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Abstract: In this paper we present a new denoising method for the
depth images of a 3D imaging sensor, based on the time-of-flight principle.
We propose novel ways to use luminance-like information produced by
a time-of flight camera along with depth images. Firstly, we propose a
wavelet-based method for estimating the noise level in depth images, using
luminance information. The underlying idea is that luminance carries
information about the power of the optical signal reflected from the scene
and is hence related to the signal-to-noise ratio for every pixel within the
depth image. In this way, we can efficiently solve the difficult problem
of estimating the non-stationary noise within the depth images. Secondly,
we use luminance information to better restore object boundaries masked
with noise in the depth images. Information from luminance images is
introduced into the estimation formula through the use of fuzzy membership
functions. In particular, we take the correlation between the measured depth
and luminance into account, and the fact that edges (object boundaries)
present in the depth image are likely to occur in the luminance image as
well. The results on real 3D images show a significant improvement over
the state-of-the-art in the field.
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1. Introduction

Clean and reliable image features are of fundamental significance for complex tasks such as
object recognition, autonomous navigation of robots and biometric authentication. With this,
Iuminance, colour and motion information are often used as features for the scene interpretation
task. In practice, these features, extracted from a two-dimensional (2D), or 2D plus temporal
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scene representation, are often insufficient for unambiguous interpretation of the scene, due to
occlusions and the lack of information along the third dimension (depth) of the scene.

The introduction of depth (i.e. range) information into the feature set makes the scene inter-
pretation task more feasible and robust, where various depth estimation techniques exist, based
on the use of one or multiple cameras (see [1] for an overview). Most frequently, two cam-
eras are employed for depth estimation, based on the disparity measured between the left and
the right camera image [2]. Alternative techniques include depth-from-focus [3], depth-from-
shape [4] and depth-from-motion [5]. Some of the latest developments in this area are based on
measuring the time-of-flight (TOF) [6,7] of the infra-red modulated light beam.

In TOF imaging, the “luminance” channel (similar to the one in classical video) is accom-
panied by a “depth” channel containing distance measurements. The main characteristics of
TOF depth sensors are high frame rate, good consistency of the produced depth map (with
the real scene in most cases), good accuracy and low computational requirements. While this
technology has already demonstrated excellent potential, some problems still have to be solved
in order to make it widely usable within practical applications. An important problem here is
interference between ambient light and the infra-red light source in the TOF camera, which
causes errors in the measured depth and therefore makes outdoor usage of TOF cameras dif-
ficult. Another significant problem is the presence of noise, which reduces the precision of
distance measurement. For TOF sensors, luminance images typically contain much less noise
than the corresponding depth images. Hence, the main idea of our approach is to make use of
the luminance image, which is of better quality, to improve the performance of the depth image
denoising.

The topic of noise reduction in TOF depth images has not been well studied in literature
yet (since the TOF technology itself is relatively new) and the reported studies are scarce.
One of the first methods for denoising depth images which use the luminance information was
presented in [8].

Later, in [9] the first methods for the denoising of depth images acquired by a time of flight
camera were presented. In this paper authors present three methods for the denoising of depth
images suitable for hardware implementation The first method presented is a standard median
filter, where the denoised value is replaced by the median value of the pixels in the neighbour-
hood. The second is uniform low-pass filtering of the depth image, a type of filter replacing the
noisy pixel value with the weighted average of neighbouring pixels. Finally, the third is based
on recursive temporal filtering, where the value of each noisy pixel is replaced by an average
of the current noise and the previous value of the temporal average. While these methods sig-
nificantly reduce the variance of the depth measurements, they also produce spatial and motion
blur.

In [10], temporal averaging is used to reduce the amount of noise prior to the super-resolution
of the depth map. Denoised values here are obtained by calculating the average value of depth
for each pixel in 200 frames. Although this method efficiently removes noise, it is only appli-
cable for denoising of the depth images of the static scene. Otherwise, in the case of non-static
scene, it would cause severe motion blur.

In a recent approach [11] the authors propose three approaches for depth image denosing.
Here we describe the best performing approach from [11], named “Adaptive Normalized Con-
volution”. This approach performs denoising by calculating the weighted average of depth
values inside the spatial neighbourhood of the denoised depth value. The depth values that
are more reliable here contribute more towards the average depth, while unreliable pixels are
given lower significance. The inverse of the amplitude of the received infrared light is used as
a confidence measure of depth values. This method takes the spatial relationship of the pixels
into account by using Gaussian kernel as a weighting factor, where the depth value at a spatial
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location (i, j) of the denoised depth image dj,; ; is computed from the raw depth map d using
the equation:

dr.: s = i—— J 7
hii,j — n—1 n—
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n— n—1
2 2 . . Lrh A2
Zk: n—1 Zk: n ldl+ki7]+kj fki,kj Ai+k[,j+k,-

; 6]

size. In order to achieve good adaptation to the local noise variance and the level of detail,
depth values are further filtered using a Gaussian filter with several different widths %, creating
multiple denoised images with a different level of remaining noise. Since the authors assume
spatially uncorrelated noise, the estimated variance of a smoothed pixel is:
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The denoised depth value is estimated as the value whose corresponding new variance calcu-
lated using the Eq. (2) has the highest variance below a user-defined threshold Gtzhmh. Thanks
to this criterion, every pixel is only averaged over as many neighbours as are strictly required
to obtain sufficient “confidence”. This way, unnecessary smoothing is avoided.

