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Abstract 
 

Modern computer graphics systems are able to construct renderings of such high 

quality that viewers are deceived into regarding the images as coming from a 

photographic source.  Large amounts of computing resources are expended in this 

rendering process, using complex mathematical models of lighting and shading. 

 

However, psychophysical experiments have revealed that viewers only regard certain 

informative regions within a presented image.  Furthermore, it has been shown that 

these visually important regions contain low-level visual feature differences that 

attract the attention of the viewer. 

 

This thesis will present a new approach to image synthesis that exploits these 

experimental findings by modulating the spatial quality of image regions by their 

visual importance.  Efficiency gains are therefore reaped, without sacrificing much of 

the perceived quality of the image.  Two tasks must be undertaken to achieve this 

goal.  Firstly, the design of an appropriate region-based model of visual importance, 

and secondly, the modification of progressive rendering techniques to effect an 

importance-based rendering approach. 

 

A rule-based fuzzy logic model is presented that computes, using spatial feature 

differences, the relative visual importance of regions in an image.  This model 

improves upon previous work by incorporating threshold effects induced by global 

feature difference distributions and by using texture concentration measures. 

 

A modified approach to progressive ray-tracing is also presented.  This new approach 

uses the visual importance model to guide the progressive refinement of an image.  

In addition, this concept of visual importance has been incorporated into 

supersampling, texture mapping and computer animation techniques.  Experimental 

results are presented, illustrating the efficiency gains reaped from using this method 

of progressive rendering. 
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This visual importance-based rendering approach is expected to have applications in 

the entertainment industry, where image fidelity may be sacrificed for efficiency 

purposes, as long as the overall visual impression of the scene is maintained.  

Different aspects of the approach should find many other applications in image 

compression, image retrieval, progressive data transmission and active robotic 

vision. 



 

Publications 

iv 

Publications 
 

Brown R., Pham B., Maeder A., “A Fuzzy Model for Scene Decomposition Based on 

Preattentive Visual Features”, Proceedings of Human Vision and Electronic Imaging 

IV, San Jose, USA, 1999, vol 3644, pp. 461-472. 

 

Brown R., Pham B., Aidman E., Maeder A., “Efficient Image Rendering Using a 

Fuzzy Logic Model of Visual Attention”, Proceedings of Advances in Intelligent 

Systems: Theory and Applications (AISTA), Canberra, Australia, 2000, pp. 314-319. 

 

Brown R., Pham B., Maeder A., “A Fuzzy Logic Model of Visual Importance for 

Efficient Image Synthesis”, Proceedings of the Tenth IEEE International Conference 

on Fuzzy Systems, Melbourne, Australia, 2001, pp. 1400-1403. 

 

Brown R., Pham B., Maeder A., “Visual Importance-biased Image Synthesis 

Animation”, Proceedings of the 1
st
 International Conference on Computer Graphics 

and Interactive Techniques in Australia and South East Asia, Melbourne, Australia, 

2003, pp. 63-70. 

 



 

Table of Contents 

v 

Table of Contents 
 

KEYWORDS ......................................................................................................................................... I 

ABSTRACT ......................................................................................................................................... II 

PUBLICATIONS ............................................................................................................................... IV 

TABLE OF CONTENTS ..................................................................................................................... V 

LIST OF FIGURES ........................................................................................................................ VIII 

LIST OF TABLES ............................................................................................................................ XX 

LIST OF ALGORITHMS ............................................................................................................. XXII 

LIST OF ABBREVIATIONS ...................................................................................................... XXIII 

AUTHORSHIP ............................................................................................................................... XXV 

ACKNOWLEDGEMENTS ......................................................................................................... XXVI 

CHAPTER 1 ......................................................................................................................................... 1 

INTRODUCTION ................................................................................................................................ 1 

1.1 INCORPORATING VISUAL ATTENTION INTO PROGRESSIVE IMAGE SYNTHESIS TECHNIQUES 4 

1.2 RESEARCH QUESTIONS ........................................................................................................ 6 

1.3 ORGANISATION OF THESIS ................................................................................................... 6 

1.4 MAIN CONTRIBUTIONS ........................................................................................................ 7 

CHAPTER 2 ......................................................................................................................................... 9 

PHYSIOLOGY AND PSYCHOLOGY OF THE HUMAN VISUAL SYSTEM ............................ 9 

2.1 HUMAN VISUAL SYSTEM PHYSIOLOGY ................................................................................ 9 

2.1.1 Physiology of the Human Eye and Optic Nerve ............................................................10 

2.1.2 The Visual Cortex ..........................................................................................................14 

2.1.3 The Generation and Execution of Eye Movements ........................................................19 

2.2 PSYCHOLOGICAL THEORIES OF VISUAL ATTENTION ...........................................................21 

2.2.1 Parallel and Serial Stages of Vision ..............................................................................22 

2.3 PSYCHOLOGICAL MODELS OF HUMAN VISUAL ATTENTION ...............................................27 

2.3.1 Feature Integration Theory ...........................................................................................28 

2.3.2 Guided Search ...............................................................................................................31 

2.3.3 Texton Theory ................................................................................................................34 

2.3.4 Stimulus Similarity ........................................................................................................37 

2.3.5 Comparison of FIT, GSM, Texton Theory and Similarity Theory .................................37 

2.4 INFLUENCES ON EYE MOVEMENTS .....................................................................................38 



 

Table of Contents 

vi 

2.4.1 Top-down Influences ..................................................................................................... 41 

2.4.2 Bottom-up Influences..................................................................................................... 44 

2.4.3 Feature Hierarchies ...................................................................................................... 47 

2.5 DISCUSSION ........................................................................................................................ 50 

CHAPTER 3 ........................................................................................................................................ 52 

PREVIOUS COMPUTATIONAL MODELS OF VISUAL IMPORTANCE................................ 52 

3.1 MULTIRESOLUTION VISUAL ATTENTION MODELS .............................................................. 54 

3.2 REGION-BASED VISUAL IMPORTANCE MODELS .................................................................. 59 

3.3 FUZZY CONTROL SYSTEM BACKGROUND ........................................................................... 65 

3.4 DISCUSSION ........................................................................................................................ 67 

CHAPTER 4 ........................................................................................................................................ 69 

A NEW MODEL OF VISUAL IMPORTANCE FOR EFFICIENT IMAGE SYNTHESIS ........ 69 

4.1 CONTOUR IMPORTANCE MODULE ....................................................................................... 70 

4.2 REGION IMPORTANCE MODULE .......................................................................................... 81 

4.3 DISCUSSION ........................................................................................................................ 91 

CHAPTER 5 ........................................................................................................................................ 93 

ADAPTIVE IMAGE SYNTHESIS USING A VISUAL IMPORTANCE MODEL ...................... 93 

5.1 A NEW IMAGE SYNTHESIS APPROACH BASED ON VISUAL ATTENTION .............................. 99 

5.2 RAY-TRACING PRINCIPLES ................................................................................................ 100 

5.3 PROGRESSIVE SAMPLE GENERATION AND THE CONTOUR IMPORTANCE MAP ................... 103 

5.4 REGION SEGMENTATION AND ADAPTIVE SAMPLING ........................................................ 106 

5.4.1 Flat-rate Supersampling ............................................................................................. 109 

5.4.2 Perceptual Supersampling .......................................................................................... 110 

5.5 ALGORITHM DESCRIPTION ................................................................................................ 113 

5.6 OBJECTIVE IMPLEMENTATION EVALUATION .................................................................... 117 

5.6.1 Objective Evaluation Metric ....................................................................................... 119 

5.6.2 Objective Progressive Rendering Evaluation ............................................................. 121 

5.6.3 Objective Supersampling Evaluation .......................................................................... 135 

5.7 DISCUSSION ...................................................................................................................... 151 

CHAPTER 6 ...................................................................................................................................... 153 

INCORPORATING TEXTURE IMPORTANCE INTO ADAPTIVE RENDERING ............... 154 

6.1 THE USE OF IMAGE INFORMATION IN IMAGE SYNTHESIS .................................................. 155 

6.2 TEXTURE IMPORTANCE MAPPING ..................................................................................... 159 

6.2.1 Texture Importance Mapping Evaluation ................................................................... 164 

6.3 TEXTURE ADAPTIVE MESHING ......................................................................................... 177 



 

Table of Contents 

vii 

6.3.1 Texture Adaptive Meshing Evaluation ........................................................................180 

6.4 DISCUSSION ......................................................................................................................184 

CHAPTER 7 ......................................................................................................................................185 

ADAPTIVE IMAGE SYNTHESIS ANIMATION .........................................................................185 

7.1 EFFECTS OF MOTION ON EYE MOVEMENTS ......................................................................187 

7.2 A VISUAL ATTENTION MODEL INCORPORATING TEMPORAL CHANGES ............................192 

7.2.1 Motion Membership Functions ....................................................................................192 

7.2.2 Onset Membership Functions ......................................................................................196 

7.2.3 Temporal Change Evaluation Rules ............................................................................197 

7.2.4 Integration into Spatial Visual Attention Model ..........................................................197 

7.3 A MOTION-BASED ADAPTIVE ANIMATION RENDERING APPROACH ..................................198 

7.3.1 Motion Estimation Technique......................................................................................200 

7.3.2 Camera Compensation Technique ..............................................................................206 

7.3.3 Adaptive Image Synthesis Animation ..........................................................................208 

7.3.4 Time and Space Complexity of Approach ....................................................................213 

7.4 DISCUSSION ......................................................................................................................215 

CHAPTER 8 ......................................................................................................................................217 

SUBJECTIVE EVALUATION OF APPROACH ..........................................................................218 

8.1 SUBJECTIVE TESTING METHODOLOGY ..............................................................................218 

8.1.1 Progressive Image Assessment Task ...........................................................................221 

8.1.2 Supersampling Image Assessment Task ......................................................................222 

8.2 RESULTS ...........................................................................................................................225 

8.2.1 Progressive Rendering ................................................................................................225 

8.2.2 Supersampling .............................................................................................................227 

8.2.3 Texture Importance Mapping ......................................................................................230 

8.3 DISCUSSION ......................................................................................................................231 

CHAPTER 9 ......................................................................................................................................233 

DISCUSSION AND CONCLUSIONS .............................................................................................234 

9.1 DISCUSSION OF ACHIEVEMENTS .......................................................................................235 

9.2 EXTENSIONS TO THE APPROACH .......................................................................................238 

9.2.1 Extensions to the Visual Importance Model ................................................................238 

9.2.2 Extensions to Progressive Rendering Approach .........................................................239 

9.3 POTENTIAL APPLICATIONS ................................................................................................240 

GLOSSARY .......................................................................................................................................242 

REFERENCES ..................................................................................................................................245 



 

List of Figures 

viii 

List of Figures 
 

Figure 2.1 Illustration of the cross section of the right eye.  Note the location of the 

Cornea, Lens, Retina, Optic Nerve and the position of the Fovea in the 

small indentation named the Macula Lutea (adapted from [145]). ......... 10 

Figure 2.2 Diagram of a typical centre-surround antagonistic receptive field of a 

single ganglion cell, and the neural pulse sequence which results from 

illumination within the receptive field [145]. .......................................... 12 

Figure 2.3 Diagram showing the visual pathways from the retina to the visual cortex 

illustrating the decussation (crossing over) of the fibres from the nasal 

half of the retina at the optic chiasm.  G: lateral geniculate nucleus, S: 

superior colliculus; III: oculomotor nucleus; V: posterior horn of lateral 

ventricle; OR: optic radiations [145]. ...................................................... 13 

Figure 2.4 An anatomical/perceptual model of the visual cortex.  In this speculative 

model, visual streams within the cortex are identified with specific 

perceptual features.  The anatomical streams are identified using 

anatomical markers; the perceptual properties are associated with the 

streams by applying the neuron doctrine [92]. ........................................ 16 

Figure 2.5 Example 3D Gabor function plot for a 45 degree oriented Gabor function.

 ................................................................................................................. 18 

Figure 2.6 Examples of oriented Gabor functions rendered as luminance gradients, 

with from left to right 0, 45, 90, 135 degree orientations respectively. .. 18 

Figure 2.7 Examples of a parallel search task (left) and serial search task (right). .... 23 

Figure 2.8 Examples of response time graphs for parallel search tasks (left) and serial 

search tasks (right). .................................................................................. 24 

Figure 2.9 Diagram of Feature Integration Theory illustrating an example of pop-out 

with the black circle being unique in the hue feature dimension [53] .... 29 

Figure 2.10 Example of explanation by Guided Search for near parallel conjunction 

searches.  The top-down feature maps contain local activations for 

specific orientation and colour features.  These are summed together to 

produce the final activation map, guiding the viewer to the conjunction 

target [25]. ............................................................................................... 33 



 

List of Figures 

ix 

Figure 2.11 Examples of a preattentively separable texture with different first-order 

statistics and differences in element size (left), and a preattentively 

distinguishable texture with different second-order statistics and different 

element orientations (right) [77]. ............................................................ 35 

Figure 2.12 A preattentively indistinguishable texture pair with identical second-

order, but different third and higher-order statistics composed of 

randomly thrown similar micropatterns and their mirror images [77]. ... 36 

Figure 2.13 An Unexpected Visitor, a test image used by Yarbus in his eye 

movement experiments [184]. ................................................................. 42 

Figure 2.14 An example of the eye movements of one subject during free 

(uninstructed) viewing of the image in Figure 2.13 for three minutes 

[184].  Note the concentration of fixations upon the faces of the major 

people in the scene, as highlighted by the arrows. .................................. 43 

Figure 3.1 Diagram of Koch visual attention system architecture [74]. .................... 55 

Figure 3.2 Diagram of Milanese visual attention system architecture [109]. ............ 57 

Figure 3.3 Example antecedent membership function variable TempC, and 

consequent function Comfort. ................................................................. 65 

Figure 3.4 Illustration of the implication process that maps the antecedent value on 

the left to the consequent value on the right............................................ 66 

Figure 3.5 Example of aggregated fuzzy system (darkened regions) and 

defuzzification of system to produce a crisp value D. ............................ 67 

Figure 4.1 Illustration of the DCM method for ascertaining the number of contour 

crossing points within the boundary of a subdivision [57].  The left 

square shows the samples taken along the boundary of a subdivision.  

The middle square has been thresholded to show the transition points that 

are highlighted in the right square. .......................................................... 73 

Figure 4.2 Illustration of the DCM method for ascertaining contour curvature within 

a subdivision [57].  Tangents at each transition point are calculated by 

making more samples inside, near the transition points.  The tangents t1 

and t2 are then found by matching the values at the transition points 

marked by the pixels marked with a black circle.  The difference in the 

tangent angles is used as a curvature estimate. ....................................... 73 



 

List of Figures 

x 

Figure 4.3 Illustration of the membership functions for the contour importance 

model, with four antecedent variables: Contrast, Curvature, Location, 

Density and the consequent variable FinImp. ......................................... 74 

Figure 4.4 Illustration of DOF values drawn from the modified DCM algorithm for 

the High membership functions.  Each value on the domain is 

convertedinto a DOF values for each of the High membership functions 

for each fuzzy variable. ........................................................................... 78 

Figure 4.5 Illustration of the multiply additive DOF value for the High FinImp 

membership function example. ............................................................... 79 

Figure 4.6 Illustration of the aggregated DOF values for the FinImp variable. ......... 79 

Figure 4.7 Illustration of the output of the normalised contour importance map for a 

head image, with the original image on the left and the generated contour 

importance map on the right. ................................................................... 80 

Figure 4.8 Example of the adaptive membership function shape approach.  In the left 

diagram are the three membership functions centred around the Just 

Noticeable Difference (JND) threshold for luminance (around 1%), when 

the mean background differences are zero.  On the right, the shapes are 

centred around the mean luminance differences (m), up to the extreme of 

1.0.  This moving threshold models the conspicuousness suppression 

caused by a highly variant background in the image, for example, a 

checkerboard. .......................................................................................... 82 

Figure 4.9 Illustration of the fuzzy, threshold-based membership functions for the 

features: luminance, hue, size and contour concentration. ...................... 85 

Figure 4.10 Diagram illustrating the non-threshold antecedent importance functions.

 ................................................................................................................. 87 

Figure 4.11 Diagram illustrating the consequent final importance function. ............. 88 

Figure 4.12 Illustration of normalised region importance map generated for the head 

image. ...................................................................................................... 91 

Figure 5.1 Overview flow diagram of the attention-based ray tracing system. ......... 99 

Figure 5.2 Diagram illustrating the ray being fired through the pixel into the scene 

geometry [46]. ....................................................................................... 100 

Figure 5.3 Regular sampling grid overlaid on a single pixel.  Each of the circles 

represents a supersample of the pixel space. ......................................... 102 



 

List of Figures 

xi 

Figure 5.4 Adaptive sampling grid overlaid on a single pixel near the edge of 

geometry, illustrating the sensitivity of the method to contrast values. 102 

Figure 5.5 Illustration of a jittered regular sampling grid used in stochastic sampling 

strategies.  Xs mark the jittered sampling locations. ............................. 103 

Figure 5.6 Diagram of subdivision sampling sequence for both simple and complex 

contour subdivisions.  The grey squares indicate sampled pixels.  Simple 

contour subdivisions follow the sequence (a) (d), while complex 

contour subdivisions follow the sequence (a) (c), (e) (f).  This is a 

modified form of the sequence used in the base DCM[57]. .................. 104 

Figure 5.7 Relationship between importance map data structures in adaptive 

rendering approach. ............................................................................... 107 

Figure 5.8 Illustration of the output of the segmentation algorithm (right) from an 

example head image (left). .................................................................... 108 

Figure 5.9 Example scenes used in the evaluation process.  From left to right they are 

a single object, an indoor scene and an outdoor scene. ......................... 118 

Figure 5.10 A series of images illustrating the improvement brought about by the use 

of importance acceleration.  The images on the left are base images using 

the normal DCM method of sampling, while the images on the right are 

accelerated using the new method.  The first image is 1.6% sampled, the 

second is 8% sampled-where the improvement is most discernable-and 

the final image is 10% sampled.  The dashed rectangles highlight areas of 

greatest difference. ................................................................................ 122 

Figure 5.11 A comparison of the sampling performed for the 8% image, which shows 

the most improvement.  The base method is shown on the left and the 

accelerated method on the right.  The rectangle in each image has been 

magnified and placed underneath, highlighting some of the subdivisions 

that have been selected for accelerated refinement. .............................. 123 

Figure 5.12 The contour importance map generated by the system.  The bright 

subdivisions are the most visually important. ....................................... 123 

Figure 5.13 Graphs of relative L1 and L2 norm ratios for images at 1% sampling 

intervals, with the non-importance method marked as Base and the new 

visual importance method marked as Imp. ............................................ 124 



 

List of Figures 

xii 

Figure 5.14 Progressively rendered images of the kitchen scene.  The images in the 

left column are rendered using the base system, while the images on the 

right are rendered with the importance-based acceleration method.  The 

top row of images is 1.6% sampled, the middle row is 8% sampled and 

the bottom is 10% sampled.  The white rectangle highlights a refined area 

within the 10% sampled image. ............................................................ 126 

Figure 5.15 A comparison of the sampling performed for the 10% image.  The base 

method is shown on the left and the accelerated method on the right.  The 

rectangle in each image has been magnified and placed underneath, 

highlighting some of the subdivisions that have been selected for 

accelerated refinement. .......................................................................... 127 

Figure 5.16 Contour importance map of the kitchen scene.  Visually important 

subdivisions produce lighter coloured squares. ..................................... 127 

Figure 5.17 Graphs of relative L1 and L2 norm ratios for images at 1% sampling 

intervals, with the non-importance method marked as Base and the new 

visual importance method marked as Imp. ............................................ 128 

Figure 5.18 Progressively rendered images of the farm scene.  The images in the left 

column are rendered using the base system, while the images on the right 

are rendered with the importance-based acceleration method.  The top 

row of images is 1.6% sampled, the middle row is 8% sampled and the 

bottom is 10% sampled.  The white rectangles highlight and compare 

refined regions from both methods. ...................................................... 130 

Figure 5.19 A comparison of the sampling performed for the 8% image.  The base 

method is shown on the left and the accelerated method on the right.  The 

rectangle in each image has been magnified and placed underneath, 

highlighting some of the subdivisions that have been selected for 

accelerated refinement. .......................................................................... 131 

Figure 5.20 Contour importance map of the farm scene.  Visually important 

subdivisions produce lighter coloured squares. ..................................... 131 

Figure 5.21 Graphs of relative L1 and L2 norm ratios for images at 1% sampling 

intervals, with the non-importance method marked as Base and the new 

visual importance method marked as Imp. ............................................ 132 



 

List of Figures 

xiii 

Figure 5.22 A series of images showing the output from the flat-rate method.  The 

images on the left are the work images generated at a constant level of 

pixel supersampling.  The middle images have been generated using a 

region-biased method.  The difference between the images is shown on 

the right.  The rows represent the maximum number of samples per pixel 

with the top row being 4 the middle 9 and the bottom 16 samples per 

pixel respectively................................................................................... 137 

Figure 5.23 Illustration of quality differences caused by the reduction in pixel 

sampling within the white rectangles shown in Figure 5.22.  The base 

image is on the left, while the biased image is on the right. ................. 138 

Figure 5.24 Images generated using the perceptual method, with a high quality work 

image on the left, the importance-biased image in the middle, and the 

difference between the two on the right.  The rows represent the error 

threshold measure used to control the quality of the image; ranging from 

10 in the top row to 50 in the bottom row. ............................................ 140 

Figure 5.25 Region segmentation images, with the raw segmentation on the left, 

coloured with random grey shades to indicate the segmentation 

performed.  On the right is the region importance map generated, with 

the lighter regions being assigned higher importance values, ranging over 

[0.0, 1.0]. ............................................................................................... 141 

Figure 5.26 A series of images showing the output from the flat-rate method.  The 

images on the left are the work images generated at a constant level of 

pixel supersampling.  The middle images have been generated using a 

region-biased method.  The difference between the images is shown on 

the right.  The rows represent the maximum number of samples per pixel 

with the top row being 4 the middle 9 and the bottom 16 samples per 

pixel respectively................................................................................... 142 

Figure 5.27 Blown up illustrations of the differences in image quality between 

kitchen images within the region highlighted by white rectangles in 

Figure 5.26. ........................................................................................... 143 

Figure 5.28 Images generated using the perceptual method, with a high quality work 

image on the left, the importance-biased image in the middle, and the 

difference between the two on the right.  The rows represent the error 



 

List of Figures 

xiv 

threshold measure used to control the quality of the image; ranging from 

10 in the top row to 50 in the bottom row. ............................................ 145 

Figure 5.29 Region segmentation images, with the raw segmentation on the left, 

coloured with random grey shades to indicate the segmentation 

performed.  On the right is the region importance map generated, with 

the lighter regions being assigned higher importance values. ............... 145 

Figure 5.30 A series of images showing the output from the flat-rate method.  The 

images on the left are the work images generated at a constant level of 

pixel supersampling.  The middle images have been generated using a 

region-biased method.  The difference between the images is shown on 

the right.  The rows represent the maximum number of samples per pixel 

with the top row being 4 the middle 9 and the bottom 16 samples per 

pixel respectively. .................................................................................. 147 

Figure 5.31 Blown up illustrations of the differences in image quality between farm 

images within the region highlighted by white rectangles in Figure 5.30.

 ............................................................................................................... 148 

Figure 5.32 Images generated using the perceptual method, with a high quality work 

image on the left, the importance-biased image in the middle, and the 

difference between the two on the right.  The rows represent the error 

threshold measure used to control the quality of the image; ranging from 

10 in the top row to 50 in the bottom row. ............................................ 150 

Figure 5.33 Region segmentation images, with the raw segmentation on the left, 

coloured with random grey shades to indicate the segmentation 

performed.  On the right is the region importance map generated, with 

the lighter regions being assigned higher importance values. ............... 150 

Figure 6.1 A texture mapping illustration.  The image on the left is a blank polygon, 

while the image on the right is the same polygon with a texture map 

applied. .................................................................................................. 155 

Figure 6.2 Illustration of the process of mapping a pixel on the surface of geometry 

being rendered to a texel [46]. ............................................................... 156 

Figure 6.3 An example of bump mapping.  A plain polygon is on the left, while a 

bump mapped polygon is on the right. .................................................. 157 



 

List of Figures 

xv 

Figure 6.4 Illustration of the difference between isotropic filtering (left) and 

anisotropic filtering (right) in texture-space (grid).  Both texture filters 

are represented by the grey areas in the diagram.  The anisotropic filter 

better captures the shape of the projected pixel in texture coordinates 

(dotted quadrilateral), and thus produces more correct texturing in 

perspective distorted sections of an image.  However, the adaptive nature 

of the filter introduces costs into the texture integral calculations. ....... 161 

Figure 6.5 Example of image which has a texel to pixel size ratio less than the 

maximum support size of the filter being importance-biased in its 

sampling (left), compared to a point sampled texture (right).  Note that 

the regions of high importance around the small altar (highlighted with a 

white rectangle) appear worse due to excessive blurring caused by a 

larger support for the texture filter function. ......................................... 163 

Figure 6.6 The three textures used in the tests, from left to right: cloth, kitchen and 

garden. ................................................................................................... 165 

Figure 6.7 Illustration of a more complex texture test scene. .................................. 165 

Figure 6.8 Example cloth images which have been produced using the adaptive 

texture mapping method (left) and without the adaptive texture method 

(middle).  The difference between the two images is shown on the right.  

The rows represent, from top to bottom, textures resolutions of 257  

257, 513  513, 1537  1537 and 2049  2049 pixels.  The white regions 

within the difference images on the right represent pixels that have no 

difference between the biased and unbiased images.  Thus the relatively 

important regions are shown as white blotches because of the minimal 

difference between the images in that location. .................................... 168 

Figure 6.9 Illustration of the level of difference between subimages which contain 

differences induced by importance-biased sampling.  The images are 

drawn from the white rectangles in Figure 6.8.  The base image is on the 

left while the importance-biased image is on the right. ........................ 168 

Figure 6.10 Region segementation (left) and importance (right) images for the room 

texture sampling scene. ......................................................................... 168 



 

List of Figures 

xvi 

Figure 6.11 Example kitchen images which have been produced without (left) and 

with (middle) importance-biased texture mapping.  The difference 

between the two images is shown on the far right.  The rows represent, 

from top to bottom, textures resolutions of 257  257, 513  513, 1025  

1025, 1537  1537 and 2049  2049 pixels.  The white regions within the 

difference images on the right represent pixels that have no difference 

between the biased and unbiased images.  Thus the relatively important 

regions are shown as white blotches because of the minimal difference 

between the images in that location. ..................................................... 171 

Figure 6.12  Illustration of the level of difference in a subimage which contains 

differences induced by importance-biased sampled.  The images are 

drawn from the white rectangles in Figure 6.11.  The base image is on the 

left while the importance sampled image is on the right. ...................... 171 

Figure 6.13 Region segementation (left) and importance (right) images for the 

kitchen texture sampling scene. ............................................................. 171 

Figure 6.14 Example garden images which have been produced using the adaptive 

texture mapping method (left) and without the adaptive texture method 

(middle).  The difference between the two images is shown on the right.  

The rows represent, from top to bottom, textures resolutions of 257  

257, 513  513, 1025  1025, 1537  1537 and 2049  2049 pixels.  The 

white regions within the difference images on the right represent pixels 

that have no difference between the biased and unbiased images.  Thus 

the relatively important regions are shown as white blotches because of 

the minimal difference between the images in that location. ................ 174 

Figure 6.15 Illustration of the level of difference in a subimage which contains 

differences induced by importance-biased sampling.  The images are 

drawn from the white rectangles in Figure 6.14.  The base image is on the 

left while the importance sampled image is on the right. ...................... 174 

Figure 6.16 Region segementation (left) and importance (right) images for the garden 

texture sampling scene. ......................................................................... 174 

Figure 6.17 Results of room scene rendering with the base image (left), importance-

biased image (middle) and a difference image (right).  The white regions 



 

List of Figures 

xvii 

within the difference images on the right represent pixels that have no 

difference between the biased and unbiased images.  Thus the relatively 

important regions are shown as white blotches because of the minimal 

difference between the images in that location. .................................... 175 

Figure 6.18 Illustration of the level of difference in a subimage which contains 

differences induced by importance-biased sampling.  The images are 

drawn from the white rectangles in Figure 6.17.  The base image is on the 

left while the importance sampled image is on the right....................... 175 

Figure 6.19 Region segementation (left) and importance (right) images for the room 

scene. ..................................................................................................... 176 

Figure 6.20 Table of results for the room scene....................................................... 176 

Figure 6.21 Illustration of bump map checking algorithm.  The four sampled points 

(grey circles) would normally return no contrast difference, even though 

the bump/texture map has contour information (thick lines).  In the new 

technique, the sampled points have their texture coordinates checked 

between them for large luminance deviations, indicating a plausible 

contour in image-space.......................................................................... 178 

Figure 6.22 Illustration of process involved in ascertaining the locations of possible 

contours within a bump map.  The grey corners are ray traced pixels, 

with the other white circles the pixel locations yet to be sampled.  If a 

deviation is found then the subdivision is marked for further sampling 

according to the original DCM algorithm. ............................................ 179 

Figure 6.23 Graphs of L1 and L2 norms for progressive rendering of textures scaled 

to 1, ½ and ¼ their original size. ........................................................... 181 

Figure 6.24 Illustration of the ability of the technique to discover contours not found 

by the base DCM method.  The image on the left is the final rendering, 

the middle image is the base image 7% sampled, the right image is the 

texture adaptive method at 7% sampled.  All images are for the ½ scaled 

texture example.  Examples of extra contours in the far right image are 

highlighted by the white rectangle. ....................................................... 183 

Figure 7.1 Spatiotemporal sensitivity curve for the HVS from Wandell [166].  The 

vertical axis represents the magnitude of contrast required to detect a 

contrast reversing signal at the specified spatial frequency (in cycles per 



 

List of Figures 

xviii 

degree subtended–cpd) and temporal frequency (in cycles per second–

Hz).  Note the asymmetry in the curves introduced by the use of 

logrithimic scales on each axis. ............................................................. 188 

Figure 7.2 Graph of smooth pursuit capability of the human visual system [31]. ... 189 

Figure 7.3 Illustration of the concepts of motion magnitude importance and motion 

direction importance.  Both images show regions with vectors attached, 

indicating their direction and magnitude of motion.  The left diagram 

show a grey region standing out due to a difference in velocity 

magnitude–indicated by the longer arrow–while proceeding in the same 

direction.  The right diagram shows a grey region standing out because of 

its relative difference in direction–indicated by the reversed direction 

vector–while proceeding at the same speed. ......................................... 193 

Figure 7.4 Diagram of the motion evaluation membership functions for the 

Magnitude of the motion (left) and the Direction of the motion (right).

 ............................................................................................................... 193 

Figure 7.5 Illustration of abrupt onset membership function. .................................. 196 

Figure 7.6 Flow diagram of the major stages in the temporal change approach. ..... 199 

Figure 7.7 An example of the hierarchy of segmentation used in the motion 

esitmation system.  The colour of the subdivision represents object ID 

segmentations.  The dotted area represents one object ID, while the white 

background represents another object ID.  The numbers represent the 

segmentation within the object ID segmentation.  In the example, the 

cube region has been further subdivided into three regions (1, 2, 3). ... 203 

Figure 7.8 Illustration of the internal motion search method over two frames (frame n 

on the left, n + 1 on the right), within the regions segmented at the level 

of object IDs–dotted regions surrounding cube.  A subdivision which 

changes from frame to frame is highlighted in white.  A subdivision 

which changes across two regions is highlighted by a cross hatch pattern 

in the second frame. ............................................................................... 204 

Figure 8.1 A photograph of the subjective testing setup. ......................................... 219 

Figure 8.2 Illustration of the images used in the subjective assessment process.  The 

images are from top to bottom, left to right: head, kitchen, farm, cloth, 

kitchen, garden, texture room and brick bump map. ............................. 221 



 

List of Figures 

xix 

Figure 8.3 Diagram of progressive test assessment methodology, based upon the 

CCIR methdology for comparitive subjective testing [26]. .................. 222 

Figure 8.4 Diagram of supersampling test assessment methodology, based upon the 

CCIR methdology for comparitive subjective testing [26]. .................. 224 

Figure 8.5 Illustration of the five point evaluation scale used by the subjects in the 

evaluation [26]....................................................................................... 224 

Figure 8.6 FFT diagrams of the differences between the frequency components of the 

biased and unbiased images– from left to right head, kitchen and farm.

 ............................................................................................................... 232 

 



 

List of Tables 

xx 

List of Tables 
 

Table 4.1 Table of weights for each of the contour model rules. ............................... 76 

Table 5.1 Details of each scene used in the evaluation of the rendering approach, 

both progressive and supersampling. .................................................... 118 

Table 5.2 Table of L1 and L2 differences shown in Figure 5.10.  The table entries are 

calculated by taking the absolute value of the differences between the 

base and accelerated norm values, at the respective sample percentage.

 ............................................................................................................... 125 

Table 5.3 Table of L1 and L2 differences shown in Figure 5.17 for the kitchen scene.  

The difference values are calculated by taken the absolute value of the 

differences between the base and accelerated images, at the respective 

number of samples. ................................................................................ 129 

Table 5.4 Table of L1 and L2 differences shown in Figure 5.17 for the farm scene.  

The difference values are calculated by taken the absolute value of the 

differences between the base and accelerated images, at the respective 

number of samples. ................................................................................ 133 

Table 5.5 Results of the flat-rate rendering methodology showing samples, relative 

times and norm error ratios for each image generated with or without 

attention-based biasing, at varying levels of fidelity. ............................ 138 

Table 5.6 Results of the perceptual rendering methodology showing samples, relative 

times and norm error ratios for each image generated with or without 

attention-based biasing, at varying levels of fidlelity. ........................... 140 

Table 5.7 Results of the flat-rate rendering methodology showing samples, relative 

times and norm error ratios for each image generated, with or without 

region biasing, at varying levels of fidlelity. ......................................... 143 

Table 5.8 Results of the perceptual rendering methodology showing samples, relative 

times and norm error ratios for each image generated with or without 

attention-based biasing, at varying levels of fidelity. ............................ 146 

Table 5.9 Results of the flat-rate rendering methodology showing samples, relative 

times and norm error ratios for each image generated, with or without 

region biasing, at varying levels of fidlelity. ......................................... 148 



 

List of Tables 

xxi 

Table 5.10 Results of the perceptual rendering methodology showing samples, 

relative times and norm error ratios for each image generated with or 

without attention-based biasing, at varying levels of fidelity. .............. 151 

Table 6.1 Table of results for the cloth texture image. ............................................ 169 

Table 6.2 Table of results for the kitchen texture image. ........................................ 172 

Table 6.3 Table of results for the garden texture image. ......................................... 175 

Table 6.4 Table of values for the renderings of the brick bump map with original, ½ 

and ¼ size textures. ............................................................................... 182 

Table 8.1 Table of experimental conditions for subjective viewing evaluation. ..... 220 

Table 8.2 Listing of subjective testing results for progressive images.  Rejected null 

hypotheses are  shaded in dark grey. ..................................................... 226 

Table 8.3 Table containing the subjective supersampling results for the flat-rate 

method with 4, 9 and 16 supersamples per pixel.  Flat method control 

image results are also included.  Rejected null hypotheses are shaded in 

dark grey. ............................................................................................... 227 

Table 8.4 Table containing the subjective supersampling results for the perceptual 

method with a 10, 20, 30, 40 and 50 error threshold per region.  Note that 

the null hypothesis was accepted for each of the images.  Rejected null 

hypotheses are  shaded in dark grey. ..................................................... 230 

Table 8.5 Table containing the subjective texture importance mapping results for the 

perceptual method with a 1537, 1025, 257 pixel square textures error 

threshold per region.  Note that the null hypothesis was rejected only for 

two of the 257  257 texture images.  Rejected null hypotheses are 

shaded in dark grey. .............................................................................. 230 

 



 

List of Algorithms 

xxii 

List of Algorithms 
 

Algorithm 5.1 Progressive rendering algorithm pseudocode. .................................. 114 

Algorithm 5.2 Algorithm listing for EvalRegImp procedure. .................................. 115 

Algorithm 5.3 Algorithm listing of EvalRegGlobalDiff procedure, which calculates 

global feature difference values. ........................................................... 116 

Algorithm 7.1 Modified region importance algorithm EvalRegImp, incorporating 

new highlighted motion importance calculations. ................................. 211 

Algorithm 7.2 Algorithm listing of modified procedure EvalRegGlobalDiff, with 

motion importance additions highlighted. ............................................. 212 

Algorithm 7.3 Algorithm listing of procedure EvalRegionMotion, which performs 

the actual motion estimation calculations. ............................................ 213 

 

 



 

List of Abbreviations 

xxiii 

List of Abbreviations 

Acronyms 

CCIR  Comité Consultatif International pout les 

Radiocommunications 

CAD  Computer Aided Design 

CIE  Commission Internationale de l’Éclairage 

CPD  Cycles Per Degree 

CSF  Contrast Sensitivity Function 

DCM  Discontinuity Coherence Map 

DCT  Discrete Cosine Transformation 

DOF  Degree Of Fulfillment 

FIT   Feature Integration Theory 

GSM  Guided Search Model 

HSV  Human Saturation Value 

HVS  Human Visual System 

JND  Just Noticeable Difference 

JPG  Joint Photographic Experts Group 

LGN  Lateral Geniculate Nucleus 

MIP  Multum In Parvo 

MPEG  Motion Picture Experts Group 

MSE  Mean Square Error 

OR  Optic Radiations 

POR  Point Of Regard 

RGB  Red Green Blue 

ROI  Region Of Interest 

VSTM  Visual Short Term Memory 

Units 

Cycles Per Degree  spatial cycles per visual degree subtended 

deg. ( )  degrees in degrees or radians 

Hz  cycles per second 

ms   millisecond (1  10-3 seconds) 



 

List of Abbreviations 

xxiv 

nm  nanometres (1  10-9 metres) 

Pixels  picture elements in image-space 

sec.  seconds 

Texton  fundamental texture unit in Texton Theory 

Texels  image elements in texture-space 

 



 

Authorship 

xxv 

Authorship 
 

The work contained in this thesis has not been previously submitted for a degree or 

diploma at this or any other higher education institution.  To the best of my 

knowledge and belief, the thesis contains no material previously published or written 

by another person except where due reference is made. 

 

 

Signed: ………………………………………… Date: …………………….. 

 



 

Acknowledgements 

xxvi 

Acknowledgements 
 

There are many people I wish to thank. 

 

First and foremost, I wish to thank my supervisor Prof. Binh Pham and co-supervisor 

Prof. Anthony Maeder.  Your encouragement, strategic insight and shear belief in my 

work pulled me though many tough times. 

 

Many thanks to my mother, brothers and sister, who have encouraged my academic 

pursuits to this day.  Those times table drills finally paid off.  You now have a doctor 

in the family! 

 

Thanks also to the other Ph.D. students at QUT and Ballarat University, who have 

provided support, critiques, general high japes and company for coffee. 

 

Thanks also to Sarah for support, hugs and soup when it was needed. 

 

Finally, thanks to the little old lady who poked her head in the rear window of the car 

when I was a toddler, saying, “Oh, he’s got a big head!  He’ll be a doctor someday!” 

  

I guess she was right... 

 



 

Chapter 1 

1 

Chapter 1 

Introduction 
 

Three dimensional computer graphics, or image synthesis as it is formally titled, is 

the computerised generation of images from a synthetic scene description.  Scene 

descriptions are comprised of complex mathematical models of geometry, lighting 

and surface properties. 

 

The scene description may be gained from a number of sources including 

manufacturing and design data for Computer Aided Design (CAD) or experimental 

data for scientific visualisation.  From media advertising to viewing oil exploration 

data, image synthesis techniques have led to enhancements in information 

presentation in a number of application areas, including: 

 

 entertainment, such as movies and interactive computer games; 

 data visualisation in design, science and business applications; 

 virtual reality for education and training. 

 

A process called hidden surface removal [46] is applied to the scene description data 

to produce an image revealing the content of the scene from a particular viewing 

position.  An algorithm commonly used to perform hidden surface removal is ray-

tracing, whereby a virtual light ray is fired through a pixel in the image plane into the 

scene description.  The pixel is then coloured according to the first object intersected 

by that ray.  The inherent image-space nature of ray tracing allows for high-fidelity 

photo-realistic rendering with complex lighting effects.  Ray tracing has therefore 

become ubiquitous in the last three decades, due to the rise in use of high quality 

digital forms of image representation in many areas.  Furthermore, these techniques 

have grown in sophistication, to the extent that it is now hard for viewers in certain 

circumstances to discern the difference between captured images and those generated 

by computer systems. 
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However, along with this sophistication has come the need for increasing amounts of 

computing resources to render these images within a reasonable time frame.  Even 

with the present increase in processor speeds, it will be decades before scenes of 

photo-realistic quality are rendered in real-time [16].  Consider, for example, the 

computations involved for a typical 1000  1000 pixel image.  Each of the million 

pixels in the final image must be coloured by systems that incorporate complex 

lighting calculations.  These systems model the emanation of light from a source, its 

transport through a medium (usually air) and the interaction of this light with the 

surface to be viewed.  The number of these calculations is then multiplied by the 

number of primitives involved in the complex geometric modelling of the surfaces in 

the scene.  As a result, it is not unusual for an image to take a full day to be rendered 

[57]. 

 

The improvements in image synthesis realism have also brought about a concomitant 

increase in the structural complexity of the scenes to be rendered.  Visualisation of 

large scale architectural and entertainment data sets involves the processing of 

millions of polygons.  Along with this increase in scene description complexity is the 

latest trend towards computerised rendering of complete motion pictures [131].  A 

full-length motion picture quality animation requires thousands of frames to be 

rendered, with each frame having the presently mentioned computational overheads.  

Therefore, it is expected that the need to improve the efficiency of ray tracing 

algorithms will continue into at least the near future. 

 

The main cost of ray tracing is the calculation of ray intersections with objects in the 

scene description.  Techniques developed to ameliorate this computational cost fall 

into two main categories: reduction in the cost of firing a ray into the scene and/or 

reduction in the actual number of rays fired into a scene. 

 

One solution that seeks to reduce the number of rays fired into the scene is 

progressive rendering [100].  Progressive rendering is the process of generating a 

synthetic image with a temporal fidelity gradient.  That is, instead of rendering an 

image at the highest level supported by the viewing device, a low fidelity image is 
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rendered first and then subjected to further refinement until the desired image fidelity 

is reached.  This progressive process thus facilitates speedier previewing of images.  

Progressive rendering concepts can be used to modify present image-based methods 

of rendering, such as ray tracing. 

 

Progressive ray tracing initially performs a sparse ray sample across the scene, 

enabling a quick approximation of the scene to be rendered.  This sampling is 

represented as a subdivision of the two dimensions of the scene, often as a quadtree 

data structure–this data structure being a recursive subdivision of the image into 

equally sized quadrants [141].  The image is then further sampled and subdivided at 

progressively higher levels of fidelity until the image is sampled at least once for 

every pixel in the image.  At this point the subdivision of the pixel itself may occur.  

However, the value within the frame buffer for the pixel will be an average of the 

samples taken within its boundaries.  This technique of subdividing pixels is known 

as supersampling, it is used to overcome the jagged visual effects that occur along 

edges in a rendered scene [46].  This supersampling can be made adaptive to features 

within the scene, due to the need to only sample heavily along contours in an image 

and less heavily in homogeneous areas [129]. 

 

Some ray-tracing techniques [110, 129] do not consider the limitations of the human 

visual system at all in their allocation of samples, leading to redundant samples being 

made.  Work has been carried out to rectify this waste of sampling resources by 

allowing for low-level pattern sensitivities within the human visual system [15, 111].  

This project, however, seeks to further address the efficiency problems in ray tracing 

by applying higher-level aspects of human visual attention to control the number of 

rays fired into the scene.  In this newly developed approach, regions with a high level 

of visual importance will be sampled heavily compared to unimportant regions.  

Compared to other adaptive methods, this approach will bring additional 

computational cost savings, due to an overall lowering of the number of rays fired. 
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1.1 INCORPORATING VISUAL ATTENTION INTO 
PROGRESSIVE IMAGE SYNTHESIS TECHNIQUES 

One of the major goals of the project is to modify progressive ray tracing algorithms 

to refine the visually important regions of an image first, so that the image presented 

to the viewer in its early stages is at the best possible perceptual quality.  

Supersampling techniques may also benefit from this approach by modulating the 

stop condition on the sub pixel refinement by the visual importance of the region.  

Those pixels in regions deemed to be visually unimportant are sampled less 

intensively.  This approach to rendering reaps much needed efficiency benefits due to 

the savings in the number of supersamples made for each pixel.  A predictive visual 

attention model therefore needs to be developed to ascertain the visual importance of 

the regions within the image.  This is achieved by exploiting principles of visual 

attention derived from psychophysical research. 

 

Models of human visual attention are believed to have their physiological basis in 

feature detectors in the early stages of the Human Visual System (HVS) [65].  These 

feature detectors highlight regions of the viewing field that contain edges and 

motion, attracting the attention of the viewer.  Further corroborating evidence has 

emerged from psychophysical experiments that indicate the attention attracting 

capability of changes in visual features, such as luminance and hue [183]. 

