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Abstract—An efficient multilevel fast multipole algorithm
(MLFMA) formalism to model radiation and scattering by/from
large planar microwave structures is presented. The technique
relies on an electric field integral equation (EFIE) formulation
and a series expansion for the Green dyadic, based on the use of
perfectly matched layers (PML). In this way, a new PML-MLFMA
is developed to efficiently evaluate matrix-vector multiplications
arising in the iterative solution of the scattering problem. The
computational complexity of the new algorithm scales down to
O(N) for electrically large structures. The theory is validated by
means of several illustrative, numerical examples.

Index Terms—Microstrip structure, multilevel fast multipole al-
gorithm (MLFMA), perfectly matched layer (PML), planar an-
tenna array.

1. INTRODUCTION

ANY full-wave microwave and MMIC planar circuit

simulators rely on method of moments (MoM) [1]
based integral equation solvers. These schemes use so-called
Green functions to store all the characteristics of the layered
medium. Only the system’s metallic conductors are discretized
into N segments in order to determine their currents. The
N x N linear system that arises from the MoM can be solved
by LU-decomposition or by an iterative method [2]. Often one
uses an electrical field integral equation (EFIE) to model the
field problem and this will also be the approach adopted here.
Nevertheless, the presented method is equally applicable for
a mixed potential formulation. Unfortunately, the calculation
of the elements of the Green dyadic G.. [3], [4] unavoidably
calls for the time-consuming evaluation of Sommerfeld-type
integrals [5]. Building the dense moment matrix is also com-
putationally expensive. Recently, several methods have been
proposed to reduce the computational complexity associated
with the iterative solution of the linear systems, e.g. the adap-
tive integral method (AIM) [6], the thin-stratified medium fast-
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multipole algorithm (TSM-FMA) [7], the fast inhomogeneous
plane wave algorithm (FIPWA) [8]-[10] and the fast far-field
approximation (FAFFA) [11].

A very efficient and elegant way to calculate Green functions,
based on the use of perfectly matched layers (PML) [12]-[14],
has been proposed in [15]-[17]. For a layered structure that is
closed by a perfect electric conductor (PEC) plane at the top and
bottom of the structure, the Sommerfeld integrals that arise in
the Green function calculations can be expressed as a series of
surface waves. By using a PML that is covered by a PEC plane,
one can also close open layered media while maintaining the
open character of the structure. In [15], [16] this approach was
used to obtain an analytic and easy to determine series represen-
tation for the Green functions of open layered media.

In this paper, the PML-MoM formalism is combined with a
fast multipole method (FMM) [18]-[20] in order to model the
scattering from planar metallizations on a microstrip substrate.
This problem has been studied for several years (see, e.g.,
[21]-[25]). Our new procedure has already proven its efficiency
in two dimensions, i.e., for a set of parallel microstrip lines
[26], [27]. In this contribution the two-dimensional technique
is extended to a multilevel fast multipole algorithm (MLFMA)
[28]-[31] for arbitrary planar metallizations, allowing us to
store the linear system with low memory requirements and to
solve it fast and efficiently. Classical iterative methods have
a computational complexity of order O(N?) to perform one
matrix-vector multiplication. Since the separate terms in the
series representation of the Green dyadic can be decomposed
into a set of plane waves with controllable accuracy, an op-
eration count of O(N) is achieved. It may be clear that the
applications for radiation by large planar microstrip structures
are numerous, e.g. the modeling of large printed antenna arrays.

The FIPWA technique presented in [8] for two-dimensional
(2-D) scattering and its extensions to three dimensions (3-D)
[9] is also based on a series expansion for the Green function.
In the FIPWA technique each Sommerfeld integral is replaced
by a properly chosen steepest descent path integral, a constant
phase branch cut integral and discrete surface wave pole con-
tributions. The remaining integrals are efficiently discretized
using Gaussian quadrature rules. Although this scheme, when
applied to structures considered in this paper, also achieves an
O(N) complexity, our PML based series representation pro-
vides a valuable alternative to this technique. It avoids the usual
steepest descent path complications when branch-points and/or
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surface wave poles come close to each other and start to inter-
fere, leading to a more robust scheme. The PML-series comes
in a natural way and can be calculated efficiently.

The method is illustrated by considering the radiation or the
scattering by/from microstrip substrates covered by an arbitrary
planar metallization. Nevertheless, it will be briefly shown that
the presented technique is immediately applicable to general
multilayered structures with planar and nonplanar metalliza-
tions on different levels. The theory of the new formalism is
outlined in Section II. In Section III several illustrative, numer-
ical examples validate the proposed technique.