Another recent depth images denoising method is presented in [12], where authors develop
a variant of the non-local method for depth images denoising implemented on GPU. This algo-
rithm restores a depth value by calculating a weighted average of similar pixels:

V(i)=Y w(i, j)v(j), 3)

JEW;

)

2 _
Olij =

where W is a large search window around pixel at the location i, w(i, j) is the weight of pixel j
when pixel i is denoised and v(j) is the pixel at the location j. In this paper weights are derived
both from the depth and the luminance:

Wi, ]) = e F R B H ) 50 X

(v =v(itk) ] . . . . . N
where & = e~ z , G, is a Gaussian function with standard deviation a and v(i) is a

vector containing depth and luminance values from the neighbourhood of the pixel i and Z;
is the normalization constant. The term & constrains the similarity comparison to regions of
similar depths belonging to the same surface.

In our previous work [13], we used luminance information for denoising depth data through
segmentation into self-similar parts. First we form 3x3 neighbourhoods in both the depth and
the luminance wavelet bands, using these neighbourhoods to form feature vectors for k-means
clustering, which produces a set of segments with similarly oriented edges. Furthermore, a
number of clusters was set manually. This clustering and segmentation were used to obtain
parameters of a vector denoiser in each segment, where the denoiser itself was a vector Wiener
filter applied to jointly luminance and depth measurements in the wavelet domain. In [14] we
present the improved version of [13] where the number of clusters is automatically determined,
an approach demonstrating good results in depth image denoising, but which is rather complex
and hence less suitable for real time processing.

In this paper we propose a multi-resolution method for denoising depth images that makes
use of the correlation between luminance and depth data. An important component of this
method is a novel noise standard deviation estimation method using luminance information.
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The present method employs no clustering. Instead, we integrate the luminance features di-
rectly into a novel estimation formula for wavelet coefficients of the depth image, an approach
that significantly improves the recovery of the geometric features hidden in noise.

Two main novelties of the proposed approach are the following: (1) a novel noise estima-
tor for depth images acquired using TOF sensors and (2) a novel wavelet domain denoiser for
TOF depth images making use of the spatial context and the dependencies between the lumi-
nance and depth data. Noise in TOF depth images here is spatially variant and classical noise
estimation techniques are usually insufficiently accurate, while often being overly complex for
this task. However, our method makes use of the correspondence between the reflected optical
signal and noise standard deviation, resulting in a simple and elegant estimator of the noise stan-
dard deviation in each pixel. The proposed wavelet denoiser builds further on the fuzzy-logic
based denoiser FuzzyShrink for classical images from [15]. We make a generalization of the
FuzzyShrink denoiser in order to simultaneously handle two different but correlated imaging
modalities; luminance and depth from a TOF sensor. While the membership functions in [15]
are 1D functions, in our case they are 2D functions, depending on both depth and luminance
data. Moreover, we introduce optimization over anisotropic neighbourhoods in order to better
detect and reconstruct edges hidden in noise.

The results show a clear improvement over other recently reported methods for depth image
denoising [11], including non-local approach [12] and our previous work [13, 14]. The results
also demonstrate an improvement over some recent wavelet domain denoisers for multivalued
images [16, 17].

The paper is organised as follows: section 2 gives the necessary background for this work,in
particular reviewing the basic principles of TOF sensors in section 2.1 and their noise charac-
teristics in subsection 2.2. Wavelet denoisers for classical images that are in the basis of our
work are reviewed briefly in subsection 2.3. In section 3, we present a new method for the esti-
mation of the noise standard deviation in depth images. In section 4, we describe the proposed
denoising method, and experimental results are given in the section 5. More specifically, the
evaluation of the proposed algorithm in terms of objective image quality measures is presented
in subsection 5.1 and the evaluation in terms of the number of occlusions in the artificially
created views is presented in subsection 5.2. The conclusions are given in section 6.

2. Background and related work
2.1. Time-Of-Flight principle

Recent techniques for 3D imaging based on the Time-of-flight principle are gaining in popu-
larity as a technology that will be used for 3D capture in future 3D TV systems [18], for 3D
biometric authentication, 3D human-machine interaction tool etc.

TOF sensors are based on measuring the time that the light emitted by an illumination source
requires to travel to an object and the back to the detector. The system for measuring the distance
typically consists of two main components: a light emitter and a light detector, as shown in Fig.
1. The source emits the optical signal, which is modulated in amplitude. In the case of the Swiss
Ranger sensor, continuous-wave modulation is used. This signal is reflected from the objects in
the scene and received by the detector of the camera. To measure the time of arrival, a Swiss
Ranger sensor measures the phase delay between the emitted and detected signals. This type of
sensor contains an array of 176x144 pixels, each of which is capable of measuring the phase
and the amplitude, where the phase is measured by each pixel in the sensor, thereby creating
the complete phase and distance map.

TOF systems based on continuous wave modulation detect phases of the received optical
signal using the synchronous demodulation, one of which is the cross-correlation of the received
optical signal with the emitted modulated signal [6]:
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Light source
g(t)=cos(2mf t)

Lens

Sensor
Target

Received light: s(t)=B+A cos(2nf, t-®)

Fig. 1. 3D camera using the Time-Of-Flight principle.

.1t
C(r)=s(t)®g(t) = rlleT o s(t)-g(t+71)dr. 3)
The signal received by the sensor consists of an offset signal (e.g., due to the background illu-
mination) and a sinusoidally modulated signal, due to the reflected waveform from the objects
in the scene, where the emitted signal and a reflected signal from the scene are given as:

s(t)=B+A-cos(2ufit — @),
g(t) = cos(2mfiut),

where f;, is the modulation frequency, A is the amplitude of the received optical signal, B is its
bias and ¢ is the phase offset corresponding to the object distance.

The received modulated signal is demodulated by sampling input optical signal syn-
chronously at four different time instants per period: Ai;i=0, ..., 3:

(6)

A3 —A

= arct 7
¢ = arc anAOiAz, @)

Ag+A1+Ar+A;z
B= 8
T (8)
0 VA A+ (A Ar)? ©

At - sind 2 ’

where A; denotes the amplitude at sampling point (temporal instance) i, At denotes the integra-
tion interval for sampling values A, A, A3 and A4 while 6 = % where T is the modulation

period.

