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Lay Summary of Thesis 

Modern Field-Programmable Gate Arrays (FPGAs) have evolved to devices 

consisting of a large number of reconfigurable hardware resources. Hardware 

Description Language (HDL) codes can be synthesised to binary files which can be 

loaded into the FPGA to implement different hardware functions. Similar to 

traditional software solutions, functions can be easily modified and upgraded using 

the same hardware components, however, functions implemented on FPGAs can be 

customised to perform parallel computations and hence achieve a much higher 

performance compared to software solutions that execute algorithms sequentially.  

Recent FPGAs support Dynamic Partial Reconfiguration (DPR) which further 

enhances the flexibility of the device. DPR allows for changing the functionality of 

certain blocks within the FPGA while the rest of the FPGA is operational. This 

means that computational functions can be swapped in and out of the FPGA at run-

time while other functions are actively performing computations. DPR has opened 

the doors to implement highly adaptive systems which can be deployed in many 

applications. Researchers are continually looking for ways to enhance the reliability 

and performance of systems implemented in FPGAs using DPR. Enhancing 

reliability is particularly important in space and militarily electronic systems where 

FPGAs are usually seen as unreliable devices due to their sensitivity to radiation and 

harsh environmental conditions. 

This thesis proposes a number of novel techniques that deploy DPR to enhance the 

reliability and performance of reconfigurable systems. A comprehensive internal 

configuration management system for partially reconfigurable FPGAs is introduced. 

This system supports high-performance configuration via the Internal Configuration 

Access Port (ICAP) as well as several parameterisable fault-detection and fault-

recovery capabilities.  



IV 
 

Abstract  

Modern Field-Programmable Gate Arrays (FPGAs) are no longer used to implement 

small “glue logic” circuitries. The high-density of reconfigurable logic resources in 

today’s FPGAs enable the implementation of large systems in a single chip. FPGAs 

are highly flexible devices; their functionality can be altered by simply loading a new 

binary file in their configuration memory.  While the flexibility of FPGAs is 

comparable to General-Purpose Processors (GPPs), in the sense that different 

functions can be performed using the same hardware, the performance gain that can 

be achieved using FPGAs can be orders of magnitudes higher as FPGAs offer the 

ability for customisation of parallel computational architectures.  

Dynamic Partial Reconfiguration (DPR) allows for changing the functionality of 

certain blocks on the chip while the rest of the FPGA is operational. DPR has 

sparked the interest of researchers to explore new computational platforms where 

computational tasks are off-loaded from a main CPU to be executed using dedicated 

reconfigurable hardware accelerators configured on demand at run-time. By having a 

battery of custom accelerators which can be swapped in and out of the FPGA at run-

time, a higher computational density can be achieved compared to static systems 

where the accelerators are bound to fixed locations within the chip. Furthermore, the 

ability of relocating these accelerators across several locations on the chip allows for 

the implementation of adaptive systems which can mitigate emerging faults in the 

FPGA chip when operating in harsh environments. By porting the appropriate fault 

mitigation techniques in such computational platforms, the advantages of FPGAs can 

be harnessed in different applications in space and military electronics where FPGAs 

are usually seen as unreliable devices due to their sensitivity to radiation and extreme 

environmental conditions.  

In light of the above, this thesis investigates the deployment of DPR as: 1) a method 

for enhancing performance by efficient exploitation of the FPGA resources, and 2) a 

method for enhancing the reliability of systems intended to operate in harsh 

environments. Achieving optimal performance in such systems requires an efficient 

internal configuration management system to manage the reconfiguration and 
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execution of the reconfigurable modules in the FPGA. In addition, the system needs 

to support “fault-resilience” features by integrating parameterisable fault detection 

and recovery capabilities to meet the reliability standard of fault-tolerant 

applications. This thesis addresses all the design and implementation aspects of an 

Internal Configuration Manger (ICM) which supports a novel bitstream relocation 

model to enable the placement of relocatable accelerators across several locations on 

the FPGA chip. In addition to supporting all the configuration capabilities required to 

implement a Reconfigurable Operating System (ROS), the proposed ICM also 

supports the novel multiple-clone configuration technique which allows for cloning 

several instances of the same hardware accelerator at the same time resulting in much 

shorter configuration time compared to traditional configuration techniques. A fault-

tolerant (FT) version of the proposed ICM which supports a comprehensive fault-

recovery scheme is also introduced in this thesis.   The proposed FT-ICM is designed 

with a much smaller area footprint compared to Triple Modular Redundancy (TMR) 

hardening techniques while keeping a comparable level of fault-resilience.  

The capabilities of the proposed ICM system are demonstrated with two novel 

applications. The first application demonstrates a proof-of-concept reliable FPGA 

server solution used for executing encryption/decryption queries. The proposed 

server deploys bitstream relocation and modular redundancy to mitigate both 

permanent and transient faults in the device. It also deploys a novel Built-In Self-

Test (BIST) diagnosis scheme, specifically designed to detect emerging permanent 

faults in the system at run-time. The second application is a data mining application 

where DPR is used to increase the computational density of a system used to 

implement the Frequent Itemset Mining (FIM) problem.   
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Chapter 1 : Introduction 
 

It is difficult to comprehend the evolution of the electronics industry and how 

technology has changed every aspect of our lives. Embedded computing devices are 

being deployed everywhere, from large machinery to small consumer products. The 

diverse market and high demand have been the driving force for the massive growth 

in the electronics industry, which currently ranks top in research and development 

spending among all other industries [1]. After the introduction of the first 

commercial silicon transistor in 1954 [2], and throughout the history of computing 

hardware, the transistor count in computing hardware has remained more or less on 

par with Moore’s law. The continuous advances in manufacturing process 

technology have allowed for computing hardware such as processors to have better 

transistor density, higher performance and greater energy efficiency. 

Processors are based on the stored-programme computing model whereby 

programme instructions for a given function are stored in memory. These 

instructions are executed sequentially in repetitive fetch-decode-execute cycles. 

Processors are associated with software; the ease and convenience of writing 

software programs has boosted the productivity of processor-based computing 

making it the most dominant trend in computing. In fact, the software industry today 

generates over $400 billion in revenue annually due to the widespread use of 

processor-powered devices [3]. 

Most processors are classified as General Purpose Processors (GPPs). GPPs are 

designed for a wide range of applications. They are very flexible, especially when 

running an Operating System (OS) to manage all the hardware resources and 

peripherals. Due to the sequential nature of programme execution in GPP-based 

systems, their performance is highly related to their operational clock frequency. In 
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early processors, manufacturers relied on the advancements in process technology to 

increase the operational clock frequency within the acceptable power envelope. This 

trend in clock frequency scaling continued until the mid-2000s when the transistor 

shrink could no longer compensate for thermal and power dissipation. To continue 

scaling the performance of processors, manufacturers slowly adopted multicore 

architectures that integrate multiple cores in a single processor so that multiple 

instructions can be executed simultaneously. Multicore architectures have become 

the norm today and can be seen in a wide range of processors from large high-

performance processors to small low-energy application processors. The 

performance of multicore processors does not necessarily scale with the number of 

cores in the processor. Performance is highly related to the software implementation 

and its ability to parallelise the computing tasks. The performance gain of multicore 

processors is governed by Amdahl’s law, which states that the performance gain is 

limited by the portion of software that can be parallelised to run on multiple cores 

simultaneously [4]. Currently, parallel programming is a hot topic of research with 

many emerging programming models and tools [5]. However, performance gain is 

not always possible with parallel programming as it depends highly on the 

application. Extracting parallelism from algorithms is not always a trivial process. In 

addition, parallel programming is not mature enough to be deployed on a wider scale 

in an industry dominated by ‘serially-orientated’ software and hardware [6].   

GPPs are intended for general use; they might not provide sufficient power for 

applications requiring high performance and throughput. Such applications are 

usually handled by specialised Application Specific Integrated Circuits (ASICs) such 

as Digital Signal Processing (DSP) accelerators and Graphical Processing Units 

(GPUs). Depending on the application, modern processors usually work alongside 

one or several ASICs that are optimised for specific computation tasks. These ASICs 

can be independent chips connected externally to the processor or Intellectual 

Property (IP) blocks integrated with the processor in a single System-on-Chip (SoC). 

While ASICs greatly enhance performance by customising the hardware to the needs 

of specific applications, they compromise flexibility. Once fabricated, ASICs can 
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only be used for certain types of task and this has limited their deployment to a 

limited number of applications.  

In general, software provides the best flexibility, whereas custom hardware provides 

the best performance. Reconfigurable computing has become one of the major 

computing trends to bridge the gap between software and custom hardware in terms 

of flexibility and performance. Reconfigurable computing is based on reconfigurable 

hardware such as Field-Programmable Gate Arrays (FPGAs). As the name implies, 

FPGAs are built out of arrays of reconfigurable ‘logic blocks’, which can be 

programmed after manufacturing. Almost any digital hardware circuit can be 

implemented in FPGAs with a performance comparable to that of fully-custom 

ASICs. While early FPGAs were small devices used to implement simple ‘glue 

logic’, modern FPGAs have taken full advantage of the advances in the 

manufacturing process to become large and highly dense devices containing many 

specialised components and capable of hosting very complex systems in a single 

chip. In fact, the transistor count can exceed 20 billion transistors in a modern FPGA 

[7]. This huge amount of reconfigurable blocks is enough to emulate 10 ARM 

Cortex-A9 CPUs in a single chip. 

The FPGA design flow is also rapidly evolving to allow for better productivity and 

shorter development time. Traditionally, FPGA design starts with a Register-Transfer 

Level (RTL) description typically written in a Hardware Description Language 

(HDL). The FPGA industry today is shifting towards a higher level of abstraction in 

design. C-to-silicon design tools allow for designing FPGA systems using software 

programming languages without the need for creating the RTL description manually. 

The main FPGA vendors are starting to push these tools, which are gaining a lot of 

popularity commercially and academically. Xilinx, the primary FPGA vendor, was 

first to introduce the High-Level Synthesis (HLS) tool, which supports rapid FPGA 

design using a broad range of programming languages [8]. Altera, Xilinx’s main 

competitor, soon followed, introducing an FPGA compiler for the popular Open 

Computing Language (OpenCL). This compiler automatically extracts and translates 

OpenCL kernels into deeply pipelined hardware accelerators [9]. With the variety of 

design tools available for FPGAs, the FPGA IP market is rapidly expanding. Both 
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Xilinx and Altera are making their design tools more IP user-friendly. In addition, 

big Electronic Design Automation (EDA) companies such as Mentor Graphics and 

Synopsys have introduced vender-independent IP platforms, allowing access to 

libraries from several third-party IP vendors ([10] and [11]).  

FPGAs are all about flexibility when compared to ASICs. The advantage of FPGAs 

is not just limited to the flexibility of implementing different designs and the ability 

to perform offline design modifications. The Dynamic Partial Reconfiguration (DPR) 

feature in high-end SRAM FPGAs allows for certain blocks within the FPGA to be 

modified at run-time while the FPGA is operating. DPR can enhance the efficiency 

of FPGAs by allowing different functions to share the same hardware and 

consequently reduce the overall resource utilisation. DPR can also enhance 

performance by time-multiplexing larger functions that share the same hardware 

resources. In fact, DPR takes the flexibility of FPGAs to another level and presents 

some exciting opportunities to implement new computing architectures that 

effectively exploit the FPGA’s resources. The idea of a Reconfigurable Operating 

System (ROS) has existed for a long time [12]. An ROS would have all the 

flexibility and productivity benefits of a normal OS; however, tasks are executed 

using reconfigurable hardware rather than software, allowing for much higher 

performance. The lack of a generic hardware platform that allows for continuous run-

time modifications has prevented this idea from materialising into practical systems. 

With today’s advancements in FPGA technology and DPR techniques, this idea is 

more feasible than ever. 

FPGAs allow for in-field repairs, modifications and upgrades, making them very 

attractive for space and military electronics. However, space and military electronics 

operate in harsh conditions, which can provoke faults in FPGAs. FPGAs are 

particularly sensitive to high levels of radiation. The reconfigurability of FPGAs 

compensates for this fact as continuous repairs and workarounds are possible at 

virtually no cost. Moreover, DPR can be performed from within the FPGA without 

the aid of any external control circuitry. This feature allows for implementing self-

healing evolvable systems that adapt not only to temporarily faults but also to 

permanent faults caused by device aging.    
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Unfortunately, the current state of DPR design flows and configuration techniques 

does not unleash the full potential of this feature. Particularly, the lack of efficient 

configuration management systems limits the adoption of this feature in many 

applications that would naturally benefit from DPR. The main aim of this thesis is to 

develop an Internal Configuration Manager (ICM) that would enable efficient 

deployment of DPR for high performance and reliability. This thesis looks into a 

wide range of DPR issues such as: configuration speed, configuration reliability, 

DPR design floor planning, reconfigurable module allocation, fault detection and 

fault recovery. Moreover, the thesis demonstrates two DPR case study applications; 

the first is a reliable encryption engine based on an ROS model for FPGAs and the 

second is a high-performance acceleration engine for frequent itemset mining.                                          

1.1 Thesis Objectives 
 

The main objective of the thesis is to propose and develop ways that would unlock 

the full potential of DPR and to come up with generic reconfiguration platforms and 

configuration techniques that would enable efficient use of the reconfigurable 

hardware for several applications. In more detail, the objective of the thesis can be 

divided into the following two areas of interest:  

 High Performance     

DPR can theoretically enhance performance by efficient exploitation of the 

reconfigurable resources at run-time. In general, performance gain is achieved by 

time-multiplexing several reconfigurable accelerators that share the same 

reconfigurable resources. Three questions need to be answered to come up with the 

optimal performance gain using DPR:  

1) Can we reduce reconfiguration overhead through efficient management of 

reconfiguration tasks?  

Reconfiguration is a sequential process with a throughput limited by the rated 

maximum clock frequency. In many cases, reconfiguration can be a performance 

bottleneck preventing any feasible performance gain out of DPR. This thesis 
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aims at developing new configuration techniques that allow for higher 

configuration throughputs. Ultimately, a generic internal configuration controller 

should be able to efficiently handle all the configuration operations in any 

system.         

 

2) Can a generic DPR-based computational platform be used for software 

acceleration? 

This thesis aims to explore how efficient configuration management and high-

speed reconfiguration would affect the overall performance of the system. This 

thesis also aims to develop a generic platform for high-performance acceleration 

through DPR. This platform should be applicable to a wide range of 

computationally intensive algorithms. 

 

3) Can DPR provide an actual gain in performance in a real-world application?                                                                                                 

This thesis demonstrates a real-world application in which DPR is applied to gain 

a performance advantage over static implementations. Customised reconfigurable 

accelerators are developed for the selected applications and deployed in the 

generic acceleration platform.  

 

 Reliability      

DPR can be the basis for implementing self-healing reliable systems. Using DPR for 

reliability requires addressing several aspects in the system. This thesis aims to 

develop a reliability-centric configuration management system that addresses the 

following open problems: 

1) Can DPR be used for effective transient fault detection and correction?   

The thesis aims to develop a comprehensive transient faults handling scheme that 

takes into account both fault detection and correction in the static and 

reconfigurable parts of the system. The scheme should efficiently utilise the 

configuration port of the target device for continuous repairs by means of 

conventional memory scrubbing techniques as well as DPR. 
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2) Can DPR be used for effective permanent fault detection and correction? 

The fault handling scheme should consider permanent damage in the target 

device’s reconfigurable fabric and be able to work around the affected resources. 

This fault handling scheme should extend the life-time of the device and make it 

suitable for long missions in harsh environments. The thesis aims to develop a 

scalable self-test mechanism to test the reconfigurable resources at run-time by 

loading specialised testing circuits.  

 

3) Can a single system be used for both transient and permanent fault mitigation?    

Designing DPR applications is not a trivial process, especially when fault-

tolerance is a main objective in the design. This thesis aims to pave the way for a 

Reliable Reconfigurable Real-Time Operating System (R3TOS) that can offload 

computation tasks to specialised hardware modules. This ROS should naturally 

handle both transient and permanent faults and guarantee reliable execution of 

the computation tasks. The thesis also aims to demonstrate the main 

functionalities of R3TOS with a case study application that requires reliability 

and high-performance. 

 

1.2 Novelty and Contribution  

 

First of all, this thesis presents the design and architecture of a novel ICM for Xilinx 

FPGAs that supports a wide range of configuration operations [13]. The ICM is 

highly portable and is optimised for efficiency and high throughput.  In addition, the 

ICM can act as a fast bitstream manipulation filter based on a novel offset-based 

relocation model. Moreover, the novel multiple-clone configuration technique is 

fully integrated into the ICM, allowing for high throughputs that can be multiple 

times greater than the maximum theoretical throughput rated for the internal 

configuration port for Xilinx FPGAs [14].  
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A novel fault-tolerant version of the ICM is also presented in the thesis [15]. The 

ICM can detect and recover from faults in its logic. This fault-tolerant ICM is the 

core component in R3TOS ([16] and [17]).  

In addition, this thesis presents a fault-handling scheme that addresses both transient 

and permanent faults in an ROS-like system. The scheme combines several fault 

mitigation techniques: memory scrubbing, modular redundancy and module 

relocation. Module relocation is heavily utilized to freely move computational 

modules around permanently damaged resources. Permanent fault detection and 

isolation is achieved by a novel Built-In Self-Test diagnosis scheme, which deploys 

the multiple-clone configuration technique to become considerably faster than the 

available FPGA online-testing techniques [18]. 

The thesis also presents a practical placement algorithm for relocatable modules 

based on an efficient online vertical scanning of the FPGA resources. The 

algorithm’s main contribution is the support of heterogeneous module relocation as 

well as efficient module reuse.  

Lastly, two case study applications are demonstrated in this thesis. The first is a 

flexible encryption engine implemented over R3TOS to provide a secure and reliable 

system for executing encryption tasks. The potential capabilities of the system are 

demonstrated with a test relocatable hardware cipher, which can be allocated in 

several locations in the FPGA to serve different concurrent encryption tasks. The 

second application is a novel DPR implementation of a frequent itemset counting 

system, which deploys efficient management of acceleration tasks to speed-up the 

itemset counting process. Acceleration tasks are performed using customised systolic 

array accelerators which are managed internally using the proposed ICM. 

 

The work presented in this thesis is a part of the R3TOS project carried out by the 

System Level Integration Group (SLIG) at the University of Edinburgh. It is 

important to acknowledge the contributions of the other member in the group in the 

R3TOS project. Dr. Xabier Iturbe developed the R3TOS kernel. More specifically, 

he developed the scheduling and allocation algorithms. Dr. Chuan Hong coded these 

algorithms and implemented dedicated hardware scheduler and allocator. The 

R3TOS scheduling and allocation algorithms are not used in this thesis. However, 
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Dr. Xabier Iturbe, performed reverse engineering experiments to extract the 

functionality of some configuration bits in the Virtex-4 FPGA. The results of these 

experiments are used in Chapter 6. In addition, he developed the main mechanism for 

online clock routing as well as one of the techniques for controlling the relocatable 

cores. This technique is based on the LUT and BRAM semaphores and is presented 

in Chapter 5. Finally, Dr. Hana Hussain has kindly provided the HDL code for the K-

means core used in the analysis of Chapter 4. 

 

1.3 Thesis Outline 

 

This thesis is composed of eight chapters. The remainder of this thesis is summarised 

as follows:  

 

Chapter 2: Introduction to FPGAs and Dynamic Partial Reconfiguration   

This chapter introduces the basics of FPGAs in terms of: architecture, reconfigurable 

resources and design flow. The industry’s DPR design flow is also introduced with 

an overview of its limitations. This chapter also reviews the relevant research work 

that aims to overcome the limitations of the basic DPR flow and allow for more 

advanced partially reconfigurable systems.  

 

Chapter 3: Dynamic Partial Reconfiguration for High-Performance and 

Reliability   

This chapter is a literature review of the main trends in DPR deployment for high 

performance and reliability. The chapter addresses the different techniques for 

enhancing performance using DPR as well as techniques to speed up the 

reconfiguration process. This chapter also discuss the concept of an ROS and its 

implementation issues on FPGAs. Reliability of FPGAs and fault mitigation 

techniques are addressed in this chapter with special emphasis on DPR-based fault 

mitigation for transient and permanent faults.  
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Chapter 4: A High-Performance Internal Configuration Manager     

This chapter presents the design and architecture of the first all-in-one ICM, which 

independently handles the configuration protocols and bitstream manipulation for 

module relocation. This chapter explains in detail the configuration process through 

the Internal Configuration Access Port (ICAP) in Xilinx FPGAs and how the 

configuration operations can be managed efficiently to allow for the maximum 

throughput.      

     

Chapter 5: Reliability-Centric Internal Configuration Management     

This chapter demonstrates how internal configuration can be steered towards 

reliability and fault-tolerance. Different fault detection and recovery methods 

through the ICAP are explained in detail. In addition, different design hardening 

techniques for the ICM are presented and evaluated. This chapter draws a 

comprehensive fault-handling scheme and an ROS configuration management 

system, which led to the development of the R3TOS. 

 

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine        

This chapter presents a practical case study application of R3TOS. The case study 

demonstrates how continuous encryption tasks can be executed using relocatable 

cipher blocks. This chapter presents some practical solutions for module relocation, 

including: on-chip communication, remote task redundancy voting, secure 

configuration and task allocation. The performance of the implemented system is 

evaluated against software when using a test encryption algorithm. 

 

Chapter 7: A DPR-based Platform for Frequent Itemset Mining Acceleration   

This chapter presents a DPR-based platform for accelerating the popular FP-growth 

algorithm, which is widely used for frequent itemset mining. In this case study, the 

FP-growth algorithm is broken into several acceleratable stages. The proposed 

platform manages the execution of several acceleration tasks using relocatable 

systolic array accelerators. The overall performance of the implemented system is 

evaluated against static implantations of the algorithm.  
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Chapter 8: Conclusion and Future Work 

This chapter draws conclusions from the research presented in the thesis and points 

towards the remaining open problems and future work.   

 

 

 

 

 

 



Chapter 2 

 

12 
 

 

Chapter 2 : Introduction to FPGAs and 

Dynamic Partial Reconfiguration 
 

FPGAs are reconfigurable logic devices that can repeatedly be reconfigured 

(reprogrammed) to alter or change their functionality. While early FPGAs were 

basically built out of small arrays of reconfigurable blocks used to implement simple 

glue-logic circuits, modern FPGAs have evolved dramatically over the past two 

decades to become complex devices containing several types of reconfigurable 

resource and several specialised components that can be used to implement 

specialised SoCs very quickly and at a very low cost ([19] and [20]). Modern FPGA 

technology is attracting the attention of engineers to explore different applications 

that would benefit from the advantages offered by FPGAs over ASICs. The key 

advantage of FPGAs over ASICs is flexibility. Indeed, almost any digital circuit can 

be implemented using pre-fabricated FPGAs allowing for fast and low-cost 

development and short time-to-market. In addition the ability to reconfigure FPGAs 

means that FPGA-based systems can be upgraded on-field, which protects such 

systems from obsolescence and allows for adapting to emerging standards. 

Furthermore, recent high-end FPGAs take the flexibility of the device to another 

level by allowing for run-time modifications to the system implemented on the 

FPGA fabric using DPR. DPR allows for sub-blocks in the system to be modified or 

changed without disturbing the operation of the other blocks. The flexibility brought 

by DPR can be harnessed to improve several design aspects such as performance 

[21], functional density [22] and power utilization [23].                          

The rich features offered by modern FPGAs have contributed to the significant 

growth in the FPGA market, which has been dominated by two companies, namely, 

Xilinx and Altera. According to [24], the 2013 FPGA market was worth $4.5 billion 

compared to $2 billion in 2001. During this period, Xilinx has maintained a steady 
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lead in the market with around 45%-50% of the total market share compared to a 

40%-45% market share for Altera. Together these two companies account for around 

90% of the FPGA market.     

Both Xilinx and Altera focus their attention on SRAM-based FPGA technology, 

which is the most common type of FPGA technology and the one that currently 

supports DPR. This chapter prepares readers who are not so familiar with SRAM-

based FPGA technology to better understand the work presented in this thesis. With 

focus on the Xilinx Virtex FPGA family, this chapter presents an overview of the 

FPGA architecture and DPR design flows as found in the literature.  

2.1 Xilinx FPGAs and Design Flow 
 

The Xilinx Virtex FPGA family is the high-end FPGA family offered by Xilinx. This 

family of FPGAs has evolved since the introduction of the first Virtex FPGA in 

1998. After the successful launch of the first Virtex FPGA, Xilinx has followed up 

with the Virtex-2, Virtex-2 pro, Virtex-4, Virtex-5, Virtex-6 and recently the Virtex-

7. While earlier iterations of the Virtex FPGAs have followed an incremental path of 

evolution in terms of fabrication process technology and number of reconfigurable 

blocks in the device, the Virtex-4 FPGA marked a milestone in the Virtex family 

evolution and a major architectural change to the former iterations of the family. The 

renowned Virtex-4 architecture became the standard for the following iterations of 

the Virtex family, which focused on increasing the device density and integrating 

more specialised components while keeping the general resource layout and 

configuration architecture. 

The Virtex-4 architecture divides the chip into several ‘clock regions’ (see Figure 

2.1). Each clock region contains tiles of reconfigurable resources. These 

reconfigurable resources are organised in columns within each clock region in a 

similar arrangement. A column can contain a single type of reconfigurable resource 

and can be configured using a number of ‘configuration frames’. The size of the 

configuration frame is fixed for all columns and is equal to 1312 bits arranged as 41 
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words each of 32-bit. In more recent Virtex FPGAs, the size of the configuration 

frame is larger to accommodate for the extra resources in each column.  

 

 

Figure ‎2.1 Virtex4 device architecture [25]  

 

There are several standard types of reconfigurable resource, as seen in Figure 2.1. 

The main reconfigurable resources are: Configurable Logic Blocks (CLBs), Block 

RAM (BRAMs), Digital Signal Processing (DSP) Blocks, Input/Output Blocks 

(IOBs) and the clock management resources denoted by CLK. In addition to the 

reconfigurable resources, Xilinx FPGAs contains some hard-wired resources that 

have fixed locations on the chip and can be integrated with circuits implemented on 

the reconfigurable logic. These are referred to as primitives and include components 

such as processors, configuration ports and clock buffers. 