Notation: all sources and fields are assumed time-harmonic
with angular frequency w and the time dependencies e/** are
suppressed.

II. FORMULATION OF THE NEW TECHNIQUE
A. Geometry and Classical Integral Equation Analysis

Consider a microstrip structure comprising PEC planar ele-
ments S (traces and/or patches) that reside in the z = d plane
on top of an infinite PEC-backed substrate of thickness d, per-
mittivity €; = €g€,, and permeability p1 = pop, (Fig. 1);
here €y and pp denote the permittivity and permeability of the
air-filled half-space z > d, and ¢, and p, are the relative per-
mittivity and permeability of the substrate. In case of a lossy
substrate, €,- and p,. are complex numbers. The incident electric
field Ei(r = 2% + y¥ + 22), produced by impressed sources
that radiate in the presence of the PEC-backed substrate, il-
luminates S. In response, the scattered electric field ES(r) is
generated by electric surface currents J(p = z& + y§f) =
J.(p)X+ J,(p)y on S. The total electric field E* (r) comprises
both the incident and scattered fields: Ef(r) = El(r) + ES(r).
Below, transverse to z restrictions of E4(p), q € {i,s,t} are
denoted —z x [z x E4(p)] = E4(p) = Fd(p)x + El(p)y.

An electric field integral equation (EFIE) for J(p) is con-
structed by enforcing the component of Et(p) tangential to S to
vanish. By expressing transverse to z electric fields in the z = d
plane produced by J (p) using the transverse electric-current-to-
electric-field Green dyadic G...(p|p’), which is detailed in Sec-
tion II-B, the boundary condition Et(p) = Ei(p) + E5(p) =
0, Vp € Siscastas

~Ei(p) =E(p) = //Saee(plp’)-.i(p’)dp’, VpeS. (1)
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Fig. 2. Modal spectrum. (a) Open substrate and (b) PML-closed substrate.

The integral (1) is solved by the MoM [1]. To this end, S is
approximated by a (potentially nonuniform) rectilinear mesh
with NV interior edges. Next, J(p) is expanded in a set of vector
rooftop basis functions w,(p) = w, ;(p)Xx + w, ;(p)y. j =
1,..., N [32] with support S; C S comprising two patches
that are joined by the mesh’s jth interior edge as

J(p) = ZIJVVVJ'(P) 2

Inserting (2) into (1) and applying a Galerkin testing procedure
yields the following N x N linear system in the unknown ex-
pansion coefficients I;, 7 = 1,..., N:

V=71 3)

The N-vector I contains the expansion coefficients I;, j =
1,..., N and the elements of the N-vector V and the N x N

matrix Z are given by
- / /S E'(p) - wi(p)dp @
Zid = //s / | Wile) - Geelple') - w;(p)dp'dp. (5)

Vi

Linear system (3) can be solved using direct or iterative
schemes. Iterative solution schemes, e.g. the BiConjugate
Gradients stabilized method (BiCGstab) [2], are amenable to
acceleration by fast multipole methods [33] (and their descen-
dants) as they only require the multiplication of the moment
matrix Z by a test vector I; hence, they are adopted here.

B. Green Dyadic With the Use of a PML

The modal spectrum of the open microstrip substrate of Fig. 1
comprises some discrete propagating surface waves and a con-
tinuous set of radiation modes [34], [35]. Provided the substrate
is lossless, these surface waves’ transverse modal propagation
constants A can be found on the real axis between the kg and
k1 = ko\/€-pir. Here, ko = w /c is the free space wavenumber
and c is the speed of light. The radiation modes are character-
ized by propagation constants A located along a branch cut [see
Fig. 2(a)]. For lossy materials, the propagation constants of the
surface waves in the right half plane will shift downwards in
the complex plane. Of course, all the modes come in pairs with
propagation constants of opposite sign. The branch cut causes
the numerical evaluation of Sommerfeld-integrals [5], [35] and
this complicates the application of the MLFMA to the acceler-
ation of matrix-vector products (3).



1540

PEC
D
dair
air
€ry Mr z
d
: >
PEC T Y
Fig. 3. PML-closed substrate.