2.2.  Noise in depth images

The optical power of the depth sensor has to meet a compromise between image quality and eye
safety. The larger the optical power, the more generated photoelectrons there are per pixel, and
hence the higher the signal-to-noise ratio and measurement error of the depth measurements.
Due to limited optical power, the depth images are rather noisy and therefore of relatively poor
distance measuring error (see Fig. 2). The upper limit on the optical power of the infrared source
also limits the detected optical power, boosting noise.
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(b)

Fig. 2. (a) Luminance image of the scene. (b) Depth map of the scene.

The most important sources of noise in CCD sensors and photodiode arrays are electronic
and optical shot noise, thermal noise, reset noise, 1/f noise, and quantization noise [6, 19].
Photon shot noise gives the largest contribution towards the total noise power and shot noise
models the statistical nature of the arrival of photons and generation of the electron-hole pairs.
Using (7) and taking into account that the noise in samples Ao, ..,A3 is uncorrelated and has a
standard deviation of AA; = \/A;, quantum noise limited phase error ¢ can be obtained as
in [6]:

3 84)
Ao =

)2-A;. (10)

If we solve the above equation for certain phase values (0°,45°,90°,135°,1807,...) we obtain
the range measurement error AL as in [6]:

aL=L VB (11)

V8 2-A
where L is the non-ambiguity distance range. In other words, AL represents the random error of
depth measurements.

As we can see, the measurement error of the TOF sensor is inversely proportional to the
demodulation amplitude A, which depends on the modulation depth, demodulation contrast of
the pixel (efficiency of the pixel on CMOS sensor), optical power of the modulated light source
and on the distance and the reflectivity of the target (see [6] for further analysis).

In terms of imaging science, the measurement error of a TOF camera corresponds to the
variance of noise in depth images; the lower the measurement error (the larger AL) is, the
higher noise level in the depth image, and vice versa. Moreover, the noise in depth images is
highly non-stationary, as we will see in section 3.

Since the noise standard deviation is significantly higher in the depth image, many significant
details and features are lost in the noise, while they are still present in the luminance image.
Furthermore, we observed that, in the case of static scenes, temporal averaging of the depth
sequences indeed reveals details and features hidden in the noise and hence not visible when
looking at a single frame. In real situations, the scene is rarely static and the estimated motion
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is not perfect, which means that, in reality, we cannot remove noise by temporal averaging of
only the depth frames.

The most important observation is that the luminance component contains much less noise
than the corresponding depth measurements. A typical range image, acquired with a Swiss
Ranger camera, has a PSNR of about 34-37 dB, while PSNR values of luminance are typi-
cally about 54-56 dB. Both PSNR values for depth and the luminance were measured using
ground truth images obtained by temporal averaging of the 200 static frames. The fact that the
luminance image contains much less noise than the depth enables us to exploit the luminance
information for more reliable denoising of the depth sequence, especially in the areas subjected
to the higher illumination, which are especially noisy.

2.3.  Wavelet denoisers

For a comprehensive review of the wavelet transform readers are referred to [20]. A large num-
ber of wavelet denoising methods have been proposed over the past few years, such as [21],
[22], [23], [15], [17] and [16]. In [21] wavelet coefficients are modelled using the Gaussian
scale mixtures model and a minimum mean square error estimator is derived for the denoising.
An algorithm presented in [22] uses generalized Gaussian distribution to model the statistics of
the wavelet coefficients and derives the data-driven shrinkage function. The approaches of [17]
and [16] are particularly interesting, since they are applied to the denoising of multivalued sig-
nals and therefore for joint denoising of the depth and luminance. The method of [17] uses
linear expansion of thresholds optimized using Stein’s unbiased risk estimate for vector vari-
ables. In the method of [16] vectors containing wavelet coefficients of multivalued variables
are modelled using a Gaussian scale mixtures model. The proposed method builds further on
two wavelet denoisers for classical images introduced previously by some authors of this paper:
ProbShrink [23] and FuzzyShrink [15].
Let
Wik = Yk + 1k (12)

denote the observed noisy coefficients in a given wavelet sub-band at particular scale and orien-
tation (suppressed in the notation for compactness) and at spatial position k. yj is the unknown
noise-free component and n; a sample of zero mean white Gaussian noise with standard de-
viation o : n; ~ #(0,62). ProbShrink estimator from [23] defines the hypothesis H; : signal
of interest is present as: ] yk‘ > o and the opposite hypothesis Hy : signal of interest is absent
as ’ yk| < o and estimates the noise-free signal component as: $; = P(H| |wk,zk)wk, where z;
is a local spatial activity indicator calculated from the surrounding coefficients (in particular,
locally averaged coefficient amplitude).

The FuzzyShrink estimator of [15] is a fuzzy-logic version of ProbShrink, where the esti-
mation of the required probability density functions is replaced by fuzzy-logic rules and fuzzy
membership functions. It was shown in [15] that this estimator achieves a similar denoising per-
formance as ProbShrink, while it is simpler to implement and faster. The method uses the same
activity indicator z; as ProbShrink and puts it in a fuzzy logic formalism with the following
fuzzy rule:

IF z; is a large activity indicator AND wy is a large coefficient
OR z; is a large activity indicator (13)
THEN wy, is a signal of interest.

The fuzzy membership functions for “large coefficient” and “large activity indicator” are
shown in Fig. 3. The FuzzyShrink estimator is explicitly written as:
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Membership degree
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(b)

Fig. 3. (a) The membership function LARGE COEFFICIENT denoted as p,, for the fuzzy
set large coefficient and (b) the membership function LARGE NEIGBOURHOOD denoted
as U for the fuzzy set large variable.