 

A number of psychological and computational models of visual attention have been 

constructed to simulate the attention attracting ability of these visual features [72, 

108, 128, 157].  Most current models hold that the HVS is in essence a two-stage 

system.  The first preattentive stage processes the entire visual field in parallel for 

feature differences.  This preattentive stage guides the later attentive stages of the 

HVS to regions of interest in the visual field [180].  These models assert that the 

HVS processes the visual field for differences in features, combining them together 

to form an importance map [97] or saliency map [83], as a quantification of the 

attention attracting power of a particular visual field region. 
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In order to facilitate the exploitation of visual attention principles in image synthesis, 

an appropriate model must be designed and implemented.  Therefore, a further aim 

of this project is the development of a novel fuzzy logic system that models the 

attention attracting capability of differences in visual features.  Fuzzy logic is used in 

this project due to its excellent capabilities with regards to modelling imprecise 

human thought processes.  The qualitative nature of the rules governing visual 

attention in particular makes rule-based fuzzy logic control an appropriate modelling 

tool [7].  This fuzzy logic module has been integrated into the progressive image 

synthesis approach developed in this thesis.  The role of the fuzzy logic module is to 

guide refinement processes by ordering data according to rules of visual importance. 

 

The fuzzy logic model contains an implementation of two developed modules. Both 

modules calculate a visual importance values to control the progressive rendering 

process.  The first module evaluates the visual importance of contours within an 

image, thereby aiding the progressive rendering process mention previously.  The 

second module evaluates the visual importance of segmented regions within an 

image, to control the final pixel supersampling process. 

 

In addition, the area of texture resampling [46] has benefited from the application of 

visual importance principles.  In a similar manner to the image-space supersampling 

techniques developed, the size of the support of the texture filter is modulated by the 

visual importance value of the region.  This removes superfluous texture samples in 

visually unimportant regions. 

 

Computer animation techniques have been modified to incorporate visual 

importance.  An extended version of the region importance model has been 

developed to allow for the visual importance effects induced by region motion.  In a 

similar way to the still images, the animation frames have their supersampling rates 

modulated by the visual importance of image regions. 

 

The results produced by the new approach have been analysed in both an objective 

and subjective manner.  Objective L1 and L2 norm error ratios and difference images 

have been calculated to quantify the size and nature of the differences between the 
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normal and degraded images.  Furthermore, subjective analysis of the quality of the 

images has been performed, as an indication of the perceptual quality of images 

rendered by the importance-biased approach. 

1.2 RESEARCH QUESTIONS 

The research questions investigated in this project are: 

 

 Can the efficiency of present ray-tracing methods be improved by 

guiding the refinement process to those regions considered to be more 

visually important, and secondly, to modulate the termination of this 

refinement process by the visual importance of the image region? 

 Can fuzzy logic be used to facilitate importance-based rendering by 

modelling the relationships between preattentive visual features in a 

scene description? 

 Can texture mapping techniques benefit from the application of 

similar concepts, to reap efficiency gains by modulating resampling 

by the visual importance of the region being textured? 

 Can motion importance be incorporated into the fuzzy logic visual 

importance model? 

 Can animation rendering techniques be developed to reap efficiency 

gains from motion feature additions to the visual importance model? 

1.3 ORGANISATION OF THESIS 

The chapter contents of the thesis are: 

 

 Chapter 2–Physiology and Psychology of the Human Visual System, 

provides a theoretical context for the construction of a visual attention 

system in both the physiological and psychological domains of 

research. 

 Chapter 3–A Visual Importance Model for Image Synthesis Efficiency, 

details the fuzzy logic module developed to model visual attention.  

This includes analysis of previous computational attention models, 
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and the design of the membership functions, implication schemes and 

rule bases for the new application area. 

 Chapter 5–Adaptive Image Synthesis Using a Visual Importance 

Model, deals with the algorithms and supporting data representations 

for an attention modulated progressive ray tracing system.  A 

prototype implementation is described and objective evaluation results 

are listed and discussed. 

 Chapter 6–Incorporating Texture Importance into Adaptive 

Rendering, describes the processing of textures using the visual 

attention model and the early detection of texture contours for the 

progressive renderer.  A prototype implementation is described and 

objective evaluation results are listed and discussed. 

 Chapter 7–Adaptive Image Synthesis Animation, details the further 

application of the fuzzy logic model in the area of computer 

animation.  The chapter first details the addition of motion effects to 

the region-based visual attention model.  The chapter then goes on to 

describe the incorporation of this model into techniques for generating 

computer animations.  The chapter ends with a theoretical evaluation 

of the new approach. 

 Chapter 8–Overall Approach Evaluation, analyses data from 

subjective evaluations recorded during the viewing of images 

generated by the two progressive image synthesis systems.  The 

remainder of the chapter contains an integrated discussion of the 

results for all components of the research carried out. 

 Chapter 9–Discussion and Conclusions, contains a discussion of the 

achievements of the thesis and a description of future work in the area 

of visual attention applications in image synthesis. 

1.4 MAIN CONTRIBUTIONS 

The main contributions of this research can be divided into the two areas of visual 

importance modelling and adaptive rendering. 
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The major contributions to visual importance modelling are: 

 

 the unification of existing visual attention theory into the construction 

of a computationally efficient and novel region-based model of the 

HVS attention system, using a rule-based fuzzy logic approach; 

 the development of a fuzzy region and contour importance model for 

integration into progressive image synthesis approaches incorporating 

adaptive membership functions to account for global effects, complete 

difference threshold modelling of visual importance and the use of 

contour importance information from segmented regions; 

 the development of a fuzzy logic-based region motion model 

incorporating motion direction, global effects, abrupt onset effects, 

gross non-rigid region motion and region-internal motion. 

 

The main contributions in the area of image synthesis are: 

 

 the development of a progressive image synthesis approach 

incorporating a region-based visual attention model for still images 

controlling the order, speed and termination of the refinement process, 

with extensions to texture resampling; 

 the development of novel region segmentation techniques for motion 

detection incorporating object ID information; 

 the implementation of the approaches within the framework of the 

Renderman™ standard, reaping large rendering efficiency gains while 

keeping perceptual distortion to a minimum; 

 the objective and subjective analysis of the rendering approach using 

error ratios, difference images and subjective image quality 

experiments. 
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Chapter 2 

Physiology and Psychology of the Human Visual 

System 
 

Relevant physiological components of the HVS are described in this chapter, 

delineating the path from the eye to the visual cortex.  The chapter then continues 

with a taxonomy of eye movements and their controlling mechanisms.  Key 

physiological and anatomical constructs, sensitive to particular scene features, are 

highlighted in order to show their contribution to visual attention processes.  These 

constructs, known as feature detectors, form the basis for the psychological and 

computational visual attention models detailed in later chapters.  In particular, this 

chapter notes the effects of feature differences on visual attention and seeks to 

provide a theoretical basis for a new visual attention model.  Various aspects of 

present psychological visual attention models are extracted and analysed to facilitate 

the development of the fuzzy logic-based visual attention model presented in Chapter 

3.  Analysis is concentrated on the low-level visual features that contribute to visual 

importance, eliciting general rules governing their effects.  The chapter concludes 

with a discussion of proposed feature importance hierarchies and summarises the 

theoretical background to be used in later sections of the thesis. 

2.1 HUMAN VISUAL SYSTEM PHYSIOLOGY 

The visual perception of an environment by a human being emerges from a complex 

set of interacting physiological components.  Putting it simply, light enters the eye, 

exciting specialised cells that transmit information via the optic nerve to a posterior 

region of the brain called the visual cortex.  Using connections to the visual cortex, 

the rest of the brain processes this information to provide object recognition and 

stimulus response.  Great progress has been made in understanding the physiology 

and functionality of the early portions of the primary visual cortex.  However, 

knowledge of the relationship between the rest of the brain and the early stages of the 

visual cortex is still sketchy at best.  A large amount of research effort is now being 

expended in the task of unravelling these physical connections and their related 

functionality. 
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The scope of this thesis only requires a physiological understanding of the early parts 

of the visual system.  The other regions beyond the early visual cortex are outside the 

terms of reference of this thesis.  Therefore, this chapter describes only the major 

HVS components: the eye, the primary visual cortex and the connection between the 

two, the optic nerve. 

2.1.1 Physiology of the Human Eye and Optic Nerve 

A common analogy used for the eye is the camera: a darkened chamber with the 

image focused on its rear surface
1
.  Similar to a camera, light is reflected from a 

scene and focused through a system of optics onto the back surface of the eye, 

known as the retina (refer to Figure 2.1). 

 

 

Figure 2.1 Illustration of the cross section of the right eye.  Note the location of the 

Cornea, Lens, Retina, Optic Nerve and the position of the Fovea in the small 

indentation named the Macula Lutea (adapted from [145]). 

 

The retina is densely coated with photoreceptive (light sensitive) cells.  These cells 

are categorised as either cones or rods, so named because of their respective shapes.  

The cones are divided into three classes, with each class being sensitive to long (red), 

                                                 
1
 Unless otherwise noted, the concepts in this section are referenced from [145]. 
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medium (green) and short (blue) wavelengths.  The cones, numbering approximately 

six million, are mostly concentrated in an area named the fovea.  The fovea is located 

in a small indentation on the retina called the macula lutea, in the centre of the HVS 

visual field.  The fovea provides the viewer with a high detail colour view of our 

surroundings, at higher (photopic) light levels.  The rods, numbering approximately 

120 million, are situated outside of the fovea, providing monochromatic, low detail 

peripheral vision at low (scotopic) light levels.  The rods also facilitate high 

sensitivity to motion in the peripheral field of view.  A rod or cone emits an electrical 

impulse when it absorbs a threshold number of photons of visible light (wavelength 

400-700nm).  This impulse passes through a layer of neurons before being 

transmitted along the optic nerve. 

 

This retinal layer of neurons is made up of four main classes of cells: horizontal, 

bipolar, amacrine and ganglion cells.  The ganglion cells are connected to the 

bipolar cells, forming the final layer of the retina.  The axons (transmission 

extension) of the ganglion cells make up the optic nerve that transmits electrical 

impulses from the retina to the visual cortex.  The number of ganglion cells is much 

less than the number of photoreceptor cells in the retina.  This numerical difference 

suggests a great deal of the photoreceptor output is condensed before being 

transmitted along the optic nerve.  This compression of information happens in two 

ways.  Firstly, the eye only transmits changes in the scene being viewed, causing the 

image to fade if the eye remains stationary while viewing an invariant image [184].  

Secondly, cells in the retina carry out preprocessing of certain features in the scene, 

such as colour and motion, transforming the scene into a more efficient 

representation for further processing by the HVS. 

 

Each ganglion cell has a defined receptive field, due to its interconnections with the 

other neurons in the retina.  These regions of the retina, which are roughly circular in 

shape, affect the firing rate of the ganglion cell when stimulated [20].  Among the 

many different types of receptive cell field, is the concentric field.  These fields 

respond to stimuli at the centre of the field, or in the periphery.  The fields that 

respond to onset of stimuli in the centre and offset in the surround are named centre-
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on fields.  Receptive fields that respond to onset of stimuli in the surround, or the 

offset of stimuli in the centre, are named centre-off fields (refer to Figure 2.2). 

 

 

Figure 2.2 Diagram of a typical centre-surround antagonistic receptive field of a 

single ganglion cell, and the neural pulse sequence which results from illumination 

within the receptive field [145]. 

 

These ganglion cells can be further categorised into X and Y cells.  The X cells give 

sustained responses when a sinusoidal grating is held stationary in front of the 

receptive field.  The Y cells give only a transient response to stationary sinusoidal 

gratings.  Therefore, in order to gain a sustained response from a Y cell, the grating 

must continually be in motion.  The size of these receptive fields for the ganglion 

cells increases with eccentricity from the fovea.  The pooling of receptor output is 

thus increased with distance from the fovea, suggesting a lowering of the perceived 

level of detail.  The receptive fields of the X and Y cells are also distributed 

differently over the retina.  The X cell receptive fields are concentrated in the foveal 

area, while the Y cell receptive fields are concentrated in the periphery of the retina. 

 

Ganglion cells also transmit colour information through a colour opponency system.  

A colour-opponent cell of this type is excited by stimuli of one colour and inhibited 

by those of another.  In monkeys, the centre-on and centre-off X cells are divided 

into four colour-opponent classes-the most common being the two types of green-red 

cells. These colour cells contain a centre that is sensitive to green and the surround to 

red, or vice-versa.  Less common are the two types of blue-yellow cells [20] that 
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have a similar functionality with regards to blue and yellow stimuli.  Analogues to 

these cells are considered to exist in the HVS. 

 

All the above processing takes place in the retina. The motion, colour opponency and 

other information in the visual field is transmitted along the optic nerve to the visual 

cortex, illustrated in Figure 2.3. 

 

 

Figure 2.3 Diagram showing the visual pathways from the retina to the visual cortex 

illustrating the decussation (crossing over) of the fibres from the nasal half of the 

retina at the optic chiasm.  G: lateral geniculate nucleus, S: superior colliculus; III: 

oculomotor nucleus; V: posterior horn of lateral ventricle; OR: optic radiations [145]. 

 

Of special note in Figure 2.3 is the Lateral Geniculate Nucleus (LGN), the synaptic 

termination of the optic nerve (labelled with a G).  The cells in the LGN exhibit 

similar centre-surround characteristics to the receptive cells in the retinal network, 

for example, red-green opponency [65]. 
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A few points should be noted at this point in the visual pathway.  The presence of 

primitive visual feature detectors so early in the visual system supports the notion of 

the HVS being hardwired to detect such features in parallel across the visual field.  

This parallel mechanism of the HVS is explored further in Section 2.2, with regards 

to psychological models of visual attention.  Furthermore, Y receptor cells appear to 

have a major role in the detection of motion, which is more noticeable in the 

periphery of human vision where these receptive fields are situated.  Finally, the 

opponent colour sensitive receptors may also give rise to the high levels of contrast 

noticeable on the edge between contiguous opponent-coloured image areas [69].  

This high peripheral sensitivity to scene motion is a strong attractor of visual 

attention, and along with the concept of colour (hue) contrast, is a component 

common to all of the leading visual attention models discussed in Section 2.2. 

2.1.2 The Visual Cortex 

From the LGN, signals continue along the optic radiations to the next major HVS 

construct, the primary visual cortex.  The primary visual cortex (area V1) occupies a 

large component of the posterior location of the brain.  Extensive research has been 

carried out into mapping the functionality and architecture of the monkey visual 

cortex, for example [64, 65, 133], which is assumed to map closely to the HVS.  The 

visual cortex is architecturally and functionally hierarchical in nature.  In this 

architecture, LGN concentric field cells converge to simple cortical cells, which in 

turn converge to complex cells, which finally converge to hypercomplex cells.  These 

classes of visual cortex cells are now considered individually. 

 

Simple cells have receptive fields located in one eye only, with spatially distinct on 

and off areas separated by parallel straight lines.  Large proportions of these simple 

cells contain opponent colour properties-the largest of any of the cells described here.  

A line stimulus at a preferred angle, size, shape and retinal position for the given cell 

produces an optimal response. 

 

The complex cell, similar to the simple cell, responds optimally to lines at particular 

orientations.  It differs from the latter in being unaffected by the position of the 
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stimulus within the receptive field, if it lies inside or moves inside the receptive field, 

then the stimulus evokes an optimal response.  While the complex cells are position 

insensitive, half of these complex cells show asymmetry in their response to 

movement in opposite directions, while others show little or no preference.  Complex 

cells may be optimally responsive to edges, slits or dark bars, with the orientation 

increment being 5-10 . 

 

The hypercomplex cells respond to movement of objects at an optimal angle, with 

antagonistic regions above and below the receptive field.  They detect any change in 

the direction of the contours, that is, they detect curvature. 

 

Of the complex and hypercomplex cells, only a low percentage of 10% or less 

exhibit colour specivity-in keeping with tests showing a degradation of colour 

perception compared to luminance perception [166].  The cells are retinotopically 

organised: movement along this section of the cortex represents a similar movement 

along the surface of the retina.  In the periphery the receptive field topography is 

coarser, with the receptive fields being larger in area.  This physiological analysis 

indicates that two major functions of the cortex are contour analysis and binocular 

convergence. 

 

A number of points should be made here.  Firstly, the complex and hypercomplex 

cells are sensitive to certain image features: edges, movement and to a lesser extent 

colour.  The retinotopic arrangement of the receptive fields within the primary visual 

cortex shows that these features are processed in parallel at all locations in the image.  

Assuming that this physiological structure has a direct perceptual correlate, it can be 

inferred that the functional structure of the primary visual cortex supports the 

importance of edges, movement and colour in the human perception of visual 

stimuli.  Any reasonable HVS attention model would need to incorporate these visual 

features. 

 

Figure 2.4 proposes a schematic summary of the physiological contents of the 

primary visual cortex.  The diagram highlights two major pathways that are surmised 

to exist in the higher visual areas. 
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Figure 2.4 An anatomical/perceptual model of the visual cortex.  In this speculative 

model, visual streams within the cortex are identified with specific perceptual 

features.  The anatomical streams are identified using anatomical markers; the 

perceptual properties are associated with the streams by applying the neuron doctrine 

[92]. 

 

The broad division is into MT and V4 areas.  The MT area is considered to be 

primarily associated with motion perception.  The MT area is also characterised as 

being fast, drawing input as it does from the magnocellular pathway from the LGN.  

The V4 area is thought to deal with colour and form perception, and is slower, due to 

it drawing its input from the parvocellular pathway from the LGN.  Due to this 

structural organisation, it can be postulated that the motion and depth features are 

faster to manifest perceptually, and as such, are stronger in attracting attention. 

 

Furthermore, Livingstone and Hubel [92] note the agreement between their 

physiological work and perceptual experiments, that is, the magnocellular pathway 

aids depth perception, with luminance changes being reported as being perceived 

more quickly than hue changes.  They also describe the colour-blind nature of 

motion detection.  As motion is such a strong attractor, it could be inferred that 

luminance is a stronger attractor than hue, with motion being stronger than both.  

They also discuss the previous findings of Gestalt psychologists, where figure 
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ground and illusory borders disappear after the equi-luminance of colours is 

established.  Furthermore, perspective and depth from shading is also removed under 

equiluminance. 

 

They surmise that the magnocellular functionality could form the majority of what is 

required for day to day living in some lower animals.  They go on to state that the 

parvocellular system, which is only well developed in primates, is possibly for the 

perception of much more detailed information, such as form perception.  The 

parvocellular sections are thus a later evolutionary development for the more detailed 

and leisurely analysis of objects, while the simpler magnocellular system is more 

able to quickly detect threats and make depth perception calculations for 

manoeuvres. 

 

Research has also investigated information theoretic aspects of the physiological 

organisation of the early stages of the visual cortex.  Linkser has found that a form of 

weighted synaptic neural network using parameterised weight update techniques 

organises itself into structures exhibiting strikingly similar functionality to that of 

early stages of the HVS [89-91].  From the input layer onwards of the network a 

number of visual cortex structures: centre surround cells, orientation specific cells 

and orientation bands occur in a similar manner to the macaque monkey visual 

cortex.  Linkser observes that this network organisation globally minimises the 

energy levels of each of the simulated synaptic cells.  This value matches results 

obtained for simulated annealing experiments, and seems to indicate the physical 

efficiency of the visual cortex organisation. 

 

Further to this, work by Daugman has developed an image encoding model which 

uses a set of translated, scaled and oriented Gabor wavelets to mimic the orientation 

selective receptors in the HVS [32].  A shortened spatial form of this function is the 

following: 

 

G(x, y) = exp(-  [(x – x0)
2
 

2
 + (y – y0)

2 2
]) exp(-2 i[u0 (x – x0) + v0 (y – y0)])  (2.1) 
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where: 

 

x0, y0 are the x, y coordinate position parameters for the function; 

,  are the scaling parameters; 

u0, v0 are the modulation parameters. 

 

When    there is a further degree of freedom that enables a rotation of the 

function out of the principal axes–not shown here for clarity.  The actual spatial 

shape of the function is shown in Figure 2.5 and in Figure 2.6: 

 

 

Figure 2.5 Example 3D Gabor function plot for a 45 degree oriented Gabor function. 

 

    

Figure 2.6 Examples of oriented Gabor functions rendered as luminance gradients, 

with from left to right 0, 45, 90, 135 degree orientations respectively. 
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These orientation functions are orthogonal to each other, and as such when 

convoluted with an image, encode the data with minimal mutual information 

between each of the functions.  Using this scheme, Daugman has developed an 

efficient neural network encoding system for images, which is able to significantly 

reduce the entropy levels in an example image from a pixel-based high entropy 

representation to a low entropy Gabor representation [32].  As a corollary of this, the 

image can be compressed at varying levels by accessing weights within the Gabor 

wavelet representation.  The representation can thus recover the image at varying 

image qualities from the network, by accessing an internal weighting scheme of the 

Gabor wavelet representation. 

 

This research of Linkser and Daugman gives empirical support to an inherent 

efficiency in the visual cortex transformation of the image data on the retina to 

orientation specific Gabor-like functions.  This may be considered an evolutionary 

adaptation for efficiency of visual tasks in survival scenarios [32].  This efficiency 

capability is discussed in Section 2.2. 

 

Even though some of this cortical organisation is speculative, it does corroborate 

with psychophysical experimental results and lends physiological support to 

importance hierarchies within the set of basic visual features.  Based upon this 

evidence, a simple feature importance hierarchy can be formed with motion at the 

top, followed by luminance and colour.  In addition, psychophysical evidence 

indicates that the luminance-based features, such as motion, are the strongest 

attractors of attention [177].  This final point has repercussions with respects to the 

design of visual attention models, in particular, the relative weighted contributions of 

these features to the visual saliency of a spatial region.  This is discussed further, 

with regards to visual attention, at the end of this chapter in Section 2.4.3. 

2.1.3 The Generation and Execution of Eye Movements 

The physiological systems described previously facilitate the generation of an 

internal mental image.  The human eye must execute a series of movements in order 
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to maintain the stability of this image, so that the viewer has a temporally and 

spatially continuous visual perception of his/her surroundings. 

 

Sharp and Phillips [145], Jacob [76] and Bruce and Green [20] list the following eye 

movements during normal HVS function: 

 

 Convergence is the motion of both eyes relative to each other, usually 

for the generation of a single binocular image. 

 Rolling of the eyes is an involuntary rotational motion around an axis 

passing through the fovea and the pupil, and is used for minor 

correction of the roll caused by head motion when viewing a scene. 

 Saccades are a sudden, rapid (up to 700  per sec.) movement of the 

eyes.  It takes approximately 100-300ms to initiate a saccade, and 

about 30-120ms to complete the saccade (depending upon the angle 

traversed).  These motions are also ballistic, that is, they cannot be 

changed.  The high speed of these saccades thus serves to minimise 

time spent in flight, as most of the time is spent fixating the chosen 

targets [136]. 

 Pursuit motion is a much smoother, slower movement than a saccade, 

and is enacted to maintain the foveal positioning of a moving object.  

Pursuit movements cannot be induced voluntarily, they require a 

moving object within the field of vision. 

 Nystagmus is a pattern of eye movements that occur as a response to 

the turning of the head (acceleration detected by the inner-ear) or the 

viewing of a moving repetitive pattern (the train window 

phenomenon). It consists of a smooth pursuit motion in one direction 

to follow a position in the scene, followed by a fast motion in the 

opposite direction to select a new position; 

 Drift and microsaccades involuntarily occur during fixations, they 

consist of slow drifts followed by very small saccades 

(microsaccades) that apparently have a drift correcting function. 

 Physiological nystagmus is a high-frequency oscillation (tremor) of 

the eye that serves to continuously shift the image on the retina, thus 
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calling fresh retinal receptors into operation.  If an image is artificially 

fixed on the retina, it disappears. This temporal attenuation of the 

input signal is countered by physiological nystagmus, where every 

point of the retinal image is moved the approximate distance between 

two adjacent foveal cones in 0.1 sec.  Physiological nystagmus occurs 

during a fixation period, is involuntary and generally moves the eye 

less than 1 . 

 

Of this list, saccadic eye movements are of special interest.  Their ballistic nature 

indicates the possible existence of a mechanism for the calculation of saccadic eye 

movements.  It is believed that a mechanism in the HVS facilitates the preparation of 

eye saccades to explore the most conspicuous, and therefore potentially important 

areas.  This is considered to be the most effective method for the human visual 

system to explore any natural environment [45].  The ballistic nature of saccadic eye 

movements is simulated in psychological and computational visual attention models 

by calculating a master map of potential fixation locations, where the most 

conspicuous region becomes the next fixation region in the sequence of eye 

movements [155]. 

2.2 PSYCHOLOGICAL THEORIES OF VISUAL ATTENTION 

Much psychovisual and psychophysical experimentation has been performed to 

elicit, from a perceptual standpoint, the image features that are important to humans.  

As a result, a number of models have been developed that seek to explain visual 

feature interrelationships, and their effects on viewer eye movements. 

 

The human brain is limited in the amount of processing resources it can apply to the 

visual perception of its surroundings.  As explained in previous sections, the acuity 

of the visual field degrades from high levels in the central foveal region to coarser 

levels in the visual field periphery.  The centre of attention is where the object 

recognition capabilities of the HVS are at their optimum.  Therefore, a search pattern 

is enacted when a human is presented with a complex scene, in order to bring the 

fovea to bear upon regions in the scene being viewed.  Research has shown that these 

eye movements are attracted to areas of the screen that contain large amounts of 
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relevant information [21, 144, 184].  This search pattern enables these informative 

areas of the scene to be displayed across the fovea, to facilitate object identification 

processes. 

 

The process of moving the focus of attention has been likened to a searchlight with 

an adjustable beam, or a zoom lens [48].  The searchlight is applied after a general 

impression has been gained of the scene.  This general impression is generated by an 

early preattentive stage of the HVS, and is applied to the whole visual field as a 

parallel process.  Soon after, the focus of visual attention is applied serially, to 

identify the objects in the most important areas of the scene [48]. 

2.2.1 Parallel and Serial Stages of Vision 

Since the sixties, human vision researchers have divided human vision processes into 

early parallel, and later serial stages [113].  This has been concluded from visual 

experiments that involve search and identification of targets under controlled 

conditions.  For example, a search task may be to find the line oriented at 45  in the 

example on the left in Figure 2.7.  Note the ease of this search task.  Whereas a 

similar search task on the right in Figure 2.7 is more difficult, due to the 

heterogeneous nature of the background distractors.  The first search task was 

relatively easy, due to the visual phenomenon called pop-out.  This pop-out occurs 

due to large differences between the visual features that make up the target, and its 

surrounding distractors. 

 

Physiological correlates for this phenomenon are also indicated in cellular recordings 

of the cat striate cortex (These pop-out cells differ from the edge detectors uncovered 

by the work of Hubel and Weisel [65]).  These results are expected to be analogous 

to human physiology, due to behavioural experiments indicating that cats perceive 

pop-out in a similar manner to primates [81]. 
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Figure 2.7 Examples of a parallel search task (left) and serial search task (right). 

 

It is believed that experiments similar to the one presented in Figure 2.7 indicate two 

preattentive and attentive processes working within the application of visual search 

by the HVS.  It is believed that an early preattentive stage of vision processes the 

scene for large feature differences and causes certain objects to pop-out.  Research 

into the human visual system indicates that this preattentive stage has three main 

attributes [154]: 

 

 Preattentive processing is unlimited in capacity, reaction time is 

unaffected by the number of distractors in an appropriate visual search 

with easily detectable targets. 

 Preattentive processing is spatially parallel, operating simultaneously 

at various locations across the visual field.  Earlier sections of this 

chapter detailed physiological constructs that are sensitive to scene 

features, for example, edges and motion.  It is believed that the 

preattentive stage of human vision processes the scene in parallel for 

these features, alerting later stages of the HVS to their existence for 

further processing. 

 Preattentive processing operates independently of conscious control.  

However, it is admitted that the interaction between preattentive and 

attentive processes has not been resolved fully. 

 

The latter search task in Figure 2.7 was much harder, due to the heterogeneity of the 

surrounding distractors.  This heterogeneity caused only a small spatial difference 

between the target and distractor visual features, inhibiting the ability of the 

preattentive process to highlight the target.  The target in this case is a conjunction of 



 

Chapter 2 

24 

a number of features, and therefore requires top-down processes to aid the search for 

the target.  Therefore, a slower serial process is executed, where the focus of 

attention is moved to every object in the scene, thereby applying the hyperacuity of 

the fovea to the task of finding the target matching the required features. 

 

On the basis of results from visual search experimentation, similar to the examples in 

Figure 2.7, psychophysical researchers have categorised visual search tasks as 

parallel or serial [158].  Parallel search tasks are characterised by a relatively small 

response time gradient, with respect to the number of surrounding distractors.  An 

example of a graph for a parallel search task is shown in Figure 2.8.  Serial search 

tasks are characterised by a monotonically steep gradient, with respect to the number 

of surrounding distractors.  A serial graph example is also shown in Figure 2.8. 

 

The flat response times of parallel search tasks and the monotonic increasing 

response times of the serial search tasks are considered to be a definite border 

between the two categories.  From the search dichotomy, it is then argued that there 

must be a similarly clear demarcation between the parallel preattentive and serial 

attentive stages of human vision [158] 

 

However, some researchers disagree with this categorisation.  Wolfe describes the 

strict dichotomy of parallel and serial stages of human vision as being a “useful, but 

potentially dangerous fiction” [177]. 

 

 

Figure 2.8 Examples of response time graphs for parallel search tasks (left) and serial 

search tasks (right). 

 

Wolfe offers four reasons why he believes this strict dichotomy is incorrect: 
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 Inferring mechanisms from slopes is not that easy.  The patterns of 

results can be produced by a variety of limited-capacity parallel 

methods, even mimicking the 2:1 slope that is considered 

characteristic of serial search. 

 Strict serial search involves a number of unfounded assumptions.  

Firstly, a 2:1 serial slope prediction assumes with no-target searches 

that each potential target is only visited once.  Secondly, they do not 

allow for errors, where the search is terminated before looking at all 

the possible targets.  It is also assumed that only one item is checked 

at a time. 

 The models assume a fixed dwell time for each item. 

 

There is also a continuum of response times between the so-called lower pre-

attentive stage to the higher-level object recognition tasks.  There is no indication of 

a point where the graph of number of distractors  response times jumps discretely 

from having a flat to steep gradient.  With these points in mind, the only general rule 

that can be gained from these graphs is that an increase in target/distractor similarity 

produces a concomitant increase in search times. 

 

Wolfe [177] proposes a different nomenclature when describing HVS search 

mechanisms.  He suggests the use of the terms efficient search and inefficient search.  

The terms are deliberately general in scope, to allow description of the continuous 

relationship between targets and distractors.  This continuous relationship does not 

suggest the complete abandonment of the concepts of parallel and serial searches.  

What it does mean is that there is no evidence of a clean break between the two 

stages.  The interconnections between visual units situated in the brain [92, 133] infer 

a similar continuous relationship.  It would seem to contradict the physical structure 

of the brain to have a neat border between these two stages of human vision, and it is 

therefore likely that a more complex relationship exists between the two. 
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A number of psychovisual theories and models have been postulated to explain the 

relationship between these two stages of human vision and how eye movements are 

generated.  Visual models seek to simulate two major influences on visual attention: 

bottom-up and top-down.  Bottom-up influences consider visual perception to be a 

stimulus driven amalgam of lower-level scene components [158].  Top-down 

influences refer to the perception of the whole scene preceding that of its separate 

parts, including conscious task-oriented influences [82]. 

 

Much work has been carried out into developing bottom-up theories of visual 

attention, with two of the more popular theories being Feature Integration Theory 

(FIT) [155-159] and the Guided Search Model (GSM) [25, 176, 177, 179, 180].  FIT 

and Guided Search consider the early preattentive stage to be sensitive to low-level 

visual feature differences.  These feature sensitive processes generate a mastermap of 

possible feature difference locations to be analysed by later attentive stages.  This 

mastermap is then processed by the attentive stages of vision to move the fovea to 

informative scene areas.  GSM improves on FIT by incorporating top-down 

influences into the process of segmenting the scene into potential targets for later 

examination by attentive processes. 

 

Research has also uncovered influences on the deployment of eye movements and 

the response time of visual search experiments.  These again can be broadly 

categorised as top-down and bottom-up [133].  Bottom-up influences emerge from 

the nature of the scene and its visual feature contents, while the top-down influences 

issue from higher cognitive areas of the brain [44], for example, previous 

experiences, visual search task nature etc. 

 

In the light of FIT, there has been a large body of research devoted to uncovering a 

taxonomy of low-level scene features that are processed by the preattentive stage of 

human vision.  As has been shown in Section 2.1 of this chapter, physiological 

evidence for these feature detectors has been found, but psychological 

experimentation has found a richer set of features which can be preattentively 

perceived: colour, motion, edges, contrast, curvature, depth cues and possibly even 

learnt features.  Some work has been carried out on quantifying the effects of these 
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features upon visual search strategies used by the HVS.  Characteristics explored so 

far include: 

 

 global effects of feature differences upon local features differences 

[122, 123]; 

 surprisal probability, postulated to model the attention attracting 

capability of image changes [144]; 

 relative feature weights [128]; 

 interference effects have been noticed between luminance and hue, 

within the phenomenon of preattentive texture segmentation [22, 23]. 

 

What is lacking is a more complete quantification of feature interrelationships.  

Quantifying these visual feature interactions would facilitate the creation of 

computational FIT models, which would more closely simulate preattentive 

processes in human vision. 

2.3 PSYCHOLOGICAL MODELS OF HUMAN VISUAL 
ATTENTION 

There are two major influences in HVS models of visual attention; bottom-up and 

top-down [133].  The bottom-up vision model states that a perceived image is 

sequentially formed by building up individual features of the image until the entire 

scene is recognised [82].  With the top-down approach an immediate overall 

impression, a gestalt of the entire scene, is initially formed with the individual 

features filled in later [82]. 

 

Top-down models, for example, Scan Path Theory, have been proposed to explain 

eye movements in a natural scene [120, 121, 148-150].  Scan Path Theory proposes 

that eye movements in recognition tasks are stored internally as a loop of alternating 

features and eye movement instructions, drawn from the objects in the scene.  It is 

believed that eye movements are closely coupled to the immediate task at hand 

[135].  For example, in natural language processing there has been recent evidence of 

eye-movements and fixations reflecting the instantaneous parsing of a spoken 

sentence [153].  Gale [48] notes that the scan path concept does have its critics.  
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These researchers recognise the existence of scan paths, but do not attribute any 

functionality to them. 

 

The critics of bottom-up models suggest that the processing power needed to bind 

low-level features together for object recognition would be prohibitive [82].  A 

number of discoveries suggest otherwise.  Firstly, the feature detectors in early stages 

of human vision indicate the detection of simple features at a preattentive stage in the 

HVS [65], [82].  Secondly, there is physiological and psychological evidence for 

object recognition processes being optimum in the centre of vision in the fovea, due 

to the high visual acuity available [133].  This allows the early feature detection stage 

to be low in physiological complexity, leaving more of the complexity that is related 

to high levels of visual acuity in the fovea, a relatively small region of the visual 

field.  Support for the bottom-up theories also comes from the successful 

implementation of computational preattentive vision systems [109, 116, 160], thus 

refuting criticisms of the prohibitive computational complexity of such systems. 

 

Upon reflection, the general consensus is that the top-down and bottom-up processes 

seem to interact in a complex task specific manner to influence visual search [44, 82, 

183].  It would therefore be wise to consider the HVS to be an amalgam of such 

bottom-up and top-down processes in any future research.  However, this project will 

concentrate on analysing and developing a model of the bottom-up components of 

human vision, in particular, bottom-up visual attention.  This is due to the general, 

nontask-oriented nature of the application area intended for the visual attention 

model. 

2.3.1 Feature Integration Theory 

One of the first and more popular bottom-up theories about human vision is Feature 

Integration Theory (FIT) [155-159].  FIT forms the basis for a number of the 

computational models of human vision now being developed [107-109, 116-118, 

160].  A schematic diagram of this theory is shown in Figure 2.9. 
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Figure 2.9 Diagram of Feature Integration Theory illustrating an example of pop-out 

with the black circle being unique in the hue feature dimension [53] 

 

FIT postulates that features in a scene are registered early, automatically and in 

parallel across the visual field, while objects are identified separately and only at a 

later stage, which requires focused attention [158].  Groups of features, which are 

identified by functionally separate perceptual systems, are called feature dimensions, 

for example, colour and orientation.  A feature is considered to take a particular 

value within this dimension, for example, red within the dimension of colour [158].  

Focal attention utilises the increased visual acuity available within the fovea to 

integrate the features of the object for recognition purposes. 

 

FIT considers that only differences in single features are processed preattentively.  

Conjunctions of feature differences are processed by the serial attentive mechanism.  

In a conjunction search the task becomes a top-down conscious search, due to the 

lack of target pop-out to guide the attention mechanism.  The following experimental 

evidence supports the FIT model of visual attention: 

 

 In visual search, single feature differences are detectable 

preattentively (for example, a red line amongst blue lines), while 
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conjunctions (for example, a 45 degree red line amongst 45 degree 

blue and horizontal reds) require focal attention to find. 

 Preattentive texture segregation occurs due to spatial discontinuities in 

separable features and not conjunctions of features. 

 Illusory conjunctions, predicted by FIT, are caused by visual overload 

or brief viewing.  In the case of object recognition, for example, 

mistaken identification can occur due to lack of viewing time. 

 Identity and location differentiation is indicated by the ability to detect 

the presence of feature differences without necessarily knowing the 

location, although it is easy to eventually home in on the location of 

the single feature differences.  Conjunctions usually require attention 

to be identified. 

 Unattended stimuli are registered at only the feature level.  The 

interference they provide only comes from single feature differences, 

and not from conjunctions of a number of features. 

 Anecdotal medical evidence is present in people with visual agnosia.  

Visual agnosia causes people to perceive objects as a number of 

separate features, finding it hard, or even impossible, to combine these 

features into a single object for recognition purposes [158]. 

 

The attentive feature integration process is considered to work in two ways.  In the 

majority of cases the integration process occurs through the application of focal 

attention to identify the object.  Otherwise, it is thought that top-down conscious 

processes are applied when the focus of attention cannot be deployed, due to 

overloading or brief exposure.  In the latter, the rate of illusory conjunctions is high, 

but in familiar environments this can still be a useful technique for recognition.  For 

example, during a game of sport a ball can be recognised more efficiently with this 

approach, due to the likelihood of a moving target being the ball in this 

environmental context. 

 

Treisman has modified her feature integration theory to incorporate a separate map 

for each feature within each dimension, for example, red and green colour feature 

maps, or vertical and horizontal orientation feature maps.  “Mutual inhibition within 
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each of these maps lessens the activation for elements that share the same feature 

value with many other elements” [157].  This allows some feature conjunction 

searches to exhibit the efficient parallel processing characteristics of single feature 

difference searches [159].  It is postulated that this inhibition of distractors facilitates 

the discarding of distractors in visual search tasks, where the target is known, 

allowing top-down influence on the segmentation of the visual field [163]. 

 

The FIT model, attractive in its simplicity and application to a wide range of visual 

input tasks, fails to explain a number of human vision phenomena.  The main 

problem is using FIT to explain the speed with which humans are able to perceive 

natural visual phenomena.  These natural scenes are made up of objects with 

conjunctions of many features, and yet we are able to perceive many objects at near 

parallel search speeds.  Wolfe has modified and extended FIT to incorporate 

mechanisms to explain these contradictory visual search results, naming it the 

Guided Search Model (GSM)[179]. 

2.3.2 Guided Search 

Wolfe [25, 176-181] has produced evidence of visual search tasks involving 

conjunctions that indicate the subjects were able to preattentively reduce the search 

to objects of single colours or shape.  FIT would expect a viewer to be reduced to 

serial search in these circumstances.  Wolfe provides a modification to FIT to 

account for these differences. 

 

GSM differs by its modelling of interactions carried out between the early 

preattentive stage of vision and the later serial stage.  This interaction allows for 

conjunction searches to be accomplished at a faster speed than the serial search 

suggested by FIT.  This is due to the parallel stage guiding the serial stage by 

grouping the scene into areas of similar colour or lines of similar orientation.  In the 

GSM the parallel stage provides more detailed processing than suggested in FIT, by 

processing each feature dimension to highlight areas that may contain the target.  

This information is not perfect, so each search task is not considered parallel, but the 

division of the screen into like feature dimensions does produce more efficient serial 

search tasks.  This partially explains the almost continuous change between parallel 
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and serial search tasks noted in Section 2.2.1.  It should be noted that this model 

addition applies to directed viewing tasks, with prescribed targets consisting of 

feature conjunctions.  However, it is worth analysing, due to its insight into possible 

models of preattentive feature processes for other viewing scenarios. 

 

For each feature dimension the parallel stage identifies those elements that are 

closest to the target value for that dimension, and that differ from the other elements 

in the display.  Information from each feature dimension is summed for each element 

to produce an overall activation map, which has a value for each location 

representing the likelihood that the position is a target.  There is also some 

physiological evidence for an activation map in the HVS that registers particularly 

salient regions of the viewing field [54].  When the serial stage is ready to start 

processing a new element, it chooses the one with the highest activation in the 

activation map.  Only the serial stage is capable of initiating a response.  Until the 

target is processed by the serial stage, no response will be made.  Once an element 

has been processed by the serial stage and found to be a non-target, it is eliminated 

from further consideration. 

 

Figure 2.10 depicts how the GSM accounts for efficient conjunction search tasks.  

The parallel stage has partitioned the scene into areas based on colour and 

orientation.  This is summed together to form an activation map providing 

information to the serial search stage on likely locations to investigate for targets.  

This improves the efficiency of the search task, but not to the level of a parallel 

search task. 

 

A simulation of the GSM has been tested, producing satisfactory results for the 

vision search task categories of feature search, conjunction search and triple 

conjunction search.  The guided search model produces similar response times to 

humans performing the same tasks, in the process exceeding the capabilities of FIT 

[179]. 
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Figure 2.10 Example of explanation by Guided Search for near parallel conjunction 

searches.  The top-down feature maps contain local activations for specific orientation 

and colour features.  These are summed together to produce the final activation map, 

guiding the viewer to the conjunction target [25]. 

 

The GSM also accounts for subject to subject variations with the addition of random 

noise to the parallel stage.  This is normally distributed across the final activation 

map, while the variance is a subject by subject based parameter.  This reduces the 

reliability of the parallel stage, leaving the decision for movement to the serial stage, 

mimicking some of the imperfections in the decision making process of the parallel 

stage. 

 

Guided Search seeks to account for central tendencies of eye movements in visual 

search by introducing a simulated fovea by a complex log transformation of centre 

surround inputs to mimic the V1 area of the visual cortex.  This provides a basis for 

eye movement generation in the GSM, although they state that the model is quite far 

from mimicking eye movements with real images [180]. 
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However, guided search cannot explain the factors of distance and search 

asymmetries arising from experimentation in visual search.  The spatial relationships 

within a scene are important, as nearby objects have more of an effect on each other 

than far away objects.  Search asymmetries have also been discovered, for example, 

it is harder to find a short line surrounded by long lines than a long line surrounded 

by short lines.  These asymmetries have yet to be accounted for by both FIT and 

GSM. 

2.3.3 Texton Theory 

Another popular human vision model is Texton Theory, proposed by Julesz [77-80].  

His research has dealt with the ability of the HVS to instantaneously segregate 

dissimilar textures. 

 

Three heuristics define the main structure of Texton Theory: 

 

 Human vision operates in two distinct modes of preattentive and 

attentive vision (the distinct separation of parallel and serial stages of 

human vision is a moot point, see Section 2.2.1). 

 The preattentive stage of the HVS is sensitive to texture components 

called textons.  These textons consist of elongated blobs (rectangles, 

ellipses, line segments with specific colour, angular orientations, 

widths and lengths), line-segment terminators and crossings of line 

segments. 

 Preattentive vision directs attentive vision to the locations where 

differences in the density (number) of textons occur, but ignores the 

positional relationships between textons. 

 

Physiological support for elongated blobs being a texton comes from evidence that 

monkeys have retinal areas specifically for the recognition of elongated blobs [65], 

[80].  Julesz concedes that the texton elongated blobs and the blob receptors 

discovered in the retina of monkeys are not isomorphic.  This is due, in part, to the 

psychological nature of this work, his findings do not necessarily map directly to 

neurophysiological discoveries. 
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Experiments performed by Julesz show that humans are able to preattentively (within 

150msec [79]) discriminate textures, if there is a difference in the textons, or a 

difference in the first order statistic of the texture.  The first order statistic is simply 

the probability of a randomly thrown dot landing on or off an arbitrary texture unit.  

This translates to, for example, a difference in the size of the texture units. 

 

 

Figure 2.11 Examples of a preattentively separable texture with different first-order 

statistics and differences in element size (left), and a preattentively distinguishable 

texture with different second-order statistics and different element orientations (right) 

[77]. 

