i, j, t), (6.2)

where β(i, j, t) is an increasing function of θ(i, j, t) (explained in section 6.4.1). The higher
the membership degree in the fuzzy set motion, i.e., θ(i, j, t), the closer the current estima-
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tion σ(i, j, t) is to the previous σ(i, j, t − 1). The parameter δ(i, j, t) represents a rough
estimation of the local averaged changes (due to noise, motion and illumination changes),
at position (i, j, t) and is defined as:

δ(i, j, t) =
1
9

1∑
k,l=−1

|Δ(i+ k, j + l, t)|. (6.3)

The idea behind expression (6.2) is to update σ(i, j, t) at each time instant t, and for
each spatial position (i, j), when no significant motion is detected (the membership degree
in the fuzzy set motion is relatively small) and to prevent updating in case the membership
degree in the fuzzy set motion is relatively large. This is realised by changing β(i, j, t).

The other parameter α(i, j, t) controls the amount of noise reduction based on the es-
timated noise level and the membership degrees θ(i, j, t). Parameter α(i, j, t) is directly
proportional to the estimated membership degree θ(i, j, t) and takes values in the interval
[0, 1]. We employ α(i, j, t) (section 6.4) as a weighting factor within a classical recursive
scheme:

Np(i, j, t) = α(i, j, t)Nin(i, j, t) +
(
1− α(i, j, t)

)
Np(i, j, t− 1). (6.4)

Note that the membership degree θ(i, j, t) depends on the estimated standard deviation of
the noise from the previous frame σ(i, j, t−1), since the estimated deviation σ(i, j, t) is not
known at that stage. Consequently, the parameters α(i, j, t) and β(i, j, t) are also influenced
to some degree by σ(i, j, t− 1).

Since the temporally filtered frames contain non-stationary noise, i.e., in some areas of
the image the remaining noise is stronger than in other areas because of the temporal filter
(section 6.4), we also apply an additional spatial filtering stage. This spatial filter is applied
to the temporal filtered frames.

Finally we want to mention that the temporal filter and the fuzzy motion detection work
in a closed loop, i.e., in a recursive manner where at each step the performance of each
module is improved by the other.

6.3 Fuzzy Motion Detection

The proposed method is based on the previous work of Zlokolica and Philips [260], where
they introduced a binary motion detector, which can only distinguish between motion and
no motion. This motion detector was used to control the spatial-temporal filter, by switching
the temporal filter on or off. In case of higher noise levels, where a lot of motion ambiguities
exist, this hard switching method introduced blurring and other artefacts so that the over-
all performance decreased dramatically. The reason for this misbehaviour was the “hard”
nature of the decision process (wrong decisions are propagated).

In [48] a recursive scheme for change detection applied to motion tracking in the pres-
ence of low noise levels was proposed. In this method the motion is detected by using only
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the information from the current and from the previously processed (temporally accumu-
lated) frame, for reducing the memory requirements. However, the motion detector was
binary, and consequently was not well suited for motion detection in the presence of higher
noise levels and for video denoising.

Here we propose a fuzzy based recursive motion detector for reducing noise in image
sequences (and tracking). A fuzzy set is used to express motion, where a zero membership
degree in the fuzzy set motion corresponds to no motion for sure and a membership degree
one in the fuzzy set motion corresponds to motion for sure. By using those membership
degrees in the fuzzy set motion, which are expressed as real numbers between zero and one,
instead of the binary decision, that is motion - no motion, we obtain a huge improvement.
This provides us with more freedom concerning further processing tasks, i.e., recursive
temporal filtering and spatial-temporal adaptation of the noise.

The main idea behind the proposed fuzzy motion detection algorithm is to combine
the contributions concerning the motion presence for groups of temporal pixel differences
from a small neighbourhood. This is different from other more general motion detection
techniques, which are based on simply averaging some pixel differences or determining a
number of pixel differences that are larger than a certain predefined threshold [48, 260].

The proposed motion detection scheme uses fuzzy logic, since fuzzy logic is more suit-
able for describing processes with uncertainties (concerning motion in our case). The ob-
tained membership degrees in a certain neighbourhood are finally combined by using a
fuzzy rule to obtain for each pixel the final membership degree in the fuzzy set motion.

The main problem in motion detection is to distinguish between large pixel differences
caused by noise and large pixel differences caused by motion. However, there is a gradual
transition from small differences caused by noise to very large differences caused by motion.
Fuzzy set theory is a natural extension of the classical binary logic, where such kind of
gradual transitions are modelled by means of a proper membership function. Consequently
we argue that a fuzzy logic framework is more appropriate than a nonlinear filter scheme
(which could also have been used) in this particular case. Additionally, fuzzy logic enables
flexible solutions (of high construction simplicity) to combine several membership values
to obtain the final output. Finally, the fuzzy logic framework can be easily optimized to
reduce the implementation complexity, such that the number of calculations decreases.

6.3.1 Fuzzy motion detection

In order to calculate the membership degree in the fuzzy set motion for a certain central
pixel Nin(i, j, t) (i.e., θ(Nin(i, j, t))), we use a particular group of temporal pixel differ-
ences from a small spatial neighbourhood around (i, j, t), i.e., Δ(i ′, j′, t). For this method
we found that a 3 × 3 neighbourhood obtains good results and reduces the computational
complexity of the method.

So, we assume that a certain pixel is part of a moving object if some neighbours are
part of this object too. Therefore, in order to detect motion for the current pixel position
(i, j, t), we also take into account the following eight differences: Δ∗

1 = Δ(i− 1, j − 1, t),
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Δ∗
2 = Δ(i − 1, j, t), Δ∗

3 = Δ(i − 1, j + 1, t), Δ∗
4 = Δ(i, j − 1, t), Δ∗

5 = Δ(i, j + 1, t),
Δ∗

6 = Δ(i + 1, j − 1, t), Δ∗
7 = Δ(i + 1, j, t), Δ∗

8 = Δ(i + 1, j + 1, t). Further on, the
proposed motion detection is based on the following fuzzy rules:

Fuzzy Rule 6.1. Defines if a pixel Nin(i, j, t) can be considered to be a motion pixel:

IF
(
Δ(i, j, t) is LARGE

)
AND

(
3 of the Δ∗

i ’s are LARGE
)

THEN Nin(i, j, t) is a MOTION PIXEL

Fuzzy Rule 6.2. Defines if a pixel Nin(i, j, t) can be considered to be a non-motion pixel:

IF
(
Δ(i, j, t) is SMALL

)
OR((

Δ(i, j, t) is LARGE
)

AND
(

all Δ∗
i ’s are SMALL

))
OR((

Δ(i, j, t) is LARGE
)

AND
(

7 of the 8 Δ∗
i ’s are SMALL

))
OR((

Δ(i, j, t) is LARGE
)

AND
(

6 of the 8 Δ∗
i ’s are SMALL

))

THEN Nin(i, j, t) is a NON −MOTION PIXEL

Fuzzy rule 6.1 defines the membership degree in the fuzzy set motion, while the sec-
ond rule defines the membership degree in the fuzzy set non-motion. The first fuzzy rule
states that there is motion if the central signal difference Δ(i, j, t), in the two-dimensional
neighbourhood, is large and at least three neighbouring differences Δ(i+ k, j + l, t) (with
−1 ≤ k, l ≤ 1 and (k, l) �= (0, 0)) are considered as large too. This first rule contains
a linguistic variable “large” that is represented by a proper membership function γ L. This
membership function γL (also shown in Fig. 6.2) is of the following form:

γL(x, a, b) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < a
x− a
b− a if a ≤ x ≤ b

1 if x > b

(6.5)

The conjunction operator of fuzzy rule 6.1 is implemented by a triangular norm, discussed
in section 1.2.2. We have chosen the product norm. The activation degree of fuzzy rule 6.1
is denoted as Mtrue(i, j, t).

The second fuzzy rule indicates when no motion of the central pixel should be detected.
This rule contains an additional linguistic variable “small” that is represented by the mem-
bership function γS (also shown in Fig. 6.2), which has the following form:

γS(x, a, b) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x < a
b− x
b− a if a ≤ x ≤ b

0 if x > b

(6.6)
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Figure 6.2: Left: The membership function small γS . Right: The membership function large γL

The additional disjunction operator of fuzzy rule 6.2 is implemented by a triangular conorm,
also discussed in section 1.2.2. We have chosen the probabilistic sum. The activation degree
of fuzzy rule 6.1 is denoted as Mfalse(i, j, t). In order to calculate the final membership
degree in the fuzzy set motion we could have used the following expression:

θ(i, j, t) =
Mtrue(i, j, t)

Mtrue(i, j, t) +Mfalse(i, j, t)
. (6.7)

However, since the second rule is defined as a complement of the first rule, we can compute
the membership degree in the fuzzy set motion as θ(i, j, t) = M true(i, j, t). Consequently,
in such a manner, we reduce the complexity and computation load of the method, since only
the output from the first rule has to be computed.

The parameters a and b define the slope of the membership functions γS and γL (i.e.,
1/(b − a)). We used the following reasoning to determine appropriate parameters: The
higher the noise level the larger the parameters a and b should be in order to avoid the false
detection of a significant amount of motion. Since the noise level depends on the pixel
position itself (i.e., σ(i, j, t)), we have to adapt the parameters a and b for each pixel (i.e.,
using local parameters a(i, j, t) and b(i, j, t) instead of two global parameters).

Additionally, for a given noise level, we aim to make our motion detection more sensi-
tive to motion foreground areas and less sensitive to areas that are less probable to undergo
motion (motion background areas). To determine the probability of the presence of a motion
area we use the locally averaged inter-frame difference δ from expression (6.3). If δ(i, j, t)
is relatively large in comparison to the noise level, we decide that the current pixel position
belongs to the motion foreground area. In this case, we aim at increasing the sensitivity
of the motion detection and thus we increase the slope by reducing the value of parameter
b(i, j, t). Otherwise, we assume that the current pixel belongs to the motion background
area and therefore we decrease the slope by increasing b(i, j, t) in order to reduce the sen-
sitiveness of the motion detection. That procedure reduces the number of falsely detected
motion pixels and simultaneously increases the number of true positives (motion detected
pixels).
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This idea is realised by defining a(i, j, t) and b(i, j, t), for each pixel as follows:

a(i, j, t) = k1σ(i, j, t− 1), (6.8)

and

b(i, j, t) = k2σ(i, j, t− 1) + k3
σ(i, j, t− 1)
1 + δ(i, j, t)

− k4
δ(i, j, t)

1 + σ(i, j, t− 1)
, (6.9)

with k1, k2, k3 and k4 constants that are experimentally optimized in terms of optimal
temporal compensation (minimum motion blur and highest PSNR) and in terms of the ro-
bustness of motion tracker against noise (minimum false motion detected pixels). Namely,
k1 depends on the resolution and the frame rate of the input video (k 1 ∈ [0, 0.25]) and
k2 = 4.2. However, in order to avoid dependency of the constant k 1 on the particular type
of sequence, we have fixed k1 = 0.1 in our application for all sequences. Additionally, k3

and k4 denote adjustable constants for the no motion background and motion foreground
area, respectively. The default values of these parameters are k3 = 2.5k2 = 10.5 and k4 =
1.15k2 = 4.83, which were found experimentally in mean square sense, for optimal denois-
ing results. Specifically, we have experimentally found that k3 has to be at least two times
larger than k4, in order to avoid noisy motion detected pixels. However, k 4 can also not be
too small, relatively to k3 in order to detect enough true motion pixels. Consequently, the
compromise between the two has been found experimentally.

To summarise, we note that the calculated membership degree in the fuzzy set motion
θ(i, j, t) depends on both the local standard deviation of the noise and the temporal pixel
differences Δ(i + k, j + l, t) with −1 ≤ k, l ≤ 1. Since the parameters a(i, j, t) and
b(i, j, t) also depend on the value δ(i, j, t) we know that the calculated membership degree
in the fuzzy set motion for each position depends on the two values σ(i, j, t) and δ(i, j, t).

6.4 Temporal and Spatial Filter

In this section we discuss the computation of the parameters α(i, j, t) and β(i, j, t) for the
recursive temporal filtering and the spatial-temporal adaptive estimation of the standard
deviation of the noise (section (6.4.1)). Additionally, we introduce the new fuzzy spatial
filter [196] (section (6.4.2)), which is applied on the temporally filtered sequence, and which
aims at filtering the remaining non-stationary noise.

6.4.1 Parameter optimization

Using the calculated membership degree in the fuzzy set motion θ(i, j, t) we determine the
number of temporal filtering, described by the parameter α(i, j, t) (expression (6.4)). The
idea of the proposed recursive temporal filtering is as follows: the larger the value θ(i, j, t)
the less we filter temporally, i.e., we do not take into account information from previously
processed frames, because the large θ(i, j, t)-values indicate that the pixel N(i, j, t) is part
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of an moving object. When the θ(i, j, t)-value is relatively small, then we use more in-
formation from the previously processed frame, since the previously filtered frame at that
position should be very similar to the current one.

The number of filtering is controlled by the parameter α(i, j, t), which is directly pro-
portional to the calculated membership degree θ(i, j, t), and takes values in [0, 1]. In the
extreme case where α(i, j, t) = 1, there is no averaging at all, while for the other extreme
case, α(i, j, t) = 0, the considered pixel is substituted by the pixel at the same position from
the previous filtered frame (i.e., t− 1).

The smaller the α(i, j, t), the stronger the filtering is performed but also the more infor-
mation from the previous frame is taken into account. So, in the case when α(i, j, t− 1) is
relatively large (α(i, j, t− 1) ≈ 1) and θ(i, j, t− 1) relatively small (θ(i, j, t− 1) ≈ 0), the
number of filtering is determined as α(i, j, t) ≈ 0. Hence, the noisy pixel (if the filtering
process failed) from the previous frame would be substituted, i.e., the noise would propagate
through the processed sequence.

Therefore we have adapted our method to be robust against such noise propagations.
This is realised by determining α(i, j, t) not only according to the degree θ(i, j, t) in the
current frame, but also according to the number of the temporal filtering in the previous
frame, α(i, j, t − 1). The number of filtering α(i, j, t) is defined by investigating the fol-
lowing two cases:

• If the considered pixel is no part of a moving object (i.e., θ(i, j, t) is very small) then
α(i, j, t) should depend on the number of filtering performed in the previous time
recursion, i.e., α(i, j, t − 1). The number of filtering of the current α(i, j, t) should
decrease slowly when no motion is detected for a longer period.

• If the considered pixel is no part of a moving object (i.e., θ(i, j, t) is very large) then
α(i, j, t) is supposed to be large too, independently of α(i, j, t− 1) to avoid temporal
blurring.

The proposed number of filtering is given as follows:

α(i, j, t) =
α(i, j, t− 1)2 + 2ω(i, j, t)− α(i, j, t− 1)ω(i, j, t)

2
, (6.10)

where ω(i, j, t) is an initial estimation based on the degree θ(i, j, t) and is given by:

ω(i, j, t) = min
(
1.15

√
θ(i, j, t), 1

)
. (6.11)

By using expression (6.10) we obtain a smoother transition of the number of temporal filter-
ing from one frame to the other. The main advantage is that we prevent the noise propaga-
tion in time and enable strong filtering by the recursive schemes when no motion is detected
for several frames. Additionally, in case no filtering was performed in the previous frame
(α(i, j, t) ≈ 1) and no motion was detected in the current frame (θ(i, j, t) = 0), the deter-
mined number of the filtering is α(i, j, t) ≈ 0.5, i.e., simple averaging is done, because both
signals have the same importance.
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As defined in expression (6.2) the updated standard deviation of noise σ(i, j, t) depends
on δ(i, j, t) defined in expression (6.3) and the weighting parameter β(i, j, t), which con-
trols the updating (averaging) of σ(i, j, t). We found experimentally that the following
relation between β(i, j, t) and the degree θ(i, j, t) provides reliable results:

β(i, j, t) = min
(
1.5

√
θ(i, j, t), 1

)
. (6.12)

It can be observed that the parameters ω(i, j, t) and β(i, j, t) are very similar, i.e., they
both depend on the degree θ(i, j, t), but with a different multiplicative constant. The two
constants, 1.15 and 1.5 used in expression (6.11) and (6.12) respectively, were found ex-
perimentally by optimizing the motion detection and the noise reduction of the proposed
algorithm. Parameter β needs to have a faster response to changes of θ than ω, for efficient
prevention of updating σ(i, j, t) in case of high motion. On the other hand, ω has to be
relatively smaller than β for efficient filtering.

6.4.2 Spatial filter

The general idea behind the proposed spatial filter is to filter the non-stationary noise left
by the preceding temporal filter. This is done by a local spatial filtering, which is adapted to
the image structures and the current noise level in the corresponding spatial neighbourhood.
The aim of the proposed filter was to distinguish between the local variations due to noise
and the local variations due to image structures. The proposed spatial filter performs a
fuzzy averaging using the temporally processed frame, where the fuzzy weights are based
on fuzzy gradient values [193, 194, 227], which were discussed already in section 2.2. The
main difference between the proposed method and the GOA filter in [227] is noticed in the
usage of the fuzzy gradient values. In the proposed method these gradient values are used
to derive weighting coefficients, where the GOA filter calculated a global correction term.

Consider a 3 × 3 neighbourhood of a pixel Np(i, j, t). As introduced in section 2.2,
a gradient �RNp(i, j, t) is defined as the difference between the central pixel Np(i, j, t)
and its neighbour in the direction R; R ∈ {NW,W,SW,S, SE,E,NE,N}. For example
�NNp(i, j, t) = Np(i, j − 1, t) − Np(i, j, t). We assume that when an edge like image
structure extends in a certain direction R, it causes large gradient values perpendicular to
the directionR at the current pixel position (i, j) and at the neighbouring pixels as well. For
example, for an edge structure in west-east (W−E) direction,�NNp(i, j, t),�NNp(i, j−
1, t) and �NNp(i, j + 1, t) are expected to be relatively large. By combining these three
gradient values we succeed in developing an edge preserving filter, which is less sensitive to
noise. In case of an edge like structure at least two of the derivative values can be assumed to
be large, while generally not more than one gradient is expected to be large in an exceptional
noise situation. Using this idea, we can distinguish noise from edge like structures. As in
section 2.2, we denote the basic gradient value as�RNp(i, j, t) and the two related gradient
values as�RNp(i+ k1, j + k2, t) and�RNp(i+ l1, j + l2, t).

In Table 6.1 we show all pixels that are involved in the calculation of the gradient values,
for the estimation of edge magnitudes in a particular direction R. The first two columns
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Table 6.1: Pixels involved to calculate the fuzzy gradients: each direction R (column 1) corresponds
to a certain position (column 2) and column 3 specifies which pixels position are considered related
to the center.

direction R position considered pixels
(X,Y ) (k1, k2) (l1, l2)

NW (−1,−1) (−1, 1) (1,−1)
N (−1, 0) (0,−1) (0, 1)

NE (−1, 1) (−1,−1) (1, 1)
W (0,−1) (−1, 0) (1, 0)
E (0, 1) (−1, 0) (1, 0)

SW (1,−1) (1, 1) (−1,−1)
S (1, 0) (0,−1) (0, 1)

SE (1, 1) (−1, 1) (1,−1)

indicate the direction that is considered for the calculation of the gradient i.e., defineX and
Y to compute �RNp(i, j, t) = Np(i + X, j + Y, t) − Np(i, j, t). The remaining column
indicates the centres of the two related gradient values, i.e., �RNp(i + k1, j + k2, t) and
�RNp(i+ l1, j + l2, t).

If two of the three gradient values for some direction are large in magnitude, we con-
clude that there is an edge in this direction. Consequently, we define theRth-direction fuzzy
gradient value with the following fuzzy rule:

Fuzzy Rule 6.3. Defines if an edge is passing through the direction R

IF
(
�RNp(i, j, t) is positive large AND�RNp(i+ k1, j + k2, t) is

positive large
)

OR(
�RNp(i, j, t) is positive large AND�RNp(i+ l1, j + l2, t) is

positive large
)

OR(
�RNp(i+ k1, j + k2, t) is positive large AND�RNp(i+ l1, j + l2, t) is

positive large
)

THEN there is an edge at direction R

The activation degree of this fuzzy rule is assigned to the variable�Fpos
R Np(i, j, t), which

indicates the membership degree in the fuzzy set edge in direction R at position (i, j, t).
Analogously we calculate�Fneg

R Np(i, j, t) for the negative fuzzy gradient values. If one of
both values, i.e.,�Fpos

R Np(i, j, t) or�Fneg
R Np(i, j, t), is large we assume that some edge is
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present and that the considered neighbourNp(i+X, j+Y, t) can be seen as a different (not
similar) pixel in comparison to the central one Np(i, j, t). Again product and probabilistic
sum are used to represent the triangular norm and co-norm. The corresponding membership
functions for the linguistic terms large positive and large negative are shown in Fig. 6.3.

Finally, the weighting coefficients w(i+X, j+Y, t), for the neighbouring pixels, in the
proposed fuzzy averaging method of the spatial filter are calculated by the following fuzzy
rule.

Fuzzy Rule 6.4. Defines the weight of the neighbouring pixel Np(i+X, j + Y, t) situated
in the R-th direction with respect to Np(i, j, t)

IF �Fpos
R Np(i, j, t) is small AND�Fneg

R Np(i, j, t) is small

THEN w(i+X, j + Y, t) is large

The idea behind this rule is that neighbouring pixels, which are similar to the central pixel
should have a large weight, while neighbouring pixels that are part of an edge and which are
not similar should have a small weight, in other words this pixel should have a low influence
on the final output of the central pixel.

The linguistic term small is represented by the membership function shown in Fig. 6.3
(c). This membership function uses a parameterK , which is adapted to the estimated stan-
dard deviation of the noise. We have experimentally found thatK = 3σ(i, j, t)/255 obtains
the best results in terms of mean square error between the filtered sequence and the original
one. The conjunction of fuzzy rule 6.4 is realised by the product triangular norm.

The final output of the spatial filter is performed by the following fuzzy averaging:

Nout(i, j, t) =

1∑
X=−1

1∑
Y=−1

Np(i+X, j + Y, t) · w(i+X, j + Y, t)

1∑
X=−1

1∑
Y=−1

w(i+X, j + Y, t)

, (6.13)

with w(i, j, t) = 1 and w(i+X, j + Y, t) equal to the activation degree of fuzzy rule 6.4.

6.5 Experiments

In this section we demonstrate the performance of the proposed algorithm for motion detec-
tion and noise reduction. Several well-known image sequences were used for this purpose,
namely: “Salesman”, “Trevor”, “Miss America”, “Bicycle”, “Chair”, “Tennis”, “Deadline”
and “Flower Garden”.

In the first experiment, the image sequences were distorted by various levels of steady
Gaussian noise, i.e., with σnoise = 5, 10, 15, 20, 25 and with steady lighting conditions.

The proposed fuzzy recursive spatial-temporal filtering technique (denoted as FRSTF)
was compared with several state-of-the-art techniques for noise reduction in image se-
quences:
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Figure 6.3: Three membership functions: (a) negative large, (b) positive large and (c) small.
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• In [35] a three-dimensional rational filter for the noise removal in video signals is
proposed. The 3D rational filter not only removes noise, but also preserves impor-
tant edge information. This 3D rational filter also uses a simple motion estimation
technique. When no motion is detected then the 3D rational filter is applied in the
temporal domain. Otherwise, a spatial-domain filter is applied. A rational operator is
basically a nonlinear low-pass filter with variable cut-off frequency and is expressed
as a ratio of two polynomial functions: a built-in edge sensor (denominator) mod-
ulates the coefficients of a linear low-pass filter (numerator) to limit its action in
presence of image details. Thus, meaningless noise information is removed without
blurring picture edges.

• A three-dimensional motion-detail adaptive extension of the K-nearest neighbour-
hood filter was proposed in [260] (MDAKNN). This method uses the current frame
and the two previous processed frames to filter the image sequences.

The K-NN filter for still images [46, 138] sorts the pixel values in a predefined win-
dow according to their distance to the central pixel. After that it averages a certain
number of pixel values which are closest to the centre. The motion detection for
that method is simply performed by comparing the pixel values at the same spatial
position, i.e., binary motion detection using a threshold.

• In [164] a sequential spatial-temporal scheme (SEQWT) for video denoising is pre-
sented, where two-dimensional wavelet denoising is followed by a selective recursive
temporal filter. The spatial filtering is performed by a spatially adaptive Bayesian
wavelet shrinkage method in redundant wavelet representation. In a next filtering
stage a motion detector controls selective, recursive averaging of pixels intensities
over time. It is shown that the proposed method outperforms recent single-resolution
representatives as well as some recent motion compensated wavelet based video fil-
ters.

• A nonlinear technique for noise reduction in video is discussed in [261] and uses a
one-level wavelet decomposition, where the four different bands are processed in-
dependent of each other. More precisely a non-decimated wavelet transformation is
used, which leads to the best noise reduction. The method is based on a spatial-
temporal recursive filtering and multiple threshold averaging (MCWF).

• In [197] a non-separable oriented three-dimensional dual tree wavelet transform for
video denoising is discussed. This transform gives a motion based multi-scale de-
composition for video, it isolates motion in different directions in separate subbands.
The direction of motion is inferred to some degree from the wavelet coefficients. It
is shown that this oriented 3D transform can be used for efficient noise reduction
(3DWF) for images sequences.

• The classical α-trimmed filter for video denoising is based on the following concept
proposed in [20]. After sorting the pixel values of a predefined window into an as-
cending order a fixed fraction α (0 ≤ α ≤ 0.5) is removed from both sides of the
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sorted pixel values, i.e., the highest and lowest values are removed. Thereafter the
average of the remaining values is calculated to form the output.

The video denoising performance is illustrated in terms of (i) Peak Signal to Noise Ra-
tio (PSNR), (ii) a related objective measure, i.e., Peak Temporal Signal Deviation to Noise
Ratio (PTSDNR) [258] and (iii) in terms of visual quality (subjective measure). Addition-
ally we demonstrate the motion detection performance of the new technique in terms of its
robustness to varying noise levels and illumination conditions. The PTSDNR between a
noise-free imageO and a filtered version of itNout at some frame t is calculated as follows:

PTSDNR(O,Nout) = 10 log10

2m − 1
M∑
i=1

N∑
j=1

(
χorg − χout

)2
, (6.14)

with m the number of bits used to store one single intensity value and

χorg =
(
O(i, j, t) −O(i, j, t− 1)

)
,

and

χout =
(
Nout(i, j, t)−Nout(i, j, t− 1)

)
.