 

2.1.1 Overview of Xilinx Reconfigurable Resources 

 

This section describes the most relevant types of Xilinx reconfigurable resources, 

namely, the CLBs and the BRAM.    
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The Configurable Logic Blocks  

CLBs are the main type of reconfigurable logic resource in Xilinx FPGAs. Most of 

the Virtex FPGA fabric is composed of CLB columns. In Virtex-4 FPGAs, a CLB 

column consists of 16 vertically aligned CLBs. A CLB consists mainly of Look-Up 

Tables (LUTs), flip-flops and specialised carry-chains for direct connections with the 

top and bottom CLBs in the column. The LUT is the core element in a CLB. LUTs 

are memory components that can be initialised with the truth table of any function of 

its input connection. Virtex-4 FPGAs contain 4-input LUTs, which means it can be 

programmed to compute any logic function with up to four inputs. By connecting 

several of these LUTs, more complex functions or functions with more inputs can be 

implemented.     

Each CLB is divided into four slices; two of these slices are of type SliceM and the 

other two are of type SliceL. Each slice contains two LUTs, two flip-flops and two 

carry-chains (see Figure 2.2). SliceL can only be used to implement ‘Logic’ 

functions.  SliceM LUTs can be used to implement ‘Memory’ components such as 

shift registers and distributed RAM in addition to the basic logic functions.  

 

 

Figure ‎2.2 Virtex-4 CLB and slice architecture [25] 
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The Block Random Access Memory 

BRAMs are on-chip memory components organised in dedicated columns in the 

FPGA. Each column contains four BRAMs, and each can store 16Kb of data with an 

additional 2Kb of parity bits. Each BRAM can be configured as a single-port or dual-

port memory and can also be configured with any memory location size from 16K x 

1 to 512 x 32. Several BRAMs with the same configuration can be connected 

together to realise larger memory blocks. BRAMs content can be initialised in the 

HDL file, thus giving the option of implementing on-chip Read-Only Memory 

(ROM).  

In addition to the core BRAM resources, a BRAM column also contains dedicated 

First-In First-Out logic, which enables the implementation of synchronous or 

asynchronous FIFOs (see Figure 2.3). This gives designers the option of 

implementing larger FIFOs without utilising any of the CLB resources.  

 

 

Figure ‎2.3 Virtex-4 BRAM architecture [25] 
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2.1.2 Basic Routing and Clocking Structure 

 

Virtex FPGAs have a segmented and hierarchical routing structure. Most of the 

FPGA’s configuration data is related to the routing of the internal logic. The fixed 

wiring in the FPGA can be divided into two categories: the logic routing lines and 

the clock nets. The logic routing lines connect the internal logic’s signals, whereas 

the clock nets connect a clock signal to the resources of the FPGA. 

The Routing Structure     

Routing lines are configured by manipulating a routing structure called the General 

Routing Matrix (GRM). Resources in the FPGA are connected to the GRM via 

reconfigurable Switch Boxes (SBs). Routing lines in the GRM are divided into two 

types: Global lines and Local lines (see Figure 2.4a). Global lines can be one of two 

types of line: Long lines or Hex lines. Long lines connect SBs either vertically from 

the top to the bottom of the device or horizontally across the entire width of the 

device. Hex lines connect an SB to two neighbouring SBs located three and six 

positions away from this SB, either vertically or horizontally.  

On the other hand, Local lines can be one of two types: Double lines or Direct lines. 

Double lines connect an SB to the first and second neighbouring SBs, either 

vertically or horizontally. Direct lines connect an SB to the first neighbouring SB, 

either vertically, horizontally or diagonally.  

Activating a connection between a routing line and an SB is performed via 

programming a Programmable Interconnection Point (PIP) during the configuration 

of the device. An SB has several PIPs, one for each routing line connected to the SB. 

The PIP is basically a transistor switch that can be either enabled or disabled by a 

particular bit in the configuration file. To establish a particular connection in the SB, 

two PIPs must be enabled, one for the input and the other for the output. A 

connection between two SBs is referred to as a ‘hop’. Multiple hops may be required 

to connect two SBs, depending on their location. Figure 2.4b shows the number of 
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hops required for connecting a particular SB to a central SB without considering the 

global lines.  

 

Figure ‎2.4 Routing lines and interconnect pattern in Virtex-4 [26] 

 

The Clock Tree       

The clock routing in Virtex FPGAs is independent of the logic routing. In FPGAs, 

the clock tree is a fixed structure of nets and clocking resources that distribute the 

clock to the synchronous resources across the device. The clock resources are 

divided into global clocking resources, which drive the clock into dedicated global 

nets, and regional clocking resources, which drive the clock into dedicated regional 

nets within each clock region in the device [27]. The global clocking resources are 

typically located in the central columns of the device (see Figure 2.5a) where global 

clock buffers denoted by BUFGs are used to drive the clock to the global nets. An 

external clock source can be directly connected to a BUFG or can be connected first 

to a Digital Clock Manager (DCM), which can be used to adjust the frequency of the 

clock source (see Figure 2.5b).  
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Figure ‎2.5 Global clock nets and BUFGs in central column [27] 

 

Global clock nets can connect the clock directly to the resources of the FPGA or can 

connect the clock first to a regional clock buffer denoted by BUFR. Each clock 

region in the device contains two BUFRs; each one has a dedicated regional clock 

net (see Figure 2.6).   

 

Figure ‎2.6 Simplified regional clock distribution [27] 
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In general, resources can be connected to any of the global or regional clock nets by 

programming the PIPs required to set the desired clock connections. If a regional net 

is desired to clock the resources of a particular implementation on the FPGA, the 

following sequence of resource is a possible path for the clock from the external 

source:  

IOB  DCM  BUFG  PIPs  BUFR  PIPs  Resources 

 

2.1.3 Basic Design Flow   

  

In SRAM-FPGAs, the SRAM cells that hold the configuration of the device are 

referred to as the ‘configuration memory’. Because SRAM is volatile, the 

configurations file (a.k.a. the bitstream) is usually stored in an external non-volatile 

memory module and is loaded into the FPGA’s configuration memory after power-

up of the device. Typically, FPGA designs start with HDL files written by the 

designer to describe the functionality of the logic to be implemented on the FPGA. 

After going through a number of design stages supported by the FPGA’s vendor 

design tools, a bitstream is generated and can be loaded into the FPGA’s 

configuration memory through one of the configuration ports of the device. In the 

Xilinx design flow, there are three main stages required to generate the bitstream: 

Design Synthesis: In this stage, the HDL files described by the designers are 

converted into one or several netlists using the Xilinx Synthesis Technology (XST). 

A netlist file is denoted as the NGC and basically contains a generic hardware 

description of the implemented design (i.e. adders, multipliers, logic gates, etc.).  

Design Implementation: This stage is composed of three design processes: the 

Translate, MAP and Place and Route (PAR). The Translate process merges all the 

NGC files into a single Native Generic Database (NGD). The NGD file is generated 

by the NGDBuild tool and contains a lower-level description of the hardware 

resources required in the target device to implement the design. The designer may 

direct the NGDBuild tool with specific constraints; these constraints may be the 
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exact locations of some of the required logic resources in the FPGA die. All of the 

design constrains are specified in the User Constraint File (UCF) before the translate 

process.  

The second process in the design implementation stage is the MAP process, which 

physically maps all the logic defined in the NGD file to the FPGA resources such as 

CLBs and IOs. The MAP process generates the Native Circuit Description (NCD) 

file, which physically maps the design to the components of the FPGA.  

The final process in the design implementation is the PAR, which takes the NCD file 

to generate another NCD file containing the final placed and routed design.  

Bitstream Generation: After the final NCD file is created in the design 

implementation stage, the bitstream can be generated using the BITGEN tool, which 

generates a binary file denoted as the BIT file that represents the device 

configuration for the desired design. Figure 2.7 summarises the main design stages 

required to generate the BIT file for a particular design.  

 

 

Figure ‎2.7 Simplified Xilinx design flow  
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2.2 Dynamic Partial Reconfiguration  
 

DPR is an exclusive feature to SRAM-FPGAs where parts of the configuration 

memory are modified at run-time to alter the functionality of some parts of the 

implemented system. While a typical implementation on the FPGA has a single full 

bitstream loaded to the FPGA’s configuration memory after power-up of the device, 

any implementation deploying DPR has a full bitstream as well as several partial 

bitstreams that correspond to the different configurations of the dynamically 

reconfigurable parts in the system (see Figure 2.8).  

Since the introduction of DPR in some of the Xilinx devices of the mid-90s, the 

technology and software tools that support this feature have evolved dramatically. 

While this technology was limited to high-end Xilinx FPGAs a decade ago, most of 

the recent FPGAs introduced by Xilinx and Altera support DPR, making the 

technology widely available and a key feature of SRAM-FPGAs. 

 

 

Figure ‎2.8 Partial reconfiguration in SRAM-FPGAs 
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2.2.1 Xilinx DPR Flow 

 

In order to implement a partially reconfigurable design in a Xilinx FPGA, a design 

can follow the Xilinx DPR flow, which is supported by the PlanAhead software tool 

(see Figure 2.9) [28]. The DPR flow separates the design into two parts: the static 

logic, which does not change during run-time, and several Reconfigurable Modules 

(RMs), which are swapped in and out of the FPGA at run-time. Typically, the design 

flow starts with a top HDL file containing a hierarchical description of the entities in 

the design. The design may contain one or several reconfigurable entities that are 

reconfigured with RMs at run-time. Each RM in the design is described with a 

separate HDL file and is synthesised separately from the top HDL file to generate 

separate NGC files, one for each RM in addition to the top NGC file. Before the 

design implementation stage, the design is floor-planned using the PlanAhead tool. 

In floor-planning, each reconfigurable entity in the design is placed in a distinct 

reconfigurable region in the chip. The reconfigurable regions are often referred to as 

Reconfigurable Partitions (RPs). Each RP in the design is assigned with the desired 

RMs, if the design passes the Design Rule Checking (DRC), placement constraints 

can be created for the selected PRs. 

In a DPR design, the implementation stage is repeated several times. Each 

implementation is referred to as a ‘run’. Each run contains a different set of RMs 

assigned to the RPs in the design. The design with a particular set of RMs is 

implemented in the first run to create several NCD files, one for the static logic in the 

design and one for each RM in the design. The NCD file of the static logic from the 

first run is then reused for the remaining runs to ensure that no routing conflicts 

occur between the different implementations when generating the NCD files for the 

remaining RMs in the design. 

In the bitstream generation stage, the static NCD file with the RM NCD files is used 

to generate full bitstreams, one for each run in the design, and partial bitstreams, one 

for each RM in the design. Depending on the nature of the design, the designer may 

select the type of the partial bitstream, which can be either a modular partial 
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bitstream or a difference-based partial bitstream. Modular partial bitstreams contain 

the full configuration of the RP area, whereas difference-based partial bitstreams 

contain individual configuration frames that perform minor changes in the RP area. 

Difference-based partial reconfiguration is suitable for designs with very similar 

RMs that differ only in terms of the content of some of its memory components (e.g. 

LUT equations, BRAM initialisation, etc.).        

It is also noted that, in the case of modular partial reconfiguration, each RP can be 

assigned with an optional ‘black-box’, which is an empty module configured when 

an RP is not used by any RM to reduce the static power dissipation.  

   

 

Figure ‎2.9 Simplified Xilinx DPR flow 

 

Limitations of Xilinx DPR Flow  

Unfortunately, Xilinx DPR flow and software tools only support some of the 

capabilities that can be exploited in partially reconfigurable FPGAs. The main 

limitation of the Xilinx DPR flow is that designers do not have control over the static 

routes in the design. There are two types of route in a DPR design: the static route 
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which connects the different static components together; and the RM route which 

connects the local components inside each RM. Generally, the routing in Xilinx DPR 

flow is bound by three rules: 

1) The static routes can pass through an RP. However, these routes needs to be 

reserved in each RM assigned to the RP. When an RM is configured the static 

routes are overwritten without disturbing the operation of the system (see 

Figure 2.10).  

2) The local routes of any RM are confined within the area specified for the RP. 

This results in an average packing efficiency of around 80% for the PAR 

process in the Xilinx tools [29]. This means that the RP area must be at least 

20% larger than that needed for the largest RM assigned to the RP. 

3) Fixed interconnections are used for connecting each RP in the design to the 

static logic. Early versions of the Xilinx DPR flow relayed on fixed 

interconnects called Bus-Macros (BMs) placed by the designer at the 

boundaries between the RPs and the static logic. The current DPR flow uses 

PROXY LUTs, which are basically 1-input LUTs, each of which is capable 

of routing one signal and is automatically inserted and locked in specific 

locations within the RMs.  

4) RPs may only contain static route; no static logic is allowed inside the RPs. 

Furthermore, the PAR process does not allow overlapping RPs.  

 

Figure ‎2.10 Reserving static routes in modular DPR 
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Not having control over the static routes in Xilinx DPR flow prevents some 

interesting architectures from being deployed efficiently in FPGAs. One example is 

the system shown in Figure 2.11 where several RPs of the same size are placed in the 

FPGA. Even if the same RM is assigned to all the RPs, each RP will require a 

different partial bitstream for the same RM. This increases the size of memory 

required for storing the partial bitstreams, especially when many RMs are assigned to 

the RPs (Figure 2.11a). Xilinx DPR flow also does not allow for the placement of 

overlapping RPs, which may lead to inefficient placement when large RMs are 

present in the design (Figure 2.11b).  

 

 

Figure ‎2.11 Limitations of Xilinx DPR flow 

 

2.2.2 Altera DPR Flow   

 

Altera is one of the major FPGA manufacturers and currently supports DPR in most 

of its new FPGA devices. The Altera DPR flow is fundamentally similar to the 

Xilinx DPR flow. Altera DPR flow starts with a base design containing a static 

region and at least one reconfigurable region. Similar to Xilinx DPR flow, a number 

of reconfigurable modules (called ‘personas’) can be assigned to each reconfigurable 

region. By having different revisions of the base design, each containing a different 
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set of personas, the Quartus software tool can generate the partial bitstreams of the 

design [30]. The first step carried out by the Quartus tool to generate the partial 

bitstreams in a DPR design is to compile all the revisions of the design to generate 

the Masked SRAM object Files (MSF) and the SRAM Object Files (SOF) for each 

revision (see Figure 2.12). In each revision of the design, an MSF file and an SOF 

file are created for each persona. These two files are used by the Quartus tool to 

generate a Partial-Masked SRAM object File (PMSF) for each persona before 

generating the partial bitstream files.  

 

Figure ‎2.12 Simplified Altera DPR flow 

 

Limitations of Altera DPR Flow 

Similar to Xilinx DPR flow, Altera DPR flow does not give designers control over 

the static routes and does not allow for bitstream relocation. While there is no 

technological limitation preventing bitstream relocation in Xilinx Virtex FPGAs as 

Xilinx Virtex FPGAs have regular routing structure, this is not the case for Altera 

FPGAs, which tend to have some routing variations and mismatches between what 

appear to be identical resources [31]. For this reason, all of the research work and 

academic DPR tools available in the literature, as well as the research work presented 

in this thesis are focused on bitstream relocation on Xilinx Virtex FPGAs. 
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2.2.3 Configuration Ports 

 

Generally, DPR can be performed externally using one of the external configuration 

ports or internally using the ICAP. Table 2.1 shows the main configuration options 

available for Xilinx FPGAs. The fastest configuration port is the SelectMAP. This 

port allows for a configuration throughput of 400MB/s and it can be used for full 

device configuration as well as partial reconfiguration. However, the SelectMAP 

requires some additional external circuitries to control the configuration operation. 

The ICAP, on the other hand, provides an internal interface to the SelectMAP, which 

means that fast partial reconfiguration can be performed and controlled from within 

the FPGA by implementing the appropriate reconfiguration control logic. The ICAP 

provides full internal read and write access to the FPGA’s configuration memory 

leading to the possibility of fully autonomous systems. 

In Xilinx FPGAs there are two ICAPs; however, only one ICAP can be used at a 

time. The two ICAPs can be seen as a 2-to-1 multiplexer implemented on the 

SelectMAP interface. The active ICAP is referred to as the primary ICAP and the 

redundant ICAP is referred to as the secondary ICAP. Switching between the two 

ICAPs is possible at run-time by writing the appropriate switching commands 

through the primary ICAP and then switching operation to the secondary ICAP [25].  

Table ‎2.1 Configuration ports [25] 

Configuration Port Type Max. Frequency (MHz) Max. Data Width 

JTAG External 66 1 

SelectMAP External 100 32 

ICAP Internal 100 32 

    

2.2.4 Bitstream Relocation 

 

Bitstream relocation is the ability to configure the same partial bitstream in different 

locations on the FPGA. Such partial bitstream is referred to as a relocatable partial 

bitstream, or a relocatable bitstream for short. Bitstream relocation is generally used 
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to reduce the memory size required for storing partial bitstreams when the same RM 

is instantiated in several locations in the FPGA. 

There are several applications that can make use of bitstream relocation. The lack of 

official support from Xilinx for such a feature led to the development of several 

advanced tools and configuration techniques to circumvent the limitations of Xilinx 

DPR flow. In general, successful bitstream relocation has four main requirements, 

which are summarised in the following sub-sections.   

Resource Compatibility  

A partial bitstream configures a fixed height and width of resource columns. In order 

to relocate an RM, the target location of configuration must have identical resources 

to the original location of the RM. This implies that any target location of a 

relocatable bitstream must have the same dimensions, resource type and column 

layout.  

The maximum number of feasible locations for a relocatable RM will depend on the 

number of regions with the same resource layout on the FPGA (see Figure 2.13). 

Modern FPGAs consist of a regular arrangement of specialised resource columns. In 

most cases, the column arrangement is not fully regular, as can be seen from Figure 

2.13. This may limit the number of feasible locations for an RM, especially if the 

RM is large and spans different types of resource. 

As the original layout of the RM influences the maximum number of feasible 

locations for a relocatable RM, more than one partial bitstream can be generated for 

the RM, each with a different resource arrangement, to expand the total number of 

feasible locations for the RM [32]. 

In some cases, a partial bitstream can be modified online to fit a region with a 

different resource layout. The authors in [33] demonstrate a successful technique for 

relocating an RM containing a DSP column to a target location containing a similar 

resource arrangement but with a BRAM column instead of the DSP column. This 

was possible because the DSP column was not used by the RM and the routing 
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through the DSP column was made identical to the routing through the BRAM 

column in the target location. 

 

 

Figure ‎2.13 Feasible RM relocation 

    

Reserving the Static Routes    

When relocating an RM to a target location, the static routing must be reserved and 

not corrupted by the reconfiguration process. As mentioned earlier, Xilinx DPR flow 

does not give designers control over the routing process. There are two main 

methods discussed in the literature to deal with the static routes while relocating RMs 

in different locations on the FPGA. The first method is based on reserving the 

routing in the target location by performing the necessary modifications to the 

relocatable bitstream, which will keep these routes intact after configuration. An 

example of this method is demonstrated in [34], where the configuration frames in 

the empty target location are read and XOR-ed with the relocatable bitstream to 

ensure that the routing configuration bits are reserved after configuration (see Figure 

2.14a). This method only works if the relocatable RM does not use any of the routing 

resources used by the static logic in the target location. A similar method is presented 

in [35], where all the feasible locations of the RMs are pre-computed and special 
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files containing the routing configuration data are generated for each location. This 

accelerates the relocation as no configuration memory readback operations are 

required.      

The second method for protecting the static routes is based on creating restricted 

regions on the FPGA that are free of static routes. As this is not possible using the 

standard Xilinx tools, workarounds have been proposed that are based on placing 

some blocking circuitries in the restricted regions to prohibit the PAR process from 

using routing resources in this region (e.g. [36] and [37]). These blocking circuitries 

consume all the routing resources in restricted regions and consequently force the 

router in the PAR process to use the routing resources outside these regions for the 

static routes (see Figure 2.14b). The OpenPR tool presented in [36] works alongside 

the Xilinx tools and uses the blocking technique to block all static routes from certain 

regions on the FPGA. The GoAhead tool presented in [37] uses a similar method; 

however, it gives the option of allowing some of the static routes in the 

reconfigurable region as long as they are not used by any RM in order to reduce 

congestion and latency. 

 

Figure ‎2.14 Reserving static routes for RM relocation 
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Reserving RM Connections  

When relocating RM to a target location in the FPGA, the connections between the 

RM and the other components in the system must be reserved. Theoretically, the 

routing process can be repeated after each relocation operation to re-establish the 

connections between the relocated RM and the system. However, this is impractical 

as knowledge of how the bitstream maps into the routing resources is required in 

order to implement an online router. In addition, the large routing time overhead due 

to the large number of routing resources in FPGAs will prevent efficient online 

routing. In [38], Shayani et al. propose using pre-compiled routing components based 

on the CLB resources, which can be tiled to form vertical and horizontal connections 

between two modules in the system. This reduces the routing problem as only a few 

routing components need to be used to form a connection between two modules. 

However, this method is inefficient when trying to connect widely separated 

components due to the large number of logic resources required for routing and the 

propagation delay caused by the long connections.  

Most of the bitstream relocation systems proposed in the literature rely on fixed 

infrastructures of interconnects for connecting RMs rather than online routing. Bus 

Macros (BMs) provide pre-routed point-to-point connections and can be used as 

fixed interconnections for RMs when placed on specific locations on the boundaries 

between the RPs and the static logic (see Figure 2.15). Traditionally, BMs were 

based on Tristate Buffers (TBUFs), which where embedded in the early Xilinx 

FPGAs. LUT-based BMs replaced TBUFs after the Virtex-4 was introduced. As the 

current Xilinx DPR flow does not support BM integration, academic tools have 

emerged for the generation of custom BMs [39], and automatic placement of BMs 

([37] and [40]).  

Fixed interconnects can be used to build several on-chip communication 

architectures. The simplest architecture is the slot-based architecture wherein several 

slots with fixed interconnects are connected to a crossbar (see Figure 2.16a). RMs 

can be freely relocated between the slots and the crossbar can be programmed to 

establish the desired point-to-point connections [41]. Network-on-Chip (NoC) 
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topologies can be used as an alternative to the crossbar by implementing routers 

between the fixed interconnects [42] (see Figure 2.16b).      

A bus-based architecture can also be used. In [43], Koch et al. present the ReCoBus 

tool, which allows for connecting several slots through a fixed horizontal bus (see 

Figure 2.16c). RMs can be configured on top of these slots and connected to the bus 

using special connection macros.           

        

 

Figure ‎2.15 LUT-based BMs 

 

 

Figure ‎2.16 On-chip communication infrastructures for relocatable RMs 
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Bitstream Manipulation               

The configuration location of a bitstream can be altered by modifying the frame 

addresses in the bitstream. The frame addresses in a bitstream specify the physical 

locations of the configuration frames on the FPGA fabric. If a bitstream is required to 

be relocated to a target location, the frame addresses for the target location must be 

identified to replace the original frame addresses. Bitstream modification can be 

performed externally prior to configuration of the relocatable RMs or internally using 

dedicated logic implemented in the FPGA. Early bitstream relocation systems such 

as BITPOS and PARBIT relied on external processors to carry out the bitstream 

modifications ([44] and [45]).  

Some systems allow for bitstream relocation to be performed internally using a 

processor implemented on the FPGA’s logic ([46] and [47]). In these systems, the 

processor scans the bitstreams file stored externally and modifies the addresses field 

before configuration through the ICAP. 

For systems requiring fast internal bitstream manipulation, bitstream filters are 

proposed to accelerate the relocation process. A bitstream filter is a dedicated 

configuration controller that automatically filters and modifies the address fields in 

the bitstream when it is streamed for configuration. REPLICA was an early bitstream 

filter designed for CLB-based cores relocation through the SelectMAP interface in 

Virtex-2 FPGAs [48]. The REPLICA2Pro was later introduced to support BRAM 

relocation as well as configuration through the ICAP in its 8-bit configuration mode 

[49]. The BiRF is another bitstream relocation filter introduced for newer FPGA 

devices, and it supports configuration through the ICAP in its 32-bit configuration 

mode [50]. 

2.3 Chapter Conclusion 
 

This chapter introduced the Xilinx tiled-based architecture, which is the dominant 

architecture in current SRAM FPGAs. A brief introduction of the most relevant 

Xilinx reconfigurable resources was presented. This chapter also presented the Xilinx 
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DPR flow and discussed its limitations with focus on bitstream relocation, which is 

not supported in the Xilinx DPR flow. A discussion of the techniques proposed in the 

literature to enable bitstream relocation was also presented in this chapter.  
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Chapter 3 : Dynamic Partial 

Reconfiguration for High Performance and 

Reliability 

 

High Performance Computing (HPC) involves the use of parallel processing 

techniques to solve large and complex computational problems. Until the early 

2000s, single-core CPU systems were the mainstream choice for HPC applications 

due to their low cost compared to supercomputing architectures. CPU performance 

and frequency continued to scale in line with Moore’s law until the Mid-2000s, when 

the trend of multi-core CPU architectures started to take over to meet high-

performance demands. Recently, new architectures involving the use of hardware 

accelerators as co-processors are emerging as an alternative to CPU-only systems. 

This has opened the door for acceleration devices such as FPGAs and GPU to play a 

key role in the advancements of HPC. FPGAs in particular are very interesting 

prospects for High Performance Reconfigurable Computing (HPRC) applications as 

they offer a great level of flexibility without compromising on performance. 