 

Effortless texture recognition can occur with the same first order statistics, but 

different second order statistics.  The second order statistic is the probability of a 

2gon (dipole or needle) being randomly thrown on the texture and having one or both 

of its ends land on or off a texture unit.  For example, this may be a similarity in size, 

but a difference in orientation of the texture units (refer to the diagram on the right in 

Figure 2.11). 

 

Textures with differences in third or higher order statistics, having same first and 

second order statistics, are not processed by the pre-attentive stage.  These texture 

differences are processed by the serial attentive stage. 

 

Julesz proposes that the output of local feature analysers is linearly averaged over the 

whole image.  This reasoning comes from the observation that areas covered by 

rectangles containing only single Xs, when linearly averaged, have the same 
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contribution as rectangles containing zero or two Xs when these occur with 0.5 

probability and one assumes that the simple cortical units are themselves linear [77]. 

 

 

Figure 2.12 A preattentively indistinguishable texture pair with identical second-

order, but different third and higher-order statistics composed of randomly thrown 

similar micropatterns and their mirror images [77]. 

 

Related to the linear averaging is the observation that only the differences in the 

densities of the textons cause pre-attentive texture division.  The positional 

relationships of the textons remain unnoticed in the pre-attentive phase [80]. 

 

Texton Theory provides a simple and robust statistical model for the preattentive 

segregation of texture areas.  Its constructs are similar to FIT and Guided Search, 

with a parallel stage providing guidance to a later serial stage.  The fundamental 

textons are similar to the fundamental features in FIT [158] and Guided Search 

[179].  It has to be noted, never the less, that it is restricted in its applications due to 

the artificial nature of the textures, and that few, if any, computational models of 

human vision use Texton Theory as a basis.  However, some of the general principles 

of texture density may still benefit a visual attention model [152].  This is due to the 

possibility of developing computationally efficient methods for ascertaining texture 

density using measures other than the textons described in the work of Julesz. 
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2.3.4 Stimulus Similarity 

Duncan and Humphreys [38] suggest a general theory based upon target/non-target 

similarity, whereby search efficiency decreases with increasing target/non-target 

similarity and increases with decreasing target/non-target similarity.  For example, a 

blue target circle will stand out against a background of red non-target circles.  

However, if the target circle is gradually turned to red, then the efficiency of 

searching for the target circle progressively decreases.  Stimulus similarity theory 

contains three major components: 

 

 a preattentive parallel stage of perceptual description, producing a 

structured hierarchical representation of the input across the visual 

field at several levels of spatial scale; 

 a process of selection by matching input descriptions against an 

internal template of the information needed in current behaviour; 

 a process entering selected information into Visual Short-Term 

Memory (VSTM) through a relatively weighted competitive process. 

 

Their theory explains some anomalous results from conjunction search 

experimentation, not explained by FIT, drawn from their own experimentation and a 

review of visual search literature.  They state that the evidence indicates feature 

search and conjunction search are essentially the same process (similar to 

conclusions by Wolfe [177]).  It has to be noted that the complexity of the features in 

the preattentive stage of Similarity Theory precludes it from being used in entirety 

for the computational modelling of visual attention. 

2.3.5 Comparison of FIT, GSM, Texton Theory and Similarity Theory 

FIT [158] is the theoretical basis for a number of computational vision models [50, 

107, 116].  On the other hand, the GSM [177] is similar, and has been implemented 

on a computer and tested with simple psychophysical experimental stimuli.  Yet the 

GSM is not mentioned nearly as often as a basis for vision models, possibly due to its 

inclusion of top-down factors, which are hard to model in many computing 

application areas.  The major relevant difference of GSM to FIT is the additive effect 
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of the feature maps to the saliency map, which produces a high excitation level 

where there is a possible target, thus explaining some fast feature conjunction 

searches. 

 

Treisman offers more evidence for her distractor feature map inhibition from 

experimentation and neurophysiology [159].  She does note, however, that the 

evidence in her favour is thin.  Still, FIT remains the leading psychological theory for 

visual search/attention. 

 

Although the Texton Theory model neatly describes texture segmentation, it is of 

little utility due to the incompatibility of Textons [79] as visual features with the 

features used in this project.  While the complexity of the similarity model [38] of 

preattentive structures is too loosely defined for application to this project, their 

general rule of target and distractor similarity is a useful qualitative description of the 

pop-out of certain visual field regions, due to the closeness of the features of a region 

to its surrounds.  This qualitative rule will be applied to the different feature 

dimensions considered in this project. 

 

The feature processing that occurs in the early stages of both Guided Search and FIT 

is relevant to the project, as these principles can be exploited to calculate the visual 

importance of the regions in a rendered scene by processing the differences in visual 

attributes of a scene description, for example, colour, size etc.  Furthermore, the 

concept of a master activation map summing feature differences has definite utility 

within computational modelling applications [180].  This activation map, or 

importance map as it has also been termed [97], represents the level of visual 

saliency of regions within the image.  Therefore, the activation map may be used to 

modulate directly the spatial quality of an image in progressive rendering techniques.  

This concept is developed more fully in Chapter 3, Chapter 4 and Chapter 5. 

2.4 INFLUENCES ON EYE MOVEMENTS 

Regardless of the viewing conditions, experimentation has uncovered strong 

correlations between the eye movements of viewers while viewing natural images 
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[21, 184].  From this research, general observations can be made about the viewing 

of natural images [126]: 

 

 The distribution of fixations over a viewed image is not even, but is 

skewed towards particular regions within an image.  The regions 

fixated are correlated strongly across different viewers, within similar 

viewing conditions and task scenarios for both still [21, 96, 184] and 

motion images [151, 174].  This correlation is especially strong for 

motion images, with up to 90% correlation between viewers of motion 

videos, with the regions fixated being only 6% of the area of the 

image [151]. 

 Viewers when freely regarding images tend to regard certain 

informative, different or unusual regions of an image due to cognitive 

reasons [2] (for example incongruous objects) [93], or by the presence 

of particularly informative contour features [8, 96].  In general, these 

regions stand out from the background of the image due to contrasting 

features, and therefore attract the attention of the viewer.  Regions 

may also attract attention due to the presence of high edge 

concentrations, indicating detailed information about the scene [144]. 

 With an unlimited viewing time, certain salient regions are repeatedly 

regarded by the viewer [149, 184].  In addition, research indicates that 

there is a strong tendency for a person to regard the interesting regions 

of an image in the same order, through repeated viewing.  These 

observations form the basis of Scan Path Theory [120, 121].  

However, this is only for a particular viewer, the correlation of 

fixation ordering is not so strong across different viewers, despite the 

strong correlation of overall fixation locations. 

 

These fixations on regions within a viewed image have a more complex relationship 

to the application of visual attention than would be expected.  Researchers have 

discovered that people are able to regard stimuli in the periphery without orienting 

their eye to the stimuli [132].  This phenomenon is known as covert attention, and is 

characterised by having less of an ability to perform search tasks due to the degraded 
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acuity in the peripheral regions of the HVS.  When searching natural scenes there is a 

need for high levels of visual acuity to recognised detailed objects, thus requiring 

movement and fixation of the fovea upon objects in the viewing field. 

 

The movement of the eye to attend to an object is known as overt attention.  Related 

to overt attention is the concept known as the mandatory shift hypothesis.  This 

hypothesis states that while attention may move without a related eye movement, an 

eye movement will always be preceded by a relocation of visual attention [63, 147]. 

 

From the evidence presented, it can be concluded that the correlation of eye 

movements across different viewers lends support for a similar correlation of visual 

attention across different viewers regarding the same images.  Therefore, it is 

reasonable to also assume support for comparable fixation generation processes 

across viewers.  In order to model these processes effectively, there is a need to 

identify more precisely the various influences on eye movements.  Broadly speaking, 

these can be divided into top-down and bottom-up categories. 

 

Top-down influences are products of higher order cognitive systems in the brain, and 

tend to be under attentional control.  Bottom-up influences are reflexive responses to 

the image being examined, and tend not to be under attentional control [133].  As has 

been stated before, the top-down and bottom-up systems tend to interact in a 

complex manner, as deduced from the continuity of search task response times from 

parallel to serial [177].  Yantis and Jonides have evidence that the attention grabbing 

effect of peripheral feature onsets depends on the amount of top-down focus exerted 

on other areas of the image.  The more the person is concentrating on another area of 

the scene, the more likely the onset of a stimulus will be ignored, showing that 

conscious top-down control of reactions to feature-based stimuli do occur [183].  An 

example of this interaction is the process of searching for a particular person in a 

crowd.  The top-down processes visualise the characteristics to look for, this in turn 

influences the bottom-up processes which alert a person to some of these features 

[43].  An example of this is the searching of a crowd of people for a person who is 

wearing a red peaked cap.  This goes some of the way to explaining the ability of 

humans to perform efficient visual search in highly complex environments. 
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It must be noted however, that the discrimination capabilities of the HVS change 

depending on the scene being presented.  Recent work has uncovered the ability of 

the HVS to discriminate the presence of quite complex objects within a natural 

scene, without the application of attention [88].  It is noted that this does not hold for 

the simple scenes used in psychophysical tests, for example, discrimination between 

different alphabetic letters.  From experiments, it appears that the HVS can 

categorise a natural scene within 27msec, which is easily under the time taken to 

orient attention.  Control experiments also established that the effects were not 

induced by training, and that the effect does not work with the simple stimuli of 

psychophysical experiments. 

 

These results are explained by a number of hypotheses.  First, the HVS is given, at a 

very early stage, a gist of the contents of the scene [88]–also supported by other 

research [177], and referred to later on in this thesis.  This gist is used by the HVS to 

very quickly understand the presented scene.  Secondly, it has been noted that the 

visual cortex responds more strongly and more efficiently to the presentation of a 

natural scene than when presented with one of the artificial scenes used in 

psychophysical research [17].  Thus, the visual cortex is possibly organised for 

efficient understanding of the sparse informative components of natural scenes as 

compared to artificial scenes.  Overall this indicates that attention is not necessarily 

the gate to higher levels of consciousness, and that, in the case of natural scenes, the 

later object recognition systems of the human brain have some access to the visual 

field without the use of attention.  This indicates a more complex relationship 

between the attentive and non-attentive components of the HVS than has been 

previously thought. 

2.4.1 Top-down Influences 

As stated before, these influences are generally attentional and can be related to task 

nature, previous experience, context effects and physiological effects. 

 

Yarbus [184] researched various aspects of eye movements during the viewing of 

stationary images.  He noted that subjects would regard only certain regions of an 
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image, despite having an unrestricted viewing time.  Experiments showed that eye 

movements were remarkably consistent across viewers, especially when the context 

and the viewing task were the same.  Results also indicated that visual attention was 

drawn towards humans in the test images, especially faces and hands.  Yarbus 

believed that this was due to the faces containing useful information about the 

context of the image, for example, the emotional state of the character.  The horizon 

in an image was shown to be another strong attractor, possibly due to training effects 

induced by humans constantly having a surrounding horizon when outdoors, as 

useful information is often present along horizons. 

 

However, the eye movements of the viewer were modified by the nature of the 

viewing task, with the viewer concentrating on regions that provided relevant 

information for the task at hand.  During the viewing of an image titled An 

Unexpected Visitor (see Figure 2.13), the viewer was set the task of discerning the 

material circumstances of the people in the image.  For this task the viewer took 

particular notice of the clothing of the women and the furniture in the room, whereas 

for the task of estimating the age of the people in the scene, the viewer concentrated 

on the faces of the people (see Figure 2.14) [184]. 

 

 

Figure 2.13 An Unexpected Visitor, a test image used by Yarbus in his eye movement 

experiments [184]. 
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Figure 2.14 An example of the eye movements of one subject during free 

(uninstructed) viewing of the image in Figure 2.13 for three minutes [184].  Note the 

concentration of fixations upon the faces of the major people in the scene, as 

highlighted by the arrows. 

 

Senders supports these task related conclusions, stating that the movements of the 

point of regard could be deterministic or statistical [144].  Deterministic processes 

look at the place with the greatest uncertainty, whereas statistical processes choose 

the place to look with a probability proportional to the level of uncertainty presented 

there.  This uncertainty is essentially related to the task at hand.  For example, a 

fighter pilot will examine different instruments depending upon whether he/she is 

landing, taking off or pursuing an enemy. 

 

Previous experiences become a major factor in HVS search patterns. Gale notes that 

experienced industrial inspectors will fixate their gaze automatically to areas where 

targets are most likely to occur [48].  He later states that experienced radiologists will 

enact a wider search pattern than a naive subject.  Giving pre-task instructions to the 

viewer can also induce an effect.  The search pattern is modified to include likely 

locations for objects relevant to the task.  Senders notes that with more training a 

subject will enact more fixations on a similar scene, with less time being spent on 

each fixation, indicating less analysis of scene regions due to prior knowledge of 

their contents [143]. 

 

Context effects are related to previous experience.  Researchers have performed 

experiments in which incongruous items are inserted into an image, such as a pay 

 
  Eye Fixations on Heads 
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phone in a lounge room scene.  These items were found to influence eye movements, 

due to top-down processes being surprised at the appearance of the incongruous 

object [2, 8]. 

 

Some success has been achieved in modelling task-related top-down search factors 

[121, 135, 144].  It has to be said that some of the above top-down effects are 

difficult to quantify in any computational vision model, but this does not diminish 

their effect upon human eye movements.  For example, the experience factor has 

repercussions for computational vision models.  As the user grows used to the 

environment, they may change their search method and diverge from a programmed 

average search model.  Many of these top-down issues will only be effectively dealt 

with when science has a more effective understanding of higher-order brain 

processes. 

 

Senders generalises the top-down influences on the patterns of eye movements with 

the statement, …the eye moves from one POR (Point Of Regard) to another in order 

to minimise the total relevant uncertainty of the observer about the scene [144].  

From this statement it can be inferred that top-down modelling of visual attention 

should incorporate task-oriented components to mimic the visual search behaviour of 

human viewers. 

2.4.2 Bottom-up Influences 

Bottom-up influences are relatively easier to model than top-down influences, as 

they are based upon better understood physiological mechanisms in the HVS.  

Bottom-up influences proceed from the image presented to the HVS.  They include 

such phenomena as priming, inhibition of return and feature-based pop-out. 

 

Maljkovic and Nakayama describe a process of subconscious location priming that 

occurs with colour and spatial frequency features [101].  These features can cause an 

involuntary fixation if the feature has caused pop-out previously at the same location.  

This effect is thought to last for 30 seconds as a decaying memory of that pop-out 

inducing feature. 
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Inhibition of return subconsciously occurs when a stimulus attracts attention to a 

particular location.  The HVS will tend to fixate the location once, and then ignore 

the stimulus until it changes.  Kwak and Egeth [85] in their experimentation note that 

inhibition of return occurs only with location, no other feature will cause this 

phenomenon to occur. 

 

The pop-out phenomenon occurs in the preattentive stage of the HVS, through a 

large local difference in image features [123].  Researchers in the fields of 

psychology and physiology have defined a group of image features that facilitate this 

pop-out phenomenon [65, 79, 92, 101, 122, 123, 155, 179, 180].  Wolfe, in his 

review of vision research, distils the list of fundamental preattentive features to: 

colour, orientation, curvature, vernier offset, size, motion, shape, depth cues and 

gloss [177].  He suggests that this list is by no means complete and that some of the 

features are still questionable. 

 

What many researchers in the field agree on is the lack of effective models to 

quantify the influences of preattentive features and their interrelationships [127, 144, 

177].  Some work has been carried out on the quantification of feature pop-out using 

subjective evaluation of the pop-out level against a varying background [122, 123], 

and other probabilistic models have been proposed to explain top-down effects [144].  

However, present computational models of preattentive vision use arbitrary formula 

to quantify the contribution of each image feature [58, 99, 116, 126].  Computational 

preattentive feature models will be more thoroughly investigated in Chapter 3.  

Despite the lack of quantitative models, there is a body of descriptive knowledge 

characterising the attentional effects of visual features.  This descriptive information 

for edges, hue, depth, size, location and motion is now explained. 

 

Edges are considered one of the fundamental features within an image [103].  With 

regards to eye movements, an absolute high density of edges attracts attention, while 

a low density of edges does not attract attention as much [144].  Another major 

influence is the sharpness of the edges.  Sharper edges are more likely to attract 

visual attention than blurred edges [144].  Experiments have also shown that pop-out 

occurs with a local difference in orientation between the edge(s) and the local 



 

Chapter 2 

46 

surrounding edges, modulated by the variability of the orientation in the background 

[122, 123, 177].  Pop-out also occurs due to the uniqueness of the target amongst 

distractors [177]. 

 

Hue pop-out occurs with a local difference in hue between one region and another.  

This is either suppressed or enhanced by the variability of the hues in the background 

[122, 123].  That is, if the hue difference is dissimilar to hue differences in other 

regions, then the region stands out strongly.  If the region hue difference is similar to 

those surrounding it, then the mutual inhibition incurred by the other differences 

suppress the pop-out of the region [177].  Opponent colours are considered to cause 

the highest contrast, for example, red against green and blue against yellow, as well 

as complementary colours, for example, orange and blue [33, 69].  However, these 

results must be approached with caution, as they have not been rigorously tested 

under laboratory conditions.  It is sufficient to say, though, that hue category 

differences do aid the phenomenon of pop-out. 

 

With luminance, some models suggest a pop-out influence similar to colour [177].  

They also suggest that white and black are achromatic opponent colours, so they 

exhibit a high contrast value when placed next to each other [33, 69]. 

 

The perception of depth is caused by a number of feature differences: edge 

orientation cues, texture induced slant, shading effects and binocular disparity [180].  

However, it should be noted that although ocular information is available from the 

LGN onwards, some of the above depth features are composed of other features.  

This evidence indicates that depth perception occurs later in the visual system, and so 

its preattentive nature remains a paradox.  Wolfe suggests that the preattentive stage 

of human vision might extend into higher visual processing areas than the visual 

cortex [180]. 

 

Size is considered by many visual attention models to contribute to the importance of 

an object, however it is still inconclusive as to whether it contributes to the 

psychophysical phenomenon of pop-out [177].  Some models use an absolute 

measure of size as a model of the importance of an object [58, 127].  With visual 
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search, in a similar fashion to hue, the task becomes efficient if the relative local 

differences in size are large enough, although no mention is made about the 

variability of background distractors.  It should be noted that size is related to spatial 

frequency, as the change in size of an object changes the local spatial frequency of 

the contrast [177]. 

 

Humans tend to first look towards the central 25% of a computer screen, due to 

expectation of a properly framed scene, for example, news broadcast sequences 

[127].  Location is listed by Wolfe as a separate visual feature [177], and is 

considered unique in its effects on priming of pop-out [101]. 

 

Motion is considered an important influence on eye movements.  Stelmach notes the 

high correlation between viewer eye-movements during the viewing of various 

television scenes [151].  With motion intensive video (the experiment used a hockey 

game) 90% of the viewers looked at the major cluster of eye positions.  This 

compares to 40% for low motion intensity scenes (the experiment used a weather 

report).  Motion it seems is a strong attractor of attention for all viewers. 

2.4.3 Feature Hierarchies 

The relevant literature indicates a substantial amount of research performed on the 

identification and characterisation of low-level visual features.  However, little work 

has been carried out into the interaction between these features.  What has been 

performed is still at essentially a qualitative level. 

 

Evidence suggests that feature relationships can change due to top-down experience 

effects. Koch [83] notes that the weighting of different visual features is slightly 

plastic.  With training, certain features will more strongly attract attention than others 

[38].  Experiments with macaques by Bichot et al. [9] show a training effect on 

saccades, indicating feature weight plasticity related to the tasks performed.  Bichot 

et al. interpret their results as being a process for establishing habits or skills.  They 

propose that top-level establishment of skills can influence the weightings of low-

level features.  The authors stress, however, that this does not change the general 
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relationships between features, for example, motion will still strongly attract 

attention, only the amplitude of its effect may change with training. 

 

This plasticity inhibits the discovery of a fixed set of weights describing the 

importance of each of the features to the visual system.  However, the results of 

Bichot et al present a case for application specific feature hierarchies, base upon the 

features important to the task at hand. 

 

Despite the lack of a hard and fast weighting scheme for features, there is evidence 

for a gross ordering of features into a hierarchy.  The issue of what constitutes a 

visual feature complicates the ordering, and whether the list previously described is 

not a collection of sub-features that are preattentively discerned.  So far, the only 

work carried out has been with motion, hue and luminance. 

 

Motion is generally regarded as the most conspicuous feature.  Most models consider 

motion, and its related feature temporal change, to be the most attractive visual 

feature [128, 151, 185].  The physiological evidence detailed in Section 2.1.1 

confirms this assumption. 

 

Lohse has identified Hue as being more attractive to people than achromatic 

information [94].  Yet in the case of texture segmentation, it has been found that 

luminance information is dominant over hue [22, 23, 60].  The research by Lohse 

involved eye movement tracking of viewers of advertising in yellow pages.  Two 

factors may confound these results.  The hue luminance values were not controlled 

for, thus the attracting ability of the hue could be enhanced or suppressed by the 

brightness of the hue.  Secondly, the values of the local differences and mutual 

inhibition were not analysed.  The achromatic information in the image will have 

inhibited the effects of any luminance contrast in the image.  There would need to be 

a comparison with equiluminant hues and a similar spatial distribution of 

hue/luminance differences. 

 

The work of Callaghan [22, 23] and Healy [60] is performed under these conditions, 

and shows luminance to be a dominating factor in texture segmentation.  Their 

results show that a luminance texture difference can interfere with texture 
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segmentation by hue in the same spatial region.  With texture segmentation 

considered to be an influence on visual attention, it can be considered that this is 

supporting evidence for luminance to be considered above hue in a proposed 

importance hierarchy.  The physiological evidence noted in Section 2.1.2 further 

supports the dominance of luminance as a visual feature. 

 

Other empirical work has been performed by Osberger [128] to ascertain the 

weighted contribution of image features towards region importance in an image.  The 

experiments involved the tracking of the eye movements of 14 subjects while 

viewing a series of 136 still and 46 moving images.  The weighting factors were 

calculated based upon a weighted average across segmented regions making up 10, 

20, 30 and 40 percent of the image area.  Each of the features within the regions had 

a correlation value derived based upon how many fixations occurred within the 

region.  His results produced a hierarchy of feature weightings, with the following 

features being in order from smallest to largest weighting: image location, 

foreground/background differentiation, skin colour, shape, luminance contrast, hue 

and size. 

 

The derived weights are probably not so important to this thesis due to 

implementation differences.  On the other hand, the rough hierarchy is significant in 

the light of the physiological results described in Section 2.1.2.  The hierarchy adds 

further evidence supporting luminance and foreground/background features (derived 

from luminance effects) as being greater in influence than hue values.  The position 

of region location at the top of the hierarchy may be considered a result of viewer 

training, due to the continual viewing of properly framed images with the subject of 

the scene being in the centre. 

 

Allowing for the aforementioned plastic nature of feature influences, what has been 

presented here is support for a hierarchy among visual features in their influence on 

bottom-up visual attention.  What is also significant is that both the physiological and 

psychophysical schools of vision research have evidence to support similar 

hierarchies. 
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2.5 DISCUSSION 

This chapter has described and analysed major physiological and psychological 

components involved in the concept of visual attention. 

 

Physiological evidence has been presented for neural mechanisms that respond to 

visual features within the viewing field.  Furthermore, evidence was shown 

supporting the concept of an importance map summarising the visual field, 

highlighting those regions worthy of further investigation by object recognition 

processes concentrated in the centre of the visual field.  Physiological evidence 

supporting a hierarchy of feature importance was also presented. 

 

Supporting evidence was then presented, from psychovisual and psychophysical 

experimentation, of preattentive and attentive processes in human visual attention, 

along with theories describing the relationships between them.  Models of visual 

attention involving these two processes have been described and compared in some 

detail.  The chapter was then completed with an investigation of both the top-down 

and bottom-up influences on visual search, including a list of preattentive image 

features.  The lack of preattentive feature interrelationship models was identified.  

Some evidence for a gross hierarchy of motion, luminance and hue was presented, 

from a psychophysical perspective. 

 

From this analysis, a new approach to rendering can be devised using the principles 

previously outlined.  This approach will consist of two major components: the 

development of a visual attention module and the development of efficient rendering 

techniques that use the newly developed visual attention module. 

 

The state of the art in visual importance modelling is reviewed in Chapter 3.  From 

this review a new fuzzy logic-based bottom-up visual attention module is described 

within Chapter 4.  The module is based upon the observations in this chapter, 

including: the attracting potential of local spatial differences in visual features, an 

appropriate list of features to be analysed in an image, the global effects of other 

feature differences in an image and possible feature importance hierarchies.  Two 
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models have been developed to simulate the effects of contours and feature 

differences between regions.  These differences are stored in an importance map, 

derived from similar master maps within the visual attention models described within 

this chapter.  The importance map quantifies the relative visual importance of regions 

within the image for later use by a new adaptive rendering approach. 

 

In Chapter 5, adaptive and progressive rendering techniques have been modified to 

accommodate the new visual attention module.  This is used to direct and control the 

level of refinement applied to regions within an image.  Furthermore, this approach is 

extended to texture mapping in Chapter 6, where the sampling of textures for 

antialiasing purposes is modulated by the importance of the region in the image.  

Chapter 7 then extends the visual importance module developed in Chapter 3, to 

accommodate motion and abrupt onset feature models.  This is then applied to the 

task of efficient computer animation by deriving an importance value for the motion 

of segmented regions within the scene.  Chapter 8 then describes the evaluation of 

the rendering system via both objective and subjective measures of image quality. 
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Chapter 3 

Previous Computational Models of Visual 

Importance 
 

In this chapter, a literature review of the state of the art in computational visual 

importance modelling is performed.  Previous work is roughly divided into 

multiresolution and region-based models, which are derived from related 

psychological theories of human vision.  The strengths and weaknesses of both 

approaches are described, and relevant aspects are drawn together to form a 

theoretical framework for the design of the fuzzy logic-based visual importance 

system detailed in Chapter 4.  In addition, some basic principles of fuzzy logic 

control are illustrated. 

 

Fuzzy logic control systems are particularly suited to this project, due to the 

uncertain nature of eye movement measurement and prediction.  Eye movement 

prediction is an imprecise process due to the following factors: 

 

 eye movements may or may not indicate the presence of visual 

attention, due to the phenomenon known as covert attention, where 

attention may not be correlated with the centre of the visual field 

[132]; 

 eye movement data is imprecise, due to the large error range of 

measurement instruments (0.5-1.0  viewing angle) [3, 146]; 

 eye movement data is noisy, making it hard to extract accurate 

fixation information [37, 128]; 

 bottom-up feature driven visual attention is based upon the fleeting 

experience of a naïve viewer regarding a scene, this disregards effects 

induced by task-oriented processes [48]; 

 few experiments have been carried out in order to determine a 

quantitative model of bottom-up influences on eye movements, 

leaving general rules as the staple descriptions of researchers [144]. 
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Despite the above problems, the empirical evidence for consistent eye fixation 

locations across viewers regarding the same scene has been established [21, 151, 

184].  It is precisely this sort of ill-specified control problem that fuzzy logic is able 

to handle, making it well suited to the project at hand. 

 

Fuzzy logic also lends itself to this thesis from an engineering perspective.  The use 

of fuzzy logic is widespread and is thus supported by a large body of research [7, 

182].  Fuzzy logic also facilitates the engineering and tuning of rule sets in an easy 

and intuitive manner.  Finally, the nature of region-based importance models lends 

itself to being modelled by a rule-based fuzzy logic system, due to the comparison of 

regions of similar features using comparison rules [35, 59].  These points add weight 

to the selection of fuzzy logic techniques to model the relationships between visual 

features and their perceived visual importance. 

 

A number of application areas for computational visual attention models have been 

explored within the relevant literature.  Active vision systems incorporating models 

of visual attention have been developed for robotics, in order to facilitate 

autonomous target acquisition for further analysis [135, 170, 190].  Scientific 

visualisation applications have also benefited from the application of visual attention 

models to assist with the segregation and understanding of multidimensional data 

[60, 139].  For example, two different groups of data may be represented using 

separate shapes that form preattentively discernable boundaries.  Progressive image 

transmission also benefits from models of visual importance, to facilitate the 

transmission of informative regions of an image first [161, 188].  Image compression 

applications have also used models of visual attention to modify levels of 

compression to match the visual importance of regions in the image [98, 128, 189].  

Finally, image synthesis systems have reaped similar benefits by modulating the 

pixel sampling rates by the visual importance of the pixel [186]. 

 

The ongoing research into modelling visual attention has been divided between 

multiresolution [83, 107] and region-based approaches [97, 127, 189]. 
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The multiresolution approaches follow from multiresolution theories of human 

vision.  These theories seek to explain experimental phenomena requiring the HVS to 

contain components sensitive to a range of spatial frequencies [166].  The 

physiological evidence of simple cells in the visual cortex also supports 

multiresolution vision theories, with receptive fields tuned to different spatial 

frequencies [64]. 

 

Region-based models derive support from psychophysical evidence for people 

regarding objects and not locations [103].  Furthermore, there is mounting evidence 

indicating that objects are formed from underlying features in the preattentive stage 

[177].  The preattentive arrangement of the viewing field into regions of bundled 

features as objects provides further support for the argument of region feature 

differences attracting attention, and not the feature difference locations themselves 

[178].  The following sections go on to analyse these two groups of models in more 

detail. 

3.1 MULTIRESOLUTION VISUAL ATTENTION MODELS 

Multiresolution visual attention systems are based on multiresolution theories of the 

human visual system and the related image processing methodologies [166].  These 

HVS-based models incorporate feature detectors, saliency maps and models of 

human attention drawn from relevant psychophysical and psychovisual research [83, 

107, 160]. 

 

One of the earliest multiresolution attention models was developed by Koch et al. 

[83, 115-118], and further extended by Itti [70-74].  The system processes an image 

for four features: intensity, hue, edge orientations and movement, at multiple scales.  

The edges are detected by convolving the original image with Gabor
2
 patches, due to 

their ability to simulate HVS pattern sensitivity [137].  The hues are processed using 

an HVS-based colour opponency system.  HVS-like centre-surround receptive fields 

are simulated by using locations in the lowest scale map as the centre, with a larger 

region in a higher resolution feature map as the surround. 

                                                 
2
 These Gabor functions are described in Section 2.1.2. 
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The model developed by Koch et al. does not seek to completely model the 

interactions of visual features as they are combined into the saliency map.  Simple 

linear summation is used to combine the feature maps together into the saliency map.  

Weights modelling the contribution of the feature maps are equal, with the exception 

of an arbitrary five times greater weight for motion.  No empirical basis is given for 

the magnitude five [115, 116].  However, the additional weight added to motion is 

justified due to evidence for motion being a strong, if not the strongest, attention 

capturing scene feature [144, 151]. 

 

 

Figure 3.1 Diagram of Koch visual attention system architecture [74]. 

 

This saliency map is processed by a winner-take-all neural network, which fixates 

visual attention onto the highest peak for a prescribed interval of time.  The fixated 

location in the map is then inhibited, with the next fixation of attention being the next 

highest peak remaining in the saliency map.  An overview of the architecture of this 

system is shown in Figure 3.1. 
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Itti extends the work of Koch et al. by simulating the visual cortex phenomenon of 

lateral inhibition of surrounding receptive fields [70-74].  Perceptually, this produces 

a suppression effect upon the differences that invoke a saliency effect upon a 

particular region.  For example, a bright target object in an image consisting of bright 

objects will appear less conspicuous due to the activation surrounding the target 

object. The following steps describes the normalisation process [70]: 

 

1. Normalise all the feature maps to the same dynamic range, in order to 

eliminate across-modality amplitude differences due to dissimilar 

feature extraction mechanisms; 

2. For each map, find its global maximum M and the average m of all 

the other local maxima; 

3. Globally multiply each map by: 

2)( mM . (3.1) 

 

This process effectively suppresses maps with uniform activation, but enhances those 

maps with an odd man out activation peak.  Evaluation of the method is performed in 

a qualitative manner.  They report that the model is able to generate fixations and 

saccades similar to those generated by humans.  These statements are made without 

any empirical evidence, although this has been stated as being a part of future work. 

 

A similar approach developed by Milanese processes an image for contours (length, 

orientation, contrast, curvature) and regions (size, perimeter size, elongation, average 

grey level) [107-109].  These attributes each have an associated retinotopic
3
 feature 

map, indicating the location of the listed features within the viewing field.  The 

feature maps are then processed by a feature difference function or histogram 

analysis.  To calculate any conspicuous areas the output is loaded into k conspicuity 

maps, one for each attribute.  These pixel-based conspicuity maps are integrated 

together using a non-linear energy relaxation function, to produce a small coherent 

                                                 
3
 The term retinotopic refers to the coordinate system in the feature map being spatially related to a 

position on the retina.  Therefore, a change of position in the feature map produces a related 

movement in the retina. 
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set of visually important regions.  The system then thresholds the saliency map to 

produce a binary mask, indicating probable regions of interest. 

 

The work has also been extended to incorporate motion effects using multiresolution 

image representations, which calculate temporal derivatives for pixels derived from 

frame to frame differences [108].  These are then converted into a motion mask and 

further refined through low to high resolutions to form a convex hull surrounding the 

moving region in the images.  This alert mask is integrated with a saliency mask, 

determined for static components of an image, to form an overall bottom-up set of 

targets within the scene.  An overview of the static saliency architecture of the 

system is shown in Figure 3.2. 

 

 

Figure 3.2 Diagram of Milanese visual attention system architecture [109]. 

 

Milanese states that the final image areas selected are the same as those selected by 

the HVS, but does not offer evidence of a thorough evaluation of the system.  The 

system does not process colour, although this may be due to the application area 

being industrial inspection, and not human vision simulation. The non-linear 
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relaxation feature integration method is not based on HVS characteristics, but instead 

is designed to meet arbitrary criteria for creation of a small number of regions of 

interest, again due to its application area being industrial inspection.  However, his 

feature integration method does offer an improvement over simple linear averaging 

of the conspicuity maps.  The relaxation method filters out the small spatial 

differences by modelling competition between conspicuity maps, suppressing the 

saliency of local image differences within highly activated conspicuity maps.  

Finally, the system does not produce a graded importance map for each area of the 

image.  Instead, it produces a binary mask indicating areas for the later attention 

system to process.  This masking of the input image is appropriate for the industrial 

inspection applications listed, but is not useful for graded control of image synthesis 

techniques according to visual importance. 

 

Another multiresolution model of attention is a progressive image display system by 

Zabrodsky and Peleg, which presents the most important regions of an image 

first-giving a recognisable image in a short space of time [188].  The system encodes 

an image using a multiresolution Gaussian pyramid, a Laplacian pyramid (to encode 

spatial frequency differences between the levels of the Gaussian pyramid) and a 

Difference of Laplacian Energy pyramid (to encode the motion differences between 

two frames for a video sequence).  A quadtree then encodes a path through the image 

pyramid from lowest to highest resolution.  The quadtree traversal dictates the order 

of the image regions sent over the transmission link, with the most visually 

interesting areas being sent first.  An attention function is used to determine spatial 

contrast and temporal changes, and an inhibition term, to prevent the focus of 

attention from being chosen at the same resolution all the time.  The nodes of the tree 

are then sent to the receiving end with at first a low spatial frequency general outline, 

followed by the rest of the image sent in order of visual saliency.  Therefore, the 

image is recognisable at an early stage of the transmission.  As the system uses a 

specifically defined model of attention, and bases information on previously sent 

data, the receiver can be sent the sample value without a need for its location to be 

sent.  It should be noted that the attention model used in this system is simple, being 

only based upon contrast levels and temporal changes in video sequences, and is 

therefore not sensitive to other features, such as size, hue etc. 
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While these multiresolution approaches do give a biologically plausible model of 

HVS bottom-up visual attention, they do not model the object-based viewing bias 

within the HVS.  This behavioural evidence suggests that a more useful model of 

visual attention may be region or object-based.  As well as theoretical considerations, 

there are issues specific to the application area in which the model is to be 

developed. 

 

Progressive rendering is, as explained earlier, a process of gradually refining a coarse 

rendering of the scene to a predefined quality limit.  Multiresolution methods require 

an image that has at least been defined to the level of a pixel, to accommodate the 

need for the range of spatial resolutions within the model [185].  However, a region-

based model can still cope with an unrefined image.  A region-based importance 

approach can progressively guide the refinement of a synthetic scene, due to the low 

computational overhead of determining the importance of regions.  Furthermore, it 

can update its region segmentation and importance values in a computationally 

efficient manner, to match the refinement level of the image.  Due to these two 

points, it has been considered that a region-based visual importance approach has 

more utility.  Therefore, an analysis of previous region-based approaches to visual 

attention is required in order to aid the design of a new visual importance model. 

3.2 REGION-BASED VISUAL IMPORTANCE MODELS 

There are a number of applications of region-based visual attention models to the 

area of image processing.  In region-based approaches, the image is segmented into 

regions and a visual importance value assigned to the segmented regions, based upon 

the presence of visual features within the region.  Importance mapping of images can 

improve the efficiency of image compression systems, as a higher degree of 

quantisation can be assigned to the areas of little visual interest [98, 127, 189].  Other 

application areas include progressive transmission of still [161] and video [102] 

images over low bandwidth links, where the most visually important areas of an 

image are assigned a higher priority in the transmission scheme.  These applications 

improve the efficiency of their respective methodologies, while still maximising the 

perceptual image quality. 
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Maeder and Pham [99] have developed a colour importance system, which 

incorporates both global and local factors into its calculations.  The system calculates 

a colour importance value IMP at every position (i, j).  The global factors calculated 

include: the probability of a colour occurring in the image Prg(C), the probability that 

a colour belongs to a particular colour group Kc Pr(C|Kc), the variability of the 

colours in the image Vg, the variability amongst the colour groups VGK and the 

variability within a particular group VG|Kc.  The local factors are calculated from an 

m  n block or segmented region, including the probability of colour value C being 

in an m  n block at pixel location (i, j) Prl(mxn)(C)(i,j), or segmented region 

PrLR(C)(i,j).  Local cluster and variability factors are defined in similar ways for the 

regions and blocks. 

 

Maeder [97] has also developed an approach using 3  3 pixel blocks to detect local 

edge strength, contrast and variance of pixel intensities, for grey scale intensities.  

These are incorporated into an importance map by choosing the minimum of the 3 

factors at each pixel.  The saliency map is divided into 8  8 blocks, which contain 

the average combined importance value within that block.  This saliency map is then 

quantised into 4 values for the DCT matrix in JPEG compression, allowing high rates 

of image compression to be achieved while still preserving perceptual quality.  The 

integration method is arbitrary in nature, with no psychophysical evidence for the use 

of the minimum of the three factors.  However, Maeder notes that even with minimal 

tuning, the method is able to compress to quality levels of 40%, without the same 

level of perceptual distortion caused by the normal JPEG algorithm. 

 

The success of previous models using both global and local importance calculations 

supports the incorporation of similar local and global effects into the visual model 

developed in this thesis.  The global variability measures will be used in a somewhat 

modified form in this project.  However, the colour importance system uses the 

colour probability distribution in the image for the modification of image processing 

methods, such as edge detection or colour quantisation.  The importance model 
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developed in Chapter 4 is based upon local differences in hue, and not on absolute 

hue distributions throughout the scene. 

 

Another system by Osberger [126-128] extends the importance map concept further 

by segmenting the image into regions based upon a variance analysis of the pixels, 

using a recursive split and merge technique [140].  These regions are then allocated 

an importance value, based upon the following criteria drawn from visual features in 

the image: 

 

 contrast importance-the luminance difference between the region and 

its surrounds; 

 contrast importance-the hue difference between the regions and its 

surrounds in CIE L*u*v* colour space
4
; 

 size importance-the ratio of region area to 1% of image area, with a 

fall off in the importance at a certain threshold; 

 shape importance-the ratio of border pixels to total pixels, this value 

being highest for long thin edge-like regions; 

 location importance-the ratio of image centre region (25%) pixels to 

region area; 

 background importance–the ratio of border pixels to half the image 

border pixels, to account for foreground/background separation. 

 

The importance values for the above features are squared and then summed into a 

saliency map, which is then normalised to a maximum value of 1.0.  The size feature 

is processed in an absolute manner as a ratio of the region to 1% of the image area.  

However, psychophysical experimentation suggests that the differences in size 

around a region enhance visual importance, and so should be taken into account 

[177]. 

 

The model developed by Osberger, in a similar manner to Itti and Koch [70], uses 

normalisation techniques to account for activation within the hue and luminance 

                                                 
4
 CIE L*u*v* is a spatially deformed colour space where equivalent spatial displacements are as close 

as possible to perceptually equivalent colour differences [66]. 
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feature dimensions.  However, the exact technique is not mentioned in the references.  

A number of exponents have been added as parameters to the calculation of 

luminance and hue differences to enable more control of the effects of each feature 

dimension.  Furthermore, the model has been extended to include temporal 

importance, with the addition of camera movement adaptation and the use of 

adaptive thresholds for motion [128]. 

 

Zhao et al. [58, 59, 68, 189] have also developed a region-based model for visual 

importance calculation based on the following features: 

 

 size-the number of pixels in the region dictates its importance due to 

absolute size; 

 position-regions closer to the centre of the screen are considered to be 

more visually important; 

 compactness (boundary length to area ratio)-this ratio is greatest for a 

circle, considered most attention grabbing; 

 border connection-high level of border connection suggests a 

background region; 

 hue (CIE Lab and HSV)-the region will pop-out if its hue is different 

to surrounding regions; 

 luminance-similar to hue pop-out, is based upon luminance 

differences to surrounding regions; 

 saturation, the importance of this feature is taken from the average 

saturation of the pixels in the region in question - the more saturated 

the region, the more important it is to the human observer. 

 

The visual importance of these regions is calculated from the above criteria and then 

passed through a fuzzy rule set.  The fuzzy rule parameters are tuned using a neural 

net module [189], with training data gained from experiments with university 

students.  The students compared the segmentation of an image with a normal image 

and allocated 3 levels: very important, somewhat important and not important to the 

regions segmented. 
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These results are used as training data for a neural network, which controls the 

weights used within the rule-base.  The weight for each importance rule is 

constructed from the weights for each feature.  This weighting scheme allows for 

interactions between the features, as well as an absolute weight for each rule in the 

system.  It is assumed that, along with other fuzzy rule parameters, the neural 

network dictates the values of the weights. 

 

The fuzzy feature importance system is then applied to image compression, where 

the JPEG quantisation matrix is biased so that the least visually interesting areas are 

highly compressed.  Their evaluation of the correlation of the areas segmented by the 

system, with regards to human attention, is questionable due to its imprecise nature.  

The evaluation began with subjects choosing the most important areas of the images.  

They then measured the correlation of the image segmentation with the areas chosen 

by the viewers.  It would be more appropriate to use either an eye movement 

evaluation method, or a more controlled experimental methodology to evaluate the 

correlation between areas of attention fixation and importance values predicted by 

the system. 

 

The previous system could be improved with regards to the treatment of size and 

global effects.  As with the system designed by Osberger [128], size is an absolute 

stimulus, whereas psychophysical literature suggests that the attractiveness of areas 

can be attributed to local differences in size around the object in question [177].  

Also, the system only considers local calculations and does not consider global 

effects induced by the feature dimensions. 

 

Tsumara et al. [161] describe a progressive transmission technique that uses gaze 

areas to order components of progressive images.  Similar to work by Zabrodsky 

[188], the system sends a general low spatial frequency impression of the image first, 

followed by the higher frequency details of the image.  However, this system does 

not use feature processing to determine the next region of the image to be sent.  

Instead, the order of transmission is deduced from eye tracking experiments 

performed with the image.  The authors suggest that feature processing will be a 
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component of later stages of their research, due to the need to predict the gaze 

positions for an arbitrary image, obviating the need to perform time consuming eye 

movement experimentation. 

 

The review has provided information about the utility of using particular sets of 

features for importance calculations.  Certain features such as hue, luminance, size, 

contours and image location are ubiquitous among the sets of features processed.  

Furthermore, the use of texture measures, in particular contour concentrations, has 

been shown to be useful for region-based importance models [152] [79, 144].  

Therefore, a similar subset of features has been chosen for this project: hue, 

luminance, size, contours, location, background/foreground and contour 

concentrations. 

 

The newly developed system will differ from other region-based models primarily in 

the complete treatment of feature differences.  Some of the features used in other 

models have been absolute in nature.  In the system to be developed in this chapter, 

the conspicuousness of regions will be completely based upon feature differences, 

due to the experimental evidence shown in the psychophysical literature reviewed in 

Chapter 2 [122, 123, 177].  This will incorporate effects defined by feature 

differences that absolute processes cannot simulate.  In addition, the importance 

values will be based upon a threshold concept, whereby the regions become 

prominent due to the local difference in a feature being above the level of 

background distractors.  No gradient will be applied-the region will stand out due to 

suprathreshold differences and will be labelled as being of high importance in that 

feature dimension [122, 123]. 