The parameters M and N in expression (6.14) stand for the height and the width of an
image sequence, respectively.

The PSNR indicates how well the noise is reduced (smoothed) and how well the struc-
tures are preserved in the spatial domain, in terms of the average correlation of the filtered
and the original image sequence, at each time instant. The PTSDNR measure indicates how
good the motion compensation on the filtered sequence is performed in comparison to the
ideal case, i.e., in comparison to the original sequence. This measure provides us with an
objective measure of the noise reduction performance in the temporal domain. It can hap-
pen that the PSNR for each frame is relatively high (considered as good), which means that
the noise is not visible in separate frames, while the noise is visible when playing these
sequences in times. In such a case the PTSDNR is relatively lower which indicates that the
temporal compensation is not sufficient. In the opposite case when the PTSDNR is high,
the noise is also reduced in temporal sense (smoothed in time) so that less flickering occurs.

In Table 6.2 and Table 6.3 we compare the proposed method in terms of the average
PSNR over all filtered frames for the sequences corrupted with uniformly spread Gaussian
noise, with σnoise = 10 and σnoise = 15, respectively. In comparison to the single resolu-
tion techniques, i.e., the rational filter, the motion-detail adaptive KNN and the α-trimmed
filter, the proposed FRSTF method performs always significantly better. The average im-
provement is approximately 1.5dB.

In comparison to the multi-resolution technique MCWF, for some sequences the PSNR
improvement by the FRSTF algorithm is approximately 1dB (for the “Salesman”, “Dead-
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Table 6.2: The average PSNR results for the processed sequences corrupted with Gaussian noise
(σ = 10). The abbreviation X stands for unavailable results.

input PSNR (in dB)
sequence FRSTF MDAKNN α-trim. ratio. MCWF SEQWT 3DWF
Salesman 33.9 32.7 29.4 30.6 32.9 34.1 35.0
Deadline 34.7 32.6 24.3 27.3 33.1 X X
Miss Am. 36.5 35.1 35.1 35.2 35.9 37.5 X

Trevor 34.3 33.6 33.5 34.3 35.3 X X
Tennis 31.2 31.2 24.5 26.5 31.3 32.2 31.9

Table 6.3: The average PSNR results for the processed sequences corrupted with Gaussian noise
(σ = 15). The abbreviation X stands for unavailable results.

input PSNR (in dB)
sequence FRSTF MDAKNN α-trim. ratio. MCWF SEQWT 3DWF
Salesman 31.9 30.4 28.4 29.5 30.8 31.1 33.3
Deadline 32.2 30.1 23.7 32.9 30.6 X X
Miss Am. 34.7 32.9 32.7 26.6 33.6 36.0 X

Trevor 32.3 31.0 31.5 32.1 32.8 X X
Tennis 29.2 29.0 23.5 26.2 29.3 30.1 29.9

line” and “Miss America” images), while for the Trevor sequence the PSNR is approxi-
mately 0.75dB lower and in case of the “Tennis” sequence, it is more or less equal. Fur-
thermore, the more complex multi-resolution methods SEQWT and 3DWT are on average
0.75dB and 1.5dB better than the proposed FRSTF method in terms of average PSNR.

Additionally we show in Fig. 6.4 and Fig. 6.5 the PSNR per frame for the “Salesman”
sequence corrupted with σnoise = 15 and the “Trevor” sequence corrupted with σnoise =
10. For the “Salesman” sequence, the best PSNR is obtained by the 3DWF method. The
performance of the proposed FRSTF and the SEQWT is (on average) approximately 1dB
lower than for the 3DWF. The MCWT method was shown to perform 1dB worse (in terms
of PSNR) to the FRSTF method, while the single resolution techniques, i.e., the rational
and the MDAKNN filters, performes approximately 2dB worse.

In the case for the processed “Trevor” sequence, the proposed FRSTF method is shown
to perform approximately 1dB worse than the multi-resolution technique MCWF. In com-
parison to the rational filter, which is a single resolution technique, the performance is
similar, while the PSNR obtained by the FRSTF algorithm is significantly better than the
MDAKNN filter (≈ 1.3dB). The results for the more complex SEQWT and 3DWF method
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Figure 6.4: The PSNR of each frame for the “Salesman” sequence corrupted with a standard deviation
of the noise σnoise = 15.
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Figure 6.5: The PSNR of each frame for the “Trevor” sequence corrupted with a standard deviation
of the noise σnoise = 10.
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Table 6.4: The average PSNR results for the processed sequences corrupted with Gaussian noise
(σ = 15) for the proposed method using the fuzzy and the binary motion detection.

input PSNR (in dB)
sequence σnoise = 10 σnoise = 15 σnoise = 20

Binary Fuzzy Binary Fuzzy Binary Fuzzy
Salesman 31.4 32.4 28.3 29.4 25.4 27.2
Deadline 31.7 32.9 28.5 29.6 26.2 27.5
Miss Am. 32.1 32.9 28.9 29.8 26.6 27.7

Trevor 30.7 31.3 27.6 28.5 25.4 26.1
Tennis 29.8 30.8 26.9 28.2 25.4 26.3

are not available. However, since the methods perform always better (for other tested se-
quences) than the MCWF technique it is expected that their performance would also be
more advantageous over the proposed FRSTF algorithm.

In order to make a comparison between the proposed fuzzy solution and the correspond-
ing binary one, in terms of motion detection and noise reduction, we define the binary ver-
sion of the proposed fuzzy logic motion detection, i.e., we define the binary motion degree
θB(i, j, t) as follows:

θB(i, j, t) =

⎧⎪⎨
⎪⎩

1, if Δ(i, j, t) > TB(i, j, t) AND
at least three Δ∗

i
′s > TB(i, j, t)

0, otherwise
(6.15)

where the threshold value

TB(i, j, t) =
1
2

(
a(i, j, t) + b(i, j, t)

)
is determined in accordance with the expressions (6.6) and (6.5). So the pixel at position
(i, j, t) is classified as motion when the pixel itself and at least three neighbours exceed this
threshold.

The performance of the proposed temporal filter, which is based on the fuzzy motion de-
tection, is compared with the proposed method where the fuzzy motion detection is replaced
by the binary version defined in expression (6.15). The temporal filter of this binary version
uses an averaging procedure in the case of motion. Otherwise if no motion is detected the
identity filter is used (i.e., no filtering at all). The average PSNR and PTSDNR values of the
fuzzy and binary temporal filters for the five test images are given in Table 6.4 and Table
6.5.

From the Table 6.4 we observe, in terms of PSNR, that the fuzzy based approach out-
performs the binary method about 1.05dB. This improvement is approximately the same
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for all noise levels. In Table 6.5 we show that the fuzzy based method also outperforms
the binary method in terms of PTSDNR value. The average improvement in terms of the
PTSDNR is about 1.57dB. The improvement is smaller for low noise levels than for higher
noise levels, i.e., 1.22dB for σnoise = 10 and 1.88dB for σnoise = 20.

The temporal processed and the spatial-temporal processed image sequences using the
fuzzy noise reduction method FRSTF on the input sequences corrupted with several noise
levels (i.e., σnoise = 5, 10, 15, 20, 25) can be viewed on the website:
http://users.ugent.be/∼sschulte/PHD/FRSTF. On this website we also show the output of the
other state-of-the art noise reduction methods. Besides the temporal and spatial-temporal
output of the proposed fuzzy noise reduction method, we have additionally illustrated the
fuzzy motion detection performance of these sequences.

The motion detection sequences illustrate the sensitivity of the motion detector to noise
(wrong detected motion) and temporal sequence changes (correct classified motion pixels),
while the filtered (temporal and spatial-temporal) sequences illustrate the robustness to mo-
tion blur and the ability of efficient noise removal.

In order to illustrate the visual performance of the proposed method we pictured in Fig.
6.7, Fig. 6.9 and Fig. 6.11 the results for the 101th frame of the “Tennis” sequence, the 128th
frame of the “Miss America” sequence and the 30th frame of the “Salesman”, respectively.
These images illustrate the performance of both stages of the method, i.e., the temporal (the
upper images) and the spatial-temporal method (lower images). The corresponding noise-
free images and the noisy images corrupted with σnoise = 15 are shown in Fig. 6.6, Fig.
6.8 and Fig. 6.10, respectively.

First of all we observe that the noise is reduced by the temporal filter (upper images)
without motion blur or ghost artefacts. This leads to an efficient spatial filtering (lower
images) of the remaining non-stationary noise, which preserved the fine details and textures
of the sequences. This spatial filter was based on the concept of fuzzy gradient values
and was applied after the temporal filter. Vladimir Zlokolica [258] has shown in his PhD
thesis that the fuzzy based solution for spatial filtering, in comparison to the binary solution,
has not shown significant improvement in terms of noise reduction performance, when the
temporal filter is applied before it. The average improvement was about 0.75dB. However
the improvement in case when the spatial filter precedes the temporal one, would be much
higher. This is one of the future topics that have to been investigated. We should try to find
the best spatial filter in combination to the temporal method.

In Fig. 6.12 we illustrate the proposed fuzzy motion detection for the “Tennis” sequence
corrupted with additive noise with σnoise = 20 between frame t = 130 and frame t = 131.
We compared the proposed method with the Noise Robust Change Detection (NRCD) pre-
sented in [48] and with the result of the Binary Motion Detector (BMD) defined in expres-
sion (6.15). We also illustrated the proposed Fuzzy Motion Detection (FMD) on the same
sequences but without any added noise. This result is seen as the reference (ground truth)
motion detection. In the noise-free situation, where σnoise ≈ 0, the fuzzy motion detection
becomes very similar to a binary one since the parameters for the membership functions of
Fig. 6.2 are a(i, j, t) ≈ b(i, j, t) ≈ 0. Therefore we consider the fuzzy motion detection on
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Table 6.5: The average PTSDNR results for the processed sequences corrupted with Gaussian noise
(σ = 15) for the proposed method using the fuzzy and the binary motion detection.

input PTSDNR (in dB)
sequence σnoise = 10 σnoise = 15 σnoise = 20

Binary Fuzzy Binary Fuzzy Binary Fuzzy
Salesman 32.5 33.2 29.8 31.1 27.7 29.4
Deadline 32.5 34.6 29.4 31.1 27.2 29.8
Miss Am. 33.8 35.1 30.6 32.2 28.2 30.5

Trevor 30.8 31.6 28.2 29.6 26.1 27.2
Tennis 29.5 30.7 27.1 28.7 25.4 27.1

the noise-free sequences as the reference motion detection.
For the fuzzy motion detection we only pictured in black those pixels where the mem-

bership degree in the fuzzy set motion exceeds a given threshold Ω, used for tracking. In
[258] it was shown that the optimal threshold for tracking is Ω = 0.75.

From Fig. 6.12 we observe that the proposed FMD method is more robust against noise
than to the binary motion detection (BMD), since the number of wrong classifications is
reduced a lot. Moreover, the FMD method detects more correct motion pixels in comparison
to the NRCD method, by considering the referenced motion detection shown in Fig. 6.12(d).
By comparing Fig. 6.12 (b) and Fig. 6.12 (c), we conclude that the fuzzy motion detection
(FMD) performs better than the binary logic motion detection (BMD). The fuzzy approach
detects the same or even more correct motion pixels while producing much less wrong
classifications.

Since the slope of the membership functions shown in 6.2 becomes smaller for higher
noise levels, the motion detection performance increases a little bit, i.e., the number of
correct detected motion decreases. Nevertheless, we have experimentally found for the pro-
posed scheme, that if the noise increases the number of correct detected pixels decreases
very slowly in order to reduce the wrong classified motion detected pixels as much as pos-
sible. Even for a relatively small threshold Ω and relatively high noise levels (σnoise ≥ 20)
the proposed fuzzy algorithm provides reliable motion detection results.

We also made some experiments on the “Salesman” sequence and the “Bicycle” se-
quence corrupted with additive Gaussian noise that changes throughout the sequences in
the temporal domain. In Fig. 6.13 we illustrate how the proposed method adapts to the
standard deviation of the noise σnoise during the “Salesman” sequence. We show how the
estimated average σ(i, j, t) (expression 6.2) value changes from frame to frame. The four
experiments, shown in Fig. 6.13 (a)-(d), can be summarised as follows:

• In (a) and (b) we added noise with σnoise = 10 for the first 25 frames and then
changed the noise level to (a) σnoise = 15 and (b) σnoise = 20.

• In (c) and (d) we added noise with σnoise = 20 for the first 25 frames and then
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Figure 6.6: The upper image corresponds to the 101th noise-free frame of the “Tennis” sequence.
The lower image corresponds to the same frame corrupted with Gaussian noise σnoise = 15.
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Figure 6.7: The upper image gives the temporal filtered frame, while the lower image gives the final
spatial output of the proposed method for the corrupted frame of Fig. 6.6.
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Figure 6.8: The upper image corresponds to the 128th noise-free frame of the “Miss America” se-
quence. The lower image corresponds to the same frame corrupted with Gaussian noise σnoise = 15.
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Figure 6.9: The upper image gives the temporal filtered frame, while the lower image gives the final
spatial output of the proposed method for the corrupted frame of Fig. 6.8.
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Figure 6.10: The upper image corresponds to the 128th noise-free frame of the “Salesman” sequence.
The lower image corresponds to the same frame corrupted with Gaussian noise σnoise = 15.
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Figure 6.11: The upper image gives the temporal filtered frame, while the lower image gives the final
spatial output of the proposed method for the corrupted frame of Fig. 6.10.
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(a) (b)

(c) (d)

Figure 6.12: The comparison of the motion detection: (a) the NRCD, (b) the binary motion detection
(BMD) with threshold TB(i, j, t) = 2σnoise(i, j, t) and (c) the proposed fuzzy motion detection
(FMD) with Ω = 0.75 for the “Tennis” sequence corrupted with σnoise = 20. In (d) we show the
proposed fuzzy motion detection for the noise-free version with Ω = 0.75.
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Figure 6.13: The adaptation of the σ parameter for the “Salesman” sequence.
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Figure 6.14: The adaptation of the σ parameter for the “Bicycle” sequence.
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changed the noise level to (c) σnoise = 15 and (d) σnoise = 10.

In Fig. 6.14 we illustrate how the proposed method adapts to the standard deviation of the
noise σnoise during the “Bicycle” sequence. We show how the estimated average σ(i, j, t)
(expression 6.2) value changes from frame to frame. The four experiments, shown in Fig.
6.14 (a)-(d), can be summarised as follows:

• In (a) and (b) we added noise with σnoise = 10 for the first 15 frames and then
changed the noise level to (a) σnoise = 15 and (b) σnoise = 20.

• In (c) and (d) we added noise with σnoise = 20 for the first 25 frames and then
changed the noise level to (c) σnoise = 15 and (d) σnoise = 10.

The corresponding processed sequences can also be seen on the website:
http://users.ugent.be/∼sschulte/PHD/FRSTF, where both the filtered sequences and the mo-
tion detection results are shown.

In the last experiment we tested the proposed motion detection and noise reduction
method on image sequences containing illumination changes both in the spatial and the
temporal domain. We have performed an experiment in a dark room where the different
lighting conditions were created by moving and changing the intensity of a light source.
Additionally we have added additive Gaussian noise σnoise = 15 to the sequences and have
processed them. The tested sequences consist of a person coming into the room, moving
and leaving the room. The sequences illustrating the detected motion and the correspond-
ing filtering are also available on the website: http://users.ugent.be/∼sschulte/PHD/FRSTF.
These results demonstrate a good robustness against slow illumination changes, while for
the fast and sudden changes we conclude that more time is needed for the algorithm to
adapt.

Finally, we tested several other triangular norms and conorms but did not find signifi-
cant differences in the performance of the proposed motion detection and noise reduction.
Hence, we chose the product as triangular norm and the probabilistic sum as triangular
conorm.

6.6 Conclusion and Future Work

In this chapter we proposed a new adaptive recursive fuzzy motion detection and noise
reduction method for image sequences. The main advantage of the proposed fuzzy motion
detection is the robustness against noise and slowly varying illumination changes. The
reliable motion detection scheme enables efficient temporal recursive filtering, which in
turn improves the motion detection performance, in the proposed recursive scheme. The
subsequent additional adaptive spatial fuzzy filter removes the non-stationary noise left by
the temporal filter. We illustrated that the noise reduction method obtains a very good
noise reduction performance for sequences with average spatial-temporal structures, and
average performance for more complicated sequences containing complex motion and many
fine details. The performance generally outperforms single resolution techniques and is
comparable with the more complex multi-resolution methods.
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One of the main challenges for future work is to incorporate the colour information
so that we can improve the temporal and spatial noise reduction method of real colour
image sequences. Vladimir Zlokolica modified the proposed method, in his PhD thesis,
for tracking and interlaced sequences [258], nevertheless the adaptation of the algorithm to
handle interlaced sequences and the tracking problem should be further investigated. Finally
we are also interested in the extension of the proposed fuzzy motion detection for more
efficient motion detection that could cope with fast illumination changes and fast zooming
and planning.





Chapter 7

A Comparative Study of Noise
Reduction Methods

The reduction or removal of noise in digital images is an essential part of image processing,
whether the final information is used for human perception or for an automatic inspection
and analysis. In addition to all the classical based filters for noise reduction, many fuzzy
inspired filters have been developed during the past years including the methods presented
in this thesis. However, it is very difficult to judge about the quality of all these different
filters. For which noise types are they designed? How do they perform compared to each
other? Are there some filters that always clearly outperform the others? Do the numerical
results correspond with the visual results? In this chapter we try to answer these questions
for greyscale and colour images that are corrupted with impulse noise and Gaussian noise.
The discussed comparative study has already led to several publications [147, 148, 149, 150,
152, 195].

We present several state-of-the-art noise reduction methods which can be classified into
the following four groups: (i) the classical noise reduction methods (section 7.1), (ii) the
fuzzy-classical noise reduction methods (section 7.2), (iii) the fuzzy noise reduction meth-
ods (section 7.3) and (iv) the wavelet based noise reduction methods (section 7.4). The
experimental results and the conclusion can be found in section 7.5 and section 7.6, respec-
tively.

7.1 Classical Noise Reduction Methods

Several classical noise reduction methods are well-known in literature. In this section we
give an overview of some important classical noise reduction methods, where we distinguish
between linear and nonlinear filtering techniques. These classical filters pass step-by-step
over the whole image and process each pixel by some filter depending operator. Thus, all
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the pixels are processed whether the pixels are or are not distorted. In that manner, usually
the fine details of the image are blurred, because the fine texture elements are not taken into
account.

7.1.1 Linear filters for greyscale images

A linear filter replaces each pixel of an image by a linear combination of the intensity values
in a certain (2K+1)× (2K+1) neighbourhood around the considered pixel. Let us denote
the noisy input pixel at position (i, j) as N(i, j) and the filtered output pixel as F (i, j) then
we have:

F (i, j) =
K∑

k=−K

K∑
l=−K

w(k, l) ·N(i+ k, j + l). (7.1)

In many cases the coefficients w(k, l) satisfy:

K∑
k=−K

K∑
l=−K

w(k, l) = 1,

so that we can call this method a linear weighted mean filter.
Three well-known examples of linear filters are the mean filter (MF), the Gaussian filter

(or Gaussian smoothing filter) (GF) and the binomial filter (BF). The 3 × 3 mean filter is
defined by the coefficients w(k, l), for k, l = −1, 0, 1, where

w(k, l) =
1
9

and where each pixel is replaced by the mean value of his (3× 3) neighbourhood.
The Gaussian smoothing operator is a two-dimensional convolution operator that is used

to “blur” the image and to remove details and noise. In this sense it is similar to the mean
filter, but it uses a different kernel that represents the shape of a Gaussian (bell-shaped)
hump. The 3 × 3 Gaussian filter is defined by the coefficients w(k, l), for k, l = −1, 0, 1,
where

w(k, l) =
w0(k, l)
1∑

k,l=−1

w0(k, l)

,

with

w0(k, l) = e
−
k2 + l2

2p2
,

with p a parameter that has to be specified. In case of Gaussian noise we take p = σ, which
is the estimated standard deviation of the noise.
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The 3× 3 binomial method is defined by the weights w(k, l), for k, l = −1, 0, 1, where

w(k, l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
16

for k = l = 0

2
16

for |k|+ |l| = 1

1
16

for |k|+ |l| = 2

7.1.2 Nonlinear filters for greyscale images

Some classical nonlinear noise reduction methods are:

• The adaptive weighted mean filter (AWF) filters a noise pixel N(i, j) by using a
certain (2K + 1) × (2K + 1) neighbourhood around N(i, j) and calculating the
following weighted average,

F (i, j) =

i+K∑
k=i−K

j+K∑
l=j−K

w(k, l) ·N(k, l)

i+K∑
k=i−K

j+K∑
l=j−K

w(k, l)

(7.2)

with w(k, l) a general weighting function. This weight is calculated according to the
difference |N(i, j)−N(i− k, j − l)|. If this difference is smaller than a predefined
threshold then we get w(k, l) = 1, otherwise we get w(k, l) = 0.

• The standard median filter (SMF) filter replaces each pixel N(i, j) by the median of
the (2K + 1)× (2K + 1) neighbourhood aroundN(i, j), i.e.,

F (i, j) = median
−K≤k,l≤K

N(i+ k, j + l). (7.3)

The standard median filter is a simple rank selection filter that attempts to remove
impulse noise by changing the intensity value of the central pixel of the filtering
window with the median of the intensity values of the pixels contained within the
window. This method works especially well for impulse noise, since the noise pixel
values are extremely large or small in comparison to the other pixel values. Although
the median filter is simple and provides a reasonable noise removal performance for
the impulse noise, it removes thin lines and blurs image details even at low noise
densities.

• The adaptive wiener filter (AWiF) [119] was developed for the reduction of additive
noise. The central input pixel N(i, j) is replaced by the sum of the local estimation



204 A Comparative Study of Noise Reduction Methods

μ(i, j) of the mean value and a fraction of the contrast N(i, j) − μ(i, j) depending
on the local estimation of the variance σ2(i, j), i.e.,

F (i, j) = μ(i, j) +
σ2(i, j)− σ2

σ2(i, j)
· (N(i, j)− μ(i, j)),

where

μ(i, j) =
1

(2K + 1)2

K∑
k=−K

K∑
l=−K

N(i+ k, j + l),

σ2(i, j) =
1

(2K + 1)2

K∑
k=−K

K∑
l=−K

(N(i+ k, j + l)− μ(i+ k, j + l))2,

and where σ2 is the standard deviation of the noise. The local estimation uses a
(2K + 1)× (2K + 1) neighbourhood around the central pixel (i, j).

• The boundary discriminative noise detection filter (BDND) [154] uses two boundaries
or thresholds (b1 and b2) in order to classify all pixels of a local window, centred
around the current pixel, into three groups: lower intensity impulse noise, uncorrupted
pixels and higher intensity impulse noise.

The method works as follows: (i) the pixels in a 21 × 21 neighbourhood around
N(i, j) are sorted in ascending order; (ii) the intensity differences between each pair
of adjacent pixels across the sorted list are computed; (iii) the maximum intensity
difference for the pixel intensities lower than the median is used to determine the
boundary b1, i.e., b1 is set equal to the intensity value where this maximum is reached;
(iv) the boundary b2 is identified in a similar way for pixels higher than the median.
All pixel values lower than b1 are classified as lower intensity impulse noise, higher
than b2 are classified as higher intensity impulse noise while all other pixel values are
classified as uncorrupted pixels. The central pixel is replaced by the output of the
standard median filter if and only if the pixel value is situated in the lower intensity
impulse noise or the higher intensity impulse noise cluster.

• The centre weighted median filter (CWM) [109] is a modification of the median filter,
which overcomes the main problem of the median filter: the distortions of fine details.
The main idea of the CWM filter is that the central pixel value of the window is given
more weight than to the other pixels in the window before determining the median,
i.e., we count the central pixel as if it were n pixels (n > 1) rather than just one pixel.
This has the effect of preserving that pixel value, so both fine details and noise are
better preserved.

• The tri-state median filter (TSM) [33] is an improvement of the CWM. The main
improvement is the usage of an impulse noise detection method in order to apply the
noise reduction method only on the pixels that are corrupted with noise. The noise
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detection is realised by a simple threshold method where the standard median filter
and the centre weighted median filter (CWM) are used, i.e., the output of the TSM is
defined as

F (i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N(i, j) if |N(i, j)− FSMF (i, j)| ≤ T

FCWM (i, j) if |N(i, j)− FCWM (i, j)| ≤ T

and T < |N(i, j)− FSMF (i, j)|
FSMF (i, j) if T < |N(i, j)− FCWM (i, j)|

where FSMF and FCWM are the output of the standard median filter (SMF) and the
centre weighted median filter (CWM), respectively. The threshold T is a parameter
that has to be chosen by the user.

• The output of the lower-upper-middle filter (LUM) [89] is determined by comparing
a lower and upper order statistic to the middle sample in the filter window. This filter
can be adapted for smoothing, sharpening and outline reduction. This is realised by
two parameters where (i) the first parameter controls the amount of smoothing, i.e.,
varying this parameter changes the level of smoothing from no smoothing to that of
the median and (ii) the second parameter controls the amount of edge enhancement
and sharpening. The LUM actually contains two sub-filters where the first sub-filter
applies the CWM with the first parameter, followed by the second sub-filter that cor-
rects some pixels in order to increase the sharpness of the image. The sharpness is
realised by moving the pixel value away from the median value of a certain neigh-
bourhood, i.e., if the CWM output is too close to the median value then this correction
process is applied.

• The universal noise removal filter (UF) [80] is based on a simple statistic to detect im-
pulse noise pixels in an image. Instead of applying the “detect and replace” method-
ology of most impulse noise reduction methods, the UF method integrates a statistic
(rank-order absolute differences statistic) into a bilateral filter designed to remove ad-
ditive Gaussian noise. The behaviour of the filter can be adaptively changed to reduce
impulse noise while retaining the ability to smooth additive Gaussian noise.