The flexibility of FPGAs also opens the door for implementing interesting adaptive 

Fault-Tolerant (FT) systems. An FT system is a term given to a system that is 

specifically designed to prevent failure in system operation when one or more faults 

occur in some of the system’s components. The development of FT system is a major 

interest for researchers in different disciplines, covering a wide range of applications 

in space, aviation and military. Adaptive Computing Systems (ACSs) depend on 

reconfigurable platforms to adapt their behaviour to changes in the external 

environment. ACSs are often deployed in hostile environments under harsh 

conditions, such as high levels of radiation and extreme temperatures, making system 

upgrade and repair difficult and costly. The cost of repair in such environments 

increases the demand of reliable and easily upgradable hardware. 
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3.1 DPR Deployment in High-Performance Systems  

            

The possible gain in performance achieved in FPGAs can be enormous compared to 

other computing platforms. The true power of FPGAs comes from the computational 

parallelism that can be achieved using the available hardware resources to handle a 

given problem. With the continuous increase in device density and decrease in power 

consumption in every device generation, FPGAs are attracting the attention of 

researchers as a high-performance solution for several applications. The 

reprogrammability and flexibility of FPGAs makes them a favourable choice for 

engineers who require constant modifications to their designs during the 

development stage or in the field.  In modern SRAM-based FPGAs, the system can 

be reconfigured fully or partially to alter the computation functionality at runtime.  

Run-time reconfiguration can enhance performance [21], and increase functional 

density [22]. In general, the increase in performance brought by run-time 

reconfiguration comes from achieving more execution parallelism through optimal 

exploitation of the FPGA resources.  

DPR further enhances the device flexibility by allowing changes to the functionality 

of certain functional blocks without stopping the system. This opens the door for new 

reconfigurable platforms architectures for hardware acceleration in FPGAs where 

multiple customised accelerator cores can be swapped in/out of the FPGA on 

demand. With the enhancements seen in recent embedded processors such as the 

Xilinx MicroBlaze soft-processor [51] and the PowerPC hard-processor [52], the 

FPGA can be configured as a standalone system that schedules and allocates its own 

payload of tasks and handles the reconfiguration operations internally. In order to 

achieve the desired gain in performance when using DPR, the internal 

reconfiguration time overhead must be minimal.       

3.1.1 FPGA-based Acceleration in HPC 

 

In [53], Xilinx has classified the current trends of FPGA deployment in HPC 

applications into three categories: connectivity bridging, fixed function hardware 
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acceleration and software acceleration. In the first category, FPGAs are used as 

bridges and switches for interfacing different subsystems. The flexibility of FPGAs 

allows designers to make changes to their design to accommodate for any changes in 

the IO requirements. When used as fixed hardware accelerators, FPGAs are used to 

accelerate a fixed function which requires high processing throughput by 

implementing a hardware accelerator that processes the data in parallel. Using 

FPGAs for software acceleration is based on moving portions of the processing 

usually performed by CPUs to an FPGA co-processor. This type of acceleration is 

particularly interesting as it allows for the creation of generic computing platforms 

that can be used in different applications. While traditional FPGA acceleration 

platforms are based on connecting a single FPGA or a cluster of FPGAs to a CPU 

over Ethernet or PCIe, recently the industry has seen a shift towards CPU/FPGA 

hybrid SoCs aimed at high-performance embedded computers. The Zynq-7000 from 

Xilinx [54] and the Altera SoC FPGAs [55] are recent SoCs provided by the two 

main FPGA vendors. Both use a dual core ARM Cortex-A9 processor combined with 

their latest FPGA technology.            

One example demonstrating the potential of FPGAs in HPC is the implementation of 

reconfigurable systolic array accelerators. Systolic arrays were first proposed by 

Kung in 1982 [56]. Systolic arrays are a grid-like structure of special Processing 

Elements (PEs) that process data in a pipelined fashion to achieve a high level of 

parallel processing, making them very suitable for computationally intensive 

operations. The name ‘systolic’ is derived from the Latin term ‘systole’, which is a 

medical term used to describe the regular pumping of blood by the heart. The name 

‘systolic’ was coined from the medical terminology because the propagation of data 

into the systolic array resembles the propagation of blood in the human circuitry 

system, and the operation of PEs which process the data and injects partial results 

into the data stream resembles the operation of the organs in the body.  In [57], 

Johnson differentiates between general purpose systolic array architectures and 

customized systolic arrays, which tend to have better performance but the lack the 

flexibility required to implement different algorithms using the same hardware. 

Johnson also emphasises the importance of reconfigurable systolic arrays in FPGAs 
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that offer a high level of customisation without compromising flexibility. Successful 

FPGA implementations of various systolic array accelerators have been reported in 

the literature for several applications in bioinformatics ([58] and [59]), DSP ([60] 

and[61]) and data mining of large databases ([62] and [63]).  

There are attempts to automate the generation of the RTL-level code for the systolic 

array accelerators in FPGAs using specialised software tools. In ([64] and [65]), the 

authors presented the ROCCC tool, which is a C-to-VHDL compiler tool capable of 

generating optimised systolic array accelerators for several applications. In [64], the 

authors demonstrate their tool to accelerate the Smith-Waterman algorithm, which is 

widely used for local and global sequence alignment in bioinformatics [66]. They 

implemented a software-generated systolic array in the SGI RASC RC100, which 

contains two Virtex-4 LX200 FPGAs and connects to an SGI server. The 

performance gain achieved was over 300x compared to a 2.8 GHz Intel Xeon CPU. 

A build up work to the ROCCC compiler was presented in [67], where the authors 

presented a tool that generates a complete FPGA implementation for perfect nested 

loops that support off-chip DRAM memory access. Another related work is the 

LegUp tool, which generates a complete FPGA implementation from a C code. The 

system generated by the tool consists of a Tiger MIPS soft-processor and custom 

hardware accelerators that communicate with the CPU using a standard bus [68]. 

Opposite to hard-processors, which are hardwired prefabricated processors; soft-

processors are designed using the standard FPGA design flow to be implemented on 

the FPGA logic. As the LegUp tool uses a soft-processor for running the software 

part of the system, the entire system can be implemented in the FPGA fabric. This 

allows for a single-chip solution of a hybrid system without the need for a 

specialized SoC, which contains an integrated ASIC-processor, making the 

technology applicable to a wider range of FPGA families.  

In order to achieve a higher performance and a higher flexibility in a 

hardware/software hybrid system, DPR can be deployed to control the type and 

number of active accelerators during the operation of the system. In [69], the authors 

propose a framework for systolic array acceleration in FPGAs, which contains an 

embedded soft-processor and multiple reconfigurable regions defined as ‘sockets’ 
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dedicated for placing the systolic array accelerators. The proposed system allows for 

accelerating two algorithms running concurrently by deploying DPR to alter the size 

of the systolic array assigned for each algorithm in a given time. Each socket 

contains a BM that is connected to a switch box. The switch box can be controlled by 

the processor to connect several sockets together. As each systolic array is 

customised for accelerating a particular algorithm, the level of acceleration for a 

running algorithm can be changed by altering the number of sockets assigned for its 

systolic array (Figure 3.1a). Relocatable partial bitstreams for the systolic arrays are 

proposed to reduce the storage memory requirements of the system. In the system 

demonstrated in [69], the size of each partial bitstream is determined by the size of 

the slot. A similar system for systolic array acceleration is proposed in [70], where 

the authors aim to further reduce the memory required for storing the systolic array 

partial bitstreams by having smaller relocatable partial bitstreams that can be 

concatenated horizontally within each socket (Figure 3.1b). Although this approach 

will reduce the storage memory requirements for the system by reducing the 

granularity of relocation, it suffers from several flaws not discussed by the authors 

that can lead to degradation in system performance. Reducing the size of the 

relocatable partial bitstream will make routing across each socket more difficult, 

especially when a large bus is required to feed the PEs in the systolic array. In 

addition, smaller reconfigurable regions will have less resource-packing efficiency. 

In Xilinx FPGAs, the average packing density possible for a reconfigurable region is 

around 80% [29]. For relocatable partial bitstreams, the packing density can be 

smaller as some resources are used for the dedicated routing and BMs. When a 

number of these relocatable partial bitstreams are concatenated together to form a 

large systolic array, the total number of PEs will be reduced compared to a single 

partial bitstream covering the same area.  
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Figure ‎3.1 DPR-based systolic array acceleration 

 

Software acceleration with DPR can achieve higher performance than static 

accelerators by exploiting more parallelism [71]. Figure 3.2 shows two 

implementations of a system that utilises three hardware accelerators activated one 

after the other. The first implementation is a static implementation, so the available 

resources are divided between the three accelerators. The second implementation is 

based on DPR, so the accelerators can share the available resources, thus allowing 

for larger accelerators with shorter execution time. 

 

 

Figure ‎3.2 Enhanced software acceleration with DPR [71] 
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3.1.2 Reconfigurable Operating Systems  

 

The idea of an ROS was first proposed by Brebner in [12], where an OS is proposed 

to manage the execution of tasks using the reconfigurable hardware. An ROS is 

supposed to hide the complexity in mapping these tasks into the available hardware 

resources from the user and enable high-level programming of reconfigurable 

applications. According to Brebner, any task executed on the reconfigurable 

hardware is defined as a Hardware Task (HT). There are several characteristics that 

differentiate an HT from a software task [72]. These most important characteristics 

are summarised by Table 3.1. An ROS has two main advantages over a normal OS, 

which allow for higher system performance. The first is that the HT’s hardware can 

be tailored to the needs of the task and designed with a high level of parallelism. This 

flexibility in hardware customisation can make HTs considerably faster than their 

software counterparts. In addition, the number of tasks that can run concurrently in 

an ROS depends on the area of the reconfigurable fabric rather than the number of 

fixed CPUs allowing for better true multitasking as smaller tasks only consume small 

areas of the reconfigurable fabric.                   

Table ‎3.1 Characteristics of hardware and software tasks [72] 

Characteristic Software Task Hardware Task 

Design  Software programming language (e.g., 

C, C++, assembly) 

HDL description or C-to-silicon 

programming  

Executing Device Processor FPGA 

Executing Unit  CPU Custom relocatable module 

Execution Nature Sequential Parallel ( depends on module 

design)  

Execution Time Depends on CPU clock speed Depends on design and module 

clock speed 

Maximum Task 

Parallelism 

Depends on number of CPUs Depends on FPGA’s area 

 

In [73], Wigley et al. describe the main practical challenges in implementing an ROS 

in FPGAs. The authors also define how task allocation and scheduling should be 

approached in an ROS.    
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Task Allocation  

Task allocation is the process of assigning available resources on the reconfigurable 

hardware for task execution. In FPGAs, HTs can be seen as pre-compiled relocatable 

partial bitstreams, which are reconfigured at run-time to execute a given function. 

When HTs are assumed to be rectangles with fixed heights and widths and the FPGA 

is assumed to be a large uniform area of logic resources, the allocation of HTs can be 

seen as a 2-D packing problem where the FPGA is partitioned into smaller areas used 

for the placement of the HTs. In [73], Wigley et al. suggest that a task allocation 

algorithm should reduce chip fragmentation. As chip fragmentation could create 

several ‘dead’ regions not suitable for the placement of any tasks, tasks should be 

packed as close as possible to each other to expand the free space on the chip and 

increase the number of tasks that can be allocated in a given time of operation.     

There are several approaches discussed in the literature to reduce chip fragmentation 

in an ROS. In [74], Bazargan proposes partitioning the FPGA area into overlapping 

empty rectangles with the objective of Keeping track of All Maximum Empty 

Rectangles (KAMER). Bazargan also proposes Keeping track of Non-overlapping 

Empty Rectangles (KNER). In both schemes, the FPGA area is scanned to determine 

all possible Maximum Empty Rectangles (MERs). When an HT is required to be 

allocated, a scan through all the MERs is performed to find a suitable location. An 

area-fitting algorithm, such as First-Fit (FF) and Best-Fit (BF), is used to select a 

suitable location for the HT. The FF algorithm scans the empty rectangles and selects 

the first rectangle capable of fitting the HT, whereas the BF algorithm selects the 

empty rectangle with minimal difference in area compared to the HT. Once an area is 

selected for an HT, the FPGA area is scanned again and the MERs are updated.   

To simplify the MER scanning process, Walder et al. propose the use of a hash 

matrix, which contains pointers to a list of MERs with the same area [75]. In order to 

reduce the time for allocating consecutive tasks, they propose to update the hash 

matrix while each task is allocated. Morandi et al. present a related work in [76], 

where the FPGA area is transposed into a tree structure with nodes representing 
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occupied areas and leaves representing MERs. Using this tree structure only leaves 

need to be scanned for HT allocation.         

In contrast to MER-based allocation, other works base the allocation process on 

keeping track of the Vertex List Set (VLS), which indicates the positions of placed 

tasks [77]. The proposed algorithm allocates tasks in positions with the highest 

contact length with neighbouring placed tasks or the left-side edge of the FPGA. A 

similar work proposes keeping track of the occupied area rather than the empty area 

in the FPGA [78]. The proposed allocation scheme scans the FPGA to find the 

Impossible Placement Region (IPR). Tasks are then allocated in the nearest optimal 

position to the IPR. Figure 3.3 illustrates the main 2-D allocation algorithms.  

Task Scheduling  

Task scheduling is the process of determining the order of execution of the 

consecutive tasks where tasks are assigned with specific priorities. Usually, priorities 

are assigned according to the tasks execution deadlines. The execution deadline is 

defined as the maximum delay for a given task to finish its execution and generate its 

results. The task priorities can be fixed, as seen in the Deadline Monotonic (DM) 

scheduling where tasks with the shortest relative deadline are assigned with the 

highest priorities [79]. Task priorities can also be assigned dynamically by assigning 

the highest priorities to tasks with the nearest deadline as seen in the Earliest 

Deadline First (EDF) scheduling [80]. Scheduling can be pre-emptive, which enables 

higher priority tasks to stop the execution of the lower priority tasks and start its 

execution. Non-preemptive scheduling on the other hand does not allow high priority 

tasks to interrupt currently executing tasks.                 

In order to make task scheduling applicable to an ROS implemented on an FPGA, 

the reconfiguration port delay time must be considered. In current FPGAs only a 

single configuration port can be active at a time to carry out the reconfiguration 

operations. With the sequential nature of dynamic reconfiguration and the fixed 

bandwidth of the reconfiguration port, access to the reconfiguration port must be 

shared among different operations. In [81], the proposed system schedules access to 

the reconfiguration port according to the task deadline using conventional scheduling 
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algorithms (DM and EDF). The authors in [82] suggest that already placed tasks that 

have finished their current execution should be considered for the execution of future 

tasks to reduce the overall reconfiguration time. Other work also considers the 

communication time required for each scheduled HT ([83] and [84]). 

 

 

Figure ‎3.3 2-D task allocation algorithms [85] 

 

3.1.3 Reducing Reconfiguration Delay  

 

The efficiency and speed of an internal reconfiguration controller is critical in high-

performance embedded systems, especially for systems that extensively use the 

ICAP for different configuration operations. An example of this is an ROS kernel 

that uses the ICAP for the persistent HT allocation and de-allocation. The 

configuration time overhead is a performance bottleneck in such systems, especially 

with the sequential nature of configuration in current SRAM-based FPGAs, which do 

not allow for multiple reconfiguration operations to run concurrently.  

There are several techniques proposed in the literature to accelerate the configuration 

process in order to meet the demand for high-performance systems. Generally, 

accelerating internal configuration can be achieved by:  
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Accelerating Bitstream Fetch-Time  

SRAM-FPGAs are volatile, full and partial bitstreams are initially stored in a non-

volatile memory. Typical non-volatile memory modules have high latency and low 

throughput, and they are not suitable for high speed configuration. A common 

practice for high-speed run-time reconfiguration is to store a copy of the required 

partial bitstreams in a faster SRAM or a DRAM memory module after power-up of 

the device. Typically, ICAP controllers are designed as slave cores that connect to 

master CPU through a standard bus. An example of such a controller is the Xilinx 

HWICAP IP core which connects to a Microblaze or a PowerPC processor. Early 

versions of the ICAP controller use the PLB bus while more recent versions use the 

AXI bus for connection with the master processor ([86] and [87]). In its basic 

configuration, the HWICAP depends on the master CPU for controlling the 

streaming of data from external memory to the controller’s internal buffers. This 

configuration is inefficient for large partial bitstreams as the CPU will be constantly 

busy with loading the controller’s internal buffers and not able to carry out other 

tasks during the configuration process. In addition, the software overhead for 

initiating the different data transfer requests through the PLB bus is large, resulting 

in poor configuration throughputs. In [88], Liu et al. investigated the maximum 

throughput achieved with the HWICAP core in different modes. When connecting 

the HWICAP as a slave device to OPB/PLB bus, the average throughput achieved 

was in the range of 0.61-19.1 MB/s, which is well below the maximum theoretical 

throughput of the ICAP of 400MB/s [86]. 

Direct Memory Access (DMA) has also been considered to accelerate the data 

transfer from external memory where a DMA controller is responsible for fetching 

data from the external memory via the PLB bus. A DMA controller has been applied 

to the basic HWIAP configuration in [88], where the processor is only responsible 

for initiating the data transfer by instructing the DMA controller to perform a burst 

transfer from memory to the internal buffers of the controller. This was shown to 

increase the throughput to 82.6 MB/s, which is still far from the optimal 

configuration throughput. The modest improvement was mainly because the design 

did not account for the latency of each burst data transfer. Other research work has 
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reported throughputs approaching the maximal configuration throughput using DMA 

with custom designed ICAP controllers. The controller presented in [89] uses a large 

burst length and a large word length (256 bit) to eliminate the impact of latency on 

the throughput. The achieved throughput approached the maximum throughput; 

however, 8 BRAMs were used for an asynchronous FIFO to translate the 256-bit 

word length to the 32-bit of the ICAP.  

There are also other controllers that do not rely on a DMA controller for data transfer 

through the PLB bus. An example is presented in [90], where a processor feeds the 

ICAP with configuration data through a Fast Simplex Link (FSL). The aim of this 

work was to achieve acceptable performance with a lightweight controller, which can 

be easily reused in different designs. Another example considers using the Xilinx 

Native Peripheral Interconnect (NPI), which is the fastest connection for the Multi-

Port Memory Controller (MPMC). The proposed controller used two ports of the 

MPMC for the ICAP control, which supports configuration readback in addition to 

bitstream configuration [91].   

The partial bitstreams can also be stored in on-chip memory blocks to allow for the 

shortest latency possible ([88] and [92]). Although using on-chip BRAM blocks 

would allow for fast data transfer, only storing small partial bitstreams would be 

possible, making this method impractical.  

Bitstream Compression 

Generally, bitstream compression is deployed to reduce the storage memory required 

to store different bitstreams. Compressed partial bitstreams will require a de-

compressor implemented in the FPGA logic to restore the configuration data to its 

original content. Bitstream compression can reduce the overall configuration time by 

reducing the bitstream fetch-time from slow external memory devices. In [93],  Koch 

et al. explored different compression algorithms and showed that with bitstream 

compression the maximum configuration throughput of 400MB/s can be achieved 

with storage devices supporting only half the required bandwidth. In [94], Liu et al. 

explored the natural redundancy in Xilinx FPGA’s bitstream to come up with a 

simple decompression scheme that does not require a large decompression circuit 
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implemented in the FPGA logic. The presented compression scheme is based on 

finding repetitions of consecutive configuration words; these words are then encoded 

into a smaller segment consisting of two words, one containing a configuration value 

and the other containing the number of repetitions of this value. They also considered 

removing the padding words and the No-Operation (NOP) commands from 

bitstreams and adding them on-line during the configuration process. The 

compression ratio achieved with their encoding scheme was in the range of 1.09-3.15 

and the maximum improvement in configuration time was around 17%.          

Another method to enhance the configuration time through bitstream compression is 

by using the Multiple Frame Write (MFW) feature in Xilinx FPGAs. The MFW 

feature allows for writing multiple configuration frames containing the same content 

once instead of writing them individually [25]. This compression feature is integrated 

with the Xilinx FPGA’s internal configuration circuitry so the reduction in bitstream 

size is directly proportional to the increase in configuration time. In addition, it does 

not require padding for writing frames to the configuration memory. The Combitgen 

tool presented in [95], is based on manipulating different configurations of a 

particular reconfigurable module and extracting the similarities and differences in 

their partial bitstreams. The tool then generates smaller configurations that consist of 

the configuration frames required to achieve a context switch from the implemented 

top-level module. These frames are configured using the MFW feature to further 

reduce the reconfiguration time.      

Overclocking the ICAP 

The maximum clock frequency rated for the ICAP in current Xilinx FPGAs is 

100MHz. The ICAP supports a write width of up to 32-bits, giving a maximal 

theoretical reconfiguration throughput of 400MB/s. Several authors have reported 

successful reconfiguration with overclocking. An example can be seen in the 

METAWIRE on-chip communication system [96], where the authors have 

implemented a custom ICAP controller to transfer data between different buffers in 

the system to emulate the operation of an NoC. The reported maximum clock 

frequency was 144 MHz in a Virtex-4 FPGA. In [97], a higher clock frequency of 
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200 MHz was achieved in a Virtex-5 FPGA. In [92], Hansen et al. report a much 

higher ICAP clock frequency of up to 533 MHz in a Virtex-4 FPGA. Unfortunately, 

no information was provided on the reliability of their controller when operating at 

such high frequencies. In addition, they assume that the test partial bitstream are 

stored in BRAM blocks placed as close as possible to the ICAP, which is not 

practical for real applications.  

The maximum clock frequency of the ICAP controller will be affected by several 

factors such as the speed grade of the device, the routing and placement of the full 

implemented design and other environmental variables such as temperature. It is 

difficult to predict the behaviour of an over-clocked ICAP across different designs 

and under different conditions. To address this problem, Hoffman et al. propose an 

active feedback monitoring circuit, which generates an optimum clock based on 

voltage and temperature measurements [98].  

RM Prefetching 

In systems deploying several RMs, it is possible to configure an RM before it is 

scheduled for execution while other RMs are still executing. This way, its 

configuration delay will be overlapped with the other RM execution time. Figure 3.4 

shows a system deploying four RMs that are required to be executed one after the 

other. Using two RPs, an RM can be pre-loaded into an RP while the preceding RM 

is still executing in the RP. This can greatly reduce the effect of the reconfiguration 

delay on the overall execution time of the system. 

Prefetching can also be deployed in more complex systems, such as an ROS 

implemented on an FPGA. However, the order of HT execution is not deterministic 

in an ROS. Prediction algorithms can be deployed in an ROS to predict which HTs 

would result in the best performance gain when pre-fetched [99]. 
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Figure ‎3.4 RM pre-fetching  

 
 

3.2 DPR for Enhanced Fault-Tolerance   

            

FPGAs are inherently flexible, making them an ideal platform for ACSs and an 

interesting prospect for space applications. Currently, SRAM is the most common 

technology for FPGA configuration due to its ease of fabrication and 

reprogrammability. However, SRAM technology is known to be sensitive to 

radiation-induced faults. In addition, faults in the configuration memory of FPGAs 

are not simply faults in raw data, which is stored in memory; they are transposed to 

the functionality and hardware structure of the implemented system leading to a 

complex impact on the system’s behavior. This derives the need for innovative 

solutions to realise the full potential of FPGAs in FT systems. Much of the research 

aimed at enhancing the reliability of FPGAs is based on the DPR, which allows for 

reconfiguring faulty blocks in the design at run-time without stopping the operation 

of the system.  
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3.2.1 Background on Faults in SRAM-FPGAs  

 

In semiconductor devices, faults can be divided into three main categories: 

Permanent, Intermittent and Transient [100]. Permanent faults, also known as hard 

faults, manifest themselves as irreversible physical defects in the device. There are 

several factors and physical effects that lead to permanent faults in semiconductor 

devices. Electromigration occurs when the collision of electrons with the metal 

atoms cause gradual movement of the ions in the conductor. The moving ions can 

accumulate or deplete in some regions of the conductor, causing short- or open- 

circuit faults. Electromigration is highly affected by the type of conducting material 

used. Since the adoption of copper interconnects in the semiconductor industry, the 

rate of permanent fault has dropped due to the high electromigration threshold of 

copper compared to aluminium. The Hot Carrier Injection (HCI) phenomenon can 

also contribute to the degradation of VLSI circuits by changing the switching 

characteristics of CMOS transistors, leading to delay faults. HCI can gradually cause 

a build-up of charges that gain sufficient energy to get trapped in the gate-channel 

interface of the transistor leading to reduced mobility and increased threshold voltage 

[101]. The Dielectric Breakdown (DB) phenomenon can cause what is normally an 

insulator to conduct electricity at a high electric field. In transistors, DB can cause an 

increased leakage current at the gate of the transistor which eventually leads to a 

short circuit ([102] and [103]).    

Intermittent faults are faults that repeatedly occur at the same location as a result of 

physical instability to environmental changes such as temperature and voltage. 

Intermittent faults usually cause burst errors in the affected location; it is common for 

intermittent faults to appear before the occurrence of permanent faults. Errors 

induced by intermittent faults can be confused with transients, also known as soft 

errors. Transient faults are temporary errors that can be triggered by several factors 

such as exposure to alpha particles and cosmic ray neutrons, power supply and 

interconnect noise, electromagnetic interference and electrostatic discharge [100]. 

Radiation-induced soft errors are particularly important in spacecraft and aviation 

electronics. They can appear as glitches in logic, in this case called Single Event 
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Transient (SET), or bit-flips in memory cells and registers.  Bit flips, also called 

upsets, can appear as Single Event Upsets (SEUs) or as Multiple Bit Upsets (MBUs). 

MBUs occur when a single radiation event flips multiple bits in storage circuits 

[104]. SRAM technology is especially sensitive to radiation-induced soft errors 

because the critical charge required to cause a bit-flip is relatively small. In an early 

study on soft errors in SRAM, it was shown that an SRAM chip supporting many 

megabytes of storage, can exhibit a Soft Error Rate (SER) that exceeds 50,000 FIT 

(failure per 10
9
 hours of system operation) [104]. This approximately translates to 

one error every two years. In another study by Tezzaron Semiconductor, it was 

reported that the average SER in an SRAM chip is between 1,000 to 5,000 FIT/Mbit 

[105].  In addition, the hard errors caused by particles with high energy are estimated 

to be 2% of the total errors. Although these error rates might be acceptable for some 

applications, they cannot be acceptable in FT systems, especially with the continuous 

increase in density and shrink in device geometry in SRAM, leading to higher SERs 

in every generation [106]. 