 

The new importance module for the image synthesis approach will use fuzzy logic, 

for the reasons detailed at the start of this chapter.  The following section provides a 

primer to the concepts used in applying rule-based fuzzy logic theory to control 

systems. 
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3.3 FUZZY CONTROL SYSTEM BACKGROUND 

Fuzzy systems handle imprecise data by fuzzifying the truth of a logical statement
5
.  

Instead of the crisp values of True or False being discrete values of 1 and 0 

respectively, the values are fuzzified to be any value between zero and one inclusive.  

Fuzzification of the truth defines the term Degree Of Fulfillment (DOF), which 

represents the truth level of a fuzzy term.  The membership function for a fuzzy 

variable represents this degree of fulfilment value for the universe of discourse of the 

fuzzified term.  An example membership function is shown in Figure 3.3 for the 

fuzzy variables TempC (temperature in degrees Celsius) and Comfort, with regards to 

water temperature. 

 

 

Figure 3.3 Example antecedent membership function variable TempC, and consequent 

function Comfort. 

 

The DOF of the function at any temperature (TempC), is the degree of truth 

attributable to the relevant fuzzified term.  The shapes of the functions can be gained 

from a number of sources, such as: expert knowledge, histogram data or 

mathematical formulae.  The power of these membership functions is drawn from 

their ability to encode, in a manner similar to human reasoning, a relationship 

between a linguistic term and the numerical input value.  It can be seen in Figure 3.3, 

as the temperature approaches zero the term Cold becomes more fulfilled, while the 

Hot term becomes less fulfilled.  These fuzzified terms are used in inference 

statements, constituting the rule-base of the fuzzy control system.  Some examples 

follow for the above membership functions: 

                                                 
5
 Unless otherwise noted, the principles in this section are taken from Berkan and Trubatch [7], or 

Yager and Filev [182]. 
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IF TempC is Cold THEN Comfort is Low; 

IF TempC is Hot THEN Comfort is Low; 

IF TempC is Warm THEN Comfort is High. 

 

The rule bases enable a fuzzy system engineer to form inferences about the state of 

the system for control purposes.  The left part of the rule is titled the antecedent, 

whilst the right side of the term is known as the consequent.  What inferentially links 

the two sides together are the processes of implication, aggregation and 

defuzzification, considered in turn below. 

 

Implication is the process of mapping the antecedent fulfilment values to the 

consequent variable space, illustrated by Figure 3.4. 

 

 

Figure 3.4 Illustration of the implication process that maps the antecedent value on the 

left to the consequent value on the right. 

 

This implication process effects the logical connection between the antecedent and 

consequent.  The temperature t is fuzzified into a DOF of  for the antecedent 

function Warm.  The DOF value  is then mapped, via an implication operator 

(commonly the minimum activation value), to a fuzzy set in the consequent universe 

of discourse (represented by the grey region on the right hand side of Figure 3.4). 

 

The process of aggregation takes place when the consequent fuzzy set is determined 

for the output functions.  Here, the consequent values of the output fuzzy terms are 

combined for each of the rules in the system.  The combination of these fulfillment 
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levels forms a fuzzy set representing the state of the system, as shown in Figure 3.5.  

From this fuzzified representation of the truth levels of the rules within the system, a 

defuzzified crisp value D must be derived for application to the control scenario in 

question.  The method chosen is usually based upon the desired behaviour of a 

system.  The defuzzified value is a crisp (single) value characterising the output 

fuzzy set generated by the rule-base of the system.  A commonly used 

defuzzification method involves a weighted average of the values within the 

consequent variables, such as the centre of area.  Continuity and efficiency issues are 

often the major criteria regarding the choice of defuzzification methodologies.  

Continuity prevents the system from jumping too quickly from one value to another, 

which may cause instabilities in the process the fuzzy model is seeking to control.  

Efficiency issues are paramount for real-time systems, in order to respond in a timely 

manner to changes in the process being controlled. 

 

 

Figure 3.5 Example of aggregated fuzzy system (darkened regions) and 

defuzzification of system to produce a crisp value D. 

 

All these aspects have been considered in detail for the design of the fuzzy logic 

importance model shown in Chapter 4. 

3.4 DISCUSSION 

This chapter has sought to investigate the state of the art in computational visual 

attention modelling.  Multiresolution and region-based models of visual attention 

were presented and analysed to discern any deficiencies in their approach.  From the 

evidence presented, it was concluded that a region-based approach using a fuzzy 

logic control system was the best technique for modelling the visual importance of 
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objects within a scene.  The chapter then concluded with a primer devoted to relevant 

principles of rule-based fuzzy logic control, to provide a theoretical background to 

the design of the visual importance model presented in Chapter 4. 
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Chapter 4 

A New Model of Visual Importance for Efficient 

Image Synthesis 
 

In this chapter, a bottom-up model of visual importance is developed from principles 

discovered in the relevant literature.  Chapter 2 has shown that there is a strong 

correlation between differences in spatial and temporal features and the application 

of visual attention.  From this analysis arises the opportunity of computationally 

modelling this process and deriving useful applications.  Principles derived from the 

literature review and encapsulated within the model to be presented in this chapter 

include: visual features used, feature difference effects, importance map concepts 

and inter-feature relationships. 

 

The newly developed model seeks to utilise the rules gleaned from the 

psychophysical literature by using fuzzy logic to ascertain the relative visual 

importance of segmented visual regions.  This model improves existing fuzzy models 

of visual importance by more completely modelling feature differences, by allowing 

for global effects of features within the visual field and by the inclusion of textural 

effects from contour attributes within the regions. 

 

The visual importance model is eventually applied, in later chapters of this thesis, to 

the task of adaptive pixel sampling in ray tracing.  The model contains two modules 

that have been developed to facilitate this process.  One module guides the 

progressive refinement process, directing the rendering system to refine the most 

important contours first.  The other module controls the pixel supersampling process, 

to refine areas regarded by the viewer. 

 

Chapter 4 details the development of this model in the following manner.  Sections 

4.1 and 4.2 explain how the information from Chapter 2 and Chapter 3 has been 

incorporated into the overall design, with regards to: the selection of features to be 

modelled, the general approach to model development and the fuzzy logic 



 

Chapter 4 

70 

implication process.  Section 4.3 then concludes with a summary of the achievements 

of this chapter. 

 

The intended goal of the development of this new visual attention model is its 

application to the problem of image synthesis efficiency.  The main conjecture of this 

thesis is that the application of a visual importance model to the control of ray tracing 

sampling rates will reap large computational cost savings, while minimising the 

perceptual distortion of the image. 

 

The progressive ray tracing approach can be divided up into two main stages.  The 

early stage is the refinement of low spatial frequency details, down to the size of a 

pixel.  The contour importance module developed here orders the refinement process 

for contours, refining the most visually important contours first. 

 

The second stage is the supersampling of pixels, for antialiasing purposes.  At this 

stage the pixel is subdivided into quadrants for further sampling.  This supersampling 

process may be fixed or adaptive.  Fixed supersampling performs a spatially even 

pixel subdivision, whereas adaptive supersampling performs an asymmetric pixel 

subdivision that is sensitive to contours.  The second region-based importance 

module controls the sampling at the subpixel level in order to reap savings in the 

sampling rate.  In the following sections the two modules are explicated in detail, 

along with the reasoning in their development strategy. 

4.1 CONTOUR IMPORTANCE MODULE 

Much work has been carried out into image components that facilitate and enhance 

object recognition within a viewed scene.  Evidence has been uncovered for the 

visual importance of contours with deep concavity, especially those that coterminate, 

forming junctions [4, 103].  The removal of these junctions from a contour image 

severely inhibits the ability of a viewer to recognise the image [10].  These 

terminations have therefore been postulated as being important to the processes of 

object recognition.  It has also been postulated that these coterminations are strong 

attractors of visual attention [11], which coincides with the informative regions 

regarded by viewers [21, 184].  Other authors have noted the attention attracting 
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capability of the concentrations of contours in an image, and the attraction ability of 

the strength on the contrast forming the contour [144].  Finally, contours have been 

used in multiresolution visual attention systems, by looking for orientation 

differences that may attract the attention of the viewer [74, 107].  This model differs 

by using contours within a region-based framework. 

 

This model has been designed to order and accelerate the refinement of contours in a 

progressive rendering system by the visual importance calculated according to fuzzy 

logic rules.  In essence, a contour is important if it is strong (high contrasting) and 

highly curved. 

 

The model is local in nature, drawing its information from an 8  8 pixel regular 

subdivision of the scene, using a quadtree.  A contour analysis algorithm, called the 

Discontinuity Coherence Map (DCM), is used to ascertain contour information 

within the subdivisions [57].  The base DCM processing algorithm does not order or 

evaluate the importance of the detected contours.  The newly developed model 

therefore introduces a more complex form of contour assessment, which both orders 

the refinement of the contours and accelerates the refinement of those contours that 

are considered important to image understanding. 

 

The use of a region-based refinement model is rejected, due to the priming effect of 

the scene changes being expected to attract the attention of the viewer by default 

[101].  Therefore, the problem of progressive rendering is considered to be more of 

an image understanding or recognition problem than a bottom-up region-based visual 

importance issue
6
.  Recognition is based more on the importance of certain contours 

in the scene rather than on the bottom-up visual importance of the regions within the 

scene [10].  As the module is based upon contour importance, three contour variables 

are obtained from the DCM analysis of the subdivision to facilitate this importance 

assessment: contrast, curvature and density.  These variables and their contribution to 

the importance model are now described in detail. 

                                                 
6
 In hindsight this is not the case, as the regions considered most useful to image recognition and 

quality correlate to regions most salient to the HVS.   This issue is discussed further in Chapter 9 

under the heading of improvements to the present system.  
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Contrast is measured from the difference in the internal maximum and minimum 

subdivision luminance value, drawn from the Weber effect [166].  From this 

principle a simple perceptual model of the contrast in an image subdivision is 

derived.  The contrast is evaluated using the following equation [110]: 

 

Csub = lum / (maxLum + minLum) (4.1) 

 

where: 

 

Csub is the luminance contrast value for the subdivision; 

lum is the luminance contrast in the subdivision; 

maxLum is the maximum luminance value within the subdivision; 

minLum is the minimum luminance value within the subdivision. 

 

If the luminance contrast exceeds an empirically derived values of 0.05 [57], then a 

contour is considered to exist in the subdivision and so further processing is 

performed. 

 

Density is measured as a contour count within the subdivision, derived from the 

number of contour crossings contained within the boundary of the subdivision.  This 

is calculated by thresholding the luminance values on the subdivision boundary into 

binary values 0 and 1.  The threshold value is derived by the following equation from 

Guo [57]: 

 

tb = 0.5  (b1 + d1)  (4.2) 

 

where: 

 

tb is the threshold to be used to binarise the subdivision values; 

b1 is the highest sample luminance value for the subdivision; 

d1 is the lowest sample luminance value for the subdivision. 
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The boundary is then analysed to find crossing points, which are the value transition 

locations.  These represent an approximation of the number of contours within the 

subdivision (refer to Figure 4.1). 

 

 

Figure 4.1 Illustration of the DCM method for ascertaining the number of contour 

crossing points within the boundary of a subdivision [57].  The left square shows the 

samples taken along the boundary of a subdivision.  The middle square has been 

thresholded to show the transition points that are highlighted in the right square. 

 

Curvature is calculated as the difference in radians between the tangents at the 

transition points in the subdivision (refer to Figure 4.2). 

 

 

Figure 4.2 Illustration of the DCM method for ascertaining contour curvature within a 

subdivision [57].  Tangents at each transition point are calculated by making more 

samples inside, near the transition points.  The tangents t1 and t2 are then found by 

matching the values at the transition points marked by the pixels marked with a black 

circle.  The difference in the tangent angles is used as a curvature estimate. 

 

The location of the subdivision is also included into the model, due to results 

indicating that viewers regard the centre 24% of the screen more than any other 

region of the image [41, 174, 181]. 

 

  

t 1 

t 2 
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Figure 4.3 Illustration of the membership functions for the contour importance model, 

with four antecedent variables: Contrast, Curvature, Location, Density and the 

consequent variable FinImp. 

Membership Function Development 

As a part of the membership function design process, terms must be chosen to 

fuzzify the crisp truth of the variables being used.  The contrast, density and 

curvature variables are fuzzified into three terms: Low, Medium and High.  On the 

other hand, the location variable is fuzzified into the terms: Centre, Paracentre and 

Periphery, in order to characterise the spatial nature of the feature.  Each of the 

variables is defined over a differing universe of discourse (function domain) 

according to the range of values available.  The universes of discourse for each 

variable are: 

 

 contrast–over the range of possible luminance values [0.0, 1.0]; 
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 curvature–the tangent angle difference varies over [0.0, ] (to remove 

the sign from the calculations the value is derived from the absolute 

value of 2  - curvature); 

 density–an appropriate ad hoc number of contrasts was chosen to be 

[0.0, 5.0], as having 5 crossings in the subdivision is a high density of 

contours within an 8  8 pixel subdivision; 

 location–is the normalised window coordinate distance from the 

centre to the corner, for an assumed square image, ranging over [0.0, 

1/ 2]; 

 finImp–is an arbitrarily defined discourse to indicate contour 

importance, ranging over [0.0, 1.0]. 

 

The membership functions defined on the above universes of discourse are illustrated 

in Figure 4.3.  Triangle function shapes were chosen due to the lack of quantifiable 

data on contour importance.  However, literature indicates that function shapes are 

not as influential as the actual implication process involved [7].  Therefore, the shape 

will still allow the module to ascertain the importance of subdivision contours.  This 

leaves room for future work, to characterise further the relationships between aspects 

of this contour importance function. 

Implication Methodology 

The contour importance module uses a bounded sum implication methodology, 

incorporating weights that are applied to each rule–according to the feature it is 

processing [7].  Due to the bounded sum method of aggregation, the weights sum to 

1.0.  From experimentation with the test scenes, the following ad hoc weights in 

Table 4.1 work best: 
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Feature Weight 

Contrast 0.4 

Density 0.3 

Curvature 0.2 

Location 0.1 

Table 4.1 Table of weights for each of the contour model rules. 

 

The following lists the high importance rule base: 

 

IF Contrast   IS High  THEN FinImp IS High 

IF Curvature   IS High  THEN FinImp IS High 

IF Density   IS High  THEN FinImp IS High 

IF Loc    IS Centre  THEN FinImp IS High 

 

With medium and low rules being in a similar vein: 

 

IF Contrast   IS Medium  THEN FinImp IS Medium 

IF Curvature   IS Medium  THEN FinImp IS Medium 

IF Density   IS Medium  THEN FinImp IS Medium 

IF Loc    IS Paracentre  THEN FinImp IS Medium 

 

IF Contrast   IS Low  THEN FinImp IS Low 

IF Curvature   IS Low  THEN FinImp IS Low 

IF Density   IS Low  THEN FinImp IS Low 

IF Loc    IS Periphery  THEN FinImp IS Low 

 

The weighted fuzzy mean defuzzification method is used to obtain a crisp importance 

value [86].  This method offers efficiency gains by making assumptions of symmetry 

with regards to the consequent function shapes.  In the case of this system, the 

consequent shapes are triangular and symmetric.  The shapes of the functions are 

then interpreted as a rectangle of height  (DOF value of antecedent) and width w 

(the power or width of the consequent function).  The defuzzified value is then a 

ratio of the sum of the areas of the consequent functions, multiplied by the middle 

universe of discourse value ai, and the sum of the total area of the consequent 
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functions.  The formal equation to calculate the weighted fuzzy mean is shown 

below: 

 

AA N

i

ii

N

i

iii wawAWFM
11

)(  (4.3) 

where: 

 

WFM(A) is the defuzzified value for the fuzzy system; 

NA is the number of consequent membership functions; 

wi is the power (width) of the consequent function; 

i is the activation value of the consequent function; 

ai is the numerical value of the consequent function (middle discourse value). 

 

The weighted fuzzy mean defuzzification/implication methodology is one of the 

most efficient available, while still maintaining continuity of response.  The method 

also provides a wide spread of values, in comparison to other area and maxima 

methods [7, 182].  The spread of values particularly suits the intended application in 

this project, due to the quantisation of the importance values into sampling rates for 

regions within the ray-traced image. 

 

The final contour importance value is normalised to [0.0, 1.0] and stored in the 

Contour Importance Map–a subdivision map that identifies a spatial location with a 

contour importance value (refer to Section 5.3).  The importance normalisation is 

performed using the following equation: 

 

Ri = (Ri - MaxImp)/(MaxImp - MinImp) (4.4) 

 

where: 

 

Ri is the importance value of region i; 

MinImp is the minimum importance value of all the regions; 

MaxImp is the maximum importance value of all the regions. 



 

Chapter 4 

78 

 

A fully worked example for the High consequent rules is now shown.  The DCM 

from the progressively sampled image extracts the following values: Contrast 0.75, 

Curvature 0.3, Density 4 and Location 0.2.  Each of these values is converted into a 

DOF value by the membership functions shown in Figure 4.4. 

 

 

Figure 4.4 Illustration of DOF values drawn from the modified DCM algorithm for 

the High membership functions.  Each value on the domain is convertedinto a DOF 

values for each of the High membership functions for each fuzzy variable. 

 

The aggregation and defuzzification process uses the WFM technique.  A multiple 

additive aggregation method is used, so the DOF values for contrast, curvature, 

location and density are added together and clipped to 1.0.  The DOF value for the 

High consequent function is thus shown in Figure 4.5. 
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Figure 4.5 Illustration of the multiply additive DOF value for the High FinImp 

membership function example. 

 

In Figure 4.6 the diagram shows the overlaid aggregated values for the Low, Medium 

and High membership functions and the final defuzzified value derived using the 

WFM technique.  For the sake of brevity, only the High rule values have been 

calculated.  The other consequent function values for Low and Medium have been 

assumed to be calculated previously using the same method as the High membership 

function. 

 

 

Figure 4.6 Illustration of the aggregated DOF values for the FinImp variable. 

 

For this example, the three membership functions have fulfilment values of 0.1 

(Low), 0.3 (Medium) and 1.0 (High).  The calculation of the final defuzzified WFM 

value is carried out in the following fashion using Equation 4.2.  Each membership 

function (Low, Medium and High) has its width multiplied by its activation value 

and the middle discourse value.  These are then summed and divided by the sum of 

the widths multiplied by the activation values–translating for the examples to the 

following expression: 
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AA N
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 = (0.1  1.0  0.5 + 0.3  1.0  0.5 + 1.0  1.0  0.5) / (0.1  1.0 + 0.3  1.0 + 1.0  1.0) 

 = 0.30. 

 

The defuzzified value of 0.30 calculated above is thus entered as the importance 

value for the subdivision, and is used to control the progressive sampling of the scene 

within that subdivision.  The above calculations are repeated for each subdivision in 

the contour importance map.  An example contour importance map is illustrated in 

Figure 4.7 for an image of a head.  Note that the contour map importance values are 

highest in subdivisions that contain a number of high contrasting, curved contours. 

 

  

Figure 4.7 Illustration of the output of the normalised contour importance map for a 

head image, with the original image on the left and the generated contour importance 

map on the right. 

 

The normalisation process facilitates the mapping of low and high importance values 

to the relevant variables in the rendering system.  It ensures that the lowest value is 

mapped to 0.0 and the highest to 1.0, as the rendering system utilises a relative and 

not absolute importance value.  That is, one subdivision is only important in 

comparison to other subdivisions in the image.  The normalised contour importance 

value is used by the rendering system to progressively refine subdivisions in their 

visual importance order.  Further details of this process are examined in Chapter 5. 
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4.2 REGION IMPORTANCE MODULE 

From the reading performed in previous chapters, a number of basic rules about 

bottom-up forms of visual importance have been established.  This has influenced the 

design of the visual importance model developed here.  In particular, this has 

influenced the choice of visual features that are processed by the model, in order to 

obtain a visual importance value. A number of authors list some of the low-level 

image features so far discovered to influence the eye movements of a viewer: 

 

 motion is considered the strongest attractor of attention [177]; 

 luminance contrast at the boundary of a region is a strong attractor of 

attention [144]; 

 hue contrast at the boundaries of different hued areas is one of the 

most obvious causes of pop-out and effortless texture segmentation 

[23, 39]; 

 contour concentration differences can lead to preattentive texture 

segmentation [80] and may attract the attention of the viewer [144]; 

 size differences [43]; 

 depth cues, from pictorial to stereo effects, are able to attract 

attention–especially foreground/background effects [177]. 

 

Some work has been carried out on the relationships of some of these features [124], 

but as yet, there is no mention of a model that completely describes these features, 

their ordering and their relative weights.  However, some recent empirical work has 

begun to indicate general orderings and weights [128].  One aim of this project is to 

construct a more complete fuzzy preattentive feature relationship model by allowing 

for global effects and the use of contour concentrations to include texture factors.  

The ultimate intention is to use this model to devise appropriate techniques for 

efficient image synthesis. 
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The above features have been incorporated into a region-based fuzzy logic model of 

visual importance.  The importance model fuzzifies the mean feature differences 

around segmented regions into three functions: Low, Medium and High. 

 

One major improvement of this fuzzy logic importance model over others in the 

literature [35, 58] has been the introduction of membership functions that are 

adaptive in nature, in order to model the global effects mentioned later in this 

section.  This has been implemented by passing the mean of the absolute value of 

background differences m to the system as a function shape parameter, so that the 

fuzzy threshold is dependent on the background feature variation in the image. 

 

This concept can be illustrated by two extreme cases in the case of luminance 

differences.  Scenes with low values of background activity within the image have 

the threshold as being the Just Noticeable Difference (JND) value, which is around 

one percent contrast for a grey level region on a constant level background [166].  

The other extreme is a highly variant background, for example, a checkerboard.  In 

this case, even the highest possible local contrast will not allow the region to become 

conspicuous, and so the mean difference value m forces the threshold to the far right 

of the domain. 

 

 

Figure 4.8 Example of the adaptive membership function shape approach.  In the left 

diagram are the three membership functions centred around the Just Noticeable 

Difference (JND) threshold for luminance (around 1%), when the mean background 

differences are zero.  On the right, the shapes are centred around the mean luminance 

differences (m), up to the extreme of 1.0.  This moving threshold models the 

conspicuousness suppression caused by a highly variant background in the image, for 

example, a checkerboard. 
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This membership function models the sigmoidal effects analysed by Nothdurft with 

regards to global saliency effects.  The results produced by Nothdurft show that the 

position on the feature domain varies according to the differences present in the 

background distractors.  However, the basic nature of such conspicuousness 

functions does not change [122, 123].  In particular, the target will still seem 

prominent in a varying background, as long as there is a large enough local 

difference in visual features.  This is consistent with the stimulus similarity model of 

Duncan and Humphrey [38], and other computational models [70, 128].  However, 

the newly presented model differs by considering pop-out to be sigmoidal in nature, 

as per Nothdurft, unlike other systems [128].  This is consistent with intuition, as the 

pop-out caused by a number of features, especially hue, are essentially threshold in 

nature, with a saturation point where the prominence reaches an upper limit.  These 

results suggest that the mechanism which allows the pop-out to occur is designed to 

locate potential targets for further analysis, and not perform a measurement of the 

amount of feature difference between the objects in the scene.  This is derived from 

the influence of top-down effects making an influence on the weightings of the 

features for search tasks.  Therefore, the purpose of the membership functions 

presented here is to fuzzify the threshold where this pop-out occurs, to model the 

uncertainty of when a region is visually prominent or not.   

 

Hence, the main thrust of this design is that once a region has popped-out, the 

addition of other feature differences will not make much difference to its attracting 

ability [124].  Simply put, the region once salient engages attention, but the fixation 

time depends upon top-down task oriented factors, which are beyond the scope of a 

bottom-up model as designed in this chapter.  This approach also adds robustness to 

the system, due to the ability to sieve out the strong peaks in the image from the 

noisy background present in more natural scenes.  This concurs with the evidence of 

experimenters finding viewers repeatedly regarding only a few regions within a 

natural image during unrestricted viewing conditions [21, 120, 151, 184].   

 

Furthermore, anecdotal evidence is indicated from preliminary experiments 

performed for the development of this model indicating that the subjects had 

difficulty in assigning any sort of quantifiable value to the amount of pop-out 
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occurring in test stimuli [19].  As a result they were only able to easily assign a high, 

low or medium value to the level of conspicuousness.  This in turn led to the 

development of the Low, Medium and High terms within the fuzzy functions, and the 

general sigmoidal shape. 

 

Application area issues also arise for this model.  Image synthesis applications will 

require that the images generated by the method do not contain artefacts that attract 

the attention of the viewer.  It is unlikely that a bottom-up model of visual attention 

can ascertain the location of the viewers gaze in anything but a coarse manner.  So it 

makes sense that a bottom-up attention system simply makes selections of regions 

that are likely to be regarded, without making subtle assessments of how long the 

person will regard the region.  This is the methodology taken by Milanese, whereby 

the model uses a relaxation process to highlight the most salient objects and then 

thresholds the resultant saliency map to choose appropriate regions for object 

recognition purposes [107].  Similarly, in the image synthesis application area, the 

level of saliency can be divided into essentially regions that are regarded and regions 

that are ignored.  The rendering resources can be concentrated on the former regions, 

without causing loss of quality in the latter.  So the importance values calculated are 

heavily quantised due to the coarse nature of the model (refer to Chapter 5). 

 

The fuzzy membership functions that model this threshold concept are shown in 

Figure 4.9.  The threshold parameter tlum is set according to the following formula: 

 

tlum = max(JNDlum, m) (4.5) 

 

where: 

 

tlum is the threshold to be fuzzified for the luminance membership function; 

JNDlum is the just noticeable difference threshold for a luminance contrast to 

be detected; 

m is the mean of luminance differences in the rest of the image. 
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Figure 4.9 Illustration of the fuzzy, threshold-based membership functions for the 

features: luminance, hue, size and contour concentration. 

 

A three-term membership function has been designed to best represent the perceptual 

phenomenon of visual conspicuousness.  This is due to the phenomenon of visual 

pop-out being sigmoidal in nature [122], with a threshold and steep gradient.  

Piecewise linear trapezoidal membership function shapes have been used in this 

implementation for the sake of efficiency.  Piece-wise linear approximations to the 

function shapes should not be a problem, as the relevant literature states that systems 

are more sensitive to the number of shape functions and their locations on the 

universe of discourse [7].  Other experiments previously performed indicate a small 

area of uncertainty around the threshold [19], so a third medium term has been added 

to the membership function. 

 

These general threshold design principles have been implemented in several of the 

membership functions for features that rely upon differences to attract the attention 

of the viewer: luminance, hue, size, and contour concentration.  Each of the relevant 

characteristics of these features is now considered in detail. 
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Hue difference is modelled on the hue angle difference of the region to its surrounds 

in HLS colour space.  This is based on the assumption of the region being visually 

salient due to it being a different hue.  That is, the region is salient when the hue 

angle difference indicates a different colour category, for example, red against green.  

Again, the principle is that once a region is significantly different then it will stand 

out, unless the differences surrounding it are greater.  The universe of discourse for 

the function ranges over [0.0, 60.0]–60.0 degrees being the absolute limit of the hue 

difference needed to traverse from one hue category to another. 

 

Size difference is modelled by the difference between the ratio of the image size 

taken by the region, and the average size differences in the surrounding image.  

Therefore, the difference has a universe of discourse ranging over [0.0, 1.0], allowing 

any image size to be processed.  As it is inconclusive whether size exhibits the same 

pop-out effects as other features used in this model
7
.  Yet, for two reasons the size 

feature will be treated in the same way as the other visual features in this visual 

attention model. 

 

Firstly, it can be deduced that while an absolute model holds for a small number of 

objects in the scene, it does not capture the importance effects for relative differences 

that have been reported [177], and does not allow for a large number of objects in the 

scene.  If there are a large number of objects in the scene of only small size then an 

absolute model cannot capture the effect of the size differences at this scale.  An 

absolute model would consider the small size of the objects to remove any effect.  

However, even small objects, with a local spatial difference in size may stand out.  

Thus a relative size model, similar in manner to the other visual features, will capture 

these effects and the effects caused by few large objects in the scene. 

 

Secondly, it is reasonable to keep the model consistent in its approach, for the sake of 

simplicity, and due to an expectation of the effects being similar for size when the 

appropriate research is carried out. 

 

                                                 
7
 Refer to Section 2.4.2 for a discussion of this issue. 
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Contour concentration differences are modelled using the information from the DCM 

that processes the progressive stage of the rendering (refer to Section 4.1).  The 

region is analysed for the proportion of subdivisions that contain a contour.  This 

proportion is a measure of the concentration of contours in the region, as a 

contribution to the saliency of the region.  The universe of discourse ranges over 

[0.0, 1.0]. 

 

Other features that have been found attractive to viewer attention do not rely upon 

differences in features, namely; location and background/foreground differentiation.  

These features do not require a threshold parameter to allow for global effects, as 

they are inherently absolute in nature. 

 

The location feature is modelled by taking the difference between the (x, y) position 

of the centroid of the segmented region and the centre of the image.  This is 

performed in a similar manner to the previously described contour model (refer to 

Section 4.1). 

 

Foreground/background segregation is an early and important feature of the human 

visual system [92], with experimentation showing its importance in deployment of 

visual attention [177].  Like other work [128, 189], this model uses the proportion of 

subdivisions in a region that contain half the border subdivisions.  If this proportion 

is large, then the region will be considered to be a part of the background of the 

image, and so will be less attractive to the viewer.  These values have again been 

fuzzified into three terms: Low, Medium and High. 

 

 

Figure 4.10 Diagram illustrating the non-threshold antecedent importance functions. 
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These feature-based fuzzy membership functions are then used in the implication 

process to ascertain the final visual importance of the segmented regions.  The 

membership function for this final importance value FinImp is shown in Figure 4.11. 

 

 

Figure 4.11 Diagram illustrating the consequent final importance function. 

Region Module Implication Methodology 

In the design of the fuzzy logic components of the system, consideration has been 

given to the three components of fuzzy deduction: aggregation, defuzzification and 

implication.  The following sections describe the reasoning behind the choice of 

algorithms used to implement the fuzzy logic reasoning for the visual importance 

model. 

 

It has been observed that the interaction of preattentive features is competitive in 

nature [70].  Furthermore, objects that are unique in appearance due to a single 

feature are more conspicuous than objects that are unique in appearance due to a 

conjunction of features [159, 177].  For example, a red circle among identical blue 

circles is more conspicuous than a red circle among red squares and blue circles.  

This component of feature interactions is handled by the use of the fuzzified 

thresholds in the membership functions mentioned earlier in this section.  Regions 

that differ enough within a single dimension will be considered important, whereas 

the regions that differ due to combinations of features will not be considered salient 

in this model due to the lack of single feature dimension differences. 
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The overall interaction of features, however, is problematic.  Evidence exists that the 

feature dimensions interact in an additive manner [124, 176], that is, the pop-out 

caused by differences in more than one feature dimension add together to cause a 

greater level of perceived pop-out.  Successful models of the visual attention system 

have also been developed which are additive in nature [70, 127].  This additive 

nature is likely to be more complex than a simple addition, due to possible feature 

interactions [22, 23], differing feature weights [9, 128] and non-linearities [124].  

The fuzzy implication method chosen is multiple additive, in order to model the 

overall additive nature of the combined importance of a region.   

 

A bounded sum is used in the implementation, in a similar manner to the contour 

module described in Section 4.1.  This form of aggregation of evidence simulates the 

additive nature of the importance of regions.  Even though it is evident that a region 

stands out due to one feature dimension difference [155], the evidence above 

indicates that the importance of regions is enhance by multiple salient differences in 

feature dimensions.  Therefore, the consequent membership functions have activation 

levels added together, instead of taking the minimum or maximum as is often the 

case [7, 182].  Multiple additive aggregation gives all feature dimensions a chance to 

contribute to the importance value of the region.  This aggregation technique will 

still model a region becoming salient due to one feature dimension difference, as the 

other dimensions will contribute less due to the absence of feature differences. 

 

The rules used are straightforward in nature.  The process is best modelled using the 

general rule that if the local feature difference is high, and the local difference is 

above the global mean of feature differences, then the saliency of the object is high.  

From these concepts, the following list of rules constitute the fuzzy inference 

component of the region-based visual importance model: 

 

IF LumDiff  IS High  THEN FinImp IS High 

IF HueDiff  IS High  THEN FinImp IS High 

IF SizeDiff  IS High  THEN FinImp IS High 

IF ContConc  IS High  THEN FinImp IS High 

IF RegLoc  IS Centre  THEN FinImp IS High 
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IF EdgeProp  IS Low   THEN FinImp IS High 

 

The medium and low rules are similar to the High rules: 

 

IF LumDiff  IS Medium  THEN FinImp IS Medium 

IF HueDiff  IS Medium  THEN FinImp IS Medium 

IF SizeDiff  IS Medium  THEN FinImp IS Medium 

IF ContConc  IS Medium  THEN FinImp IS Medium 

IF RegLoc  IS ParaCentre  THEN FinImp IS Medium 

IF EdgeProp  IS Medium  THEN FinImp IS Medium 

 

IF LumDiff  IS Low   THEN FinImp IS Low 

IF HueDiff  IS Low   THEN FinImp IS Low 

IF SizeDiff  IS Low   THEN FinImp IS Low 

IF ContConc  IS Low   THEN FinImp IS Low 

IF RegLoc  IS Periphery  THEN FinImp IS Low 

IF EdgeProp  IS High  THEN FinImp IS Low 

 

A multiply additive aggregation method is used [7], implemented as a bounded sum.  

This aggregation method enables the modelling of the importance as being a 

contribution of activation in a number of feature dimensions.  Along with the 

multiple aggregation method, a set of weights has been implemented upon each of 

the rules.  For now these weights are equal, except for the foreground/background 

feature, which has been made 2.5 times the others to enhance foreground/background 

differentiation. 

 

The defuzzification and implication method is the weighted fuzzy mean, as used in 

the contour importance module (refer to Section 4.1). 

 

The region importance, like the contour importance (refer to Section 4.1), is 

normalised to [0.0, 1.0] and stored in the Region Importance Map–a spatial map of 

regions within the image containing their associated visual importance (refer to 

Section 5.4).  This is again due to the visual importance value being a relative 
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measure, with the lowest value being assumed to be 0.0 and the highest value being 

assumed to be 1.0 for pixel supersampling purposes.  An example region importance 

map is shown in Figure 4.12. 

 

  

Figure 4.12 Illustration of normalised region importance map generated for the head 

image. 

4.3 DISCUSSION 

This chapter has described the development of two visual attention modules to be 

applied to the task of progressive and adaptive rendering; these being respectively 

the contour and region-based importance modules. 

 

The contour fuzzy logic model highlights segmentation blocks that contain strong, 

highly curved contours and possible junctions.  In Chapter 5 this model is applied to 

the area of progressive rendering, to order and accelerate those subdivisions that are 

considered important to perception of image quality.  This seeks to improve the 

perceptual quality of the scene being rendered at an early stage of the progressive 

rendering process. 

 

This chapter has also described a newly developed region-based fuzzy visual 

importance model.  The model includes novel developments incorporating adaptive 

membership functions and contour concentration differences as an extra feature 
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dimension with which to evaluate visual importance.  This model is also applied in 

Chapter 5 to supersampling algorithms used in ray tracing. 
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Chapter 5 

Adaptive Image Synthesis Using a Visual Importance 

Model 
 

Ray tracing, a commonly used hidden surface removal algorithm, uses complex 

lighting and surface shading techniques requiring large amounts of computing 

resources [46].  Progressive ray-tracing addresses the large time scales for image 

synthesis by presenting an initial low fidelity image to the viewer [100].  This low 

fidelity image is often stored as a regular subdivision of the image in a quadtree data 

structure [141].  The quadtree is then progressively refined until the final image is at 

full resolution.  Adaptive sampling is a further modification to this method, where the 

sampling is concentrated around contours in a scene, continuing until a stop 

condition is met [129].  This stop condition may be from objective or perceptual 

measures of image refinement.  Adaptive approaches reap significant savings in the 

number of samples made.  However, while these methods are effective in producing 

scenes of high quality, they still expend effort on refining regions not important to 

the perception of the scene. 

 

Both these approaches to ray tracing may benefit from the application of concepts 

drawn from psychological research into visual attention (refer to Chapter 2 and 

Chapter 3).  The visual importance of regions in the scene can be used to control the 

progressive rendering approach, to reap further savings in sampling overhead.  As a 

consequence, this chapter presents an approach incorporating region-based visual 

importance into progressive ray tracing techniques. 

 

Efficient rendering is treated in this approach as a two-stage process.  The first stage 

involves a new approach to progressive rendering techniques.  Here, the issue is the 

choice of which spatial region in the scene to refine first, and by what magnitude.  In 

order to facilitate this process, a contour importance model developed in Section 4.1 

using fuzzy logic and results from psychological experimentation has been 

implemented.  The main goal is to guide the progressive rendering algorithm to 

refine contours that are visually important to the viewer.  This goal is achieved by 
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performing a regular quadtree subdivision of the scene, followed by application of 

the DCM to ascertain contour information within the subdivisions.  These contours 

are evaluated for their saliency to the human visual system.  The most important 

subdivisions are processed first and accelerated through the refinement stages, thus 

improving the visual quality of an early image.  This technique is expected to be 

especially effective in the case of complex scene databases, where the cost of firing a 

single ray is large.  In these circumstances the samples must be made in visually 

important regions, in order to efficiently present an effective early image. 

 

The second stage involves a modified form of adaptive ray tracing, to render more 

efficiently the final high-quality scene.  The region importance model developed in 

Section 3.2 analyses a coarse segmentation of the scene to calculate the visual 

importance of a region, and thus modulate the stop condition of the adaptive 

rendering.  The main goal here is to sample heavily in the visually important regions 

of the scene.  This differs from the edge problem discussed earlier, due to the 

contextual value placed on the regions.  The edges are only processed locally, 

whereas global inter-region comparisons are performed in order to give an indication 

of contextual effects upon the visual importance of the region. 

 

Two main rewards are reaped from this approach: an improvement in the visual 

quality of early progressive images, and savings in sampling rates for final high 

quality images, with minimal perceptual degradation. 

 

As stated previously, progressive ray-tracing is the process of refining an image from 

a coarse representation until the final high fidelity image is produced.  Progressive 

ray tracing techniques begin by coarsely sampling the scene to gain a first impression 

of the contents.  This is usually represented as a segmentation of the scene, by either 

an adaptive quadtree representation [15, 100, 129], or a Delaunay triangulation [125, 

130].  An adaptive regular subdivision was chosen due to a number of reasons.  

Firstly, it has proved to produce visually superior results, at low sampling rates [57].  

Secondly, the quadtree gives a simple and efficient way of evaluating the importance 

of contours in the scene and the segmentation of scene regions, which is harder to 
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obtain from a Delaunay triangulation.  Finally, it is the segmentation method used in 

the DCM, which has been utilised earlier in the approach. 

 

These adaptive segmentations can be based upon object-space features in the scene 

geometry or by using image-space features from the early stages of the actual 

rendering.  Using object-space features brings with it the advantages of pre-

processing the scene geometry, in order to ascertain image-space features before they 

are rendered.  However, this approach is prohibitive on two fronts.  The object-space 

methods are inherently inaccurate when it comes to image-space features, due to the 

lack of information about their final appearance.  Secondly, they are restricted in 

what image-space features they can analyse.  Reflections, non-polygonal geometry 

and shadows are just some of the problems with this method. 

 

Another approach is to use graphics hardware to pre-render the scene and obtain 

information from the image generated, which is then used to guide the adaptive 

process as an Oracle [130, 185].  Even though the strength of this method is the early 

approximate scene rendering, there are still problems with simplified lighting 

models.  Moreover, there are limitations in scan-line algorithms with regards to the 

correct representation of reflections, shadows, displacement/bump maps and other 

advanced rendering techniques [112]. 

 

Scan-line methods render a polygon by directly scan converting polygons into pixels 

by a process called rasterisation, exploiting the edge-coherence of pixels along a line 

in image-space.  Due to the rasterisation of polygons without reference to other 

polygons in the scene, the information available for the correct representation of 

reflections is not available.  Therefore, a simple mapping of an image on an 

imaginary sphere surrounding the object being rendered performs the scan-line 

rendering of reflections [13].  This is efficient and appropriate for real-time systems, 

but does not create a true rendering of the reflections off objects within the scene, 

especially object to object reflections.  Ray-tracing presents a simple solution by 

spawning secondary rays from intersection points on surfaces to render true 
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reflections.  Similar problems occur within scan-line techniques used to represent 

shadows and bump maps
8
. 

 

These problems indicate that at present the technique of using image-space features 

generated by the ray-tracer itself is the best way to deal with progressive rendering, 

notwithstanding any advances in the area of hardware driven scan-line algorithms 

[67]. 

 

The approach taken here recursively subdivides the scene into 8  8 pixel elementary 

subdivisions.  These subdivisions are then analysed for contours, and ordered 

according to their visual importance-based upon contrast levels, number of edges and 

curvature estimates.  These subdivisions are then further sampled using the evaluated 

importance order.  This should improve the perceptual quality of the image being 

presented, due to further sampling of the image in regions with a high concentration 

of high contrast, high curvature contours. 

 

In addition to the progressive approach, a super-sampling technique has been 

implemented which uses a region-based visual attention model to regulate the stop 

condition of the image spatial subdivision, to prevent any further unnecessary 

sampling.  Existing non-perceptual methods use statistical techniques to establish a 

measure of the homogeneity of a subdivision [57, 100, 110, 129].  While these 

methods are able to improve the efficiency of present ray-tracing algorithms by 

concentrating samples in regions of contrast, they do not account effectively for the 

visibility of the contrast value being used as a decision metric for further subdivision. 

 

An improvement to this approach is the modification of the depth of the tree 

representing the refinement of the scene by allowing for the inferior colour 

sensitivity of the HVS [106].  The achromatic channel contains the highest levels of 

acuity within the HVS, followed by the red-green and blue yellow channels 

respectively.  An opponent colour system is used within the ray-tracer to emulate the 

three HVS opponent colour channels.  The spatial segmentation of the ray traced 

                                                 
8
 Bump mapping uses a projected image to modify the appearance of geometric surfaces within a 

scene (refer to Section 6.1) 
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image is modulated by the sensitivity of the three colour channels–that is, the 

achromatic channel had the highest level of subdivision, followed in order by the 

red-green and blue-yellow channels.  This reaps modest efficiency savings, without 

perceptual loss of image acuity. 

 

More sophisticated perceptual measures have been used to indicate to the renderer 

whether further subdivision and sampling of the scene is actually visible to the 

viewer [15, 111].  In this case, sophisticated models of early human vision, 

incorporating: opponent colour spaces, contrast sensitivity functions and visual 

masking
9
 control the sampling rates of the ray tracers.  Due to their sensitivity to only 

those spatial signals perceived by humans, savings in samples made by the respective 

ray-tracing systems reap further efficiency gains, in some cases of the order of 1/10
th

 

of the original required without much perceptual loss of quality [14]. 

 

Many global illumination operators have been devised to deal with object-space 

measures of varying sophistication; however, only a few have dealt with image-space 

perceptual measures [47, 111, 134].  Among them, Yee [186], has implemented a 

multi -resolution visual attention model proposed by Koch and Ullman [83].  Yee has 

also incorporated the Visible Difference Predictor developed by Daly [30] into the 

approach. 

 

The Visible Difference Predictor is a system developed to produce a probability map 

showing the visibility of differences between a degraded and original form of an 

image.  The system passes an image through three main stages to achieve this aim: 

amplitude nonlinearity, contrast sensitivity function and detection mechanisms. 

 

The amplitude nonlinearity stage models the nonlinear responses of the HVS to 

differing luminance levels.  The contrast sensitivity function models the HVS 

sensitivity to spatial frequencies in an image.  This stage accounts for optical effects 

from the eye, sampling effects induced by the cone photoreceptor and both passive 

                                                 
9
 Visual masking is the suppression of HVS signal detection by the superimposing of another similar 

signal. 
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and active neural connection effects.  The final detection mechanisms stage contains 

the following subsections: 

 

 spatial frequency hierarchy–models the frequency selectivity of the 

HVS (not its sensitivity) and creates a framework for the multiple 

detection mechanisms; 

 masking functions–dealing with masking effects of superimposed 

spatial frequencies; 

 psychometric function–which defines appropriate thresholds; 

 probability summation–combines the responses of all the detectors 

into a unified perceptual response, that is, a visibility map. 

 

The implementation of the VDP is used to control the ray-caching and sampling 

stages in a Monte Carlo ray tracing system [167].  These Monte Carlo integration 

algorithms are used to calculate the diffuse interreflectance (global illumination) 

contribution from other surfaces within the scene being rendered.  Yee reports 

efficiency gains of 6 to 8 times the base-rate, again with minimally perceived error 

[185].  However, the approach requires a hardware-assisted, directly lit pre-rendering 

of the scene in order to act as an oracle to the global illumination process.  This use 

of a hardware-accelerated prerendering has the already discussed weakness of 

lacking appropriate image-space information to make decisions on what will be 

visually important to the viewer. 

 

Except for the multiresolution attention model used by Yee [185], the other adaptive 

methodologies do not incorporate any form of visual importance into their methods.  