The rank-order absolute differences statistic (ROAD) sorts all the differences between
the central pixelN(i, j) and neighbouring pixels from a (2K+1)× (2K+1) neigh-
bourhood aroundN(i, j). The sum of the (2K+1)2/2 smallest differences (denoted
as pROAD) is used to detect impulse noise. The idea behind this statistic is that un-
wanted impulse noise pixels differ greatly in intensity from their neighbouring pixels,
whereas most pixels composing the actual image should be similar to at least half of
their neighbours. The ROAD statistic provides a measure of how close a pixel value
N(i, j) is to half of its neighbours.

The filtering method is based on the bilateral filter [58, 158, 220] that applies a non-
linear filter to N(i, j) to remove additive Gaussian noise. Each pixel is replaced by a
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weighted average of the intensities in a (2K + 1)× (2K + 1) neighbourhood around
the pixel. The weight w(k, l) for each neighbourN(i+ k, j + l) is defined as:

w(k, l) = wS(k, l) · wR(k, l)1−J(k,l) · wI(i, j)J(k,l), (7.4)

where

wS(k, l) = exp
(
− (k + l)2

2σ2
S

)
,

wR(k, l) = exp
(
− (N(i, j)−N(i+ k, j + l))2

2σ2
R

)
,

wI(i, j) = exp
(
− (pROAD(N(i, j)))2

2σ2
I

)
.

The weightwS decreases as the spatial distance between the two neighbours increases
and the weight wR decreases as the luminance difference between two pixels in-
creases. The parameter σI determines the approximate threshold above which to
penalize high ROAD values. In other words this parameter determines if the central
pixel N(i, j) is corrupted with impulse noise or not. The three parameters σS , σR
and σI control the behaviour of the weight and have to be defined by the user. The
parameter J(k, l) is used to include the result of the impulse noise detection method:

J(k, l) = 1 − 1

2σ2
J

exp

⎛
⎜⎝−

(
pROAD(N(i, j)) + pROAD(N(i+ k, j + l))

)2

2

⎞
⎟⎠ .

7.1.3 Nonlinear filters for colour images

In literature we also found a huge number of classical nonlinear filters, which are designed
especially for colour images. All these filters are vector based approaches. We used the
following methods:

• First we explain the general ideas behind the vector based approaches. Let us denote
the input colour image asN and let W be a window of size n+ 1. The image vectors
or pixels in this window W are denoted as vj for j = 0, ..., n. The distance between
two vectors vk and vl is denoted as ρ(vk, vl). For each vector in the filtered window,
a global accumulated distance (denoted as δ) to all the other vectors in the window
has to be calculated, i.e.,

δj =
n∑

i=0,i�=j
ρ(vj , vi).

The ordering of the δ’s: δ(0) ≤ δ(1) ≤ ... ≤ δ(n) implies the same ordering of the
vectors (pixels): v(0) ≤ v(1) ≤ ... ≤ v(n). Given this ordering, where the lowest
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ranked vector v(0) corresponds to the vector with the lowest accumulated distance
δ(0), the output of the filter is v(0). In this sense, the vector median filter (VMF)
[14, 19] uses the city-block (L1 metric, also called taxi-metric) or the Euclidean (L2

metric) distance criterion to define ρ for the ordering of the vectors.

• The vector directional filters [222] represent a different type of vector filters. These
filters focus on the direction of the image vectors, aiming at eliminating vectors with
atypical directions in the colour space. The basic vector directional filter (BVDF)
[221] uses the angular ordering criterion i.e.,

ρ(vk, vl) = arccos
( vkv

t
l

|vk||vl|
)
. (7.5)

So the output of BVDF is the vector v(0) whose direction is the maximum likelihood
estimation (MLE) of the directions of the input vectors. Since the vector directions
are associated with their chromaticity, the angular criterium may give a better result
than VMF based techniques in terms of colour preservation. On the other hand the
disadvantage of this method is that the BVDF uses only directional information so
that achromatic noise can not be eliminated from the image.

• The directional distance filter (DDF) [99, 100] overcomes the problem of the BVDF
by combining both magnitude (VMF) and direction (BVDF) in the distance criterion.
The DDF retains the structure of the BVDF, but utilizes a new distance criterion to
order the vectors inside the processing window. A new distance criterion was utilized
by the designers of the DDF in order to derive a filter which combines the properties of
the VMF and the BVDF. Specifically, in the case of the DDF the global accumulated
distance (denoted as δ) for the vector vj to all the other vectors in the window is
calculated as:

δj =
n∑

i=0,i�=j
arccos

( vkv
t
l

|vk||vl|
)
·

n∑
i=0,i�=j

||vk − vl||,

where ||.|| defines the Minkowski’s metric. Note that the first term corresponds with
the directional (angular) distance criterion (of the BVDF), while the second term
corresponds to the magnitude distance criterion (of the VMF).

• The adaptive vector median filter (AVMF) [125] is an adaptive extension of the VMF
based on the set of the smallest vector order statistics. The goal of the AVMF was to
design a filter which preserves the fine details of the image, while reducing the noise.
This is realised by the additive switching procedure, i.e.,

IF V al ≥ Tol THEN N(i, j) is noisy

ELSE N(i, j) is noise-free,
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where V al characterizes a detector operation based on a simple mathematical rela-
tionship between the central vectorN(i, j) and the neighbouring vectors. The param-
eter Tol is a threshold value. The AVMF utilizes practically the same set of operations
such as the VMF filtering scheme, setting out from the relationship between the sam-
ple ordering and the outliners or atypical samples presented in the input set. The
AVMF uses the same ordering as the VMF, denoted as v(0) ≤ ... ≤ v(n) introduced
by the ordering of the accumulated distances δ’s. The parameter V al is calculated
as the vector distance between the central vector N(i, j) and the mean of the first r
vector order-statistic (v(0) ≤ ... ≤ v(r)) associated with the smallest distances, i.e.,

V al = ||N(i, j)− 1
r

r∑
k=1

v(k)||.

• The adaptive statistical vector median filter (ASVMF) [126] combines the robust
order-statistic theory and approximation of the multivariate dispersion with a switch-
ing mechanism. Introducing the statistical control of the switching between the vector
median and the identity operation, the ASVMF enhances the detail-preserving capa-
bility of the standard vector median filter.

• The fast adaptive similarity based vector filter (FSVF) [206] is based on privileging
the central pixel in each filtering window in order to replace it only when it is really
noisy. The main idea is to use a similarity measure in order to search a colour vector
which is most similar to all other colour vectors. The similarity between two pixels
of the same colour should be 1, while the similarity between two pixels with very
different colours should be very close to 0. The function μ sim(||vk − vl||) where ||.||
denotes the specific vector norm (typical L1 (city-block) or L2 (Euclidean)) is used
to define the accumulated sum Mk of similarities between a pixel vector vk and all
other vectors belonging to a neighbourhood aroundN(i, j), i.e.,

Mk =
n∑

l=1,l �=k
μsim(vk, vl),

M0 =
n∑
l=1

μsim(v0, vl).

The central pixel N(i, j) (equal to v0) is replaced by one of its neighbours if M0 <
Mk, for k = 1, ..., n. The replacement is realised by taking that vector which reaches
the highest accumulated similarity, which means that this pixel vector is most similar
to all other vectors.

• The structure adaptive hybrid vector filter (SAHVF) [129] for colour images is based
on the human visual perception. First a noise adaptive preprocessing is performed by
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a presmoothing filter based on the Lee’s local statistic filter (LLSF) [117] which filters
each component of the input image represented in another (YCbCr [183, 200]) colour
space. After that, at each image position, the pixel vector is classified into several
different signal activity categories by noise-adaptive modified quadtree decomposi-
tion. For each pixel, a window adaptive hybrid filtering operation is then activated
according to its structure classification. The modified quadtree decomposition clas-
sifies each pixel into one of the following three classes: (i) high activity area, (ii)
medium activity area and (iii) low activity area. For each class, a well-designed filter
that provides the optimal restoration is applied. The three sub-filters are (i) the modi-
fied peer filter (MPF) [102, 129] which is optimal in reducing image degradations in
the high activity areas, (ii) the adaptive nearest neighbour filter (ANNF) [168] which
reduces the noise while preserving the image edge structures in the median activity
areas and (iii) the structure weighted average filter (SWAF) [129] designed to smooth
the small distortions in the low activity areas.

• The peer group switching filter (PGSF) [205] employs a switching scheme based on
the impulse noise detection mechanism using the so-called peer group concept. The
detection of the corrupted pixels is performed by calculating the distances between
the central pixel and its neighbours and counting the number of neighbours whose
distance to the central pixel does not exceed a predefined threshold. In other words,
the number of pixels which are close enough to the pixel under consideration serves
as an indicator whether the pixel is corrupted with impulse noise or not.

The peer group P(N(i, j)) associated with the central pixel vectorN(i, j) of a (2K+
1)×(2K+1) neighbourhood is a set consisting of the central pixel and its neighbours
whose distance to N(i, j) is not exceeding a threshold d.

The PGSF works as follows: if the central pixel N(i, j) is a member of a peer group
containing at leastm pixels (wherem is a predefined number) then the pixel is treated
as noise-free, otherwise it is declared as noise and can be filtered with any efficient
noise reduction method (in [205] the VMF is used).

• The vector sigma median filter (VSMF) [128] uses the order statistic concepts and
statistical measures of the vector deviations in conjunction with different distance
measures among the input vectors to determine an efficient switching rule between
filtering and no filtering. The switching mechanism is

F (i, j) =

{
v(0) if N(i, j) ≥ Tol

N(i, j) otherwise,

where v(0) is the vector which has the smallest accumulated distance in a (2K+1)×
(2K+1) neighbourhood (i.e., n vectors in the window) and where Tol is a threshold
defined as

Tol = δ(0) + λγ =
n− 1 + λ

n− 1
δ(0),
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where δ(0) is the minimum accumulated distance, γ is the approximated variance and
λ is a tuning parameter used to adjust the smoothing properties of the VSMF.

7.2 Fuzzy-Classical Noise Reduction Methods

When images are corrupted with noise it is difficult to make the distinction between noise
and texture elements for different degrees of contamination. This illustrates the added value
of fuzzy set theory that is used to model such kind of uncertainties. Fuzzy set theory al-
lows us to improve the quality of noise reduction methods. In general, a fuzzy filter for
noise reduction uses both numerical information and linguistic information (modelled by
fuzzy set theory, e.g. “small” differences, “similar” pixels, etc.) to filter the noise. In the
following subsections we are summarizing the most well-known fuzzy extensions of the
fuzzy-classical filters.

7.2.1 Greyscale images

• The Gaussian fuzzy filter with the median value within a window chosen as the central
value (GMED) [112, 111] is a modification of the adaptive weighted mean (AWF)
filter. The weights w(k, l) of expression (7.2) are defined as:

w(k, l) = exp
(
−1

2

(
N(i+ k, j + l)− Fmed(i, j)

σ(i, j)

)2)
,

where Fmed(i, j) and σ(i, j) represent the median value and the variance value of all
the input values in a (2K+1)× (2K+1) window. The main idea behind the GMED
filter is: if the difference between |N(i + k, j + l) − Fmed(i, j)| is smaller than the
local variance then the method assumes that N(i + k, j + l) is a noise-free pixel. If
the difference is larger than the local variance then the method assumes that the pixel
N(i+ k, j + l) is a noise pixel.

• The symmetrical triangular fuzzy filter with the median value within a window chosen
as the central value (TMED) [112, 111] is also a modification of the adaptive weighted
mean (AWF) filter. The weights w(k, l) of expression (7.2) are defined as:

w(k, l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1− |N(i+ k, j + l)− Fmed(i, j)|
Nmm(i, j)

for |N(i+ k, j + l)− Fmed(i, j)| ≤ Nmm(i, j)

1 forNmm(i, j) = 0

with

Nmm(i, j) = max
(
Nmax(i, j)− Fmed(i, j), Fmed(i, j)−Nmin(i, j)

)
.
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Nmax(i, j), Nmin(i, j) and Fmed(i, j) are, respectively, the maximum value, the
minimum value and the output of the median filter of all the input valuesN(i+k, j+l)
within a (2K + 1) × (2K + 1) window. The main idea behind the TMED filter is
that the closer the intensity value N(i + k, j + l) is to the median Fmed(i, j) value
the higher the corresponding weight should be.

• The asymmetrical triangular fuzzy filter with the median value within a window
chosen as the central value (ATMED) [112, 111] is a modification of the adaptive
weighted mean (AWF) and an extension of the TMED filter. The weights w(k, l) of
expression (7.2) are defined as:

w(k, l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− Fmed(i, j)−N(i+ k, j + l)
Fmed(i, j)−Nmin(i, j)

for Nmin(i, j) ≤ N(i+ k, j + l) ≤ Fmed(i, j)

1− N(i+ k, j + l)− Fmed(i, j)
Nmax(i, j)− Fmed(i, j)

for Fmed(i, j) < N(i+ k, j + l) ≤ Nmax(i, j)

1 for Fmed(i, j)−Nmin(i, j) = 0
or Nmax(i, j)− Fmed(i, j) = 0

Nmax(i, j), Nmin(i, j) and Fmed(i, j) are, respectively, the maximum value, the
minimum value and the output of the median filter of all the input valuesN(i+k, j+l)
within a (2K+1)× (2K+1) window. The difference between this ATMED method
and the TMED is that the triangular window function now is asymmetrical. The de-
gree of asymmetry depends on the differences between Fmed(i, j) − Fmin(i, j) and
Fmax(i, j)− Fmed(i, j).

• The Gaussian fuzzy filter with the moving average value within a window chosen as
the central value (GMAV) [112, 111] is another modification of the adaptive weighted
mean (AWF). The weights w(k, l) of expression (7.2) are defined as:

w(k, l) = exp
(
−1

2

(
N(i+ k, j + l)− Fmav(i, j)

σ(i, j)

)2)

whereFmav(i, j) and σ(i, j) represent the moving average (mean) value and the vari-
ance value of all the input values in a (2K + 1)× (2K + 1) window. The main idea
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behind the GMAV filter is: if the difference between |N(i+ k, j + l) − Fmav(i, j)|
is smaller than the local variance then the method assumes that N(i + k, j + l) is a
noise-free pixel. If the difference is larger than the local variance then the method
assumes that the pixel N(i+ k, j + l) is a noise pixel.

• The symmetrical triangular fuzzy filter with the moving average value within a win-
dow chosen as the central value (TMAV) [112, 111] is similar to the TMED filter
but uses the moving average value instead of the median value. The weights w(k, l)
become

w(k, l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1− |N(i+ k, j + l)− Fmav(i, j)|
Nmv(i, j)

for |N(i+ k, j + l)− Fmav(i, j)| ≤ Nmv(i, j)

1 for Nmv(i, j) = 0

with

Nmv(i, j) = max
(
Nmax(i, j)−Nmav(i, j), Nmav(i, j)−Nmin(i, j)

)
.

Nmax(i, j), Nmin(i, j) and Nmav(i, j) are, respectively, the maximum value, the
minimum value and the moving average value of all the input values N(i+ k, j + l)
within a (2K + 1)× (2K + 1) window.

• The asymmetrical triangular fuzzy filter with the moving average value within a win-
dow chosen as the central value (ATMAV) [112, 111] is a modification of the adaptive
weighted mean (AWF) and an extension of the TMAV filter. The difference between
the ATMAV filter and the ATMED filter is that the ATMAV uses the moving average
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value instead of the median value in order to determine the weights w(k, l), i.e.,

w(k, l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− N(i+ k, j + l)−Nmav(i, j)
Nmax(i, j)−Nmav(i, j)

for Nmav(i, j) ≤ N(i+ k, j + l) ≤ Nmax(i, j)

1− Nmav(i, j)−N(i+ k, j + l)
Nmav(i, j)−Nmin(i, j)

for Nmin(i, j) ≤ N(i+ k, j + l) < Nmav(i, j)

1 for Nmax(i, j)−Nmav(i, j) = 0
or Nmav(i, j)−Nmin(i, j) = 0

Nmax(i, j), Nmin(i, j) and Nmav(i, j) are, respectively, the maximum value, the
minimum value and the moving average value of all the input values N(i+ k, j + l)
within a (2K + 1)× (2K + 1) window.

• The decreasing weight fuzzy filter with the moving average value within a window
chosen as the central value (DWMAV) [112, 111] is also a modification of the adap-
tive weighted mean (AWF). The weights w(k, l) of expression (7.2) are defined as:

w(k, l) = 1− max(|k|, |l|)
max(|N1|, |N2|) + t

, (7.6)

where a (2N1 + 1)× (2N2 + 1) window size is used so that −N1 ≤ k ≤ +N1 and
−N2 ≤ l ≤ +N2. The threshold t is used to determine the height of the decreasing
triangular-shape weighted function when |k| = N1 or |l| = N2. In general, t = 1, 2
and 3 gives a varying degree of filtering performance. Therefore we denote DWAV1,
DWAV2 and DWAV3 for t = 1, 2 and 3, respectively.

• The fuzzy median filter (FMF) [6, 7] is a modification of the classical median filter.
The fuzzy median filter produces the output F (i, j) at pixel position (i, j) as follows:

F (i, j) = Fmed(i, j) + w(i, j) ·
(
N(i, j)− Fmed(i, j)

)
,

where Fmed(i, j) is the output of the classical median filter and w denotes the mem-
bership function indicating to what degree a pixel can be seen as noise-free, i.e.,
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w(i, j) = 1 if the pixel N(i, j) is noise-free. The membership function w is set ac-
cording to (i) the local characteristics of the input signals and (ii) four fuzzy rules that
are used to determine the output.

• The noise adaptive soft-switching median filter (NASM) from [59, 60] is a switch-
ing based median filter with incorporation of fuzzy set concepts to improve the noise
reduction performance in terms of effectiveness in removing impulse noise while pre-
serving the important image structures. The soft-switching noise-detection scheme is
developed to classify each pixel as an uncorrupted pixel, an isolated impulse noise
pixel, a non-isolated impulse noise pixel or an edge pixel. No filtering (or the iden-
tity filter), the standard median filter or a fuzzy weighted median (FWM) will then
be applied according to the class that each pixel is classified to. The noise detection
method of the NASM is based on the calculation of histogram statistics in order to
classify each pixel in one of the four classes.

• The weighted fuzzy mean filter [116] (WFM) is a modification of the classical adap-
tive weighted filter (AWF) where the threshold of expression (7.2) is replaced by the
output of a fuzzy rule based system. More precisely, three fuzzy averages were calcu-
lated for three fuzzy sets dark, medium and bright. According to a rough estimation
of the output one of the three averages is used as output.

• The adaptive weighted fuzzy mean filter (AWFM) [110, 115] is an extension of the
weighted fuzzy mean filter [116] (WFM) where the corresponding membership func-
tions for the three fuzzy sets dark, medium and bright are constructed adaptively. This
means that the membership functions change according to the corrupted input image.
Additionally a fuzzy detector and a dynamic selection procedure is added to the WFM
in order to overcome the drawback of WFM, i.e., the preservation of fine signal struc-
tures. The fuzzy detector detects the amplitude of impulse noise, which is used as the
argument of the dynamic selection procedure, by referring to two fuzzy intervals and
the output of the WFM filter. Thereafter the dynamic selection procedure applies four
heuristic decision rules to determine the final filtering output.

• The fuzzy decision directed filter (FDD) [135] is a switching filter so that filtering
is performed only when a noise configuration has been detected. A classical filter is
activated depending on the output of a structure extraction process. This is realised
by a fuzzy system that has been tuned in order to preserve edges.

• The multipass fuzzy filter (MFF) [77, 176, 180] consists of three cascaded blocks.
Each block is based on a fuzzy operator which attempts to reduce the noise while
preserving the image structures. Each operator is developed using fuzzy rules.

The first operator (first block) is a nonlinear recursive filter which uses the luminance
differences between the central pixel and neighbouring pixels situated in a certain
template (similar to the FSB filter in Fig. 7.2). Next, the operator calculates the
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membership degree in the fuzzy set large and medium in order to reduce impulse
noise.

The second operator (block) is designed to reduce additive Gaussian noise. This
operator consists of a cross window of size 5× 5 not including the centre itself. The
membership degrees in the fuzzy set small for the luminance differences between the
central pixel and the pixels from the window are calculated to define a correction
term.

In order to improve the noise reduction performance, a third block, an error correction
module is adjoined in order to obtain the final MFF output. The third operator is very
similar to the previous ones, since it employs the large and medium fuzzy sets, using
as input the differences of the luminance to obtain a correction term.

• The fuzzy multilevel median filter (FMMF) [77, 257] is based on the classical mul-
tilevel median filter, which is expanded to include fuzzy rules in order to improve
the impulse noise reduction performance. The classical multilevel median filter is
designed as follows: let W (i, j) be a square window of size (2K + 1) × (2K + 1)
centred at (i, j). Four sub-windows are defined as follows:

W1(i, j) = N(i, j + k) −K ≤ k ≤ +K,
W2(i, j) = N(i+ k, j + k) −K ≤ k ≤ +K,
W3(i, j) = N(i+ k, j) −K ≤ k ≤ +K,
W4(i, j) = N(i+ k, j − k) −K ≤ k ≤ +K.

If medl(i, j), for l = 1, 2, 3 and 4 denotes the median values of each sub-window,
then we can define two variables medmax(i, j) and medmin(i, j) as:

medmax(i, j) = max
l∈{1...4}

med l(i, j),

medmin(i, j) = min
l∈{1...4}

med l(i, j).

The output of the classical multilevel median filter is:

F (i, j) = median (medmax(i, j), medmin(i, j), N(i, j)).

This filter is improved by using fuzzy reasoning, i.e., the FMMF has added the fuzzy
credibility of the median of each sub-filter by using the absolute difference between
the median and each pixel of that sub-window and using the following reasoning: (i)
if at least one of the differences is very high then the credibility of the median for
that sub-window should be very low; (ii) if at least one of the differences is close to
zero then the credibility of the median for that sub-window should be very low; (iii) if
all the differences are medium then the credibility of the median for that sub-window
should be very high.
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• The intelligent image agent based on soft-computing techniques (IIA) [86, 113, 114]
consists of (i) a parallel fuzzy composition mechanism, (ii) a fuzzy mean related ma-
trix process and (iii) a fuzzy adjustment process to remove impulse noise from highly
corrupted images. The fuzzy mechanism embedded in the IIA filter aims at reducing
impulse noise without destroying fine details and textures. A learning method based
on genetic algorithms is adopted to adjust the parameters of the filter from a set of
training data. The parallel fuzzy composition mechanism is applied to each pixel and
consists of several layers to calculate the membership degrees in 5 fuzzy sets (very
dark, dark, medium, bright and very bright), to apply fuzzy rules and to combine the
outputs of each rule to calculate one output value for each pixel. The fuzzy mean re-
lated matrix process is used to evaluate the input values by calculating the fuzzy mean
of the input values. The fuzzy adjustment process finally calculates the filter output
by using two fuzzy sets small and large which define the detail preserving process of
the filter. It basically executes full correction of large amplitude noise pulses, partial
correction of median amplitude noise pulses and no correction of small amplitude
noise pulses.

• The adaptive fuzzy switching filter (AFSF) [252, 253] consists of three cascaded sub-
filters. The first sub-filter aims at detecting impulse noise by considering greyscale
distribution among neighbouring pixels. The detection method is based on the follow-
ing two assumptions: (i) a noise-free image consists of locally smoothly varying areas
separated by edges and (ii) a noise pixel takes a greyscale value substantially larger
or smaller than its neighbours. In order to distinguish edges from noise the AFSF
filter used four one-dimensional Laplacian operators which are sensitive to edges in
a different orientation. The second sub-filter implements the greyscale estimation
according to the neighbouring pixels. This estimation is realised by the maximum-
minimum exclusive median method in order to achieve optimal detail preservation.
The maximum-minimum exclusive median filter is equal to the median of pixels
which are smaller than the maximum and larger than the minimum in a certain (2K+
1)× (2K+1) neighbourhood. The last sub-filter modifies the value of the correction
in order to further improve the detail preservation by fuzzy switching. This is realised
by calculation of the membership degree in the fuzzy set impulse noise. If the degree
is small then we should correct the input pixel only a little bit and when the degree is
large then we should replace the input pixel by the output of the second sub-filter.

• The fuzzy impulse noise detection and suppression filter (FIND) [224] acts in two-
steps. In the first step the membership degrees in the fuzzy set noise are calculated.
All pixels that have a high degree in that fuzzy set are filtered by the second step. The
absolute difference between the input pixelN(i, j) and the output of the median filter
Fmed(i, j) is used to calculate the membership degrees in the fuzzy set noise. A large
absolute difference indicates noise presence, whereas a small difference indicates that
the considered pixel is noise-free. The second step considers only those pixels where
the membership degree is above a certain predefined threshold T . The basic idea
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behind the filtering method (second step) is to subtract or add a correction term to
the impulse noise pixels. The authors used the following expression to calculate the
output, i.e.,

F (i, j) = N(i, j)− (N(i, j))− Fmed(i, j)),
which actually corresponds to the output of the median filter in case that the member-
ship degree in the fuzzy set noise is larger than T .

7.2.2 Colour images

• The adaptive fuzzy vector rank order statistics rational hybrid filter (FVRF) [103, 104,
105, 106] is based on two stages. The scheme of the FVRF is shown in Fig. 7.1. It
basically combines a fuzzy and a non-fuzzy component. Its basic structure can be
described as follows: in the first stage, three adaptive sub-filters are computed using
membership functions based on two distance criteria: (i) the Euclidean distance (L 2

norm) where the resulting sub-filter is called the fuzzy vector magnitude filter [32] and
(ii) the angular distance where the resulting filter is called the fuzzy centred weighted
vector magnitude (directional) filter (FCWVMF). In the second stage, the outputs of
the three sub-filters obtained in the first stage constitute the input set of the vector
rational operator. This stage is illustrated in Fig. 7.1, where the output of the three
sub-filters is denoted as φ1, φ2 and φ3. The output of the FVRF is equal to

F (i, j) = φ2(i, j) +
∑3

k=1 αk φk(i, j)
h+ k ·D(φ1(i, j), φ3(i, j))

,

whereD is a function which is important in terms of edge preservation, α = (α 1, α2,
α3) = (1,−2, 1), characterises the constant vector coefficient of the input sub-filters.
The parameters h and k are positive constants.