Pk = YWk, 2x) - W, (14)

where y(wy, zx) is the degree of activation of fuzzy rule for the wavelet coefficient wy defined
as:

YWk, 2k) = o+t (|ze]) — ape (|2 ])

15
with o = w;(|zx]) - o (Jwi|).- )

U, and u,, are the membership functions “large activity indicator” and “large coefficient” re-
spectively. As can be seen from Fig. 3, the shape of these membership functions depends on
the noise standard deviation o (for details, see [15]).

The FuzzyShrink estimator derived in this section was proposed for classical images, and in
this paper we extend it for the denoising of depth images, by introducing the features from both
luminance and depth images into new membership functions.

3. The proposed noise estimation method for TOF depth images

One of the main problems in noise standard deviation estimation is to find the image regions
where the signal of interest (i.e. the edges and textures) is not present, so that the noise is
clearly separated from the useful content. Most of the existing noise estimation methods, like
[24,25,26,27,28] estimate a global noise variance in the whole image, while the noise in TOF
images is highly non-stationary (see Fig. 2(b)).

Our novel noise estimation method is developed specifically for TOF images. The method is
inspired by [22], where signal and noise variance are determined by finding the most similar
neighbourhoods to the current one. The main idea of the proposed method is using the ampli-
tude of the reflected signal for direct noise estimation at every pixel. A similar idea was used
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(@) (b)

Fig. 4. (a) Segments of depth image. (b) Segments of luminance image (both ordered by
standard deviation of luminance segments).

(a) (b) (©

Fig. 5. (a) Noise standard deviation estimate using Donoho’s noise estimator. (b) Noise
estimation using the proposed approach. (c) Noise in the depth map.

in [11], where the authors use values of the amplitude as a confidence measure for weighted
averaging. Here we use the amplitude image to directly estimate the noise standard deviation
as detailed below.

Theoretical analysis of the time-of-flight sensors precision is given in [6] and also in section
2.2. Based on that analysis and on our experiments, we propose a model for the non-stationary
noise standard deviation as a function of the inverse amplitude AL,:

6 =C- A (16)
where C is a constant for a given camera.

We have experimentally validated the model on different depth images and in all cases it fits
the experimental data very well, as illustrated on the scatter plot in Fig. 6, where each point
represents the measured noise standard deviation at a given position in the image against the
measured amplitude at the same position. The noise standard deviation was measured from
200 frames of a static scene, and the amplitude was measured from one particular image in
this sequence (its variation over different images of the static scene is negligible with respect
to the variation in the depth image, see Figs. 6 and 7). The proposed noise model from Eq.
(16) is overlaid on top of the scatter plot and shows a very good agreement with the measured
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data. Please note that this good agreement of the proposed model and the measurements is
not surprising, because the noise model directly relates to the range measurement error model
from Eq. (11) if the noise is interpreted as measurement error. In our experiments constants C
estimated from various scenes do not vary significantly as illustrated in Fig. 6. In particular, the
plot in Fig. 6(d) shows that the noise model with the constant C estimated from one depth image
fits well the measured scatter plot of another depth image. We repeated such experiments on
a multiple depth images from various scenes and this conclusion was valid in all the analyzed
cases.

In the experiments discussed above we estimated the constant C from a number of frames of
static scenes. However in reality we often do not have such a static scene at our disposal for the
initialization of the algorithm. Our goal is to estimate the constant C from the available video
sequence at hand. For doing so we will first identify the image blocks dominated by noise.
Therefore, we divide the luminance image and the HH; band of the wavelet decomposition of
the depth image into non-overlapping blocks and sort them according to the mean variance in
luminance blocks, in increasing order as in Fig. 4. For each of the blocks b; in the HH| band of
the depth image, we estimate noise variance as:

1 N
Y (X —m)?, (17)

k=1

~2
6j, = N
where my is the mean value of the HH, coefficients in [-th block and X; ; is the k-th coefficient
in the current block. Let Ay, denote the mean luminance in block /. We take P - 100 percent of

the blocks from the luminance with the smallest variance and their corresponding blocks from
HH, wavelet band of the depth image, and estimate the constant C as:

Loy dy

=5 al A (18)
P'Bl=1 Gb/

where B is the number of the blocks in the image. In practice, we use 3% of the blocks for
noise estimation, while the size of the blocks is 8x8 pixels. An alternative way of estimating
noise standard deviation is by taking overlapping neighbourhoods centered around each pixel
and applying the median absolute deviation estimator (MAD) of Donoho [29] on each block.
This local MAD estimator gives a smeared estimate where all the details are lost, as can be seen
in Fig. 5. The results shown in section 5 (Table 1 and Fig. 16) illustrate that using the proposed
noise estimation method yields much better denoising performance. On average, depth images
denoised using the proposed noise estimation method have 0.4dB better PSNR than the images
denoised using the local MAD estimator. Moreover, a significant advantage of the proposed
method is its computational simplicity; the fact that the estimates of the noise variance at each
spatial position are immediately available after one division.

The proposed method estimates noise from one depth and one luminance frame, which makes
noise estimation possible in the cases where only recorded depth sequence of the non-static
scene is available.

4. The proposed denoising algorithm

Our approach builds further on the ProbShrink and FuzzyShrink estimators for classical im-
ages introduced in section 2.3. However, we now introduce an entirely new dimension in this
approach, by combining two different imaging modalities. Furthermore, we propose an elegant
way to introduce information from one image modality into recovering discontinuities hidden
by noise in another imaging modality.
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Fig. 6. (a) Amplitude image D1. (b) The corresponding scatter plot of the measured noise
standard deviation o versus the amplitude A and the fitted noise model (C = 4.11). (c)
Another amplitude image D2. (d) The corresponding experimental o — A scatter plot with
fitted noise models C/A using C estimated from the corresponding data (C = 4.19) and
using C estimated from image D1 (C =4.11).