The crux of our new formalism is based on the application
of PMLs [12]-[14]. The PML-concept is invoked to obtain an
approximate analytical/closed-form expression for G..(p|p’)
involving only discrete modes. To this end, the air-filled
half-space above the microstrip substrate of Fig. 1 is closed by
putting a PML, with material parameters ~¢ and o, backed by
a PEC on top of it, as is shown in Fig. 3. Previous investiga-
tions have shown that, by complex coordinate stretching, the
air-PML combination can be treated as one single air layer with
complex thickness D = da;, + dpys (ko — (00 /weg)) = Te¢
[13], [15], [16], [36], [37]. The PML-closed substrate mimics
the behavior of the original, open substrate. The original modal
spectrum is now replaced by a discrete set of modes of the
PML-closed substrate [see Fig. 2(b)] [17]. The propagation
constants Aty and Argn, n = 1,..., 00, of this structure’s
TM- and TE-modes satisfy their corresponding dispersion
relations of the PEC-dielectric-air-PML-PEC structure

Y™ cot(y1d) + Y ¥ cot(oD) =0 (6)

for Arx,n :

where here, and in what follows, TX stands for TM and TE, and
with

Y™ _ & (7)
" Ym
ye = Jm ®)
JWHm

Tm =V w2€m/1/m — A2 (9)

and m = 0, 1. Since the propagation constants are defined
only up to a sign, only those with R(\) > 0 are retained when
solving (6). Both the TM- and the TE-modes come in three fla-
vors. First, there are the propagating surface waves that are (vir-
tually) identical to those found in the original open microstrip
substrate. Next, there are the evanescent or pseudo-leaky sur-
face waves. And finally, there are the so-called Bérenger sur-
face waves [38]. Below, no distinction between these three types
of modes is made and they are collectively indexed such that
|%(/\TX,7L)| < |%(/\TX,7L+1)| for all n.

By applying a spectral domain technique [5] and using
Cauchy’s residue theorem for the inverse Hankel transform,
the Green dyadic for a horizontal dipole source at p’ 4+ dz can
be expressed as a series of TM- and TE-modes of the closed
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waveguide. Introducing the transverse to z nabla operator
V = (9/9x)% + (9/0y)y yields the following equation for
Gee(plp') [16]:

— 1 1
/ ~
Gee(p|p)~2w E )\?rMnMTM(

X (Armnlp — £'|)
w 1
- E ; A%‘E,TLAJ’I‘E(

vva?

ATM,n)

(zx V)(z x V)

)‘TE,n)

x H® (Argnlp — o)) (10)

where dyadic notation was used [39]. Here, HéZ)() is the ze-
roth-order Hankel function of the second kind and

€1 cot y1d e1d €o cot ’YOD
MTM(/\) = 3 2 o2 3
71 71 sin” 71d Y0
D
— (11)
72 sin® oD
d 1 cotyid D 1
M\ == T 2
M1 sin” y1d i1 to sin” o D
t oD
_ ot (12)
K070

The summations in (10) extend all TM- or all TE-modes (n =
1,...,00).

Several remarks regarding the above series expansion of
G..(p|p’) that are important in its intended application are in
order.

¢ The Hankel kernel in (10) can be seen as the Green
function of a 2-D Helmholtz equation in a homogeneous
space. Hence, by applying the PML-concept the Green
function of the original open microstrip problem in three
dimensions is decomposed into a set of two-dimensional
homogeneous space Green functions. This decomposi-
tion will play a crucial role in the construction of the new
MLFMA (see Section II-D).

e Proofs of the completeness of the modes of a PML-closed
structure are given in [40], [41]. Of course, in practical
applications one cannot use an infinite number of modes.
However, only a limited number of modes is needed
owing to the fact that the propagation constants of the
higher order modes have large negative imaginary parts.
Even more, for a certain accuracy of G . the number of
modes needed in (10) decreases rapidly with the distance
lo—p'l.

* Close to the source point the series representation be-
comes impractical [17], [42]. This means that for small
|p — p'| and in particular for the self-patch interactions
in the MoM, a classical technique for evaluating the
Green operator remains in order. Because of our intended
goal, viz. the use of series representation (10) in an
MLEMA framework, this restriction poses no problem,
as the MLFMA itself requires near-fields to be evaluated
separately from far-fields [33].
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Fig. 4. Constellation of source and observer.

C. Plane Wave Decomposition of the Hankel Kernel

Helmbholtz equation FMMs [18]-[20] rely on so-called di-
agonal translation operators, viz. expansions of the pertinent
Green functions in terms of plane waves, to represent fields
produced by distributed sources at sufficiently separated ob-
servers. Here, our focus is on a plane wave decomposition of
the kernel of the Green dyadic (10), viz. the Hankel function
HéZ)()\|p — p'|). Consider the configuration of Fig. 4, com-
prising a source point at p’ and an observer point at p that belong
to source and observer constellations contained in circles of ra-
dius R centered about p¢ and p¢. It was shown in [33], [43] that
the kernel can be expressed as:

Q .
T —p 30 e UIT O o] 050)
=-Q
o o—iA(6a)-(p=p5)
Q
= Z PW, (13)
=-Q
o) 7
Ty(A p,9) = 20+1, Y H) (Ap)e’ (6=0.-%)
=-Q

