2,677 research outputs found

    A rapidly converging domain decomposition method for the Helmholtz equation

    Full text link
    A new domain decomposition method is introduced for the heterogeneous 2-D and 3-D Helmholtz equations. Transmission conditions based on the perfectly matched layer (PML) are derived that avoid artificial reflections and match incoming and outgoing waves at the subdomain interfaces. We focus on a subdivision of the rectangular domain into many thin subdomains along one of the axes, in combination with a certain ordering for solving the subdomain problems and a GMRES outer iteration. When combined with multifrontal methods, the solver has near-linear cost in examples, due to very small iteration numbers that are essentially independent of problem size and number of subdomains. It is to our knowledge only the second method with this property next to the moving PML sweeping method.Comment: 16 pages, 3 figures, 6 tables - v2 accepted for publication in the Journal of Computational Physic

    Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers

    Full text link
    This paper introduces a new sweeping preconditioner for the iterative solution of the variable coefficient Helmholtz equation in two and three dimensions. The algorithms follow the general structure of constructing an approximate LDLtLDL^t factorization by eliminating the unknowns layer by layer starting from an absorbing layer or boundary condition. The central idea of this paper is to approximate the Schur complement matrices of the factorization using moving perfectly matched layers (PMLs) introduced in the interior of the domain. Applying each Schur complement matrix is equivalent to solving a quasi-1D problem with a banded LU factorization in the 2D case and to solving a quasi-2D problem with a multifrontal method in the 3D case. The resulting preconditioner has linear application cost and the preconditioned iterative solver converges in a number of iterations that is essentially indefinite of the number of unknowns or the frequency. Numerical results are presented in both two and three dimensions to demonstrate the efficiency of this new preconditioner.Comment: 25 page

    Simulation of Laser Propagation in a Plasma with a Frequency Wave Equation

    Get PDF
    The aim of this work is to perform numerical simulations of the propagation of a laser in a plasma. At each time step, one has to solve a Helmholtz equation in a domain which consists in some hundreds of millions of cells. To solve this huge linear system, one uses a iterative Krylov method with a preconditioning by a separable matrix. The corresponding linear system is solved with a block cyclic reduction method. Some enlightments on the parallel implementation are also given. Lastly, numerical results are presented including some features concerning the scalability of the numerical method on a parallel architecture

    FDTD-based full wave co-simulation model for hybrid electromagnetic systems

    Get PDF
    In high-frequency ranges, the present electronic design automation software has limited capabilities to model electromagnetic (EM) systems where there are strong field effects influencing their characteristics. In this situation, a full-wave simulation tool is desired for the analysis and design of high-speed and non-linear EM systems. It is necessary to explore the interaction between the field and electronic components during a transient process when field effects are more significant. The finite-difference time-domain (FDTD) technique receives growing attention in the area of EM system analysis and simulation due to its simplicity, flexibility and robustness. It is a full-wave simulation method that solves the Maxwell\u27s equations in time domain directly. Decades of research and development and rapid growth in computer capability have built up a firm foundation for FDTD techniques to be applied to many practical problems. Based on FDTD, this dissertation develops a stable CO-simulation method to perform a full-wave simulation of a hybrid EM system consisting of lumped elements and distributed structures. In this method, FDTD is used to solve the EM field problems associated with distributed structures, and a circuit simulator solves the response of lumped elements. A field-circuit model proposed in the dissertation serves as the interface between the two simulation tools. Compared with previous methods, the FDTD method based on this model is much more flexible and stable for linear and nonlinear lumped elements under both small and large signal conditions. Because of its flexibility and robustness, this model is a promising approach to integrate a field solver and a circuit simulator in the simulations of practical EM systems. In order to improve the simulation accuracy, some problems related to FDTD simulation are studied. Based on the numerical dispersion in homogeneous media uniform grids, the FDTD numerical reflection and transmission on the boundary of media, which are discritized by a non-uniform grid, are investigated. This investigation provides for the first time an estimation of FDTD numerical error in inhomogeneous media and non-uniform grids. Perfectly matched layer (PML) was previously utilized the homogeneous media or uniform grids. This dissertation extends the PML boundary conditions to handle the inhomogeneous media and non-uniform grid. Techniques extracting S parameters from FDTD simulation are also discussed. Two and three-dimensional CO-simulation software, written in C++, has be derived, developed and verified in this dissertation. The simulation results agree well with results from other simulation methods, like SPICE, for many test circuits. Taking data sampling and interpolation into account, simulation results generally fit well to measurement and other simulation results for complicated three-dimensional structures. With further improvements of the FDTD technique and circuit simulation, field-circuit CO-simulation model will widen its application to general EM systems

    Discontinuous Galerkin Methods for Solving Acoustic Problems

    Get PDF
    Parciální diferenciální rovnice hrají důležitou v inženýrských aplikacích. Často je možné tyto rovnice řešit pouze přibližně, tj. numericky. Z toho důvodu vzniklo množství diskretizačních metod pro řešení těchto rovnic. Uvedená nespojitá Galerkinova metoda se zdá jako velmi obecná metoda pro řešení těchto rovnic, především pak pro hyperbolické systémy. Naším cílem je řešit úlohy aeroakustiky, přičemž šíření akustických vln je popsáno pomocí linearizovaných Eulerových rovnic. A jelikož se jedná o hyperbolický systém, byla vybrána právě nespojitá Galerkinova metoda. Mezi nejdůležitější aspekty této metody patří schopnost pracovat s geometricky složitými oblastmi, možnost dosáhnout metody vysokého řádu a dále lokální charakter toho schématu umožnuje efektivní paralelizaci výpočtu. Nejprve uvedeme nespojitou Galerkinovu metodu v obecném pojetí pro jedno- a dvoudimenzionalní úlohy. Algoritmus následně otestujeme pro řešení rovnice advekce, která byla zvolena jako modelový případ hyperbolické rovnice. Metoda nakonec bude testována na řadě verifikačních úloh, které byly formulovány pro testování metod pro výpočetní aeroakustiku, včetně oveření okrajových podmínek, které, stejně jako v případě teorie proudění tekutin, jsou nedílnou součástí výpočetní aeroakustiky.Partial differential equations play an important role in engineering applications. It is often possible to solve these equations only approximately, i.e. numerically. Therefore number of successful discretization techniques has been developed to solve these equations. The presented discontinuous Galerkin method seems to be very general method to solve this type of equations, especially useful for hyperbolic systems. Our aim is to solve aeroacoustic problems, where propagation of acoustic waves is described using linearized Euler equations. This system of equations is indeed hyperbolic and therefore the discontinuous Galerkin method was chosen. The most important aspects of this method is ability to deal with complex geometries, possibility of high-order method and its local character enabling efficient computation parallelization. We first introduce the discontinuous Galerkin method in general for one- and two-dimensional problems. We then test the algorithm to solve advection equation, which was chosen as a model case of hyperbolic equation. The method will be finally tested using number of verification problems, which were formulated to test methods for computational equations, including verification of boundary conditions, which, similarly to computational fluid dynamics, are important part of computational aeroacoustics.
    corecore