4.1. Luminance driven depth denoiser

The main idea of the proposed approach is that the wavelet coefficients of the depth image
should be estimated according to the probability (or evidence) that they represent the signal of
interest, given both depth and luminance data. In the following, we use the superscript “D” to
denote depth and superscript “L” to denote luminance. By adopting this criterion, we estimate
the wavelet coefficient at the spatial position & as:

52 = (Wi, zi) - wP, (19)

T
where z; = {ZE zﬂ denotes a vector containing local spatial activity indicators (LSAI) at the

T
position £ in the depth and luminance images, wy = wf wé denotes a vector containing the

values of the wavelet coefficients in depth and luminance image at the location k and ¥ denotes
a wavelet estimator function.
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Fig. 7. (a) An amplitude image. (b) Noise in the amplitude image from (a);(c). (c) Raster
scan of the noise image in (b). (d) Raster scan of the noise in the corresponding depth
image.

4.2.  Luminance-Depth membership functions

To proceed, we need to generate the membership functions p,,(wy) and u.(z;) from Fig.3 so
that they depend on vectors wy and z;, respectively. Since the original 1D functions depend on
the noise standard deviation o, a natural extension to 2D is to make them dependent on the
noise covariance matrix C,

_1
tis (wie) = o ([[Co = wie])- (20)

In this way, we obtain:

1

i (Wie) = t(Co *Wi) and - pz(zi) = (G > 24). @D

The estimator of the noise covariance matrix makes use of our noise estimator from 3, and is
detailed in section 4.4. If the matrix C, is positive semi-definite,

—1/2 _
G 2wl = wl eyt wy = T2 22)
represents the equation of ellipsoid in a two dimensional space. When the point wy, is positioned

inside the ellipsoid we consider that the signal of interest is not present at the location k. In the
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(a)

Fig. 8. (a) Horizontal wavelet band of depth image. (b) Detected signal of interest.

opposite case, we assume that the signal of interest is present at the location k. The signal of
interest detected in this way from a depth subband is shown in white in Fig. 8 b.

The parameter 7' from the Eq. (22) determines the sensitivity of the SOI detector. We found
experimentally, by observing the denoising performance on multiple depth images, that the best
choice for threshold is 7 = 1.2. The choice of the value of this parameter is not critical since the
PSNR drops for 0.1dB if T is increased or decreased for 0.2. Then we evaluate the membership
function depending on the value of the vector variable wy. This is analogous for the second
membership function p;(w). The resulting functions w;(w) and yz(z) are shown in Fig. 9.

"LARGE COEFFICIENTS" membership function "LARGE ACTIVITY INDICATOR" membership function

luminance wavelet

coefficient luminance spatial

-15 715 indicator

(@ (b)

Fig. 9. a) “LARGE COEFFICIENTS” membership function and b) “LARGE ACTIVITY
INDICATOR” membership function as generalizations of the corresponding membership
functions from Fig. 3.

The region defined by the ellipsoid w,{Cn_ 'w; < T? corresponds to the first segment of the
fuzzy membership function u,, from the Fig. 3, for the values wy < ¢. The second region
defined by the area T < w] C, ' wy < 4T? corresponds to the segment 6 < wy < 20 and finally,
the area defined by the equation w,an’ 'w; > 4T? corresponds to the segment wy > 20 in the
1D membership function.

We define the “LARGE ACTIVITY INDICATOR” membership function using spatial indi-
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cators defined in section 4.3 as:

_1
Hz(zi) = 1[Gy 2 ), 23)

where z; is the vector containing spatial indicators for depth and luminance defined above. The
shape of the membership function “LARGE NEIGBOURHOOD” is shown in Fig. 9. Here the
area determined by the equation WZC; "wie < (29T +2.625 )2 corresponds to the segment z; <
2.90 —2.625 of the membership function u, from the Fig. 3, and the constant part correspond to
the segment of one dimensional membership function where z; > 2.90 — 2.625. The resulting

luminance wavelet coefficients

Fig. 10. An illustration of the proposed estimator functional dependence on luminance
indicator and noisy coefficient value.

function is obtained by combining the above two membership functions in a following way:

V(Wi zi) = o+ bz (|2 |) — oetz(|24])

24
with o = uz(|z]) - ws(|wel), e

where :; and Uy are vector membership functions “LARGE NEIGHBOURHOOD” and
“LARGE COEFFICIENT” respectively. The resulting estimator defined in the Eq. (24) is
shown in Fig. 10 for constant values of noise standard deviation and spatial indicators. The esti-
mated value of the depth wavelet coefficent depends on the value of noisy luminance and depth
wavelet coefficients, and the values of spatial indicators from luminance and depth. For exam-
ple, if the wavelet coefficient of the depth image has a small value and the luminance coefficient
has a larger value, the value of the depth wavelet coefficient will be multiplied by the bigger
value, as shown in Fig. 10. If the value of the luminance wavelet coefficient is smaller, how-
ever, the value of the depth wavelet coefficient will be multiplied by the smaller value, since the
values of luminance does not indicate the existence of edge at the current location. The input-
output characteristics of the proposed estimator shown in Fig. 10 facilitates the restoration of
the edges in depth image by using the information from the luminance.

The estimator from Fig 10 changes its shape when the spatial indicators change their values.
If the spatial indicators from the depth and the luminance increase their values, suggesting
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Fig. 11. (a) Shrinkage functions for different values of noise variance. (b) Shrinkage func-
tions for different values of spatial indicator.

that the edges are present in the given neighbourhood, the elliptical part of the characteristics
becomes smaller. This means that the depth wavelet coefficient will be multiplied by the bigger
value, since the spatial indicator suggest the existence of the edges. The shape of the estimation
function varies for each pixel depending on the standard deviation of noise and on the values of
spatial indicators. For example, if, at some location, the noise standard deviation is larger, the
estimator dilates, the opposite being true in the case of smaller noise.