• The fuzzy credibility colour filter (FCCF) [240, 241] uses the L*a*b* colour model
(see chapter 1) to reduce impulse noise in colour images. The L*a*b* colour model
is used for its capability of representing perceived colour difference through the Eu-
clidean distances. The FCCF first calculates the credibility of each colour vector in
the (2K+1)×(2K+1) neighbourhood aroundN(i, j). The credibility s l of a vector
vl is calculated as follows:

sl =
n∑
k=0

μC(vl, vk)

where μC(vl, vk) defines the membership degree in the fuzzy set similar and is de-
fined as

μC(vl, vk) =

⎧⎨
⎩

1, if d ≤ ε

exp(− ( d
ε−1)2

2α2
), otherwise
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Figure 7.1: The structure of the adaptive FVRF using bidirectional sub-filters.

where ε = 2.3 is the minimum distance between two distinguishable colours and
where d is the (Euclidean) distance in the L*a*b* colour space between the two
vectors vl and vk. The parameter α is computed according to experience, empiric
deduction and extensive testing (α = 2). The output of the FCCF is the most credible
colour vector among the input colours in the neighbourhood.

• FBF: The fuzzy bilateral filtering proposed in [142] is a fuzzy extension of the well-
known technique proposed in [220]. The main advantage of this method is that edges
and image details are preserved by means of an appropriate nonlinear combination of
the colour vectors in a neighbourhood. The pixel colours are combined based on their
spatial closeness and similarity.

• The modified fast adaptive similarity based vector filter (MFSVF) [141] is a modified
version of the FSVF where another similarity measure (metric) is constructed to im-
prove the noise reduction performance. The similarity function μ sim of the FSVF is
replaced by the fuzzy metric

μmetric(vk, vl) =
3∏
p=1

(
min(vk(p), vl(p)) + 1024
max(vk(p), vl(p)) + 1024

)α
,

where vk = (vk(1), vk(2), vk(3)) and vl = (vl(1), vl(2), vl(3)) are two vectors with
a red, green and blue component and α a parameter which has to be specified by the
user or can be determined adaptively using the technique described in [206] in order
to determine the amount of filtering.
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Figure 7.2: The 18 templates used by the FSB filter.

7.3 Fuzzy Noise Reduction Methods

Fuzzy logic based filters that have no connections with classical filters are grouped together
into the second class, i.e., the fuzzy noise reduction methods. In this thesis we use:

• The fuzzy similarity based filter (FSB) [98, 218, 219], which is based on the idea to
check to which degree the hypothesisH0 is true:

H0: The pixels within a local neighbourhood have similar intensities,

where “local neighbourhood” refers to a number of equidistant pixels to any ran-
domly taken pixel and “similarity” corresponds to a fuzzy relation [28, 98, 229]. H 0

expresses the local properties of the image. Hence H0 appears to be more true when
the neighbourhood size is small and less true as the size increases. Therefore the FSB
filter uses 18 small window templates (Fig. 7.2) of equal size together with different
fuzzy rules to calculate the final output, i.e., the similarity in each template is inves-
tigated in order to decide which templates are used to correct a certain input pixel
N(i, j).

• The fuzzy inference rule by else action filter (FIRE) [177, 178, 179, 181] is a method
based on fuzzy reasoning. The operation is window based: for each pixel of the input
image to be processed, a set of neighbouring pixels is considered. The FIRE operator
processes this neighbourhood information by using fuzzy rules in order to estimate
a correction term which aims at reducing the noise. If no rule is satisfied, then the
central pixel is left unchanged. The fuzzy rules of the FIRE filter are applied on 13
several window templates, shown in Fig. 7.3. The FIRE filter actually is composed
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Figure 7.3: The 13 templates used by the FIRE filter.

of two cascaded sub-units adopting fuzzy reasoning. The first sub-unit, the action
detection module, aims at detecting impulse noise by considering intensity differences
among the neighbouring pixels, so that a correction term is selected. Two fuzzy sets
positive and negative are used to realise this correction. The second sub-unit, the
action adaptation module, modifies the value of this correction in order to further
improve the detail preservation.

The first sub-unit uses, for each of the 13 window templates, the following fuzzy rules
(where (k, l) are specified for each window template, for example (k, l) = {(−1, 0),
(0, 1), (1, 0)} for the first window template):

Fuzzy Rule 7.1. Defines if the correction term of a pixel N(i, j) is positive or nega-
tive:
IF all differencesN(i+ k, j + l) − N(i, j) are positive

THEN the correction term is positive

IF all differencesN(i+ k, j + l) − N(i, j) are negative
THEN the correction term is negative

• The dual-step FIRE filter (DSFIRE) [177, 178, 182] adopts fuzzy reasoning at two
different levels. This makes that the operator is able to effectively reduce the impulse
noise without degrading the quality of fine details and textures. The main differences
between the DSFIRE and the FIRE filter are: (i) the DSFIRE filter operates on a 7×7
cross window and (ii) an additional fuzzy set zero is used. The calculation of the
correction term is quite similar to the FIRE filter. The second level can be seen as
a soft-switching procedure which is added to the FIRE filter in order to replace the
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input value only for noisy input pixels.

• The piecewise linear FIRE filter (PWLFIRE) [175, 177, 178] is based on piecewise
linear fuzzy sets whose shapes are dynamically adapted depending on the local char-
acteristics of the image. Additionally, the fuzzy rule base are generated automatically
too. The main differences between the PWLFIRE and the two other FIRE (the FIRE
and the DSFIRE) methods are: (i) the PWLFIRE uses piecewise linear fuzzy sets
large positive and large negative, i.e., the membership functions are piecewise linear
but not necessarily triangular and (ii) the detail-preservation of the filter depends on
the choice of two parameters and is incorporated indirectly in the method. The partic-
ular shapes of the two fuzzy sets aim at performing a full correction of impulse noise
if their amplitude is large and to perform a smoothing action if the amplitude is small
in order to preserve fine details.

• The iterative fuzzy control based filter (IFCF) [66, 65, 67, 69, 70] is developed to re-
move impulse noise and smooth additive noise. The main idea of the IFCF is the same
as for the FIRE filters, e.g., fuzzy rules are used in order to calculate the membership
degree in the fuzzy set noise and to calculate a correction term. The differences are:
(i) the FIRE filters use several window templates while the IFCF method only uses
one (2K+1)×(2K+1) window, (ii) the IFCF filter is based on the idea that the fuzzy
rules are not fired uniformly on all pixels. The non uniformity reduces the sensitivity
to impulse noise and provides improved edge restoration. The IFCF uses the intuitive
reasoning that if most of the greyscale differences between the central pixel N(i, j)
and the neighboursN(i+ k, j+ l) are part of the same class, that the correction term
is also part of that class (for example the class large negative). Seven classes, repre-
sented as fuzzy sets, are used for the IFCF i.e., large negative (LN), medium negative
(MN), small negative (SN), zero (Z), small positive (SP), medium positive (MP) and
large positive (LP). The corresponding 7 fuzzy sets are illustrated in Fig. 7.4 (a). Next
the differences Δk,l(i, j) in a (2K + 1)× (2K + 1) neighbourhood are used, i.e.,

Δk,l(i, j) = |N(i, j)−N(i+ k, j + l)|,
and the following fuzzy rules in order to calculate the correction term:

Fuzzy Rule 7.2. Fuzzy rules used by the IFCF:
R1: IF most of Δk,l(i, j) are LN THEN δ(i, j) is LN
R2: IF most of Δk,l(i, j) are MN THEN δ(i, j) is MN
R3: IF most of Δk,l(i, j) are SN THEN δ(i, j) is SN
R4: IF most of Δk,l(i, j) are SP THEN δ(i, j) is SP
R5: IF most of Δk,l(i, j) are MP THEN δ(i, j) is MP
R6: IF most of Δk,l(i, j) are LP THEN δ(i, j) is LP
R0: ELSE δ(i, j) is Z

The membership functions, used in those rules, are defined as triangular functions and
where the linguistic term most is represented by the S-membership function defined
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Figure 7.4: (a) The 7 membership functions used by the IFCF and (b) the 4 additional membership
functions used by the SSFCF.

in definition 1.7. The final result of the IFCF is:

F (i, j) = N(i, j) + δ(i, j).

• The modified IFCF (MIFCF) [66, 65, 67, 68] improves the IFCF, because the output
of the IFCF makes the edges a little bit blurry, especially with increasing the number
of iterations. This problem is solved by tuning the membership function of the fuzzy
set most in a way that it becomes sharper at the boundaries. By sharpening the shape
of the membership function in each iteration, the range of activity becomes smaller.
This includes that the fuzzy rules R1-R6 of the IFCF will only fire in those regions
in which we almost certainly can indicate a corrupted pixel. After a few iterations
the rules are only activated for a small number of image pixels. The result is, that the
MIFCF can apply more iterations without having any edge blurring problem.

• The extended IFCF (EIFCF) [66, 64, 65, 67] is an extension of the IFCF. In contrast to
the IFCF, this approach is mainly based on the idea that in each iteration the domains
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of the 7 fuzzy linguistic terms get smaller. This makes that the filter preserves its
filtering performance during iteration. The intuition behind this idea is that in each
iteration the image gets more filtered. Therefore, the amount of noise in the sense of
average and peak values will decrease.

• The smoothing fuzzy control based filter (SFCF) [66, 65, 67, 69] is a non-iterative
modification of the IFCF. The iterative fuzzy control based filter is improved in terms
of smoothing so that the filter is less sensitive to additive noise. The first change is
that the fuzzy rule R0 is replaced with the following rule

Fuzzy Rule 7.3. The new fuzzy rule R0 used by the SFCF:
R0: ELSE IF most’ of Δk,l(i, j) are Z

THEN δ(i, j) is mean
−K≤k,l≤K

(N(i+ k, j + l))

where the linguistic term most’ is a smoothed version of the linguistic term most as
defined by the IFCF. In other words the two parameters of the S-membership function
have been adjusted so that the function is approximately linear over a wider range.
This tends to provide a smoothing effect. A second change deals with the calculation
of the activation degrees of each rule. In the IFCF method the activation degree of
each rule is calculated using the minimum operator while the SFCF uses the median
operator. More information can be found in [65, 69].

• The sharpening and smoothing fuzzy control based filter (SSFCF) [66, 65, 67, 69] is
an extension of the SFCF in order to produce images where the edges are sharper.
This image sharpening is realised by adding two fuzzy rules, i.e.,

Fuzzy Rule 7.4. The two additional fuzzy rule R7 and R8 used by the SSFCF:
R7: IF most of Δk,l(i, j) are Z AND not few of Δk,l(i, j) are A1

THEN δ(i, j) is B1
R8: IF most of Δk,l(i, j) are Z AND not few of Δk,l(i, j) are A2

THEN δ(i, j) is B2

where A1, A2, B1 and B2 are additional fuzzy sets represented by the membership
functions shown in Fig. 7.4 (b).

• The fuzzy additive noise reduction method (GOA) [151, 227, 228] uses the concept
of fuzzy derivatives (fuzzy gradient) values as defined in expression (2.1). The gen-
eral idea behind the GOA filter is to average a pixel using other pixel values from
its neighbourhood, but simultaneously take care of important image structures such
as edges. This is realised by using a set of 16 fuzzy rules that are applied to deter-
mine a correction term. These rules make use of the fuzzy gradient values as input.
Fuzzy sets are then employed to represent the properties small, positive and negative.
While the membership functions for positive and negative are fixed, the membership
function for small is adapted after each iteration, according to the estimation of the
(remaining) amount of noise. We have to note that some other filters, such as the
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smoothing fuzzy control based filter (SFCF), also take care of edges, but “after” in-
stead of “simultaneous” with the noise reduction process.

• The histogram adaptive filter (HAF) [245, 246] belongs to a class of nonlinear filters
that employs the histogram to reduce noise. This is accomplished through a fuzzy
smoothing operator constructed from a set of fuzzy membership functions for which
the initial parameters are derived in accordance with input histograms. The histogram
is used together with some input statistics to adjust the initial parameters. The dis-
crepancy between reference intensity and the output of the defuzzification process
is minimized. In other words, the construction of the HAF begins with using the
corrupted image to estimate the histogram of the original (uncorrupted) image. Af-
terwards the initial parameters of a set of fuzzy membership functions are derived
from the estimated histogram, which is followed by applying a conservation princi-
ple to adjust the initial parameters to obtain a set of well-conditioned membership
functions.

The methods that were developed and discussed in this thesis are:

• The fuzzy impulse noise detection and reduction method (FIDRM) [193, 194] is de-
veloped to reduce especially fixed valued impulse noise in greyscale images. This
method is discussed in section 2.2.

• The fuzzy random valued impulse noise reduction method (FRINR) [187, 189] is
developed to reduce especially random valued impulse noise in greyscale images.
This method is discussed in section 2.3.

• The fuzzy impulse noise detection and reduction method for digital colour images
(FIDRMC) [184, 186] is an extension of the FIDRM for colour images corrupted
with impulse noise. This method is discussed in section 3.2.

• The histogram fuzzy colour method (HFC) [185, 190] is another alternative colour
filtering method which uses the histogram of the colour component differences to
reduce (fixed and random valued) impulse noise in colour images. This method is
discussed in section 3.3.

• The impulse noise reduction method for colour images (INRC) [143, 192] is also a
colour filtering method to reduce (fixed and random valued) impulse noise in colour
images. The main improvement in comparison to the FIDRMC and HFC is the usage
of the information in the colour components in order to develop a more appropriate
impulse noise detection. This method is discussed in section 3.4.

• The fuzzy shrinkage method (FuzzyShrink) [191] is an alternative of the more com-
plex probabilistic ProbShrink wavelet based method in order to reduce additive noise
in greyscale images. This method is discussed in chapter 4. [191]
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• The fuzzy colour preserving Gaussian noise reduction method (FCG) [188] is an al-
ternative colour filtering method to reduce additive Gaussian noise in colour images.
The main improvement is the preservation of the colour components differences. This
method is discussed in chapter 5. Additionally we will apply the combination of the
FuzzyShrink method and the FCG, so that a good noise reduction method is combined
with a colour preserving method. This method will be denoted as FS2FCG.

7.4 Wavelet based Noise Reduction Methods

• TLS: the total least square filtering method for reducing additive noise from digital
images was proposed in [90, 91]. This method was developed to reduce the contri-
bution from the irrelevant image patches, which sharps the edges and reduces edge
artefacts at the same time.

• HMT: the hidden Markov tree method proposed in [172, 173]. This statistical signal
and image processing technique captures the key features of the joint probability den-
sity of the wavelet coefficients, i.e., hidden Markov trees capture the primary aspects
of the image structure in the wavelet domain. The HMT method of [172, 173] uses
a Bayesian approach, so that the method was able to incorporate the knowledge of
image structures into a “smart” wavelet shrinkage rule that takes into account coarse
scale information while processing fine scale wavelet coefficients.

• 3D-DFT: the recently developed denoising method in the 3D transform domain that
combines a sliding-window transform processing with block-matching proposed in
[42]. This method processes blocks within an image in a sliding manner and utilizes
the block-matching concept by searching for blocks that are similar to the currently
processed one. The matched blocks are stacked together to form a 3D array and
due to the similarity between them, the data in the array exhibits a high level of
correlation. The method exploits this correlation by applying a 3D de-correlating
unitary transform and effectively attenuates the noise by shrinkage of the transform
coefficients. The subsequent inverse 3D transform yields estimates of all matched
blocks. After repeating this procedure for all image blocks in sliding manner, the
final estimate is computed as the weighed average of all overlapping block estimates.

• BLS-GSM, which stands for “Bayesian Least Squares - Gaussian Scale Mixture” was
proposed in [169, 170]. This method is based on a statistical model of the wavelet
coefficients of an over-complete multi-scale oriented basis. Neighbourhoods of co-
efficients at adjacent positions and scales are modelled as the product of two inde-
pendent random variables: a Gaussian vector and a hidden positive scalar multiplier.
The latter modulates the local variance of the coefficients in the neighbourhood and is
thus able to account for the empirically observed correlation between the coefficients
amplitudes. Under this model, the Bayesian least squares estimate of each coefficient
reduces to a weighted average of the local linear estimate over all possible values of
the hidden multiplier variable.



226 A Comparative Study of Noise Reduction Methods

• BiShrink: the bivariate shrinkage denoising method proposed in [40, 41]. This wave-
let based shrinkage method considers the dependencies between the coefficients and
their parents in detail. For this purpose, non-Gaussian bivariate distributions were
proposed, and corresponding nonlinear shrinkage functions were derived from the
models using Bayesian estimation theory.

• ProbShrink: the recently developed probabilistic shrinkage method proposed in [162].
This method estimates the probability that a given coefficient contains a significant
noise-free component. All the probabilities are estimated assuming a generalized
Laplacian prior for noise-free sub-band data and additive Gaussian noise.

• Lucchese: the chromatic filtering scheme proposed in [124] for digital colour images.
The chromatic content of a colour image is encoded in the CIE u ′v′ chromaticity co-
ordinates whereas the achromatic content is encoded as the CIE Y tri-stimulus value.
The major characteristics of this filter are: (i) the elimination of colour smearing
effects along edges between bright and dark areas (ii) the possibility of processing
chromatic components in a non-iterative fashion through linear convolution opera-
tions and (iii) the consequent amenability to computationally efficient implementa-
tions with fast Fourier transform.

• NLCDM: The nonlinear complex diffusion method proposed in [82] tries to unify
smoothing and enhancement to obtain a denoised image. The method generalized
the linear and nonlinear scale spaces in the complex domain, by combining the diffu-
sion equation with the simplified Schrödinger equation. The analysis of the complex
diffusion showed that the generalized diffusion had properties of both forward and
inverse diffusion. One important observation was that the imaginary part could be
regarded as an edge detector after rescaling by time, when the complex diffusion co-
efficient approaches the real axis. Based on this observation, the authors developed
this nonlinear complex method for ramp preserving denoising.

7.5 Experiments

This section presents a large comparative study where the methods described above are com-
pared with each other in terms of numerical measures and visual observations. For this pur-
pose we used six test images: the greyscale “Cameraman” image Fig. 7.5 (a), the coloured
“Flowers” image Fig. 7.5 (b), the coloured “House” image Fig. 7.5 (c), the coloured “Plane”
image Fig. 7.5 (d), the coloured “Barbara” image Fig. 7.5 (e) and the coloured “Bee” image
Fig. 7.5 (f). As measure of the objective similarity between a filtered image and the original
one, we use the PSNR, the UIQ and the M h

6 . Additionally we use the NCD measure in
order to get a measure for the colour preservation.

The experiments are divided into four subsections. In subsection 7.5.1 we focus on the
impulse noise distortions in greyscale images, followed by the impulse noise distortions in
colour images (subsection 7.5.2). The additive Gaussian noise case is finally discussed in
subsections 7.5.3-7.5.4 for greyscale and colour images, respectively.
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Figure 7.5: The six test images that we used for the experiments: (a) the greyscale “Cameraman ”
image, (b) the coloured “Flowers” image, (c) the coloured “House” image, (d) the coloured “Plane”
image, (e) the coloured “Barbara” image and (f) the coloured “Bee” image.
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7.5.1 Impulse noise in greyscale images

The first experiments investigate the performances of the state-of-the-art methods for the
impulse noise case in greyscale images. We distinguish three different impulse noise models
namely: (i) the fixed valued impulse noise, (ii) the random valued impulse noise and (iii)
the α-stable impulse noise.

Numerical results

In Tables 7.1 - 7.3 we show the numerical results (PSNR, UIQ and M h
6 ) for the “Camera-

man” image corrupted with several levels of fixed valued impulse noise. Tables 7.4 - 7.6 and
Tables 7.7 - 7.9 show similar results for the random and α-stable impulse noise, respectively.
For the α-stable impulse noise we have also include two methods, denoted as FIDRM+ and
FRINR+, which corresponds with an impulse noise reduction method (FIDRM and FRINR)
followed by an additive Gaussian noise reduction method. The FuzzyShrink method is used
for the Gaussian noise reduction. We also have to mention that only the best performing
methods were included in those tables.

Based on the numerical results we can summarise the following conclusions:

• The best numerical results for low fixed valued impulse noise is obtained by the
FIDRM and the BDND methods followed by PWLFIRE, FMF, FRINR, DSFIRE and
CWM filters. For medium fixed valued impulse noise we observe that the top seven
becomes: FIDRM, BDND, DSFIRE, IIA, AFSF, FMF, AWFM. For high fixed valued
impulse noise the FIDRM filter clearly outperforms the BDND method followed by
AFSF, IIA, AWFM, ATMAV and ATMED.

• The best numerical results for low, medium and high random valued impulse noise is
obtained by the FRINR method followed by FIDRM, CWM, FMF, FSB and MIFCF
filters. We have to note that the UF also works well for very high random valued
impulse noise.

• For the α-stable impulse noise we observe that the best noise reduction is performed
by the combination of an impulse noise reduction method (FIDRM and FRINR) fol-
lowed by an additive Gaussian noise reduction method such as the FuzzyShrink. This
combination slightly outperforms the FIDRM and FRINR method. Other methods
which work relatively well for 0.7 ≤ α ≤ 0.9 are: FMF, MIFCF, TSM, PWLFIRE,
AFSF and FIND. For 0.3 ≤ α ≤ 0.9 we additionally can advise: SMF, FSB, TMED
and GMED.

• The quality measures used for the evaluation (PSNR, UIQ and M h
6 ) of the filters for

greyscale images do correspond more or less with each other.

• Since the α-stable noise can be seen as a mixture of impulse noise and additive Gaus-
sian noise, we can conclude that wavelet based methods must be applied after any
efficient impulse noise method in order to improve the quality.

• Generally we can conclude that the proposed methods (i.e., the FIDRM and the
FRINR method) outperform the state-of-the art methods for most of the noise cir-
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cumstances. The FIDRM method works especially well for fixed valued impulse
noise but also for the other two noise types we observe a very good performance. The
FRINR method outperforms most filters for the random valued impulse noise and α-
stable noise (with α ≤ 0.5). For (high) fixed valued impulse noise we can see that
this method obtains a lower noise reduction performance.

Visual results

Visual results of the best performing filters are presented in Figs. 7.6 - 7.8, where the “Cam-
eraman” image was corrupted with 25% fixed valued impulse noise, 25% random valued
impulse noise and α-stable noise with α = 0.6. The conclusions with respect to the visual
observations are:

• The best visual results for the fixed valued impulse noise are obtained by the FIDRM
and the BDND filter. Note that the FIDRM method outperforms the BDND for higher
impulse noise. The BDND filter destroys a little bit more fine details and structures
in comparison to the FIDRM filter. The third best results are obtained by the FRINR
method and the AFSF filter. The other filters do not reduce all impulse noise (DSFIRE
and FMF filters for example) or make the image too blurry (as the IIA filter).

• The FRINR method obtains the best noise reduction performance for the random
valued impulse noise. It clearly eliminates most of the random valued impulse noise,
while preserving most of the image structures. Other methods, such as the FIDRM
and the SMF, work well but can not eliminate all the noise and also destroy small
details. The remaining methods clearly perform worse because: (i) some of them
have a lower noise reduction performance (MIFCF and FMF) or (ii) they smooth
the noise away so that too much important image structures are eliminated (FSB and
TMED).

• For the α-stable impulse noise we observe that the best results were obtained by the
FIDRM or FRINR method followed by the FuzzyShrink method. The usage of an
additive noise reduction method improves the visual results, since also small addi-
tive noise was eliminated. Even without the FuzzyShrink method we see that the
proposed FRINR method clearly outperforms other state-of-the-art impulse noise re-
duction methods. Other methods which work well are MIFCF and the AFSF method.

• From the visual results we observe that the proposed methods (FIDRM and FRINR)
clearly obtain the best or one of the best results in all three noise circumstances. This
confirms the numerical results.

7.5.2 Impulse noise in colour images

In the second experiments we investigate the performances of the state-of-the-art methods
for colour images corrupted with impulse noise. Again we distinguish the three different
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Table 7.1: Comparative results in terms of PSNR (dB) of different filtering methods for various
distortions of fixed valued impulse noise for the (256 × 256) “Cameraman” image Fig. 7.5 (a).

PSNR (dB)
% 5 10 15 20 25 30 40 50

Noise 17.99 15.11 13.26 12.00 11.07 10.26 9.02 8.05
UF 24.99 22.30 21.32 20.74 20.42 20.08 18.90 16.04

BDND 38.32 34.26 32.42 31.55 30.06 28.77 27.03 25.50
TSM 28.58 25.41 23.94 23.75 23.56 23.03 21.60 20.72
CWM 29.56 26.54 24.36 22.26 20.07 18.03 14.44 12.04

GF 23.41 22.24 21.15 20.13 19.33 18.47 16.90 15.69
MF 23.41 22.24 21.15 20.13 19.33 18.47 16.90 15.69
BF 23.86 22.29 21.03 19.90 19.05 18.15 16.55 15.36

SMF 26.71 25.95 25.38 25.01 24.76 24.15 21.32 18.40
FSB 26.42 25.65 25.15 24.79 24.58 23.90 21.17 18.27
FIND 28.58 27.25 26.39 24.86 23.66 21.59 17.59 14.55
AFSF 27.66 27.17 26.79 26.25 26.00 25.22 24.30 23.98
IIA 27.83 27.45 27.03 26.59 26.10 25.79 24.68 24.12

MFF 25.29 24.74 23.97 22.54 22.45 22.21 20.37 17.98
AWFM 25.42 25.12 24.96 24.83 24.53 24.39 23.73 23.30
WFM 24.32 24.16 24.04 23.80 23.64 23.36 22.72 22.11
FMF 30.53 27.98 26.89 25.96 25.13 23.98 21.36 19.09

DWMAV 23.41 22.24 21.15 20.13 19.33 18.47 16.90 15.69
ATMED 26.14 25.50 25.01 24.71 24.64 24.39 23.25 21.84
TMED 26.62 25.84 25.19 24.91 24.50 23.75 20.86 18.07

ATMAV 24.54 24.12 23.76 23.76 23.71 23.65 23.34 22.93
GMED 26.69 25.93 25.37 24.97 24.73 24.12 21.31 18.39
TMAV 26.71 25.92 25.26 24.92 24.59 23.83 21.21 18.74
GMAV 26.19 25.15 24.22 23.52 22.92 21.93 19.65 17.74
NASM 26.19 25.97 24.55 24.33 24.36 23.62 20.96 17.92
HAF 25.09 24.80 24.42 24.26 24.12 23.91 23.53 23.31
IFCF 25.89 25.32 25.01 24.10 23.55 22.31 19.72 17.31

MIFCF 26.94 25.92 25.26 23.95 22.92 21.31 18.31 15.65
EIFCF 25.92 25.41 25.04 24.14 23.51 22.24 19.57 17.09
SFCF 26.33 24.99 23.68 22.11 20.67 19.05 16.17 13.95
SSFCF 26.53 25.35 24.18 22.54 21.00 19.20 16.01 13.55
FIRE 26.34 25.01 24.71 23.87 23.40 22.34 19.67 17.00

DSFIRE 30.77 29.49 28.48 27.09 26.24 25.06 22.31 20.09
PWLFIRE 35.35 31.28 29.06 26.85 24.93 22.67 17.93 14.90

FIDRM 37.98 34.42 32.78 31.75 30.60 29.52 28.04 26.72
FRINR 31.47 28.37 27.09 26.05 24.84 23.92 21.48 19.53
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Table 7.2: Comparative results in terms of UIQ of different filtering methods for various distortions
of fixed valued impulse noise for the (256 × 256) “Cameraman” image.