(14)

with pS8 = pg — pl, 955 = arctan((X - pg)/(¥ - p5)) and
A(¢) = A(cos X + sin qﬁy). Equation (13) realizes a plane
wave decomposition of the Hankel function. Its physical in-
terpretation is illuminating. The radiation pattern of the source
group is sampled into 2Q) + 1 outgoing plane waves referenced
w.r.t. the center of the source group and traveling in directions
¢q = 2qm/(2Q + 1), ¢ = —@Q,...,Q. Upon multiplication
by the translation operator (14) the outgoing plane waves are
converted into 2Q) + 1 incoming plane waves referenced w.r.t.
the center of the observation group. Then the contribution of
each plane wave is measured at the observer. Expansion (13) is
only valid when the source group and the observer group are
well-separated, meaning e.g. |[pS| > 5R. If this condition is
satisfied and if )\ is real, then 2@Q) + 1, viz. the number of plane
waves participating in the expansion, can be chosen as

2Q 4+ 1 =4\R+ C(AR)'/3 (15)
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where C' is a constant that sets the MLFMA accuracy level
[33]. Note, however, that the wavenumbers in (10) are com-
plex wavenumbers; therefore, the above (classical) estimate (15)
does not apply. Hence, in our case, () will be determined using
a simple search procedure, as will be outlined in Section II-D.

D. A MLFMA for 3-D Microstrip Structures

Let us now combine the results from the Sections II-B and
II-C. Consider a dipole source with strength & = ;X + ¥y
located on the substrate-air interface at position r’ = p’ + dz.
By using (1), it is easy to see that the field radiated by this source
at an observer placed on the substrate at position r = p + dz is
given by

E(p) = Gee(plp) - &

For the Green dyadic in (16) the PML-series (10) is used and
each Hankel kernel in this series will be substituted by its plane
wave decomposition (13). Before doing so the unit vectors

(16)

a7
(18)

Ny = cos PgX + sin gy
ty = —sin ¢ X + cos gy

are introduced and the following identities are derived from (13)

VV-HE (Ap-p))é

Q
~ =\ ) PW,hh, & (19)
=—Q
(2 x V)(zx V) - HP (Ap— p) @
Q
=AY PWit, - a (20)

=—Q

Making the above described substitutions now and also using
(19) and (20), yields the following expression:

QTM.n

1~ D5 P

__QTM.n

QTE.n

2

=—QTE,n

+= Z VfTE /\TE PW,t,t,-a (1)

where subscripts on Qx,,, indicate that the number @ in (13)
depends on the propagation constant Arx ,. Similar subscripts
onPW,,n, and fq have been omitted for simplicity. This equa-
tion reflects the fact that, when calculating the field radiated by
an arbitrarily oriented dipole in the z = d metallization plane,
only longitudinal and transverse components of the plane wave
decomposed electric fields are to be retained when considering
TM- and TE-polarized fields respectively. Equation (21) is the
core formula of our new PML-MLFMA for microstrip structures.

It is noted that the original MLFMAs were conceived for
computing fields produced by known source constellations re-
siding in lossless media. When applying the method to the com-
putation of fields in lossy media, care should be exercised when
sampling and translating far-field signatures to account for their
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excess bandwidth and avoid loss of accuracy. In practice, this
often can be achieved through the use of renormalized far-field
signatures (defined on multiple phase centers per box) in con-
junction with windowed translation operators. Needless to say,
these techniques also could be applied in the present context to
improve the quality of the MLFMA approximation for any mode
characterized by a complex transverse wavenumber. In practice,
we chose to not implement them and use MLFMA techniques
designed for lossless media because for all practical substrates
considered, MLFMA inaccuracies stemming from the imagi-
nary transverse wavenumbers of the higher order modes are very
small compared to the field from the fundamental mode (see
Section IIT). Moreover, if somehow this condition would be vi-
olated, the mode in question always can be accounted for clas-
sically, viz. without using the MLFMA, as its field vanishes be-
yond the (quasi-)near-field.

The reader is encouraged to consult references [28]—[31]
to gain familiarity with the basic MLFMA scheme for free
space environments. In what follows, only those details of an
“N;-level MLFMA” pertinent to its adoption into the above
described integral equation solver, are presented.