In FPGAs, faults can appear in the configuration memory or in the other hardware 

components. In modern FPGAs, the routing accounts for most of the configuration 

memory. Faults in the routing bits of the configuration memory could have complex 

effects in the implemented design. However, not all the logic and routing resources 

are used in a particular implementation in an FPGA device. In addition, not all soft 

errors in the used resources will cause functional errors. Xilinx use the Device 

Vulnerability Factor (DVF) to estimate how much a particular design is susceptible 

to functional errors in their devices. According to the Xilinx 2013 reliability report, 

one in 20 upsets on average will cause a functional error in a typical design. In the 

worst reported case, one in 10 upsets will cause a functional error [107]. In the same 

report, Xilinx reported the error rates in their devices from data collected from the 

Rosetta experiment [108]. According to the report, a Virtex-4 FPGA is susceptible to 

263 FIT/Mb in configuration memory and 484 FIT/Mb in Block RAM memory. (1 

FIT = 1 upset per 10
9

 hrs). 

With continuous process technology scaling, MBUs are also becoming more of an 

issue in FPGAs. MBUs are not only caused by high energy particles; some SEUs in 
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the routing of the FPGA will cause a bit-flip in different bits in the configuration 

memory [109].  A study carried out by the Jet Propulsion Lab (JPL) showed that 

MBUs are nearly three times more likely to occur in Virtex-4 FPGAs than Virtex-2 

FPGAs and 27-33 times more likely to occur in a Virtex-2 FPGA than earlier Virtex 

FPGAs [110].  

3.2.2 Reliability Features in Modern FPGAs 

 

FPGA manufacturers usually offer radiation-hardened versions of some of their 

product families, such as the Virtex-4QV and the Virtex-5QV from Xilinx. These 

products provide better SEU tolerance; however, they cost much more than the 

commercial FPGAs.  

In commercial FPGAs, parity bits are usually added to each configuration frame in 

the configuration memory. These parity bits are used for the detection/correction of 

bit-flips in the configuration memory. In the Xilinx Virtex-4 FPGA there are 12 

Error Correction Code (ECC) parity bits located in the 21
st
 word of each 

configuration frame. These parity bits are generated by the BitGen tool to detect bit-

flips in the configuration memory. The detection/correction process using the parity 

bits embedded in the configuration memory requires extra user logic implemented on 

the FPGA fabric. Xilinx provides the Soft Error Mitigation (SEM) IP core for its 

Virtex-6 and 7-Series FPGA families. The SEM IP core enables automatic 

detection/correction of faults in the configuration memory. It also extends the bit-flip 

correction capabilities of the device by adding a Cyclic Redundancy Check (CRC) 

generator, which stores reference CRC values in internal BRAMs [111].   

Other FPGAs use other methods for error detection; for example the Altera Startrix-5 

FPFA uses a 32-bit CRC value for each configuration frame to allow for better 

detection/correction. The CRC is also used for configuration verification. When a 

bitstream is configured, pre-computed frame CRC values are compared with CRC 

values generated by an internal circuitry to determine if any fault has occurred during 

the configuration process. CRC is also used for configuration verification in Xilinx 

FPGAs; however, instead of using a CRC value for each configuration frame, a 
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single CRC value is used for the entire bitstream. Table 3.2 lists some of the FPGA 

devices along with their embedded SEU mitigation features. 

Table ‎3.2 Soft-error detection/correction capabilities in different FPGAs 

Device 
Frame 

Parity Bits 
Description 

Xilinx 

Virtex-4 
12 Hamming 

Can be used to correct single-bit errors and detect double-bit errors in a 

configuration frame 

Xilinx 

Virtex-6 
13 Hamming 

Can be used to correct single-bit errors and detect double-bit errors in a 

configuration frame, with SEM IP double-bit errors correction 

supported 

 

Altera 

Startix-4 
16 CRC 

Can be used to detect single-bit, double-bit and three-bit errors in a 

configuration frame. Can be used to correct all single-bit errors and 

99% of double-bit errors.  

Altera 

Startix-5 
32 CRC 

Detection: single-, double-, triple-, quadruple-, quintuple-bit errors: 

Correction: single-bit and double-bit errors. 

 

3.2.3 DPR Techniques for Enhanced Fault-Tolerance 

 

Soft Error Mitigation 

Configuration memory scrubbing is one of the most common methods used for soft 

error detection and correction in the FPGA’s configuration memory. There are two 

types of configuration memory scrubbing technique widely discussed in the 

literature: the first technique is referred to as ‘internal scrubbing’. This technique is 

performed using internal components inside the FPGA chip without the aid of any 

external components. Usually, internal scrubbing utilises the parity bits and the 

embedded detection units in the FPGA, where the correction process is performed in 

three main steps. First, a configuration memory frame is read using the internal 

configuration port and stored in a dedicated memory block. After that, the embedded 

parity bits in the configuration frame are used to detect possible bit-flips in the frame. 

If the location of the fault is identifiable by the parity algorithm, the corrupted bit is 

flipped in the memory before writing the frame back to the configuration memory. 
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There are three main weaknesses in the internal scrubbing scheme. The first is that 

the correction capabilities are limited to those supported by the frame parity bits. The 

second is that not all the resources in the FPGA are covered by the scrubbing 

scheme; resources configured as dynamic memory elements are masked during 

scrubbing [112]. The third and most important drawback is that the internal control 

logic of any scrubber is susceptible to soft errors, which can lead to complete failure 

and in more severe cases to injecting extra faults in the system. This issue in internal 

scrubbers was addressed in [113] wherein the author demonstrated the use of Triple-

Modular Redundancy (TMR) to protect a Virtex-4 internal scrubber from soft errors.          

The second type of configuration memory scrubbing is ‘external scrubbing’, which 

does not use the parity bits embedded in the configuration frames; instead a reference 

bitstream stored in external non-volatile memory is used. The reference bitstream, 

also called the ‘golden bitstream’, can be used for comparison with configuration 

memory readback results. In this case the scrubbing scheme is referred to as ‘read 

and compare’, or it can be configured periodically to overwrite any possible faults in 

the configuration memory without the need for any kind of detection; this scrubbing 

scheme is commonly referred to as ‘blind scrubbing’. The main advantage of 

external scrubbing over internal scrubbing is that the correction capability is not 

limited in terms of the number of faults within a configuration frame. External 

scrubbing can correct any number of faults as long as they do not appear in the 

configuration bits of the dynamic memory elements; these configuration bits should 

be masked when performing external scrubbing [112]. In [114], Berg et al. have 

carried out extensive fault injection analysis to test the performance of a custom 

external scrubber and a standard Xilinx Virtex-4 internal scrubber. The test results 

showed that the external scrubber outperformed the internal scrubber in the number 

of faults correctly detected and repaired.         

The goal of configuration memory scrubbing is to avoid the accumulation of soft 

errors in the system; the efficiency of scrubbing is affected by the number of scrub 

cycles set by the scrubbing controller. The appropriate scrubbing rate of a particular 

system will depend on the error rate expected for the system. In [115], Asadi et al. 

have defined the Mean Time To Manifest (MTTM) term to describe the time a fault 
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stays inactive in a given system. In an ideal scrubbing scheme, the Mean Time To 

Detect (MTTD) and the Mean Time To Repair (MTTR) of faults in the system are 

kept small compared to the MTTM. Setting a high scrubbing rate to enhance the 

MTTD can increase the power consumption of the system. One approach to address 

this issue is discussed in [116], wherein the different components of a system are 

classified according to their criticality; high-priority bits are determined and 

scrubbed more often than other bits with low priority. Another approach focuses on 

narrowing the scrubbing region and scrubbing rate by having on-demand scrubbing 

requests generated by a modular redundancy system [117]. Modular redundancy is 

one of the most important design concepts in FT systems. TMR is the most common 

form of redundancy used in FT designs. It is based on triplicating a hardware module 

to generate three outputs that pass through a voter that performs majority voting to 

filter out any faulty output of the three. TMR can also be used as a reliable fault 

detection method whereby comparators are used to determine which redundant 

module of the three is faulty and trigger a recovery process to repair the faulty 

module ([117] and [118]). The recovery process can be a scrubbing operation for the 

affected area or a reconfiguration operation that resets the registers of the faulty 

module to their initial values. Recovery based on reconfiguration will require the 

redundant modules to be reset and re-synchronised. This could not be the case with 

scrubbing as only faults that cause a state change will require a reset after recovery.  

TMR is capable of detecting all kinds of faults as long as they are manifested in the 

output of the affected module. The MTTR in TMR will depend on the size of the 

triplicated module. Fine-grained TMR designs will have smaller MTTR compared to 

coarse-grained designs; this, however, comes at the cost of a higher resource 

overhead due to the additional voting circuitry required [119]. Dual-Modular 

Redundancy (DMR) can reduce the resource overhead by approximately 1/3 

compared to TMR by having only two redundant modules. In DMR, comparators 

will trigger an error signal in case of a mismatch in the outputs of the two modules 

(see Figure 3.5). DMR provides the same detection level as TMR; however, in DMR 

a faulty output is not filtered out, which means that the system must be inactive until 

the fault is repaired to guarantee correct operation of the system. Moreover, the 
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MTTR in DMR is increased compared to TMR as there is no mechanism to 

determine which of the two modules is faulty. So the detect/repair process should be 

performed in the area covered by the two modules.  

 

Figure ‎3.5 DPR-based fault repair in a redundancy system 

 

The redundancy concept is not limited to the physical domain of the FPGA; time-

domain redundancy for FPGAs was proposed in [120], where an operation is 

performed twice using the same hardware with different encoding at different times. 

The results of the two operations are decoded and compared to extract the faulty 

output. This scheme was shown to have smaller area footprint compared to TMR and 

DMR at the cost of reduced throughput.  

One issue concerning TMR design in FPGAs is the possibility of some faults altering 

the routing in the design and affecting more than one redundant module causing 

system failure. There are two approaches discussed in the literature to tackle this 

problem; the first approach focuses on the floorplan stage of the design. Each 

redundant module is placed in a distinct region with all of its local routes constrained 

within the region. These regions are isolated with the appropriate distance of unused 

resources [121]. The other approach tackles this problem at the RTL design stage by 

partitioning the design into smaller stages and inserting extra voters to reduce the 

probability of routing faults affecting more than one redundant module [122]. 
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Another drawback of classic TMR designs is the possibility of single points of failure 

in the logic of the voting circuitry. As the area of voting circuitry is much smaller 

than the redundant modules area, the probability of system failure will be reduced to 

that of the area occupied by the voter. When external scrubbing is used in a TMR 

system, these voter errors can be corrected at the first scrub cycle. It is also possible 

to have a triplicated voting path for all the voting stages at the cost of higher resource 

overhead [123].     

Permanent Faults Mitigation 

Permanent faults are irreversible physical damage in the FPGA resources. The 

mitigation techniques discussed in the literature are focused on circumventing these 

resources once they are detected. Similar to soft errors, TMR can detect permanent 

faults as long as they affect one of the redundant modules outputs.  However, TMR 

can only detect the region affected by a permanent fault and cannot detect the 

damaged resource within the region. The redundancy system presented in [124] 

circumvents an entire region occupied by a faulty module in case of a permanent 

fault and reconfigures the module in a new region to complete the redundancy. This 

approach can be inefficient because the entire region occupied by the affected 

module is flagged despite the fact that the damaged resource in the module accounts 

for a very small portion in the region and this will limit the number of faults that can 

be mitigated. 

Other fault detection methods have been proposed to enhance the granularity of 

detection. These methods are based on loading different Built-In Self-Test (BIST) 

circuits offline or online to test the functionality of the FPGA resources. The basic 

building blocks of a BIST circuit are the Test-Pattern-Generator (TPG), the Circuit-

Under-Test (CUT) and the Output-Response-Analyser (ORA). Figure 3.6 

demonstrates a basic implementation of a BIST circuit. The TPG generates different 

data patterns that are passed to the inputs of the CUTs. The CUTs could be as simple 

as individual LUTs that are configured for a specific function. An ORA is used to 

compare the outputs of two CUTs; when a faulty CUT is detected, an error signal is 

generated.  
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Figure ‎3.6 Basic BIST circuit [125] 

 

The proposed BIST circuits differ in the type of faults they can detect. Some BISTs 

are focused on the logic blocks ([126] and [127]), while others are focused on 

interconnect faults ([128] and [129]). Other BIST circuits extend the detection 

capability to delay faults [130]. BIST circuits can be swapped in and out of the 

FPGA at run-time using DPR. This technique has been proposed in the Roving Stars 

fault detection system [131], where fixed-sized test circuits called the ‘Horizontal 

Star’ and the ‘Vertical Star’ are shifted horizontally and vertically to perform a test 

scan on a given area on the FPGA. These test scans can be performed while other 

logic outside the scan area remains functional. By dividing the FPGA into equal-

sized regions and using some of these regions for the functional blocks in the system, 

a test block can be swapped between the regions to perform a complete test covering 

the entire area of the FPGA (Figure 3.7). This method suffers from two main 

drawbacks: the first is that a minimum of one region has to be empty when floor-

planning the design to allow for swapping the functional blocks with the test circuits; 

the second drawback is the large time overhead of the test operation. 

 

 

Figure ‎3.7 Roving fault detection 
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The repair methodologies of permanent faults in FPGAs are based on deactivating 

the damaged resource and switching its operation to a spare one. Usually the 

deactivation is performed in segments rather than individual resources. One 

technique discussed in the literature is the column-based shifting technique presented 

in [132]. In column-based shifting, the area occupied by a particular design is divided 

into different columns; the functional blocks of the design are allocated to these 

columns with some columns left unused by any functional block. Different pre-

compiled configurations are then generated, and each configuration has the unused 

column in a different location. One of these configurations will be the default 

configuration, when a fault is detected in the default configuration; the fault is 

mitigated by loading the configuration that has this resource in the unused column.  

In [132], Huang et al. also discuss a similar repair technique based on non-

overlapping alternate pre-compiled configurations (see Figure 3.8a). In this technique 

the functional blocks have different arrangements in each configuration but are not 

constrained to the same area in each configuration. The work based on the multiple 

pre-compiled configurations was later extended to reduce the storage memory 

required to store all the pre-compiled configurations by utilising relocatable partial 

bitstreams ([124] and [133]) (see Figure 3.8b).  

 

 

Figure ‎3.8 Circumventing damaged resources 
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Other methods discussed in the literature take the granularity of repair process to 

another level in cluster-based FPGAs. The authors in [134] present techniques to 

work around faults within an FPGA cluster (a cluster is a group of CLBs). If faults 

within the cluster cannot be avoided, moving to a spare cluster is possible by 

incremental routing. In [131], Emmert et al. present a system based on a similar 

concept. In this system faults can be circumvented by loading small configurations 

called FABRICs into a clustered structure. These FABRICs can either be pre-

compiled or computed online. This technique is combined with the horizontal and 

vertical roving stars, which constantly check for faults in the interconnects. 

3.3 Chapter Conclusion 
 

This chapter introduced the research work related to the use of DPR for enhanced 

performance and reliability in FPGAs. This chapter showed the advantages of DPR 

in hardware/software hybrid systems. Software acceleration can be achieved by off-

loading the most performance-demanding portions of the software to hardware 

accelerators. With DPR, different accelerators can be swapped in/out of the FPGA 

leading to a more efficient utilisation of the available reconfigurable resources. DPR 

also opens the door for implementing an ROS where scheduled HTs can be allocated 

to free areas of the reconfigurable fabric. With the limitations of the configuration 

throughput in current FPGAs, much of the research work has focused on developing 

fast and scalable configuration techniques to achieve the throughput required for 

high-performance systems.  

This chapter also looked into the reliability issues preventing the wide-spread use of 

FPGAs in applications requiring high levels of reliability. The unmatched flexibility 

of SRAM-FPGAs makes them an excellent solution for space and military 

applications; however, due to sensitivity of SRAM memory cells to high levels of 

radiation, FPGAs cannot be deployed in such applications without implementing an 

efficient fault recovery scheme. This chapter introduced the common fault 

detection/recovery techniques in FPGAs with special emphasis on the techniques 

based on the DPR capability in FPGAs. With a combination of design-hardening 
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techniques and DPR recovery schemes, FPGAs can efficiently handle soft errors in 

the configuration memory. Moreover, bitstream relocation techniques can also be 

deployed to mitigate emerging physical defects in the FPGA chip, allowing for 

greater availability and longer life-time.               
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Chapter 4 : A High-Performance Internal 

Configuration Manager 

 

Efficient internal configuration management is central to self-reconfiguring systems 

that depend on the ICAP for high-speed dynamic reconfiguration. Typically, internal 

configuration requires several components implemented in the FPGA to control the 

loading of partial bitstreams from external memory to the configuration memory of 

the device. The complexity of the configuration control logic will depend on the 

requirements of the system. Some systems deploy basic DPR in their operation and 

only require a simple Finite State Machine (FSM) to control the reconfiguration 

process. In other systems, such as an ROS kernel implemented on an FPGA, the 

ICAP is used extensively for different types of operation: task allocation, task de-

allocation and writing/reading individual configuration frames. In such systems, the 

complexity of the configuration control logic is much higher as online modifications 

to the original partial bitstreams are required to allow for task relocation. There are 

several design aspects that need to be considered when designing the configuration 

control circuitry. The design should support various configuration operations in a 

compact light-weight design. The design should also be highly portable and easily 

customisable to the needs of a particular system. In addition, the configuration 

controller should operate at the highest possible throughput to meet the demands of 

high-performance applications. This chapter presents a novel ICM that addresses all 

the aforementioned design aspects. The proposed ICM is self-dependent with all the 

circuitry required to manage the configuration process wrapped in a single top-level 

module that requires minimal connectivity with the main CPU in the system making 

it particularly suitable for integration with an ROS kernel. With focus on the Xilinx 

Virtex family architecture, new methods for enhancing the relocation efficiency and 

the reconfiguration speed are presented and compared to previous published works.  
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4.1 General Architecture of the ICM 
 

The ICM’s architecture is based on separating the low-level configuration 

particularities from the main CPU in the system. The architecture is tailored for an 

ROS where a main CPU assigns configuration tasks to the ICM using a software 

library of configuration functions. These configuration functions can be used for 

handling the execution of HTs in the available hardware resource in the FPGA as 

well as handling the inter-task communication through the configuration layer. 

4.1.1 Building Blocks of the ICM 

               

The ICM consist of three main components: the ICAP controller, the external 

memory controller and a small soft-processor (see Figure 4.1). The ICAP controller 

is the core component of the ICM and is responsible for handling the read/write 

protocols of the ICAP to perform the different configuration operations. To allow for 

the highest possible throughput when fetching configuration data from the external 

storage memory, the memory controller has direct access to the external memory 

module. While typical ICAP controllers depend on the main CPU for initiating the 

data transfers from external memory to the ICAP over the system’s bus [86], the 

proposed ICM controls all the memory data transfers internally without any 

assistance from the main CPU. The ICM’s soft-processor is a Picoblaze soft-

processor, which is optimised for Xilinx FPGAs and has a very small footprint [135]. 

The ICM’s soft-processor is responsible for decoding simple high-level configuration 

instructions initiated by the main CPU that trigger the execution of certain sub-

routines. Each subroutine is intended to trigger and monitor a specific configuration 

operation such as configuration memory readback, task configuration, task removal, 

etc. Once the soft-processor decodes a particular instruction, it coordinates the ICM’s 

components according to the requested operation and reports its status back to the 

main CPU.  
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4.1.2 Interfacing with the Main CPU 

 

The ICM is connected to the main CPU using two 32-bit FIFOs: 

Instruction FIFO: This FIFO is used by the main CPU to write consecutive 

configuration requests to the ICM’s soft-processor. Small packets are used to request 

configuration operations. Each packet starts with a request ID number followed by 

the requested operation command ID and its input parameters. The number of input 

parameters depends on the type of operation requested by the main CPU. The 

‘empty’ signal of the FIFO is always polled by the ICM’s soft-processor to determine 

if there are configuration operations requested by the main CPU. When packets are 

sent to the instruction FIFO, the soft-processor starts pulling data out of the FIFO. It 

first registers the ID number of the instruction and then decodes the operation 

command. Finally, the soft-processor pulls the operation operands and executes the 

required sub-routines to perform the operation.                    

Status FIFO: This FIFO is used by the soft-processor to report the ID number of the 

finished operations. This FIFO is also used to report failed operations as well as 

sending back output parameters for certain operations.  

    

 

Figure ‎4.1 Building blocks of the ICM 



Chapter 4: A High-Performance Internal Configuration Manager   

 

66 
 

4.1.3 The Configuration Operations   

 

The ICM supports different types of configuration operation. These configuration 

operations can be used in a wide range of applications, including full support for HT 

management in an ROS. The main configuration operations are described below:  

Partial bitstream configuration: This operation is intended for reconfigurable 

modules that are floor-planed according to the Xilinx reconfiguration flow where 

each reconfigurable module can only be placed in a single reconfigurable region. The 

partial bitstreams are simply loaded to the ICAP from external memory without any 

modifications to their content.          

Partial bitstream relocation: This operation is intended for relocatable modules. 

The partial bitstreams are modified online according to the chosen locations. This is 

central to the operation of an ROS as HTs are constantly placed in different locations 

on the FPGA.     

Black-box configuration: Typically, when partial bitstreams are generated for 

reconfigurable modules in the system an extra partial bitstream called the ‘black-box’ 

is generated for every reconfigurable region. The black-box basically removes all the 

logic configured in the region apart from the static routes passing in this region. For 

relocatable modules, there are several locations on the FPFA where the module can 

be placed. Each module can have a different shape, making storing an extra black-

box for each module impractical and costly in terms of the storage memory. This 

configuration operation allows for tiling smaller black-box bitstreams horizontally. 

By initiating several black-box configurations, any region can be ‘blanked’ provided 

that the region does not contain any static routes. As each column type contains a 

different number of minor frames, a black-box bitstream is used for each column 

type.             

Configuration frames read/write: There are different situations in which access to 

individual frames is required. For example, fault injection tests require frames to be 

read, modified and then written back to the configuration memory. Four operations 
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are required to perform a fault injection test on a frame. A frame-read operation 

stores a configuration frame in an internal buffer. A word-fetch operation sends a 

particular word from the stored frame to the main CPU. A word-write operation 

replaces a particular word in the internal buffer with a word sent from the main CPU. 

Finally, a frame-write operation writes the frame stored in the internal buffer to the 

configuration memory. Table 4.1 summarises the main configuration operations 

supported by the ICM along with their command IDs and parameters.  

 

Table ‎4.1 Main configuration operations 

Operation ID Parameters Action 

Frame Read 0x0 
-Frame address 

-Number of frames 

Frames are read from configuration memory and 

stored in the internal buffer 

Fetch Word 0x1 
-Word number A word is transferred from the frame buffer to the 

status FIFO 

Frame Write 0x2 
-Frame address 

-Number of frames 
Frames in the internal buffer are written to the 

configuration memory 

Write Word 0x3 
-Word number A word is transferred from instruction FIFO to 

the frame buffer  

Scrub Frames 

(ECC) 
0x4 

-Frame address 

-Number of frames 

Consecutive frames are read with ECC checking 

enabled. Only the last frame is stored in the 

buffer. Automatically corrects corrupted frames.     

Partial 

Reconfiguration 
0x5 

-Partial bitstream ID Configure a partial bitstream file  

Partial 

Reconfiguration 

with Relocation 

0x6 

-Partial bitstream ID 

-Location offsets 

Configure partial bitstream in a new location 

determined by the location offsets 

Black-box 

Configuration 
0x5 

-Number of columns Configure all ‘0s’ (blank) in a number of adjacent 

columns 

Clone Partial 

Bitstream 
0x6 

-Partial bitstream ID 

-Location offsets 

Configure a partial bitstream in different 

locations on the FPGA 
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 4.2 The ICAP Controller 
 

The ICAP controller is the main component in the ICM. The basic building blocks of 

the ICAP controller are an FSM, an on-chip memory block, a Frame Address 

Calculator (FAC) and a parallel CRC-32 generator (see Figure 4.2). 

 

Figure ‎4.2 Building blocks of the ICAP controller 

  

The FSM is responsible for controlling the ICAP signals and the flow of data in/out 

of the ICAP’s input/output ports. Configuration data is transferred between the on-

chip memory block and the ICAP ports. 

The on-chip memory block is a dual-port BRAM that enables concurrent read and 

write access using its two ports. The BRAM block is divided into two sections: the 

first contains several configuration command templates, which are pre-initialised at 

the RTL-level of the design. The second section is a buffer used for buffering data 

streamed from the external memory controller as well as for temporary storage of 

readback data.  
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To enable fast relocation of partial bitstreams, the algorithm required to modify the 

partial bitstreams to alter the configuration location is performed in hardware by the 

FAC. The output of the FAC is multiplexed with the output from the BRAM block 

and other components in the system that writes to the ICAP. The FSM controls the 

multiplexer to select which component should access the input port during any 

configuration operation.     

 At the end of each partial bitstream, there is a pre-computed CRC value used for 

configuration verification. During configuration, internal logic in the FPGA 

computes the CRC value for the configured partial bitstream. When the pre-

computed CRC value differs from the value generated by the internal logic, an error 

flag is set to indicate an error in the configuration process. As relocation involves 

modifications of the original partial bitstreams, new CRC values must be computed if 

configuration verification is required. The parallel CRC generator is also connected 

to the ICAP input multiplexer to alter the CRC value in the input stream when a 

relocation operation is performed.  