UIQ
% 5 10 15 20 25 30 40 50

Noise 0.8809 0.7844 0.6905 0.6107 0.5438 0.4790 0.3720 0.2838
BDND 0.9988 0.9970 0.9954 0.9943 0.9920 0.9893 0.9839 0.9771
CWM 0.9911 0.9821 0.9708 0.9531 0.9242 0.8824 0.7542 0.6199
SMF 0.9826 0.9793 0.9764 0.9742 0.9726 0.9686 0.9405 0.8875
FIND 0.9888 0.9848 0.9814 0.9736 0.9654 0.9448 0.8671 0.7517
AFSF 0.9860 0.9843 0.9829 0.9807 0.9795 0.9756 0.9696 0.9674
IIA 0.9866 0.9853 0.9839 0.9822 0.9801 0.9787 0.9723 0.9689

AWFM 0.9765 0.9748 0.9739 0.9731 0.9712 0.9702 0.9654 0.9617
FMF 0.9929 0.9872 0.9836 0.9797 0.9754 0.9680 0.9420 0.9030

ATMED 0.9797 0.9765 0.9736 0.9714 0.9709 0.9691 0.9597 0.9438
TMAV 0.9825 0.9790 0.9754 0.9736 0.9717 0.9666 0.9406 0.8987
HAF 0.9739 0.9721 0.9696 0.9684 0.9674 0.9659 0.9619 0.9601

DSFIRE 0.9931 0.9908 0.9884 0.9838 0.9802 0.9739 0.9504 0.9166
PWLFIRE 0.9976 0.9940 0.9900 0.9833 0.9741 0.9568 0.8759 0.7669
FIDRM 0.9987 0.9971 0.9957 0.9946 0.9929 0.9909 0.9871 0.9826
FRINR 0.9943 0.9883 0.9843 0.9802 0.9739 0.9678 0.9445 0.9161

Table 7.3: Comparative results in terms of Mh
6 of different filtering methods for various distortions

of fixed valued impulse noise for the (256 × 256) “Cameraman” image.

Mh
6

% 5 10 15 20 25 30 40 50
Noise 0.6925 0.5383 0.4456 0.3871 0.3503 0.3253 0.2901 0.2626
BDND 0.9958 0.9921 0.9877 0.9845 0.9785 0.9731 0.9622 0.9483
CWM 0.9695 0.9503 0.9269 0.8888 0.8291 0.7557 0.5923 0.4537
SMF 0.9401 0.9359 0.9315 0.9249 0.9224 0.9182 0.8883 0.8280
FIND 0.9718 0.9613 0.9491 0.9325 0.9148 0.8790 0.7753 0.6405
AFSF 0.9620 0.9579 0.9533 0.9486 0.9438 0.9339 0.9174 0.9102
IIA 0.9700 0.9638 0.9581 0.9513 0.9446 0.9386 0.9132 0.9008

AWFM 0.9230 0.9214 0.9216 0.9203 0.9194 0.9188 0.9152 0.9018
FMF 0.9697 0.9562 0.9440 0.9335 0.9220 0.9059 0.8521 0.7779

ATMED 0.9179 0.9111 0.9040 0.8990 0.8980 0.8960 0.8821 0.8528
TMAV 0.9284 0.9215 0.9035 0.8962 0.8876 0.8742 0.8292 0.7622
HAF 0.9179 0.9165 0.9153 0.9143 0.9133 0.9138 0.8957 0.8957

DSFIRE 0.9730 0.9665 0.9592 0.9433 0.9302 0.9127 0.8681 0.8110
PWLFIRE 0.9936 0.9864 0.9773 0.9666 0.9538 0.9242 0.8270 0.6961
FIDRM 0.9889 0.9842 0.9797 0.9759 0.9706 0.9651 0.9559 0.9452
FRINR 0.9844 0.9761 0.9661 0.9569 0.9447 0.9334 0.9043 0.8566
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Table 7.4: Comparative results in terms of PSNR (dB) of different filtering methods for various
distortions of random valued impulse noise for the (256 × 256) “Cameraman” image Fig. 7.5 (a).

PSNR (dB)
% 5 10 15 20 25 30 40 50

Noise 21.45 18.31 16.56 15.29 14.32 13.50 12.28 11.34
UF 27.59 26.48 25.30 24.77 24.20 23.31 23.13 22.56

TSM 28.79 26.75 24.66 23.61 23.01 22.04 20.83 18.85
CWM 30.37 27.83 25.90 24.27 22.46 20.41 18.14 16.14

GF 24.41 23.02 22.00 21.08 20.23 19.29 17.80 16.53
MF 24.40 23.01 22.00 21.08 20.23 19.29 17.80 16.53
BF 25.41 23.50 22.18 21.15 20.23 19.23 17.70 16.41

SMF 26.77 26.33 25.61 25.12 24.65 23.74 22.27 20.03
FSB 26.49 26.08 25.44 25.04 24.63 23.75 22.47 20.28
FIND 28.16 27.03 25.62 24.55 23.24 21.70 19.60 17.52
AFSF 27.50 26.32 25.22 24.41 23.66 22.28 20.35 18.28
IIA 25.99 25.35 24.59 23.62 22.57 21.31 19.27 17.51

MFF 25.19 24.91 24.38 23.82 23.30 22.30 21.60 20.08
AWFM 24.72 23.94 23.05 22.33 21.45 20.20 18.18 16.20
WFM 23.74 22.80 21.79 20.71 19.70 18.61 16.86 15.63
FMF 29.97 28.09 26.79 25.77 24.56 23.03 20.79 17.96

DWMAV 24.40 23.01 22.00 21.08 20.23 19.29 17.80 16.53
ATMED 26.16 25.38 24.40 23.74 23.05 22.01 20.14 18.08
TMED 26.59 26.14 25.37 24.95 24.46 23.59 22.19 20.11

ATMAV 23.77 21.75 20.11 18.92 18.41 17.57 16.33 15.39
GMED 26.75 26.31 25.59 25.09 24.63 23.73 22.26 20.03
TMAV 26.74 26.09 25.26 24.61 23.99 22.99 21.25 19.23
GMAV 26.20 25.47 24.59 23.69 22.92 21.96 20.21 18.41
NASM 25.93 26.06 25.83 24.17 23.99 23.39 22.68 21.59
HAF 24.21 22.34 21.39 20.13 19.67 18.44 16.90 15.84
GOA 24.17 23.10 21.90 20.88 19.90 18.87 17.53 16.38
IFCF 26.14 25.63 25.37 24.91 24.34 23.58 22.01 20.00

MIFCF 27.39 26.56 26.09 25.44 24.64 23.52 21.54 19.31
EIFCF 26.15 25.73 25.51 24.98 24.41 23.64 21.98 19.96
SFCF 26.98 26.34 25.43 24.69 23.63 22.16 20.02 17.79
SSFCF 26.98 26.42 25.62 24.94 23.91 22.39 20.22 17.88
FIRE 26.31 25.05 24.16 23.55 22.89 21.93 20.41 18.49

DSFIRE 27.02 24.71 23.07 21.90 20.85 19.67 17.80 16.07
PWLFIRE 27.30 24.50 22.49 21.13 19.89 18.55 16.61 14.99

FIDRM 30.61 28.68 27.09 26.08 25.15 23.70 20.89 17.72
FRINR 31.95 29.22 28.22 26.74 25.82 24.84 23.65 22.03
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Table 7.5: Comparative results in terms of UIQ of different filtering methods for various distortions
of random valued impulse noise for the (256 × 256) “Cameraman” image.

UIQ
% 5 10 15 20 25 30 40 50

Noise 0.9428 0.8834 0.8269 0.7702 0.7168 0.6597 0.5564 0.4599
UF 0.9859 0.9818 0.9761 0.9730 0.9691 0.9617 0.9598 0.9529

TSM 0.9894 0.9830 0.9726 0.9640 0.9586 0.9480 0.9300 0.8864
CWM 0.9926 0.9866 0.9790 0.9693 0.9532 0.9243 0.8690 0.7856
SMF 0.9828 0.9808 0.9773 0.9743 0.9712 0.9642 0.9484 0.9092
FIND 0.9876 0.9838 0.9775 0.9709 0.9602 0.9426 0.9033 0.8360
AFSF 0.9854 0.9807 0.9749 0.9695 0.9634 0.9491 0.9174 0.8587
FMF 0.9918 0.9873 0.9828 0.9781 0.9708 0.9581 0.9276 0.8557

TMED 0.9820 0.9799 0.9757 0.9730 0.9693 0.9619 0.9455 0.9078
GMED 0.9827 0.9808 0.9772 0.9742 0.9711 0.9640 0.9481 0.9088
NASM 0.9793 0.9799 0.9788 0.9686 0.9673 0.9621 0.9546 0.9403
MIFCF 0.9850 0.9817 0.9794 0.9758 0.9706 0.9612 0.9357 0.8859
DSFIRE 0.9836 0.9718 0.9579 0.9441 0.9277 0.9028 0.8417 0.7583

PWLFIRE 0.9849 0.9710 0.9537 0.9361 0.9143 0.8816 0.8098 0.7147
FIDRM 0.9930 0.9890 0.9841 0.9798 0.9749 0.9647 0.9312 0.8530
FRINR 0.9948 0.9903 0.9878 0.9828 0.9787 0.9733 0.9646 0.9481

Table 7.6: Comparative results in terms of Mh
6 of different filtering methods for various distortions

of random valued impulse noise for the (256 × 256) “Cameraman” image.

Mh
6

% 5 10 15 20 25 30 40 50
Noise 0.8212 0.7189 0.6390 0.5816 0.5373 0.5019 0.4523 0.4062
UF 0.9420 0.9346 0.9253 0.9252 0.9147 0.9022 0.8958 0.8731

TSM 0.9788 0.9546 0.9339 0.9259 0.9150 0.8966 0.8611 0.8001
CWM 0.9717 0.9545 0.9331 0.9030 0.8626 0.8225 0.7624 0.7145
SMF 0.9403 0.9355 0.9283 0.9204 0.9136 0.8989 0.8587 0.8005
FIND 0.9681 0.9509 0.9293 0.9089 0.8784 0.8437 0.7826 0.7311
AFSF 0.9591 0.9451 0.9310 0.9192 0.8966 0.8698 0.8170 0.7676
FMF 0.9673 0.9544 0.9423 0.9323 0.9150 0.8897 0.8291 0.7415

TMED 0.9320 0.9215 0.9060 0.8966 0.8835 0.8646 0.8264 0.7829
GMED 0.9377 0.9332 0.9263 0.9150 0.9093 0.8957 0.8568 0.7994
NASM 0.9643 0.9630 0.9585 0.9395 0.9311 0.9225 0.9048 0.8743
MIFCF 0.9308 0.9250 0.9186 0.9073 0.8928 0.8675 0.8167 0.7615
DSFIRE 0.9372 0.9059 0.8736 0.8512 0.8231 0.7942 0.7431 0.6978

PWLFIRE 0.9368 0.8956 0.8451 0.8162 0.7762 0.7470 0.6848 0.6382
FIDRM 0.9814 0.9697 0.9586 0.9482 0.9343 0.9096 0.8549 0.7644
FRINR 0.9880 0.9789 0.9727 0.9654 0.9541 0.9412 0.9260 0.9041
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Table 7.7: Comparative results in terms of PSNR (dB) of different filtering methods for various
distortions of α-stable impulse noise for the (256 × 256) “Cameraman” image Fig. 7.5 (a).

PSNR (dB)
α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Noise 10.24 12.11 14.17 15.99 18.14 20.14 22.28 24.01
BDND 20.30 20.37 21.15 22.12 23.29 24.43 26.03 27.61
TSM 22.45 23.21 23.41 25.28 26.74 27.90 28.30 28.97
GF 18.46 20.30 21.89 22.76 23.48 24.24 24.80 25.11
MF 18.46 20.30 21.89 22.76 23.48 24.23 24.79 25.10
BF 18.14 20.08 21.84 22.91 23.99 25.12 25.98 26.52

SMF 23.94 24.63 25.48 26.09 26.54 26.77 26.82 26.95
FSB 23.76 24.46 25.23 25.79 26.24 26.46 26.53 26.62
FIND 20.79 23.39 24.76 25.60 26.41 26.92 27.31 27.78
AFSF 24.51 25.00 25.80 26.36 27.05 27.39 27.58 27.79
IIA 24.44 24.85 25.34 25.53 25.88 26.04 26.13 26.86

MFF 22.22 22.89 24.11 24.49 24.96 24.97 25.18 25.20
AWFM 22.98 23.48 23.97 24.33 24.64 24.95 25.06 25.16
FMF 23.06 24.57 26.18 27.17 28.16 28.89 29.71 30.60

DWMAV 18.46 20.30 21.89 22.76 23.48 24.23 24.79 25.10
ATMED 23.86 24.25 24.94 25.47 26.01 26.31 26.48 26.62
TMED 23.45 24.45 25.29 25.97 26.41 26.64 26.68 26.83

ATMAV 21.72 22.41 23.00 23.61 24.35 24.91 25.21 25.40
GMED 23.91 24.58 25.44 26.06 26.51 26.73 26.79 26.91
TMAV 23.24 24.42 25.18 25.90 26.40 26.70 26.81 26.93
GMAV 21.57 23.21 24.19 25.13 25.75 26.11 26.30 26.41
NASM 22.74 23.47 23.95 24.26 25.88 26.05 25.96 26.13
HAF 21.92 22.87 23.60 23.93 24.40 24.84 25.22 25.34
IFCF 21.96 23.89 25.02 25.42 25.78 25.98 26.04 26.12

MIFCF 20.58 23.48 25.34 26.26 26.87 27.23 27.42 27.45
EIFCF 21.77 23.86 25.06 25.57 25.89 26.05 26.15 26.16
SFCF 18.80 21.96 24.20 25.49 26.28 26.77 26.98 27.11
SSFCF 18.87 22.23 24.47 25.68 26.36 26.76 26.91 27.03
FIRE 21.34 22.47 23.38 24.02 24.75 25.25 25.65 26.10

DSFIRE 22.56 23.55 24.37 25.17 26.03 26.84 27.63 28.39
PWLFIRE 20.20 22.52 23.78 24.92 25.89 26.96 28.29 29.55

FIDRM 25.35 26.82 27.31 27.98 28.97 29.54 29.50 29.88
FRINR 23.40 25.01 26.44 28.03 29.32 30.05 30.95 31.70

FIDRM+ 25.45 26.86 27.41 28.08 29.06 29.65 29.59 29.96
FRINR+ 23.40 25.02 26.48 28.20 29.44 30.73 31.39 32.08

FuzzyShrink 19.11 19.98 16.90 16.96 18.56 20.55 22.69 24.52
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Table 7.8: Comparative results in terms of UIQ of different filtering methods for various distortions
of α-stable impulse noise for the (256 × 256) “Cameraman” image.

UIQ
α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Noise 0.4788 0.6198 0.7421 0.8198 0.8849 0.9254 0.9537 0.9687
BDND 0.9251 0.9266 0.9388 0.9510 0.9624 0.9711 0.9799 0.9861
TSM 0.9543 0.9612 0.9647 0.9765 0.9831 0.9870 0.9881 0.9898
FSB 0.9664 0.9713 0.9760 0.9787 0.9808 0.9817 0.9820 0.9824

FIND 0.9333 0.9630 0.9730 0.9778 0.9815 0.9836 0.9850 0.9866
AFSF 0.9708 0.9739 0.9785 0.9811 0.9839 0.9852 0.9858 0.9865
IIA 0.9702 0.9728 0.9757 0.9768 0.9786 0.9795 0.9799 0.9832

FMF 0.9602 0.9718 0.9805 0.9845 0.9877 0.9896 0.9914 0.9930
HAF 0.9415 0.9534 0.9611 0.9642 0.9688 0.9720 0.9744 0.9752

DSFIRE 0.9529 0.9629 0.9697 0.9748 0.9794 0.9830 0.9858 0.9881
PWLFIRE 0.9233 0.9545 0.9659 0.9738 0.9791 0.9837 0.9880 0.9910
FIDRM 0.9757 0.9794 0.9848 0.9871 0.9897 0.9911 0.9910 0.9917
FRINR 0.9641 0.9750 0.9820 0.9875 0.9906 0.9921 0.9936 0.9946

FIDRM+ 0.9763 0.9801 0.9851 0.9873 0.9899 0.9913 0.9911 0.9919
FRINR+ 0.9641 0.9750 0.9821 0.9879 0.9909 0.9932 0.9942 0.9950

FuzzyShrink 0.8680 0.9052 0.8425 0.8501 0.8943 0.9317 0.9577 0.9720

Table 7.9: Comparative results in terms of Mh
6 of different filtering methods for various distortions

of α-stable impulse noise for the (256 × 256) “Cameraman” image.

Mh
6

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise 0.3129 0.3647 0.4420 0.5325 0.6302 0.7307 0.7995 0.8487
BDND 0.7560 0.7511 0.7695 0.7989 0.8262 0.8569 0.8884 0.9136
TSM 0.8629 0.8729 0.8664 0.8984 0.9115 0.9271 0.9358 0.9429
FSB 0.8755 0.8870 0.8970 0.9056 0.9129 0.9174 0.9185 0.9210

FIND 0.8131 0.8568 0.8770 0.8904 0.9048 0.9149 0.9218 0.9304
AFSF 0.9006 0.9059 0.9114 0.9181 0.9266 0.9310 0.9325 0.9367
IIA 0.8892 0.8952 0.9025 0.9068 0.9131 0.9168 0.9185 0.9261

FMF 0.8656 0.8907 0.9073 0.9161 0.9245 0.9284 0.9343 0.9399
HAF 0.8261 0.8369 0.8522 0.8608 0.8769 0.8892 0.8967 0.9012

DSFIRE 0.8565 0.8778 0.8826 0.9011 0.9082 0.9200 0.9308 0.9386
PWLFIRE 0.8030 0.8392 0.8578 0.8764 0.8900 0.9046 0.9236 0.9366
FIDRM 0.9020 0.9113 0.9248 0.9307 0.9368 0.9457 0.9408 0.9445
FRINR 0.9035 0.9215 0.9329 0.9372 0.9475 0.9432 0.9499 0.9574

FIDRM+ 0.9156 0.9257 0.9359 0.9439 0.9498 0.9508 0.9541 0.9562
FRINR+ 0.9022 0.9305 0.9335 0.9420 0.9523 0.9543 0.9591 0.9630

FuzzyShrink 0.7339 0.7624 0.6396 0.6123 0.6694 0.7655 0.8282 0.8761
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.6: The visual results for the greyscale “Cameraman” (256× 256) image with: (a) the noise-
free version , (b) the image corrupted with 25% fixed valued impulse noise, (c) the FIDRM filter, (d)
the FRINR filter, (e) the AFSF filter, (f) the FMF filter, (g) the IIA filter, (h) the BDND filter and (i)
the DSFIRE filter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.7: The visual results for the greyscale “Cameraman” (256× 256) image with: (a) the noise-
free version , (b) the image corrupted with 25% random valued impulse noise, (c) the FRINR filter,
(d) the FIDRM filter, (e) the MIFCF filter, (f) the FMF filter, (g) the SMF filter, (h) the FSB filter and
(i) the TMED filter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.8: The visual results for the greyscale “Cameraman” (256× 256) image with: (a) the noise-
free version , (b) the image corrupted with α-stable impulse noise (α = 0.6), (c) the FRINR filter, (d)
the FIDRM with FuzzyShrink filter, (e) the FRINR with FuzzyShrink filter, (f) the AFSF filter, (g) the
FMF filter, (h) the TSM filter and (i) the MIFCF filter.
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impulse noise models namely: (i) the fixed valued impulse noise, (ii) the random valued
impulse noise and (iii) the α-stable impulse noise.

Numerical results

In Tables 7.10 - 7.15 we show the numerical results (PSNR, UIQ, M h
6 and NCD) for the

“Bee” and the “House” image corrupted with several levels of fixed valued impulse noise.
In Tables 7.16 - 7.21 and Tables 7.22 - 7.27 we show similar results for the random and α-
stable impulse noise, respectively. Again we also have included the two methods, denoted
as FIDRM+ and FRINR+, which correspond with the FIDRM and the FRINR followed by
an additive Gaussian noise reduction method, i.e., the FuzzyShrink. Again only the best
performing methods were included in those tables.

Based on the numerical results for colour images we can summarise the following con-
clusions:

• The best numerical results for fixed valued impulse noise are obtained by the HFC
and the FIDRMC filters, which outperform all discussed state-of-the-art vector based
approaches and greyscale methods. The second best methods are the FIDRM and
the BDND method which still outperform the vector-based approaches. For all other
methods, except for the PWLFIRE for low fixed valued impulse noise, we can con-
clude that the noise reduction performance is lower. The best vector-based approaches
are the VMF and the VSMF followed by the MFSVF and the PGSF methods.

• The NCD measure indicates how well the colours are preserved. For the fixed valued
impulse noise we can conclude that the top seven of the filters that preserve the colours
best are: HFC, FIDRMC, FIDRM, BDND, INRC, MFSVF and AFSF. We want to
note that the difference between the top two and the rest of the methods is relatively
large.

• For the random valued impulse noise we observe that some methods perform better
for low level of impulse and other better for high impulse noise. The INRC method
generally obtains the best average numerical results followed by the HFC, FRINR,
TSM, PGSF, ASVMF, FMF. Especially for low random valued impulse noise we can
advise: FIDRMC, FIDRM, INRC, AFSF, ASVMF. For high random value impulse
noise we advise: INRC, HFC, VMF, DDF, VSMF and UF.

• For the α-stable impulse noise we observe that the best numerical results are obtained
by the FRINR and FIDRMC followed by the FuzzyShrink method, denoted respec-
tively as FRINR+ and FIDRMC+. Especially for α ≤ 0.5 we observe that these two
methods clearly obtain the best results followed by the FIDRMC, FIDRM, AFSF,
FRINR, HFC, IIA, NASM and FSB. For α ≥ 0.5 we obtain the following top ten:
FRINR+, FRINR, FIDRMC+, FIDRMC, PGSF, INRC, CWM, ASVMF, FMF and
VSMF.

• From the NCD (and M h
6 ) results for α ≥ 0.5 we observe that the FRINR and the

FIDRMC methods obtain better results than the corresponding FRINR+ and
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FIDRMC+ methods which do not correspond with the PSNR results. This means
that the FRINR+ and FIDRMC+ obtain better noise reduction performance than the
FRINR and FIDRMC but that the colour preservation is worse. This indicates that
we still do not have the best possible filter and should develop another filter which
obtains good noise reduction without destroying the colour information.

• As already mentioned in the previous point, the numerical measures do not always
correspond with each other. Therefore it is (especially for colour images) better to
use more than one measure to evaluate the filters. This should also be treated in
future work.

• From the numerical results we have proven that the proposed methods FIDRMC,
HFC and INRC outperform most of the state-of-the-art noise reduction methods for
colour images. This indicates that colour images should be processed in a different
and more appropriate way than it is done now, i.e., the vector-based approaches and
the greyscale methods applied on each colour component separately.

Visual results

In Fig. 7.9 and Fig. 7.11 we illustrate the visual results of the best performing filters for
the “Bee” image corrupted with 30% fixed valued impulse noise and 30% random valued
impulse noise, respectively. The results for the “House” image corrupted with 10% fixed
valued impulse noise and 10% random valued impulse noise are shown in Fig. 7.10 and
Fig. 7.12, respectively. In Fig. 7.13 and Fig. 7.14 we finally illustrate the results for the
“Barbara” and the “Flowers” image corrupted with α-stable impulse noise with α = 0.8
and α = 0.3, respectively. The conclusions with respect to the visual observations can be
summarised as follows:

• The best visual results for fixed valued impulse noise are obtained by the HFC and the
FIDRMC method which outperform the other methods in terms of (i) noise reduction,
(ii) detail preservation and (iii) colour preservation. From Fig. 7.9 we see that the
BDND, IIA and FIDRM filters do reduce the noise very well but also introduce a
lot of artefacts especially at the edges and fine details. The vector-based approaches
cluster some colour artefacts into a larger neighbourhood and also destroy a lot of fine
details. This can also be observed for small level of impulse noise as shown in Fig.
7.10.

• For the random valued impulse noise we observe that the best numerical results are
obtained by the FIDRMC, HFC, INRC and FRINR. The FRINR reduces the noise rea-
sonable well but introduces a lot of artefacts at the edges of fine details. The FIDRMC
produces the best output for the “House” image (Fig. 7.12) but cannot eliminate all the
noise for the “Bee” image (Fig. 7.11). For the HFC we observe very good results for
the “Bee” image but a little bit too smooth results for the “House” image. The INRC
method reduces the noise very well while preserving the fine details and colours. We
also observe that vector-based approaches generally cluster the noise into a larger
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neighbourhood and also destroy a lot of details. Other methods introduce artefacts
and other distortions (such as too much smoothing).

