15 research outputs found

    10281 Abstracts Collection -- Dynamically Reconfigurable Architectures

    Get PDF
    From 11.07.10 to 16.07.10, Dagstuhl Seminar 10281 ``Dynamically Reconfigurable Architectures \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Towards Dilated Placement of Dynamic NoC Cores

    Get PDF
    Instead of mapping application task graphs in a compact manner onto reconfigurable devices using a network-on-chip for interconnecting application cores, we propose dilating the mappings as much as the available latencies on critical connections allow. In a dilated mapping, the unused resources between an application\u27s configured components can be used to provide additional flexibility when the configuration needs to change. We motivate the reasons for dilating application task graphs targeted at reconfigurable devices; derive a simulated annealing approach to dilating the placement of such graphs; and present preliminary results of applying the algorithm to synthetic test cases. The method appears to result in successful and meaningful graph dilation and could be further tuned to satisfy desired power constraints

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria

    Rapid Prototyping and Exploration Environment for Generating C-to-Hardware-Compilers

    Get PDF
    There is today an ever-increasing demand for more computational power coupled with a desire to minimize energy requirements. Hardware accelerators currently appear to be the best solution to this problem. While general purpose computation with GPUs seem to be very successful in this area, they perform adequately only in those cases where the data access patterns and utilized algorithms fit the underlying architecture. ASICs on the other hand can yield even better results in terms of performance and energy consumption, but are very inflexible, as they are manufactured with an application specific circuitry. Field Programmable Gate Arrays (FPGAs) represent a combination of approaches: With their application specific hardware they provide high computational power while requiring, for many applications, less energy than a CPU or a GPU. On the other hand they are far more flexible than an ASIC due to their reconfigurability. The only remaining problem is the programming of the FPGAs, as they are far more difficult to program compared to regular software. To allow common software developers, who have at best very limited knowledge in hardware design, to make use of these devices, tools were developed that take a regular high level language and generate hardware from it. Among such tools, C-to-HDL compilers are a particularly wide-spread approach. These compilers attempt to translate common C code into a hardware description language from which a datapath is generated. Most of these compilers have many restrictions for the input and differ in their underlying generated micro architecture, their scheduling method, their applied optimizations, their execution model and even their target hardware. Thus, a comparison of a certain aspect alone, like their implemented scheduling method or their generated micro architecture, is almost impossible, as they differ in so many other aspects. This work provides a survey of the existing C-to-HDL compilers and presents a new approach to evaluating and exploring different micro architectures for dynamic scheduling used by such compilers. From a mathematically formulated rule set the Triad compiler generates a backend for the Scale compiler framework, which then implements a hardware generation backend with described dynamic scheduling. While more than a factor of four slower than hardware from highly optimized compilers, this environment allows easy comparison and exploration of different rule sets and the micro architecture for the dynamically scheduled datapaths generated from them. For demonstration purposes a rule set modeling the COCOMA token flow model from the COMRADE 2.0 compiler was implemented. Multiple variants of it were explored: Savings of up to 11% of the required hardware resources were possible

    Towards the development of flexible, reliable, reconfigurable, and high-performance imaging systems