The main unique feature of the presented ICM architecture is that all the bitstream 

modifications required for bitstream relocation are performed using fast hardware 

component. In many systems, a host processor needs to perform these modifications 

prior to configuration, which slows down the relocation process (see Chapter 2). In 

addition, the integration of an internal BRAM, which stores all the configuration 

command headers allows for fast access to the configuration memory. Systems based 

on typical ICAP controller, such as the Xilinx Hardware ICAP (HWICAP), do not 

allow for fast access to the configuration memory as they depend on a host processor 

to pass the configuration commands from an external memory to the ICAP controller 

prior to performing any configuration operation.  In such systems, passing the 

configuration commands to the ICAP controller can be performed directly through 

the system’s bus (see Figure 4.3a) or through a Direct Memory Access (DMA) 

engine to enable burst transfers (see Figure 4.3b).  
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Figure ‎4.3 HWICAP based configuration systems [88] 

          

4.2.1 Basic Operation of the Internal Configuration Access Port 

 

The ICAP primitive in Xilinx FPGAs has six connections in its interface: the ICAP 

clock, the Clock-Enable (CE) signal, the Read/Write (RW) signal, the BUSY signal, 

the input port and the output port. The CE, RW and BUSY signals are control signals 

used to control the flow of data in/out of the ICAP. The input and output ports are 

used to read/write 32-bit words from/to the ICAP. These ports can be configured 

with different widths: 8-bit, 16-bit and 32-bit.     

Read and write operations can be performed using the ICAP to either the 

configuration memory or the configuration registers. The configuration registers are 

special registers used to control the operation of the internal configuration logic of 

the FPGA. Each register has a unique address and can be directly accessed and 

modified using the ICAP by writing the appropriate command. Xilinx configuration 

commands have a generic structure, whereby a command is divided into separate 

fields: Type, opcode, register address and word count (see Table 4.2). The opcode 

determines if the command is a write, read or a no-operation command by writing 

‘10’, ‘01’ or ‘00’ respectively. The register address selects the required register, 

whereas the word count tells the configuration logic how many words need to be 
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written/read to/from the selected register. These words immediately follow the 

command. In some situations, long word sequences are required for reading and 

writing. When the number of words cannot be set by the fixed size of the ‘word 

count field’, two consecutive commands are required to set up the operation. The 

first command is a type-1 command, which sets the address of the register and the 

second command is a type-2 command, which has a larger ‘word count field’ and is 

used to set the number of words for the operation.               

Table ‎4.2 Xilinx configuration command structure [25] 

Header Type 
Commands fields bit positions 

Opcode Register Address Word count 

1 [28:27] [26:13] [10:0] 

2 [28:27] NA [26:0] 

  

There are three main configuration registers that control the reading/writing of 

configuration frames. These configuration registers are the Frame Address Register 

(FAR), the Frame Data Register-Input (FDRI) and the Frame Data Register-Output 

(FDRO). The FAR contains the address of the accessed configuration frame. The 

content written to the configuration frames is written to the FDRI when performing 

partial reconfiguration or writing to individual frames, whereas configuration 

memory readback is performed by reading the FDRO register.  

The proposed ICM controller goes through three phases to perform an operation: the 

set-up phase, the data transfer phase and the configuration verification phase. The 

set-up phase involves preparing the command header for the required operation. This 

command header contains the ICAP initialisation sequence as well as specific 

commands for specific registers to control the required operation.       

After setting up the required operation, the control enters the data transfer phase 

where data is transferred to the ICAP. For readback operations, the ICAP must be 

switched to the read mode during this phase. The switch is performed when a read 

command is encountered by the controller. The ICAP mode is determined by the RW 



Chapter 4: A High-Performance Internal Configuration Manager   

 

72 
 

signal where logic ‘0’ enables the ‘write’ mode and logic “1” enables the ‘read’ 

mode. The process of switching the ICAP from a read to a write mode or vice versa 

can be done in three steps: 1) de-assert the CE signal; 2) toggle the RW signal; and 3) 

assert the CE signal. After setting up a read operation, the readback data will be 

available in the output port of the ICAP after a number of clock cycles. During this 

period the BUSY signal of the ICAP remains high, indicating that the readback data 

is not available yet. When performing a read operation of a configuration frame, the 

required configuration data will appear in the output port of the ICAP after a dummy 

frame and a dummy word. The same applies for writing configuration frames during 

the data transfer phase. After writing the last configuration frame, an extra dummy 

frame must be written to the ICAP, however, no dummy word is required for write 

operations.       

The final phase is when the configuration verification is performed and the ICAP is 

desynchronised to return to the idle state. This operation is performed by sending 

special configuration command trailers that are required to de-synchronise the 

operation. In case of a read operation, the ICAP must be switched back to the write 

mode before sending these commands.  

4.2.2 Fast Operation Set-up  

 

In the proposed ICAP controller, pre-generated command header and trailer 

templates are stored in the dual-port BRAM. Each type of operation has dedicated 

command templates. The command templates are stored in the top half of the 

BRAM, whereas the remaining empty memory locations are used as a read/write 

buffer (see Figure 4.4).   

Each template contains some fields that represent the variable parameters specific for 

the required operation such as the frame address and the number of configuration 

frames to read/write. These fields are accessible by the ICM’s soft-processor, and 

can be initialised with the required values before initiating the required operation. 

The BRAM is dual port; one port is dedicated for the controller to access the 

operation templates and the read/write buffer and the other port is shared between the 
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soft-processor and the external memory controller through multiplexers (see Figure 

4.2). When the soft-processor receives a particular instruction from the main CPU in 

the systems, it modifies the fields in the required templates before triggering the 

operation. The command templates are divided into three groups: the configuration 

memory write, the configuration memory read and the MFW templates.  

 

Figure ‎4.4 The dual-port BRAM block 

Configuration Memory Write Templates 

There are two templates stored in the dual-port BRAM for the configuration memory 

write operation. The main fields that can be modified in the header template are: the 

frame address, the number of words to be written, the ID code of the device, the 

Control Register (CTL) and the MASK registers values.  

The FAR value specifies the address of the first frame to be written to the 

configuration memory. The FAR address only needs to be set once, as it is 

automatically incremented for consecutive frames in the FPGA’s configuration 

circuitry. To set the number of frames to be written consecutively, the word count 

field of the FDRI-write command is modified.  
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Each Xilinx FPGA model has a unique ID that needs to be set in the ID register 

before a write operation. The CTL and MASK registers are used to enable/disable 

writing to the LUTs configured as shift registers or distributed RAM by writing logic 

‘1’/’0’ to the GLUTMASK bit in the CTL register. Writing to the CTL register is 

masked by the MASK register, so two fields need to be modified to change the 

GLUTMASK bit in the CTL register. Table 4.3 shows the commands templates used 

for the configuration memory write operations. 

Table ‎4.3 Writing command templates 

Template Type Configuration Data Explanation 

H
ea
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m

p
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AA995566 Synchronisation word 

20000000 NO-Operation command 

30008001 Write 1 word to command register 

00000007 Reset CRC command 

20000000 NO-Operation command 

20000000 NO-Operation command 

30018001 Write 1 word to ID register 

xxxxxxxx Device ID 

3000C001 Write 1 word to MASK register 

xxxxxxxx Mask value 

3000A001 Write 1 word to CTL register 

xxxxxxxx CTL register value 

30002001 Write 1 word to the FAR register 

xxxxxxxx The frame address value 

30008001 Write 1 word to the command register 

00000001 WRITE configuration data command 

30004xxx Write (xxx) words to the FDRI register 

The configuration stream must be switched to the read/write buffer 

Dummy word + frames + dummy frame = (xxx) 

T
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er
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30000001 Write 1 word to CRC register 

xxxxxxxx CRC-generator inserts checksum here 

30008001 Write 1 word to command register 

0000000D Write de-synchronisation command 

20000000 No-Operation command 

20000000 No-Operation command 

 



Chapter 4: A High-Performance Internal Configuration Manager   

 

75 
 

Configuration Memory Read Templates  

Similar to the configuration memory write operation, the read operation has two 

command templates stored in the BRAM. The variable fields in the read header 

template are: the CTL register field, the MASK register field, the word count of the 

FDRO-read command and the FAR field. Table 4.4 shows the command templates 

for the configuration memory read operation. 

Table ‎4.4 Reading command templates 

Template Type Configuration Data Explanation 

H
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AA995566 Synchronisation word 

20000000 NO-Operation command 

30008001 Write 1 word to command register 

00000007 Reset CRC command 

20000000 NO-Operation command 

20000000 NO-Operation command 

30008001 Write 1 word to command register 

00000004 READ configuration data command 

3000C001 Write 1 word to MASK register 

xxxxxxxx Mask value 

3000A001 Write 1 word to CTL register 

xxxxxxxx CTL register value 

30002001 Write 1 word to the FAR register 

xxxxxxxx The frame address value 

28006xxx Read (xxx) words from the FDRO register 

20000000 NO-Operation command 

20000000 NO-Operation command 

Data from the ICAP output port must be stored in the  read/write buffer 

Dummy word + dummy frame + frames = (xxx) 

T
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20000000 NO-Operation command 

20000000 NO-Operation command  

30008001 Write 1 word to command register 

0000000D Write de-synchronisation command 

20000000 No-Operation command 

20000000 No-Operation command 
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The Multiple Frame Write (MFW) Command Templates 

The MFW feature in Xilinx FPGAs allows for writing the same frame to several 

addresses in a single operation rather than writing each frame individually. This 

operation is commonly used for offline bitstream compression, where the BitGen 

tool looks for configuration frames with similar content and uses the MFW 

commands to enable the storing of their content just once instead of multiple times in 

the bitstream file. The MFW requires the frame to be written first to the FDRI 

register; the frame then can be copied to a new address by using a special set of 

commands. This set of commands can be repeated as desired to copy the written 

frame to multiple addresses in a much shorter configuration time. Figure 4.5 shows 

the command sequence of the MFR operation compared to the normal write 

operation.  

Since the number of times the MFW command sequence is required in a single 

operation will depend on the number of frames to be copied, a ‘loop’ template is 

added to the command templates, which can be used in several iterations during the 

configuration process. The MFW header template is the same as the configuration 

write template with the number of words in the FDRI-write command fixed for a 

single frame as no dummy frame is required for the MFW configuration. Table 4.5 

shows the command templates for the MFW configuration. 

 

Figure ‎4.5 Writing three identical consecutive frames with and without compression 
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Table ‎4.5 MFW command templates 

 Template Type Configuration Data Explanation 

F
A

R
  30002001 Write 1 word to FAR 

xxxxxxxx FAC inserts FAR here 

L
o
o
p
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30008001 Write 1 word to command register 

00000002 Write the MFW command 

30014002 Write 2 words to the MFW register 

00000000 Dummy word 

00000000 Dummy word 

30002001 Write 1 word to FAR 

xxxxxxxx FAC inserts FAR here 

T
ra

il
er
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em
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30014002 Write 2 words to the MFW register 

00000000 Dummy word 

00000000 Dummy word 

30000001 Write 1 word to CRC register 

xxxxxxxx CRC-generator inserts checksum here 

30008001 Write 1 word to the command register 

0000000D Write de-synchronisation command 

20000000 NO-Operation command 

20000000 NO-Operation command 

  

4.2.3 The Data-Transfer Phase  

 

After the soft-processor finishes modifying the command templates according to the 

instruction sent by the main CPU, it triggers the ICAP control’s FSM, which is 

responsible for coordinating the controller’s components to perform the required 

operation. It is noted that some of the variable fields are not modified in the setup 

phase such as the CRC and the FAR field in the MFW loop template. These fields 

are modified during the streaming of the configuration data by the CRC-generator 

and the FAC.   

One port of the dual-port BRAM is dedicated for the configuration data stream. The 

port contains a 32-bit input and a 32-bit output. The port is controlled by three 

signals: the data address, the enable signal and the read/write signal. The FSM 
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controls these signal to generate the configuration data for the required operation. 

The on-chip BRAMs are fast; they support high operational frequency and a very 

low latency (one clock cycle). With the appropriate address control, any command 

sequence can be generated on the output port of the BRAM.  

The three main states in the data transfer phase are the Command-Write, the Data-

Write and the Data-read states. The Command-Write state is executed while passing 

configuration commands to the ICAP. In this state, each configuration command is 

decoded to extract some parameters and to set some flags required to control the 

data-transfer phase. 

Two parameters are extracted from each command: the command type and the word 

count. The command type and word count are determined according to Table 4.2, 

whereby the command could be registered as either a write command or a read 

command. The word count contains the number of configuration words to be written 

or read after the decoded command. The next state is determined according to the 

command type and number of words, as shown in Figure 4.6.   

When a write command to the FAR is encountered in the Write-Command state, a 

FAR flag is set to indicate that the next word is a frame address. This flag is 

monitored by the FAC, which performs modifications to the frame addresses for 

some operations. In addition, the FAC breaks down the FAR to extract the resource 

type as well as the original frame location from the FAR.   

 

Figure ‎4.6 Main states in the data transfer phase 
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Configuration Memory Read/Write 

The basic configuration memory write/read operations do not require further 

modifications in the command templates other than the modifications carried out by 

the soft-processor in the setup phase.  

The same applies for writing the configuration data stored in the read/write buffer 

unless the resource type registered by the FAC is indicating a BRAM resource type. 

The content of the BRAM configuration data contains several protection bits all set 

at logic ‘1’. In Virtex-4 FPGAs, these bits are placed on the 24
th

 bit of the of the 4
th

, 

14
th

, 25
th

 and 35
th

 minor frames and the 8
th

 bit of the 5
th

, 15
th

, 26
th

 and 36
th

 minor 

frames of a BRAM column. These bits need to be cleared to enable writing to the 

BRAM column. When the FAC detects a BRAM resource type, dedicated 

combinatorial logic clears these bits before passing the configuration frames to the 

ICAP.  

The Virtex FPGA architecture consists of several rows of resource columns. These 

rows are divided between the two halves of the FPGA. The configuration frames of 

columns in the bottom half of the FPGA have a reversed bit order compared to the 

frames of the columns in the top half of the FPGA, with the exception of the word 

containing the ECC, which is the 21
st
 word in Virtex-4 FPGAs. This means that if a 

configuration frame from the top half of the FPGA is required to be copied to a 

location in the bottom half of the FPGA or vice versa, the order of the frame words 

must be reversed as well as the order of bits in each word.  

To enable the read-relocate-write feature between the top and bottom halves of the 

FPGA, a frame bit reversal is always performed when writing configuration data to 

the bottom half of the FPGA by performing an address jump to the last word of the 

frame in the read/write buffer and decrementing the address until the first word is 

reached. The order of bits within each word is reversed by dedicated combinatorial 

logic before passing the data to the ICAP. For read operations, the same is done 

when storing configuration frames read from the bottom half of the FPGA. Figure 

4.7 shows the different scenarios for configuration memory read and write 

operations.   
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Figure ‎4.7 Transfer phase for read/write operations 

 

Partial Reconfiguration 

The basic partial reconfiguration operation supported by the ICAP controller allows 

for a partial bitstream file to be to be passed to the ICAP input port after initialisation 

without any modifications to its content. No templates are used for this operation as 

all the commands required are inside the bitstream file. For this operation, the FSM 

controls the transfer of data from the external memory controller to the ICAP through 

the read/write buffer in the dual-port BRAM. In the setup phase, the soft-processor 

grants access to the shared port of the BRAM to the external memory controller by 

setting the ‘select’ signals of the port multiplexers. The memory controller writes the 

configuration data in the buffer starting from the first address of the buffer region in 
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the BRAM. When the external memory reaches the end of the buffer, a jump to the 

buffer’s first address is performed. This procedure is repeated until all the bitstream 

is written. Reading the configuration data from the other port, which is controlled by 

the FSM, is synchronised with the port accessed by the external memory controller 

(see Figure 4.8). It is noted that the soft-processor enables the external memory 

before the FSM to allow for the latency of the external memory module.  

 

Figure ‎4.8 Transfer phase for basic partial reconfiguration 

                   

Offset-based Bitstream Relocation                          

Bitstream relocation requires modifying the FAR values in the bitstream to change 

the location of configuration in the FPGA. All Xilinx Virtex FPGAs have similar 

frame addressing architecture. A configuration frame is the smallest addressable 

segment of data. There are different types of configuration frame for different types 

of logic resource (IOB, CLB, DSP, clock resources and BRAM). Each frame is 

configured in the location indicated by the FAR. The FAR is divided into five fields: 

top/bottom, block type, row address, column address and minor address. Figure 4.9 

shows a generic physical layout of a Xilinx Virtex FPGA device. 
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Figure ‎4.9 Frame addressing in Xilinx Virtex FPGAs 

 

The FPGA is divided into two halves. The top half is addressed by ‘0’ and the 

bottom half is addressed by ‘1’ in the top/bottom field of the FAR. Each half is 

divided into two rows. In each half of the FPGA, the row address starts with ‘0’ near 

the centre of the device and increments moving away from the centre of the device. 

The row is also divided into vertical columns of different types of FPGA resource. 

The type of column is specified by the block type field in the FAR (‘00’ for IOB, 

CLB, CLK and DSP; ‘01’ for block RAM interconnects; ‘10’ for block RAM 

content). A configuration frame configures resources spanning the entire height of a 

column. This means that the smallest partial bitstream contains the configuration data 

for a single column. Each column consists of a fixed number of minor frames 

depending on the type of column. Xilinx FPGAs support an auto-increment feature 

of the FAR value for the configuration of consecutive frames of the same resource 

type. This means that an uncompressed partial bitstream of a reconfigurable module 

consisting of only horizontally adjacent columns of the same type contains a single 

write to the FAR. Modifying the original FAR value for relocation in such bitstreams 

is simple as only a single modification is required. Unfortunately, this is not the case 

for most partial bitstreams. Compressed partial bitstreams utilise the MFW command 
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sequence, which requires several FAR writes. The number of FAR writes in a 

compressed partial bitstream will depend on the number of compressed frames (see 

Figure 4.5). In addition, the number of FAR values in uncompressed partial 

bitstreams depends on the resource types within the RM and the column arrangement 

of the RM. These FAR values must be modified according to the target location of 

the bitstream.      

The proposed relocation method in this thesis aims at eliminating any time overhead 

incurred from the FAR modifications by performing the modifications using 

dedicated logic while partial bitstreams are configured. The FAC in the ICAP 

controller is responsible for calculating each new FAR value required for relocation 

by extracting some information from the original FAR values and manipulating them 

with location offsets passed by the soft-processor. The soft-processor sends a 

horizontal offset ‘X’ and a vertical offset ‘Y’ to the FAC to indicate the target 

location of configuration. The X offset is divided into two fields: ‘Xclb’ and ‘XBRAM’; 

this is because BRAM columns has a different column addressing index compared to 

the other resources as shown in Figure 4.9 

The proposed relocation model assumes that all the partial bitstream files are 

generated for the location as close as possible to the top-left corner of the FPGA. 

With this assumption, shifting the modules horizontally becomes a matter of adding a 

horizontal offset ‘X’ to the column address extracted from the FAR.  

Shifting reconfigurable modules vertically is more complex as the row address 

increments away from the centre of the FPGA. A ‘Y’ offset is used according to 

Algorithm 4.1 to find the required row address.  

 

Algorithm ‎4.1 Calculating relocation row address from Y offsets 

 

IF Yoffset < Number of rows in one of the FPGA’s halves 
 Row Adressrelocation= Row Addressoriginal – Yoffset 
Else 
 Row Adressrelocation= Yoffset - Row Addressoriginal -1 

    END IF 
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These FAR modifications are performed when the FAC is enabled by a ‘FAR flag’ 

that is set in the Command-Write state. The output of the FAC is passed to the ICAP 

by switching access to the ICAP input port to the FAC for one clock cycle.   

As mentioned earlier, the configuration frames of the columns located in the bottom 

half of the FPGA have a reversed bit order compared to columns located in the top 

half of the FPGA. This will limit the possible locations of the bitstream to a single 

half of the FPGA. Configuration frames bit reversal is performed for any module 

configured in the bottom half of the FPGA to tackle this problem (see Figure 4.10). 

When configuring with frame bit reversal, writing to the read/write buffer by the 

external memory controller is enabled well ahead of the other BRAM port to allow 

for the required word reversal (41 clock cycles for Virtex-4).    

 

Figure ‎4.10 Transfer phase when relocating to the bottom half of the FPGA 

 

Black-box Configuration 

Removing already configured modules that are inactive is essential to reduce the 

overall power consumption of the system. Each relocatable module could have a 

different size. It may be inconvenient to store a black-box configuration for each 

relocatable module. Since relocatable modules are mostly configured in locations 

with no static routes, their removal process is a matter of writing empty frames in the 
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entire region they occupy. Empty frames are frames with all bits equal to ‘0’. Normal 

write operations can take a long time to ‘blank’ a given area, especially when each 

frame is written individually. This is because each write operation will require an 

extra dummy frame to be written to the FDRI register. Writing a larger number of 

frames in a single operation will reduce the overall configuration time. However, 

black-box bitstreams are usually compressed as they contain a large number of 

empty frames that can be written once using the MFW feature.  

The proposed solution for blanking any arbitrary area on the FPGA is to generate the 

required compression commands online using the MFW command templates stored 

in the dual-port BRAM. To easily blank an area of several resource columns, each 

column is assigned with a separate MFW configuration operation where the loop 

MFW command template is used several times to blank all the minor frames inside 

the column. The blanking process of a particular column starts by writing an empty 

frame to the FDRI register. To write the empty frame, the address of the BRAM port 

that generates the configuration stream is stalled at a reserved empty memory 

location for the required number of clock cycles. After writing the empty frame, the 

compression commands are generated by passing the loop MFW command template 

several times. In each iteration of the MFW command template, the FAR value is 

updated by the FAC which increments the minor frame field. Figure 4.11 shows the 

blanking operation.   

 

Figure ‎4.11 Transfer phase for black-box configuration 
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4.2.4 The Configuration Verification Phase 

 

During configuration, the internal configuration logic of the FPGA calculates a CRC 

value for the configured data. The CRC calculation starts after a ‘reset CRC’ 

command is written to the command register. When generating a partial bitstream, 

the BitGen software tool generates a CRC value that is written to the CRC register at 

the end of the partial bitstream file. This value is compared to the value calculated by 

the internal logic of the FPGA and an error flag is set in the “Status” register in case 

of a mismatch.  

As relocation involves modifying the original partial bitstreams of the relocatable 

modules, the original CRC values becomes invalid. As all the modifications to the 

bitstream are performed during the configuration process, the new CRC value must 

be calculated using a parallel CRC-generator, which processes a 32-bit word every 

clock cycle. Xilinx FPGAs use a standard CRC-32C checksum algorithm defined by 

the following polynomial: 
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There are several methods for creating parallel CRC generators. Xilinx provides a 

parallel CRC generator tool that generates an HDL code for the parallel 32-bit CRC-

generator [136].   The CRC-generator output is connected to the ICAP input 

multiplexer. When a write to the CRC register is detected in the Write-Command 

state, the output of the CRC generator is selected. 

It is noted that the implementation of the CRC generator is optional for configuration 

through the ICAP controller. Writing a wrong CRC value to the CRC register does 

not cause any corruption in the configuration process.  

4.3 The External Memory Controller 
 

As explained earlier, the external memory controller is responsible for moving partial 

bitstreams from the external memory to the read/write FIFO of the ICAP controller. 

To move a particular partial bitstream, the external memory needs to know the 
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address of the segment of memory storing this partial bitstream as well as the size of 

this segment. To ease the management of a large number of partial bitstreams, a 

dedicated segment in memory called the pointer table is used to store the addresses 

of the first memory location of each partial bitstream file stored in memory. Each 

partial bitstream is assigned with an ID number, this ID number represents the order 

of the partial bitstream in the pointer table. The external memory controller only 

stores the start address of the pointer table and the start/end addresses of the buffer in 

the ICAP controller. To configure a particular partial bitstream, the ID number of this 

partial bitstream is passed to the memory controller. The external memory controller 

reads the address of the first memory location of the file from the pointer table and 

then reads the partial bitstreams file header, which contains the size of the file (see 

Figure 4.12). The memory controller writes directly to the buffer in the ICAP 

controller according to the scheme shown in Figure 4.8. The ICAP controller’s FSM 

is responsible for synchronising the data transfer in and out of the buffer. To do this, 

the FSM monitors the last address in the buffer accessed by the memory controller.       

 

Figure ‎4.12 The external memory controller 
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Two versions of the external memory controller were designed to support two 

popular types of memory module: Zero Bus Turnaround (ZBT) SRAM and Double 

Data Rate (DDR) SDRAM.  

The ZBT SRAM memory is very popular for applications requiring low latency. 

There is only two clock cycles latency when reading a specific address; this is very 

efficient for non-burst data transfers (e.g. jumping between segments in memory). In 

addition, the ZBT SRAM interface is very simple requiring only a small controller 

implemented in the FPGA.  

DDR SDRAM is widely used when a larger size of memory is required in the system 

or when several components in the system need direct access to the memory. Xilinx 

provides an optimised memory controller for its FPGAs. The MPMC IP core from 

Xilinx provides support for DDR, DDR2, DDR3 SDRAM memory modules [137]. 

The MPMC contains eight ports, which provide access to memory through one of the 

standard Personality Interface Module (PIMs). The fastest PIM standard for the 

MPMC port is the NPI, which provides low latency direct access to the memory. The 

MPMC supports burst transfer lengths of up to 64 words. However, the data latency 

is large compared to the ZBT SRAM. The designed NPI-MPMC controller achieved 

a latency of 30 clock cycles between burst data transfers.     

The partial bitstreams are copied from a non-volatile memory to the RAM memory 

module by the main CPU after power-up. Multiplexers are used to switch access to 

the ZBT SRAM memory module between the main CPU and the ICM, whereas a 

dedicated port of the MPMC memory controller is used to connect the main CPU. It 

is noted that the ICM is optimised for the SRAM controller and the rest of this 

chapter assumes the SRAM controller as the default controller.   

 4.4 Multiple-Clone Configuration  
 

Due to the sequential nature of the configuration logic in FPGA, the configuration 

process is limited to the maximum theoretical throughput of the configuration port. 

Most of the attempts reported in the literature to reduce the configuration time 
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overhead are based on over-clocking the configuration port or optimising the 

reconfigurable modules to realise smaller partial bitstreams (see Chapter 3).  