The new approach presented here differs from the previous methodologies by using a 

region-based visual attention model, tightly integrated into the progressive rendering 

process, to facilitate efficient rendering by making further savings in sampling rates 

in areas not regarded by the viewer.  Furthermore, this approach does not require 

hardware support to prerender the scene, but instead uses the progressive rendering 

performed by the ray-tracing system as input in its decision making processes. 
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5.1 A NEW IMAGE SYNTHESIS APPROACH BASED ON 
VISUAL ATTENTION 

The newly developed fuzzy logic model of human visual attention has been 

integrated into a progressive and adaptive ray-tracer architecture.  An overview of 

the architecture is shown in Figure 5.1. 

 

 

Figure 5.1 Overview flow diagram of the attention-based ray tracing system. 

 

The implementation reads a Renderman  [162] scene description file, into a scene 

database.  The Visual Importance Model evaluates both the contours in the image 

and the regions segmented from the image so far sampled, assigning them 

appropriate importance values.  The Contour Importance Map is used to store 

contour importance information, whilst the Region Importance Map stores 

importance information for supersampling purposes.  The Progressive Sample 

Generator uses information gained from the Contour Importance Map and the 
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Region Importance Map, to adaptively sample the image.  A Finite Element 

Renderer can then produce an image, on demand, from the DCM and Frame Buffer 

[57]. 

 

Some elementary principles of ray tracing are now outlined in the next section, in 

order to form a theoretical basis for the development of adaptive sampling 

strategies
10

. 

5.2 RAY-TRACING PRINCIPLES 

Ray tracing is a hidden surface removal algorithm that uses a vector-oriented model 

of the propagation of light within a scene.  First, a centre of projection is defined 

from which rays are fired into the scene through pixels in the image plane.  The ray 

may or may not strike an object in the scene.  If an object is struck then an 

intersection point is calculated.  A shading model is then applied to determine the 

colour of the object at the intersection.  The shading model incorporates a model of 

the lights and the reflectance properties of the surface with which the ray has 

intersected.  Calculations are performed to ascertain the colour of the light reflected 

from the surface into the synthetic camera view.  This value is then placed in the 

frame buffer at the image-space pixel location passed through by the ray.  All image-

space pixels are treated in such a manner to create the final image (refer to Figure 

5.2). 

 

 

Figure 5.2 Diagram illustrating the ray being fired through the pixel into the scene 

geometry [46]. 

 

                                                 
10

 Unless otherwise cited, the concepts are drawn from Foley and van Dam [46]. 
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As with other sampling applications [175], there is the problem of dealing with 

aliasing effects caused by discretely sampling a continously defined function below 

the Nyquist limit
11

.  This is handled by applying antialiasing techniques to cause 

more than one sample to be made at each pixel, otherwise known as supersampling.  

In supersampling, a similar process is carried out by rendering the image at the same 

resolution as required, and then subdividing the pixel and sampling it to smooth 

jagged edges [175].  The value of the pixel used in the final antialiased image is an 

average of the samples made within the area covered by the pixel in image-space–the 

image-space pixel being a discrete interval within the real valued dimensions of the 

scene.  With regards to the latter technique, a number of methods have been 

developed to deal with supersampling, these being respectively: regular, adaptive 

and stochastic. 

 

Regular supersampling involves the subdivision of the pixel into a regular grid, with 

sampling being carried out at each of the vertices, as per Figure 5.3.  This reduces the 

aliasing of the image by performing more samples per pixel.  For practical purposes, 

a limit of four samples in both the x and y dimensions is considered enough to reduce 

the aliasing in most edges within a typical computer generated scene, due to the 

sharp fall off in spatial frequencies [172].  However, as the sampling rate is constant 

across the pixel, there are a large number of unnecessary samples in quadrants with 

low to no contrast. 

 

 

                                                 
11

 The Nyquist limit dictates that a signal must be sampled at double its highest frequency component 

in order to replicate the original signal [175].  In the domain of image processing, this translates to 

specifying the lowest spatial sampling rate required to remove unsightly aliasing effects. 
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Figure 5.3 Regular sampling grid overlaid on a single pixel.  Each of the circles 

represents a supersample of the pixel space. 

 

Adaptive sampling improves regular sampling by making objective decisions about 

the variation of the pixel samples within a quadrant.  This adaptive approach exploits 

the fact that dense sampling is only required around edges within a scene, due to the 

presence of higher spatial frequencies.  Constant regions only require sparse samples 

to represent the low frequency signals present [175].  The quadrant is subdivided if 

the pixel samples it contains are above a contrast threshold, as per Figure 5.4.  This 

process continues until the maximum limit of samples per pixel is reached.  This 

limit may be defined by an arbitrary constant, an objective measure of contrast [110] 

or by a measure of perceptual contrast visibility [15]. 

 

 

Figure 5.4 Adaptive sampling grid overlaid on a single pixel near the edge of 

geometry, illustrating the sensitivity of the method to contrast values. 

 

Stochastic sampling jitters the regular grid in order to introduce noise into the sample 

regime (refer to Figure 5.5) [29].  The addition of the noise to the signal is more 

acceptable to the HVS than uniform sampling at the same rate, due to the breaking 

up of the regular aliasing frequency. 

 

It should be noted that these supersampling techniques also work at levels above the 

size of a pixel.  Progressive forms of image synthesis often use these same forms of 

sampling for a quadrant larger than a pixel, to guide the refinement of the image [57, 
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100, 129].  A modified form of adaptive sampling is used in Section 5.3 for the 

progressive sampling module. 

 

 

Figure 5.5 Illustration of a jittered regular sampling grid used in stochastic sampling 

strategies.  Xs mark the jittered sampling locations. 

 

Each of these antialiasing methods assumes that the viewer equally regards each 

region in an image.  According to psychophysical research this is not the case.  

Human viewers regarding images tend to fixate on a limited number of regions that 

correlate with visual feature differences (refer to Chapter 2).  The following sections 

detail the modulation of adaptive sampling approaches by the visual importance of 

the region being supersampled, in order to gain further efficiency improvements. 

5.3 PROGRESSIVE SAMPLE GENERATION AND THE 
CONTOUR IMPORTANCE MAP 

The image is regularly subdivided until a grid of 8  8 pixel subdivisions is 

generated.  This grid forms the basis for the Contour Importance Map and the Region 

Importance Map.  The subdivisions are analysed by an extended form of the DCM 

for contrast information, as a guide to further subdivision and sampling.  This is 

performed by interpolating and thresholding the samples on the outline of the 

subdivision in order to obtain the points where contours cross (refer to Section 4.1).  

The process provides for each subdivision a measure of its contrast, number of 

contours and the contour curvature.  Blocks are categorised as smooth (no contour 

present), simple (one relatively straight contour present) or complex (more than one 

contour, or one contour that is curved). 
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(a) (b) (c)

(d) (e) (f)
 

Figure 5.6 Diagram of subdivision sampling sequence for both simple and complex 

contour subdivisions.  The grey squares indicate sampled pixels.  Simple contour 

subdivisions follow the sequence (a) (d), while complex contour subdivisions follow 

the sequence (a) (c), (e) (f).  This is a modified form of the sequence used in the 

base DCM[57]. 

 

We extend the DCM algorithm by incorporating a fuzzy logic visual attention model 

that uses the contour information to calculate the visual importance of a subdivision.  

The contour categorising capabilities of the DCM have been extended by including 

measures of texture and bump map information–for more details on this extension 

refer to Chapter 6.  The sample generator uses the subdivision contour information to 

guide further sampling.  The general outline of the progressive sampling of the 

subdivisions is displayed in Figure 5.6, including a description of the differences in 

sampling steps for simple and complex nodes.  The major difference being that 

complex subdivisions are further subdivided during the sampling pass, in order to 

better approximate interior details. 

 

After each sampling run and importance evaluation, an array of pointers to the 

subdivisions is sorted according to the results from the visual model.  This means 

that the subdivisions are then further processed in order of visual importance.  After 

the first sampling run, a sort is only triggered if the average values within the 

elements have changed by a predetermined threshold. 
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In addition to the previous importance ordering, the approach has been modified so 

that subdivisions deemed more important are accelerated through the sampling 

hierarchy.  For example, a complex subdivision with a high level of importance may 

jump from step (a) to step (c) (refer to Figure 5.6), thereby accelerating the 

refinement process, and so enhancing the quality of the image in visually important 

regions.  However, this acceleration process must be applied in a judicious fashion, 

due to the inherent trade offs in the approach.  Any acceleration of refinement in a 

region means that at any point other regions will be at a lesser state of refinement.  

Accelerate the important regions too much, and the rest of the regions are left in too 

low a state of refinement to improve the appearance of the image as a whole. 

 

After appropriate experimentation with the images shown in this chapter, a 

maximum acceleration rate of two steps per pass has been settled upon as an 

appropriate magnitude.  This acceleration rate is represented as an increment derived 

from the following formula: 

 

Incsamp = round(min(2.0, Iseg + 1.0)) (5.1) 

 

where: 

 

Incsamp is the sample increment value of 1 or 2; 

Iseg is the importance of the subdivision being sampled, calculated by the 

visual importance model [0.0, 1.0]. 

 

After each sampling run each subdivision in the grid is further subdivided in the 

normal fashion of a quadtree, and the previous sampling regime is performed on the 

new subdivisions.  Any contrast information gained from the DCM is passed to the 

Contour Importance Map at the 8  8 pixel level.  The progressive refinement 

process is carried out until the subdivisions are 2  2 pixels in size.  At this stage the 

sampling of the four corners of the subdivision is a sampling of each pixel in the 

subdivision, and so the supersampling stage begins. 
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5.4 REGION SEGMENTATION AND ADAPTIVE SAMPLING 

The final stage in the progressive rendering of the scene is the supersampling of each 

pixel for antialiasing purposes [29].  The new approach uses a region-based visual 

attention model to ascertain the visual importance of regions in the image.  The 

image is segmented at the 8  8 pixel subdivision level, into regions of similar hue 

and luminance values.  This creates a list of regions able to be processed for 

importance information, as per other models [128, 189].  These importance values 

are stored in the Region Importance Map (refer to Figure 5.7). 

 

A number of issues arise with the need to segment the scene into importance regions. 

Computational efficiency needs to be weighed against the need for discernment 

accuracy.  The region segmentation is performed at the 8  8 pixel level, and not at 

the single pixel level, due to the computational savings from segmenting the scene at 

a relatively coarse resolution.  The region segmentation is performed progressively 

during the refinement of the image from the elemental subdivision stage, as detailed 

in Algorithm 5.1.  As stated before, the image is refined up until the size of a pixel, 

where the supersampling stage begins.  Supersampling is therefore performed as a 

later pass, incorporating the first samples taken in the pixel to maximise efficiency. 

 

Viewing factors also influence the decision to segment the scene at an 8x8 pixel 

level.  Some methods use multiresolution methods to assign an importance on a pixel 

by pixel basis [71].  However, evidence suggests that viewers do not fixate on single 

pixels, but instead fixate on regions in the image being viewed–derived from 

research showing collections of preattentive features being perceived in a region-

based manner [178] (refer to Section 3.2).  Further support is drawn from previous 

region-based visual attention models that have used 16  16 pixel blocks [127] and 8 

 8 blocks [97] as bases for region segmentation.  The approach developed here uses 

an 8  8 pixel block for the importance maps, due in part to this sized subdivision 

being a basis for the DCM, and the efficiency issues previously mentioned. 
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Figure 5.7 Relationship between importance map data structures in adaptive rendering 

approach. 

 

The regions are assembled from the elemental subdivisions using a merge algorithm 

[140], with hue and luminance values for a subdivision compared by a fuzzy logic 

system.  Luminance and hue thresholds are used, both representing the proportional 

similarity required between subdivisions before they are merged–that is 0.0 means 

totally dissimilar and 1.0 being identical.  For this implementation the ad hoc value 

of 0.98 for both hue and luminance thresholds has worked well.  An example 

segmentation of a head scene is shown below in Figure 5.8. 

 

An issue for this coarse segmentation is the effect of aliasing introduced by the 

change of sampling rates across the boundaries of regions with differing importance.  

It is possible that the importance values could be linearly interpolated across the 

region boundaries in order to prevent sudden changes in image quality introducing 

blockiness into the image being produced.  However, any image quality 

discontinuities present would be induced by the variation in sampling rate for the 

region, and not by the importance change gradient.  In the implementation presented 

in this thesis, the subdivision rate for each pixel ranges from 1 to 4.  No matter what 

the spatial change in region importance, the subdivision rate is quantised to four 
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values, which may bring about sudden changes in image quality.  Therefore, the 

aliasing introduced is inherent to the quantisation of subdivision values, so the region 

importance values are not interpolated across the region boundaries. 

 

  

Figure 5.8 Illustration of the output of the segmentation algorithm (right) from an 

example head image (left). 

 

The single samples taken previously during the progressive rendering process are 

incorporated into the supersampling by assuming they have been made at the bottom-

left corner of the pixel.  This differs from the standard practice of using the centre of 

the pixel, however, for this implementation the use of the bottom-left hand corner 

facilitated easier adaptive rendering strategies.  This was due to the addition of 

further samples into the pixel at increments away from the bottom-left hand corner.  

In general, the supersampling function may be represented as the equation: 

 

Sseg = Iseg  SampFunc(p) (5.2) 

 

where: 

 

Sseg is the super-sampling rate for the region; 

Iseg is the visual importance value for the region being processed [0, 1]; 

SampFunc is a function determining the supersampling rate for the pixel p 

within the region by means other than visual importance, such as mentioned 

in Section 5.2 
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Regular super-sampling has been used in this implementation.  It is expected that the 

approach should easily accommodate other methods such as adaptive [129] and 

distributed [29] sampling.  Adaptive and stochastic algorithms would be in the 

general formula above, with the SampFunc being the algorithm used in the adaptive 

or distributed form of super-sampling.  For the purposes of this project, as a proof of 

concept, the SampFunc has been implemented in two ways: flat-rate and 

perceptually-based supersampling.  This will enable efficiency comparisons between 

two broad supersampling methodology areas, and should give a clearer picture of the 

performance of the new importance-based rendering approach.  

5.4.1 Flat-rate Supersampling 

The flat-rate supersampling method is the simplest to implement, as it consists of a 

constant magnitude of pixel subdivision across the scene–that is, the SampFunc is a 

constant.  This can be implemented by multiplying the supersampling rate by the 

value from the importance maps. 

 

In this new implementation the importance value calculated from the Region 

Importance Map Ireg has been used: 

 

Iseg = Ireg (5.3) 

 

where: 

 

Ireg is the importance of the segmented region; 

Iseg is the final importance of the region to be refined. 

 

The flat-rate supersampling method has a maximum subdivision rate applied to the 

pixels called MaxSamples, for this implementation varying over [1, 4].  Thus, a final 

high quality image has a maximum samples per pixel ranging over [4, 16].  

Therefore, any pixel within an elementary subdivision has a subdivision rate Sseg of: 

 

Sseg = Iseg  MaxSamples (5.4) 
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where: 

 

Sseg is the number of samples for the pixel; 

Iseg is the importance of the region; 

MaxSamples is an implementation dependent maximum number of 

subdivisions for the pixel (in this implementation set to 4). 

5.4.2 Perceptual Supersampling 

In this second method, a perceptual image quality metric is used to control the stop 

condition on the refinement of the image.  Myszkowski has explored this perceptual 

approach by experimenting with applications of the Daly Visual Difference Predictor 

[30] to global illumination problems [111].  It was found to be an effective difference 

metric with regards to global illumination issues, such as: progressive indirect 

lighting solutions, lighting stopping conditions and mesh discontinuity processing.  

Results indicated that it facilitated efficiency gains in the rendering of the scene.  

Bolin and Meyer [14, 15, 105] have taken a different approach, by using a modified 

Sarnoff Visible Difference Metric (VDM) [95], and applying it to Monte Carlo ray 

tracing techniques. 

 

The Sarnoff VDM works in a similar manner to the Visible Difference Predictor by 

Daly [30].  However, the Sarnoff VDM seeks to model more closely the 

physiological nature of the HVS, whereas the Daly VDP is more psychophysically 

based.  The major stages in the system are: 

 

 cone fundamentals–splits the signals into small, medium and large 

frequency cone responses;  

 cortex filtering–sets up a multiresolution model of the orientation 

filters contained within the visual cortex;  

 local contrast–models the non-linear response to light;  

 chromatic aberration–models the effects induces by the optics of the 

human eye; 

 opponents contrast space–models the opponent colour space of one 

achromatic and two colour channels contained in the HVS;  
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 csf filtering–models the chromatic and achromatic components of the 

contrast sensitivity functions; 

 masking transducer–mimics the masking effects of similar 

superimposed spatial frequencies;  

 spatial pooling–implemented as a filter to mimic the peak sensitivity 

of the HVS to five cycle sinusoidal signals.   

 

The two images to be compared are processed by these stages and then passed 

through a final distance summation stage to create a visual difference map–showing 

the difference in image quality in all spatial locations. 

 

Again, the system was able to detect masking and contrast effects, and delivered 

efficiency increases for the rendering algorithm.  Yee has also implemented a variant 

of the Daly Visual Difference Predictor [186], and has used it to improve the 

efficiency of Monte Carlo lighting solutions, in particular, the ray caching and 

sampling rates.  The approach was able to modulate the number of samples made for 

the global lighting integral by the visibility of the refinement made to the pixel, and 

its visual importance within the image.  This perceptual visibility component was 

incorporated into a modified version of a multiresolution visual attention system, as 

described in Section 3.1. 

 

Along with other approaches [134], these methods of image comparison are limited 

in their application, due to the overhead of transforming the image into frequency or 

wavelet spaces. 

 

Neumann et al. have developed an image-space metric for image quality 

comparisons, incorporating the analysis of random rectangles projected over the two 

images to be compared [114].  The use of the contrast sensitivity function allows the 

method to be sensitive to the visibility of certain spatial frequencies.  The metric is 

simple in nature and does not account for effects such as chromatic aberration and 

masking effects of spatial frequencies.  However, it is highly efficient, as it does not 

require a frequency space transformation of the images being compared.  For now, it 
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will suffice as a proof of concept with regards to incorporating perceptual image 

synthesis into the region-based visual attention model. 

 

The perceptual image difference method uses efficient techniques for calculating the 

difference between the average hue of the rectangles in L*u*v* colour space, and is 

weighted by the size of the rectangle and human visual contrast sensitivity.  A 

threshold is applied to each rectangle error in turn, such that if the difference between 

two rectangles is above the threshold, then the error is added to the combined error 

for the entire image. 

 

The stop condition is used in this approach in the following manner: 

 

1. A scene is generated at an arbitrary level of resolution in the 

progressive renderer.   

2. The values for the rectangles are calculated and stored.   

3. The next iteration of the renderer generates an image at a higher super-

sampling rate.   

4. The values for the rectangles in the new image are calculated and 

stored. 

5. The differences between the rectangles in each image are thresholded. 

6. The image synthesis process continues until the cumulative error for all 

the rectangles between two refinement levels is zero. 

 

To incorporate this metric into the adaptive rendering algorithm, the rendered image 

is  convolved with the importance values derived from the region  importance model.  

While calculating the rectangle error, each value from the image Px,y is multiplied by 

the region importance value Ireg, in the following manner: 

 

Rx,y = Ireg  Px,y (5.5) 

 

where: 
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Rx,y the pixel value contributing to the rectangle in the perceptual difference 

metric; 

Ireg is the region importance value of the pixel [0, 1]; 

Px,y is the pixel value in the image at position (x, y). 

 

As a consequence, the importance of each pixel weights the calculation of the 

difference between the rectangles.  An intended corollary of this process is the 

modulation of the sampling performed within each pixel of the image by the visual 

importance of the segmented region.  The next section will detail the incorporation of 

these methodologies into an integrated visual importance-biased rendering algorithm. 

5.5 ALGORITHM DESCRIPTION 

The progressive rendering algorithm detailed in this section refines the scene to the 

level of a pixel, for the final supersampling phase to take place.  The pseudocode is 

listed in Algorithm 5.1.  The algorithm has three main stages for each step in the 

refinement process.  The first is the decision of how many steps to refine the 

subdivision–based upon previous contour importance calculations.  The second is the 

generation of a list of subdivisions from the subdivision being processed.  These 

subdivisions, if any, are then sampled, subdivided and evaluated for contour 

information.  Finally, if the average statistics have changed for the subdivision, then 

the subdivisions are remerged into regions and importance values calculated for both 

the contours and regions. 

 

The following pseudocode in Algorithm 5.2 details the EvalRegImp function called 

in Algorithm 5.1.  Its general structure contains two major sections to process the 

segmented regions.  The EvalRegGlobalDiff function is called to calculate the global 

average of feature differences within the whole image (refer to Algorithm 5.3).  The 

loop then processes each region again, to ascertain the local differences in features 

surrounding the region being processed.  These feature difference values are then 

passed to the fuzzy logic module to assign a visual importance value to the region.  

The visual importance values are then normalized to [0, 1]. 
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Inputs:   Nil 

Outputs:  Nil 

 

Set stepMax  6     { Set Maximum number of steps. } 

Set impSeg  {e1, e2, … , en}   { Subdivide image to elementary 8 8 pixel 

subdivisions. } 

Set impSeg[seg].step  0 seg   { Reset refinement step for each subdivision. } 

 

for subLevel = 1 to 3 do    { For every subdivision step to pixel size. } 

 

 if subLevel  2 then    { Adjust maximum number of sampling steps } 

 Set stepMax  1    { to refinement level. } 

 else 

 Decrement stepMax by 1 

 end if 

 

 for step = 0 to stepMax do   { For every subdivision sampling step. } 

 for seg = 0 to numElem do   { For every 8  8 subdivision } 

 

 if impSeg[seg].step < stepMax - 1  { If subdivision already fully sampled } 

 or impSeg[seg].step = 0 then 

 if step > 0 then   { Pass, on first time through. } 

 if impSeg[seg].imp < 0.5 then { Set step according to subdivision importance } 

 Increment impSeg[seg].step by 1 

 else 

 Increment impSeg[seg].step by 2 

 end if 

 end if 

 end if 

 

 { Subdivide subdivision (if needed) and sample } 

 

 Set numSubSeg  0    

 GenSegList(impSeg[seg], ElemTreeDepth + subLevel) 

 

 for j = 0 to numSubSeg -1 do 

 if subSegList[j].edgeType  SMOOTH then 

 SampBound(segList[j], impSeg[seg].step) 

 end if 

 end for 
 

 if segChanged = True then  { Sort and subdivide if changes in features } 

 Normalise(impSeg) 

 Sort impSeg by impSeg[seg].imp seg 

 RegionSeg(impSeg, regions) 

 EvalRegImp(impSeg, regions) 

 end if 
 

 end for 

 end for 

end for 

Algorithm 5.1 Progressive rendering algorithm pseudocode. 
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Procedure: EvalRegImp 

 

Inputs:  List of regions containing segmented region information for image. 

   List of importance subdivisions elemSeg containing 8  8 pixel level information 

 

Outputs: Nil 
 

EvalRegGlobalDiff(regions, numReg, lumDiffMean, hueDiffMean, sizeDiffMean, contDiffMean) 

 
for regNum = 0 to numReg do           { For each region do } 

 Set surrLum, surrHue, surrContDens, surrSize  0; 

  
 for surr = 0 to regions[regNum].bordCount do      { For each surrounding region do } 

  Set surrReg  elemSeg[regions[regNum].border[surr]].regNum 

  Add the surrounding local feature values of region surrReg to surrLum, surrContDens, surrSize, surrHue 
 end for 

 
 { Obtain local feature difference values, with respect to surrounding average feature values } 

 

 Set lumDiff  |regions[regNum].lumAvg - surrLum / regions[regNum].bordCount| 

 Set hueDiff  |regions[regNum].hueAvg - surrHue / regions[regNum].bordCount| 

 Set contDensDiff  |(regions[regNum].contCount / regions[regNum].segCount) - (surrContDens / 

regions[regNum].bordCount)| 

 Set sizeDiff  |regions[regNum].segCount / numElem) - surrSize / regions[regNum].bordCount| 

 

 { Obtain absolute feature values } 
 

 Set loc  ((regions[regNum].centreY - dimElem / 2.0)2 + (regions[regNum].centreX - dimElem / 2.0)2)-2 /  

  ((dimElem / 2.0)2 + (dimElem / 2.0)2)-2 

 Set edgeProp  regions[regNum].imEdgeCount / (dimElem  2.0 - 2.0) 

 

 { Obtain visual importance of region using fuzzy logic system designed in Section 4.2 } 
 

 RegImp(imp, lumDiff, lumDiffMean, hueDiff, hueDiffMean, sizeDiff, sizeDiffMean, contDensDiff, contDiffMean, loc, 

edgeProp) 

 Set regions[regNum].imp  imp 

  

 if regImpMax < imp then 

  Set regImpMax  imp 

 end if 

 
 if qTree->regImpMin > imp then 

  Set regImpMin  imp 

 end if 
end for 

 

NormRegImp(regions, regImpMax, regImpMin)       { Normalise values to [0, 1] } 

 

Algorithm 5.2 Algorithm listing for EvalRegImp procedure. 
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Procedure: EvalRegGlobalDiff 
 

Input:  List of segmented regions containing visual feature information 

   Number of regions numReg 
Output:  A number of global feature activation variables: lumDiffMean, hueDiffMean, sizeDiffMean, contDiffMean 

 

Set diffCount  0 
 

for regNum = 0 to numReg do           { For each region do } 

 for surr = 0 to regions[regNum].bordCount do      { For each surrounding region do } 
 

  Set surrReg  elemSeg[regions[regNum].border[surr]].regnum { Obtain surrounding region number 

from index } 
 

  Set revSurrReg  0         { Find the link to the present region 

regNum from the surrounding region 
surrReg }} 

  while regNum <> elemSeg[regions[surrReg].border[revSurrReg]].regNum do  
   Increment revSurrReg by 1 

  end while 
 
  { If the present region has not been compared to the surrounding region then add feature values to global feature } 

  { difference variables } 

 
  if not regions[surrReg].checked[revSurrReg] then 

   Add difference between surrReg and regNum regions to total variables: lumDiffMean, contDiffMean,  

    sizeDiffMean, hueDiffMean. 

   Set regions[regNum].checked[surr]  True;  { These two regions have been 

compared } 

   Increment diffCount by 1 

  end if 

 end for 

end for 
 

if diffCount <> 0 then 

 Divide lumDiffMean, contDiffMean, sizeDiffMean, hueDiffMean by diffCount { Obtain averages for global feature 
differences } 

end if 

 

Algorithm 5.3 Algorithm listing of EvalRegGlobalDiff procedure, which calculates 

global feature difference values. 

 

The modified DCM method of progressive image refinement shown in Algorithm 5.1 

remains O(n) with regards to the number of 8  8 pixel subdivisions in the image.  

The space requirements are unchanged from the original algorithm as well. 

 

The contour importance approach requires only one multiply for each subdivision to 

set the acceleration of the refinement.  The method uses the DCM information 

already available, therefore no overhead is incurred gaining the contour information 

from the subdivisions as they are being refined.  The subdivisions are only processed 

for contours locally; no comparison is made with other subdivisions within the 

image.  The fuzzy subsystem has the same computational overhead no matter what 

the contour information within the subdivision.  Therefore, the time complexity of 

this method is O(n) with regards to the number of subdivisions.  In practice, the 
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importance evaluation at the end of each refinement stage takes less than one second 

on an R5000 Silicon Graphics O2, for a 513  513 pixel image, including the sorting 

of the importance map.  Memory requirements are a contour importance map, 

aggregated from the subdivisions at the 8  8 pixel level of the quadtree subdivision, 

and so are also O(n) with regards to the size of the image.  Two more words are 

required for each subdivision, in addition to the information stored for the DCM 

algorithm.  One word contains the subdivision importance value, the other is a 

pointer to the appropriate quadtree subdivision for the importance map. 

 

The region-based importance method has larger space requirements due to the region 

segmentation component of the algorithm.  The worst case is that every elemental 

subdivision in the importance map is segmented as a region by the merge algorithm.  

For this scenario the expression for the region importance calculations will be 

performed on four times the number of subdivisions within the image, as the 

segmentation uses a four-connected merge algorithm [140].  In addition, a second 

loop uses global values calculated to bias the final importance value for the regions 

(refer to Section 4.2).  Therefore, the region-based importance calculations are O(n), 

with regards to the number of elemental subdivisions in the scene.  Space 

requirements are the storing of 24 words of information (average hue, average 

luminance, number of contours, number of subdivisions, number of edge 

subdivisions and region location) within the region to efficiently calculate 

importance values–leaving the algorithm with an O(n) space requirement in machine 

words, with respect to the number of regions in the image. 

 

Once this progressive algorithm has completed, the supersampling process can then 

subdivide each pixel, modulated by the visual importance of each pixel region. 

5.6 OBJECTIVE IMPLEMENTATION EVALUATION 

In order to evaluate the new progressive approach a number of scenes have been 

assembled as a representation of the broad categories of images used in rendering 

systems.  These categories are: a single object within the centre of the screen, a scene 
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taken inside a building and an outdoor scene with a horizon.  Examples of these 

scenes are shown below in Figure 5.9. 

 

   

Figure 5.9 Example scenes used in the evaluation process.  From left to right they are 

a single object, an indoor scene and an outdoor scene. 

 

Each represents a general category of scenes, which can be developed for image 

synthesis.  The first is a single object within the centre of the scene.  This is often the 

way CAD images are constructed for viewing prototype renderings.  The second 

scene is of a typical indoor image with floor and roof and multiple objects.  The final 

and most complex scene involves a strong perspective and a horizon, with textured 

objects, making the scene noisy in nature.  Each scene was rendered at a resolution of 

513  513 pixels.  More details about each scene are included in Table 5.1. 

 

Scene Number of 

Polygons 

Reason for Inclusion 

Head ~3,000 Single object in centre of image. 

Kitchen ~2,000 Indoor scene with more complexity and 

colour. 

Farm ~12,000 Outdoor scene with colour, texture and high 

levels of complexity. 

Table 5.1 Details of each scene used in the evaluation of the rendering approach, both 

progressive and supersampling. 

 

As progressive rendering is a temporal improvement in the quality of the image, the 

comparison of image quality will be performed over a series of images.  An objective 

evaluation metric was applied to the progressive images generated by the system 

over the first 10% of the samples, to gain an indication of the improvement of the 
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images.  Each image was rendered at 1% sampling intervals (1%, 2%, 3%...10%), 

giving 10 images in all. 

 

The visual importance-based supersampling methodology is a form of degradation, 

which is more acceptable to the viewer due to the degradation being moved to areas 

that are less noticeable.  To do this the evaluation involved the comparison of a 

normal approach using a level of supersampling, and the region-biased method using 

the same maximum super-sampling rate.  As there were expectations of varying 

performance from both forms of supersampling at differing supersampling rates, the 

upper bound sampling rates are varied for both methods. 

 

For the flat-rate method, the super-sampling rate maximum was varied from 4 to 1 

subdivisions per pixel.  For the perceptual method, the threshold used for 

comparisons between the two stages of refinement was varied from 10 to 50.  This 

latter threshold controls the magnitude of error tolerated between the images.  

Previous experimentation had shown that the error thresholds below 10 become 

prohibitive due to non-termination of the algorithm within a reasonable amount of 

time.  While error thresholds above 50 became superfluous due to the error value 

always being less than the threshold.  Furthermore, the variation of error thresholds 

gives an indication of the optimum sampling rates that enhance the image quality of 

degraded images. 

 

The objective methodology used to evaluate the approach is detailed in the next 

section.  Subjective image quality comparisons have also been performed, and are 

reported in Chapter 8. 

5.6.1 Objective Evaluation Metric 

The objective measure used is the L1 / L2 norm error ratio method used in similar 

work in the progressive rendering research area [57, 130].  Using the L1 and L2 

norms the error is quantified between a work image sampled at the highest level for 

each method and an importance-biased image.  First, an error image E is calculated 

by subtracting the degraded image D from the work image W.  The L1 ratio L2 ratio is 

calculated using the following equations: 
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L1rat = ||E||1 / ||W||1 (5.6) 

L2rat = ||E||2 / ||W||2 (5.7) 

 

where: 

 

||.||1 is the L1 norm; 

||.||2 is the L2 norm; 

E is the difference image between the final work image and the importance-

biased image; 

W is the final high-quality work image generated. 

 

The norm values are then used as a numeric quantification of the error between the 

two images for both the progressive and supersampling methods.  The L1 error ratio 

value indicates the maximum column sum value of the error image E [49].  This is 

defined by the following equation: 

n

i

ik
k

mM
1

1
max  (5.8) 

where: 

 

M is the matrix being evaluated; 

mik is the matrix element at the i
th

 row and k
th

 column. 

 

As a consequence, the L1 value gives an indication of the largest error value between 

the two images. 

 

The L2 error ratio value is derived from the maximum eigenvalue of the error image 

expression E
T
E [142].  This is the closest matrix norm to the Euclidean norm for 

vectors and thus gives an overall value for the pixel by pixel distance between the 

degraded and work images–in the way an inner product of two functions works with 

vectors.  Let 1, 2,..., n be the real Eigenvectors of matrix M.  The following 

equation details the matrix L2 norm: 
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i
i

M max12
 (5.9) 

 

The presentation of both the L1 and L2 values give a good characterisation of the 

differences between the images by presenting both the maximum and overall 

distance.  Due to the degradation being spatially non-uniform and thus creating large 

differences in some areas and not in others, it is expected that the L1 error ratio 

values may be high in comparison to the L2 error ratio values.  Furthermore, due to 

the same effect, the L1 and L2 values may give opposite results when comparing 

importance-biased and original methods. 

 

An error image has also been presented to give a visual indication of the locations of 

the differences between the images rendered with and without a visual importance 

bias.  The error values in the image have been negated and thresholded, in order to 

aid visualisation and reproduction.  That is, the dark pixels indicate locations where 

image differences occur, but they do not illustrate the magnitude of the differences.  

Furthermore, image regions have been highlighted and magnified to help illustrate 

the differences between the biased and non-biased images in regions considered 

insignificant by the visual importance model. 

5.6.2 Objective Progressive Rendering Evaluation 

The results for evaluation of the progressive rendering approach for the three test 

scenes are listed in the following sections.  Each section contains: images sampled at 

a number of points in the rendering process by both the base and importance-biased 

systems, tables of L1/L2 norm ratios, pixel sampling images, contour importance 

maps and a discussion of the results for the evaluated scene. 
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Head Scene 

  

  

  

Figure 5.10 A series of images illustrating the improvement brought about by the use 

of importance acceleration.  The images on the left are base images using the normal 

DCM method of sampling, while the images on the right are accelerated using the 

new method.  The first image is 1.6% sampled, the second is 8% sampled-where the 

improvement is most discernable-and the final image is 10% sampled.  The dashed 

rectangles highlight areas of greatest difference. 
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Figure 5.11 A comparison of the sampling performed for the 8% image, which shows 

the most improvement.  The base method is shown on the left and the accelerated 

method on the right.  The rectangle in each image has been magnified and placed 

underneath, highlighting some of the subdivisions that have been selected for 

accelerated refinement. 

 

 

Figure 5.12 The contour importance map generated by the system.  The bright 

subdivisions are the most visually important. 
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Figure 5.13 Graphs of relative L1 and L2 norm ratios for images at 1% sampling 

intervals, with the non-importance method marked as Base and the new visual 

importance method marked as Imp. 
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% Image 

Sampled 

L1 Ratio 

Difference 

L2 Ratio 

Difference 

1 0.0000 0.0000 

2 0.0000 0.0004 

3 0.0004 0.0002 

4 0.0024 0.0042 

5 0.0031 0.0051 

6 0.0035 0.0056 

7 0.0037 0.0057 

8 0.0039 0.0057 

9 0.0005 0.0006 

10 0.0007 0.0004 

Table 5.2 Table of L1 and L2 differences shown in Figure 5.10.  The table entries are 

calculated by taking the absolute value of the differences between the base and 

accelerated norm values, at the respective sample percentage. 

 

For the Head image, there is a visible improvement in the visual quality of the image 

at the 8% sampling point.  The white rectangles in Figure 5.10 highlight the areas 

which have improved in quality.  This is also exhibited in the norm graph and the 

difference table, with the largest difference between the two images being at 8% of 

the image sampled.  The images converge again in quality, due to the convergence of 

both the methods upon the final image at a later stage in the rendering process. 
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Kitchen Image 

  

  

  

Figure 5.14 Progressively rendered images of the kitchen scene.  The images in the 

left column are rendered using the base system, while the images on the right are 

rendered with the importance-based acceleration method.  The top row of images is 

1.6% sampled, the middle row is 8% sampled and the bottom is 10% sampled.  The 

white rectangle highlights a refined area within the 10% sampled image. 
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Figure 5.15 A comparison of the sampling performed for the 10% image.  The base 

method is shown on the left and the accelerated method on the right.  The rectangle in 

each image has been magnified and placed underneath, highlighting some of the 

subdivisions that have been selected for accelerated refinement. 

 

 

Figure 5.16 Contour importance map of the kitchen scene.  Visually important 

subdivisions produce lighter coloured squares. 
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Figure 5.17 Graphs of relative L1 and L2 norm ratios for images at 1% sampling 

intervals, with the non-importance method marked as Base and the new visual 

importance method marked as Imp. 

  

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

1 2 3 4 5 6 7 8 9 10

L
1

 N
o

rm
 V

a
lu

e

% Image Sampled

L1 Norms for Kitchen

Imp

Base

0.10

0.11

0.12

0.13

0.14

0.15

0.16

1 2 3 4 5 6 7 8 9 10

L
2
 N

o
rm

 V
a
lu

e

% Image Sampled

L2 Norms for Kitchen

Imp

Base



 

Chapter 5 

129 

% Image 

Sampled 

L1 Ratio 

Difference 

L2 Ratio 

Difference 

1 0.0000 0.0000 

2 0.0001 0.0000 

3 0.0004 0.0002 

4 0.0007 0.0002 

5 0.0008 0.0025 

6 0.0006 0.0019 

7 0.0007 0.0001 

8 0.0018 0.0020 

9 0.0000 0.0002 

10 0.0021 0.0026 

Table 5.3 Table of L1 and L2 differences shown in Figure 5.17 for the kitchen scene.  

The difference values are calculated by taken the absolute value of the differences 

between the base and accelerated images, at the respective number of samples. 

 

Compared to the head scene the kitchen scene did not exhibit the same level of image 

quality improvement via importance acceleration.  The subdivisions that have been 

improved in quality have not improved the overall impression of the quality of the 

scene.  Significantly, the L1 and L2 objective measures have not shown any real 

discernible differences.   
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Farm Images 

  

  

  

Figure 5.18 Progressively rendered images of the farm scene.  The images in the left 

column are rendered using the base system, while the images on the right are rendered 

with the importance-based acceleration method.  The top row of images is 1.6% 

sampled, the middle row is 8% sampled and the bottom is 10% sampled.  The white 

rectangles highlight and compare refined regions from both methods. 
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Figure 5.19 A comparison of the sampling performed for the 8% image.  The base 

method is shown on the left and the accelerated method on the right.  The rectangle in 

each image has been magnified and placed underneath, highlighting some of the 

subdivisions that have been selected for accelerated refinement. 

 

 

Figure 5.20 Contour importance map of the farm scene.  Visually important 

subdivisions produce lighter coloured squares. 
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Figure 5.21 Graphs of relative L1 and L2 norm ratios for images at 1% sampling 

intervals, with the non-importance method marked as Base and the new visual 

importance method marked as Imp. 
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% Image 

Sampled 

L1 Ratio 

Difference 

L2 Ratio 

Difference 

1 0.000000 0.000000 

2 0.000000 0.000024 

3 0.000000 0.000037 

4 0.004102 0.001427 

5 0.008218 0.000192 

6 0.018119 0.002791 

7 0.019440 0.000627 

8 0.015411 0.006583 

9 0.015411 0.005437 

10 0.008145 0.003164 

Table 5.4 Table of L1 and L2 differences shown in Figure 5.17 for the farm scene.  

The difference values are calculated by taken the absolute value of the differences 

between the base and accelerated images, at the respective number of samples. 

 

Despite its complex nature and number of contours, the farm scene still exhibits 

visible levels of improvement within the region outlined by the white rectangle in 

Figure 5.18.  This is also supported by the difference between the values in the L2 

norm graph (refer to Figure 5.21) and the table of values (refer to Table 5.4).  Due to 

the textured nature of the image, the boundaries between dissimilar textures become 

very important contours.  Therefore, the scene can be considered to be similar in 

content to the head image, with only a few important contours contributing to the 

visual quality of the image.  As a result, any improvement in these major contours 

may be quite noticeable.  However, some obvious aliasing effects occurred on the 

barn, above the door.  Subjective testing carried out in Chapter 9 addresses any 

perceptual impressions of the differences between the images.  Furthermore, the 

large difference with the L1 norm values is expected, due to the L1 norm indicating 

the sum differences between the images.  Most of these large differences occur 

within the heavily textured regions, and so are invisible due to the masking effects of 

the surrounding texture. 

Discussion 

The images show that as more sampling occurs, the two rendering methods converge 

on the same final image.  What is evident, though, is the effectiveness of using a 

measure of contour importance and utilising this as a heuristic to guide the further 
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refinement of the scene.  The early image quality increases are due to this 

acceleration. 

 

The method tends to work for an image that contains high levels of order and small 

number of contours.  If an image is like the head scene, containing only a small 

proportion of contours for the whole image, then the method has some leeway to 

apportion more detail to areas than others, without losing image quality in toto.  With 

more complex scenes like the kitchen, the ability to apportion extra detail in selected 

areas is reduced markedly.  This is indicated by the L1 and L2 norm graphs 

generated for the kitchen scene.  The objective difference between the images is of 

an almost insignificant magnitude.  Perusal of the images subjectively confirms this 

observation. 

 

This effect is even more prevalent within spatially noisy scenes, like the farm.  This 

scene, as indicated in the contour importance map, essentially contains a contour in 

every subdivision, thereby making it hard to improve the quality of the image by 

accelerating the refinement of certain contours.  Secondly, the noise in the image 

introduces inherent masking effects, due to the superposition of one frequency upon 

another in the scene [166].  The refinements are therefore lost within the noise 

generated by the textures within the scene. 

 

Another issue is the degradation introduced into the rest of the image, by the 

reassignment of the samples to those subdivisions deemed to have important 

contours.  This means that while some contours are improved, others are degraded 

and thus cause further aliasing.  The issue here is the effect on the subjective visual 

quality of the whole image.  Potentially the quality of the image could be 

compromised by the degradation of unimportant contour subdivisions.  On the 

contrary, the improvement in the important contours could enhance the overall 

quality of the image.  This is dependent on the contents of the image.  For example, 

the barn in the farm image (Figure 5.18) is left unrefined as its contours are relatively 

unimportant, compared to the edges of the trees.  The subjective testing section of 

this thesis (Chapter 8), deals with this issue in more detail.  
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5.6.3 Objective Supersampling Evaluation 

An objective evaluation methodology was also applied to the images generated by 

the region-based supersampling method.  Objective evaluation of the images was 

carried out in the following manner.  The supersampling method (flat or perceptual) 

is used to render a work image at a predefined level of quality, without importance 

biasing.  A degraded image using the same parameters is then rendered using the 

newly developed visual importance model.  A difference image is derived from these 

two images, along with L1 and L2 ratios as defined in Section 5.6.1.  The difference 

image is used to indicate the spatial location of differences between the two images 

with darkened pixels, but does not indicate the magnitude of the difference.  This 

method is used to give an indication of the quality of an image at various levels of 

degradation, with reference to the supersampling method being used. 

 

The first set of images have been generated using the flat-rate supersampling method 

with subdivision rates being 2, 3 and 4 subdivisions per pixel.  This gives sampling 

rates ranging from 4 to 16 samples per pixel, using a regular sampling distribution.  

The work image is sampled at a constant rate for each pixel, whereas the region-

biased image is sampled at a rate depending on the importance of the region (refer to 

Section 5.4.1). 

 

For the perceptual method of supersampling control (refer to Section 5.4.2) a similar 

method of testing was performed.  The image difference predictor used in this 

method contains an arbitrary threshold parameter [114].  This threshold is the amount 

of error to be tolerated before requiring a refinement of the image.  If the absolute 

error between the newly refined image and the old image is larger than the 

predefined threshold, then the image is further refined.  In the experiments performed 

for this chapter, the threshold has been varied from 10 to 50.  The upper limit of 50 is 

due to the work and biased images being essentially the same after the threshold 

value passes 50. 

 

Tables of L1/L2 norm values and relative timings for each parameter value have also 

been generated for each scene.  Relative and not absolute timings were used, as they 
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provide relevant information about the efficiency gains reaped from the importance 

methods.  Absolute values are not so informative, due to the inefficient prototype 

nature of the rendering system developed.  Small example sections of the images 

have also been cropped and magnified to provide examples of the image distortion 

caused by modification of the sampling rate across the image.  The above objective 

methodology has been applied in the following sections to the head, kitchen and farm 

scenes respectively. 
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Head Scene Flat-Rate 

   
 

   
 

   

Figure 5.22 A series of images showing the output from the flat-rate method.  The 

images on the left are the work images generated at a constant level of pixel 

supersampling.  The middle images have been generated using a region-biased 

method.  The difference between the images is shown on the right.  The rows 

represent the maximum number of samples per pixel with the top row being 4 the 

middle 9 and the bottom 16 samples per pixel respectively. 
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Figure 5.23 Illustration of quality differences caused by the reduction in pixel 

sampling within the white rectangles shown in Figure 5.22.  The base image is on the 

left, while the biased image is on the right. 