    Get PDF
    Current FPGAs can implement large systems because of the high density of reconfigurable logic resources in a single chip. FPGAs are comprehensive devices that combine flexibility and high performance in the same platform compared to other platform such as General-Purpose Processors (GPPs) and Application Specific Integrated Circuits (ASICs). The flexibility of modern FPGAs is further enhanced by introducing Dynamic Partial Reconfiguration (DPR) feature, which allows for changing the functionality of part of the system while other parts are functioning. FPGAs became an important platform for digital image processing applications because of the aforementioned features. They can fulfil the need of efficient and flexible platforms that execute imaging tasks efficiently as well as the reliably with low power, high performance and high flexibility. The use of FPGAs as accelerators for image processing outperforms most of the current solutions. Current FPGA solutions can to load part of the imaging application that needs high computational power on dedicated reconfigurable hardware accelerators while other parts are working on the traditional solution to increase the system performance. Moreover, the use of the DPR feature enhances the flexibility of image processing further by swapping accelerators in and out at run-time. The use of fault mitigation techniques in FPGAs enables imaging applications to operate in harsh environments following the fact that FPGAs are sensitive to radiation and extreme conditions. The aim of this thesis is to present a platform for efficient implementations of imaging tasks. The research uses FPGAs as the key component of this platform and uses the concept of DPR to increase the performance, flexibility, to reduce the power dissipation and to expand the cycle of possible imaging applications. In this context, it proposes the use of FPGAs to accelerate the Image Processing Pipeline (IPP) stages, the core part of most imaging devices. The thesis has a number of novel concepts. The first novel concept is the use of FPGA hardware environment and DPR feature to increase the parallelism and achieve high flexibility. The concept also increases the performance and reduces the power consumption and area utilisation. Based on this concept, the following implementations are presented in this thesis: An implementation of Adams Hamilton Demosaicing algorithm for camera colour interpolation, which exploits the FPGA parallelism to outperform other equivalents. In addition, an implementation of Automatic White Balance (AWB), another IPP stage that employs DPR feature to prove the mentioned novelty aspects. Another novel concept in this thesis is presented in chapter 6, which uses DPR feature to develop a novel flexible imaging system that requires less logic and can be implemented in small FPGAs. The system can be employed as a template for any imaging application with no limitation. Moreover, discussed in this thesis is a novel reliable version of the imaging system that adopts novel techniques including scrubbing, Built-In Self Test (BIST), and Triple Modular Redundancy (TMR) to detect and correct errors using the Internal Configuration Access Port (ICAP) primitive. These techniques exploit the datapath-based nature of the implemented imaging system to improve the system's overall reliability. The thesis presents a proposal for integrating the imaging system with the Robust Reliable Reconfigurable Real-Time Heterogeneous Operating System (R4THOS) to get the best out of the system. The proposal shows the suitability of the proposed DPR imaging system to be used as part of the core system of autonomous cars because of its unbounded flexibility. These novel works are presented in a number of publications as shown in section 1.3 later in this thesis

    Dynamic partial reconfiguration management for high performance and reliability in FPGAs

    Get PDF
    Modern Field-Programmable Gate Arrays (FPGAs) are no longer used to implement small “glue logic” circuitries. The high-density of reconfigurable logic resources in today’s FPGAs enable the implementation of large systems in a single chip. FPGAs are highly flexible devices; their functionality can be altered by simply loading a new binary file in their configuration memory. While the flexibility of FPGAs is comparable to General-Purpose Processors (GPPs), in the sense that different functions can be performed using the same hardware, the performance gain that can be achieved using FPGAs can be orders of magnitudes higher as FPGAs offer the ability for customisation of parallel computational architectures. Dynamic Partial Reconfiguration (DPR) allows for changing the functionality of certain blocks on the chip while the rest of the FPGA is operational. DPR has sparked the interest of researchers to explore new computational platforms where computational tasks are off-loaded from a main CPU to be executed using dedicated reconfigurable hardware accelerators configured on demand at run-time. By having a battery of custom accelerators which can be swapped in and out of the FPGA at runtime, a higher computational density can be achieved compared to static systems where the accelerators are bound to fixed locations within the chip. Furthermore, the ability of relocating these accelerators across several locations on the chip allows for the implementation of adaptive systems which can mitigate emerging faults in the FPGA chip when operating in harsh environments. By porting the appropriate fault mitigation techniques in such computational platforms, the advantages of FPGAs can be harnessed in different applications in space and military electronics where FPGAs are usually seen as unreliable devices due to their sensitivity to radiation and extreme environmental conditions. In light of the above, this thesis investigates the deployment of DPR as: 1) a method for enhancing performance by efficient exploitation of the FPGA resources, and 2) a method for enhancing the reliability of systems intended to operate in harsh environments. Achieving optimal performance in such systems requires an efficient internal configuration management system to manage the reconfiguration and execution of the reconfigurable modules in the FPGA. In addition, the system needs to support “fault-resilience” features by integrating parameterisable fault detection and recovery capabilities to meet the reliability standard of fault-tolerant applications. This thesis addresses all the design and implementation aspects of an Internal Configuration Manger (ICM) which supports a novel bitstream relocation model to enable the placement of relocatable accelerators across several locations on the FPGA chip. In addition to supporting all the configuration capabilities required to implement a Reconfigurable Operating System (ROS), the proposed ICM also supports the novel multiple-clone configuration technique which allows for cloning several instances of the same hardware accelerator at the same time resulting in much shorter configuration time compared to traditional configuration techniques. A faulttolerant (FT) version of the proposed ICM which supports a comprehensive faultrecovery scheme is also introduced in this thesis. The proposed FT-ICM is designed with a much smaller area footprint compared to Triple Modular Redundancy (TMR) hardening techniques while keeping a comparable level of fault-resilience. The capabilities of the proposed ICM system are demonstrated with two novel applications. The first application demonstrates a proof-of-concept reliable FPGA server solution used for executing encryption/decryption queries. The proposed server deploys bitstream relocation and modular redundancy to mitigate both permanent and transient faults in the device. It also deploys a novel Built-In Self- Test (BIST) diagnosis scheme, specifically designed to detect emerging permanent faults in the system at run-time. The second application is a data mining application where DPR is used to increase the computational density of a system used to implement the Frequent Itemset Mining (FIM) problem