1) Geometrical subdivision of S
In the proposed N;-level scheme, S is enclosed in a hy-
pothetical square box of side length D that is partitioned
recursively /V;—1 times to create a uniform quad-tree. The
number of levels is chosen such that the side length of the
smallest box thus obtained is about a fifth of the free-space
wavelength A\g = 27/ko. The large box containing S
is said to reside at level IV;; the smallest boxes are said
to reside on level 1. Specifically, starting at the highest
(coarsest) level, each level [ + 1 “parent” box is subdi-
vided into four equal size level [ “child” boxes of circum-
scribing radius R;. A basis function is said to belong to a
box if its center of mass resides in that box. Furthermore,
a box is said to be empty if it contains no basis functions.
In the process of subdividing boxes, empty boxes are im-
mediately discarded. Next, at all levels and starting with
the highest one, all far-field box pairs are identified. A pair
of boxes constitutes a far-field pair if (i) the distance be-
tween their closest points is greater than a fixed constant,
typically chosen as 5 R;—see the above restriction on the
use of the MLFMA—and (ii) their parent boxes do not
constitute a far-field pair. At the lowest (densest) level, all
box pairs (including self-pairs) not identified as far-field
pairs are labeled near-field pairs.
2) Classical evaluation of interactions
Contributions to the right-hand side of (5) due to spa-
tial basis functions contained in near-field pairs are evalu-
ated classically, that is, without using MLFMA and PML
concepts.
3) MLFMA evaluation of interactions
Interactions between basis functions belonging to
far-field pairs are computed using the proposed PML-
MLFMA scheme. That is, all rooftop basis and testing
functions are approximated by a set of dipoles with loca-
tions and weights determined by a Gaussian quadrature
rule, and interactions between dipoles are computed
using (21).

4)

5)

6)

Mode trimming

In the final remarks of Section II-B it is stated that
for a certain accuracy of the PML-series for G.. (10)
the number of modes decreases rapidly with the distance
|p — p'| between a source and an observer. Therefore,
for the calculation of interactions that take place at high
levels in the MLMFA tree—and hence for large distances
|p—p’|—one can use less modes than at low levels without
destroying the accuracy. Let Mt ; denote the number of
TX PML-modes used at a certain level [ in the tree. For
increasing level number [, Mrx ; decreases substantially.
This will also be shown numerically in Section III-A. An
important consequence is that the cost of the algorithm is
not linearly dependent on the number of modes. This is a
major improvement w.r.t. to our previous 2-D implemen-
tation [27] and this new feature is named mode trimming.
Computational complexity

By using the PML-paradigm, the 3-D layered medium
problem can be seen as a set of 2-D scattering problems
in free space; each element of the set corresponds to one
PML-mode and thus, to one Hankel function. For these
kind of 2-D scattering problems an MLFMA results in
a reduction in computational complexity from O(N?) to
O(N log N) and O(N) for surface-bound and volumetric
source constellations respectively (see [33]). Contrary to
the 2-D implementation of the PML-FMM [27], using
M modes in the 3-D PML-MLFMA algorithm does not
mean now that the computational complexity scales as
O(MNlog N) or O(MN). Because of the mode trim-
ming property described above, this linear dependency
with M can be omitted. Hence, if S represents dense met-
allizations, e.g. a planar microstrip array, the complexity
of the scheme scales as O(N). In the worst case scenario,
when S represents sparse metallization, e.g. a long mi-
crostrip trace, the complexity scales as O(N log V).
Determination of the sampling rates 2Qrx ,, + 1

To determine the minimum sampling rate 2Qx » + 1,
a simple search procedure is used to ensure a given level
of accuracy of expansion (21) by requiring that

QTX,n
PW,

=—QTx,n

H0(2) (ATNI,lpmin)

H (Arxnlp — 2)) -

<¢ (22)

where ¢ is the desired accuracy for (21) and ppi, is
the minimal distance between two groups placed far
enough from each other to use the decomposition. The
propagation constant Atyp,; belongs to the fundamental
TM-surface wave which is always supported by the
microstrip substrates under consideration. Given the
loci of the modes retained in (21) this method typically
restricts 2Q1x,, + 1 to a number equal to, or smaller
than, that needed to represent the fundamental surface
wave by itself. Enforcement of a given level of relative
accuracy for each mode separately would increase the
number of plane waves for the highly evanescent modes
to impractical levels and/or nonconvergence of the series
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(21). Using (22) will lead to very accurate results for
the total algorithm without the increase of the sampling
rates and hence, without destroying the computational
complexity (see Section III-A).

Remark: The above theory can easily be extended to gen-
eral multilayered structures with planar and nonplanar metal-
lizations on different levels. Without going into much detail, the
gist of this extension is explained here.