Parallel reconfiguration is unfeasible in current commercial FPGAs. Parallel 

reconfiguration can be defined as the ability to reconfigure several regions on the 

FPGA at the same time. If we examine the MFW configuration supported in the 

latest Xilinx FPGAs, we can see that it allows for some configuration parallelism but 

with some limitations. The MFW allows for writing several frames at once, provided 

that these frames have the same content. In other words, it clones a configuration 

frame in several locations on the FPGA. Typically, the MFW is utilised offline to 

reduce the number of frame repetitions in the bitstream file and achieve compression 

which depends on the original design. It was shown in earlier sections of this chapter 

how the MFW commands can be managed online to realise an efficient method for 

black-box configuration. This section explains how the online configuration 

management can be extended to allow for parallel configuration of identical 

relocatable modules (i.e. clones) using a proposed multiple-clone configuration 

technique. This technique allows for online generation of a single bitstream that 

configures different instances of the same module in different locations on the FPGA 

in much shorter configuration time compared to normal configuration.  

The multiple-clone configuration feature is fully integrated with the presented ICAP 

controller. Figure 4.13 highlights three applications that can benefit from such 

configuration techniques. 

The first application is the configuration of redundant modules in an N-Modular 

Redundancy system. In such systems an ‘N’ number of redundant modules is used to 

perform the same process to enhance the reliability of the system. A redundancy 

system can be designed as a partially reconfigurable system where the redundant 

modules can be swapped to perform different functions [117]. 

The second application is an embedded systolic array acceleration system, which 

contains several configuration slots for the configuration of hardware systolic array 

accelerators ([69] and [70]). Several slots can be connected together to form a larger 

systolic array depending on the level of acceleration required.  
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This configuration technique can also be deployed in an ROS where several tasks are 

executed in hardware. When successive tasks that use the same hardware are 

scheduled for execution, this technique can be used to reduce the configuration time 

and consequently ease the load on the configuration port. 

 

 

Figure ‎4.13 Possible applications of the multiple-clone configuration 

  

4.4.1 Overview 

 

To clone a particular module in several locations on the FPGA, each location is 

assigned with an ‘X’/’Y’ offset pair. Rather than writing the configuration frames 

sequentially to the FDRI, each frame is written separately to the FDRI followed by 

several iterations of the MFW commands. For non-compressed partial bitstreams, the 

number of MFW command iterations for each frame is equal to the number of clones 

required. In each iteration, the FAR value is recalculated for a new offset pair. After 

finishing all the MFW command iterations of a frame already written to the FDRI, 

the next frame is written to the FDRI and the same process is repeated until all the 

clones are configured (see Figure 4.14).  
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For compressed partial bitstreams, the number of iterations of the MFW commands 

can vary between frames as some frames already deploy these commands in the 

original partial bitstream for compression. For each compressed frame, the number of 

MFW command iterations is equal to (number of clones x number of compressions). 

 

Figure ‎4.14 Multiple-clone configuration 

 

4.4.2 The Clonable Partial Bitstream  

                        

Partial bitstreams generated by the Xilinx software tool do not contain the FAR value 

of each frame in the bitstream. The internal logic of the FPGA automatically 

increments the FAR when adjacent frames are written to the FDRI. For the multiple-

clone configuration, the FAR of each frame must be pre-computed to allow for fast 

update of the FAR field in the MFW command template.  

A simple C code was developed to decode the Xilinx Virtex partial bitstream and 

calculate the addresses of individual frames. This code is used to create a new 

bitstream file with all the information necessary for the cloning process. The 

structure of the generated bit file is designed to be easily accessible by the ZBT 

SRAM memory controller to perform both normal configuration as well as multiple-

clone configuration.      
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The bitstream file consists of a file header and several frame segments, one for each 

frame in the bitstream (see Figure 4.15). These frame segments are grouped 

according to the resource type they configure. The CLB frame segments are placed 

first in the file followed by the BRAM, BRAM interconnects and DSP frame 

segments. The file header basically contains the number of frame segments in the 

file. Each frame segment contains its own header. This header contains a 

compression field indicating the number of compressions for the frame in the 

original bitstream. If no compression operation is associated with the frame, the 

frame segment header is ‘0’. Any frame is always preceded by its pre-computed FAR 

value. The compression addresses always follow the frame in case it was used in a 

compression operation.  

 

Figure ‎4.15 The clonable bit file 

 

4.4.3 The Configuration Process 

 

All the information required to perform the cloning process is contained in the 

clonable bit file. To clone a module in several locations on the FPGA, the ICAP 

controller’s soft-processor passes an offset pair for each location to a buffer 

connected to the FAC. During configuration, the frame segments are processed 

separately. The external memory controller passes each frame to the read/write 

buffer in the ICAP controller and any FAR value associated with the frame to a FAR 
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FIFO connected to the FAC (see Figure 4.16). The FSM synchronises the frame 

fetching from the external memory so that it does not cause any interruption in the 

configuration stream. This is possible due to the very low latency of the ZBT SRAM. 

A ‘Send Frame’ signal connected to the memory controller is pulsed every time a 

frame transfer is required. Writing to the FDRI can start once the first word of the 

frame is available in the buffer. In case the cloning configuration process is 

performed in the bottom half of the FPGA, a ‘Reverse Frame’ signal is triggered to 

instruct the memory controller to fetch the word in reverse order.        

When writing the MFW commands, the FAC calculates the FAR values for each 

clone according to the values present in the FAR FIFO and the offset buffer. Each 

FAR value is utilised in several MFW command iterations until it is used with all the 

offset pairs in the buffer. The FSM will continue looping through the MFW 

command template until the FAR FIFO is empty. After that, cloning proceeds to the 

next frame segment in the bitstream.  

 

 

Figure ‎4.16 Configuration using the clonable bit file 
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4.5 Performance and Resource Utilisation Evaluation        
 

This section of the thesis evaluates the resource utilisation of the presented ICM as 

well as the performance achieved when carrying out the different configuration 

operations. The presented ICAP controller was implemented in aVirtex-4 FPGA. The 

system was configured as a standalone ICAP controller where the soft-processor is 

responsible for initiating different test operations without the need for a main CPU.  

4.5.1 Resource Utilisation Evaluation 

    

The full ICM was designed to support many operations and to be the core hardware 

component in an ROS. Not all reconfigurable systems require the capabilities of the 

presented ICM. The ICM design allows for easily removing any unwanted feature at 

the RTL design stage in order to reduce the resource utilisation.     

Table 4.6 shows the resource utilization of the different components in the full ICM 

whereas Table 4.7 shows the total resource utilisation for different versions of the 

ICM with different sets of supported features. 

The full ICM utilises 1,117 slices in a Virtex-4 FPGA. This accounts for around 4% 

of the largest device in the Virtex-4 family (XC4VFX60) and around 20% for the 

smallest device in the family (XCVFX12). The resource utilisation of the ICM 

depends on the features required in a particular system. For an ROS system that 

requires module relocation as well as reading/writing individual frames, trimming the 

extra features of the ICM results in a resource utilisation of 721 slices. When only 

basic DPR is required, no soft-processor is required as controlling the configuration 

becomes a simple process requiring a small FSM utilising only 74 slices and a single 

BRAM block. It is noted that the resource utilisation figures reported in Table 4.7 are 

given when an SRAM module is used to store the partial bitstreams. A secondary 

NPI-MPMC controller was also designed to support configuration from DDR 

memories [137]. The controller resource utilisation is 107 slices; however, it 

connects to the Xilinx MPMC IP, which utilizes around 1,250 slices and 2 BRAMs 



Chapter 4: A High-Performance Internal Configuration Manager   

 

95 
 

in a Virtex-4 FPGA. Thus, the NPI-MPMC controller is only suitable for large 

FPGAs and systems that already use a DDR memory module. It is also noted that the 

current version of the DDR memory controller does not support the multiple-clone 

configuration feature. In addition, relocation is only possible when a module is 

relocated to a location within the same FPGA half as the original location of the 

module. This means that two bitstreams are required for each relocatable module. 

The first is generated for the top half of the FPGA whereas the second is generated 

for the bottom half of the FPGA. 

Table ‎4.6 ICM’s‎resource‎utilisation‎in‎a‎Virtex-4 FPGA 

Component Slices BRAM 

Pico-blaze 104 1 

ICAP Controller 803 1 

SRAM Controller 146 0 

Glue Logic  64 0 

Total 1117 2 

   

Table ‎4.7 Resource utilisation for different versions of the ICM 

Feature Resource 

Utilisation 

DPR (No 

Pico-blaze) 

Frame 

Read/write 

Relocation Blanking Cloning Online 

CRC 

Slices BRAM 

YES NO NO NO NO NO 75 1 

YES YES NO NO NO NO 417 2 

YES YES YES NO NO NO 721 2 

YES YES YES YES NO NO 796 2 

YES YES YES YES YES NO 992 2 

YES YES YES YES YES YES 1117 2 

   

The fact that the proposed ICM can perform and control all the configuration 

operations independently means that it is possible to configure the ICM as a 

standalone configuration system for applications that do not require an embedded 

host processor. This capability is not possible in systems based on the Xilinx 
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HWICAP as it depends on a host processor to control its operation and pass the 

configuration data through the host bus. Such systems can incur additional resource 

overheads caused by all the required components (e.g. bus controller, DMA). Table 

4.8 compares the resource utilisation of the proposed ICM with two different 

implementations of a HWICAP based system [88]. 

Table ‎4.8 Resource utilisation comparison between proposed ICM and HWICAP based 

systems in a Virtex-4 FPGA 

Configuration System 
Resource Utilisation 

Slice BRAM 

Proposed ICM (SRAM Interface)      1117 2 

HWICAP without DMA [88] 1637 0 

HWICAP with DMA [88] 2138 0 

    

4.5.2 Standard Configuration Operations Performance Evaluation 

 

The standard configuration operations are: configuration frames read/write and basic 

DPR. Although some authors suggest overclocking the ICAP to achieve higher 

configuration throughput (see Chapter 3), the overclocking technique is not 

considered in the performance analysis, despite the fact that the proposed ICM has 

operated successfully with a frequency of up to 160 MHz (60Mhz higher than the 

ICAP rated frequency).   This is mainly because of the following reasons:  

1) Results obtained from overclocking the ICAP may not be applicable to all 

designs and all devices. Variation in devices and experimental conditions will 

directly impact the maximum throughput achieved.  

2) There might be some reliability issues when overclocking the ICAP. It is difficult 

to predict how the ICAP will behave in the long run when overclocked. This is 

especially important as dynamic reconfiguration is often used for enhanced 

reliability.  
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3) There is a risk of damaging the internal configuration logic when operating the 

ICAP with much higher clock frequencies compared to the maximum rated 

frequency.  

 

Due to the aforementioned reasons, the performance analysis is based on how close 

the achieved configuration throughput is to the maximum theoretical throughput. 

Table 4.9 shows the time measurements for the basic read/write configuration 

operations. To test the configuration speed of the proposed ICM, three benchmark 

RMs that span different areas on the FPGA are considered (see Table 4.10). Two 

partial bitstreams are generated for each RM; the first is generated without 

compression; resulting in the maximum file size whereas the second is for a black-

box of the same area as the RM. The black-box is generated with compression 

enabled, resulting in the smallest file size.       

  

Table ‎4.9 Frame read/write time overhead 

Operation ICAP Freq. (MHz) Operation Time (us) 

Read Frame 100 2.28 

Write Frame 100 1.95 

 

Table ‎4.10 Benchmark RMs  

RM ID 
RM Area (Columns) File Size (KB) 

CLB BRAM DSP Normal Black-Box (Compressed) 

RM1 2 0 0 8 3 

RM2 4 1 0 29 7 

RM3 8 1 1 47 10 

 

Table 4.11 shows the configuration times and the relocation times for the benchmark 

RMs using the default SRAM controller and the secondary NPI-MPMC controller 

when operating at 100MHz and using the 32-bit configuration of the ICAP. 
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Table ‎4.11 Configuration and relocation times of the ICM 

R
M

 I
D

 

SRAM Controller NPI-MPMC Controller (DDR2) 

Configuration Time 

(us) 

Relocation Time 

(us) 

Configuration Time 

(us) 

Relocation Time 

(us) 

Normal 
Black-

Box 
Normal 

Black-

Box 

Normal Black-

Box 

Normal Black-

Box 

RM1 21.08 8.28 21.17 8.73 30.32 11.42 30.41 11.83 

RM2 74.84 18.52 74.95 20.27 109.28 26.56 109.39 28.31 

RM3 120.92 26.20 121.04 29.05 176.96 37.84 177.08 40.69 

A
vg

. 

T
h

ro
u

g
h

p
u

t 
 

376.2 

(MB/s) 

365.2 

(MB/s) 

375.4 

(MB/s) 

336.3 

(MB/s) 

258.8 

(MB/s) 

257.3 

(MB/s) 

258.3 

(MB/s) 

243.4 

(MB/s) 

    

From Table 4.11, we can see that the maximum configuration throughput using the 

SRAM controller is very close to the maximum ICAP throughput, which is 400 

MB/s. Furthermore, the configuration throughput increases as the size of the partial 

bitstream increases. When operating the ICM with an NPI-MPMC controller, the 

configuration throughput degrades due to the latency of each burst transfer from the 

DDR memory. RM relocation slightly reduces the configuration throughput. In the 

case of the SRAM controller, the relocation throughput of non-compressed 

bitstreams is 0.8 MB/s slower than configuration without relocation. The relocation 

overhead depends on the number of FAR values present in the partial bitstream as 

substituting a new FAR value requires a single clock cycle in the proposed ICM. For 

compressed partial bitstreams, the number of FAR values depends on the number of 

identical frames in the partial bitstream. A black-box will result in the maximum 

number of FAR values in the partial bitstream of any RM. For the benchmark RMs, 

the average relocation throughput of the black-box bitstreams was 336.3 MB/s. This 

is 39.1 MB/s less than the average relocation throughput of the non-compressed 

bitstreams. We can estimate the relocation throughput of proposed ICM by: (average 

relocation of non-compressed bitstreams + average relocation throughput of 

compressed black-box bitstreams)/2. This results in an average relocation throughput 

of 355.9 MB/s in the case of the SRAM controller and 250.9 MB/s in the case of the 
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NPI-MPMC controller. Table 4.12 compares the relocation throughput of the 

proposed ICM with the throughput of different relocation systems reported in the 

literature. 

Table ‎4.12 Throughput comparison between the proposed ICM and other relocation 

systems 

System Device 
ICAP Freq. 

(MHz) 

Throughput 

(MB/s) 

Proposed ICM Speedup 

SRAM NPI-MPMC 

REPLICA2Pro 

[49] 

Virtex-

II/Pro 
35 35 x10.2 x7.7 

BiRF [50] Virtex-4 100 7.3 x48.9 x34.4 

[47] Virtex-4 100 3.5-8.9 x101.7-x40.0 x71.7-x28.2 

ARC [138] Virtex-4 100 61.9 x5.7 x4.1 

OORBIT [139] Virtex-4 100 100 x3.6 x2.5 

  

Table 4.12 shows that the proposed ICM outperforms the relocation systems reported 

in the literature. The relocation system providing the closest throughput to the 

proposed ICM is the OORBIT, which was implemented in a Virtex-4 FPGA. The 

proposed ICM was 3.6 times faster with the SRAM controller and 2.5 times faster 

with the NPI-MPMC controller. In fact, the OORBIT is not a pure online bitstream 

relocation system as it uses pre-computed offline FAR and CRC values generated for 

all the possible locations of the RMs to accelerate the relocation process. 

The REPLICA2Pro and BiRF are early relocation filters, which perform the FAR 

modifications online using dedicated hardware. The reported throughput of 

REPLICA2Pro is just an estimation provided by the authors and is not based on an 

actual implementation. The BiRF is also a hardware relocation filter with an average 

throughput of 7.2 MB/s when operating at 100 MHz. The BiRF poor throughput is 

mainly because the partial bitstreams were fetched from the DDR memory using a 

processor bus rather than a DMA engine. The system in [47] uses software running 

on a soft-processor to perform the partial bitstream modification required for 

relocation. Using software to modify the partial bitstream before configuration 

degrades the relocation throughput especially when bitstream reversal is required 
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(i.e. moving a bitstream from top half of the FPGA to the bottom half or vice versa). 

ARC also uses software to perform some of the bitstream modifications. However, 

bitstream reversal is performed in hardware to avoid the delay caused by rearranging 

the configuration frames in software prior to configuration.                                                               

4.5.3 Online Black-Box Bitstream Generation                             

 

The ICM can generate a black-box bitstream online for a relocatable RM with any 

size. The main aim of this feature is to circumvent the need for storing extra black-

box partial bitstreams, which are required for the removal of already configured RMs 

in the system. The RM removal process is based on configuring compressed empty 

columns covering the RM area. Table 4.13 shows the removal time of the benchmark 

RMs shown in Table 4.10 using the proposed removal method, non-compressed 

black-boxes and compressed black-boxes. 

It can be seen from Table 4.13 that the RM removal time of the proposed online 

method falls between the removal time of the non-compressed black-box file 

configuration and the compressed black-box file configuration. The proposed method 

does not require the storing of any files externally opposite to the other two methods. 

For very small RMs the proposed method might be faster than the other two methods 

as a black-box file generated using the BitGen tool contains a fixed header and a trail 

sequence of NOPs, adding extra configuration overhead. 

Table ‎4.13 RM removal time using (SRAM controller)   

RM ID 
Removal Time (us) 

Non-Compressed Black-Box Compressed Black-Box Proposed Method 

RM1 21.17 8.73 7.46 

RM2 74.95 20.27 26.38 

RM3 121.04 29.05 44.93 
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4.5.4 The Multiple-Clone Configuration Technique 

                   

This feature allows for copying the same relocatable module in different locations on 

the FPGA in a single operation and using a single clonable bitstream file. To see how 

the proposed multiple-clone configuration method would scale compared to the 

normal configuration method, two relocatable modules are used for testing. The first 

module is a small Pulse Width Modulation (PWM) module and the second module is 

a large K-means clustering core with fixed 8 clusters and a dataset of 2,905 points. 

The K-means clustering core is based on the implementation discussed in [140]. 

Table 4.14 shows the resource utilisation and area occupation of the two modules.  

Table ‎4.14 Test relocatable cores   

Test 

Core 

Resource 

Utilisation 

Area 

(Columns) 
Bitstream Size 

(KB) 

Clonable File Size 

(KB) 
Slices BRAM CLB BRAM 

PWM 46 0 2 0 8 7.4 

K-Means 1107 5 16 2 85 87.4 

 

Table 4.14 shows that the size of the clonable file is comparable to the size of the 

original non-compressed bitstream generated by the BitGen tool. It is slightly smaller 

than the bitstream for the small PWM module and slightly larger than the bitstream 

for the K-means core. Table 4.15 shows the configuration times for configuring 

multiple instances of the test cores within different locations in the same half of a 

Virtex-4 FPGA (XC4VFX60). The configuration locations are limited to the same 

half of the FPGA because bitstream reversal in not possible with the multiple-clone 

configuration as each configuration frame is written to the FDRI register before 

writing the MFW commands. If locations spanning both halves of the FPGA are 

required, two multiple-clone operations must be performed: one for configuring the 

relocatable module on the top half locations and the other for the locations in bottom 

half of the FPGA.  
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Table ‎4.15 Configuration times of the test cores 

Configuration 

Method 

Configuration Times for Different Number of Instances (ms) 

K-means PWM 

4 5 6 10 15 20 

Normal 0.87 1.1 1.3 0.21 0.31 0.42 

Multiple-Clone 0.40 0.44 0.49 0.057 0.075 0.092 

Speedup x2.2 x2.5 x2.7 x3.7 x4.1 x4.6 

 

It can be seen from Table 4.15 that the configuration speedup using the multiple-

clone configuration technique scales with the number of instances configured. For 

the K-means core, six instances are possible within one half of the Virtex-4 FX60. 

The configuration time for configuring the K-means core can be 2.5 times smaller 

with the multiple-clone configuration technique compared to the normal 

configuration method. More than 60 instances for the smaller PWM module are 

possible within one half of the FPGA. When configuring 20 instances of the PWM 

module, the configuration time of the multiple-clone configuration is 3.8 times 

smaller than the normal configuration method. 

It is important to mention that the multiple-clone configuration is not just limited to 

the Virtex-4 FPGA family. In fact, the possible gain with this technique is higher for 

newer devices such as the Virtex-6 and the 7-series families as the size of a 

configuration frame in these families is larger compared to the Virtex-4. For 

example, the number of words in a Virtex-6 FPGA is 81 compared to the 41 words in 

a Virtex-4 FPGA and still can be cloned in the seven clock cycles needed for the  

MFW command sequence. This means that a reduction in configuration time is 

around 87% for a cloned frame in a Virtex-6 FPGA compared to 76% in a Virtex-4 

FPGA. 

4.6 Chapter Conclusion    

       

In modern FPGAs, access to the configuration memory from within the FPGA allows 

for the implementation of interesting self-reconfiguring systems. The limited 

configuration throughput of FPGAs can be a performance bottleneck, especially for 
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systems that extensively use the configuration port for complex operations such as 

online bitstream relocation. The high configuration throughput required for such 

systems drives the need for an efficient configuration management system that 

independently handles these operations without degrading the configuration 

throughout.  

This chapter presented the design and architecture of an ICM that supports all the 

basic configuration operations with minimal overhead. In addition, the ICM supports 

a set of specialised features such as bitstream relocation and the multiple-clone 

configuration technique. The relocation throughput of the presented ICM is superior 

to the pre-existing relocation systems allowing for throughputs very close to the 

maximum limit of the configuration port. Moreover, the proposed multiple-clone 

configuration technique can achieve configuration throughputs multiple times higher 

than the theoretical limit of the ICAP without overclocking the configuration port 

when multiple instances of the same relocatable model are configured. The 

comprehensive feature support and the high performance of the presented ICM make 

it especially suitable for implementing complex reconfigurable applications such as 

an ROS, which is extensively affected by the configuration performance. 
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Chapter 5 : Reliability-Centric Internal 

Configuration Management 
 

The internal dynamic reconfiguration feature in modern FPGAs has opened the door 

for new opportunities to implement low-cost self-healing systems. Many techniques 

for online fault detection and repair in FPGAs have been proposed in the literature 

(see Chapter 4). In order to realise a fully autonomous single-chip solution, the fault 

detection and repair should be carried out from within the FPGA using the internal 

configuration port. Self-healing systems require the ICM to perform different fault 

detection and repair operations on-the-fly without disturbing the implemented 

system. These operations should be performed at the highest speed possible, 

especially when the internal configuration port is extensively used for operations 

other than fault detection and repair. The performance of the system could be 

degraded when access to the configuration port is dominated by fault detection and 

repair. This brings the need for an efficient management of all operations requiring 

access to the configuration port. In addition, the ICM should be designed to 

withstand faults in its logic as configuration errors could lead to system failure. The 

design of the ICM should be compact as the resource overhead of the conventional 

fault-mitigation design techniques could impact the overall efficiency of the system.   

The work presented in this chapter presents different fault detection and repair 

schemes that can be performed by the ICM to mitigate soft faults such as internal 

readback scrubbing, external scrubbing and CRC-based configuration verification. 

This chapter also discusses different design strategies to ensure reliable operation of 

the ICM. The R3TOS is also presented in this chapter as a solution to handle 

permanent faults in the FPGA by means of bitstream relocation. The R3TOS aims to 

integrate all the fault detection and repair capabilities of the ICM in an ROS that 

provides a generic platform for FT applications. 
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5.1 The Design of a Fault-Tolerant ICM  

  

When used for FT applications, the ICM should be able to perform different fault 

detection and repair operations. The design of the ICM should be able to tolerate 

faults in its logic in order to perform these operations correctly and prevent system 

failure. The high performance ICM discussed in Chapter 4 was redesigned with 

different DPR-based self-recovery techniques to come up with the optimal design in 

terms of performance and area overhead.          

5.1.1 Triple Modular Redundancy (TMR) 

 

TMR provides great fault detection capabilities. Any fault that affects the output of 

the ICM is detected by output comparators. In addition, the operation of the ICM is 

not affected if faults do not occur in more than one redundant module. The main 

drawback of TMR is the large resource overhead due to triplicating the logic. There 

are two main criteria in designing the TMR system for the ICM. The first is to reduce 

the possibility of single faults affecting more than one redundant module in the 

system. The second is the ability to recover from faults affecting any redundant 

module.   

Faults that affect more than one module are usually caused by a change in the routing 

between two modules. This problem is apparent in TMR systems with the logic of 

the three redundant modules placed in the same area. One solution to this is to place 

the logic of each redundant module in a distinct area with all local routes constrained 

to this area. These regions could be reconfigurable regions with partial bitstreams 

generated for recovery by partial reconfiguration. Recovery by partial 

reconfiguration covers all types of soft error in the configuration memory. In order to 

reduce the overall area occupation of the TMR system, the minimal number of 

reconfigurable regions should be used. A large grain TMR scheme uses three 

reconfigurable regions, one for each instance of the ICM (see Figure 5.1). The three 

instances should be synchronised at all times and should be able to automatically 

recover from any faults in one of the three instances. When one of the tree instances 
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fails, the remaining two instances enter a recovery state after finishing the current 

configuration operation. In the recovery state the faulty module is reconfigured. 

Dedicated reset logic resets the three instances to the initial state after recovery and 

system operation is resumed normally.  

 

Figure ‎5.1 TMR design for the ICM 

 

5.1.2 Dual Modular Redundancy (DMR) 

 

In smaller FPGAs, triplicating the ICM might cause intolerable resource utilisation. 

DMR requires two redundant modules. One is the default module and the other is 

used for error detection. When a mismatch between the two modules is detected, the 

operation is aborted, and the two modules are reconfigured and reset to the initial 

state.  

While DMR reduces the resource utilisation of TMR by 1/3, it is not applicable to 

the ICM in its basic form. When one of the two instances fails, there is no 

mechanism to determine which instance is faulty and which instance should gain 

access to the ICAP to carry out the recovery process. DMR can still be applied to the 

ICM by implementing a third basic recovery controller, which is only used to 



Chapter 5: Reliability-Centric Internal Configuration Management   

 

107 
 

reconfigure the two redundant modules when a mismatch is detected (see Figure 

5.2). This is a very basic DPR operation performed by moving the partial bitstream 

from external memory to the ICAP. The basic recovery controller can be more than 

90% smaller than the full ICM. Given the small footprint of the recovery controller, 

TMR is applied to the recovery controller, which is placed in a separate 

reconfigurable region. In case of a fault in the recovery controller during the 

recovery of the ICM, TMR will filter out any error. When the ICM is fully 

reconfigured, access to the ICAP is switched to the ICM, which immediately 

reconfigures the region containing the recovery controller to prevent accumulation of 

faults.     