    A Probabilistic Approach for the System-Level Design of Multi-ASIP Platforms

    Get PDF

    A multi-level functional IR with rewrites for higher-level synthesis of accelerators

    Get PDF
    Specialised accelerators deliver orders of magnitude higher energy-efficiency than general-purpose processors. Field Programmable Gate Arrays (FPGAs) have become the substrate of choice, because the ever-changing nature of modern workloads, such as machine learning, demands reconfigurability. However, they are notoriously hard to program directly using Hardware Description Languages (HDLs). Traditional High-Level Synthesis (HLS) tools improve productivity, but come with their own problems. They often produce sub-optimal designs and programmers are still required to write hardware-specific code, thus development cycles remain long. This thesis proposes Shir, a higher-level synthesis approach for high-performance accelerator design with a hardware-agnostic programming entry point, a multi-level Intermediate Representation (IR), a compiler and rewrite rules for optimisation. First, a novel, multi-level functional IR structure for accelerator design is described. The IRs operate on different levels of abstraction, cleanly separating different hardware concerns. They enable the expression of different forms of parallelism and standard memory features, such as asynchronous off-chip memories or synchronous on-chip buffers, as well as arbitration of such shared resources. Exposing these features at the IR level is essential for achieving high performance. Next, mechanical lowering procedures are introduced to automatically compile a program specification through Shir’s functional IRs until low-level HDL code for FPGA synthesis is emitted. Each lowering step gradually adds implementation details. Finally, this thesis presents rewrite rules for automatic optimisations around parallelisation, buffering and data reshaping. Reshaping operations pose a challenge to functional approaches in particular. They introduce overheads that compromise performance or even prevent the generation of synthesisable hardware designs altogether. This fundamental issue is solved by the application of rewrite rules. The viability of this approach is demonstrated by running matrix multiplication and 2D convolution on an Intel Arria 10 FPGA. A limited design space exploration is conducted, confirming the ability of the IR to exploit various hardware features. Using rewrite rules for optimisation, it is possible to generate high-performance designs that are competitive with highly tuned OpenCL implementations and that outperform hardware-agnostic OpenCL code. The performance impact of the optimisations is further evaluated showing that they are essential to achieving high performance, and in many cases also necessary to produce hardware that fits the resource constraints

    Aeronautical engineering: A continuing bibliography with indexes (supplement 301)

    Get PDF
    This bibliography lists 1291 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 248)

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 236 through 247 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number
    corecore