In every layer ¢ of the structure—determined by the material
parameters ¢; and p1;—the z-dependency of the currents needs to
be included. Of course, this requires an adaptation of the Green
functions. It is easy to show (by application of the spectral do-
main technique [5] and the PML-paradigm) that schematically,
in each layer ¢, the following PML-series is obtained:

Gi(p,212") = 3 eniHS? (Mrxnp)ei e G0 (23)
with

(24)

_ 2
VYTX,n,i = wleipn; — /\Tx,n

and where ¢, ; is a constant. Hence, in every layer 4 the
(transversal to z)-dependency has not been modified. For each ¢
the z-dependency can be written as an exponential-like function
(i.e. a sine, a cosine, etc) that only depends on 2’ and z, i.e., the
z-coordinates of the source and the observer respectively, and
on the propagation constant Atx , of the PML-modes. These
transverse wavenumbers are solutions of the TX-polarized
dispersion relations of the multilayered PML-waveguide. To
implement an MLFMA, the source and observer contributions
have to separated. The Hankel kernel can still be written as its
plane wave decomposition. The exponential functions can be
factorized immediately.

For completeness it is also mentioned here that it is perfectly
possible to introduce a second PEC-backed PML at z = -D.
This has to be done in case the (multilayered) substrate is not
backed by a ground plane.

III. NUMERICAL RESULTS

This section comprises three subsections. First, the correctness
of the new method will be demonstrated numerically and it will
also be shown that the sampling rates in the plane wave decom-
position (13) do not increase for higher order modes. Second, the
high computational efficiency of our formalism will be demon-
strated, in comparison with a classical technique. Third, some il-
lustrative examples are given. Emphasis is on showing the reader
that the proposed method is indeed suited for a variety of large 3-D
microstrip problems. All simulations were carried outon a Linux-
based 2.4 GHz Pentium IV PC with 2 GB RAM and a BiCGstab
iterative solver was used to solve the linear systems (3).

A. Validation of the Method

The accuracy of our PML-MLFMA code is controlled by
many parameters. Several of them were described in Section II
(e.g., PML parameters I', ¢, and MLFMA parameters Qi r.,
QTE,n» MTM,Zy MTE,Z, and f) Unfortunately, within the lim-
ited scope of this paper it is not possible to introduce and dis-
cuss all of them; this is especially true for parameters linked to
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Fig.5. Layout of the metallization used for testing the accuracy of the method.
the MLFMA component of our code (e.g., various oversampling
factors, spatial quadratures, etc.). One of the input parameters to
our PML-MLFMA code is the target accuracy &, defined as the
average relative error of the far-field matrix elements computed
by using the PML-MLFMA paradigm. Upon specification of
this parameter, all code parameters adjust to a critical value that
guarantees this target accuracy without wasting computational
resources; parameter selection is achieved either by (approxi-
mate) analytic means (M1, MrE,, &, ', and ( see [16], [17],
[27]), or by brute-force local searches (Qw,» and QTE ).

To verify the usefulness of the PML-MLFMA for modeling
a microstrip geometry, consider the metallization depicted in
Fig. 5. This metallization is separated from a PEC ground plane
by an air-substrate with €,, = p,. = 1 of thickness d = 1 mm.
The angular frequency is w = 2710 - 10° Hz. This air-substrate
is chosen for two reasons. First, for this configuration, the trans-
verse Green dyadic is known analytically

Gee(plp') =

VY + K]
JwepdT [ + 5o
e~Ikolp=p'|  g=ikoy/lp—p'|?+4d? 25)
X J—
=0 Ip—-pP+4d
where I is the two-dimensional identity dyadic. The moment
matrix elements Zf}ass, calculated by evaluating (5) using (25),
will be used as a very precise reference in order to check the
accuracy of the new method. Second, for this configuration, the
transverse wavenumbers of the pertinent PML-waveguide, viz.

an air-filled parallel plate waveguide of complex thickness d +
D, are also analytically known

s )2
— ), n=1,...,00.
d+ D
(26)

For other substrates one needs to solve the dispersion relations (6)
numerically. Note that while this PML-waveguide also supports a
TEM-mode, itis neverexcited as the currents on S flow transverse

ATMn = ArEn = ([ kd — (
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toz.Name Z %\j’»ILFMA an element of the moment matrix of our new
method, supposing thatall interactions are far and thus by making
use of the PML and MLFMA. The elements Z%\J/-[LFMA are eval-
uated by consecutively multiplying the moment matrix with test
vectors equal to the columns of the unit matrix.