 

Figure ‎5.2 DMR design for the ICM 

 

5.1.3 Operation Monitor 

 

The TMR and DMR implementations of the ICM prevent the passing of faulty data 

to the configuration memory at the cost of tripling or doubling the resource 

utilisation of the ICM. The ICM itself is equipped with CRC-32 detection 

capabilities, which detect faults after performing any configuration write operation 
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by comparing a checksum generated by the CRC-32 generator with the checksum 

generated by the FPGA’s internal configuration circuitry (see Chapter 4). There are 

two failure scenarios in ICM when performing any configuration operation: the first 

is passing faulty data to the configuration memory and the second is failing to 

complete the configuration operation. In the first scenario, the fault can be detected 

by CRC checksums, whereas in the second scenario the ICM will stall and not reach 

the stage of the CRC check. As each configuration operation has a deterministic 

time, an operation monitor can be implemented to check if the ICM stalls at any 

operation or a CRC error is detected. The operation monitor can trigger the recovery 

controller to reconfigure the ICM in any of the two failure scenarios (see Figure 5.3).  

This thesis proposes using the operation monitor to circumvent the need for 

replicating the ICM to reduce the overall resource utilisation. However, errors in 

configuration are detected after they take effect in configuration memory, which is 

not the case for TMR and DMR.                              

 

Figure ‎5.3 CRC error detection in the ICM 
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5.1.4 Resource Utilisation vs. Performance 

  

The resource utilisation for the different FT versions of ICM in a Virtex-4 FX60 

FPGA are shown in Table 5.1. Because the designs are based on DPR, the area of 

occupation is also considered. Table 5.2 shows the area occupation and the 

maximum recovery time of each version of the FT ICM. The maximum recovery 

time is defined as the reconfiguration time of the region containing the full ICM. The 

TMR design was floor-planned so that each reconfigurable region is placed in a 

single clock region of the Virtex-4 FX60 FPGA (total clock regions =16). In the 

DMR design, the ICM’s region occupies two clock regions, whereas the TMR-ed 

recovery controller occupies half the clock region. In the proposed small design, the 

ICM’s region is placed in a clock region and the TMR-ed recovery controller is 

placed in a half clock region.         

Table ‎5.1 Resource utilisation of different versions of the FT-ICM in a Virtex-4 FPGA 

Resource Type TMR DMR Proposed (Operation Monitor) 

Slice 3547 2626 1513 

BRAM 6 4 2 

 

Table ‎5.2 Area occupation and recovery time in a Virtex-4 FX60 FPGA 

Design Strategy No. of RPs No. of Occupied Columns Max. Recovery Time (100MHz) 

TMR 3 18.8% 0.40 ms 

DMR 2 13.0% 0.77 ms 

CRC Detection 2 6.8% 0.40 ms 

 

A fault injection experiment was carried out to estimate the reliability of different 

versions of the FT-ICM. The fault injection was performed using an online fault 

injector (a dedicated ICAP controller). Hard-macros for the critical components used 

in the designs were created. Single faults were injected in the area covered by these 

components. After each fault is injected, the outputs of the tested component are 

compared to a reference component before reconfiguration (Table 5.3). All errors in 

the ICM were detected by TMR, DMR and CRC detection schemes.  However, 
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single points of failure are increased in DMR and CRC schemes as they contain more 

static components (ICAP multiplexer, error detector).  

Table ‎5.3 Errors in critical design components 

Component No. of Faults Injected No. of Errors Error Type 

ICM 635008 35450(6%) Correctable 

ICAP Voter 57728 591(1%) Uncorrectable 

ICAP Mux 28864 316(1%) Uncorrectable 

                                               

5.2 Soft-Error Handling Strategies  

  

In the context of this thesis, soft errors are defined as correctable errors that appear as 

single bit-flips or multiple bit-flips in the FPGA’s configuration memory.  

Configuration memory scrubbing is the process of correcting bit-flips in memory 

caused mainly by radiation effects. In SRAM-FPGAs, configuration memory 

scrubbing can be classified into two types: readback scrubbing and external 

scrubbing (see Chapter 3). Both types can be managed internally using an ICM 

implemented in the FPGA logic. Readback scrubbing is based on reading the 

configuration frames using the internal configuration port and performing error 

checks based on the parity bits embedded in the device’s configuration memory. 

External scrubbing, on the other hand, uses a reference bitstream stored in an 

external memory to correct any emerging faults in the configuration of the FPGA.             

5.2.1 Internal Readback Scrubbing 

 

In Xilinx Virtex FPGAs, ECC bits are embedded in the configuration memory. These 

bits are calculated when a bitstream is generated for a particular design 

implementation to enable detection when a bit-flip occurs after the device is 

configured. In the Virtex-4 family, there are 12 Hamming parity bits located in the 

21
st
 word of each frame. These bits can be used to detect and correct single-bit errors 

within a configuration frame. Correction of any corrupted configuration frame is not 

possible using the ECC when more than one bit-flip occurs in the frame. Error 
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detection is also limited to two bit-flips within a frame. When more than two bit-flips 

occur in a frame, there is no guarantee that these errors will be detected [25].  

Xilinx has also included a dedicated hard-wired ECC logic block in the Virtex-4 

FPGA. This ECC block is connected internally to the ICAP and activated during 

configuration memory readback (see Figure 5.4). During readback, the ECC block 

decodes the configuration frames to determine if a bit-flip has occurred. If a faulty 

frame is encountered during a readback operation, an error signal is raised and a 12-

bit syndrome value denoted by S [11:0] is generated by the ECC block. The 

syndrome bits can be used to determine the type and location of errors within a faulty 

frame. Table 5.4 shows how errors are classified using the syndrome.  

Table ‎5.4 ECC syndrome decoding 

Syndrome 
Error Type 

S [11] S [10:0] 

0 = 0 No error 

1 ≠ 0 Single-bit error 

1 =0 or 2
n
 Single error in the parity bits 

0 ≠ 0 Double-bit error 

 

 

Figure ‎5.4 ECC logic block in a Virtex-4 FX12 FPGA 
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A Virtex-4 configuration frame contains 41 words, each of 32-bit, giving a total of 

1,312 bits indexed in the range of [0:1311]. When a single bit-flip is detected, the 

syndrome points to the flipped bit using an address space from 704 to 2,047. Figure 

5.5 shows the bit indexing and the syndrome indexing for a configuration frame. 

When the bit-flip is not in the parity bits of the frame, the bit index of the error can 

be calculated from the value of S [10:0] according to Algorithm 5.1.     

 

Algorithm ‎5.1 Error index calculation when S [11] = 1 and‎S‎[10:0]‎≠‎0 

 

 

Figure ‎5.5 Bit indexing in a configuration frame 

 

If the detected error is in the parity bits, then the error’s bit index will be in the range 

of 640-651, which is the location of the parity bits within a frame. To locate a faulty 

parity bit, Algorithm 5.2 can be used.  

IF S [10:0] < 1024  

 Error Index = S [10:0] – 704 

ELSE 

 Error Index = S [10:0] – 736 

END IF 
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Algorithm ‎5.2 Error index calculation when S [11] = 1 and S [10:0] = (0 or 2
n
) 

 

To enable fast detection when a large amount of frames are read in a single readback 

operation, the ECC logic contains an ‘error’ signal and a ‘syndrome valid’ signal. 

The error signal is high when any type of error is detected and the syndrome valid 

signal stays high for one clock cycle at the end of each frame. The ECC readback 

scrubbing scheme cannot be used to protect the BRAM resources in the device. In 

addition, LUTs configured as SRL16 or distributed RAM must be masked during the 

scrubbing process; otherwise the syndrome would be corrupted by the dynamic 

values in the LUTs. The readback options allow for choosing whether to include the 

LUTs contents in the readback data or the initial values used for the parity bits 

calculation. This can be accomplished by setting the BLUTMASK_B to ‘0’ in the 

control register [25]. 

To scrub a configuration frame, the ICM operation can be divided into the following 

steps: first the ICM initiates a ‘read’ operation for the frame to be checked. This 

frame is stored in the ICM’s read/write buffer. The error signal is checked at the end 

of the read operation. If an error is detected, the syndrome is registered and the 

location of the error is extracted from the syndrome by the ICM’s soft processor. The 

final stage is to flip the faulty bit in the read/write buffer before writing the frame 

back to the same address.  

During readback, the data passed to the ECC logic is one clock cycle ahead of the 

data available on the output port of the ICAP (see Figure 5.6). This data 

misalignment means that when the readback process is aborted at a particular frame 

address, the ECC logic will contain the first word of the next frame address. In many 

situations, not all of the area in the FPGA is required to be scrubbed. In this case, the 

readback process is divided into different operations covering different areas of the 

IF S [10:0] = 0 

 Error Index = 651 

ELSE 

 Error Index = 640 + log2 S [10:0]  

END IF 
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configuration memory. As there is no reset function for the ECC logic, when 

readback is resumed at a different frame address, the ECC logic will resume the 

calculation of the syndrome from the second word of the frame, making wrong 

syndrome calculations for all the consecutive frames. 

 

 

Figure ‎5.6 Configuration data mismatch between ICAP and ECC logic 

   

There are two solutions proposed for this problem. The first is to read a dummy 40 

words from the configuration memory and discard the last syndrome at the end of 

each scrubbing readback operation (see Figure 5.7). This is suitable when the area 

covered by a single readback operation is large; however, this will significantly 

increase the time required to finish scrubbing when frames are read individually. In 

addition, not all the read operations performed by the ICM are intended for the 

purpose of scrubbing; these read operations will still cause the activation of the ECC 

block, so the first solution is not time efficient when the system demands a large 

number of non-scrubbing read operations. The second solution is to ignore the 

synchronisation between the ICAP and the ECC logic when performing non-

scrubbing read operations; however, a count of the number of operations is kept in a 
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register. When the number of read operations reaches 40, the register is reset and the 

process is repeated. Before the ICM switches to a scrubbing read operation, a dummy 

read operation of (40-count) is performed to synchronise the ICAP and the ECC 

logic. 

 

Figure ‎5.7 The ICM scrubbing read operation 

 

5.2.2 External Configuration Memory Scrubbing 

 

External scrubbing does not use the embedded ECC parity bits; instead it uses a 

golden bitstream stored in the external memory. External scrubbing can correct any 

number of bits within a frame, provided that these bits are not the configuration bits 

of BRAM resources and LUTs configured as SRL16 and distributed RAM. The 

golden bitstream is a modified version of the original bitstream with all BRAM 

configuration frames removed. Similar to readback scrubbing, writing to LUTs 

configured as SRL16 and distributed RAM should be disabled by setting the 

GLUTMASK_B bit to ‘0’ in the control register before each write operation.  

There are two strategies for external scrubbing. The first is the ‘event-triggered’ 

scrubbing, whereby the scrubbing operation is only triggered when a fault is 

detected. For example, if a redundancy system detects a fault in a redundant module, 
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external scrubbing is triggered to correct the fault. Opposite to fault correction by 

DPR, external scrubbing does not reset the internal registers of the faulty modules. 

The second strategy for deploying external scrubbing is referred to as ‘blind’ 

scrubbing. In blind scrubbing the configuration of the FPGA is periodically 

refreshed, even if no faults have affected the system.         

Usually, an external scrubbing strategy will use one of the external configuration 

ports of the FPGA and some external circuitry to control the scrubbing process [114]. 

In some systems the external golden bitstream is loaded to the configuration memory 

using the internal configuration port [117]. To protect the golden bitstream from 

radiation induced faults, the golden bitstream is usually stored in a radiation 

hardened non-volatile memory which is especially fabricated to tolerate high levels 

of radiation.   In many cases, the control circuitry of the external memory module is 

implemented on the FPGA logic. This control logic interfaces to the external 

memory module using the IOs of the FPGA. The speed of external scrubbing can be 

affected by the latency and maximum throughput of the memory module used to 

store the golden bitstream. To achieve maximum scrubbing speed, the ICAP should 

operate at 100MHz; this could be challenging for non-volatile memory modules. It is 

a common practice to move the bitstream from a non-volatile memory to faster 

SRAM or DRAM external memory modules after power-up of the device to enable 

fast reconfiguration. A golden bitstream is assumed to be fault-free, when the 

bitstream is stored in an SRAM or DRAM memory module; the assumption of a 

fault-free bitstream does not hold as these memories are susceptible to soft errors. 

Parity bits must be used to detect errors in the memory. It is not necessary for the 

parity bits to provide correction capabilities as the original bitstream will be stored in 

a non-volatile memory and will always be available for correction.  

In Xilinx Virtex FPGAs, there is an internal CRC generator used for configuration 

verification (see Chapter 3). The embedded CRC can be used to detect faults in the 

reference bitstream when performing external scrubbing. However, faults will only 

be detected after loading the bitstream into the FPGA’s configuration memory. This 

is critical especially when burst errors occur as a result of faults in the memory 

interface. To reduce the possibility of burst errors corrupting a large number of 
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configuration frames, the scrubbing operation can be performed in a frame-based 

scheme, whereby frames are configured individually using separate write operations 

[112].  

When writing frames individually to the configuration memory, an extra PAD frame 

is written in each operation. This will significantly increase the total time required to 

complete a scrubbing cycle.  

This thesis proposes using the CRC-32 generator of the ICM presented in Chapter 4 

to perform the CRC checks during the scrubbing process so that the scrubbing 

process can be aborted when a fault is detected. This capability requires modifying 

the ICM to include some external scrubbing control logic that compares CRC values 

generated by a CRC generator with pre-computed CRC values at fixed intervals 

during the scrubbing process. The pre-computed CRC values can be stored in an on-

chip memory block to accelerate the CRC comparison process (see Figure 5.8). 

Using this proposed method, scrubbing can be stopped once a fault is detected 

without increasing the total scrubbing time.                   

 

Figure ‎5.8 Online CRC for external scrubbing 

 

The major disadvantage of this method is the memory required for storing the pre-

computed CRC values. Considering that not all of the FPGA resources are required 
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to be covered by external scrubbing, one or only a few BRAMs might be enough to 

perform scrubbing on the critical areas in the FPGA. A single Virtex-4 BRAM can 

store 2 KB of data. If a CRC check is performed for each frame, a total of 23 CLB 

columns can be covered using a single BRAM. 

5.2.3 Configuration Memory Scrubbing Evaluation 

  

The scrubbing time overhead will depend on the scrubbing area and the ICAP 

operating frequency. Figure 5.9 shows the scrubbing time for three scrubbing 

schemes: the first is readback scrubbing, whereby the entire scrubbing area is 

covered by a single read operation [113]. The second scrubbing scheme is the frame-

based scrubbing scheme, whereby individual frames are written separately to the 

configuration memory [112]. The third scrubbing scheme is the proposed external 

scrubbing scheme, whereby the scrubbing area is covered by a single write operation.  

 

 

Figure ‎5.9 Scrubbing time overhead 

 

The choice of whether to use readback or external scrubbing in FPGAs will depend 

on the application used. Internal readback scrubbing does not need any major 

external circuitry and can be performed using just the embedded ECC block in the 

FPGA. However, the number of correctable faults within a single frame is limited. 

This is not the case for external scrubbing which requires an interface to an external 
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memory module that stores the golden bitstream. There are a number of single points 

of failure depending on the scrubbing scheme used. In readback scrubbing, faults in 

the interconnections between the scrubber logic and the ECC logic block can cause 

the scrubbing system to fail. Similarly, external scrubbing has single points of failure 

in the interconnections to the IOs connecting the external memory module to the 

FPGA. A combination of both schemes can reduce the overall number of single 

points of failure. Supposing that external scrubbing is the primary scrubbing scheme, 

when a fault is detected by a CRC mismatch between the pre-computed values and 

the value generated online, a readback scrubbing cycle can be performed to recover 

any possible faults in the external memory interconnections. In the case of a Virtex- 

4 FPGA, all single-bit faults can be eliminated (see Figure 5.10). 

 

 

Figure ‎5.10 Combined external and readback scrubbing schemes 

 

When using the ICAP to perform any type of configuration memory scrubbing, the 

interconnections between the scrubber logic and the ICAP act as single points of 

failure. Faults in these interconnections can cause system failure because the ICAP 

will not be accessible for any kind of recovery process. Recovery in the case of faults 

in the ICAP interface will require reconfiguration using the external configuration 

port. Recovery can be accomplished by either a full reconfiguration of the whole 

bitstream or by partial reconfiguration of the region affected. When performing a full 

reconfiguration, the whole system will be reconfigured and reset to the initial state. 
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Partial reconfiguration can be used to recover the ICAP without interrupting the 

operation of the unaffected components. This, however, will require specific 

placement to ensure that the routing to the ICAP interface is confined within a 

reconfigured region. One way to do this is to place the ICM in a reconfigurable 

region that covers the CLB columns adjacent to the ICAP primitive so that all the 

ICAP routes are inside the reconfigurable region.  

5.3 Permanent-Fault Handling Strategies   
 

Permanent faults, or hard faults, manifest themselves as irreversible physical defects 

in the device. Dealing with emerging permanent damage in the resources of the 

FPGA is more complex than dealing with soft errors as conventional configuration 

memory scrubbing will not have an effect on the damaged resources. In addition, 

only stuck-at faults can be detected with readback scrubbing. 

In general, permanent faults can be detected by loading specialised Built-In Self-Test 

(BIST) circuits that perform online testing to identify a faulty resource in a particular 

area of the FPGA. Permanent faults can be mitigated by rearranging the functional 

modules in the FPGA so that faulty resources are circumvented and discarded 

(bitstream relocation). 

5.3.1 General Fault Mitigation Scheme  

 

One of the major drawbacks of online BIST diagnosis is the time overhead for 

loading the different BIST circuits. Similar to external scrubbing, BIST diagnosis can 

be either ‘blind’ or ‘event-triggered’. In blind BIST diagnosis, the FPGA’s resources 

are periodically scanned to detect possible faults in the FPGA. Event-triggered BIST 

diagnosis, on the other hand, is only triggered once an error is detected in the system.  

This thesis proposes using TMR as a mechanism for triggering the BIST diagnosis to 

reduce the impact of the diagnosis time overhead on the system. In fact, by using 

TMR for the functional modules in the FPGA the impact of BIST diagnosis can be 

reduced in two ways:   
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1) The BIST diagnosis is only triggered once a fault is detected by redundancy. This 

means that the system does not need to be interrupted during normal operation. 

2) Once a fault is detected by redundancy, BIST diagnosis only needs to be 

performed on the region affected by the fault  

 

Figure 5.11 shows the general permanent fault mitigation scheme proposed in this 

thesis. Initially, a permanent fault affecting a particular module in the FPGA is 

detected by redundancy. This stage is called the fault isolation stage as an active fault 

is isolated within the region occupied by the faulty module. The region occupied by a 

faulty module is defined as the Region Under Test (RUT). Once a fault is isolated 

within an RUT, the diagnosis process can start by loading the BIST circuits in the 

RUT to identify the faulty resource. Once the faulty resource is detected, the resource 

is marked and the functional modules in the FPGA are rearranged by means of 

bitstream relocation to avoid using the damaged resource.  

 

Figure ‎5.11 Permanent-fault mitigation 

  

Most faults in FPGAs are caused by soft faults. It is important to distinguish between 

soft and hard faults before triggering a BIST diagnosis operation. In addition, some 

permanent faults are stuck-at faults that cause configuration bits to get stuck at either 

logic ‘0’ or logic ‘1’. These faults can be detected with readback scrubbing in a much 

shorter time than BIST diagnosis. Figure 5.12 shows the proposed fault diagnosis 



Chapter 5: Reliability-Centric Internal Configuration Management   

 

122 
 

scheme which takes, into account soft faults, stuck-at faults as well as other types of 

permanent fault. The first stage of the fault diagnosis starts when a faulty module is 

detected by redundancy. In the first stage, the module is reconfigured and the 

erroneous computation is repeated by the reconfigured module. If the error is 

persistent, the diagnosis enters the second stage. Otherwise, the fault is identified as a 

soft fault and no further action is taken. In the second stage of the diagnosis scheme, 

readback scrubbing is performed on the reconfigured module. If a bit-flip appears at 

this stage, the bit is identified as faulty. If readback scrubbing does not show any 

faults in the module, this means that the origin of the fault is unidentifiable by 

readback scrubbing and the diagnosis should enter the BIST diagnosis stage. Faults 

that cannot be identified by readback scrubbing include faults in LUTs configured as 

SRL16 and distributed RAM.  

 

 

Figure ‎5.12 Fault diagnosis 
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5.3.2 Fast and Scalable BIST Diagnosis 

 

BIST circuits can be used to test a variety of permanent fault types (see Chapter 3). 

There are two main issues preventing efficient deployment of BIST circuits in 

reconfigurable systems. The first is the large time overhead which is dictated by the 

configuration time of the different specialised BIST circuits. A typical online BIST 

diagnosis system can cause a delay in the order of a second as reported in [141]. The 

second issue of BIST diagnosis is the large memory required for storing the different 

BIST circuit’s configurations. 

To deal with these two issues, this thesis proposes using small relocatable BIST 

circuits, which can be tiled together to cover any area with any shape in the FPGA. 

Using relocatable BIST circuits means that only a single partial bitstream is required 

for each BIST circuit. With the fast relocation method presented in Chapter 4, the 

BIST diagnosis time overhead can be significantly reduced.  

BIST circuits typically have a regular internal structure. Generally, two approaches 

can be used for tiling BIST circuits to cover a particular RUT. The first approach is 

based on self-contained BIST circuits, each with its own TPG. The configured 

circuits are independent of each other. This approach requires each circuit to be 

enabled separately and also requires the test results to be read from each circuit (see 

Figure 5.13a). The other approach for tiling the BIST circuits allows the test pattern 

as well as the test result of each circuit to be propagated through the BIST circuits by 

having fixed routing inside each BIST circuit. TPGs are only placed in the first CLB 

column and the test result is read from the last column (see Figure 5.13b). 

The benefit of using small relocatable BIST circuits in not limited to the reduced 

storage memory size. The fact that several identical circuits are tiled together to 

cover a particular area can greatly reduce the diagnosis time when using the multiple-

clone configuration technique (see Chapter 4). With the multiple-clone configuration 

technique the configuration time can be several times smaller than the conventional 

configuration technique. This is especially beneficial for BIST diagnosis as several 

tests may be required to complete the diagnosis process. 
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Figure ‎5.13 Tiling the relocatable BIST circuits 

 

There are several types of BIST circuits that are specialised for testing particular 

resource types in the FPGA. The tiling method can be applicable to any BIST circuit, 

provided that it has a regular internal structure. LUTs in FPGAs are commonly 

addressed in BIST diagnosis schemes as these resources are not covered by readback 

scrubbing when used as shift registers or distributed RAM.       

This thesis proposes a single column self-contained BIST circuit which tests the 

operation of LUTs in a CLB column. In the BIST circuit, two LUTs are connected to 

a single ORA. The ORA can be implemented using a single 3-input LUT with a flip-

flop (see Figure 5.14). The output of the ORA’s flip-flop remains at logic ‘1’ when a 

mismatch between the two ORAs input occurs. This can be achieved by initialising 

the ORA’s LUTs according to the truth table shown in Table 5.5. The TPG is a 4-bit 

counter connected to the input of the LUTs, which tests all the possible outputs. To 

account for stuck-at faults, two configurations are required for the tested LUTs where 

the LUTs in each configuration are initialised with the patterns ‘101010…’ and 

‘010101…’, respectively.  

The proposed BIST circuit is self-contained with no Bus-Macros for routing to the 

BIST circuits. This means that controlling the BIST circuits as well as fetching the 
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test results from the circuits must be done using configuration write/read operations 

through the ICAP. The ‘enable’ signals of the TGPs are connected to the output of a 

dedicated LUT placed in a specific location known for every configuration. The 

input pins of this LUT are tied to ground pointing to the first address, which is 

initialised with logic ‘0’. To enable the TPGs, a readback operation is performed for 

the frame containing the configuration bits for that LUT and the bit that drives the 

output of the LUT is set to logic ‘1’. In the case of multiple BIST circuits aligned to 

cover a given area, this operation is repeated for each BIST column. When the LUT 

test for a single configuration is finished, the outputs of the ORA’s flip-flops are 

readback to determine if there was a faulty component. Reading back the current 

state of flip-flops is possible using the GCAPTURE property in Virtex FPGAs [25]. 

The GCAPTURE property updates the readback data with the current state of the 

FPGA’s flip-flops by asserting the input signal of the GCAPTURE primitive. In 

Virtex FPGAs, the current states of flip-flops within a CLB column are stored in a 

single frame. In the case of a Virtex-4 FPGA, this frame is the 20
th

 minor frame.       

Table ‎5.5 Truth‎table‎for‎the‎ORA’s‎3-input LUT 

INPUT1 0 1 0 1 0 1 0 1 

INPUT2 0 0 1 1 0 0 1 1 

INPUT3 0 0 0 0 1 1 1 1 

OUTPUT 0 1 1 0 1 1 1 1 

 

 

Figure ‎5.14 ORA implemented with a 3-input LUT and a flip-flop [125] 
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Because some of the LUTs are used for ORAs and TPGs in the BIST circuit, more 

than one configuration is needed to test all the LUTs within the CLB column. To test 

a Virtex-4 CLB column, in each configuration half of the LUTs are used as CUTs 

and ORAs where the other half contains the TPG’s logic and the ‘enable’ LUTs. In 

the first BIST configuration, the top 32 SLICEL and SLICEM LUTs are used for 

CUTs and ORAs where all 32 SLICEM LUTs are configured as CUTs and 16 out of 

the 32 SLICEL LUTs are configured as ORAs (see Figure 5.15). In the second 

configuration the same arrangement of LUTs and ORAs are configured but with 

different initialisation patterns to test for stuck-at faults. In the third and fourth 

configurations, the CUTs are placed in SLICEL LUTs and the ORAs are placed in 

SLICEM LUTs, again with different CUT initialisation patterns. After four 

configurations, the 64 LUTS on the top of the CLB column are tested. Four more 

configurations are required to test the operation of the bottom 64 LUTs, giving a total 

of eight configurations to complete the BIST test for the 4-input LUTs in the CLB 

column. Each configuration requires storing a single column partial bitstream that 

contains the configuration of 22 frames. 