 

Maximum 

Sample Rate 

Average Samples 

Per Pixel 

Relative Time 

With Respect to 

Non-biased 

Image 

L1 Ratio (L2 

Ratio) 

Non-biased 4 4.00 - - 

Region-biased 4 1.01 0.5 0.0142 (0.0462) 

Non-biased 9 9.00 - - 

Region-biased 9 1.83 0.3 0.0094 (0.0386) 

Non-biased 16 16.00 - - 

Non-biased 16 3.07 0.3 0.0086 (0.0388) 

Table 5.5 Results of the flat-rate rendering methodology showing samples, relative 

times and norm error ratios for each image generated with or without attention-based 

biasing, at varying levels of fidelity. 
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Head Scene Perceptual 
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Figure 5.24 Images generated using the perceptual method, with a high quality work 

image on the left, the importance-biased image in the middle, and the difference 

between the two on the right.  The rows represent the error threshold measure used to 

control the quality of the image; ranging from 10 in the top row to 50 in the bottom 

row. 

 

Perc Method and 

Threshold 

Average Samples 

Per Pixel 

Relative Time 

With Repect to 

Non-biased Image 

L1 Ratio (L2 

Ratio) 

Non-biased 10 79.31 - - 

Region-biased 10 7.75 0.1 0.0102 (0.0037) 

Non-biased 20 14.51 - - 

Region-biased 20 7.04 0.5 0.0051 (0.0027) 

Non-biased 30 10.51 - - 

Region-biased 30 6.72 0.7 0.0159 (0.0033) 

Non-biased 40 7.59 - - 

Region-biased 40 4.00 0.6 0.0334 (0.0072) 

Non-biased 50 4.00 - - 

Region-biased 50 4.00 1.0 0.0000 (0.0000) 

Table 5.6 Results of the perceptual rendering methodology showing samples, relative 

times and norm error ratios for each image generated with or without attention-based 

biasing, at varying levels of fidlelity. 
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Figure 5.25 Region segmentation images, with the raw segmentation on the left, 

coloured with random grey shades to indicate the segmentation performed.  On the 

right is the region importance map generated, with the lighter regions being assigned 

higher importance values, ranging over [0.0, 1.0]. 

 

With the head scene, a number of points can be made.  Firstly, both flat and 

perceptual methods reap large savings in the rendering of images, of at least a half 

the time for a normal rendering.  Secondly, the flat method of sampling modulation, 

while quick and efficient, is insensitive to contours within the scene.  As can be seen 

from the difference images in Figure 5.22, the differences fall mainly on the 

contours.  This degradation of quality within the edges causes unsightly aliasing to 

appear along certain edges (refer to Figure 5.23).  It improves with the increase in 

maximal supersampling to sixteen samples per pixel, but still presents a problem as a 

method of supersampling when used with region biasing. 

 

The perceptual method of supersampling is more sensitive to the presence of edges 

within the scene, due to the use of the contrast sensitivity function within its 

algorithm.  This occurs almost evenly, no matter how large the error threshold.  In 

the table of norm values for the perceptual method, it can be seen that the method 

again saves half the time for a perceptual rendering.  It also can be noted that the 

method improves in comparison to the base perceptual method as it renders a more 

and more error filled image.  Overall, the quality of the scenes using the perceptual 

method is much better than the flat supersampling method. 
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Kitchen Scene Flat-Rate 

   

   

   

Figure 5.26 A series of images showing the output from the flat-rate method.  The 

images on the left are the work images generated at a constant level of pixel 

supersampling.  The middle images have been generated using a region-biased 

method.  The difference between the images is shown on the right.  The rows 

represent the maximum number of samples per pixel with the top row being 4 the 

middle 9 and the bottom 16 samples per pixel respectively. 
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Figure 5.27 Blown up illustrations of the differences in image quality between kitchen 

images within the region highlighted by white rectangles in Figure 5.26. 

 

Maximum 

Sample Rate 

Average Samples 

Per Pixel 

Relative Time 

With Respect to 

Non-biased 

Image 

L1 Ratio (L2 

Ratio) 

Non-biased 4 4.00 - - 

Region-biased 4 1.02 0.4 0.0184 (0.0250) 

Non-biased 9 9.00 - - 

Region-biased 9 1.92 0.3 0.0236 (0.0220) 

Non-biased 16 16.00 - - 

Non-biased 16 3.31 0.2 0.0163 (0.0166) 

Table 5.7 Results of the flat-rate rendering methodology showing samples, relative 

times and norm error ratios for each image generated, with or without region biasing, 

at varying levels of fidlelity. 
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Kitchen Scene Perceptual 
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Figure 5.28 Images generated using the perceptual method, with a high quality work 

image on the left, the importance-biased image in the middle, and the difference 

between the two on the right.  The rows represent the error threshold measure used to 

control the quality of the image; ranging from 10 in the top row to 50 in the bottom 

row. 

 

  

Figure 5.29 Region segmentation images, with the raw segmentation on the left, 

coloured with random grey shades to indicate the segmentation performed.  On the 

right is the region importance map generated, with the lighter regions being assigned 

higher importance values. 
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Perceptual Method 

and Threshold 

Average Samples 

Per Pixel 

Relative Time With 

Respect to Non-

biased Image 

L1 Ratio (L2 

Ratio) 

Non-biased 10 55.42 - - 

Region-biased 10 31.22 0.6 0.0147 (0.0043) 

Non-biased 20 23.40 - - 

Region-biased 20 15.58 0.7 0.0125 (0.0052) 

Non-biased 30 14.38 - - 

Region-biased 30 7.54 0.6 0.0131 (0.0065) 

Non-biased 40 9.27 - - 

Region-biased 40 5.89 0.6 0.0279 (0.0073) 

Non-biased 50 7.54 - - 

Region-biased 50 4.07 0.6 0.0313 (0.0087) 

Table 5.8 Results of the perceptual rendering methodology showing samples, relative 

times and norm error ratios for each image generated with or without attention-based 

biasing, at varying levels of fidelity. 

 

Region-biased flat supersampling offers the same advantages and disadvantages for 

the kitchen scene as discovered for the head scene.  Similar effects occur with the 

lack of sensitivity to edges in the scene.  Subsequently, edges are aliased badly when 

the region-biasing is applied to flat supersampling.  With the perceptual method of 

sampling, again, the sensitivity to contours in the image enables the method to 

produce less aliasing of the contours in the scene.  Similar time savings are recorded 

with around half the time taken to render the scenes using a region-biased 

supersampling method. 
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Farm Scene Flat-Rate 

   

   

   

Figure 5.30 A series of images showing the output from the flat-rate method.  The 

images on the left are the work images generated at a constant level of pixel 

supersampling.  The middle images have been generated using a region-biased 

method.  The difference between the images is shown on the right.  The rows 

represent the maximum number of samples per pixel with the top row being 4 the 

middle 9 and the bottom 16 samples per pixel respectively. 
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Figure 5.31 Blown up illustrations of the differences in image quality between farm 

images within the region highlighted by white rectangles in Figure 5.30. 

 

Maximum 

Sample Rate 

Average Samples 

Per Pixel 

Relative Time 

With Respect to 

Non-biased 

Image 

L1 Ratio (L2 

Ratio) 

Non-biased 4 4.00 - - 

Region-biased 4 1.05 0.3 0.1091 (0.1126) 

Non-biased 9 9.00 - - 

Region-biased 9 1.62 0.2 0.1164 (0.1075) 

Non-biased 16 16.00 - - 

Non-biased 16 2.37 0.2 0.0945 (0.1064) 

Table 5.9 Results of the flat-rate rendering methodology showing samples, relative 

times and norm error ratios for each image generated, with or without region biasing, 

at varying levels of fidlelity. 
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Farm Scene Perceptual 
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Figure 5.32 Images generated using the perceptual method, with a high quality work 

image on the left, the importance-biased image in the middle, and the difference 

between the two on the right.  The rows represent the error threshold measure used to 

control the quality of the image; ranging from 10 in the top row to 50 in the bottom 

row. 

 

  

Figure 5.33 Region segmentation images, with the raw segmentation on the left, 

coloured with random grey shades to indicate the segmentation performed.  On the 

right is the region importance map generated, with the lighter regions being assigned 

higher importance values. 
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Perc Method and 

Threshold 

Average Samples 

Per Pixel 

Relative Time With 

Respect to Non-

biased Image 

L1 Ratio (L2 

Ratio) 

Non-biased 10 32.83 - - 

Region-biased 10 19.16 0.6 0.0161 (0.0099) 

Non-biased 20 18.11 - - 

Region-biased 20 6.48 0.4 0.0161 (0.0245) 

Non-biased 30 6.50 - - 

Region-biased 30 5.24 0.8 0.0176 (0.0141) 

Non-biased 40 5.14 - - 

Region-biased 40 4.14 0.8 0.0212 (0.0167) 

Non-biased 50 4.73 - - 

Region-biased 50 4.00 0.8 0.0045 (0.0046) 

Table 5.10 Results of the perceptual rendering methodology showing samples, relative 

times and norm error ratios for each image generated with or without attention-based 

biasing, at varying levels of fidelity. 

 

In a similar manner to the head and kitchen scenes, the methodology is able to reduce 

the number of samples made in the areas that are visually less important.  Similar 

effects are observed, including the most time savings occurring with the highest 

quality images. 

5.7 DISCUSSION 

Progressive rendering approaches in this chapter have been shown to benefit from 

judicious application of visual importance models.  A large saving in time is gained 

from using the region-based supersampling method.  The flat-rate method had the 

greatest gains in time efficiency.  However, a significant amount of image difference 

resulted.  The perceptual method generated better results according to the objective 

error values, and yet was still able to take less time to render the image.  This quality 

difference was due, in part, to the method used to implement the perceptual image 

difference algorithm. 

 

The perceptual supersampling method subdivided each pixel at least once, in order to 

detect any possible improvement from further supersampling.  Therefore, this 

perceptual approach automatically provides an improved image quality.  Related to 

this is a law of diminishing returns regarding the quality of the image in relation to 

subdivisions.  The number of subdivisions is usually limited to four, as this 

antialiases most of the sampled frequencies in a typical synthesised image [172].  
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With the scenes presented in this chapter, continuing past four subdivisions with the 

perceptually controlled supersampling did not produce any visible differences.  As a 

consequence, it seems that as long as the degradation does not create visible aliasing, 

then the loss of samples could occur anywhere in the image without being a viewing 

problem.  The differences may only be visible with close comparison of images 

rendered with and without the visual importance method.  Images viewed alone 

would probably not elicit a negative response from a viewer.  This issue is discussed 

further in the subjective testing results discussion in Chapter 8. 

 

However, the spatial frequency content of the image will alias at lower sampling 

rates, and so the rendering method used should be sensitive to this aliasing effect.  

This sensitivity is reliant on the perceptual sampling method used.  To conclude, it 

would seem that any use of visual importance processing must incorporate a 

perceptual module that tests for the visibility of any spatial frequencies within the 

image.  In the case of the method used in this chapter, the modification of the error 

tolerance level for each sampled rectangle would allow control over the differences 

between the work and the degraded images.  Such parametric control would allow 

the user to degrade or enhance the image quality to a level acceptable for the 

intended application. 

 

The contour importance approach has been shown to give a limited improvement 

with scenes of lower complexity.  The error values and subjective inspection indicate 

a measure of improvement in the quality of the image with reference to the final fully 

rendered image.  However, the method has been shown to struggle with scenes that 

contain a large number of complex contours, due to the problem of apportioning 

refinement to particular regions in the image over others, and thereby losing quality 

in those other regions.  This is in essence a signal to noise problem.  If the image is 

noisy, then any changes within the scene disappear due to the masking effects from 

the other numerous unrefined edges.  It should be noted, however, that the 

importance-biased progressive method is at least able to maintain the quality of the 

image at the same sampling rate, with a different sampling strategy.  This progressive 

methodology still has potential for simpler scenes, and extensions suggested in 

Section 9.2.2 may improve its performance with more complex images. 
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Incorporating Texture Importance into Adaptive 

Rendering 
 

Image information is used in 3D rendering to remove the need for geometric 

modelling of all the details in a scene.  Its effective handling can facilitate both the 

efficiency and fidelity of scene renderings.  This chapter is an investigation into the 

further use of visual importance concepts, with regards to efficient texture mapping 

of 3D polyhedra. 

 

The texture sampling approach has been incorporated into the sample generator 

outlined in Chapter 5.  The technique utilises the concept of texture coherence, which 

is the similarity of the appearance of the texture in texture-space and the final image-

space on the screen.  Coherence is commonly used in computer graphics to enhance 

the efficiency of many rendering algorithms [46].  This coherence concept assumes a 

relative similarity between one component of a rendering and another.  In the case of 

this application, a contour contained within the texture map, when transformed to the 

surface of a polygon, is likely to be similar in appearance.  The contours, although 

scaled, translated and sheared, are still preserved on the final projected polygon 

surface. 

 

This texture coherence is used to regulate the sampling of textures and to ascertain 

the presence of contours for further analysis.  This brings gains in the efficiency of 

texture sampling scenes, by removing the need for unwanted samples.  These 

techniques also improve the quality of images early in the progressive rendering 

process by discovering and highlighting contours present in texture information, 

without having to render the subdivision being analysed. 

 

Section 6.1 details how image data is used in 3D image synthesis and provides a 

theoretical background to the work in this chapter.  Section 6.2 describes new 

techniques developed to adaptively sample textures based upon the visual importance 

of the projected region.  Section 6.3 outlines a new improvement to DCM bump map 

processing.  The chapter concludes with a discussion of achievements in Section 6.4. 
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6.1 THE USE OF IMAGE INFORMATION IN IMAGE 
SYNTHESIS 

Under the broad heading of texture mapping, methods have been developed that 

enable the high-detail modelling of objects within a scene, without having to extend 

the geometry of the underlying object representation [24].  Often the application of 

an image over a simple underlying geometric model can give the appearance of high-

detail, without the heavy overhead of processing extra geometry.  The source of this 

texture image may be a captured digital image, or it may be generated by a 

mathematical function as a procedural texture [40].  An example of a captured 

digital image used as a texture is shown in Figure 6.1.  The simple square polygon 

has an image applied to it to give the appearance of a brick wall. 

 

   

Figure 6.1 A texture mapping illustration.  The image on the left is a blank polygon, 

while the image on the right is the same polygon with a texture map applied. 

 

Texturing is achieved by mapping the image-space pixels, as they are being shaded, 

to a texel (TEXture pixEL).  This is shown schematically in Figure 6.2, where the 

pixel is being shaded with a value sampled from the mapped texel in the image. 
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Figure 6.2 Illustration of the process of mapping a pixel on the surface of geometry 

being rendered to a texel [46]. 

 

A further development, called bump mapping, uses an image as an achromatic height 

field, to modify the surface of the geometry being rendered [13].  Bump mapping is 

performed by perturbing the surface normal of the pixel being rendered by the partial 

derivative obtained from the image at that point in texture-space.  The resultant 

perturbed surface normal modulates the shading properties of the polygon when any 

lighting calculations are performed.  Therefore, the intensity values in the bump map 

are converted into pseudo geometry.  This facilitates the modelling of complex 

surface properties, such as gouges, scratches etc., without having to create a complex 

underlying geometric model.  Instead, the intensity gradients in the image are used to 

implicitly model the desired geometry, and can be considered to be related to the 

ability of the HVS to infer 3D geometry directly from shading gradients [177].  An 

example of bump mapping is illustrated in Figure 6.3. 
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Figure 6.3 An example of bump mapping.  A plain polygon is on the left, while a 

bump mapped polygon is on the right. 

 

In a similar process to texture mapping, the intercept on the surface of the object is 

mapped to u, v coordinates in the texture map.  The calculation of the partial 

derivatives of the surface at that point in the bump map is executed by sampling 

nearby texels in the bump map.  For any point u, v within the bump map, the partial 

derivatives Bu and Bv are approximated by the following equation: 

 

Bu = B(u + 1, v) - B(u, v) (6.1) 

Bv = B(u, v + 1) - B(u, v) (6.2) 

 

where: 

 

u  is the u coordinate location within the bump map; 

v is the v coordinate location within the bump map; 

Bu is the partial derivative of the bump map surface in the direction of u; 

Bv is the partial derivative of the bump map surface in the direction of v; 

B is the bump map image. 

 

Adding the cross product of the two partial derivatives to the surface normal derives 

a simple planar polygon bump map method.  This method is less complex than 

normally used [12], due to the planar nature of the polygons used in this 

implementation removing the need for partial derivatives to be calculated from the 

polygon surface.  Perturbing the surface normal N requires the addition of the cross 

product of the partial derivatives.  This is shown in the following equation: 
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N’ = N + (Bu  Bv) (6.3) 

 

where: 

 

N’ is the resultant perturbed surface normal; 

N is the surface normal of the polygon; 

Bu is the partial derivative of the bump map surface in the direction of u 

(represented as a vector); 

Bv is the partial derivative of the bump map surface in the direction of v 

(represented as a vector). 

 

A problem with texture mapping is the discrete sampling of the texture-space by 

another discrete sampling space, the image plane.  This is indicated in Figure 6.2, 

with the projected pixel not fitting pixel boundaries exactly.  This means that high 

frequencies in the texture map are not represented correctly upon being sampled for 

image-space rendering, causing unsightly aliasing.  Much work has been carried out 

into the effective sampling of texture maps to reduce texture aliasing [42, 52, 55, 61, 

84, 119, 173].  A common method is the use of a filter with a support of more than 

one pixel in size, in order to remove high frequencies from the texture. The filtering 

method works in a similar manner to the antialiasing methods used in pixel 

supersampling, whereby further samples are gathered next to the texel being 

sampled, and are then averaged together to form the final texel sample.  Some of 

these filtering techniques have been made adaptive to the levels of contrast within a 

projected pixel [42, 52, 55, 61, 84], but have not sought to deal with visual 

importance as presented in this thesis. 

 

This absence of regard for visual importance is reflected in the test scenes used to 

test the texturing methods.  Most texturing methods are only tested with simple 

scenes, such as checkerboard patterns with strong perspective transformations [61].  

While adequate for testing antialiasing effects, these scenes prevent the assessment 

of the effect of the texturing method within the context of a more complex scene.  In 

a complex scene a large proportion of the image is ignored by the HVS, with only a 
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few interesting regions being regarded [184].  This indicates a large amount of 

redundant texture sampling effort, which could be saved if the high quality sampling 

was only applied to important regions. 

 

The next section details a novel method of dealing with filter support sizes for 

texture filters.  This extends the work developed in Chapter 3 and Chapter 5 by 

applying visual importance concepts to the resampling of texture maps.  The premise 

is that the visual importance of a region should also influence the resampling of 

textures, not just sampling by primary rays. 

6.2 TEXTURE IMPORTANCE MAPPING 

Adaptive texture sampling methods have been developed which seek to sample the 

texture heavily in areas of high frequency information [42, 52, 55, 61, 84, 119].  

However, in a manner similar to adaptive rendering, this adaptive rate is calculated 

from texture-space contour information, and not from the image-space saliency of 

the texture when it is finally projected.  An adaptive texture sampling scheme, based 

upon the visual importance of the image-space region, has been incorporated into the 

previously described adaptive rendering approach (see Chapter 5).  This method has 

been implemented by modifying the support of a texture filter in the texture 

resampling stage of the rendering system. 

 

The calculation of the importance of the texture in image-space is accomplished by 

using the region-based importance maps to model the visual importance of image 

regions at an early stage.  Thus, savings in texture resampling overhead can be 

gained from the judicious use of region importance values, without high 

computational overhead. 

 

The second factor to be considered is the projected size of a pixel from image-space 

to texture-space texels [61].  This changes the conditions in which the visual 

importance approach may work.  The methods used within this thesis rely on the 

ability to reap efficiency gains from the reduction of sampling within regions 

considered to be unimportant to the viewer.  This becomes a problem for the texture 
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sampling application as the nature of the visual quality changes, depending on the 

size of the projected image-space pixel. 

 

The projected-pixel size problem can be divided into three categories: 

 

 m:1–many texture-space texels to one image-space pixel; 

 1:1–one texture-space texel to one image-space texel; 

 1:m–one texture-space texel to many image-space pixels. 

 

For the first category, the sampling problem is similar conceptually to the 

supersampling of pixels in image-space.  To improve the quality of the image, the 

approach should sample around the intersecting pixel to obtain a more accurate value 

for the image-space pixel, as one sample (texel) is not an accurate integral over the 

projected pixel area.  For the other cases (1:1 and 1:m), further sampling is used to 

low pass filter (blur) the texture to improve its appearance by softening any edges in 

the texture [61].  For this thesis, as a proof of concept, the method will simulate the 

two sets of circumstances using scaled textures and modified sampling regimes.  The 

goal of this work is to evaluate the application of a visual importance regime to 

modulation of this resampling. 

 

Due to time constraints, adaptive texture mapping techniques have not been 

implemented.  However, this filter support approach is expected to generalise to 

other adaptive methods due to the global principle of minimising the cost involved in 

sampling the said textures, in areas that are not visually important.  This sampling 

principle could be used to choose between isotropic and anisotropic filters used in 

MIP-mapping [173] (refer to Figure 6.4).  For example, anisotropic
12

 filters could be 

used in visually important areas [42], while a cheaper isotropic box filtering could be 

used within visually unimportant regions that can tolerate more error in their integral 

calculation [173]. 

 

                                                 
12

 An isotropic filter has directionally symmetric properties, while an anisotropic filter has different 

properties in different directions. 
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Figure 6.4 Illustration of the difference between isotropic filtering (left) and 

anisotropic filtering (right) in texture-space (grid).  Both texture filters are represented 

by the grey areas in the diagram.  The anisotropic filter better captures the shape of 

the projected pixel in texture coordinates (dotted quadrilateral), and thus produces 

more correct texturing in perspective distorted sections of an image.  However, the 

adaptive nature of the filter introduces costs into the texture integral calculations. 

 

The box filtering method in this chapter can be formulated as a linear equation 

relating the filter size Sfilt to the texel to pixel size ratio t / p, and the degree of 

importance of the region in which the pixel is contained Ireg.  The relationship is: 

 

MaxSupprMaxSupp

MaxSupprIMaxSupp
S

reg

filt  (6.4) 

 

where, 

 

Sfilt is the support size of the texture filter in texels;  

 is a user parameter controlling the trade off between efficiency and quality–

set to 1.0 for this implementation; 

r is the texel to pixel size ratio t / p; 

MaxSupp is the maximum filter support size constant–set to 3 for this 

implementation; 

Ireg is the visual importance of the image-space region containing the texture 

value. 

 

The maximum size of the filter is set to allow the filter support to vary from one to 

three.  In essence, the support of the filter can be arbitrary in size [175].  For the sake 
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of this implementation, a 3  3 filter maximum support is adequate as a proof of 

concept.  The Sfilt value is rounded to the nearest integer, thereby making the filter 

support one, two or three texture pixels in width.  The filter chosen is determined by 

the implementation constraints.  For the purposes of this project, a simple box filter 

was used [175].  The disadvantage of this form of texture refiltering is the blurring 

that occurs due to the removal of high frequencies from the signal.  However, the 

approach could be applied to any filter with finite support, or with any of the more 

advanced methods involving more sophisticated convolution calculations [61]. 

 

This relationship therefore brings about less sampling in areas that are not important 

to the HVS.  However, this method does not work for pixels that have a texel to pixel 

ratio of less than one, as the concept of removing samples from the less important 

regions tends to produce better visual quality in low importance areas.  This is due to 

the previously mentioned blurring effect, which is enacted to antialias the texture 

[61].  Blurring is not related positively to image quality, as the HVS is attracted to 

high-frequency components of an image [144].  Therefore, the method is suboptimal 

under these conditions, due to the perceptual degradation of image quality in the high 

importance area (refer to Figure 6.5).  This explains the need to only apply the 

method to texels with a texel to pixel size ratio greater than or equal to the maximum 

support size of the texture filter. 
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Figure 6.5 Example of image which has a texel to pixel size ratio less than the 

maximum support size of the filter being importance-biased in its sampling (left), 

compared to a point sampled texture (right).  Note that the regions of high importance 

around the small altar (highlighted with a white rectangle) appear worse due to 

excessive blurring caused by a larger support for the texture filter function. 

 

Analysis shows that the complexity costs of this technique are: one compare, 2 

multiplies and a round per pixel.  However, the multiply involving the importance 

value Ireg and  can be precomputed for an entire region, thereby removing the need 

to calculate the filter support size for every pixel.  In addition, the texture to pixel 

ratio is available as a part of most texture mapping schemes [61], thereby removing 

the divide from calculations.  These minimal costs are weighed against savings of up 

to eight texture memory accesses for each ray that is cast.  This therefore makes the 

extra computations to be O(n) with regards to the number of regions in the image.  In 

this case, the savings in texture accesses more than make up for the overhead of the 

importance calculations. 

 

For example, consider the case of a region with only one 8  8 pixel subdivision, 

containing 64 pixels to supersample at 16 times per pixel.  Each ray will at worst 

require 9 texture samples per ray (filter support 3) and at best 1 texture sample per 

ray (filter support 1).  Texture samples per subdivision range from the worst case of 

9,216 texture samples (64 pixels  16 supersamples  9 texture samples), to 1,024 
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texture samples (64 pixels  16 supersamples  1 texture sample), a maximum 

difference of 8,192 texture samples.  This difference in memory accesses is further 

multiplied by 3 for the 3 bytes representing the RGB values of the texel. 

 

This theoretical evidence is further born out by the savings in relative time taken to 

render the scenes.  Empirical results shown in Section 6.2.1 indicate an approximate 

decrease of 10-20% in the time taken to render a textured image, even with simple 

scenes containing low geometric complexity.  The following section reports these 

test results in detail. 

6.2.1 Texture Importance Mapping Evaluation 

The following approach was taken to evaluate the texture importance mapping 

approach.  The images were rendered at a fixed ray-traced supersampling rate of one 

subdivision for each pixel.  This is to allow the texture mapping sampling to have the 

most influence on the quality of the image.  An image is then rendered with or 

without importance-biased texture resampling.  A comparison is then made of the 

time taken to render each image and relative L1 / L2 error norms are generated to 

give a measure of the difference between the two images.  A difference image is also 

generated to give a visual reference of where the major changes in the image have 

occurred.  Four images were chosen as test scenes. 

 

The first three range from a cloth texture that is highly structured; to a kitchen image 

that has a less regular structure; to a final garden scene that contains large regions of 

noisy foliage (refer to Figure 6.6).  Each image was constructed by rendering a 513  

513 scene containing one orthogonally projected textured square.  This construction 

allowed fine control over the texture samples made in each region, thereby 

facilitating comparison of texturing parameters and visual comparison of image 

quality.  These images were chosen to cover a broad range of structure and frequency 

content, to ascertain the capabilities of the importance-based texture sampling 

approach. 

 

A fourth scene of a room with a desk was constructed as a test for more complex 

texturing scenarios.  This provided information about the utility of the texturing 
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technique within a more realistic application containing perspective projections of 

the textured polygon surfaces (refer to Figure 6.7). 

 

   

Figure 6.6 The three textures used in the tests, from left to right: cloth, kitchen and 

garden. 

 

 

Figure 6.7 Illustration of a more complex texture test scene. 

 

The next four sections show the results for each scene.  The scenes have been 

rendered with and without texture importance sampling applied at a 513  513 

image-space resolution.  In the first three test images the size of the texture is varied 

to have the values 257  257, 513  513, 1025  1025, 1537  1537 and 2049  2049 

pixels.  The texture sizes map to having a texel to pixel size ratio of: 1:2, 1:1, 2:1, 3:1 

and 4:1 respectively.  These sizes allow the comparison of results for textures which 

range over the values of the threshold previously mentioned at the maximum size of 

the filter (4:1), to the case of having more then one image-space pixel per texture-

space texel (1:2).  This series then indicates how the texturing method performs over 

the differing texture scales.  It is expected that the method will work best with a texel 

to pixel ratio of 3:1 or greater, due to each pixel having exactly the same size as the 
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maximum size of the filter in texture-space (refer to the discussion in Section 6.4).  

The final room test scene was rendered at a 513  513 pixel resolution using a flat, 

high quality sampling rate of 4 subdivisions per pixel. 

 

An error image has also been presented to give a visual indication of the locations of 

the differences between the images rendered with and without a visual importance 

bias, as was done in Chapter 5.  The error values in the image have been negated and 

thresholded, in order to aid visualisation and reproduction.  That is, the dark pixels 

indicate locations where image differences occur, but they do not illustrate the 

magnitude of the differences.  Rectangular portions of the images have also been 

cropped and magnified to highlight examples of differences between the images.  A 

table of results for each image is presented containing L1 / L2 error ratios, the 

number of texture samples made and the relative time taken to render each image. 
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Cloth Texture Results 
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Figure 6.8 Example cloth images which have been produced using the adaptive 

texture mapping method (left) and without the adaptive texture method (middle).  The 

difference between the two images is shown on the right.  The rows represent, from 

top to bottom, textures resolutions of 257  257, 513  513, 1537  1537 and 2049  

2049 pixels.  The white regions within the difference images on the right represent 

pixels that have no difference between the biased and unbiased images.  Thus the 

relatively important regions are shown as white blotches because of the minimal 

difference between the images in that location. 

 

    

Figure 6.9 Illustration of the level of difference between subimages which contain 

differences induced by importance-biased sampling.  The images are drawn from the 

white rectangles in Figure 6.8.  The base image is on the left while the importance-

biased image is on the right. 

 

  

Figure 6.10 Region segementation (left) and importance (right) images for the room 

texture sampling scene. 
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Cloth Image Texture 

Samples 

L1 Ratio (L2 Ratio) Relative Time 

Difference 

With Respect 

to Base Image 

Base 257x257 7,721,584 - - 

Biased 257x257 1,652,171 0.0751 (0.0648) 0.8   

Base 513x513 7,721,024 - - 

Biased 513x513 1,592,220 0.0278 (0.0194) 0.8  

Base 1025x1025 7,713,832 - - 

Biased 1025x1025 1,602,168 0.0125 (0.0095) 0.9 

Base 1537x1537 7,728,976 - - 

Biased 1537x1537 1,644,463 0.0114 (0.0096) 0.9  

Base 2049x2049 7,728,912 - - 

Biased 2049x2049 1,528,971 0.0093 (0.0060) 0.9  

Table 6.1 Table of results for the cloth texture image. 
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Kitchen Texture Results 
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Figure 6.11 Example kitchen images which have been produced without (left) and 

with (middle) importance-biased texture mapping.  The difference between the two 

images is shown on the far right.  The rows represent, from top to bottom, textures 

resolutions of 257  257, 513  513, 1025  1025, 1537  1537 and 2049  2049 

pixels.  The white regions within the difference images on the right represent pixels 

that have no difference between the biased and unbiased images.  Thus the relatively 

important regions are shown as white blotches because of the minimal difference 

between the images in that location. 

 

     

Figure 6.12  Illustration of the level of difference in a subimage which contains 

differences induced by importance-biased sampled.  The images are drawn from the 

white rectangles in Figure 6.11.  The base image is on the left while the importance 

sampled image is on the right. 

 

  

Figure 6.13 Region segementation (left) and importance (right) images for the kitchen 

texture sampling scene. 
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Kitchen Image Texture 

Samples 

L1 Ratio (L2 Ratio) Relative Time 

Difference 

With Respect 

to Base Image 

Base 257x257 8,105,712 - - 

Biased 257x257 2,031,767 0.0712 (0.0391) 0.8 

Base 513x513 8,119,128 - - 

Biased 513x513 1,836,411 0.0448 (0.0208) 1.0 

Base 1025x1025 8,125,200 - - 

Biased 1025x1025 2,400,637 0.0239 (0.0102) 0.7 

Base 1539x1539 8,113,352 - - 

Biased 1539x1539 1,103,255 0.0198 (0.0055) 1.0 

Base 2049x2049 8,119,056 - - 

Biased 2049x2049 1,834,178 0.0206 (0.0056) 0.8 

Table 6.2 Table of results for the kitchen texture image. 
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Garden Texture Results 
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Figure 6.14 Example garden images which have been produced using the adaptive 

texture mapping method (left) and without the adaptive texture method (middle).  The 

difference between the two images is shown on the right.  The rows represent, from 

top to bottom, textures resolutions of 257  257, 513  513, 1025  1025, 1537  

1537 and 2049  2049 pixels.  The white regions within the difference images on the 

right represent pixels that have no difference between the biased and unbiased images.  

Thus the relatively important regions are shown as white blotches because of the 

minimal difference between the images in that location. 

 

     

Figure 6.15 Illustration of the level of difference in a subimage which contains 

differences induced by importance-biased sampling.  The images are drawn from the 

white rectangles in Figure 6.14.  The base image is on the left while the importance 

sampled image is on the right. 

 

  

Figure 6.16 Region segementation (left) and importance (right) images for the garden 

texture sampling scene. 
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Garden Image Texture 

Samples 

L1 Ratio (L2 Ratio) Relative Time 

Difference 

With Respect 

to Base Image 

Base 257x257 7,629,824 - - 

Biased 257x257 1,786,451 0.1445 (0.1046) 0.9 

Base 513x513 7,681,752 - - 

Biased 513x513 1,729,007 0.0975 (0.0794) 0.9 

Base 1025x1025 7,661,960 - - 

Biased 1025x1025 1,771,196 0.0452 (0.0353) 0.9 

Base 1537x1537 7,666,496 - - 

Biased 1537x1537 1,580,673 0.0457 (0.0226) 0.8 

Base 2049x2049 7,668,744 - - 

Biased 2049x2049 1,570,569 0.0445 (0.0179) 0.9 

Table 6.3 Table of results for the garden texture image. 

Room Results 

   

Figure 6.17 Results of room scene rendering with the base image (left), importance-

biased image (middle) and a difference image (right).  The white regions within the 

difference images on the right represent pixels that have no difference between the 

biased and unbiased images.  Thus the relatively important regions are shown as white 

blotches because of the minimal difference between the images in that location. 

 

   

Figure 6.18 Illustration of the level of difference in a subimage which contains 

differences induced by importance-biased sampling.  The images are drawn from the 

white rectangles in Figure 6.17.  The base image is on the left while the importance 

sampled image is on the right. 
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Figure 6.19 Region segementation (left) and importance (right) images for the room 

scene. 

 

Room Image Texture 

Samples 

L1 Ratio (L2 Ratio) Relative Time 

Difference 

With Respect 

to Base Image 

Base 55,506,299 - - 

Biased 7,681,298 0.0404 (0.0429) 0.9 

Figure 6.20 Table of results for the room scene. 

Discussion 

Even with a modest texture mapping method, such as used in these experiments, the 

importance-based texture sampling approach is still able to render the image 10-20% 

quicker than for a base image with a constant texture sampling rate.  In addition, the 

images which were rendered with a texel to pixel size ratio of 3:1 and greater had 

lower distortion levels, as was expected.  The distortion levels as indicated by the L1 

/ L2 norms were effectively halved once the 3:1 threshold had been approached–that 

is, the 1537  1537 size textures.  This restricts the use of this form of box filter-

based importance sampling to high texel to pixel size ratios.  It should also be noted 

that the subjective quality of images generated just short of the threshold (1025  

1025 images) was still high, indicating potential room to modify the  value in the 

sampling expression, to allow user control of the final image quality. 
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Furthermore, the room scene exhibited similar timesavings, with a small loss of 

image quality.  This adds support to the utility of this technique in increasing the 

efficiency of image synthesis with non-trivial textured scenes. 

 

It should also be noted that this adaptive texturing method is constrained by the 

quality of the segmentation of the image.  The merge segmentation approach 

struggled to match the structure of some of the scenes used in this chapter.  The 

segmentation of the room scene was, however, of a better quality.  Some possible 

improvements to this merge algorithm are discussed in more detail in Section 9.2. 

6.3 TEXTURE ADAPTIVE MESHING 

The Discontinuity Coherence Map (DCM) is the contour analysis approach used in 

Chapter 4.  Contrast and geometry measures are used by the DCM to ascertain the 

presence of a contour within a subdivision in the scene, effectively giving a piece-

wise linear approximation of the projected luminance function for the image [57].  

These measures are used in the first step of the sampling process (refer to Chapter 5), 

when only four samples per subdivision have been made.  The DCM approach uses 

information from both object-space and image-space to capture contours early in the 

refinement process: visible lines using a hardware rendering system, polygon tags 

indicating the presence of different objects in a subdivision and contrast at the four 

corners of the subdivision [57].  Other systems of progressive rendering use a texture 

mapped polygon to save on the need to sample the texture map at every location.  

Instead the texture-mapped polygons are pre-rendered and then blended with the 

radiosity samples made in the scene [130].  The DCM, however, does not use a 

merging of polygonal and radiosity values, and does not capture all the possible 

contours in a scene.  There is the possibility of texture information modifying the 

luminance function in a scene, as shown in Figure 6.21, and thus introducing 

contours indiscernible to the other methods until later subdivisions are performed. 
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Figure 6.21 Illustration of bump map checking algorithm.  The four sampled points 

(grey circles) would normally return no contrast difference, even though the 

bump/texture map has contour information (thick lines).  In the new technique, the 

sampled points have their texture coordinates checked between them for large 

luminance deviations, indicating a plausible contour in image-space. 

 

The ray-tracing implementation used in this thesis receives geometry information 

from the ray intercept in the form of an ID tag.  The ID tag is used to index shader 

information for the intercepted polygon, thus indicating the presence of a bump map 

within the subdivision.  The two points sampled at the edge of the subdivision form a 

line in the bump map space.  If there has been no contour detected by normal means, 

and if the samples at each point contain bump map information, then the texture-

space is scanned for contours along the subdivision edge.  If the subdivision contains 

an edge of a large enough magnitude to possibly form a contour, then the system 

classifies this subdivision as non-smooth and performs further sampling and 

subdivision accordingly, as per the other methods of contour detection. 

 

Furthermore, if there is only one sample that contains bump map information, or the 

two points access different bump maps, then the system automatically flags the 

subdivision for further analysis.  This is similar to the cautious marking of 

subdivisions with different polygon hit tags as being likely to contain contours [57]. 
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Figure 6.22 Illustration of process involved in ascertaining the locations of possible 

contours within a bump map.  The grey corners are ray traced pixels, with the other 

white circles the pixel locations yet to be sampled.  If a deviation is found then the 

subdivision is marked for further sampling according to the original DCM algorithm. 

 

The Bresenham line rasterisation algorithm is used to form the sample line through 

the bump map texture-space (refer to Figure 6.22) [18].  The Bresenham algorithm is 

used due to its efficiency in utilising integer-based arithmetic to generate the texel 

locations.  The aim here is not to ascertain the strength of the contour, this is better 

left to the luminance evaluation functions in the ray-tracer.  The goal is to find likely 

image-space contours, and to flag them for later processing by the sample generator.  

This gives an added metric to the contour analysis system, with minimal 

computational effort. 

 

A polygon with a brick bump map is shown below in Figure 6.24, with and without 

the bump map sampling metric.  The bump map sampling metric finds the contours 

in the edges of a subdivision and thus alerts the subdivision algorithm to possible 

luminance changes that should be processed by a subdivision of the quadtree.  The 

image is thus improved at any stage of the subdivision by being alerted to the 

presence of possible contours. 

 

This method can be applied to the use of coloured textures as well.  The most 

efficient way to handle textures is to use hardware rendering to pre-render the 

polygons and then blend the textured geometry with the luminance information in the 

frame buffer.  However, in the absence of hardware rendering capabilities, one can 

use the texture-space search to discover contours that may appear from texture 

mapping in a similar manner.  The method is slightly different to bump mapping, as a 

bump map is inherently an achromatic channel.  Here, the technique has to convert 

(p1) (p2)

Image-space

(p1)

(p2)

Texture-space

(t)

(s)



 

Chapter 6 

180 

the values in the texture map to grey levels to enable the searching of the texture for 

contour information. 

 

The technique preprocesses the texture map to create a simple edge detected version 

of the texture map, in grey scale, which allows the DCM to sample the texture map 

along the axis indicated.  Any changes in the edge map will signify a potential edge 

within this side of the subdivision and, again, the DCM is alerted to the presence of a 

contour within the subdivision.  Further processing as per the DCM algorithm is 

carried out for the subdivided contour subdivision. 

 

The method is general enough that other progressive approaches will benefit from 

this technique, as it only requires that a line exist between two samples in the same 

texture-space, in some form of subdivision scheme.  This means that progressive 

rendering methods using regular adaptive sampling [129] or Delaunay triangulation 

methods [125] could also benefit from this approach. 

6.3.1 Texture Adaptive Meshing Evaluation 

Using the same error measure as used in the objective evaluations in Chapter 5, the 

images were progressively rendered with L1 and L2 error norm values generated for 

each image.  Figure 6.21 illustrates an optimal scenario, where the contours within 

the subdivision miss sample points, but will be detected by the bump map checking 

technique.  Bump maps having a regular structure are expected to benefit most from 

this technique, as their contours fall within the subdivision edge without causing a 

contrast at the sample points. 

 

Scaling of the texture is therefore an issue important to the success of this technique.  

The brick bump map texture used was generated at texture coordinates that doubled 

in size for every frame.  This in effect reduced the size of the bump map texture by 

half each time, giving an indication of the effectiveness of the algorithm at different 

texture scales.  The results have been plotted as L1 and L2 ratio graphs, with selected 

images displayed to visualise the effect on image quality. 
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Figure 6.23 Graphs of L1 and L2 norms for progressive rendering of textures scaled to 

1, ½ and ¼ their original size. 
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Original Size 

Texture 

Percentage 

Sampled 

Base L1 Base L2 Adapt L1 Adapt L2 

1 0.1918 0.1500 0.1918 0.1497 

2 0.1483 0.1290 0.1483 0.1287 

3 0.1409 0.1131 0.1454 0.1127 

4 0.1447 0.1127 0.1440 0.1114 

5 0.1445 0.1110 0.1440 0.1091 

6 0.1451 0.1113 0.1475 0.1089 

 

½ Size 

Texture 

Percentage 

Sampled 

Base L1 Base L2 Adapt L1 Adapt L2 

1 0.1990 0.1548 0.1990 0.1544 

2 0.1617 0.1365 0.1617 0.1362 

3 0.1303 0.1133 0.1303 0.1132 

4 0.1302 0.1110 0.1268 0.1133 

5 0.1337 0.1070 0.1302 0.1114 

6 0.1341 0.1063 0.1337 0.1080 

7 0.1346 0.1073 0.1385 0.1079 

 

¼ Size 

Texture 

Percentage 

Sampled 

Base L1 Base L2 Adapt L1 Adapt L2 

1 0.1955 0.1942 0.1955 0.1940 

2 0.1774 0.1657 0.1774 0.1655 

3 0.1785 0.1469 0.1785 0.1468 

4 0.1785 0.1368 0.1785 0.1367 

5 0.1699 0.1240 0.1785 0.1252 

6 0.1626 0.1195 0.1678 0.1218 

7 0.1584 0.1184 0.1584 0.1185 

8 0.1584 0.1187 0.1624 0.1194 

9 0.1584 0.1192 0.1624 0.1199 

10 0.1584 0.1196 0.1624 0.1216 

Table 6.4 Table of values for the renderings of the brick bump map with original, ½ 

and ¼ size textures. 
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Figure 6.24 Illustration of the ability of the technique to discover contours not found 

by the base DCM method.  The image on the left is the final rendering, the middle 

image is the base image 7% sampled, the right image is the texture adaptive method at 

7% sampled.  All images are for the ½ scaled texture example.  Examples of extra 

contours in the far right image are highlighted by the white rectangle. 

Discussion 

As can be seen from the graph values, the L1 and L2 ratios are not greatly affected 

by the texture adaptive technique.  However, the images shown in Figure 6.24 

illustrate the ability of the method to discover contours within the bump map texture 

applied to the polygon.  This ensures that contours which will influence subdivision 

in the progressive refinement process are discovered earlier than in the base DCM.  

A positive example has been shown for a regularly structured bump map. 

 

The time complexity cost to the algorithm is the tracing of the edge of a subdivision 

through texture-space.  This is only performed once after the initial subdivision, and 

only on subdivisions that have not already been flagged as containing a contour.  It 

should also be noted that the worst case scenario of having to search every 

subdivision for bump map information would be unusual, as only a proportion of the 

subdivisions will contain bump map information for an arbitrary scene.  Therefore, 

the time complexity is O(n), with the coefficient for the time complexity expression 

being less than one for most cases.  The space complexity is the storing of two (s and 
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t) texture coordinates as machine words–for each of the four corner points of the 

elementary subdivisions in the image.  This space complexity expression is O(n) with 

respect to the size of the image in pixels, with a coefficient of 2 / 64–only two 

samples per 8  8 pixel subdivision needed, due to shared subdivision vertex 

samples. 