This is illustrated in Fig. 11b, which displays the estimator as a function of the depth coeffi-
cient for a fixed value of luminance data, different noise levels and different activity indicators.
The dependence on the estimated noise level is shown in Fig. 11a. Clearly, as the noise variance
increases, the shrinkage characteristics become dilated as a consequence of the larger noise de-
pendent threshold, which is defined by the covariance matrix. Without the loss of generality in
this figure, we only observe the influence of the spatial indicator from a luminance image, since
both activity indicators zﬁ and sz have similar influence on the shrinkage function. A “Neutral”
case, where the spatial surrounding from the luminance data gives no preference to “edge” or
“no edge”, corresponds to a curve denoted with z; = 1. When the luminance activity indicator is
in favour of edge (signal of interest) presence (zz, > 1) the coefficient is shrunk less than in the
neutral case. The opposite is true when the activity indicator favours the absence of the signal
of interest (z; < 1) The values of spatial indicators z; and the locally estimated noise variance
oy jointly affect the shape of the estimator function. Furthermore, in the most significant prac-
tical situation, high values of luminance spatial indicator compensate for high values of noise
variance, facilitating a successful recovery of depth image features, masked by a high values of
noise.

4.3.  Introducing anisotropy into activity indicator

In order to further improve the performance of our estimator, we introduce anisotropic neigh-
bourhoods, illustrated in Fig. 12 in the calculation of the activity indicator. The main idea is the
following: in order to trace edges efficiently, we need a relatively large neighbourhood. How-
ever, if this neighbourhood is isotropic, the activity indicator will be dominated by non-edge
coefficients and the edge will be falsely rejected. Hence, we will test whether an edge exists in
any of the anisotropic sub-neighbourhoods and take the most indicative one. This is related to
the hierarchical MRF model from [30], but tailored to a different application here and realized
in a different way.
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Fig. 12. An illustration of the directional windows. Spatial indicators are formed by sum-
ming along the directions d;.

(a) (b)

Fig. 13. (a) Horizontal (LH) band of the luminance image from Fig. 2. (b) Spatial indicator
obtained by directional filtering and combining depth and luminance images.

For each scale and orientation in wavelet decomposition, we form the sums of absolute values
of wavelet coefficients z, = Y4y, |wP| 4 |wk| for three directions dj,d> and d3 shown in Fig.
12. The pixel sets d; and d3 contain the vertical and horizontal neighbours of the current pixel,
while the set d, contains all the diagonal neighbours of the current pixel. For each pixel we
choose the set d,;, with maximal value of the sum of the coclzfﬁcients inside it and form spatial
indicators zP and z& as zP = 1 — wP| and 7zt = wk|. The values of the
spatial indickators ol;(tainefl in tﬁ?’;“ﬁ%ﬁi‘é’;";le ZSl‘lOWH irllc Fig#dlmﬁf ilseg\’/neaxc'ali |see from this figure,
even though some edges are masked by noise, it is still possible to have a strong evidence of
the existence of signal of interest, thanks to the luminance wavelet coefficients.

4.4. Noise covariance matrix estimation

We estimate the noise variances of depth and luminance as:
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5 o]
[‘;ﬂ = [meﬂéHlL)] , (25)
0.6745

where 6 is the locally estimated noise variance of depth image described in section 3. Noise
variance in the luminance image is estimated globally since we found experimentally, by sub-
tracting reference noise-free luminance image from the noisy luminance image, that it is con-
stant for all spatial coordinates. Next, depth and luminance wavelet bands are scaled by the
corresponding standard deviation estimates from above; first we define the scaled sub-bands
of luminance and depth as HHY, = HHP /6p and HHE; = HHE /6, We estimate the cross
correlation coefficients at each 16x16 block as follows:

6pr = 61p = (med(|HHsD1 +HHgp |) —med(‘HHle —HH D)Z (26)

Finally the cross correlation coefficient is obtained as:

pLp =6p- 61 - 61p. 27
The noise covariance matrix is then:
Op PLD
C,= (28)
PLp OL

5. Experimental results

We evaluate the proposed method on both real 3D images acquired by a Swiss Ranger SR 3100
TOF camera [31] and on clean sequences to which we add noise. In the case of real 3D images,
we obtain “ground truth” for performance evaluation by temporal averaging over 80 frames of
a static scene.

Table 1. PSNR values of the denoised depth images

Method ‘ ”Closet” | "Bookshelf” | “Table”
Noisy 34.07 37.15 36.18
Clust [13] 34.64 32.67 42.06
ESURE [17] 34.93 38.44 38.70
AWG [11] 35.32 38.83 40.27
Vector GSM [16] 35.29 38.99 39.90
Neighbourhood Vector GSM [16] 37.05 40.35 43.86
Non-local method from [12] 36.5 38.7 42.10
Proposed 38.15 40.54 44.17
Spatially adaptive vector GSM 37.63 40.03 43.80

We compare performance of the proposed algorithm with two state-of-the art methods for
denoising multivalued signals from [16, 17], with the best performing approach from the re-
cent method for depth image denoising (”Adaptive Normalized Convolution” or ~Adaptive
Weighted Gaussian”) from [11], with the non-local depth denoising method from [12] and
with our previous non-local approach presented in [14]. Vector methods used for comparison
here estimate covariance matrices from the data being denoised. For all methods used for com-
parison we the parameter values suggested by the authors which yielded as the optimal ones.
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Fig. 14. Denoising result for the “Closet” depth image. (a) Noisy depth image produced by
the TOF camera. (b) Image denoised using method from [17]. (c) Image denoised using
method from [16]. (d) Image denoised using method from [13]. (e) Image denoised using
method from [11]. (f) Image denoised using our extension of GSM vector method from
[16]. (g) Image denoised using proposed method. (h) Noise-free reference image.