• For the α-stable impulse noise we see that the best visual results are obtained by the
FRINR followed by the FuzzyShrink method. It reduces the impulse noise and small
distortions while preserving most of the fine details. The second and third best results
are obtained by the FIDRMC+ and the FRINR. Other methods cannot eliminate all
the noise or smooth the image too much so that structure elements are destroyed.

• From all visual results we can conclude that the three proposed methods (FIDRMC,
HFC and INRC) outperform the state-of-the-art methods also visually. It is shown
that colour artefacts appear with the classical colour techniques. The INRC method
also shows that the colour information can be used effectively to detect and to filter
impulse noise in colour images. The satisfying results we obtained indicate that future
research should be done to develop other alternative colour methods.
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Table 7.10: Comparative results in terms of PSNR (dB) of different filtering methods for various
distortions of fixed valued impulse noise for the (512 × 512) “Bee” image Fig. 7.5 (f).

PSNR (dB)
% 5 10 15 20 25 30 40 50

Noise 18.02 15.14 13.47 12.33 11.47 10.80 9.74 8.96
UF 29.94 27.23 26.29 25.82 25.53 25.24 24.59 23.62

BDND 41.72 39.72 38.10 36.90 36.05 35.14 33.71 32.51
TSM 36.11 31.04 31.06 30.48 29.83 29.01 21.36 25.41
SMF 33.03 32.15 30.88 30.38 29.83 28.61 16.14 19.70

MFSVF 33.96 31.14 29.39 28.85 26.86 26.81 26.49 26.19
VSMF 34.83 32.94 32.23 31.35 30.49 29.76 28.59 27.61
PGSF 34.65 32.61 31.30 30.23 29.07 27.88 25.28 22.60
FSVF 30.57 29.58 29.11 28.80 27.95 27.52 26.50 25.40

ASVMF 34.83 33.03 31.36 29.76 28.14 26.55 23.49 20.72
AVMF 34.66 32.79 30.53 30.99 30.04 29.14 27.31 24.36
DDF 28.69 29.19 29.09 28.99 28.60 28.38 27.44 26.58

BVDF 27.00 27.25 26.99 26.45 26.07 25.54 24.28 22.62
VMF 33.09 32.47 31.24 30.67 30.08 29.37 28.45 27.50
FSB 32.52 31.66 30.37 30.06 29.51 28.33 16.07 19.61
FIND 37.93 34.51 31.72 28.91 26.17 23.30 12.49 14.86
AFSF 31.87 30.50 29.43 28.39 27.20 26.43 26.41 26.15
IIA 34.66 33.94 33.19 32.41 31.57 30.67 26.11 27.59

AWFM 29.96 29.33 28.86 28.42 28.16 27.85 27.04 27.03
FMF 37.77 35.07 33.40 32.04 30.63 28.72 18.10 21.05

ATMED 30.49 29.40 29.00 28.74 28.49 28.13 21.11 23.76
TMED 32.99 31.91 30.36 29.64 28.62 27.13 16.05 19.21
TMAV 33.04 31.93 30.41 29.79 28.86 27.44 17.53 20.31
NASM 33.21 33.56 32.30 31.91 30.57 29.16 26.55 24.28
HAF 32.00 31.65 31.32 30.91 30.26 29.83 28.93 29.28
IFCF 31.56 30.67 29.74 28.48 27.07 25.44 17.02 19.16

MIFCF 31.60 30.37 29.09 27.49 25.78 23.88 15.26 17.31
SSFCF 31.02 29.15 27.05 24.83 22.68 20.60 12.42 14.24
FIRE 33.94 31.39 29.55 28.03 26.52 24.80 15.31 17.76

DSFIRE 36.23 34.85 33.16 31.52 30.09 28.26 18.94 21.50
PWLFIRE 41.87 38.06 34.15 30.39 26.90 23.64 12.57 14.95

INRC 38.78 36.51 34.69 33.24 32.11 30.49 28.11 25.22
FIDRMC 54.14 52.36 50.22 47.86 46.36 44.99 42.42 33.84
FIDRM 42.09 40.21 38.83 37.80 36.99 36.22 35.09 34.07

HFC 58.53 54.48 50.48 48.73 45.41 44.92 40.85 36.56
FRINR 39.39 36.95 35.24 33.70 32.31 30.75 27.37 23.02
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Table 7.11: Comparative results in terms of NCD of different filtering methods for various distortions
of fixed valued impulse noise for the (512 × 512) “Bee” image.

NCD (×102)
% 5 10 15 20 25 30 40 50

Noise 38.61 73.17 103.68 132.32 157.00 179.04 219.12 251.26
BDND 1.20 2.14 3.03 3.92 4.72 5.55 7.06 8.50
TSM 2.53 6.16 5.80 7.25 8.74 10.08 37.80 20.09

VSMF 2.16 3.70 4.38 5.15 6.04 6.83 8.33 9.65
AVMF 2.05 3.86 6.87 5.22 6.17 7.29 10.69 20.88
DDF 7.93 7.97 8.20 8.52 9.01 9.26 10.18 11.92
VMF 4.60 4.96 5.62 6.27 6.67 7.33 8.57 9.82
IIA 7.09 8.36 9.83 11.58 13.68 16.15 36.96 27.81

FMF 3.24 5.75 8.00 10.29 12.80 15.98 66.89 44.82
HAF 6.85 7.82 8.63 9.45 10.36 9.24 11.71 10.85

PWLFIRE 1.32 2.59 4.20 6.50 10.23 15.98 123.39 76.96
INRC 1.61 2.80 3.94 5.17 6.51 7.85 10.76 16.05

FIDRMC 0.16 0.31 0.45 0.62 0.79 0.98 1.44 2.58
FIDRM 1.16 2.05 2.83 3.56 4.23 4.90 5.99 7.54

HFC 0.14 0.29 0.44 0.59 0.78 0.96 1.45 2.25
FRINR 1.86 3.27 4.54 5.82 7.23 8.83 13.63 26.07

Table 7.12: Comparative results in terms of UIQ of different filtering methods for various distortions
of fixed valued impulse noise for the (512 × 512) “Bee” image.

UIQ
% 5 10 15 20 25 30 40 50

Noise 0.8698 0.7677 0.6804 0.6129 0.5521 0.5010 0.4176 0.3516
BDND 0.9995 0.9992 0.9988 0.9983 0.9979 0.9974 0.9963 0.9951
TSM 0.9978 0.9939 0.9929 0.9919 0.9906 0.9891 0.9449 0.9760

VSMF 0.9969 0.9955 0.9945 0.9933 0.9919 0.9904 0.9874 0.9845
AVMF 0.9969 0.9953 0.9922 0.9929 0.9910 0.9890 0.9833 0.9689
DDF 0.9875 0.9890 0.9885 0.9883 0.9873 0.9866 0.9835 0.9803
VMF 0.9955 0.9949 0.9932 0.9922 0.9910 0.9894 0.9867 0.9841
IIA 0.9986 0.9979 0.9968 0.9955 0.9936 0.9911 0.9697 0.9783

FMF 0.9985 0.9973 0.9958 0.9942 0.9918 0.9879 0.8753 0.9344
HAF 0.9947 0.9941 0.9938 0.9931 0.9917 0.9909 0.9888 0.9895

PWLFIRE 0.9994 0.9984 0.9966 0.9914 0.9813 0.9616 0.6230 0.7564
INRC 0.9991 0.9985 0.9976 0.9966 0.9952 0.9930 0.9872 0.9758

FIDRMC 1.0000 0.9999 0.9999 0.9998 0.9998 0.9997 0.9994 0.9962
FIDRM 0.9995 0.9992 0.9989 0.9986 0.9983 0.9979 0.9973 0.9965

HFC 1.0000 1.0000 0.9999 0.9999 0.9997 0.9997 0.9992 0.9978
FRINR 0.9990 0.9983 0.9973 0.9961 0.9948 0.9930 0.9838 0.9569
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Table 7.13: Comparative results in terms of PSNR (dB) of different filtering methods for various
distortions of fixed valued impulse noise for the (256 × 256) “House” image Fig. 7.5 (c).

PSNR (dB)
% 5 10 15 20 25 30 40 50

Noise 18.47 15.54 13.90 12.73 11.88 11.18 10.13 9.35
UF 28.89 27.06 26.18 25.65 25.49 25.47 25.36 24.93

BDND 44.20 40.74 38.64 37.26 36.02 35.04 33.30 32.11
TSM 35.74 32.46 31.67 29.75 29.81 28.73 27.06 24.68
SMF 32.73 31.89 31.20 29.79 29.55 28.68 24.78 19.74

MFSVF 35.42 32.54 30.27 29.82 27.72 27.63 26.90 26.40
VSMF 34.74 33.32 31.94 31.29 30.60 29.75 10.15 9.38
PGSF 35.05 32.86 31.07 30.04 28.65 27.12 25.21 22.57

SAHVF 22.96 22.55 22.11 21.60 21.17 20.69 19.81 19.00
FSVF 30.24 29.81 29.16 28.77 28.17 27.35 26.60 25.19

ASVMF 34.56 32.54 30.85 29.17 27.68 26.40 23.41 20.95
AVMF 35.26 33.16 31.97 30.63 29.81 28.77 26.76 23.67
DDF 28.34 30.50 30.06 29.44 29.11 28.51 27.43 26.73

BVDF 26.24 27.41 26.82 26.32 25.88 25.06 23.72 22.33
VMF 32.60 32.09 31.53 30.96 30.33 29.59 28.65 27.64
FSB 32.07 31.32 30.77 29.57 29.29 28.56 24.68 19.64
FIND 38.28 34.86 31.93 26.51 26.25 23.73 18.97 15.16
AFSF 36.55 34.89 33.74 31.74 31.74 31.16 30.00 29.04
IIA 34.52 33.74 32.98 31.71 31.59 31.24 30.01 29.00

AWFM 30.08 29.91 29.82 29.38 29.32 29.15 28.21 27.69
FMF 37.54 34.55 32.71 29.70 29.42 28.21 24.97 21.42

ATMED 31.38 30.61 30.07 29.65 29.48 29.26 27.48 24.41
TMED 32.50 31.63 30.89 28.71 28.53 27.18 23.40 19.14
TMAV 32.39 31.30 30.65 28.74 28.57 27.22 23.66 19.96
NASM 34.19 34.46 32.99 32.82 31.87 30.15 27.55 24.06
HAF 31.54 31.23 30.99 30.41 30.32 30.05 29.58 29.14
IFCF 32.26 31.05 29.80 26.63 26.56 24.86 21.55 18.46

MIFCF 32.17 30.54 28.85 25.08 24.98 23.20 19.64 16.51
SSFCF 30.85 29.46 27.55 23.03 22.84 20.82 17.17 14.24
DSFIRE 41.01 37.94 35.54 31.61 31.35 29.52 25.69 22.06

PWLFIRE 43.02 38.72 34.11 27.50 26.85 24.35 19.32 15.36
INRC 35.16 33.60 32.34 31.22 30.27 29.72 28.10 26.19

FIDRMC 47.04 43.91 41.96 39.68 38.93 37.98 36.03 35.17
FIDRM 42.51 40.42 38.69 28.60 28.98 35.59 34.27 17.44

HFC 47.34 44.10 41.88 40.64 39.54 38.21 36.18 33.91
FRINR 38.37 36.22 35.05 33.39 32.32 31.28 29.59 28.11



7.5 Experiments 245

Table 7.14: Comparative results in terms of NCD of different filtering methods for various distortions
of fixed valued impulse noise for the (256 × 256) “House” image.

NCD (×102)
% 5 10 15 20 25 30 40 50

Noise 37.74 72.68 102.27 129.94 154.98 178.21 216.86 248.97
BDND 1.02 2.09 3.08 3.96 4.99 5.85 7.73 9.36
TSM 2.86 4.80 6.39 10.24 10.09 11.53 15.93 23.09

MFSVF 3.97 7.83 11.71 7.28 9.45 10.07 11.88 13.57
VMF 8.49 8.95 9.03 9.52 10.06 10.85 12.01 13.44
AFSF 3.89 5.44 6.74 9.45 9.63 10.38 12.66 14.53
IIA 7.95 9.46 11.25 11.34 11.54 12.96 17.78 24.14

FMF 4.89 8.00 10.08 15.33 15.26 18.25 27.48 43.74
HAF 10.70 11.40 12.07 14.30 14.41 15.77 17.36 22.36

DSFIRE 2.30 3.70 5.40 9.89 10.19 13.53 24.12 43.44
PWLFIRE 1.16 2.47 4.23 10.47 11.02 16.01 38.10 79.07

INRC 3.75 5.26 6.53 7.86 8.80 9.88 12.50 15.85
FIDRMC 0.86 1.65 2.44 3.61 4.16 4.67 6.40 7.62
FIDRM 1.32 2.36 3.35 7.46 9.76 5.96 7.77 67.81

HFC 0.84 1.65 2.48 3.13 3.80 4.55 5.92 7.30
FRINR 2.65 3.98 5.62 7.23 8.38 10.07 12.60 15.62

Table 7.15: Comparative results in terms of Mh
6 of different filtering methods for various distortions

of fixed valued impulse noise for the (256 × 256) “House” image.

Mh
6

% 5 10 15 20 25 30 40 50
Noise 0.7227 0.5706 0.4900 0.4392 0.4061 0.3843 0.3517 0.3311
BDND 0.9981 0.9962 0.9941 0.9923 0.9902 0.9884 0.9841 0.9807
TSM 0.9792 0.9482 0.9449 0.9368 0.9378 0.9331 0.9242 0.9064

MFSVF 0.9880 0.9780 0.9669 0.9722 0.9591 0.9579 0.9520 0.9481
VMF 0.9702 0.9683 0.9672 0.9654 0.9635 0.9593 0.9544 0.9493
AFSF 0.9824 0.9763 0.9709 0.9576 0.9600 0.9545 0.9463 0.9391
IIA 0.9861 0.9839 0.9816 0.9729 0.9730 0.9711 0.9655 0.9598

FMF 0.9876 0.9804 0.9754 0.9632 0.9641 0.9563 0.9304 0.8781
HAF 0.9604 0.9596 0.9589 0.9568 0.9571 0.9560 0.9510 0.9486

DSFIRE 0.9661 0.9637 0.9596 0.9496 0.9499 0.9418 0.9127 0.8641
PWLFIRE 0.9940 0.9916 0.9869 0.9647 0.9615 0.9418 0.8500 0.7184

INRC 0.9911 0.9869 0.9828 0.9792 0.9755 0.9726 0.9632 0.9532
FIDRMC 0.9945 0.9905 0.9875 0.9818 0.9795 0.9764 0.9692 0.9653
FIDRM 0.9861 0.9817 0.9800 0.9590 0.9618 0.9746 0.9712 0.7830

HFC 0.9985 0.9971 0.9955 0.9941 0.9925 0.9909 0.9873 0.9825
FRINR 0.9940 0.9912 0.9876 0.9833 0.9803 0.9760 0.9678 0.9617
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Table 7.16: Comparative results in terms of PSNR (dB) of different filtering methods for various
distortions of random valued impulse noise for the (512 × 512) “Bee” image Fig. 7.5 (f).

PSNR (dB)
% 5 10 15 20 25 30 40 50

Noise 21.18 18.25 16.65 15.48 14.60 13.91 12.88 12.12
UF 30.35 27.77 26.84 26.35 26.09 25.90 25.68 25.54

TSM 36.00 32.35 29.41 29.31 28.45 27.59 25.67 22.96
CWM 35.94 32.84 30.10 27.59 25.39 23.37 20.06 17.48
SMF 32.98 32.28 31.21 30.08 29.43 28.41 25.53 21.95

MFSVF 33.76 31.46 30.07 29.04 28.52 26.86 26.56 26.06
VSMF 34.71 33.33 32.16 31.41 30.66 29.72 28.39 27.25
PGSF 34.63 32.73 31.26 30.04 28.92 27.80 25.96 24.26
FSVF 30.64 30.28 29.47 29.07 28.85 28.49 27.50 26.74

ASVMF 35.31 33.44 32.06 30.83 29.63 28.61 26.47 23.97
AVMF 33.69 32.08 30.74 29.92 29.01 28.09 26.16 23.27
DDF 29.15 29.54 29.54 29.21 28.86 27.68 27.00 26.78
VMF 32.99 32.46 31.52 30.40 29.99 29.43 28.12 27.05
FSB 32.51 31.89 30.96 29.99 29.50 28.60 25.89 22.28
FIND 35.58 32.00 29.42 27.40 25.57 23.81 20.71 18.06
AFSF 32.26 30.94 29.69 28.33 27.18 25.66 22.91 20.16
IIA 31.84 30.01 28.68 27.01 25.42 23.89 21.10 18.63

FMF 36.34 33.98 32.23 30.78 29.30 27.54 23.63 19.74
ATMED 30.99 29.13 27.89 26.75 25.59 24.29 21.69 19.13
TMED 32.94 32.12 30.86 29.82 29.06 27.99 25.33 22.05
GMED 32.90 32.21 31.16 29.99 29.36 28.36 25.50 21.93
TMAV 32.84 31.51 29.80 28.79 27.54 26.09 23.17 20.34
GMAV 31.64 29.90 28.04 26.78 25.39 23.95 21.30 18.91
NASM 32.48 31.48 29.84 29.60 29.22 28.61 27.66 26.77
HAF 28.27 25.35 23.69 22.37 21.37 20.44 18.71 17.09
IFCF 31.60 30.93 30.10 29.22 28.15 26.93 24.23 21.31

MIFCF 31.78 30.91 29.89 28.85 27.54 26.15 23.17 20.19
EIFCF 31.61 30.93 30.09 29.22 28.11 26.87 24.14 21.19
SFCF 31.66 30.62 29.31 27.85 26.28 24.55 21.44 18.66
SSFCF 31.75 30.89 29.74 28.36 26.80 24.99 21.70 18.76
FIRE 33.73 30.89 29.17 27.71 26.47 25.16 22.55 19.83
INRC 39.75 37.81 35.97 34.61 33.54 30.67 30.36 28.70

FIDRMC 41.11 38.84 36.81 34.91 32.99 30.76 26.47 22.78
FIDRM 38.29 36.00 34.47 32.64 31.36 30.22 27.21 24.40

HFC 32.62 32.46 32.15 31.80 31.39 31.05 29.99 28.72
FRINR 39.01 36.83 35.21 33.85 32.96 31.93 29.63 27.02
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Table 7.17: Comparative results in terms of NCD of different filtering methods for various distortions
of random valued impulse noise for the (512 × 512) “Bee” image.

NCD (×102)
% 5 10 15 20 25 30 40 50

Noise 23.13 43.82 62.12 78.92 94.48 107.96 131.12 149.95
TSM 3.07 6.20 9.62 11.18 13.69 15.78 20.85 28.16

MFSVF 4.27 7.74 10.74 13.31 8.71 9.81 11.12 12.61
VSMF 2.47 3.62 4.80 5.61 6.50 7.66 9.49 11.40

ASVMF 2.30 3.41 4.62 5.97 7.36 9.07 15.59 24.17
DDF 7.41 7.19 7.40 7.64 8.03 9.87 11.27 10.97
VMF 4.71 5.20 5.97 6.83 7.41 8.08 9.87 11.58
FIND 3.86 8.19 13.11 18.49 24.95 32.35 50.94 73.94
FMF 5.01 8.73 11.86 14.94 18.51 23.31 39.10 65.28

NASM 5.05 7.70 8.24 8.89 10.71 12.91 14.70 18.15
FIRE 5.49 10.84 16.35 22.11 28.27 34.89 50.43 69.66
INRC 1.62 2.61 3.76 4.75 5.89 8.28 9.65 11.76

FIDRMC 0.98 2.16 3.40 4.92 6.81 9.32 16.86 28.85
FIDRM 2.39 3.90 5.31 7.28 9.02 11.00 16.68 25.32

HFC 1.86 2.39 3.02 3.72 4.67 5.65 8.24 11.97
FRINR 1.94 3.34 4.75 6.04 7.12 8.37 11.03 15.10

Table 7.18: Comparative results in terms of UIQ of different filtering methods for various distortions
of random valued impulse noise for the (512 × 512) “Bee” image.

UIQ
% 5 10 15 20 25 30 40 50

Noise 0.9340 0.8732 0.8200 0.7700 0.7204 0.6803 0.5999 0.5373
TSM 0.9978 0.9952 0.9907 0.9895 0.9874 0.9846 0.9779 0.9609

MFSVF 0.9961 0.9933 0.9909 0.9881 0.9869 0.9806 0.9790 0.9762
VSMF 0.9969 0.9958 0.9944 0.9932 0.9919 0.9902 0.9865 0.9826

ASVMF 0.9974 0.9957 0.9942 0.9923 0.9898 0.9869 0.9762 0.9582
DDF 0.9885 0.9895 0.9894 0.9885 0.9875 0.9836 0.9808 0.9798
VMF 0.9954 0.9948 0.9934 0.9915 0.9905 0.9894 0.9856 0.9815
FIND 0.9975 0.9944 0.9896 0.9836 0.9750 0.9625 0.9232 0.8527
FMF 0.9979 0.9964 0.9945 0.9925 0.9895 0.9846 0.9635 0.9062

NASM 0.9945 0.9933 0.9906 0.9898 0.9889 0.9873 0.9845 0.9804
FIRE 0.9962 0.9926 0.9889 0.9845 0.9798 0.9725 0.9503 0.9039
INRC 0.9992 0.9987 0.9980 0.9971 0.9963 0.9927 0.9919 0.9881

FIDRMC 0.9993 0.9989 0.9982 0.9969 0.9954 0.9925 0.9808 0.9549
FIDRM 0.9986 0.9978 0.9968 0.9954 0.9938 0.9913 0.9835 0.9693

HFC 0.9951 0.9949 0.9945 0.9941 0.9933 0.9930 0.9908 0.9880
FRINR 0.9989 0.9981 0.9973 0.9963 0.9952 0.9941 0.9904 0.9818
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Table 7.19: Comparative results in terms of PSNR (dB) of different filtering methods for various
distortions of random valued impulse noise for the (256 × 256) “House” Fig. 7.5 (c).

PSNR (dB)
% 5 10 15 20 25 30 40 50

Noise 22.12 19.11 17.48 16.33 15.49 14.78 13.77 12.97
UF 29.80 30.58 30.16 30.09 29.88 29.99 29.72 29.32

TSM 35.64 32.44 30.13 30.14 29.16 28.35 26.82 24.82
CWM 35.20 32.76 30.90 28.80 26.91 24.97 21.76 19.10
SMF 32.74 31.86 31.20 30.57 29.73 28.89 26.58 23.51

MFSVF 34.12 31.51 30.39 28.17 27.83 27.66 27.11 26.42
VSMF 34.25 33.00 31.89 31.21 30.41 29.85 28.63 27.47
PGSF 34.91 32.77 31.19 30.11 29.01 28.17 26.61 25.03
FSVF 30.45 29.86 29.59 29.22 28.99 28.47 27.64 26.91

ASVMF 35.22 32.76 31.48 30.41 29.33 28.56 26.65 24.24
AVMF 34.61 32.50 31.22 30.02 29.11 28.24 26.28 24.10
DDF 32.14 31.58 30.81 29.94 29.47 28.17 27.46 26.42
VMF 32.47 31.75 31.17 30.70 30.16 29.63 28.53 27.43
FSB 32.08 31.34 30.74 30.30 29.61 28.88 26.74 23.70
FIND 35.96 32.00 29.81 27.82 26.10 24.51 21.88 19.45
AFSF 36.13 33.64 32.39 31.32 29.92 28.70 25.83 22.77
IIA 32.77 31.48 30.12 28.94 27.49 25.99 23.40 20.99

FMF 36.43 33.69 32.25 30.96 29.54 28.31 25.24 21.58
ATMED 31.46 30.04 29.12 28.16 27.06 25.89 23.50 20.97
TMED 32.53 31.58 30.93 30.26 29.36 28.49 26.25 23.49
GMED 32.64 31.79 31.09 30.47 29.66 28.83 26.55 23.49
TMAV 32.36 31.13 30.33 29.37 28.19 26.92 24.43 21.89
GMAV 31.21 29.96 28.67 27.67 26.55 25.30 22.96 20.71
NASM 33.69 33.29 31.64 30.17 29.74 29.37 28.38 26.95
HAF 30.60 28.99 27.93 26.62 25.32 23.96 21.62 19.48
IFCF 32.24 31.40 30.58 29.72 28.71 27.64 25.33 22.72

MIFCF 32.48 31.39 30.35 29.32 28.21 26.91 24.30 21.54
EIFCF 31.98 31.27 30.59 29.74 28.77 27.69 25.31 22.62
SFCF 31.14 30.24 29.30 28.07 26.68 25.19 22.38 19.84
SSFCF 31.18 30.40 29.56 28.42 27.04 25.53 22.59 19.90
FIRE 33.51 30.47 28.82 27.50 26.29 25.17 23.07 20.84
INRC 35.69 34.12 32.96 32.13 31.02 30.42 29.28 28.39

FIDRMC 40.55 36.93 35.87 33.64 31.89 29.83 27.11 23.50
FIDRM 38.50 35.54 32.88 30.79 29.78 29.93 27.55 25.26

HFC 33.02 32.63 32.09 31.72 31.12 30.48 29.50 28.62
FRINR 38.33 36.47 34.53 33.42 32.63 31.73 30.21 29.08
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Table 7.20: Comparative results in terms of NCD of different filtering methods for various distortions
of random valued impulse noise for the (256 × 256) “House” image.