 

In addition, the effectiveness of the method is predicated on the progressive method 

used to render the scene.  Other progressive ray-tracing methods are not aware of 

texture-space information in subdivision decisions [125, 129, 130], and so this 

general technique should be of benefit to these methodologies as well. 

6.4 DISCUSSION 

Texture sampling is a computationally intensive task.  In this chapter, texture 

resampling techniques have been developed which account for the visual importance 

of the textured regions.  This has been achieved by modulating the support of filters 

used to resample textures, by calculated visual importance values.  The approach has 

been shown to work for the box texture filtering method, with a texel to pixel size 

ratio greater than the maximum size of the filter. 

 

The progressive rendering of bump mapped polygons has also benefited from 

techniques devised to search for contours within texture-space, to help uncover 

contours sooner.  Progressive rendering of certain bump mapped surfaces have been 

shown to benefit from this bump map searching approach. 

 

Both approaches have been evaluated with objective methods of assessment, and 

have been shown to be beneficial in improving either the efficiency or the quality of 

images in a progressive ray-tracing scenario. 
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Chapter 7 

Adaptive Image Synthesis Animation 
 

Previous chapters have dealt with the development of an overall approach to the 

application of visual attention to progressive and adaptive ray tracing techniques.  

This chapter extends these ideas by incorporating temporal changes into the models 

and techniques developed. 

 

Research indicates that motion is a strong attractor of visual attention [116, 128, 144, 

151, 177, 185].  There is also physiological evidence for the pre-eminence of motion 

in the hierarchy of visual features, due to the presence of receptors sensitive to 

moving contours [20] and the magnocellular pathway in the visual system [92].  

These results are consistent with psychophysical evidence showing that motion very 

strongly attracts visual attention [177, 183]. 

 

Closely related to motion is the abrupt onset of a stimulus [177], generally 

considered to be due to changes in luminance values across the scene–for example, 

the turning on of a spotlight.  Experiments have shown that in non-attentive modes 

the sudden onset of stimuli within the periphery brings about attentional capture 

[183].  In addition to this is the discovery that the onset tends to be more effective at 

attracting attention when the stimulus is aligned with the appearance of an actual 

object, and not just a change in the visual features of a region [62] 

 

Research has also shown the high correlation of points of regard between viewers 

when observing images containing movement [151].  It can be concluded that much 

rendering effort can be saved by further exploiting the visual attention principles 

used in Chapter 5 and Chapter 6.  Given the attention capturing ability of moving 

objects [62], it is expected that the best results will be gained from adding motion to 

the newly developed visual attention model.  Furthermore, it can be seen that any 

complete temporal change model must account for both motion and stimulus onset 

factors. 
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In this chapter a more complete model of the effects of motion upon visual attention 

is developed.  In particular, the new model improves on others by incorporating the 

following factors: 

 

 relative forms of motion are used to ascertain the importance of the 

region, as opposed to absolute measures used in present models; 

 magnitude and directional factors are treated as separate factors 

contributing to the final motion-based visual importance of a region; 

 global effects are also incorporated, to model the enhancing and 

suppressing influences of surrounding motion in a scene 

 parameters for the model are gained from psychophysical research, 

instead of using arbitrary values; 

 differentiation of onset effects from those caused by the motion of 

objects in the scene–for example, lighting changes. 

 

Furthermore, new animation techniques are developed to exploit the visual 

importance evaluation offered by the temporal change model.  A region-based 

motion detection approach is developed which has the following features: 

 

 the ability to account for gross and local motion effects of regions 

explicitly–eg. both translation and internal rotation of objects; 

 the ability to account for non-affine transformations of the regions 

being analysed–ie. non-linear region deformations; 

 the ability to remove camera motion effects from the derived region 

motion vectors. 

 

The chapter details the theoretical basis and the design of the major components of 

the approach.  Implementation issues are also discussed at the end of this chapter.  

Implementation has been left as future work due to it being a major task, adding to 

the workload of an already large project.  Furthermore, due to the good results from 

work performed with still images in Chapter 5, it is expected that the application of 
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motion to both the visual importance model and the rendering techniques should give 

the same, if not better, results. 

 

Structurally the rest of the chapter is organised as follows.  An analysis of present 

research into the effects of motion upon viewer gaze positions is presented in Section 

7.1.  Section 7.2 details the development of extensions to the visual attention model 

developed in Chapter 4.  Section 7.3 then details the incorporation of the new 

temporal change model into an adaptive rendering system.  Finally, the chapter 

concludes with a discussion of achievements in the design of the model in Section 

7.4. 

7.1 EFFECTS OF MOTION ON EYE MOVEMENTS 

The physiology of the HVS contains constructs for the detection of motion.  The 

retina (see Chapter 2) contains receptors which are only sensitive to moving contours 

within their receptive field [20].  Further into the visual system there is a construct 

named the magnocellular pathway, which is an achromatic channel sensitive to 

motion.  This is confirmed by psychophysical tests, which indicate the achromatic 

nature of motion perception [92]. 
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Figure 7.1 Spatiotemporal sensitivity curve for the HVS from Wandell [166].  The 

vertical axis represents the magnitude of contrast required to detect a contrast 

reversing signal at the specified spatial frequency (in cycles per degree subtended–

cpd) and temporal frequency (in cycles per second–Hz).  Note the asymmetry in the 

curves introduced by the use of logrithimic scales on each axis.  

 

This ability of the HVS to be strongly attracted to motion has it limits.  Figure 7.1 

shows the spatio-temporal contrast sensitivity curve, indicating in a manner similar 

to the contrast sensitivity curve, the sensitivity of the HVS to combination of spatial 

and temporal frequencies. 

 

The above surface indicates the sensitivity of the HVS to changes in spatial 

frequencies which contrast reverse at the temporal frequencies labelled on one of the 

axes.  The upright axis indicates the inverse of the amount of contrast required before 

the viewer perceives the grating change.  Of interest is the falloff in sensitivity after 

certain temporal and spatial frequency values are reached.  Two commonly quoted 

limits derived from such psychophysical data, are the perceptual fusion of sinusoidal 

luminance gratings at above 16 cpd and light flashes at anything less than 15-20ms 

intervals [166]. 

 

Moving on from simple spatial frequencies, an even more relevant issue is the 

tracking capability of the HVS.  This ability to track a moving object is called 

smooth pursuit (refer to Section 2.1.3), and has been analysed by a number of 



 

Chapter 7 

189 

researchers [51, 138, 164, 171].  Work performed by Daly [31] has also derived the 

following graph of the pursuit capabilities of a test subject. 

 

 

Figure 7.2 Graph of smooth pursuit capability of the human visual system [31]. 

 

These two experimental results become important when evaluating the importance of 

a region within the visual field of a viewer.  Firstly, the change in luminance must be 

visible to the viewer.  Secondly, the motion perceived must be able to be tracked, in 

order to attract attention.  Motion magnitudes beyond the tracking capabilities of the 

HVS will reduce the correlation between the location of the viewed object and the 

locations of the points of regard. 

 

In addition, results from experiments by Nothdurft also indicate a sigmoidal pop-out 

effect from local motion differences, with a saturation effect past a high level of local 

motion difference [122, 123].  As with luminance and colour, the effect is suppressed 

by surrounding motion differences [122]. 

 

Evidence therefore indicates that as well as temporal magnitude change, there needs 

to be consideration of the vector nature of motion within the visual field, based upon 

local and global region motion differences.  Thus, a region-based model of motion 

importance has been developed to incorporate temporal changes using both direction 
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and magnitude of motion.  In addition, the model also accommodates abrupt onset 

effects. 

 

Previously, the majority of the application research work has been carried out into 

detecting changes in an image, for compression purposes, in order to reduce the 

amount of data needing to be sent for low bandwidth video applications [87].  

Recently, in addition to this raw detection and compensation for change in an image, 

there has been the application of the previous psychophysical experimental results to 

the determination of the importance and visibility of changes occurring within a 

video stream [34, 128].  Models have been developed to simulate the visual 

importance of motion within the application areas of video processing and image 

synthesis, in order to further reap efficiency gains not possible through raw change 

detection. 

 

A multiresolution motion model has been developed by Yee [185, 186], as an 

addition to the visual saliency model of Koch and Ullman. [83] and Itti and Koch 

[72].  The model uses a magnitude value to ascertain the visual importance of pixels 

in the region, using an object ID-based method of pixel displacement calculation 

developed by Agrawala [1].  These pixel-based velocity measures are then fed into a 

centre-surround mechanism, which processes local differences in motion.  The 

values are normalised across the image by an operator accounting for the overall 

activation of the motion feature dimension.  The approach did not, however, allow 

for camera movements in its motion estimation.  This motion extension was used, 

along with other spatial features (refer to Section 3.1), to modify global illumination 

parameters in computer animation.  The rendering system applied more sampling to 

those regions, which via motion differences attracted the attention of the viewer. 

 

Region-based approaches have also been used to model motion importance within a 

series of images.  Osberger [128] has devised an effective threshold model to 

incorporate motion into a video processing system.  The function is also adaptive to 

the overall quantity of motion in the image and compensates for camera motion using 

an undocumented mechanism.  While the motion model reports good results for 

determining motion importance, the parameters are not referenced to any 
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psychophysical data.  An arbitrary upper threshold of 20 deg/sec. is used on the 

motion importance function.  Motion importance in this approach is calculated by the 

absolute magnitude of the motion.  Even though this approach allows for global 

distribution of motion, it does not allow for local difference effects due to directional 

or magnitude values. 

 

A simple fuzzy logic motion importance model has been developed by Marichal et 

al. [102] and De Vleeschouwer et al. [34, 35] for applications to low-bandwidth 

video.  The motion estimation is based upon absolute magnitudes of motion, which 

do not account for global quantities of motion.  In addition, the model does not 

account for the direction of motion, nor does it allow for local differences in motion 

effects.  A major component of the model is a user-defined region of interest 

parameter, which effectively removes a large component of its automatic importance 

calculation capabilities.  It must be understood, though, that the model was 

developed for low-bitrate video applications–where the user does have considerable 

input into the parameter settings for the application. 

 

The fuzzy membership functions comprising the motion component of the model are 

arbitrary in nature, being trapezoidal functions arranged over the antecedent universe 

of discourse.  They do not account for any psychophysical results in the relevant 

literature.  Furthermore, no results for the effectiveness of the model are listed, 

except for preliminary results of subjective video quality.  The system is incorporated 

into a low-bandwidth video encoding and transmission scheme, which facilitates user 

control of quality parameters. 

 

The issue of appropriate parameter values for the motion importance system is 

crucial to its potential modelling of visual importance.  One important parameter is 

the upper limit on the smooth pursuit motion of the HVS.  Daly [31] reports a value 

of 80 deg/sec
13

, while other researchers report values ranging from 20 to 30 deg/sec 

by Wesheimer and Robinson [138, 171] to 50 deg/sec by Verstraten et al. [164].  The 

latter value being considered of dubious application to this thesis application area, 

                                                 
13

 Degrees per second being the number of degrees subtended per second by the motion of the region.  

This value is therefore dependent upon the distance of the viewer from the scene. 
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due to the results being gained from wilful direction selection of ambiguously 

rotating stimuli and not the tracking of real moving objects in the visual field.  The 

values reported by Daley have added weight due to the natural viewing nature of the 

experimental conditions. 

 

These region-based models only treat motion as a magnitude, and do not include its 

vector component in their calculations.  The models also do not differentiate between 

motion and abrupt onset in any fashion.  Therefore, these approaches can be 

improved by incorporating a region-based measure of local differences, which 

accounts for global suppression and enhancement effects.  As motion is a vector 

quantity, this should be considered in the model.  If a region is moving in an opposite 

direction at the same velocity as other objects, then it will still be noticeable due to 

the local difference in motion direction [122].  The next section will detail a temporal 

change model that incorporates these improvements. 

7.2 A VISUAL ATTENTION MODEL INCORPORATING 
TEMPORAL CHANGES 

Temporal changes involve two major categories, actual motion of objects in a scene, 

and sudden changes occurring due to luminance changes unrelated to object motion.  

Both of these have been characterised within this temporal change model, to 

accommodate most effects occurring within an animated scene. 

7.2.1 Motion Membership Functions 

In a similar fashion to the membership functions in the spatial visual attention 

system, the motion membership function is adaptive to the magnitude of motion 

detected within the visual field.  Another membership function models the 

importance effects of the direction component of the region motion.  Both of these 

factors contribute to the motion importance of regions.  An illustration of this 

concept is shown in Figure 7.3. 
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Figure 7.3 Illustration of the concepts of motion magnitude importance and motion 

direction importance.  Both images show regions with vectors attached, indicating 

their direction and magnitude of motion.  The left diagram show a grey region 

standing out due to a difference in velocity magnitude–indicated by the longer arrow–

while proceeding in the same direction.  The right diagram shows a grey region 

standing out because of its relative difference in direction–indicated by the reversed 

direction vector–while proceeding at the same speed. 

 

The membership functions derived from these also exhibit threshold and saturation 

effects as uncovered in psychophysical research [122].  Therefore, the membership 

function follows the design outlined in Figure 7.4. 

 

 

Figure 7.4 Diagram of the motion evaluation membership functions for the Magnitude 

of the motion (left) and the Direction of the motion (right). 

 

The functions adapt themselves by fuzzifying the threshold of pop-out for the motion 

feature.  The membership function for the magnitude difference variable has two 

thresholds.  The first tlmag is derived from the average number of motion magnitude 

differences occurring between the regions within the scene.  The second threshold 

thmag is the practical upper limit for the tracking ability of the human visual system.  

According to Daly [31] this value is approximately 80 deg/sec.  Therefore, the visual 
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importance of regions above the final threshold falls off to zero quickly-over 5 

degrees to be zero at 85 deg/sec. 

 

Research into the tracking capabilities of the HVS reports upper thresholds with 

respect to the visual angle subtended by the target per sec. [31].  However, it has to 

be noted that the falloff in tracking ability has not been modelled by the research.  

Therefore, the ad hoc value of 5 degrees has been chosen to account for two possible 

threshold factors.  Firstly, to model a potentially fast falloff in tracking ability that is 

most likely sigmoidal in nature [122].  Secondly, the possible threshold differences 

between subjects fuzzifies the actual values of the threshold–in a similar manner to 

the other thresholds in the visual importance model (refer to Section 4.2).  This final 

upper threshold is non-adaptive, as it models the physical tracking limit of the HVS.  

Based upon the above factors, the universe of discourse for the motion magnitude 

importance function ranges over [0.0, 85.0].  The following equations formally show 

the thresholds for the fuzzy membership function: 

 

tlmag = max(5.0, Mavg) (7.1) 

thmag = 80.0 (7.2) 

 

where: 

 

tlmag is the low magnitude threshold for the motion magnitude importance 

function, ranging over [5.0, 80.0]; 

thmag is the high magnitude threshold, set to 80.0 degrees per second, as per 

Daly [31]; 

Mavg is the average magnitude differences between regions segmented from 

the whole scene. 

 

No research has been performed to indicate relative motion effects, except in 

characterising pop-out [122], which only included observations of motion direction 

differences, not actual motion magnitudes.  For example, one object could be moving 

at 100 deg/sec, with surrounds moving at 90 deg/sec.  It can be hypothesised that 

both of these regions are unable to be tracked by the HVS.  From this it can then be 
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surmised that the local difference would not attract attention due to temporal 

masking and blurring effects obscuring the local difference in motion values, due to 

the movement of the untracked regions across the retina [51].  Subsequently, the 

absolute motion value of the region being examined is thresholded to 80 deg/sec 

before being processed for relative motion analysis, to prevent these circumstances 

influencing the final motion importance of the object. 

 

In addition, research has indicated asymmetry in the pop-out induced by motion.  

That is, a moving object on a stationary background is far easier to see than a 

stationary object against a moving background [36].  Similarly, a slow moving object 

against a fast background is not as easy to distinguish as a fast object on a slow 

background [75].  Therefore, in order to model this effect, only moving regions are 

considered for the motion importance calculations.  This removes the case of 

stationary objects having large relative motion differences causing inappropriate pop-

out.  This is implemented by simply assigning a zero value to the motion differences 

for a stationary region. 

 

In the case of an object changing speed and having its absolute velocity fall under the 

threshold of visibility, then the model is able to respond due to the previously 

mentioned threshold.  When it has been established that the object is moving under 

the 80 deg/sec threshold, then the object will pass through the filter and contribute to 

the importance calculations due to motion. 

 

Motion direction vectors are handled in a similar manner, with only one adaptive 

threshold tdir derived from the mean value of the direction differences, measured as  

(radians)–with absolute values being taken with reference to the x axis.  The bottom 

threshold is set to 0.35 radians (20 degrees), if there is no background activity [122].  

The motion threshold value is derived using the following equation: 

 

tdir = max(0.35, Mdir) (7.3) 

 

where: 
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tdir is the adaptive threshold for the motion direction membership function; 

Mdir is the average value of the motion direction differences between regions 

within the scene, in radians. 

7.2.2 Onset Membership Functions 

The handling of sudden onsets with regards to pop-out is not treated as an adaptive 

luminance change function.  The membership function is not adaptive in nature, as 

the formula used allows for any adaptation directly (refer to Figure 7.5). 

 

Essentially, the effect of abrupt onset is reduced to luminance amplitude change 

effects, regarded to be the proportion of segments per region that have changed 

luminance, as a ratio over how many segments have changed in the entire image.  

The amplitude of change is treated in a similar fashion to luminance contrast, with 

there needing to be greater than 1% contrast from frame to frame before it is 

considered a noticeable change [166]. 

 

 

Figure 7.5 Illustration of abrupt onset membership function. 

 

The onset value is calculated according to the following equation: 

 

OnsetRatio = NumRegSegCh / NumImageSegCh  (7.4) 

 

where: 

 

OnsetRatio is the fuzzified onset value; 
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NumRegSegCh is the number of segments within the region that have 

changed; 

NumImageSegCh is the number of segments within the entire image that have 

changed. 

7.2.3 Temporal Change Evaluation Rules 

In a similar manner to the spatial system developed in Chapter 3, the system uses the 

following rules to evaluate the temporal importance of a segmented region: 

 

IF MagDiff   IS High  THEN FinImp IS High 

IF MagDiff   IS Med  THEN FinImp IS Med 

IF MagDiff   IS Low  THEN FinImp IS Low 

 

IF DirDiff   IS High  THEN FinImp IS High 

IF DirDiff   IS Med  THEN FinImp IS Med 

IF DirDiff   IS Low  THEN FinImp IS Low 

 

IF OnsRatio   IS High  THEN FinImp IS High 

IF OnsRatio   IS Med  THEN FinImp IS Med 

IF OnsRatio   IS Low  THEN FinImp IS Low 

 

These rules are integrated into the region-based importance mechanism.  Therefore, 

the aggregation and defuzzification methodologies are the same as used in the spatial 

importance system. 

7.2.4 Integration into Spatial Visual Attention Model 

The temporal importance rules are used in the same way as the other spatial 

importance rules, in a multiple-additive manner [7].  The temporal changes 

determined by object motion and abrupt onset are combined into the final importance 

value for the regions.  This concurs with present thinking on the close relationship 

between onset and motion effects in visual search [177]. 
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The only anomaly in the rule base is the case of object-based motion occurring when 

there is no luminance change in the image segmentation.  For this scenario, it would 

be inappropriate to allow the motion importance from object information to influence 

the visual importance of the region, as no visible change has taken place in the 

image.  If the object that has moved has no subdivision changes with a temporal 

luminance contrast above 1%, then the motion vectors associated with the region are 

set to zero. 

 

The only modification to the implication process lies in the weightings applied to the 

spatial and temporal rules.  The temporal rules receive a higher weighting value due 

to the importance of temporal image changes.  In a manner similar to other models, 

the implementation here uses 0.6 for the temporal rules and 0.4 for the other spatial 

rules [116, 128].  The next section describes how the temporal visual attention model 

is integrated with the spatial visual attention model. 

7.3 A MOTION-BASED ADAPTIVE ANIMATION RENDERING 
APPROACH 

In order to incorporate the above model into an adaptive rendering approach a 

number of stages must take place.  The system must make some segmentation of the 

scene based upon motion information, using previous frames and region importance 

maps.  The approach must also compensate for ego motion caused by camera 

movement.  Next, the temporal model is applied to the motion vector estimates from 

the segmented regions to produce a relative visual importance value for moving 

region.  Finally, the importance value is used to control the adaptive rendering 

system.  The major components of this approach are depicted in Figure 7.6. 
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Figure 7.6 Flow diagram of the major stages in the temporal change approach. 

 

In the newly developed approach, the calculations are performed from frame to 

frame, this requires the approach to have the Previous Frame Buffer stored to 

facilitate the change analysis.  While the image is progressively sampled to the level 

of one sample per pixel, the present and previous frame buffers are analysed for 

motion.  A previous region segmentation is stored in order to facilitate the motion 

importance calculations.  Once region motion vectors have been derived for the 

regions in the scene, then these vectors are processed to remove any camera motion.  

The resultant vectors are then fed to the motion membership functions that are 

detailed in Section 7.2.1.  The resultant motion importance values are stored in the 

   

Detect   
Motion   

Compensate   
for Camera   
Movement   

Calculate   
Motion   

Importance   

Progressively   
Generate   
Samples   

Previous Frame   
Buffer   

Quadtree Image   
Segmentation   

    

Region Importance   
Map   

Frame Buffer   

Calculate   
Spatial   
Importance   

1   

2   

3   

4   

5   

Previous    Region   
Importance Map   

  



 

Chapter 7 

200 

Region Importance Map.  The motion importance value is then integrated with the 

spatial importance value to form a spatiotemporal region importance value stored in 

the present region importance map.  In a similar fashion to that detailed in Chapter 5, 

the importance value is used to modulate the supersampling performed within each 

pixel. 

7.3.1 Motion Estimation Technique 

There are two major methods for motion estimation within the area of image 

synthesis.  The motion estimation can be performed in an image-based manner, 

similar to video systems, or by using object-based techniques. 

 

The image-based techniques typically involve estimating the location of how far a 

subdivision or block has moved within the image.  Image-based approaches often use 

a block-based search window to minimise the Mean Square Error (MSE) of the block 

being examined, in comparison with other blocks within the window.  The block 

with the minimum error is considered the location where the block has moved.  This 

predicted displacement is used to calculate motion vectors for compression 

techniques in video transmission [87]. 

 

Object-based methods exploit the object-space geometry and the associated 

transformation matrices to estimate where a geometry component will be translated 

to on the screen [1, 56, 165, 187].  Object-based approaches perform better than 

image-based methods in 3D animation applications, due to the unambiguous nature 

of the object ID information.  A number of motion estimation techniques have been 

developed for image synthesis to facilitate compression of synthetic movies. 

 

The motion estimation process used by Guenter et al. [56, 187] is pixel-based, 

utilising pixel RGB colour, object ID and depth buffer values.  The estimation 

technique uses these parameters as an aid in determining, in the forward direction 

from frame n to frame n + 1, the position of a four pixel (2  2) square.  Error 

thresholds from depth and object ID information are used to determine whether a 

predicted pixel matches the n + 1 frame in the sequence when transformed from 

frame n. 
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Wallach et al. [165] use hardware gouraud shading and texturing techniques to 

garner information about optical flow within the image being generated.  The mode 

vector of the 16  16 pixel optical flow block is used as the centre of a brute force 

search.  This is similar to the approach by Guenter et al., due to the need to 

accommodate more than one object being within a block being processed.  Again, the 

technique does not allow for non-translational optical flow, but it does give a very 

efficient hardware-assisted method to gain optical flow vectors for a synthetic 

animation. 

 

Agrawala et al. use back projection to ascertain the location of a pixel in the previous 

frame to the one being examined [1].  The transformation and projection matrices are 

used to obtain the position of a pixel in object-space in the previous frame.  The 

difference between the two gives an object-space accurate optical flow motion vector 

for the pixel.  Depth and object ID information is also used to help deal with 

occlusion problems from frame to frame, in a similar manner to Guenter et al. [55, 

56].  Their results show that for their compression application, a hybrid method using 

brute force window methods and least squares methods for block vector estimation 

performed better overall.  The block search method is applied to blocks containing 

object ID edges, or newly uncovered object IDs.  A least squares estimation scheme 

is then used to compute the transformation matrix for the other 8  8 pixel blocks 

within the scene.  The least squares scheme allows for non-translational optical flow, 

an improvement on previous methods. 

 

As the temporal change approach developed here continues the region-based 

paradigm, it is appropriate that the motion estimation technique will be developed 

from a region-based perspective.  Furthermore, it can be argued that the perceived 

motion in a scene is region-based in nature, due to a person focusing on regions in an 

image, and not pixels or blocks (refer to Section 3.2). 

 

As an improvement to the segmentation techniques used in Chapter 5, the region 

merge algorithm has been modified to include object IDs.  The motion estimation 
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scheme detailed here obtains regions by segmenting the scene using the object ID as 

a basis for the comparison operations in the subdivision merging stage.  Once the 

image is segmented by object ID, then the regions are further segmented by 

luminance and hue features.  This provides a two level hierarchy, where the top-level 

regions are segmented by object ID and the second level regions are segmented by 

luminance and hue features, as per the method used in Chapter 5.  This facilitates the 

detection of gross region motion effects within the top-level, while internal motion 

effects are detected within the second segmentation level. 

 

The Object ID information is gained from Attribute command information in the 

Renderman  file format [162].  This may be obtained from various levels of the 

hierarchy that constructs the objects in the scene.  For instance, an object named as a 

bike may be made up of a number of components: wheels, frame, handle bars etc.  At 

this stage the object IDs are obtained from near the top of the hierarchy, so complex 

constructs are considered objects in this model.  This will match, in most cases, the 

construction and setting of the scene as a background with a number of objects in the 

foreground, for example, a room scene with furniture.  However, more sophisticated 

methods could be employed, based upon the projected area covered by the boundary 

of the object ID in question [169].  If the object ID used does not refer to a large 

enough projected area, then an object ID can be chosen from a higher point in the 

hierarchy. 

 

As well as aiding the correct segmentation of regions for more accurate motion 

calculation, the use of object IDs speeds up the merge segmentation algorithm.  The 

segmentation algorithm is now divided into two main processes.  The first is the 

merging of subdivisions that have the same object IDs.  This can be performed in a 

serial fashion by simply scanning the subdivisions from top to bottom, left to right, 

placing them in subdivision lists identified by the mode of the object ID samples 

within the subdivisions. 

 

The lists of subdivisions are then processed using the merge algorithm previously 

developed in Chapter 5.  The subdivisions are divided up into regions based upon 
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hue and luminance differences (refer to Figure 7.7).  This segmentation approach is 

incremental in nature.  If a subdivision changes object ID, luminance or hue through 

further sampling, then the subdivision is reallocated to another region, triggering new 

importance calculations to update the importance map. 

 

 

Figure 7.7 An example of the hierarchy of segmentation used in the motion esitmation 

system.  The colour of the subdivision represents object ID segmentations.  The dotted 

area represents one object ID, while the white background represents another object 

ID.  The numbers represent the segmentation within the object ID segmentation.  In 

the example, the cube region has been further subdivided into three regions (1, 2, 3). 

 

Due to the inherent correlation of the object ID with the motion in a scene, the 

segmentation based on object IDs provides effective search windows for further 

internal motion estimation.  These windows are more accurate than arbitrary sized 

square regions, which do not necessarily contain the blocks causing the perceived 

motion.  This brings about better matches when performing motion prediction within 

an object region. 
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Figure 7.8 Illustration of the internal motion search method over two frames (frame n 

on the left, n + 1 on the right), within the regions segmented at the level of object IDs–

dotted regions surrounding cube.  A subdivision which changes from frame to frame 

is highlighted in white.  A subdivision which changes across two regions is 

highlighted by a cross hatch pattern in the second frame. 

 

For video compression systems, motion vectors must be collated across the whole 

scene for every pixel and block [87].  Transmitting the change vector, instead of the 

actual image data, reaps efficiency savings.  As this application is the computation of 

region-based visual attention using motion differences, there is not such a need to 

search for block motion outside of the area segmented by an object ID.  This 

approach only requires estimates of the motion of the segmented region across the 

image, and the internal motion of a region.  Therefore, the algorithm works within 

the object ID region to search for internal motion.  This internal motion difference 

can be processed in the same manner as the gross region motion, to gain a measure of 

internal motion importance for each region. 

 

Subdivision changes may occur across different region segmentations, as shown in 

Figure 7.8 by the hatched subdivisions (marked  in Figure 7.8).  They can be 

classified as the appearance of a new object within the segmentation, and therefore 

are treated as an abrupt onset change, as per the model developed in Section 7.2. 

 

The possible object motions can be roughly divided into two categories: rigid and 

non-rigid.  Rigid transformations preserve the shape of the object in 3D, and occur 

due to object translation and rotation.  Non-rigid deformations occur due to 
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transformations that deform the shape of the object in 3D.  A combination of these 

two may occur for any object in the scene.  The method developed here will process 

both forms by performing a hierarchy of motion calculations.  The first level is the 

gross motion of the object ID segmented region, while the second is the internal 

motion of the hue and luminance segmented regions. 

 

The motion to be calculated for both the region levels is translational in nature.  This 

will still effectively model the internal motion of the regions–for example, the 

spinning of a cube (refer to Figure 7.8).  The object ID level of segmentation will 

compute importance for the translation of the cube through the scene.  The second 

level, which represents the segmentation of the gross region into similar hue and 

luminance regions, will give an estimate of the internal motion importance of the 

object. 

 

To identify the motion of the gross object ID regions is straightforward.  The method 

searches for a corresponding region object ID from frame n + 1 in the previous 

region segmentation for frame n.  The centroids of the regions in the two frames are 

then subtracted to form a motion difference vector MObjectIDr.  This vector is then 

used to compute the motion importance for the gross region motion.  If the object ID 

cannot be found in the previous region importance map, then the motion vector Mr is 

set to zero.  An object entering a scene will, on the first frame, be treated as a sudden 

onset region.  Frames occurring afterwards with this object will then process its 

movement in a normal fashion. 

 

The internal motion of the regions uses a region matching technique, similar in 

nature to the block matching techniques used in video compression.  In this case the 

method is modified to match regions, not blocks, for efficiency purposes.  The object 

ID level is used as the search window to search for matching regions.  An internal 

region in frame n + 1 is compared to the internal regions within the previous 

importance map for frame n.  The method minimises the MSE of the compared 

regions, in order to find the closest match.  In a similar manner to the object region 

calculations, the two internal region centroids are subtracted from each other to gain 

a motion vector MInternalr. 
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This motion and onset information is then passed to the camera compensation 

module to remove any camera motion from the vector. 

7.3.2 Camera Compensation Technique 

Before a motion importance value can be computed, the component of motion due to 

the camera must be removed from the computed region motion values.  Motion in an 

image can be caused by both the movements within the scene, and the spatial 

transformation of objects within the scene.  Camera motion forms a background 

motion noise, which needs to be suppressed in order to ascertain correctly the true 

changes in the scene for motion importance purposes [128]. 

 

The advantage with image synthesis camera compensation is the availability of the 

world to camera space transformation Twc, and the projection matrix P.  These two 

transformation matrices enable a complete model of the contribution of the camera to 

region motion estimates.  Before the region being examined is searched for in the 

previous frame region list, its centroid is transformed by the opposite of the 

difference in world to camera transformation matrices, thus removing any image-

plane motion produced by the view camera. 

 

The following notation is used in the equations detailed in this section: 

 

 Twc, n represents the camera transformation matrix–from world to 

camera coordinates–for frame n; 

 P represents the projection matrix used for the scene–orthogonal or 

perspective; 

 Cr, n represents the centroid of a segmented importance region r in 

frame n; 

 M*r, n represents the final image-plane 2D region motion vector prefix 

for region r in frame n–eg. MFinr, n. 
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The difference between the two camera transformations Twc is formed by analysing 

the world to camera space transform matrix Twc.  The following equation provides 

the camera transformation matrix between two frames n and n + 1: 

 

Twc = Twc, n + 1  Twc, n
-1

 (7.5) 

 

where: 

 

Twc is the camera motion transformation from frame n to frame n + 1; 

Twc, n + 1 is the world to camera space transformation for the frame n + 1 in the 

animation; 

Twc, n
-1

 is the inverse of the world to camera space transformation for the 

frame n in the animation. 

 

The inverse of Twc matrix, Twc
-1

, is then applied to the centroid Cr, n + 1 of the 

region being camera compensated, to remove the motion caused by the camera.  This 

means that the final 2D motion vector Mr, n + 1 for a region r, for frame n + 1 is: 

 

C’r, n + 1  = Cr, n + 1  P
-1

  T
-1

wc, n + 1  P (7.6) 

Mr, n + 1 = C’r, n + 1 - C’r, n (7.7) 

 

where: 

 

C’r, n + 1 is the camera compensated centroid for the region being examined in 

frame n + 1; 

C’r, n is the camera compensated centroid of the region in the previous frame 

n; 

P, P
-1

 are the view projection matrix and its inverse; 

Mr, n + 1 is the final 2D motion vector ( x, y, z ignored) computed for region 

r in frame n + 1; 

T
-1

wc, n + 1 is the inverse world to camera space transformation for frame n + 

1 in an animation. 
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The final calculation is the addition of the internal region motion vector with the 

object ID region vector to produce the overall motion of the internal region.  This is 

accomplished by the following equation: 

 

MFinr, n + 1 = MObjectIDr, n + 1 + MInternalr, n + 1 (7.8) 

 

where: 

 

MFinr, n + 1 is the final vector combining the gross and internal region motion; 

MObjectIDr, n + 1 is the camera corrected gross region motion vector for frame 

n + 1; 

MInternalr, n + 1 is the camera corrected internal region motion vector for 

frame n + 1. 

 

The final 2D motion vector MFinr, n + 1 is passed to the motion evaluation component 

of the temporal change model to derive a motion-based visual importance value. 

7.3.3 Adaptive Image Synthesis Animation 

In order to exploit these temporal importance values drawn from the importance 

map, a new framework for animation rendering must be fabricated. 

 

In the past, adaptive rendering for motion has been handled in a number of ways.  

Distributed rendering is a technique used to simulate motion blur caused by shutter 

speed effects in cameras [52].  Other temporal motion detection models have been 

used to perform motion compensation for video compression of image synthesis 

animations [1, 56, 165, 187].  They typically detect changes in pixels and create pixel 

flow vectors by identifying which object has been intercepted at the pixel level and 

then tracking the transformation of the pixel with the object ID to the next frame, 

using the 3D transformation matrices contained within the animation script.  This 

method, while accurate, is restrictive as it requires the transformation of every pixel 

within the image to ascertain pixel flow vectors for the next scene.  In addition, the 

methods may require hardware support in order to be efficient, due to the overhead 
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of performing the calculations for every pixel [165].  The region-based techniques 

developed in this chapter are much more efficient due to the eschewing of pixel-

based motion estimation, in favour of region-based motion estimation. 

 

A multiresolution model of temporal importance has been implemented [185, 186] in 

order to control sampling rates in a ray tracing system.  As with the critique shown in 

Section 3.1, the motion model designed by Yee has the same difficulties that were 

addressed in the spatial importance model in Chapter 4.  The model uses a pixel-

based absolute value motion model, which lacks the ability to deal with the relative 

motion of regions and requires a hardware prerendering of the scene to provide 

information to the motion model used.  From these observations it seems that no 

work has been developed for the region-based processing of motion for image 

synthesis efficiency purposes.  In addition, the region-based method developed here 

is more in line with present psychophysical thinking on object-based visual attention, 

and should be more efficient being region-based rather than pixel-based in its 

calculations.  Furthermore, in the same manner as the spatial model, the motion 

importance animation technique is truly progressive.  The approach uses the early 

samples of the scene to make estimates of region importance, and does not require a 

hardware prerendering to ascertain motion importance values. 

 

The adaptive and progressive methods used in this approach will continue the 

concepts developed in Chapter 5 by modifying the supersampling rate of a region 

according to its visual importance.  The supersampling techniques to be used are the 

same, with flat and perceptual methods of pixel subdivision control, modulated by 

the importance of the region containing the pixel.  Furthermore the region 

importance algorithm within the progressive rendering approach needs to be 

modified in order to obtain frame-to-frame changes in luminance and region motion. 

 

The algorithm developed for progressive image synthesis outlined in Chapter 5 has 

been modified for animation and is detailed in the following: Algorithm 7.1, 

Algorithm 7.2 and Algorithm 7.3.  The overall approach progressive rendering 

approach is the same, except for additions to the region importance evaluation 

function EvalRegImp that enables the calculation of motion information for visual 
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importance calculations.  Most of the motion calculations are performed in 

Algorithm 7.3, with the generation of vectors for each of the regions contained 

within the ObjectID tag segmentations. 
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Procedure: EvalRegImp 
 

Inputs:  List of regions containing segmented region information for image. 

   List of importance subdivisions elemSeg containing 8  8 pixel information 
 

Outputs: Nil 

 
EvalRegGlobalDiff(regions, numReg, lumDiffMean, hueDiffMean, sizeDiffMean, contDiffMean, motMagDiffMean, 

motDirDiffMean, onsetTotal) 

 
for regNum = 0 to numReg do           { For each region do } 

 Set surrLum, surrHue, surrContDens, surrSize, surrMotMag, surrMotDir  0 

  
 for surr = 0 to regions[regNum].bordCount do      { For each surrounding region do } 

  Set surrReg  elemSeg[regions[regNum].border[surr]].regNum 

  Add the surrounding local feature values of region surrReg to surrLum, surrContDens, surrSize, surrHue, 
surrMotMag, surrMotDir  

   
  if regions[regNum].motMag > 0 and regions[surrReg].motMag > 0 then { Only add to differences if both 

regions are in motion } 

   Add the surrReg region’s motionMag to surrMotMag  
   Add the surrReg region’s motionDir to surrMotDir 

  end if 

 end for 
 

 { Obtain local feature difference values, with respect to surrounding average feature values } 

 

 Set bordCount   regions[regNum].bordCount   { Set count of regNum surrounding 

regions } 

 Set lumDiff    | regions[regNum].lumAvg - surrLum / bordCount | 

 Set hueDiff    | regions[regNum].hueAvg - surrHue / bordCount | 

 Set contDensDiff  | regions[regNum].contCount / regions[regNum].segCount - surrContDens / bordCount | 

 Set sizeDiff    | regions[regNum].segCount / numElem) - surrSize / bordCount | 
 

 { Obtain absolute feature values } 

 

 Set loc  ((regions[regNum].centreY - dimElem / 2.0)2 + (regions[regNum].centreX - dimElem / 2.0)2)-2 /  

  ((dimElem / 2.0)2 + (dimElem / 2.0)2)-2 

 Set edgeProp  regions[regNum].imEdgeCount / (dimElem  2.0 - 2.0) 

 Set onsetRatio  SegChanged(regions[regnum]) / onsetTotal { Ratio of regNum changed 

subdivisions to overall number of 

image subdivision changes } 
 

 if onsetRatio <> 0 then           { Add motion if change in region } 

  Set motMagDiff   | regions[regNum].motMag - surrMotMag / bordCount | 

  Set motDirDiff   | regions[regNum].motDir – surrMotDir  / bordCount | 

 end if 
 
 { Obtain visual importance of region using fuzzy logic system designed in Section 4.2 } 

 

 RegImp(imp, lumDiff, lumDiffMean, hueDiff, hueDiffMean, sizeDiff, sizeDiffMean, contDensDiff, contDiffMean, 
motMagDiff, motMagDiffMean, motDirDiff, motDirDiffMean, onsetRatio, loc, edgeProp) 

 Set regions[regNum].imp  imp 

 
 if regImpMax < imp then           { Determine the maximum and } 

  Set regImpMax  imp          { minimum importance values } 

 end if 
 

 if regImpMin > imp then 

  Set regImpMin  imp 

 end if 

end for 
 
NormRegImp(regions, regImpMax, regImpMin)       { Normalise values to [0, 1] } 

 

Algorithm 7.1 Modified region importance algorithm EvalRegImp, incorporating new 

highlighted motion importance calculations. 
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Procedure: EvalRegGlobalDiff 
 

Input:  List of segmented regions containing visual feature information 

   Number of regions numReg 
Output:  A number of global feature activation variables: lumDiffMean, hueDiffMean, sizeDiffMean, contDiffMean, 

   motMagDiffMean, motDirDiffMean, onsetTotal. 

 

Set diffCount  0 

Set objListPres  {ObjID1, ObjID2, ... , ObjIDn}    { List of ObjectID records containing 

regions with same object IDs for 
present frame buffer } 

Set objListPast  {ObjID1, ObjID2, ... , ObjIDn}    { List of ObjectID records containing 

regions with same object IDs for past 
frame buffer } 

EvalRegionMotion(objListPres, objListPast)       { Obtain motion vectors for regions } 

 
for regNum = 0 to numReg do           { For each region do } 

 for surr = 0 to regions[regNum].bordCount do      { For each surrounding region do } 
 

  Set surrReg  elemSeg[regions[regNum].border[surr]].regnum { Obtain surrounding region number 

from index } 

  Set revSurrReg  0         { Find the link to the present region 

regNum } 

  while regNum <> elemSeg[regions[surrReg].border[revSurrReg]].regNum do { from the surrounding region 
surrReg } 

   Increment revSurrReg by 1 

  end while 
 

  { If present region has not been compared to the surrounding region before then add feature values to global feature } 

  { difference variables } 
 

  if not regions[surrReg].checked[revSurrReg] then    { If regnum, surrReg not checked } 

   Add difference between surrReg and regNum regions to total variables: lumDiffMean, contDiffMean, 
    sizeDiffMean, hueDiffMean. 

 

   if regions[regNum].motMag > 0 then 
    Add motion differences between surrReg and regNum regions to total variables: motMagDiffMean, 

motDirDiffMean. 

   end if 
 

   Set regions[regNum].checked[surr]  True;    { Two regions have been compared } 

   Increment diffCount by 1 

  end if 

 end for 
 
 if regions[regNum].motMag == 0 then        { Check for onset } 

  Set onsetTotal  SegChanged(regions[regnum]) 

 end if 

end for 
 

if diffCount <> 0 then             { Averages for feature differences } 
 Divide lumDiffMean, contDiffMean, sizeDiffMean, hueDiffMean, motMagDiffMean, motDirDiffMean by diffCount 

end if 

 

Algorithm 7.2 Algorithm listing of modified procedure EvalRegGlobalDiff, with 

motion importance additions highlighted. 
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Procedure: EvalRegionMotion 
 

Input: List of records containing regions with same ObjectID tags for past frame buffer objListPres 

  List of records containing regions with same ObjectID tags for past frame buffer objListPast 
 

Output:  

 
for obj = 0 to numObj do           { For each objectID in the image } 

 

 if obj  objListPast then          { If not new object (onset) } 
 

  for regNum = 0 to numPresObjReg do      { For each region with present objectID } 

   Set presObjX  presObjX + objListPres[obj].regions[regNum].centreX  { Obtain centre of object ) 

   Set presObjY  presObjY + objListPres[obj].regions[regNum].centreY 

  end for 
 
  for regNum = 0 to numPastObjReg do      { For each region with past objectID } 

   Set pastObjX  pastObjX + objListPast[obj].regions[regNum].centreX  { Obtain centre of object } 

   Set pastObjY  pastObjY + objListPast[obj].regions[regNum].centreY 

  end for 

 

  Set MObjectID[x] = presObjX – pastObjX     { Calculate raw gross object vector } 
  Set MObjectID[y] = presObjY – pastObjY 

  Set MInverseCam  EvalInvCamTrans()     { Calculate inverse camera transform } 

  Set MInternal  EvalIntMSEVec()      { Calculate raw internal object vector } 

  Set MFin  MObjectID + MInternal      { Calculate resultant vector–gross and internal } 

  Set MFin  MFin  MInverseCam       { Remove camera motion from final vector } 

 
  for regNum = 0 to numPresObjReg do      { For each region with present objectID } 

   Set objListPres[obj].regions[regNum].motMag  |MFin| { Set magnitude of region vector } 

   Set objListPres[obj].regions[regNum].motDir  MFin / |MFin| { Set normalised region direction vector } 

  end for 

 else 

   Set objListPres[obj].regions[regNum].motMag  0  { Set to zero to allow for onset effects } 

   Set objListPres[obj].regions[regNum].motDir  0 

 end if 

end for 

 

Algorithm 7.3 Algorithm listing of procedure EvalRegionMotion, which performs the 

actual motion estimation calculations. 

7.3.4 Time and Space Complexity of Approach 

Most of the components in the progressive rendering algorithm remain the same as in 

Chapter 5.  Each frame is progressively rendered to the level of single pixel size then, 

as before, the supersampling regime subdivides the pixel according to its visual 

importance.  The new components to be analysed are contained within the region 

segmentation and region importance calculation modules.  The following sections 

detail the time and space complexity constraints on the newly developed algorithm. 

Region Segmentation 

In each of the expressions derived for algorithmic complexity, the values are with 

respect to the number of subdivisions within the image, rather than the number of 

pixels within the image.  This is due to algorithms being performed on a subdivision 
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by subdivision basis, as the subdivision forms the basis of the region importance map 

generated for the animation frame. 