Noise removal algorithms provided with the camera were turned off in order to have realistic
noisy sensor data. Furthermore, the modulation frequency was set to 30 Mhz, and integration
time to 40ms. In all experiments described in this paper, we use a non-decimated wavelet de-
composition with Daubechies db2 wavelet, and two levels of decomposition.
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Fig. 15. Results for the “Bookshelf” depth image. (a) Noisy depth image produced by the
TOF camera (b) Noise-free reference image. (c) Image denoised using method from [17].
(d) Image denoised using proposed method.

We also implement an improved version of this approach with spatially varying noise and
signal covariance matrices, similar to [32]. In this case, we divide both luminance and depth
images into overlapping blocks of 16x16 pixels, where the blocks are shifted by 8 pixels along
each axis. For each block b;, we estimate the noise covariance matrices as described in Subsec-
tion 4.2
The covariance matrix of the noisy wavelet coefficients is obtained by putting all the coefficients
of 16x16 blocks into N x 1 vectors hhle and hhﬁ and calculating the vector product:

Cy = [kl hhy)" x [hhly  hhL), (29)

where N is the number of pixels in the block. A covariance matrix of the signal is obtained by
subtracting the noise covariance matrix C, from C,.

5.1.  The evaluation of the algorithm on the real sequences

In this section we compare the results of the proposed method with the reference methods from
the literature, on the sequences obtained using Swiss Ranger SR 3100 TOF camera.

The corresponding PSNR (Peak signal-to-noise ratio) values are given in Table 1. The
method which does not use the spatial indicator from the luminance image (i.e. reduces to the
FuzzyShrink method) on average gives 0.8dB smaller PSNR values than the proposed scheme.
These results clearly show the advantage of using an activity indicator from the luminance im-
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(a) (b)

Fig. 16. (a)Depth image denoised using Donoho’s noise estimation. (b) Depth image de-
noised using the proposed noise estimation method.

Fig. 17. Denoising results for the “Table” depth image. (a) Noisy depth image produced by
the TOF camera. (b) Noise-free reference image. (c) Image denoised using method from
[11]. (g) Image denoised using proposed method.

age to denoise the depth data. In Figs. 15-17, we compare the performance of the proposed
method to multivalued reference methods [12,17].
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(a) (b)

Fig. 18. (a)Depth image denoised non-local method from [12]. (b) Depth image denoised
using the proposed method.

The results in Table 1 show that the new method significantly outperforms all reference meth-
ods in PSNR sense. The method of [17] is denoted as ESURE, [13] as Clust, [16] as vector
GSM and neighbourhood vector GSM, SA VGSM denotes a spatially adaptive version of [16]
described earlier in this section as Spatially adaptive vector GSM, Adaptive Weighted Gaus-
sian method from [11] as AWG and the method from [12] is denoted as non-local. Visually, the
proposed method also outperforms our previous approach [13]. Here, ESURE stands for Ex-
tended Stein Unbiased Estimator, while GSM stands for Gaussian Scale mixtures. This can be
observed, e.g., in the image from Fig. 17: edges are in general sharper and details like the holder
of the lamp are better reconstructed. Moreover, the proposed method is much faster. While our
previous clustering based method [13, 14] takes about 1.5 minutes to process a 176x144 depth
map, the new algorithm does it in real-time (30 frames per second). In other test images, the
new method also outperforms the one in [13], especially in the parts of the images containing
stronger noise. The most significant advantage of our proposed method is its adaptivity to noise
variance in depth image, which results in much better PSNR values of denoised depth images.
As stated earlier, the noise variance depends on the strength of the reflected modulated signal,
which is a function of the emitted optical power, the reflectance of the materials in the scene (
which is highly variable) and the distance of the objects in the scene. Hence, in order to suc-
cessfully suppress noise in depth images, the denoising algorithm should be able to adapt to
the changes in noise level. Otherwise, some parts of the depth image remain noisy. This can
be particularly seen in Figs. 15-17 for the methods from [16, 17], which do not adapt to the
spatially varying variance of noise.

Vector methods from [13,17, 16] tend to leave a certain amount of noise on the borders of
the image after filtering, where the noise standard deviation is slightly larger than in the centre
of the image, as can be seen in Figs. 15, 17 and 19. The method from [17] tends to preserve
the edges better than the one from [16], but it also leaves a significant amount of noise in the
image. The proposed method successfully removes the noise from the whole image, especially
in the parts with higher noise intensity, while preserving details (see, e.g., legs of the furniture
and books on the shelf in Figs. 15 and 17).

The proposed method outperforms reference vector denoising methods from [16] and [17]
in PSNR sense (see Table 1 and visually (see 15-17), while it is significantly simpler than the
vector methods.
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(a) (b)

(c) (d

Fig. 19. (a) Rendering of a scene with noise-free reference depth map. (b) Rendering of
the scene using noisy depth map. (c¢) Rendering of the scene using depth map denoised
using the method from [11]. (d) Rendering of a scene with the depth map denoised using
proposed method.

Next, we compare our results to the results of [11]. The method [11] is very successful in sup-
pressing noise, since it adapts the strength of filtering to the amount of noise in image through
several iterations. Therefore, noise is suppressed homogeneously over the whole surface. How-
ever, in depth maps that contain fine details, such as the one shown in Fig. 17 images denoised
using the method from [11] tend to oversmooth the result. This is especially visible if one ob-
serves small objects on the table, for example cables, mugs and the holder of the lamp that is
lost. Our proposed method preserves these details much better, as can clearly be seen in the
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Fig. 20. Virtual views generated using (a) noisy depth image, (b) depth image denoised
using method from [11], (c) depth map denoised using depth image using the proposed
method, (d) noise-free depth image.

same figure, as is also confirmed by the corresponding PSNR values in Table 1. We also com-
pare our method with the non-local method from [12] in Fig. 18. The method of [12] applies
non-local denoising on depth images, which denoises each pixel by calculating a weighted sum
of all pixels in the image. The weights are calculated using the exponential kernel, and depend
on the Euclidean distances of the depth values inside NxN patches. We can see from the Fig. 18
here that both methods preserve the details in the depth image quite well. However, noise is not
completely removed in some regions of the image denoised using the method from [12]. On the
other hand, noise is removed homogeneously in the depth image denoised using the proposed
method, while details, such as in the cables on the table and the boundaries of the object, are
preserved to a great extent.