NCD (×102)
% 5 10 15 20 25 30 40 50

Noise 21.23 41.31 59.23 74.61 88.64 102.78 124.12 143.20
TSM 3.38 6.38 9.94 10.70 13.33 15.85 20.82 28.41

VSMF 4.09 5.26 8.13 9.07 10.24 11.41 13.51 15.92
FSVF 11.11 11.95 10.40 11.10 11.59 12.47 14.73 16.64

ASVMF 3.06 5.45 7.16 9.25 10.97 12.85 18.21 27.56
DDF 8.57 9.17 10.06 11.28 11.08 13.28 14.95 18.10
VMF 8.67 9.44 9.64 10.37 11.01 12.03 13.71 15.91
AFSF 4.25 6.40 8.23 10.37 13.09 16.58 26.74 45.01
FMF 5.52 9.34 12.12 14.90 18.22 22.25 34.09 56.32

NASM 4.82 5.77 8.31 10.06 11.26 12.69 16.17 19.01
FIRE 5.46 10.38 15.22 20.35 25.97 31.99 45.09 62.96
INRC 3.62 4.91 6.32 7.21 8.30 9.44 11.13 12.82

FIDRMC 2.00 3.80 5.11 6.91 8.75 11.42 17.69 29.22
FIDRM 2.53 4.82 6.91 9.38 11.74 12.36 17.65 25.52

HFC 5.45 6.17 7.15 7.88 8.80 9.91 11.59 13.86
FRINR 2.51 3.97 5.62 6.95 8.22 9.38 12.08 14.02

Table 7.21: Comparative results in terms of Mh
6 of different filtering methods for various distortions

of random valued impulse noise for the (256 × 256) “House” image.

Mh
6

% 5 10 15 20 25 30 40 50
Noise 0.8597 0.7608 0.6965 0.6465 0.6069 0.5737 0.5237 0.4882
TSM 0.9787 0.9717 0.9605 0.9385 0.9332 0.9282 0.9161 0.8976

VSMF 0.9848 0.9826 0.9724 0.9697 0.9666 0.9626 0.9565 0.9502
FSVF 0.9610 0.9590 0.9621 0.9604 0.9593 0.9580 0.9531 0.9455

ASVMF 0.9861 0.9778 0.9728 0.9655 0.9615 0.9582 0.9448 0.9290
DDF 0.9691 0.9672 0.9651 0.9612 0.9587 0.9507 0.9459 0.9403
VMF 0.9700 0.9680 0.9661 0.9648 0.9628 0.9612 0.9544 0.9479
AFSF 0.9843 0.9770 0.9718 0.9666 0.9602 0.9533 0.9330 0.9038
FMF 0.9855 0.9763 0.9709 0.9655 0.9590 0.9520 0.9273 0.8793

NASM 0.9900 0.9898 0.9870 0.9749 0.9739 0.9731 0.9698 0.9573
FIRE 0.9858 0.9746 0.9655 0.9554 0.9444 0.9327 0.9037 0.8632
INRC 0.9916 0.9885 0.9845 0.9813 0.9781 0.9751 0.9692 0.9637

FIDRMC 0.9949 0.9895 0.9849 0.9805 0.9745 0.9675 0.9495 0.9128
FIDRM 0.9937 0.9891 0.9822 0.9745 0.9685 0.9672 0.9539 0.9377

HFC 0.9848 0.9832 0.9810 0.9793 0.9770 0.9743 0.9666 0.9612
FRINR 0.9953 0.9921 0.9893 0.9855 0.9832 0.9793 0.9725 0.9670
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Table 7.22: Comparative results in terms of PSNR (dB) of different filtering methods for various
distortions of α-stable impulse noise for the (512 × 512) “Barbara” image Fig. 7.5 (e).

PSNR (dB)
α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Noise 10.40 12.24 14.12 16.14 18.15 20.09 22.07 24.20
UF 20.79 23.02 23.92 24.94 25.97 27.37 29.48 30.70

BDND 20.32 20.48 21.15 22.11 23.37 24.62 25.98 27.70
TSM 22.29 22.77 22.09 23.91 25.02 25.71 26.15 26.46
CWM 17.52 21.28 24.22 25.86 27.24 28.18 28.71 29.11
SMF 22.92 23.76 24.17 24.40 24.57 24.70 24.78 24.85

MFSVF 22.47 22.94 23.97 24.80 25.56 26.15 26.49 26.76
FBF 20.08 21.58 22.58 23.31 23.90 24.52 25.30 26.27

VSMF 22.97 23.67 24.22 24.62 24.98 25.26 25.48 25.66
PGSF 22.07 23.16 24.38 26.42 27.86 29.11 30.12 31.07

ASVMF 21.61 23.44 24.39 25.46 26.53 27.05 27.27 27.47
FSB 22.91 23.76 24.13 24.34 24.47 24.57 24.61 24.70
FIND 20.40 22.71 23.94 24.73 25.46 26.03 26.52 26.94
AFSF 23.78 24.17 24.62 25.01 25.33 25.56 25.72 25.84
IIA 23.71 24.05 24.37 24.58 25.04 25.47 25.82 26.11

MFF 22.43 23.10 24.14 24.89 25.37 25.75 26.03 26.25
FDD 11.45 14.05 16.79 19.42 21.92 24.20 26.13 28.18

AWFM 22.23 22.43 22.71 22.92 23.10 23.25 23.36 23.45
FMF 21.83 23.53 24.78 25.76 26.70 27.64 28.58 29.62

ATMED 23.36 23.69 23.92 24.11 24.27 24.48 24.62 24.75
NASM 21.92 23.88 25.03 25.96 26.41 26.80 27.04 27.11
HAF 23.33 23.65 23.94 24.27 24.54 24.72 24.82 24.90
IFCF 21.38 23.35 24.32 24.77 25.02 25.17 25.27 25.33

EIFCF 21.16 23.23 24.27 24.75 25.01 25.16 25.26 25.33
FIRE 21.13 22.53 23.45 24.19 24.84 25.44 25.93 26.37

DSFIRE 22.88 23.85 24.66 25.52 26.52 27.50 28.49 29.50
PWLFIRE 20.41 22.48 23.73 24.84 26.00 27.12 28.35 29.63

INRC 20.65 22.84 25.48 26.77 28.16 29.23 30.02 30.74
FIDRMC 26.01 26.68 27.47 28.12 28.98 29.84 30.64 31.58
FIDRM 24.65 25.53 26.30 27.21 27.91 28.66 29.31 29.91

HFC 24.74 25.06 25.34 25.65 25.96 26.17 26.38 26.90
FRINR 21.65 23.75 25.58 27.20 28.58 29.95 31.38 32.29

FIDRMC+ 27.16 27.64 28.28 28.79 29.40 30.35 31.09 31.91
FRINR+ 23.10 25.14 26.92 28.41 29.56 30.59 31.78 32.80

FuzzyShrink 19.72 19.55 18.28 17.96 19.32 21.01 22.95 25.17
NLCDM 19.58 20.97 21.94 22.71 23.56 24.28 25.27 26.07
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Table 7.23: Comparative results in terms of NCD of different filtering methods for various distortions
of α-stable impulse noise for the (512 × 512) “Barbara” image.

NCD (×102)
α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Noise 227.13 152.33 96.09 59.49 36.18 22.26 14.33 9.60
UF 36.59 26.66 25.35 21.29 18.12 14.90 11.34 7.78

PGSF 30.13 24.74 19.13 15.18 12.15 9.45 7.37 5.92
IIA 31.22 28.37 26.22 24.70 31.78 29.75 28.08 26.81

FMF 46.09 34.26 27.02 21.73 17.35 13.97 11.40 9.10
ATMED 29.41 26.46 24.24 22.36 21.32 19.77 18.81 18.31

HAF 31.31 27.90 24.93 24.15 21.50 19.95 19.10 18.67
DSFIRE 39.77 33.46 27.96 22.61 17.40 13.49 10.70 8.96
INRC 42.41 25.95 20.54 17.69 14.92 13.09 11.52 10.32

FIDRMC 22.99 19.13 15.79 13.23 10.69 8.79 7.26 6.10
FIDRM 30.22 25.96 22.09 18.43 15.53 12.77 10.63 9.25

HFC 24.54 21.31 18.60 16.44 14.58 13.21 12.16 7.79
FRINR 38.23 28.61 21.51 16.39 12.54 9.58 7.46 6.25

FIDRMC+ 18.57 16.41 14.78 13.70 11.08 9.53 8.46 7.74
FRINR+ 27.87 21.81 17.72 15.10 13.29 12.06 11.18 8.03

FuzzyShrink 50.74 57.97 61.10 51.50 34.19 21.93 14.90 10.46

Table 7.24: Comparative results in terms of UIQ of different filtering methods for various distortions
of α-stable impulse noise for the (512 × 512) “Barbara” image.

UIQ
α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Noise 0.4304 0.5673 0.6875 0.7855 0.8577 0.9044 0.9384 0.9618
UF 0.9134 0.9458 0.9567 0.9653 0.9725 0.9802 0.9879 0.9911

PGSF 0.9330 0.9476 0.9594 0.9754 0.9822 0.9869 0.9897 0.9918
IIA 0.9559 0.9598 0.9625 0.9646 0.9699 0.9723 0.9744 0.9761

FMF 0.9310 0.9529 0.9645 0.9719 0.9772 0.9816 0.9854 0.9885
ATMED 0.9470 0.9514 0.9544 0.9567 0.9588 0.9608 0.9621 0.9632

HAF 0.9461 0.9505 0.9541 0.9584 0.9611 0.9628 0.9635 0.9643
DSFIRE 0.9425 0.9541 0.9615 0.9692 0.9756 0.9806 0.9844 0.9876
INRC 0.9155 0.9574 0.9714 0.9788 0.9837 0.9873 0.9893 0.9909

FIDRMC 0.9732 0.9772 0.9809 0.9838 0.9867 0.9891 0.9909 0.9927
FIDRM 0.9628 0.9694 0.9747 0.9794 0.9822 0.9853 0.9875 0.9890

HFC 0.9636 0.9664 0.9684 0.9708 0.9728 0.9743 0.9755 0.9791
FRINR 0.9315 0.9570 0.9709 0.9800 0.9854 0.9895 0.9923 0.9938

FIDRMC+ 0.9790 0.9814 0.9839 0.9858 0.9880 0.9902 0.9917 0.9932
FRINR+ 0.9491 0.9678 0.9784 0.9846 0.9882 0.9906 0.9927 0.9946

FuzzyShrink 0.8568 0.8772 0.8550 0.8548 0.8898 0.9220 0.9499 0.9692
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Table 7.25: Comparative results in terms of PSNR (dB) of different filtering methods for various
distortions of α-stable impulse noise for the (256 × 256) “Flowers” image Fig. 7.5 (b).

PSNR (dB)
α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Noise 9.88 11.77 13.82 15.78 17.95 15.93 22.19 24.09
UF 17.38 18.36 18.39 15.78 17.94 15.93 22.19 24.08

BDND 19.91 20.20 20.98 22.02 23.06 21.93 26.13 27.90
TSM 22.12 23.24 23.24 25.27 26.76 27.88 28.77 29.49
CWM 16.92 21.49 24.83 27.02 28.48 29.73 30.82 31.43
SMF 23.67 24.80 25.97 26.74 27.24 27.59 27.90 28.05

MFSVF 21.57 21.11 21.39 21.54 21.64 21.56 21.71 21.74
FBF 18.05 20.12 21.70 23.31 23.90 24.52 25.29 26.26

VSMF 23.21 25.02 25.97 27.41 28.25 27.46 29.33 29.74
PGSF 22.33 24.25 25.33 26.64 27.53 26.69 28.58 29.00

ASVMF 21.68 24.36 25.93 27.54 28.55 27.59 30.47 30.98
FSB 23.44 24.53 25.67 26.40 26.89 27.22 27.49 27.63
FIND 20.83 23.57 25.23 26.25 27.29 28.13 28.97 29.71
AFSF 24.59 25.31 26.27 27.13 27.74 28.19 28.64 28.88
IIA 23.31 23.89 24.60 25.02 25.49 25.81 26.16 26.71

MFF 21.47 22.32 23.68 24.17 24.60 24.73 24.88 25.02
FDD 11.16 13.82 16.83 19.43 22.03 24.46 26.62 28.59

AWFM 18.37 20.28 21.54 22.53 23.38 24.02 24.45 24.79
FMF 22.52 24.65 26.30 27.38 28.32 29.18 30.24 31.12

ATMED 23.38 24.02 25.04 25.83 26.37 26.86 27.19 27.46
NASM 22.31 23.72 24.59 25.22 26.65 25.24 26.85 27.26
HAF 22.18 22.75 23.68 24.73 25.42 25.91 26.33 26.58
IFCF 21.68 23.62 24.84 25.41 25.82 26.02 26.27 26.36

EIFCF 21.56 23.56 24.88 25.41 25.80 25.98 26.22 26.29
FIRE 21.06 22.56 23.66 24.70 25.79 26.62 27.42 28.12

DSFIRE 22.41 23.47 24.59 25.51 26.31 27.35 28.35 29.23
PWLFIRE 20.31 22.36 23.79 24.85 25.81 27.15 28.41 29.69

INRC 20.15 22.98 25.09 26.51 26.85 26.37 27.50 27.72
FIDRMC 16.77 23.85 25.73 26.94 28.25 29.07 30.02 31.05
FIDRM 21.34 19.92 21.66 22.64 22.94 22.54 25.95 27.58

HFC 23.95 24.37 24.59 24.82 24.99 25.08 25.24 25.34
FRINR 23.04 25.37 26.69 27.93 28.97 29.65 30.54 31.65

FIDRMC+ 18.31 24.60 26.28 27.48 28.89 29.62 30.69 31.27
FRINR+ 24.09 26.12 27.25 28.23 29.28 30.08 31.13 32.06

FuzzyShrink 16.53 15.13 15.14 16.60 18.67 16.82 22.81 24.67
NLCDM 16.97 18.30 19.16 19.61 19.84 19.64 20.04 20.09
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Table 7.26: Comparative results in terms of NCD of different filtering methods for various distortions
of α-stable impulse noise for the (256 × 256) “Flowers” image.

NCD (×102)
α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Noise 152.24 99.76 62.45 38.72 23.72 38.17 9.62 6.87
TSM 26.34 21.71 22.21 15.55 11.42 9.01 7.17 6.03

VSMF 20.94 16.95 14.04 11.09 9.40 10.99 7.03 6.32
PGSF 23.03 17.91 14.96 12.07 10.06 12.02 7.52 6.66
AFSF 20.59 18.31 16.18 13.83 11.93 10.63 9.58 8.96
FMF 29.73 21.60 16.72 13.54 11.18 9.27 7.37 6.61

ATMED 24.22 22.20 19.68 17.22 15.54 14.16 13.56 13.01
DSFIRE 27.65 23.63 19.33 15.96 13.33 11.06 9.48 8.52
INRC 31.96 21.38 16.55 14.49 13.15 11.98 10.68 9.58

FIDRMC 38.88 18.33 14.25 11.76 9.32 7.82 6.38 5.47
FIDRM 32.33 34.55 24.84 19.48 16.42 19.50 8.73 6.62

HFC 21.06 18.59 17.02 15.67 14.45 13.79 12.82 12.51
FRINR 24.26 18.04 14.55 11.71 9.33 7.75 5.96 4.86

FIDRMC+ 31.54 17.80 13.82 11.70 9.59 8.32 7.18 6.48
FRINR+ 20.65 16.60 14.60 13.35 9.77 8.43 7.02 5.98

FuzzyShrink 54.22 64.14 54.95 36.63 23.53 35.86 10.38 7.92

Table 7.27: Comparative results in terms of Mh
6 of different filtering methods for various distortions

of α-stable impulse noise for the (256 × 256) “Flowers” image.

Mh
6

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise 0.2830 0.3369 0.4248 0.5204 0.6321 0.5313 0.8041 0.8483
TSM 0.8110 0.8270 0.8426 0.8719 0.8880 0.9007 0.9102 0.9159

VSMF 0.8690 0.8908 0.9008 0.9141 0.9234 0.9153 0.9324 0.9355
PGSF 0.8306 0.8606 0.8825 0.8976 0.9088 0.8987 0.9217 0.9261
AFSF 0.8619 0.8742 0.8853 0.8966 0.9071 0.9103 0.9168 0.9204
FMF 0.8272 0.8615 0.8796 0.8919 0.9031 0.9101 0.9192 0.9242

ATMED 0.8325 0.8447 0.8610 0.8726 0.8821 0.8882 0.8918 0.8954
DSFIRE 0.7789 0.8005 0.8208 0.8373 0.8512 0.8685 0.8782 0.8897
INRC 0.8029 0.8525 0.8800 0.8938 0.9038 0.9087 0.9134 0.9261

FIDRMC 0.6494 0.8544 0.8818 0.9003 0.9135 0.9223 0.9280 0.9354
FIDRM 0.7564 0.6904 0.7660 0.7868 0.7917 0.7867 0.8640 0.8830

HFC 0.8640 0.8748 0.8828 0.8896 0.8943 0.8986 0.9032 0.9065
FRINR 0.8711 0.8993 0.9124 0.9227 0.9296 0.9346 0.9374 0.9445

FIDRMC+ 0.6906 0.8560 0.8878 0.9039 0.9157 0.9233 0.9291 0.9348
FRINR+ 0.8487 0.8748 0.8832 0.8970 0.9197 0.9204 0.9329 0.9377

FuzzyShrink 0.6106 0.5396 0.5212 0.5777 0.6732 0.5938 0.8261 0.8645
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.9: The visual results for the coloured “Bee” (512 × 512) image with: (a) a noise-free part
of the image, (b) the part corrupted with 30% fixed valued impulse noise, (c) the HFC filter, (d) the
FIDRMC filter, (e) the FIDRM filter, (f) the VSMF filter, (g) the AVMF filter, (h) the BDND filter and
(i) the IIA filter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.10: The visual results for the coloured “House” (256 × 256) image with: (a) a noise-free
part of the image, (b) the part corrupted with 10% fixed valued impulse noise, (c) the HFC filter, (d)
the FIDRMC filter, (e) the FIDRM filter, (f) the VSMF filter, (g) the AVMF filter, (h) the BDND filter
and (i) the PWLFIRE filter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.11: The visual results for the coloured “Bee” (512 × 512) image with: (a) a noise-free part
of the image, (b) the part corrupted with 30% random valued impulse noise, (c) the HFC filter, (d) the
FIDRMC filter, (e) the FRINR filter, (f) the INRC filter, (g) the AVSMF filter, (h) the VMF filter and
(i) the VSMF filter.



7.5 Experiments 257

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.12: The visual results for the coloured “House” (256 × 256) image with: (a) a noise-free
part of the image, (b) the part corrupted with 10% random valued impulse noise, (c) the FIDRMC
filter, (d) the FRINR filter, (e) the INRC filter, (f) the FMF filter, (g) the NASM filter, (h) the PGSF
filter and (i) the VMF filter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.13: The visual results for the coloured “Barbara” (512 × 512) image with: (a) a noise-free
part of the image, (b) the part corrupted with α-stable impulse noise (α = 0.8), (c) the FRINR filter,
(d) the INRC filter, (e) the FIDRMC and the FuzzyShrink filter, (f) the FRINR and the FuzzyShrink
filter, (g) the ASVMF filter, (h) the PGSF filter and (i) the UF filter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.14: The visual results for the coloured “Flowers” (256 × 256) image with: (a) a noise-free
part of the image, (b) the part corrupted with α-stable impulse noise (α = 0.3), (c) the FRINR filter,
(d) the FMF filter, (e) the FIDRMC and the FuzzyShrink filter, (f) the FRINR and the FuzzyShrink
filter, (g) the VSMF filter, (h) the PGSF filter and (i) the AFSF filter.
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7.5.3 Gaussian noise in greyscale images

This subsection discusses some experiments which investigate the performance of the state-
of-the-art methods for the additive Gaussian noise reduction.

Numerical results

The best numerical results for the greyscale “Cameraman” image corrupted with additive
Gaussian noise with several σ levels are shown in Table 7.28, Table 7.29 and Table 7.30 for
the PSNR, UIQ andMh

6 measure, respectively. From those observations we can summarise
the conclusion as follows:

• The best numerical results were obtained by the more complex wavelet based tech-
niques: 3D-DFT, ProbShrink, FuzzyShrink, BLS-GSM and TLS method. The GOA
method outperforms the non-wavelet based techniques followed by the FMF and the
UF.

• The FuzzyShrink method obtains almost the same noise reduction performance as the
ProbShrink method, which is, as illustrated in chapter 5, much more time consuming.

• It can also be observed that the differences in terms of PSNR values are much larger
then in terms of UIQ and M h

6 . Therefore it is easier to use the PSNR measure to
compare the filters with each other.

Visual results

The visual results of the best performing filters for the greyscale “Cameraman” image cor-
rupted with additive Gaussian noise with σ = 25 is shown in Fig. 7.15. The conclusions
with respect to the visual observations are:

• The best visual results are obtained by the 3D-DFT followed by the ProbShrink, the
FuzzyShrink and the BLS-GSM filter.

• Some wavelet based approaches reduce the noise very well while a lot of typical
wavelet artefacts called Gibbs are introduced. These artefacts do not generally pro-
duces lower numerical PSNR values. This indicates that the numerical measure do
not always corresponds to the visual ones.

• The GOA method outperforms other non-wavelet based methods and obtains visual
results comparable with the more complex wavelet techniques. The main disadvan-
tage of the GOA is that it smooths too many details.
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Table 7.28: Comparative results in terms of PSNR (dB) of different filtering methods for various
distortions of Gaussian noise for the (256 × 256) “Cameraman” image Fig. 7.5 (a).

PSNR (dB)
σ 5 10 15 20 25 30 40 50

Noise 34.15 28.28 24.90 22.50 20.59 19.08 16.73 14.94
UF 34.15 28.72 27.24 25.80 24.51 23.59 22.34 21.49

CWM 31.95 29.76 27.61 26.00 24.60 23.42 21.42 19.64
GF 25.80 25.59 25.25 24.85 24.35 23.81 23.02 22.21
MF 25.98 25.57 25.24 24.84 24.34 23.80 23.01 22.20
BF 27.75 27.36 26.77 26.08 25.27 24.53 23.24 22.23

SMF 27.15 26.53 25.85 25.17 24.57 24.02 23.02 21.92
FSB 26.80 26.50 25.98 25.33 24.86 24.31 23.32 22.20
FIND 32.39 27.68 24.68 22.50 21.57 20.91 20.04 19.24
AFSF 27.87 26.83 25.76 24.76 24.03 23.31 22.12 20.78
IIA 27.24 25.60 24.86 24.02 23.32 22.47 20.72 19.20

FMF 35.52 31.45 28.91 27.15 25.60 24.48 22.51 20.75
DWMAV 25.78 25.57 25.24 24.84 24.34 23.80 23.01 22.20
ATMED 26.86 26.45 25.91 25.21 24.50 23.95 23.06 22.03
TMED 27.01 26.43 25.76 25.04 24.46 23.94 22.94 21.81
TMAV 27.18 26.66 26.09 25.48 24.78 24.37 23.54 22.55
GMAV 26.69 26.41 25.98 25.48 24.85 24.21 23.32 22.47
NASM 25.82 25.05 23.96 22.99 22.15 21.57 20.51 19.81
HAF 25.78 25.36 24.86 24.01 23.27 22.63 21.51 20.38
GOA 36.45 32.14 30.26 28.95 27.78 26.82 25.20 23.71
IFCF 26.13 25.86 25.48 25.08 24.57 24.16 23.23 22.26

MIFCF 27.80 27.28 26.68 26.14 25.29 24.68 23.31 21.92
SFCF 27.57 27.20 26.69 26.13 25.23 24.36 22.46 20.67
SSFCF 27.45 27.07 26.56 25.95 24.99 24.05 22.03 20.22
FIRE 26.71 24.95 23.17 21.89 20.92 20.28 19.50 18.84

PWLFIRE 33.79 28.34 25.00 22.66 20.90 19.57 17.77 16.53
FRINR 34.15 28.28 25.56 24.00 22.61 21.60 19.58 17.93

TLS 37.49 33.29 30.97 29.37 28.19 27.22 25.57 24.11
HMT 36.19 31.93 29.49 27.85 26.49 25.44 23.66 22.28

3D-DFT 37.82 33.61 31.28 29.77 28.51 27.50 25.73 24.21
BLS-GSM 37.28 32.80 30.89 29.50 28.48 27.58 25.91 24.32
BiShrink 37.00 32.94 30.68 29.16 27.96 27.04 25.38 23.92
NLCDM 34.14 28.28 26.77 25.87 24.86 24.33 23.19 22.00

ProbShrink 37.65 33.45 31.00 29.48 28.26 27.29 25.60 24.08
FuzzyShrink 37.50 33.21 31.02 29.48 28.26 27.26 25.60 24.11
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Table 7.29: Comparative results in terms of UIQ of different filtering methods for various distortions
of Gaussian noise for the (256 × 256) “Cameraman” image.

UIQ
σ 5 10 15 20 25 30 40 50

Noise 0.9969 0.9881 0.9743 0.9558 0.9325 0.9061 0.8456 0.7787
UF 0.9969 0.9892 0.9848 0.9789 0.9716 0.9649 0.9532 0.9431

CWM 0.9948 0.9915 0.9862 0.9801 0.9728 0.9647 0.9449 0.9194
FMF 0.9978 0.9943 0.9896 0.9843 0.9776 0.9709 0.9543 0.9320

TMAV 0.9839 0.9823 0.9798 0.9766 0.9723 0.9693 0.9626 0.9527
HAF 0.9776 0.9748 0.9714 0.9648 0.9578 0.9494 0.9327 0.9103
GOA 0.9982 0.9950 0.9923 0.9894 0.9860 0.9823 0.9736 0.9620
IFCF 0.9799 0.9786 0.9765 0.9741 0.9708 0.9678 0.9599 0.9500

PWLFIRE 0.9967 0.9881 0.9742 0.9560 0.9343 0.9107 0.8644 0.8192
FRINR 0.9969 0.9881 0.9779 0.9687 0.9576 0.9472 0.9190 0.8855

TLS 0.9986 0.9962 0.9934 0.9903 0.9872 0.9838 0.9756 0.9653
HMT 0.9981 0.9948 0.9907 0.9864 0.9811 0.9757 0.9625 0.9475

3D-DFT 0.9987 0.9965 0.9939 0.9912 0.9882 0.9848 0.9766 0.9661
BLS-GSM 0.9985 0.9957 0.9933 0.9907 0.9881 0.9852 0.9777 0.9671
ProbShrink 0.9986 0.9963 0.9935 0.9907 0.9875 0.9843 0.9761 0.9654

FuzzyShrink 0.9986 0.9961 0.9935 0.9907 0.9875 0.9842 0.9762 0.9657

Table 7.30: Comparative results in terms of Mh
6 of different filtering methods for various distortions

of Gaussian noise for the (256 × 256) “Cameraman” image.