Let us now compare 7> with Z}"*™# For an increasing
distance A, as indicated in Fig. 5, between the basis function
and the test function, viz. for an increasing |i — j|, the relative
error §(A) is given by

class MLFMA
Zghss _ 7\

8(A) = 27

Zlg]lass
Due to the staircase layout of the metallization, one is able to
evaluate the interaction between a basis and a test function that
have the a parallel or an orthogonal orientation, allowing to
check all four elements of the Green dyadic. The accuracy of the
method is shown in Figs. 6 and 7 for a varying target accuracy &.
Fig. 6 gives the results for the x — z-interactions, i.e., for the ma-
trix elements describing interactions between z-oriented basis
and test functions. In Fig. 7 the results for z — y-interactions,
viz. for the matrix elements describing interactions between
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TABLE 1
TotAL NUMBER OF MODES (TM AND TE) NEEDED TO OBTAIN A RELATIVE
ERROR OF 10~% AND 10~* ON THE # — 2-INTERACTIONS GIVEN A
CERTAIN DISTANCE A

Distance Total number of modes needed
A [mm] A/ || 6 =10"6 §=10"14
70.71 2.359 32 22
106.1 3.538 24 18
141.4 4717 20 16
176.8 5.897 16 12
212.1 7.076 12 10
90 T T T T T T
“, — level 1
80F i == level 2 |{
S e level 3
:‘r 70k ’\,\ == level 4 |4
s \
Z 60t Y g
» S0F ' B
9 ‘a,
& Ve
S4of mm=---- e, .
A H ==
(=] l M T
1
§ 2l i ' 1
) 1
1 1
or i \ l
1 = 1
0 1 al = 1 Il L 1
0 5 10 15 20 25 30 35
modenumber TM,n
Fig. 8. Number of samples at four levels needed for each TM-mode to obtain

an accuracy of 10~7.

z-oriented basis functions and y-oriented test functions or vice
versa, are shown. The reader notices that the target accuracies
& can easily be reached. The radius of the groups at the lowest
levelis R; = 0.3)\¢. This might seem quite small (often one uses
0.5\ or even )\y), but as one notices, it does not cause accuracy
problems. Even better, the MLFMA can be used starting from
small distances (here A = 51 mm, which corresponds to a
distance of 5R; between a pair of boxes at level 1 that constitute
a far-field pair), and hence take full advantage of the technique.
Below this distance, a classical technique needs to be adopted.
In the example here, four levels in our MLFMA tree are used.
In Section II-D the concept of mode trimming is introduced,
meaning that the number of modes Mry;; and Mg, decreases
with increasing level number /. An increasing [ means of course
that the distance A between a basis and a test function increases.
In Table I it can be seen that it is perfectly safe to trim the modes
without loss of accuracy. In the table we aimed at an accuracy of
€ =107%and €& = 10~* for the = — x-interactions. In Fig. 8 the
sampling rates 2Q) T, + 1 are plotted for the TM-modes at four
levels, for a target accuracy £ = 107, as used in the example
of Figs. 6 and 7. When the number of samples drops to zero,
this means of course that the mode is not used at that particular
level as is requested by the mode trimming feature. Also, the
sampling rate does not increase for higher order modes, on the
contrary. This indicates that one can use the relative error for the
core MLFMA (21) as defined in (22). It also means that the plane
wave decomposition for complex wavenumbers Arx ,, TX =
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Fig. 9. Layout of the metallization used for testing the computational
complexity of the method.

TE or TM, does not destroy the computational complexity of
the algorithm. Remark that in the case of a microstrip substrate,
with k1 # ko, the substrate does propagate surface waves (with
wavenumbers A € R). In this case the mode trimming is even
more efficient, since these modes will more and more dominate
the total accuracy as the distance increases.

One can conclude that with the new method a fully control-
lable accuracy is achieved.

B. Computational Efficiency

For testing the computational complexity of our new MLFMA,
a substrate with thickness d = 3.17 mm, relative permittivity
€. = 11.7, and relative permeability p,. = 1 is used. The an-
gular frequency is w = 2710 - 10° Hz. On the substrate a real-
istic structure for measuring the memory requirements and speed
is placed. The metallization is shown in Fig. 9 and consists of a
uniform antenna array. The size of the patchesis w = 7.5 mm
and the periodicity of the array is T = (3\g/4) = 22.5 mm.
Eachindividual patch is discretized using a nonuniform mesh. At
the edges of each patch the grid is refined in order to model the
edge current behavior more accurately. The number of unknowns
N is increased by adding more patches. The target accuracy is
setat £ = 1075, In Fig. 10 the CPU time needed for one itera-
tion is plotted for a variable number of unknowns. Fig. 11 shows
the memory requirements of the code. As predicted, with the new
PML-MLFMA both the operation count and the memory require-
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ments scale as O(N), as opposed to a classical method with an
O(N?) complexity. Important to stress is that the cross-over
point for the speed is found just below N = 1000. Starting from
about 2000 unknowns, there is also already a gain in memory
efficiency. This is slightly larger than what is obtained for the
speed and can be explained by the fact that even for small struc-
tures the MLFMA has a large fixed cost of memory, just for
building the tree. These results are in line with those of free
space FMMs and demonstrate that PML-MLFMA allows the
modeling of very large planar structures.