We also make a comparison of 3D visualizations of the results produced by different meth-
ods. Fig. 19 shows the visualizations of the reference noise-free point cloud, noisy point cloud,
point cloud denoised using spatially adaptive method of [11], and the point cloud denoised
using the proposed spatially adaptive algorithm. The point cloud is represented by a regular
triangle mesh, with the per face textures. As can be seen in Fig. 19, z-coordinates of points
from noisy point cloud differ significantly from the mean value represented by noise free im-
age. This makes the usage of depth cameras in some applications impossible. For example, in
biometric applications, noise can cause errors in recognition, and in the case of robot naviga-
tion, wrong decisions can be made and the shape of some object wrongly acquired in reverse
engineering applications. He point cloud denoised using [11] shows significantly less variance,
but in the regions that have higher noise variance, the shape of the objects still significantly
diverges from the reference, which can be seen at the borders of the image (high variations in
a region that should be flat). From Fig. 19 it can be easily seen that the point cloud denoised
using our method removes almost all unwanted variations caused by noise from flat parts, while
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preserving fine details in range intact.

5.2.  Evaluation of the proposed algorithm on the sequences with artificially added noise

In addition to these sequences, we use the “Interview” sequence, where Gaussian noise with
the spatially varying noise standard deviation was added to the clean depth map.

The Interview sequence is a depth sequence containing color information created using
ZCAM from 3DV Systems described in [33]. This type of sensor is based on the indirect
measurement of the time of flight using a fast shutter technique which yields much less noise
than the standard time of flight cameras based on intensity modulation. This sequence is widely
used as a perfect reference test sequence in literature, e.g. as a clean reference for coding in [34]
and for creating virtual views in [35]. The resolution of the Zcam depth map and corresponding
colour and segmentation images is 720x576 pixels. We add the artificial noise to this sequence
that mimics the noise in images produced by Swiss Ranger sensors.

In adding artificial noise we do not take into account the exact optical models, but we rather
add noise according to the simplified model proposed in this paper. In particular, we first create
the amplitude image from the recorded color image by dividing its luminance by the square of
the distance as it is commonly done. Then we add artificial noise to the depth image according
to the model from Eq. (16) as a function of the amplitude A; at the corresponding pixel i. The
value of the constant C is set to 4.25.

Finally, we make a comparison in terms of the number of occlusions in virtual views created
using depth maps. Depth images have very important application in transmission of 3D TV,
since the signal can be transmitted using depth map and image of the central view on the scene.
This system was adopted since depth images can be much better compressed then the ordinary
images, due to their lower entropy. In this way, 3D TV program can be transmitted using much
less bandwidth than would be needed in the system where two or multiple separate views were
transmitted. However, 3D TV systems that use the depth images tend to create artefacts in form
of occlusions, due to non-visibility of the parts of the scene that need to be reconstructed.

Here we investigate the influence of the noise on the number of occlusions in the virtual
views created using noisy and denoised depth maps. Occlusions that manifest themselves as
the black holes in the images of virtual views often appear in the vicinity of sudden changes
in geometry in direction of z-axis at a certain scan line (x-axis). More information on these
problems can be found at [35]. This can be partially prevented by smoothing the depth maps
asymmetrically, which can distort the geometry of the scene. We are not proposing any new
method for the correction of the virtual views here, and the only purpose of this comparison is
to show the effect of noise and denoising on virtual views.

Fig. 20 shows the generated virtual views using noise-free and noisy depth maps, depth maps
denoised using the method from [11] and the proposed algorithm. It is obvious from this figure
that noise can create serious occlusions in the rendered views, which are distributed all over the
image. Furthermore, denoising significantly removes the number of occlusions in created views,
where, if some noise remains after denoising, occlusions will still be visible in virtual views
images, as can be seen in Fig. 20 b). Our algorithm removes noise uniformly over the image,
and there are consequently much less occlusions in Fig. 20c). To quantify the occlusions in the
generated virtual views, we calculate the percentage of the missing areas (shown as the black
holes) in the image. The occlusion percentage here is the largest in the virtual view generated
from the noisy depth map (34%). For the image generated using the denoising method of [11]
8% of the pixels are occluded. For our method, 6% of the pixels are occluded, similar to the
occlusion percentage resulting from the noise free depth map. We do not claim here that the
number of resulting occlusions is the main quality measure of a depth denoising algorithm, but
that these results demonstrate clearly the significance of denoising for virtual view generation.
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6. Conclusion

In this paper, we presente a new method for denoising depth images, which consists of two main
components, which are also the two main contributions of the paper. The first novel component
is an adaptive noise estimation method for depth images that makes use of the luminance in-
formation and significantly improves denoising performance compared to the method of [11].
Moreover, the denoising performance and processing speed are significantly improved when
compared to the same method, with the noise estimated using the common local MAD esti-
mator. The second component is a novel wavelet estimator that takes spatially variable noise
variance into account, and uses the edges from luminance images in order to improve denoising
of depth images. The experimental results on both real and artificial images show an improve-
ment over the related state-of-the art methods. Some future improvements, in the case of image
sequences, are possible using motion estimation (or searching for similar segments in the pre-
vious frames) and temporal filtering.
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