Mh
6

σ 5 10 15 20 25 30 40 50
Noise 0.9285 0.8736 0.8199 0.7561 0.6862 0.6208 0.5057 0.4192
UF 0.9285 0.9124 0.8924 0.8772 0.8582 0.8559 0.8374 0.8251

CWM 0.9409 0.9059 0.8793 0.8560 0.8310 0.8065 0.7479 0.6887
FMF 0.9404 0.9141 0.8895 0.8694 0.8491 0.8305 0.7880 0.7379

TMAV 0.9153 0.8962 0.8777 0.8649 0.8590 0.8516 0.8354 0.8154
HAF 0.8990 0.8718 0.8493 0.8299 0.8135 0.7971 0.7746 0.7550
GOA 0.9612 0.9433 0.9265 0.9105 0.8932 0.8746 0.8463 0.8199
IFCF 0.9083 0.8912 0.8746 0.8625 0.8505 0.8412 0.8217 0.8034

PWLFIRE 0.9372 0.8929 0.8401 0.7824 0.7276 0.6873 0.6252 0.5829
FRINR 0.9285 0.8736 0.8409 0.8093 0.7720 0.7390 0.6554 0.5843

TLS 0.9592 0.9417 0.9294 0.9156 0.9004 0.8843 0.8539 0.8281
HMT 0.9540 0.9307 0.9119 0.8943 0.8766 0.8593 0.8272 0.7997

3D-DFT 0.9645 0.9495 0.9341 0.9168 0.8983 0.8811 0.8511 0.8248
BLS-GSM 0.9636 0.9457 0.9320 0.9148 0.8988 0.8835 0.8554 0.8292
ProbShrink 0.9623 0.9458 0.9308 0.9138 0.8972 0.8816 0.8533 0.8270

FuzzyShrink 0.9619 0.9447 0.9303 0.9138 0.8976 0.8812 0.8530 0.8275
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.15: The visual results for the greyscale “Cameraman” (256 × 256) image with: (a) the
noise-free version , (b) the image corrupted with Gaussian noise (σ = 25), (c) the GOA filter, (d) the
ProbShrink filter, (e) the FuzzyShrink filter, (f) the TLS filter, (g) the BLS-GSM filter, (h) the 3D-DFT
filter and (i) the BiShrink filter.
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7.5.4 Gaussian noise in colour images

The last experiments that we have realized deal with the reduction of additive Gaussian noise
in digital colour images. Several state-of-the-art wavelet and non-wavelet based methods are
compared with each other.

Numerical results

In Tables 7.31 - 7.36 we illustrate the numerical results (PSNR, UIQ,M h
6 and NCD) for the

coloured “Plane” and “House” image corrupted with additive Gaussian noise with several σ
levels. From these results we summarise the conclusions as follows:

• The best numerical results are obtained by the FS2FCG method followed by the other
wavelet based methods and the FCG and the GOA method. The last two methods
clearly outperform the other non-wavelet based methods.

• The main advantage of the FCG is that the colours are preserved much better es-
pecially for high levels of additive Gaussian noise. Therefore the FS2FCG method
outperforms most other techniques since the noise is reduced by the FuzzyShrink
method, while the colours are preserved much better by using the additional FCG.

• The GOA and FCG methods are the only two non-wavelet based methods that obtain
results which are comparable to the more complex wavelet based methods.

• These numerical results illustrate that noise reduction for colour images should be
treated in a different way. Future research should be done in the field of efficient
colour preserving noise reduction methods.

Visual results

Visual results are presented in Fig. 7.16 and Fig. 7.16, where the coloured “Plane” and
“House” image were corrupted with additive Gaussian noise with a standard deviation of
the noise σ = 30. The conclusions with respect to the visual observations are:

• The best noise reduction is obtained by the DFT, BLS-GSM, FS2FCG, FuzzyShrink
and ProbShrink method followed by the GOA and the proposed FCG method. Other
non-wavelet based methods such as the DWMAV or TMAV do not produce satisfying
results and should not be advised for the reducing of additive Gaussian noise.

• The FCG method is the only method where almost no colour artefacts are introduced.
For the other methods such as the FuzzyShrink, DFT or GOA we observe that a lot of
colour artefacts appear especially on the edges. The disadvantage of the FCG method
is that not all noise is reduced well and that small distortions still can be observed.

• The FS2FCG method reduces the noise very well and also reduces the colour artefacts
a little bit better than the corresponding FuzzyShrink method.

• From those visual results we can conclude that future research must concentrate on
efficient noise reduction methods for colour images in order to process colour images
in a more appropriate way.
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Table 7.31: Comparative results in terms of PSNR (dB) of different filtering methods for various
distortions of Gaussian noise for the (512 × 512) “Plane” image Fig. 7.5 (d).

PSNR (dB)
σ 5 10 15 20 25 30 40 50

Noise 34.14 28.13 24.60 22.11 20.17 18.91 16.09 14.15
UF 36.72 32.53 30.38 29.18 28.11 27.20 25.59 24.02

TSM 33.46 28.31 25.20 24.22 23.71 23.29 22.48 21.60
CWM 35.94 32.04 29.78 28.76 27.96 27.39 26.25 25.19
AWiF 26.46 24.61 22.58 20.80 19.22 17.72 15.09 23.09
GF 32.71 31.79 30.59 29.36 28.63 27.99 26.59 25.23
MF 32.69 32.77 30.58 29.36 28.64 28.01 26.61 25.25
BF 34.41 32.82 31.04 29.67 28.77 27.94 26.25 24.74

SMF 33.75 31.90 30.41 29.20 28.06 27.07 25.18 23.62
FBF 35.57 31.14 29.52 28.62 27.99 27.48 26.56 25.62
FSB 33.26 32.00 30.51 29.56 28.47 27.42 25.36 23.67

AFSF 33.83 30.98 29.51 28.32 27.29 26.42 24.08 23.42
DWMAV 32.69 32.77 30.58 29.36 28.64 28.01 26.61 25.25
ATMED 33.54 32.10 30.55 29.53 28.64 27.83 26.12 24.57
GMED 33.47 31.62 30.94 29.29 28.30 27.45 25.86 24.64
TMAV 33.92 32.33 30.66 29.67 28.67 27.79 26.07 24.74
GMAV 33.49 32.35 30.94 29.62 28.86 28.16 26.67 25.40
HAF 33.17 32.04 30.66 29.39 28.57 27.72 25.61 23.48
GOA 37.53 34.46 32.64 31.36 30.41 29.61 28.01 26.51
IFCF 32.52 31.40 30.19 28.99 27.88 26.96 25.33 24.10

EIFCF 32.30 31.23 30.04 28.90 27.82 26.95 25.33 24.08
DSFIRE 35.72 31.03 27.60 24.98 22.97 21.45 19.34 18.12
INRC 36.09 33.42 31.32 29.18 26.88 24.84 21.83 19.81

FIDRMC 34.15 29.39 26.59 24.25 22.41 20.46 18.11 16.67
FCG 37.27 34.24 32.40 31.28 30.15 29.46 28.17 27.40
TLS 38.62 35.24 33.34 32.02 31.01 30.18 28.70 27.23
HMT 37.50 33.89 31.80 30.39 29.30 28.51 26.98 25.76

3D-DFT 38.78 35.55 33.73 32.39 31.42 30.62 29.13 27.74
BLS-GSM 37.99 35.34 33.46 32.23 31.21 30.35 28.82 27.33
BiShrink 37.70 34.15 32.15 30.79 29.79 28.97 27.61 26.36

ProbShrink 38.46 35.17 33.33 32.02 31.02 30.21 28.78 27.40
Lucchese 31.89 31.56 31.02 30.18 28.81 26.91 22.98 20.00
NLCDM 34.92 32.57 30.87 29.69 28.58 27.82 26.84 25.75

FuzzyShrink 38.39 35.22 33.35 32.01 30.97 30.10 28.72 27.62
FS2FCG 38.15 35.71 33.91 32.58 31.52 30.64 29.24 28.13
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Table 7.32: Comparative results in terms of NCD of different filtering methods for various distortions
of Gaussian noise for the (512 × 512) “Plane” image.

NCD (×102)
σ 5 10 15 20 25 30 40 50

Noise 21.38 42.77 64.17 85.01 104.50 122.26 152.57 177.02
CWM 14.33 23.76 34.45 45.12 56.18 66.89 88.59 108.59

BF 11.34 18.05 25.33 25.55 30.39 34.86 43.23 50.99
DWMAV 11.89 17.43 23.63 29.89 27.31 31.09 38.25 45.05

GOA 9.67 13.07 15.74 17.97 20.21 22.15 26.19 30.61
IFCF 12.97 18.96 25.06 30.99 36.85 42.21 52.79 62.20
FCG 10.42 13.56 16.62 18.29 18.83 21.37 23.51 26.39
TLS 9.41 12.48 14.61 16.26 17.60 18.70 20.97 24.03
HMT 10.59 15.64 20.08 23.45 26.65 28.74 35.03 38.58

3D-DFT 9.09 11.95 13.76 15.52 16.88 18.08 20.45 23.22
BLS-GSM 8.84 11.86 13.88 16.12 17.60 19.01 21.97 25.40
BiShrink 10.40 14.61 17.70 20.09 22.00 23.63 26.55 29.43

ProbShrink 9.20 12.99 15.17 17.54 19.23 20.71 23.73 27.00
NLCDM 12.28 20.79 22.37 28.32 34.03 27.71 33.63 39.18

FuzzyShrink 9.22 12.52 15.11 17.51 19.78 22.03 26.27 30.38
FS2FCG 8.92 11.15 13.28 15.38 17.39 19.37 23.16 26.82

Table 7.33: Comparative results in terms of Mh
6 of different filtering methods for various distortions

of Gaussian noise for the (512 × 512) “Plane” image.

Mh
6

σ 5 10 15 20 25 30 40 50
Noise 0.9759 0.9518 0.9138 0.8588 0.8064 0.7635 0.7009 0.6561
CWM 0.9741 0.9630 0.9518 0.9400 0.9252 0.9064 0.8595 0.8123

BF 0.9767 0.9708 0.9638 0.9572 0.9524 0.9477 0.9368 0.9257
DWMAV 0.9728 0.9683 0.9626 0.9565 0.9516 0.9478 0.9384 0.9287

GOA 0.9765 0.9705 0.9658 0.9616 0.9580 0.9544 0.9457 0.9358
IFCF 0.9703 0.9643 0.9581 0.9519 0.9459 0.9406 0.9288 0.9176
FCG 0.9834 0.9768 0.9714 0.9676 0.9638 0.9599 0.9532 0.9474
TLS 0.9856 0.9794 0.9749 0.9712 0.9678 0.9646 0.9578 0.9334
HMT 0.9837 0.9758 0.9695 0.9642 0.9593 0.9553 0.9458 0.9367

3D-DFT 0.9859 0.9803 0.9763 0.9727 0.9697 0.9667 0.9594 0.9502
BLS-GSM 0.9847 0.9797 0.9755 0.9719 0.9685 0.9651 0.9573 0.9474
BiShrink 0.9840 0.9766 0.9711 0.9666 0.9626 0.9590 0.9513 0.9421

ProbShrink 0.9853 0.9791 0.9747 0.9708 0.9674 0.9641 0.9569 0.9478
NLCDM 0.9792 0.9713 0.9658 0.9601 0.9543 0.9509 0.9437 0.9353

FuzzyShrink 0.9852 0.9793 0.9747 0.9707 0.9670 0.9635 0.9569 0.9506
FS2FCG 0.9848 0.9802 0.9760 0.9723 0.9688 0.9655 0.9593 0.9534
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Table 7.34: Comparative results in terms of PSNR (dB) of different filtering methods for various
distortions of Gaussian noise for the (256 × 256) “House” image Fig. 7.5 (c).

PSNR (dB)
σ 5 10 15 20 25 30 40 50

Noise 34.13 28.13 24.62 22.17 20.28 18.77 16.43 14.70
UF 35.77 31.96 29.92 28.84 27.91 27.12 25.79 24.62

LUM 32.61 31.31 30.02 28.90 27.77 26.76 24.95 23.34
CWM 35.18 31.65 29.05 27.07 25.38 24.00 21.78 19.96
AWiF 27.55 25.21 22.91 21.01 19.33 17.82 15.32 13.59
GF 31.07 30.41 29.48 28.56 27.97 27.38 26.12 24.89
MF 31.05 30.39 29.47 28.57 27.99 27.39 26.14 24.91
BF 32.93 31.74 30.24 28.93 28.11 27.33 25.78 24.37
FBF 35.32 30.90 29.21 28.28 27.63 27.10 26.19 25.34
FSB 32.15 31.16 30.20 29.30 28.20 27.13 25.14 23.44

AFSF 34.00 30.84 29.19 28.05 26.99 26.09 24.47 23.01
MFF 31.12 30.79 29.79 27.85 27.01 26.32 25.08 23.94

DWMAV 31.05 30.39 29.47 28.57 27.99 27.39 26.14 24.91
ATMED 32.28 31.12 29.81 29.02 28.15 27.33 25.79 24.32
GMED 32.37 31.15 29.99 29.03 28.01 27.12 25.49 24.12
TMAV 32.63 31.35 30.17 29.25 28.28 27.41 25.76 24.34
GMAV 31.83 31.02 29.90 28.87 28.21 27.55 26.18 24.89
HAF 31.55 30.74 29.60 28.69 27.90 27.13 25.42 23.55
GOA 35.39 33.25 31.80 30.76 29.84 29.10 27.65 26.37
IFCF 32.26 31.14 29.88 28.76 27.67 26.78 25.11 23.80

EIFCF 31.92 30.89 29.71 28.66 27.62 26.75 25.09 23.74
DSFIRE 34.65 29.44 26.24 24.02 22.28 20.94 19.16 18.09
INRC 34.30 32.50 30.66 28.79 26.68 24.76 21.77 19.64

FIDRM 34.13 28.13 24.63 23.82 23.35 22.63 20.45 19.37
FCG 35.54 32.97 31.20 30.59 29.89 29.08 27.43 26.37
TLS 38.10 34.75 33.02 31.85 30.97 30.14 28.76 27.55
HMT 36.62 33.10 31.06 29.61 28.50 27.46 25.96 24.85

3D-DFT 38.37 35.27 33.87 32.82 32.04 31.35 30.04 28.74
BLS-GSM 36.37 34.22 32.95 31.88 30.95 30.13 28.62 27.27
BiShrink 36.82 33.90 32.27 31.11 30.18 29.40 28.06 26.91

ProbShrink 37.20 34.31 32.69 31.55 30.62 29.84 28.48 27.27
Lucchese 31.50 31.02 30.56 29.84 28.50 26.49 22.35 19.32
NLCDM 34.13 31.78 30.10 29.06 28.03 27.29 26.35 25.37

FuzzyShrink 37.07 34.21 32.67 31.53 30.60 29.79 28.37 27.11
FS2FCG 35.99 34.12 32.90 31.85 30.99 30.23 28.95 27.74
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Table 7.35: Comparative results in terms of NCD of different filtering methods for various distortions
of Gaussian noise for the (512 × 512) “House” image.

NCD (×102)
σ 5 10 15 20 25 30 40 50

Noise 17.54 35.08 52.56 69.62 86.03 101.76 131.29 158.37
UF 10.53 18.62 20.15 24.64 26.71 29.28 35.33 40.61
FBF 13.83 20.52 22.47 23.42 24.43 25.68 28.94 32.77

AFSF 14.55 20.29 25.14 29.52 33.47 37.72 46.62 55.64
TMAV 11.68 16.78 18.44 22.52 26.35 30.51 38.64 46.89
GOA 9.40 12.47 14.94 16.96 18.71 20.82 24.98 29.35
FCG 10.20 13.17 15.54 16.70 17.00 17.60 19.46 22.39
TLS 7.84 10.75 12.85 14.53 15.41 17.10 19.58 22.54
HMT 10.08 14.89 19.26 23.07 26.09 30.11 35.33 39.26

3D-DFT 7.43 9.69 11.02 12.47 13.64 14.99 18.02 21.78
BLS-GSM 8.29 10.76 12.99 14.49 16.32 17.96 21.41 25.31
BiShrink 8.90 12.91 15.82 18.11 20.07 21.85 25.43 28.94

ProbShrink 8.24 11.58 14.45 16.00 17.84 19.43 22.80 26.59
NLCDM 17.54 18.04 19.73 24.31 28.87 24.89 30.21 35.60

FuzzyShrink 8.24 11.49 14.07 15.90 17.86 19.68 23.56 27.80
FS2FCG 9.13 10.94 12.71 14.28 15.92 16.79 20.12 23.92

Table 7.36: Comparative results in terms of UIQ of different filtering methods for various distortions
of Gaussian noise for the (256 × 256) “House” image.

UIQ
σ 5 10 15 20 25 30 40 50

Noise 0.9879 0.9533 0.9009 0.8366 0.7665 0.6954 0.5644 0.4581
UF 0.9923 0.9819 0.9731 0.9636 0.9539 0.9442 0.9247 0.9058
FBF 0.9912 0.9765 0.9665 0.9590 0.9526 0.9464 0.9335 0.9190

AFSF 0.9890 0.9763 0.9641 0.9529 0.9407 0.9291 0.8949 0.8569
TMAV 0.9851 0.9793 0.9732 0.9659 0.9578 0.9488 0.9212 0.8921
GOA 0.9908 0.9855 0.9797 0.9738 0.9676 0.9622 0.9452 0.9311
FCG 0.9905 0.9833 0.9754 0.9735 0.9673 0.9608 0.9443 0.9309
TLS 0.9954 0.9904 0.9853 0.9806 0.9760 0.9711 0.9605 0.9486
HMT 0.9937 0.9856 0.9774 0.9689 0.9596 0.9500 0.9285 0.9064

3D-DFT 0.9957 0.9917 0.9882 0.9845 0.9810 0.9776 0.9707 0.9623
BLS-GSM 0.9928 0.9884 0.9847 0.9804 0.9753 0.9696 0.9563 0.9405
BiShrink 0.9939 0.9879 0.9827 0.9778 0.9728 0.9679 0.9575 0.9462

ProbShrink 0.9943 0.9888 0.9840 0.9793 0.9745 0.9697 0.9591 0.9475
NLCDM 0.9879 0.9818 0.9734 0.9649 0.9540 0.9491 0.9347 0.9169

FuzzyShrink 0.9944 0.9887 0.9839 0.9791 0.9741 0.9690 0.9577 0.9453
FS2FCG 0.9920 0.9885 0.9853 0.9819 0.9780 0.9746 0.9668 0.9573
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.16: The visual results for the coloured “Plane” (512 × 512) image with: (a) a noise-free
part of the image, (b) the part corrupted with additive Gaussian noise (σ = 30), (c) the FuzzyShrink
filter, (d) the GOA filter, (e) the FCG filter, (f) the FuzzyShrink and the FCG filter (FS2FCG), (g) the
BLS-GSM filter, (h) the DFT filter and (i) the DWMAV filter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.17: The visual results for the coloured “House” (256 × 256) image with: (a) a noise-free
part of the image, (b) the part corrupted with additive Gaussian noise (σ = 30), (c) the FuzzyShrink
filter, (d) the GOA filter, (e) the FCG filter, (f) the FuzzyShrink and the FCG filter (FS2FCG), (g) the
BLS-GSM filter, (h) the DFT filter and (i) the TMAV filter.
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7.6 Conclusion

In this chapter we proposed a large comparative study where we compared the most impor-
tant state-of-the-art methods with the methods discussed in this thesis. From this study we
can make the following main conclusions:

• The proposed fuzzy impulse noise reduction (the FIDRM and the FRINR) methods
for greyscale images clearly outperform most other state-of-the-art methods.

• In spite of the huge number of vector-based approaches and other noise reduction
methods applied on each component of a colour image we have illustrated that other
alternative colour filters, as developed and discussed in this thesis (FIDRMC, HFC
and INRC), should be applied in order to handle colour images in a more appropriate
way.

• The proposed simple FuzzyShrink method obtains the same noise reduction perfor-
mance as the more time consuming ProbShrink method.

• In spite of the good numerical results of the wavelet based approaches we have illus-
trated that colour images should be treated in a different way. The proposed FCG and
FS2FCG have proven that by reducing the colour artefacts we can increase the PSNR
value, while reducing the NCD value (i.e., increase colour preservation).

• The nice results we obtained with our methods (i.e., the FIDRMC, the HFC, the INRC
and the FCG) illustrate that future research should be done in order to develop effi-
cient noise reduction methods for colour images. Also the extension of the greyscale
image sequence noise reduction method proposed in chapter 6 to colour image se-
quences should be a subject for future research.





Chapter 8

Conclusion

It is well known that the correct perception of colour can help in different tasks of image
understanding and pattern recognition. Unfortunately, noise and other impairments associ-
ated with the capturing or the transmission apparatus can significantly degrade the value of
the colour information carried by the digital images. It comes therefore as no surprise that
the most common signal processing task is the noise filtering.

Besides the classical noise reduction filters we have fuzzy nonlinear noise reduction
methods. The added value of the usage of fuzzy set theory is its ability to model and to
reason with uncertainty. Since we can distinguish degrees of contamination of a pixel in
an image we know that uncertainty occurs when processing an image for noise reduction.
Fuzzy set theory and fuzzy logic allow us to model and to work with this uncertainty, and
to improve the quality of noise reduction. This thesis concerns fuzzy nonlinear restoration
methods for reducing noise in digital greyscale and colour methods and for video-sequences.

In chapter 2 we presented two impulse noise detection and reduction methods for greysc-
ale images. The first method is called the fuzzy impulse noise detection and reduction meth-
od (FIDRM) [193, 194] and uses a fuzzy detection and an iterative filtering algorithm. This
filter is especially developed for reducing all kinds of fixed (or near to fixed) impulse noise.
Its main feature is that it leaves the pixels which are noise-free unchanged. A fixed valued
impulse noise detection method is proposed so that we can distinguish fixed from random
valued impulse noise. In the random valued impulse noise case a more appropriate impulse
noise reduction method can be applied: the fuzzy random valued impulse noise reduction
method (FRINR) [187, 189]. This FRINR consists of two fuzzy detection methods and a
fuzzy filtering algorithm. Its main advantage is that it removes impulse noise very well
while preserving the fine image structures.

In chapter 3 we presented three impulse noise reduction methods for colour images
[143, 184, 185, 186, 190, 192]. We illustrated that the main differences between these
methods and other state-of-the-art techniques is the usage and the preservation of the colour
differences. Additionally we showed with the INRC method [143, 192] that we can improve
not only the noise reduction but also the impulse noise detection by incorporating the colour
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information. The main advantages of the three proposed methods can be summarised as:
(i) impulse noise (for low and high noise levels) is reduced effectively, (ii) edge sharpness
is preserved and (iii) much less blurring or new colour artefacts are introduced. Numerical
measures, such as PSNR and NCD, and visual observations illustrate that the proposed
methods outperform most of the well-known filters. We can conclude that colour images
should be treated differently than greyscale images and that the existing vector based ap-
proaches should be extended in order to increase the visual performance. In spite of the
already satisfying results of our methods we believe that a lot of additional research should
still be done in that field. One of the future research topics can e.g. be focused on the
reduction of mixed noise types for colour images.

In the fourth chapter an alternative wavelet based soft-computing method [191] for the
recently published probabilistic shrinkage method of Pižurica [162] was proposed. This
probabilistic shrinkage method is devised for the reduction of additive Gaussian noise in
digital images and outperforms the current fuzzy based algorithms and some recently pub-
lished wavelet based methods. Experimental results show that the proposed fuzzy method
receives the same noise reduction performance as the probabilistic one. However the pro-
posed method clearly reduces the complexity of the probabilistic shrinkage method in terms
of execution time. An additional advantage of the method is the possibility to incorporate
more information (e.g. interscale and/or colour information) by adding other fuzzy rules to
improve the noise reduction performance. Future work should be done on this issue in order
to improve noise reduction performance.

In chapter 5 we proposed a new fuzzy filter called the the fuzzy colour preserving Gaus-
sian noise reduction method (FCG) [188] for the reduction of Gaussian noise in digital
colour images. The main advantages of this new filter are the denoising capability and
the reconstruction capability of the destroyed colour component differences. A numerical
measure, such as the PSNR, and visual observations showed convincing results. The pro-
posed method generally outperforms most of the other fuzzy filters. Moreover the proposed
method achieves a comparable noise reduction performance as the more complex wavelet
based methods. We also illustrated that we get a better performance (numerically as well as
visually) when a wavelet based method (e.g. the “Fuzzy Shrinkage” method of chapter 4)
is combined with our proposed method. Future research can be focused on this issue and
on the construction of other fuzzy wavelet filtering methods for colour images to suppress
other noise types as well (speckle noise, stripping noise, etc.).

A new adaptive recursive fuzzy motion detection and noise reduction method for im-
age sequences [196, 259, 262] was proposed in chapter 6. The main advantage of the pro-
posed fuzzy motion detection is the robustness against noise and slowly varying illumination
changes. The reliable motion detection scheme enables efficient temporal recursive filter-
ing, which in turn improves the motion detection performance, in the proposed recursive
scheme. The subsequent additional adaptive spatial fuzzy filter removes the non-stationary
noise left by the temporal filter. We illustrated that the noise reduction method receives a
very good noise reduction performance for sequences with average spatial-temporal struc-
tures, and average performance for more complicated sequences containing complex motion
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and many fine details. The performance generally outperforms single resolution techniques
and is comparable with the more complex multi-resolution methods.

One of the main challenges for future work is to incorporate the colour information
so that we can improve the temporal and spatial noise reduction method of real colour
image sequences. Vladimir Zlokolica [258] modified the proposed method for tracking
and interlaced sequences, nevertheless the adaptation of the algorithm to handle interlaced
sequences and the tracking problem should be further investigated. Finally we are also
interested in the extension of the proposed fuzzy motion detection for more efficient motion
detection that could cope with fast illumination changes and fast zooming and planning.

In chapter 7 we compared the performance of the proposed methods with a large number
of other state-of-the-art methods [147, 148, 149, 150, 152, 195]. From those results we can
conclude that the proposed methods outperform most of the existing methods and can be
used effectively to reduce impulse and Gaussian noise from digital greyscale and colour
images.
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