 

In the case of every subdivision having a unique object ID, the region segmentation 

algorithm performs at its most efficient.  The segmentation method only requires a 

serial scan through the list of subdivisions to allocate a list for each of the objects, 

with some small overhead with regards to subdivision list maintenance.  No further 

segmentation has to take place.  In this scenario the algorithm complexity expression 

is n. 

 

The worst-case scenario is the entire scene being composed of one object ID.  In this 

case, the region segmentation reverts to luminance and hue comparisons to 

subdivision the scene in a less efficient manner than the serial allocation of lists of 

subdivisions with the same object ID.  In this case, the segmentation efficiency is 

contingent on the variation in luminance and colour intensities within the image.  In 

other systems the segmentation may be controlled by parameters to enforce a 

bottom-level size for the regions [128].  This bottom-level would be enforced in an 

implementation of this segmentation algorithm. 

 

Spatial complexity is increased over previous methods of region segmentation, due 

to the need to store the object ID within each pixel.  A machine word sized pointer is 

needed to identify the object intersected by the pixel.  Therefore, the algorithm 

requires n words more of storage, compared to the original segmentation algorithm, 

where n represents the number of pixels within the image. 

Region Importance 

In the following complexity analysis of the region importance algorithm, the values 

are given with respect to the number of segmented regions within the image, as this 

is the atomic unit processed by the region-importance algorithm. 

 

The best-case scenario is when the entire scene is only one region.  In this case the 

expression reduces to a constant, as there are no other regions to be compared. 
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The worst-case scenario is that all the subdivisions have different object IDs.  This 

means a high number of regions would occupy the image, causing large 

computational overheads on the motion comparison computations.  As the 

segmentation is performed with a four-connected set of subdivisions, the expression 

is 5n, due to the need to compare every region with its four surrounding regions to 

ascertain global activity within the image, and then a final pass to gain the 

importance values for each region within the context of the global movement 

occurring. 

 

Space complexity is larger for this method compared to the still image importance 

approach, due to the need to store a copy of the frame buffer, the region 

segmentation from the previous frame and new motion information needing to be 

stored for each.  This means that the memory requirements are approximately double 

the spatial model.  Therefore, the expression for space requirements in bytes for the 

motion model is 14n + 8r.  With n being the number of pixels in the image (to store 

the two frame buffers) and r being the number of regions in the image. 

 

Even though there are costs involved with maintaining the region motion 

information, the algorithm still scales well, being linear in nature in both time and 

space complexity.  This is due in the major part to the algorithm being reliant on 

image-space information, in which the number of subdivisions and regions varies 

linearly with the size of the image. 

7.4 DISCUSSION 

This chapter has detailed the development of a novel region-based temporal change 

model.  The major achievements of this chapter are: 

 

 The development of a region-based temporal change model that uses 

region motion differences, not just absolute motion values.  This more 

closely follows psychophysical models of visual pop-out. 

 The development of a motion model that more fully characterises 

region motion as being a combination of the gross regional motion 

and the internal regional motion.  This allows the model to produce an 
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accurate estimation of region motion, which allows for both 

translational motion and the internal effects from rotation and non-

rigid deformation of the object in the scene. 

 The development of an improved region segmentation algorithm, 

which utilises the object ID information returned from the rendering 

system.  This removes ambiguity problems caused by the coarse 

segmentation of the scene, as the object ID has an unambiguous 

relationship to the image-plane region segmentation.  Furthermore, 

this facilitates more accurate and efficient calculation of region 

motion. 

 The modification of supersampling techniques to accommodate 

region-based motion importance values. 

 The development of a novel image synthesis-based camera 

compensation model for motion estimation.  Camera compensation 

has been used in video motion importance calculations, but this 

method is novel due to the use of object-space transformation 

information to remove camera motion from the derived motion 

vectors. 

 

At this stage, the model and the associated techniques have been fully designed and 

analysed.  The next process is their implementation and incorporation into the 

present visual importance rendering system.  This task is relatively straightforward 

due to a number of factors.  Firstly, the frame buffer and region importance map data 

structures already exist and have been implemented.  The addition of motion 

importance map information is an incremental process.  Secondly, the theory has 

been derived for the calculation of region-based motion importance, including a 

detailed derivation of camera transforms, vector calculations and modified 

algorithms.  Finally, the framework for still image supersampling modulation has 

already been implemented.  Therefore, the process of performing frame-to-frame 

modification of supersampling rates is, again, an incremental process.  However, 

even if the groundwork has been laid, there is still plenty of scope for the 
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improvement of the visual importance approach by the addition of the newly 

developed motion importance model. 
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Subjective Evaluation of Approach 
 

Previous chapters in this thesis have described objective image assessment with 

analysis of L1 and L2 error ratios for each of the test scenes.  This objective 

approach has reaped useful information regarding the quantitative amounts of 

distortion in the images, and the locations of these distortions.  Objective methods 

however, do not give an indication of the quality of an image from a human 

perspective.  In order to obtain an estimate of the quality of images as presented to 

the human viewer, the images generated in the previous chapters will have subjective 

quality tests performed upon them.  A number of models have been developed to 

simulate human image quality criteria [30, 95, 114, 126].  However, these models do 

not fully simulate the image quality assessment capabilities of the HVS.  Due to this 

factor, subjective testing is still the mainstay of current research into image quality 

assessment, to provide a human perspective on the ability of various image 

processing and image synthesis algorithms.  This chapter will now describe such 

subjective tests upon the images generated by the techniques developed in this thesis. 

 

The structure of the chapter is as follows.  Section 8.1 describes the methodology 

used in the subjective testing of the rendering approach.  Section 8.2 discusses the 

results of the subjective testing performed.  Finally, Section 8.3 discusses the results 

of the objective and subjective testing in an integrated manner, in order to draw out 

overall conclusions as to the success of the new importance-biased rendering 

approaches. 

8.1 SUBJECTIVE TESTING METHODOLOGY 

The experimental task is the comparison of a standard high quality image with a 

degraded image produced by the visual importance algorithms.  Therefore, the most 

appropriate subjective testing methodology to use is the CCIR ITU-R BT.500-6 [26] 

stimulus comparison method, which is designed for just this purpose and is in 

common use in image processing research [5, 6, 126].  In this approach, instead of 

eliciting an absolute image quality value from the subject, a subjective estimation of 

the difference in quality between two simultaneously displayed images is recorded.  

This method is most useful, due to the need to ascertain the visibility of changes in 
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visual image quality introduced by the importance-biased methodologies.  Thus, the 

methods used were based on the Rec. 500 standard, with modifications contingent on 

the availability of suitable resources. 

 

Due to the unavailability of a CCIR Rec. 500 video quality assessment room [26], 

some of the parameters have been relaxed or changed.  Instead of a TV monitor with 

appropriate contrast levels, an Silicon Graphics workstation 19 inch monitor has 

been set to approximate, as closely as possible, the contrast range specified by the 

standard [27, 28].  The values for the monitor are listed in Table 8.1. 

 

Furthermore, the room conditions were modified.  The monitor was situated in front 

of a neutral grey wall within a typical office.  The viewer sat approximately three to 

four monitor heights away from the viewing screen (refer to Figure 8.1).  The 

lighting in the room was characterised with an illuminance meter, to register the 

ambient light levels from the viewing position of the subject.  Using a luminance 

meter, the monitor and its immediate surrounds were measured for luminance levels. 

 

 

Figure 8.1 A photograph of the subjective testing setup. 
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Condition Variable Value 

Ambient illumination at viewer position 339 Lux 

Approximate viewer distance from 

monitor 

~3-4 screen heights 

Average surrounding wall illumination 38.74 cd/m
2 

Monitor contrast value 0.11 

Monitor peak value (off value) 33.93 cd/m
2
 (3.12 cd/m

2
) 

Monitor Gamma Value 2.4 (recommended by manufacturer) 

Table 8.1 Table of experimental conditions for subjective viewing evaluation. 

 

Fifteen subjects engaged in the subjective testing, as specified by the Rec. 500 

standard.  All subjects had full vision or corrected to full vision. The sample of 

subjects was drawn from students and staff members of the Faculty of Information 

Technology, Queensland University of Technology.  Out of the fifteen, only two had 

previous image processing experience.  The others were all computer literate, but not 

image processing or image assessment experts. 

 

The subjects were placed in front of the preview monitor and shown the images.  

First, a series of 6 images drawn from the test group were displayed to acclimatise 

the viewer to the quality range of images to be displayed in the assessment tasks.  No 

quality assessment was recorded for these practice images. 

 

The subjective testing approach had both progressive and high quality assessment 

tasks as its components–matching the two approaches developed within this thesis, 

progressive rendering and supersampling.  The images (refer to Figure 8.2) used in 

previous objective assessments (refer to Section 5.6) were used in the subjective 

assessment experimentation.  Parameter settings were varied in order to obtain an 

understanding of what optimal parameters facilitated the use of visual importance in 

the implemented rendering techniques.  These two subjective assessment tasks–

progressive rendering and supersampling–are now presented in detail. 
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Figure 8.2 Illustration of the images used in the subjective assessment process.  The 

images are from top to bottom, left to right: head, kitchen, farm, cloth, kitchen, 

garden, texture room and brick bump map. 

8.1.1 Progressive Image Assessment Task 

A series of four progressive images were shown for assessment.  The progressive 

images represented were a small subset that illustrated the largest L1 and L2 ratio 

differences between the base and contour accelerated images.  A comparison of these 

particular scenes indicated whether the contour importance module improved the 

subjective quality of the progressively rendered images.  More specifically, the 

images presented were the following: 

 

 the head scene 8% sampled; 
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 the kitchen scene 10% sampled; 

 the farm scene 8% sampled; 

 the brick bump map 7% sampled. 

 

Each progressive assessment task commenced by showing the sequence number of 

the image to be assessed.  A high quality version of the assessment image was then 

shown for ten seconds.  Two images rendered by the base and importance 

accelerated algorithms were then displayed side by side for 10 seconds.  The subjects 

were asked to evaluate which image was closer in quality to the initial high quality 

image.  A 10 second period of time was then provided, to allow them to mark down 

their assessment of the relative quality of the images.  This image sequence is 

represented diagrammatically in Figure 8.3. 

 

 

Figure 8.3 Diagram of progressive test assessment methodology, based upon the 

CCIR methdology for comparitive subjective testing [26]. 

8.1.2 Supersampling Image Assessment Task 

A series of 37 supersampled images were shown for assessment.  The supersampling 

images presented were compared to gain an indication of the visibility of any aliasing 

introduced by the importance-biased subdivision approach, in comparison to non-

biased images.  The head, kitchen and forest scenes were produced by both the flat 

and perceptual supersampling methods, at all the sampling rates displayed in Chapter 

5.  The flat supersampling scenes were rendered at maximum supersampling rates of 

4, 9 and 16 samples per pixel.  The perceptual supersampling images were rendered 

at error threshold values of 10, 20, 30, 40 and 50. 
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In addition, a series of texture test scenes from Chapter 6 were included into the 

supersampling test set.  The cloth, kitchen and garden textured test scenes were 

displayed with texture sizes of 257  257, 1025  1025 and 1537  1537 pixels.  The 

images were chosen to test the hypothesis that the quality of the texturing would fall 

off around the point of the projected pixel size being the same as the maximum size 

of the filter–in this case 1537  1537 (3 times the filter) sized textures. 

 

A set of flat supersampling control images was also included.  These images were 

included to test whether there is a need for visual attention concepts within the 

supersampling paradigm.  During the objective tests, it became apparent that some of 

the images had little in the way of L1 / L2 error ratio differences.  This suggested 

that there was possibly no subjective difference between an image supersampled 

once per pixel and an image supersampled further per pixel.  If this is true, it would 

preclude the use of visual importance in the pixel supersampling, due to the 

pragmatic outcome of only requiring one subdivision per pixel.  This, in effect, could 

mask any subjective differences caused by the spatial modulation of supersampling 

rates by the visual importance of the image region.  Therefore, for each scene, a test 

was performed by comparing the subjective quality of an image that had only one 

subdivision per pixel, with an image which had four subdivisions per pixel.  This 

would indicate whether the removal of samples within pixels actually caused 

subjective loss of quality. 

 

Each supersampling assessment task commenced by displaying the number of the 

image to be assessed.  Two high quality images with and without importance-biased 

supersampling were then displayed side by side for 10 seconds.  The subject was 

asked to evaluate which image had less visual artefacts.  A period of 10 seconds was 

then given for the subject to mark down their assessment of the relative quality of the 

images.  This process is shown diagrammatically in Figure 8.4. 
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Figure 8.4 Diagram of supersampling test assessment methodology, based upon the 

CCIR methdology for comparitive subjective testing [26]. 

 

The order of the display of the image pairs was pseudo random in nature for both the 

progressive and supersampling assessment tasks.  The images were not displayed in a 

fixed order, and the location of the impaired image varied randomly from left to 

right.  This was so the subject was not aware of when an impaired image would 

appear, thus preventing any bias from prediction of the location of the degraded 

image. 

 

In each task, the subject had a 10 second voting time in which to grade the quality of 

the images presented.  In this period, the subjects marked a scale using a pen, this 

scale is shown in Figure 8.5. 

 

 

Figure 8.5 Illustration of the five point evaluation scale used by the subjects in the 

evaluation [26]. 

 

The subject was asked to mark the position on the line that represented the perceived 

amount of improvement in quality in either the left or right image.  The measured 

distance from the centre then became a quantified measure of the difference in image 

quality perceived by the viewer.  The following section analyses the results from 

these experiments. 
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8.2 RESULTS 

The results in this section are presented for each assessment method as tables 

containing the mean and standard deviation of the assessment distributions for each 

of the images, confidence intervals for the sample means and results of hypothesis 

tests for means not equal to, greater than, and less than zero.  Hypotheses are also 

presented, and then assessed using the appropriate test statistics drawn from the 

result tables. 

 

Due to the continuous nature of the results from the subjects, and the small sample 

size, Student’s T Test was used to accept or reject the null hypotheses presented 

[104].  The results were processed with reference to the base image on the left and 

the importance-biased images on the right–after removing the random positioning 

applied in the experiment.  Thus, when the base image appeared to be of higher 

quality, the value recorded was negative.  When the importance image appeared to be 

of higher quality, the value recorded was positive.  Therefore, if no difference was 

detected, then the value recorded was zero. In each case the Null Hypothesis was that 

the mean of the sample values was equal to zero (  = 0).  The Alternative Hypotheses 

were that the mean was greater than (  > 0), less than (  < 0) or not equal to zero (  

 0).  Appropriate one-tail and two-tail tests were performed to a confidence level of 

95% (  = 0.05).  Therefore, the one tailed value for t in each test is 1.83, while the 

two tailed test t value is 2.26.  The following sections present, in detail, the results 

for each of the rendering methods developed in this thesis: progressive rendering, 

supersampling and texture importance mapping. 

8.2.1 Progressive Rendering 

Table 8.2 lists the subjective viewing results for the progressively rendered images. 
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Progressive 
Image 

Sample 

Mean  

Sample 
Standard 
Deviation 

 

Test 
Statistic 
Student’s t 

Confidenc
e Interval 

value 

Test H0 

with Ha:  

 0 

Test H0 

with Ha:  
< 0 

Test H0 

with Ha:  
> 0 

Brick 7%  16.00 15.61 3.97 8.64 Reject Accept Reject 

Head 8% 6.87 22.13 1.20 12.25 Accept Accept Accept 

Kitchen 10% -17.80 25.73 -2.68 14.25 Reject Reject Accept 

Farm 8% 3.13 17.68 0.69 9.79 Accept Accept Accept 

Table 8.2 Listing of subjective testing results for progressive images.  Rejected null 

hypotheses are  shaded in dark grey. 

 

In this case, the hypothesis is that the new progressive method succeeded if the mean 

of the test sample was shown to be greater than zero (  > 0).  This would indicate 

that the subjects considered the importance-biased image as having a greater visual 

quality.  A number of things can be noted from the results. 

 

Firstly, the subjects considered the image of the brick wall with bump map contour 

detection (Section 6.3) to be of better quality than the image generated without bump 

map contour detection.  The null hypothesis was rejected in favour of the alternative 

hypothesis of  > 0.  This adds support to the efficacy of the method in finding 

contours quickly within a progressive rendering for an appropriate image.  However, 

one test image does not prove it effective for every case, as was indicated in the 

objective testing performed in Section 6.3.1.  Nevertheless, evidence is presented 

here to show that images containing these forms of contours will benefit from the 

contour detection technique. 

 

The other progressive tests were surprising in that they showed the opposite of the 

expected results.  The head image was expected to show a positive improvement, as 

the objective tests revealed it to have the largest difference in L1 and L2 values.  

However, the subjects considered the biased and non-biased head images to be equal 

in quality (  = 0).  This also occurred for the farm image. 

 

The importance-biased kitchen image was expected to be the same in quality as the 

base image, but was regarded as inferior by the students (  < 0).  The raw scores of 

the subjects were also quite consistent in this assessment.  It seems that the 

acceleration of certain contours is deleterious to subjective quality, even though the 
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L1 and L2 norms indicate otherwise.  This probably indicates that contour refinement 

based on contour information alone is not enough, that is, the approach needs to 

account for region importance as well.   This issue is discussed further in Section 

9.2.2. 

8.2.2 Supersampling 

Table 8.2 lists the subjective viewing results for the flat method supersampling 

images. 

 

Flat Method 
Test Images 

Sample 

Mean  

Sample 
Standard 
Deviation 

 

Test 
Statistic 
Student’s t 

Confidenc
e Interval 

value 

Test H0 

with Ha:  

 0 

Test H0 

with Ha:  
< 0 

Test H0 

with Ha:  
> 0 

Head 4 -12.40 20.52 -2.34 11.36 Reject Reject Accept 

Head 9 -19.27 21.79 -3.43 12.06 Reject Reject Accept 
Head 16 -17.93 21.08 -3.30 11.67 Reject Reject Accept 
Kitchen 4 -6.67 21.84 -1.18 12.10 Accept Accept Accept 

Kitchen 9 -30.20 22.76 -5.14 12.60 Reject Reject Accept 
Kitchen 16 -23.07 27.15 -3.29 15.04 Reject Reject Accept 
Farm 4 0.20 22.42 0.03 12.41 Accept Accept Accept 

Farm 9 -3.60 15.09 -0.92 8.36 Accept Accept Accept 
Farm 16 -10.13 21.47 -1.83 11.89 Accept Reject Accept 
Head 
Control 

8.33 22.13 1.46 12.25 Accept Accept Accept 

Kitchen 
Control 

16.53 28.34 2.26 15.70 Reject Accept Reject 

Farm 
Control 

17.00 11.40 5.78 6.31 Reject Accept Reject 

Table 8.3 Table containing the subjective supersampling results for the flat-rate 

method with 4, 9 and 16 supersamples per pixel.  Flat method control image results 

are also included.  Rejected null hypotheses are shaded in dark grey. 

 

In the case of the flat-rate supersampling subjective tests, the rendering algorithm 

succeeds if the subjects have a mean quality score of zero (  = 0).  This indicates that 

the visual importance degraded image is of the same subjective quality as a more 

expensively rendered flat-rate image. 

 

The flat methodology table exhibits a number of interesting results that have in the 

majority occurred according to expectations.  The objective assessment in Section 

5.6 indicated that the flat methodology of supersampling would be the least 

successful, due to the introduction of aliasing effects from the pixels not being 

subdivided when the importance value is zero.  The above results bear this statement 
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out, as the null hypothesis is rejected for most of the images (   0).  However, it 

should be noted that for the spatially complex scenes like the farm, the subjects 

regarded the scenes as being of equal quality.  This result was expected, as the high 

count of edges in the scene should mask the aliasing introduced by lack of sampling.  

This is due to the background noise in the images hiding the lost of quality in the low 

sampled regions.  The head and kitchen scenes contained less edges, therefore any 

loss of quality was more likely to be noticed against a less noisy background. 

 

An anomaly occurred with the flat sampled kitchen images.  The four supersamples 

per pixel images were considered by the subjects to be of equal quality (  = 0).  This 

may be explained by the nature of the kitchen image, as it consists of flat coloured 

regions with sharp edges and little spatial noise.  Therefore, the high frequencies 

would not be effectively sampled by either regime, and so the images would appear 

to be of a similar quality.  

 

The control experiments were performed to test whether the subjects would consider 

any images with at least one subdivision per pixel as being of the same visual 

quality.  In two out of the three scenes the null hypothesis was rejected, and the 

images were considered to be of different quality (  > 0).  If the locations of the 

supersampling did not matter past one subdivision, then the images should have been 

seen as the same in quality.  This supports the notion that there is a place for the use 

of visual attention in supersampling methods, as subjects can tell the difference 

between images sampled with one or greater pixel subdivisions with images 

containing high frequency components. 

 

On the other hand, the head scene disagreed with these results, with both images 

being considered the same quality (  = 0).  This results can be explained by 

observing that the head image contains softer edges, which have frequencies easily 

antialiased by one or more subdivisions.  Therefore, it is reasonable to expect that 

this image would be considered equal, whereas the other images, with more high 

frequency content, would be considered to be of differing qualities.  These results 

give support to the notion that the use of visual importance modulated supersampling 
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is predicated on the spatial frequency content of the image.   So it can be concluded 

that importance biasing is probably more suited to perceptual rendering algorithms, 

due to their ability to account for the visibility of spatial frequencies within the 

image.  The following Table 8.4 lists the results for the perceptual supersampling 

tests.  

 

The perceptual images performed as expected.  In each case the null hypothesis was 

accepted, with the subjects being unable to discern the difference between the 

images.  This would be expected of a methodology that accounts for the sensitivities 

of the human visual system in its image comparison calculations.  In addition, no 

discernable movement occurred with the mean of the samples as the quality 

threshold was lowered.  These results compare favourably with the objective results 

in Section 5.6, where the objective error norms showed only small differences 

between importance-biased and unbiased images over the different error thresholds. 

 

Nevertheless, the kitchen images rendered at an error threshold of thirty were 

considered to be different in quality (  < 0).  This result is hard to explain, as the 

kitchen threshold values before and afterwards all accepted the null hypothesis.  

Possibly this is an anomalous result, due to consistency of the other results for the 

perceptual method.  In addition, the objective assessment results in Table 5.8 do not 

record deviating values for this image, adding evidence to the suggestion that this 

result is a data recording error. 
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Perceptual 
Test 
Images 

Sample 

Mean  

Sample 
Standard 
Deviation 

 

Test 
Statistic 
Student’s t 

Confidenc
e Interval 

value 

Test H0 

with Ha:  

 0 

Test H0 

with Ha:  
< 0 

Test H0 

with Ha:  
> 0 

Head 10 0.53 9.06 0.23 5.02 Accept Accept Accept 

Head 20 2.47 17.07 0.56 9.45 Accept Accept Accept 

Head 30 -11.67 25.76 -1.75 14.26 Accept Accept Accept 

Head 40 -1.40 21.91 -0.25 12.14 Accept Accept Accept 

Head 50 -9.13 17.03 -2.08 9.43 Accept Reject Accept 

Kitchen 10 3.07 16.38 0.73 9.07 Accept Accept Accept 

Kitchen 20 3.73 14.08 1.03 7.80 Accept Accept Accept 

Kitchen 30 -7.67 9.49 -3.13 5.26 Reject Reject Accept 

Kitchen 40 -5.47 12.86 -1.65 7.12 Accept Accept Accept 

Kitchen 50 -3.67 8.72 -1.63 4.83 Accept Accept Accept 

Farm 10 0.07 18.53 0.01 10.26 Accept Accept Accept 

Farm 20 6.47 14.69 1.71 8.13 Accept Accept Accept 

Farm 30 0.73 8.36 0.34 4.63 Accept Accept Accept 

Farm 40 -2.73 12.89 -0.82 7.14 Accept Accept Accept 

Farm 50 -3.20 11.87 -1.04 6.57 Accept Accept Accept 

Table 8.4 Table containing the subjective supersampling results for the perceptual 

method with a 10, 20, 30, 40 and 50 error threshold per region.  Note that the null 

hypothesis was accepted for each of the images.  Rejected null hypotheses are  shaded 

in dark grey. 

8.2.3 Texture Importance Mapping 

Table 8.5 and lists the subjective viewing results for the texture images. 

 

Texture 
Mapping 
Images 

Sample 

Mean  

Sample 
Standard 
Deviation 

 

Test 
Statistic 
Student’s t 

Confidenc
e Interval 

value 

Test H0 

with Ha:  

 0 

Test H0 

with Ha:  
< 0 

Test H0 

with Ha:  
> 0 

Cloth 1537 5.33 22.81 0.91 12.63 Accept Accept Accept 
Cloth 1025 6.93 15.32 1.75 8.48 Accept Accept Accept 
Cloth 257 21.33 17.54 4.71 9.71 Reject Accept Reject 
Kitchen 1537 -0.47 15.48 -0.12 8.57 Accept Accept Accept 
Kitchen 1025 -1.53 23.52 -0.25 13.03 Accept Accept Accept 
Kitchen 257 18.47 36.75 1.95 20.35 Accept Accept Reject 
Garden 1537 4.73 16.49 1.11 9.13 Accept Accept Accept 
Garden 1025 5.27 13.57 1.50 7.52 Accept Accept Accept 
Garden 257 31.00 24.01 5.00 13.30 Reject Accept Reject 
Textured 
Room 

5.87 12.61 1.80 6.98 Accept Accept Reject 

Table 8.5 Table containing the subjective texture importance mapping results for the 

perceptual method with a 1537, 1025, 257 pixel square textures error threshold per 

region.  Note that the null hypothesis was rejected only for two of the 257  257 

texture images.  Rejected null hypotheses are shaded in dark grey. 

 

The above table again compares well with the objective results gained from Section 

6.2.1.  It was found that two of the images that had textures of size 257  257 pixels 
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were considered to be of lower quality when importance biasing was introduced.  

The kitchen image was the only exception to the rule, however its t value was close 

to the threshold, and it actually rejected the null hypothesis (  > 0).  These figures 

suggest a possible Type II error caused by visual masking of the blurring in the 

image. 

 

When the size of the textures was 1025 or 1537 pixels square, then the subjects 

accepted the images as being of the same quality (  = 0).  The fact that they accepted 

this for a texture of 1025  1025 pixels in size gives support to having a parameter  

in the texture/filter relation described in Section 6.2, which allows the relationship to 

relax.  For these cases, the projected pixels of size less than the maximum size of the 

support filter may have their texels sampled using an importance-biased method, 

without losing much visual quality. 

 

Finally, the acceptance of the textured room as being of equivalent quality (  = 0) 

gave evidence for the use of adaptive texture sampling in non-trivial scenes.  This 

usefulness is further reinforced by the 10% timesavings gained from modulating the 

support of the texture filter (refer to Section 6.2.1). 

8.3 DISCUSSION 

Overall the subjective results provided evidence that the importance-biased images 

could be discerned as being of similar quality to the unbiased images.  The results 

indicated that it works better for the perceptual supersampling method, compared to 

the flat-rate supersampling.  This was consistent with results obtained from the 

objective evaluations performed in Chapter 5 and Chapter 6. 

 

In addition, the texture results gave evidence of the efficacy of using importance-

biased resampling.  In particular, the results indicated that there was some room for 

relaxing the strict relationship between the size of the filter used and the projected 

pixel size. 

 



 

Chapter 8 

232 

Furthermore, the control experiments supported the application of visual attention to 

supersampling rendering systems, as the viewers were able to discern differences 

between images with one subdivision, and images with more than one subdivision.  

This indicates, for this set of images, the perceptual significance of spatially 

modulating the pixel supersample rates across the image. 

 

The images in Figure 8.6 are Fast Fourier Transform (FFT) frequency-space images 

derived from the head, kitchen and farm images respectively.  Taking an FFT of both 

the flat rate biased and unbiased scenes, and then plotting the absolute value of the 

difference between them formed each of the images.  They give a qualitative 

indication of the frequency structure of the differences between the biased and 

unbiased images. 

 

  

 

Figure 8.6 FFT diagrams of the differences between the frequency components of the 

biased and unbiased images– from left to right head, kitchen and farm. 

 

It is interesting to note the wedge shapes that appear in the FFT images.  In each case 

this indicates the removal of coherent edge structure from the images [168].  This 

concurs with the difference images shown in Section 5.6, as they exhibit a coherent 
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structure similar to the overall shape of the scene.  In addition, the nature of this 

coherency changes for each image should be noted.  The head and kitchen images 

both show strong location tendency for the differences in frequency space.  

Inspection of the images reveals lots of straight edges and structures, thus any 

differences will be strongly aligned in frequency space.  The farm FFT image shows 

less of a linear nature in frequency space, suggesting less of an edge like nature in the 

image differences.  This is concurred by the raw difference image for the farm, 

which is noisy in character containing less noticeable edges. 

 

The only negative results came from the progressive rendering subjective tests.  

However, it was expected that the small differences in error ratios would not be 

significant enough to cause visual improvement, so the overall results for the 

progressive images was not unexpected.  Possible improvements mentioned in 

Chapter 9 may give better results with subjective testing. 

 

It should be noted that the tests performed in this chapter are preliminary in nature, 

and should be accepted with the understanding that further experimentation is 

required to more precisely assess the capabilities of the importance-biased 

approaches to rendering.  These tests would be improved by larger sample sizes and 

a more diverse image database, to better quantify the differences, and to more 

effectively characterise the images that perform best or worst with the rendering 

methods.  Nevertheless, these preliminary evaluation results encourage the further 

development of the importance-biased rendering approaches developed in this thesis. 
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Discussion and Conclusions 
 

Image synthesis is a computationally intensive task.  Many techniques have been 

developed to improve the efficiency of image synthesis methods, but none have 

applied a region-based visual importance model to the task of reducing the 

computations required.  Two goals were then set in regards to this problem of image 

synthesis efficiency.  The first was the development of an efficient and improved 

model of visual importance, designed for the application area of image synthesis.  

The second was the modification of relevant image synthesis techniques to exploit 

visual importance information for efficiency gains. 

 

An investigation of research conducted into visual attention in humans yielded 

information for the development of a region-based fuzzy logic model of visual 

importance.  The model improved on previous fuzzy models by allowing for 

differences in the visual features, by incorporating contour information and by 

modelling background variations in feature differences.  Furthermore, the model has 

been applied to progressive image synthesis, allowing it to control the progressive 

rendering of an image and the supersampling subdivision rates for each pixel.  The 

approach was extended to texture mapping efficiency problems.  Further work on the 

visual importance model incorporated object motion and temporal change effects.  

These additions improved on other region-based models by separating temporal 

change from actual object motion, and by introducing motion magnitude and vector 

differences as an improvement over the absolute motion value calculations 

performed by other models. 

 

The rendering approach was objectively and subjectively tested for image quality and 

efficiency gains.  The system was able to obtain large savings in image rendering 

times, without unduly affecting the quality of the rendered images. 

 

Section 9.1 presents a brief overview of the contents and contributions of each of the 

chapters in this thesis.  Section 9.2 describes possible extensions that could be made 

to both the visual importance model and the progressive rendering approach, to 

improve both their performance and flexibility.  Section 9.3 concludes with potential 
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application areas for the visual importance model and progressive rendering 

approach. 

9.1 DISCUSSION OF ACHIEVEMENTS 

The research conducted for this thesis had two foci.  The first was the development 

of an improved fuzzy logic model of visual importance.  The second was the 

development of progressive rendering techniques that would use this visual 

importance model to reap efficiency gains. 

 

A literature review of the operation of the HVS from both physiological and 

psychophysical perspectives was presented in Chapter 2.  A brief overview of 

relevant physiological components of the HVS was presented.  Evidence was shown 

for the existence of physiological constructs sensitive to contrast for colour, 

luminance, oriented edges and motion.  Psychophysical experimentation was 

reviewed showing evidence for a list of visual features, which through local spatial 

differences cause regions of the visual field to become visually salient.  

Psychophysical models of visual attention-based upon these observations were then 

detailed.  Research reviewed also uncovered viewing behaviour patterns indicating 

that certain regions were regarded repeatedly, and that these regions only constituted 

a small area of the image.  These regions were then shown to contain visual feature 

differences, which in a bottom-up fashion attracted the attention of the viewer.  The 

chapter concluded with an investigation of bottom-up and top-down factors affecting 

visual attention.  The literature reviewed showed a lack of models completely 

characterising the relationships and weightings between these features, though some 

work has produced evidence for a general hierarchy of visual features.  General 

principles were also related to the development of a computational visual importance 

model. 

 

Chapter 3 presented the development of a new region-based fuzzy model of visual 

importance, specifically designed for image synthesis applications.  A literature 

review was conducted of computational visual attention models, with the two main 

approaches being multiresolution and region-based.  A region-based model was 

developed, due to the evidence for object-based viewing of images and the efficiency 
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constraints of the image synthesis application.  A fuzzy logic approach was also 

chosen, due to the imprecision in the decisions to be made regarding the visual 

importance of regions within the image.  The model was developed into two main 

modules.  The first was a contour importance module, based upon information 

provided by a progressive rendering system called the DCM.  This provided a novel 

approach to the assessment of the visual importance of contours contained within the 

progressive rendering of a scene.  The second was a region-based visual importance 

module, containing improvements such as: adaptive membership functions, 

consistent feature difference processing and the incorporation of contour 

information. 

 

Progressive rendering techniques were then modified in Chapter 5 to incorporate 

visual importance features.  Existing techniques were identified which did not 

account for the visual importance of regions being rendered.  Progressive rendering 

techniques were modified to incorporate contour importance, which met with some 

success.  Supersampling techniques were modified to allow for visual importance of 

the regions being viewed.  Objective results showed that the method saved 

approximately half of the time required to render the scene using normal 

supersampling techniques, for both flat and perceptual supersampling methods.  The 

approach has also been shown to be efficient and scalable, with both time and space 

complexity being O(n), with respect to the size of the image. 

 

The techniques developed in the previous chapter have been extended to texture and 

bump mapping in Chapter 6.  Techniques were developed which modified the 

support of texture resampling filters according to the visual importance of the region 

in which the samples were being made, reaping savings of 10-20% in rendering 

times.  These techniques were found to be particularly successful where the size of 

the projected pixel was greater than or equal to the size of the maximum support in 

pixels of the texture resampling filter.  Another technique was developed to improve 

the efficiency of the progressive rendering of bump mapped polygons.  Principles of 

texture coherence were exploited to enable the rendering algorithm to search texture-

space for potential contours.  This enabled the progressive rendering algorithm to 
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detect contours early on in the rendering process, to produce superior quality early 

images.  A subset of images was identified which benefited from this approach. 

 

In Chapter 7, the visual importance model developed in Chapter 3 had motion and 

temporal change capabilities added.  Previous motion importance models were 

identified, and were shown to only include absolute magnitude estimates of motion.  

The newly developed model extended this to motion differences in the image, and 

motion direction estimates.  In addition, an abrupt onset model was developed which 

allowed the model to separate effectively object motion from simple temporal 

change.  The new model of image synthesis motion also differed from others by 

being region-based, and not block or pixel-based.  This facilitated efficiency 

increases without loss of segmentation accuracy, due to the use of object IDs to 

control the region segmentation.  This use of region segmentation based on object 

IDs is a novel addition to image synthesis techniques.  The algorithm has been 

theoretically evaluated via complexity analysis, showing the method to be efficient 

and scalable, with a time and space complexity of O(n), with respect to the size of 

the image. 

 

Chapter 8 concludes the developmental work carried out in this thesis with an 

analysis of subjective image quality tests performed with a cohort of viewers.  A 

selection of images generated by the techniques developed within this thesis were 

shown and compared using a stimulus comparison continuous-scale method.  This 

quantified the amount of perceptual degradation that occurred with images rendered 

using the new visual importance techniques. 

 

Overall the subjective results provided evidence that the importance-biased images 

could be discerned as being of similar quality to the unbiased images.  The results 

indicated that it works better for the perceptual supersampling method, compared to 

the flat-rate supersampling.  The texture results also gave evidence of the efficacy of 

using importance- biased resampling.  Furthermore, the control experiments 

supported the application of visual attention to supersampling rendering systems, as 

the viewers were able to discern differences between images with one subdivision, 

and images with more than one subdivision.  This indicated the importance of 
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controlling pixel supersampling via a visual importance model, as the changes in 

pixel supersampling are visually significant. 

9.2 EXTENSIONS TO THE APPROACH 

This visual importance approach has been useful in facilitating rendering efficiency 

gains, and has extended present models of visual attention.  However, various areas 

can be developed further in both the visual importance model and the progressive 

rendering approaches. 

9.2.1 Extensions to the Visual Importance Model 

Listed here are a number of extensions proposed for the visual importance model 

developed as a part of this thesis: 

 

 The membership functions are based upon a model of visual feature 

differences that captures effects unable to be modelled by absolute 

values.  However, some of the functions are able to capture large 

magnitudes of differences as visually salient, but they do not model 

some effects.  For example, a small difference in values will stand out 

against a background of large differences in values uniformly 

distributed across a screen.  Further characterisation of such behaviour 

would make the model more flexible. 

 The use of perceptually uniform colour spaces in the membership 

functions would give a more accurate estimation of the hue contrast 

within the image. 

 The parameters used in the membership functions are set to arbitrary 

values, in the absence of empirical psychophysical data.  Experiments 

could be performed in order to find thresholds for the saliency of 

different features with background variations. 

 Experiments could be performed to model more closely the change in 

shape of adaptive membership functions over a range of background 

variation values.  

 The ad hoc feature combination weights for the contour model should 

be replaced by empirical values. 
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 A more global measure of contour importance could be developed to 

process nearby subdivisions when a contour has been detected.  This 

would improve the detection of curvature and junctions within the 

image. 

 The region and contour importance maps could be integrated, due to 

the evidence of region-based contour concentration effects upon the 

search patterns of a viewer.  The region-based model, instead of just 

incorporating a count of the number of contours within the region, 

could include a measure of the importance of the contours within a 

segmented region.  This combination of contours and other region 

feature information would allow the model to obtain a more complete 

measure of the texture information within a segmented region, as the 

contour importance measures include measures of curvature and 

concentrations. 

 Texture information could be incorporated into the segmentation 

algorithms, to allow for texture segregation effects, thus obtaining 

more effective region segmentations. 

 Improvements could also be introduced to the integration of different 

features within the implication method of the fuzzy model.  Two 

major areas needing further work are the weights used for each 

feature, and the interactions of each feature in the final importance 

value. 

9.2.2 Extensions to Progressive Rendering Approach 

The progressive rendering algorithms could be extended in a number of ways, to 

better utilise the visual importance information available to the rendering system: 

 

 The visual importance system, as well as controlling the principle rays 

fired into the scene and the texture resampling, could weight a number 

of other ray-tracing techniques.  Recursive ray tracing of reflections 

and refraction could have the termination criteria modified by the 

visual importance of image regions.  Secondly, the global illumination 
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algorithms could have their integral error thresholds modulated by the 

region-based visual importance of the pixel being sampled. 

 The progressive contour rendering system could be made region-based 

by the integration of the region and contour importance systems, to 

allow important contours within important regions to be refined first. 

 The animation techniques developed in Chapter 7 could be extended 

to more effectively integrate progressive rendering techniques across 

multiple frames of animations.  This would require the integration of 

the region-based importance model with the contour importance 

model to enable it to perform region-based progressive rendering.  

The system could then copy the regions that have not changed over to 

new frames to accelerate the preview of the final animation. 

 To determine the relative importance of the texels within the texture, a 

visual importance model could preprocess the image.  The importance 

could be stored within an alpha channel for the image file.  The texel 

alpha value could then be read and used to modify the support of the 

sampling function, as a further adaptive resampling parameter. 

 The contour searching technique could be made more efficient by 

including MIP mapping into the texture-space search.  When bump 

mapping the polygon, the scaled texture to be chosen would have the 

texture pixel dimensions closest in magnitude to the projected image-

space pixel dimensions.  This would save on the number of pixels 

needing to be sampled on the edge of the subdivision in texture-space. 

9.3 POTENTIAL APPLICATIONS 

The visual importance model developed within the thesis could be applied to the 

following areas: 

 

 Compression-the newly developed model could guide other 

perceptually-based image compression algorithms which utilise 

models of early human vision, to place compression artifacts within 

areas not regarded by the viewer, making the image appear to be of a 
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higher quality.  This would especially suit low bandwidth methods 

used in video compression applications and progressive transmission 

applications. 

 Image and video databases-the algorithms used to search images for 

particular objects can benefit from restricting their search windows to 

regions regarded by the viewer.  This reduces the computational 

overhead of having to search the entire image. 

 Machine vision-due to the relatively low overhead offered by this 

visual importance system, it is expected that real-time active vision 

systems could benefit from this approach, enabling the efficient 

acquisition of targets from the viewing field of the image capture 

device. 

 Virtual reality-with the increase of real-time rendering speeds has 

occurred the concomitant increase in geometric modelling complexity 

used in virtual reality and visualisation systems.  The visual 

importance level of the rendering region could modulate the level of 

detail of the mesh.  A simplified version of the model presented could 

enable a real-time system to judiciously apply geometric complexity 

to visually important regions within the scene to be rendered. 

 Progressive mesh transmission-applications can be found in the 

progressive transmission of meshes in low bandwidth applications, for 

example, in a web-based medical atlas of 3D isosurfaces.  These 

meshes could be preprocessed to ascertain the visual importance of 

regions within the mesh.  These visually important regions can then be 

sent first, to aid the progressive visual quality of the mesh. 

 

These extensions, and other possible application areas, indicate the area of visual 

importance has potential for future theoretical and applied research. 
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Glossary 
 

Adaptive Sampling  Ray tracing algorithm that is sensitive to visual 

features of a scene, thus modifying the sampling rate to 

correctly sample high frequency image components. 

Antialiasing  Antialiasing is the process of increasing the discrete 

sampling rate of a signal beyond the Nyquist limit to 

prevent the generation of unwanted frequencies. 

Attentive  Pertaining to visual processed occurring after 

application of attention. 

Bottom-up  Visual effects proceeding from the stimuli alone. 

Bump Mapping  Process of applying an image over geometry to modify 

the lighting function and represent fine surface details. 

Cones  Chromatic light sensitive cells in eye. 

Defuzzification  Calculation of single value which represents a fuzzy 

set. 

Degree Of Fulfillment  Level of activation in fuzzy logic membership 

function. 

Feature Detectors  Physiological constructs in the HVS designed to 

respond to particular spatial features. 

Feature Integration Theory  Major theory of visual attention, proposes that feature 

differences attract attention of viewer due to pop-out. 

Fovea  High acuity region in centre of visual field. 

Fuzzy Logic  Mathematical approach which allows truth value to be 

any value between 0.0 and 1.0. 

Guided Search Model  Major theory of visual attention, proposes top-down 

improvements to FIT. 

Hidden Surface Removal  Rendering approach used to find visible surfaces in a 

scene. 

Implication  Process of fuzzifying, applying rule-base, and 

defuzzifying in fuzzy logic system. 

Importance Map  Spatial map of the visual importance of regions in an 

image. 
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Just Noticeable Difference  Threshold value where visual feature difference is 

perceivable. 

L1 Norm  Maximum column sum value of matrix, gives an 

indication of size of the matrix in an absolute sense–in 

this thesis used to indicate the absolute amount of error. 

L2 Norm  Maximum eigenvalue for matrix, which is the closest 

matrix form of a Euclidean inner product between 

functions–in this thesis used to indicate an overall 

distance measurement between functions. 

Lateral Geniculate Nucleus  Physiological construct connecting Optic Nerve to 

Visual Cortex. 

Nyquist Limit  Defines a sampling lower bound at which an algorithm 

must exceed in order to antialias the frequencies of the 

signal.  Defined as being twice the highest frequency 

component contained in the signal. 

Optic Nerve  Nerve connections from retina to LGN. 

Photo-realistic  Pertaining to appearing like a photo of a real object. 

Photopic  Bright light levels (daylight). 

Pop-out  Phenomenon of region salience caused by feature 

differences. 

Preattentive  Pertaining to visual processes occurring before 

application of attention. 

Progressive Rendering  Rendering which refines an image over a temporal 

period. 

Quadtree  Data structure which represents the recursive 

decomposition of an image into quadrants. 

Ray-tracing  Method of hidden surface removal where vectors are 

fired into scene to determine visibility. 

Resampling  Application of filter to resample an image (often a 

texture). 

Retina  Light sensitive layer at back of eye. 
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Rods  Achromatic light sensitive cells in the eye, distributed 

more in the periphery than around the centre of the 

visual field. 

Saccades  Ballistic eye movements to move visual attention from 

fixation to fixation. 

Scotopic  Dull light levels (night). 

Student’s T Test  Statistical test suited to small sample size hypothesis 

testing. 

Supersampling  Antialiasing performed by taking more than one 

sample per pixel. 

Texel  Texture Pixel–texture image atomic element. 

Texture Mapping  Process of applying an image over geometry to 

represent fine surface details. 

Top-down  Visual effects proceding from viewing task factors. 

Universe of Discourse  Domain over which fuzzy membership function is 

defined. 

Visual Cortex  Region of brain at rear containing major early visual 

functions. 
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