C. Application Examples

This subsection presents computational results illustrating the
applicability of the proposed scheme to the analysis of radiation
and scattering by/from electrically large arrays. The far-field
E>f(R, 0, $) scattered from an antenna array is expressed as

—jkoR

E*(R,0,9) ~ (Fol6, )8 + F4(6. 0)$) © (28)

for large ko R, where R = |r| = /22 + y? + 22 and 6 is the
angle between r and the z-axis and ¢ the angle between the
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Fig. 12. Layout of the 8 X 4 microstrip array. The grayscale is an indication
for the current density on the metallization.

x-axis and the projection of r onto the xy-plane. The radiation
patterns Fy(6, ¢) and Fy (6, ¢) can be calculated from the cur-
rents on the metallization using a stationary phase method [34].

The first example involves the 8 X 4 microstrip array de-
tailed in [44], [45] and shown in Fig. 12. The array is situated
on a substrate with thickness d = 1.59 mm, relative permit-
tivity €, = 2.2, and relative permeability p, = 1. The var-
ious dimensions detailed in Fig. 12 are [ = 10.08 mm, w =
11.79 mm, d; = 1.3 mm, ds = 3.93 mm, /; = 12.32 min,
lo = 1848 mm, D; = 23.58 mm, and Dy = 22.40 mm.
The array is fed by forcing a current at its input at angular fre-
quency w = 279.42 - 10° Hz. The array’s radiation patterns in
the E-plane (¢ = 0°) and the H-plane (¢ = 90°) are shown in
Fig. 13(a) and (b) and compared with the results found in [45].
Very good agreement between both data sets is observed.

The second example involves the array first introduced in Sec-
tion III-B (Fig. 9); the patch width is again w = 7.5 mm and
the periodicity of the array, detailed in Fig. 9,1s T' = 3\o/4 =
22.5 mm. The structure is illuminated by a plane wave

EPW(I‘) _ Eoej(klz+kyy+k;z)
_ Eoejkg (cos ¢ sin Bz+sin ¢ sin By+cos Hz) (29)
as indicated on Fig. 1. For this kind of excitation one can easily
derive that at z = d the incident field is of the following form:

Ei(p) — el kavthyythd) | Rei(karthyy—k.d) (30)

with R the transverse to z strength of the wave reflected at
the PEC-backed substrate. In our example again an angular fre-
quency of w = 2710 - 10° Hz is used and the plane wave has
angles of incidence § = 30° and ¢ = 0°. The plane wave is lin-
early polarized along the y-axis and has a strength of 1(V/m),
hence Ey = y. For this illuminating plane wave and for the
given microstrip substrate, the strength of the reflected wave is
given by R = (0.195 — 50.981)(V/m)y. In the xz-plane the
scattering cross section | F () /|EPW||? is studied and a grating
lobe in the radiation pattern at f,, = 56.4° (apart from the spec-
ular reflection at fsp.c = —30°) is expected. For an infinite
number of patches, one would obtain two discrete Dirac-like
lobes at 0, and fgpc. Fig. 14 shows the scattering cross section
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Fig. 14.  Scattering cross section as a function of the number of patches.

in the zz-plane for a varying number of square patches. With an
increasing number of patches, our result more and more resem-
bles a pattern that only comprises two discrete lobes. The reader
also notices the two predicted lobes at 6y, and Opec.
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IV. CONCLUSION

In this contribution, a novel MLFMA technique has been in-
troduced to analyze radiation by and scattering from three-di-
mensional planar microwave structures. The method starts from
a classical EFIE formulation solved with the MoM. The crux of
our method resides in a recently developed new robust series ex-
pansion for the electric-electric Green dyadic G that is based
on the application of PMLs. Each term in the series for G, can
be decomposed into a set of 2-D plane wave contributions. This
allows a separation of the source and the observer in the Green
function, leading to an MLFMA implementation. Only for near
and for self-patch interactions, the PML-MLFMA formalism
has to be abandoned and needs to be replaced by a classical tech-
nique. A new fast multiplication scheme has been implemented
and a computational complexity of order O(V) is achieved. The
accuracy of the method has been extensively tested, which al-
lows the reader to conclude that it is fully controllable. The pro-
posed technique is applied to electrically large planar antenna
arrays, clearly validating the accuracy and the capabilities of the
method. The extension of the present PML-MLFMA technique
to electrically very small planar structures using a low frequency
version of the algorithm is currently under investigation.
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