 

Figure ‎5.15 CUT, ORA and TPG arrangement in BIST circuits 
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5.3.3 BIST Diagnosis Evaluation 

 

As mentioned earlier, BIST diagnosis time overhead is dictated by the configuration 

time for the different BIST configurations. The control and result fetching times are 

small: one read-modify-write operation is required to assert each ‘enable’ LUT and 

one readback operation is required to fetch the test results from each CLB column.  

With the offset-based FAR modification technique (see Chapter 4), the relocation 

process of a BIST partial bitstream can be performed online with minimal delay. In 

addition, the multiple-clone configuration feature presented in Chapter 4 can be 

applied for the BIST circuits configuration where multiple clones of the same BIST 

circuit are configured using a single compressed partial bitstream generated online 

instead of configuring each BIST instance individually. This will result in a 

significant reduction in the BIST configuration time overhead, especially when a 

large number of configurations are required.  

Figure 5.16 shows the configuration time in the LUT-BIST diagnosis with and 

without the multiple-clone configuration technique. It can be seen from Figure 5.16 

that the configuration time for a typical RUT size can be more than three times 

smaller with BIST cloning.   

 

 

Figure ‎5.16 Configuration time in BIST diagnosis 
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It can be argued that the same configuration acceleration can be achieved by offline 

bitstream compression where the MFW feature is used to generate several BIST 

configurations for different areas and shapes [125]. While this is true, this will still 

require a different set of BIST configurations for every area shape and size leading to 

a large battery of BIST circuits. Figure 5.17 shows the memory required for storing 

the configurations of different BIST circuits with different sizes. It is noted that with 

the BIST tiling technique the memory savings can be in the range of Mbytes in 

systems where multiple areas with different shapes are diagnosed. One example of 

such a system is an ROS that executes HTs with a variety of sizes and shapes. Rather 

than storing a set of BIST configurations for each HT, a single set of BIST 

configurations can be used to diagnose the area occupied by any HT.         

 

Figure ‎5.17 Storage memory required for BIST configurations 

 

5.4 The Reliable Reconfigurable Real-Time Operating 

System   
 

Designing a comprehensive FT system for a particular application can be difficult 

and time consuming, especially when the system is required to mitigate both 

transient and permanent faults. Dealing with permanent faults in particular is very 

complex as it requires modifying the original configuration of the system. When 

offline configuration upgrade is not feasible, this requires applying online self-
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healing techniques, which usually deploy bitstream relocation. FT applications 

should be designed within a generic platform with proven ‘fault-resilience’. Ideally, 

the platform should enable designers to write their applications without dealing with 

the complexity of fault detection and recovery. Indeed, writing applications over a 

reliable ROS will allow designers to easily modify and upgrade their FT applications, 

especially when high-level programming is supported.                     

The R3TOS is a computational platform specifically designed for writing 

applications that require both high-performance and reliability in FPGAs ([17] and 

[16]). R3TOS gives support for reliable execution of real-time HTs by deploying all 

the fault detection and recovery methods presented earlier in this chapter. The 

ultimate goal of R3TOS is to make the fault handling transparent to designers who 

are only required to follow a set of rules for designing the hardware modules 

deployed in the target application. The software layer in the target application can 

assign specific tasks to these hardware modules, which are configured online by 

means of DPR. Task assigned to hardware modules (referred to as ‘HTs’), are 

managed by the R3TOS microkernel, which heavily utilises the ICM for 

configuration of HTs as well as performing the fault detection and recovery 

operations. The R3TOS microkernel also contains a scheduler to determine the order 

of HT execution and a fault-aware allocator, which allocate the scheduled HTs on the 

available resources of the FPGA, thereby avoiding any damaged resource ([142] and 

[143]) (see Figure 5.18). 

 

 

Figure ‎5.18 R3TOS [17] 
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5.4.1 R3TOS Architecture     

       

The R3TOS system consists of two main parts. The first part contains the static 

control components, which include the main CPU running the target application’s 

software, and the ICM, which controls the configuration operations in the system. 

The second part of R3TOS is the reconfigurable region used for the configuration of 

the relocatable hardware modules of the target application. The system is floor-

planned so that the static part is constrained within a dedicated region in the FPGA. 

The local routes of the static part are constrained as much as possible to the area 

within the static region. In addition, the external IOs of the system are limited to IOs 

located in the static region or at the boundaries of the static region. This imposes that 

the static region is placed in one of the corners of the FPGA chip. This placement 

constraint leaves the remainder of the FPGA chip almost empty and free of static 

routes. The reconfigurable part is selected to be within this empty region so that 

relocatable hardware modules can be placed freely at run-time. 

The regional clock buffers of the FPGA are all instantiated when floor-planning the 

system. All the regional clock buffers are fed by the same global clock buffer, which 

is connected to the external clock source through one of the systems IOs. Figure 5.19 

shows a simplified diagram of the R3TOS architecture.  

 

 

Figure ‎5.19 Simplified R3TOS architecture 
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5.4.2 Online Routing        

               

Most of the systems that support bitstream relocation depend on a fixed 

infrastructure of bus-macros for communication between the static logic and the 

reconfigurable modules (see Chapter 2). Using fixed bus-macros limits the total 

number of feasible locations for each relocatable module, making such systems not 

suitable for an ROS implementation, especially when permanent faults are taken into 

account in the ROS operation. Online routing can increase the total number of 

feasible locations for the relocatable modules. However, the time overhead for 

physically rerouting the system is tremendous and requires a deep knowledge of the 

FPGA’s routing resources.  

On-chip communication in R3TOS is based on a virtual bus over the configuration 

layer of the FPGA [142]. In other words, the physical routes in the FPGA are not 

used for connecting the relocatable modules to each other and to the static 

components in the system. Instead, ICAP read and write operations are used to 

transfer data to/from each relocatable module (see Figure 5.20). Using the 

configuration layer of the FPGA for on-chip communication eliminates the need for 

a fixed routing structure and greatly increases the flexibility of module relocation. 

The R3TOS communication scheme requires each relocatable module to have an 

Input Data Buffer (IDB) and an Output Data Buffer (ODB). The data buffers can be 

made out of LUT distributed RAM or made out of BRAMs. BRAMs are preferable 

for larger buffers as distributed RAM can consume a lot of the FPGA’s resources. 

Data can be exchanged between buffers by reading the configuration of the ‘source’ 

buffer and then copying this configuration to the ‘destination’ buffer. This 

communication method dictates that data is transferred between buffers in separate 

segments rather than a continuous stream. Due to the limited throughput of the ICAP, 

the ICM must efficiently manage the data transfer tasks and operate at the maximum 

speed possible in order not to degrade the communication bandwidth [144].  

When designing an R3TOS relocatable module, the resources of the module are 

clocked by a default regional clock buffer. The default regional clock buffer is the 
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middle clock buffer within the height of the module. As the entire regional clock 

buffers are instantiated with the same configuration in R3TOS, the fixed clock 

distribution will allow modules to be relocated freely between the clock regions of 

the FPGA (see Figure 5.21). R3TOS also provides a mechanism for controlling the 

clock signal going through relocatable modules by modifying the configuration of 

the regional clock buffers via the ICAP. Any regional clock can be enabled or 

disabled as desired by enabling/disabling the PIP connecting the clock net to the 

clock region. In addition, the clock frequency of each regional clock net can also be 

modified online by changing the configuration of the regional buffers. In particular, 

the configuration of the regional clock buffer contains a ‘clock divide’ parameter, 

which divides the clock by an integer. To perform these clock modifications, some 

knowledge of the configuration bits of the FPGA’s clocking resources is required. 

The functionality and location of the regional clock buffers can be found by 

performing simple analysis on the FPGA’s bitstream [27].  

 

 

Figure ‎5.20 ICAP-based data transfer [144] 
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Figure ‎5.21 Fixed clock distribution [27] 

 

5.4.3 HT Management  

 

The relocatable modules in R3TOS are fully isolated. They are specifically designed 

so that no physical routes are required for data transfer and control signals (e.g. 

enable, ready signals). The R3TOS uses binary semaphores to control the operation 

of the relocatable modules. These semaphores are control bits used for managing the 

relocatable cores using the ICAP. These control bits can be either stored in dedicated 

LUTs or can be embedded inside the data buffers of the relocatable module (see 

Figure 5.22). The relocatable module should also contain a small control FSM that 

controls the operation of the module and the internal data flow from/to buffers. 

 

Figure ‎5.22 The relocatable module architecture 
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It is important that any memory element inside the relocatable module is not 

accessed by the ICAP and the FSM’s internal logic at the same time as this can 

corrupt its content. In the case of LUT semaphores, it is also important not to corrupt 

the content of other LUTs that are placed in the same column as the semaphores 

when modifying them. Protecting the content of the LUTs can be accomplished by 

disabling the active clock in a clock region when any semaphore within the region is 

accessed by the ICAP. Disabling a regional clock buffer will briefly freeze the 

operation of the tasks operating inside the region. Figure 5.23 shows the steps 

required to safely transfer data from/to the relocatable modules when using BRAMs 

for data buffers.  

 

Figure ‎5.23 HT execution management 

 

The FSM inside a relocatable module coordinates the dataflow inside the module and 

makes sure that the semaphores and the buffers are not accessed by the ICAP when 

they are internally active. The operation of the FSM differs depending on the type of 

semaphores chosen for the module. For semaphores embedded into the data buffers 

the reset bit is placed in a known location in the IDB, whereas both the enable and 
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ready semaphores share the same bit inside the ODB (i.e. the ICAP asserts the bit to 

enable the module and the FSM de-asserts the bit when it finishes execution). It is 

noted that, for modules containing semaphores inside the buffers, the IDB and the 

ODB should be placed in different BRAM columns. For modules containing LUT 

semaphores, the enable and reset semaphores share the same bit in the LUT (i.e. 

ICAP asserts the bit to enable the module and de-asserts the bit to reset the module). 

The ready semaphore, on the other hand, is placed in a dedicated LUT. Figure 5.24 

shows the FSM operation when using the two types of semaphore.   

 

 

Figure ‎5.24 Relocatable‎module’s‎FSM‎operation 
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5.5 Chapter Conclusion  
 

This chapter presented different fault detection and recovery methods that can be 

applied to the ICM to realise fault-tolerant self-healing systems in FPGAs. The self-

healing capabilities allow for both transient and permanent fault detection and 

mitigation.    

The soft error mitigation is based on configuration memory scrubbing. Different 

scrubbing techniques were evaluated and a scrubbing scheme that combines both fast 

external and internal readback scrubbing was proposed to allow for better fault 

coverage and to reduce the total number of single points of failure. In addition, the 

ICM was designed with self-healing capabilities. The design of the proposed ICM 

has a reduced resource utilisation compared to conventional TMR designs. In the 

proposed ICM, TMR is only applied to a small portion of the ICM, which is capable 

of recovering the rest of the circuit once an error is detected by monitoring the ICM’s 

operation and the configuration CRC.           

Permanent error mitigation is based on modular relocation where any faulty module 

in the system is relocated to a new location on the FPGA at run-time. The R3TOS 

scheme model was presented. This relocation scheme allows for fully isolated 

modules to be freely relocated between clock regions and, hence, allow for better 

permanent fault mitigation.  

This chapter also presented a novel online BIST diagnosis technique aimed at 

detecting emerging permanent defects in the FPGA. The proposed diagnostic 

technique exploits the multiple-clone configuration technique to ‘clone’ (i.e. 

replicate) a single basic BIST circuit along arbitrarily sized and shaped areas on the 

FPGA without incurring large time overheads. Hence, the proposed technique allows 

for the creation of run-time on-demand tailored BIST circuits to satisfy any diagnosis 

requirements that may arise. Moreover, the proposed solution allows for saving 

memory in the system as it only requires storing the configurations of a single basic 

BIST circuit. 
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Finally, this chapter presented the R3TOS computing platform, which integrates all 

the presented FT features in a single ROS. A novel HT management system that 

manages the execution and data transfer of tasks is also presented. This system 

utilises the ICM to enable flexible relocation of fully isolated tasks, making the 

system capable of efficiently handling permeant faults in the reconfigurable 

resources.               
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Chapter 6 : An R3TOS-based Reliable and 

Secure Encryption Engine 
 

FPGAs have become a popular target for implementing cryptographic block ciphers. 

An optimised design of a block cipher in an FPGA can combine the flexibility and 

low cost of software solutions with high throughputs that are comparable to custom 

ASIC designs. There is a huge amount of research focused on the implementation of 

a wide range of popular cryptographic functions in FPGAs. In [145], Elbirt et al. 

present several implementations of the Advanced Encryption Standard (AES) and 

show how the AES can be optimised for performance in FPGAs to be at least an 

order of magnitude faster than most software implementations. In  [146], Good et al. 

discus how the AES can be optimised to reduce the resource utilisation and power 

consumption in small FPGAs for low power mobile applications. FPGAs has also 

been a target for the implementation of high-performance stream ciphers [147]. In 

addition the FPGA market is witnessing a rising number of companies providing 

third party cryptography IPs for FPGAs (e.g. [148] and [149]).       

The run-time reconfiguration capabilities of FPGAs have opened the door for some 

interesting cryptographic applications. There are several ways in which DPR can be 

harnessed in cryptographic applications (adapted from [150]):  

1) Algorithm switch: there are many standard cryptographic functions that can be 

implemented in FPGA. By having a battery of bitstreams, each for a specific 

cryptographic function, the range of standards supported by the same device can 

be extended. 

2) Algorithm upgrade: in FPGA systems, the device configuration can be updated 

even remotely. This allows for a longer life-time as the system can be upgraded 

to emerging security requirements. From a cryptographic point of view, this leads 
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to a more secure system as emergency measures can be taken to change the 

implemented algorithm if it has been broken.    

3) Resource efficiency: many cryptographic applications are based on hybrid 

protocols that require more than one cryptographic algorithm. For example, 

secure data transmission requires one algorithm to establish a secure data 

transmission session and a second algorithm for data encryption. Since the 

algorithms are not used simultaneously, DPR can be used to allow the use of the 

same hardware resources for the two algorithms and, hence, achieve a better 

resource efficiency. 

6.1 Background on FPGA Security 
 

The protection of IP cores is one of the main concerns of FPGA manufactures and 

companies providing third-party support for FPGAs. There are several motives for 

attackers to clone IPs implemented on FPGAs. For example, an attacker could make 

financial gains through unlicensed deployment of IPs. If an attacker has the 

knowledge required to reverse-engineer the FPGA bitstream, trade secrets can be 

revealed posing more serious damage to the IP owner. On the other hand, an attacker 

might be interested in revealing secret information in the data handled by the FPGA 

during its operation. As FPGAs have become a popular platform for implementing 

cryptographic functions for various applications, more research is gearing toward the 

issue of data security in FPGAs. 

6.1.1 Basic Security Features in Commercial SRAM FPGAs  

               

In SRAM FPGAs, a bitstream is required to be stored in a non-volatile memory for 

the configuration of the FPGA. This makes any IPs vulnerable if the proper security 

measures are not taken to protect the bitstream. FPGA vendors provide different 

solutions to prevent IP cloning. The most common method of IP protection against 

cloning is to encrypt the IP bitstream and store it in a secure non-volatile memory. A 

key stored inside the FPGA is used by an internal decryption circuit to decrypt the 

bitstream before the configuration process. The key can be stored in a dedicated non-
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volatile memory or a dedicated volatile memory backed by an external battery ([151] 

and [152]). 

Cipher text attacks can be used to alter the functionality of a protected bitstream by 

tampering the bitstream. There are several solutions available to address this issue. 

One solution is the use of parity bits such as CRC-32 to check the integrity of the 

bitstream during configuration [153]. Other solutions are based on hand-shaking 

protocols and token exchange between the FPGA and the authorised configuring 

device [154].   

As mentioned earlier, DPR is an attractive feature for many cryptographic 

applications; however, it can be a security hole as an attacker can use this capability 

to insert hardware Trojans.  Modern FPGAs allow for disabling readback and DPR 

from any external configuration port. In fact, in Xilinx FPGAs, external access to the 

FPGA’s configuration memory is automatically disabled when an encrypted 

bitstream is loaded into the device. In recent Virtex FPGAs, readback and DPR are 

only possible using the ICAP when bitstream encryption is used. This is because a 

configuration controller implemented in the FPGA and configured using an 

encrypted partial bitstream is considered as a trusted channel for DPR.        

6.1.2 Side Channel Attacks: Vulnerabilities and Countermeasures   

 

Power analysis attacks were first introduced by Kocher in 1998 as a distinct class of 

side channel attacks [155]. They are based on analysing the power consumption 

measurements of tamper resistant devices to find secret keys embedded in these 

devices. Initially, small devices such as smart cards and simple processors were the 

target of such attacks. In recent years, the advances in power analysis techniques 

have extended the range of valuable devices. Several research studies were focused 

on the threat of power analysis attacks as a method for retrieving keys embedded in 

FPGAs ([156] and [157]). Practical successful attacks to break the bitstream 

encryption of some FPGA families were also reported ([158] and [159]).  
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The threat of power analysis attacks on FPGAs has led to the development of several 

countermeasures. One example is the system proposed in [160], where an internal 

circuitry is used to monitor the power supply voltage to detect possible insertion of 

power measurement circuits onto the device’s power rail. The Xilinx commercial 

Security Monitor IP can also be used in a similar manner to detect suspicious 

variations in temperature and voltage after configuration [161]. Other power analysis 

attack countermeasures are based on internal manipulation of the power 

consumption. For example, the system in [162] contains an on-chip ‘power 

consumer’ circuitry, which is used to keep the power consumption of the system 

constant to reduce the possibility of leaking information through power consumption. 

Deliberate power consumption can also be used to insert noise in power 

measurements to increase the difficulty of power analysis attacks [163].           

Fault injection attacks are another type of attack that could potentially pose a risk to 

FPGA security. Fault injection attacks are based on analysing leaked secret 

information of cryptographic functions caused by malfunction in their hardware 

when certain faults are injected into the system. This kind of attack was first 

introduced in [164] wherein the authors demonstrated how to break a public key 

algorithm such as the RSA by exploiting faults in the system. More advanced 

differential fault analysis attacks that could potentially be applied against all known 

symmetric cryptographic functions were later introduced in [165]. There are several 

ways for attackers to inject faults in electronic circuits such as the use of infrared 

laser and electromagnetic radiation ([166] and [167]). The authors in [168] have 

classified the hardware countermeasures against fault injection attacks into two 

categories: passive countermeasures and active countermeasures. 

Passive countermeasures aim at increasing the difficulty of inserting faults into the 

protected device. For example, applying a metal shield that covers a protected chip 

makes fault injection through electromagnetic radiation and laser beams more 

difficult as the shield needs to be removed in order for the attack to succeed.      

Active countermeasures are based on taking certain actions when fault attacks are 

detected. Integrating light detectors, voltage detectors and frequency detectors are 
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common techniques to detect changes in light gradient, voltage and clock frequency. 

Active shields can also be used against fault attacks. Active shields are metal mesh 

layers that cover the entire chip and have data continuously passing through them 

[168]. Attacks can be detected when a discontinuation of the data passing through the 

shield occurs due to tampering with the device. Despite the aforementioned 

countermeasures being effective in detecting fault attacks, they require the 

integration of special components into the FPGA chip. The most common active 

countermeasures against fault attacks are based on classic fault detection and 

mitigation techniques such as modular redundancy and parity checking [169]. In fact, 

Xilinx has already started advertising its FT solutions as countermeasures to fault 

attacks [170].  

6.2 Overview of the Encryption Engine  
 

The security of electronic devices is related highly to their reliability. Not only faults 

deliberately injected into electronic devices can pose a security threat, but also 

naturally occurring random faults can potentially lead to the leaking of secret 

information. This issue is particularly important in space applications in which 

electronic devices are operating under high levels of radiation. In space application, 

the ability of deploying cryptographic functions in reliable reconfigurable hardware 

is very attractive and beneficial. While previously proposed systems have already 

demonstrated how DPR can be used for implementing a wide range of cryptographic 

standards within the limited FPGA resources (e.g. [171] and [172]), this section of 

the thesis demonstrates how critical encryption tasks can be implemented using the 

R3TOS with special emphasis on the reliability of task execution. Using R3TOS, the 

FPGA chip can be used as a server of a wide range of cryptographic tasks that can be 

executed reliably and securely. The multi-tasking capabilities of R3TOS can be used 

to serve cryptographic functions of multiple users or multiple applications running at 

the same time. Figure 6.1 shows the proposed adaptation of R3TOS as a 

cryptography server.  
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In Chapter 5 the reliability capabilities of R3TOS were explained in detail. In the 

context of the proposed server solution, these capabilities are deployed to meet 

several reliability criteria: 

1) Transient faults could affect the system in several ways. While faults in some 

tasks can cause errors in the functionality of the system, other faults can 

potentially lead to the leaking of secret information. Tasks of a cryptographic 

nature are defined as critical tasks. These tasks are always performed in the 

reconfigurable region using multiple redundant hardware cores.  

2) The system always keeps track of the permanently damaged resources in the 

reconfiguration area. When allocating tasks, these resources are circumvented. 

This capability is particularly important in long space missions to allow the 

system to adapt to emerging permanent faults. 

3) An FT version of the ICM is used to reduce the probability of faults occurring 

during the configuration of the cryptographic cores. The rest of the R3TOS 

components are protected by means of configuration memory scrubbing. 

 

 

Figure ‎6.1 R3TOS cryptography server 
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6.2.1 The Relocatable Cryptographic Core 

  

The cryptographic cores used in the proposed system follow the R3TOS relocation 

architecture. Each core is designed to be self-contained with all routes constrained 

within the area occupied by the core. Communication and data transfer are 

accomplished via read/write operations through the configuration layer of the FPGA. 

Figure 6.2 shows the generic architecture of the relocatable cryptographic core. 

 

Figure ‎6.2 Generic architecture of the relocatable block cipher 

 

A relocatable cryptographic core contains a block cipher, an FSM, a CRC-generator 

and some memory components along with their control logic. The memory 

components are used for communication with the R3TOS kernel via the ICAP. Input 

BRAM blocks are used for transferring the key and plain text to the core, and output 

BRAM blocks are used to transfer the cipher text when the task has completed. The 

FSM triggers the operation of the core when an enable signal is written to a dedicated 

LUT by the ICAP. When the cipher block finishes its operation, the CRC generator 

generates a checksum for the cipher text and stores it in a dedicated LUT buffer.  

Finally, the FSM writes a ‘ready’ flag in another LUT to indicate that the output of 

the core is ready for collection.           
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6.2.2 Online Placement of Heterogeneous Cores  

   

There is a large amount of research related to allocating tasks to the available 

resources in reconfigurable hardware (see Chapter 3). Task allocation is usually 

approached as a 2-D packing problem where the task’s cores are continuously placed 

in a large area of identical computing resources. It is very difficult to practically 

apply such placement algorithms to FPGAs as they do not consist of uniform areas of 

identical resources.   

In R3TOS, a ‘sandbox’ of CLB resources is designated for the placement of the 

task’s cores. The sandbox is defined as the largest area in the FPGA consisting of a 

uniform arrangement of CLB columns. By limiting the relocatable hardware cores in 

the systems to those using CLB resources only, the 2-D packing algorithms can be 

practically applied to FPGAs [143].  

Cryptographic cores require a relatively large amount of data to be transferred into 

the core. Although input/output buffers can be constructed using LUTs, BRAM 

buffers must be used for storing the plain text and the cipher text due to their large 

sizes. This makes the 2-D packing algorithms not practical for this application. 

Generally, two methods can be used to enable online placement of heterogonous 

cores. In the two methods a matrix stored in memory can be used to map to the 

FPGA resources. This matrix represents the state of the FPGA resources. For 

example, used resources can be mapped with logic ’1’, while available resources can 

be mapped with logic ‘0’.       

The first method is based on pre-computing all the possible locations of each 

relocatable core. Location parameters are stored in memory for each relocatable core. 

When a task is scheduled for configuration, the placer scans the resource matrix and 

checks which of the possible locations is available before deciding the optimal 

location of the task. This approach is fast, especially when used with a First-Fit (FF) 

algorithm as the placer only scans specific locations within the FPGA resource 

matrix. This approach, however, is not suitable for systems deploying a large number 
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of relocatable cores due to the memory overhead required to store the location 

parameters for the cores.  

The second approach is based on storing parameters for the layout and dimensions of 

each relocatable core. When a task is scheduled for configuration, the placer creates a 

‘window’ containing the exact resource layout as the required core and starts moving 

this window across the resource matrix until a location that fits this window is found 

[173]. The memory overhead for this approach is very small as only a few 

parameters for each bitstream are required; however, the resource matrix scanning 

time overhead is much larger compared to the first approach.  

In this thesis, a hybrid algorithm for the resource matrix search is proposed whereby 

only pre-computed horizontal location offsets are stored in memory. Similar to the 

aforementioned two placement methods, a resource matrix representing the state of 

the FPGA resources is stored in memory. Since the smallest partial bitstream has the 

size of a single column, the matrix is created so that each column in the FPGA is 

represented with an element in the matrix. A single bit is used for each matrix 

element where logic ‘0’ is used to represent an ‘available’ column and logic ‘1’ is 

used to represent a ‘used’ column. The initial matrix used after power-up of the 

device will only contain logic ‘1’ elements for the columns occupied by the static 

components in the system. To protect the content of this matrix from faults, the 

matrix can be stored in a special ECC-BRAM, which utilises parity bits for fault 

correction and can be automatically generated using the Xilinx tools.  Figure 6.3 

shows an example resource matrix used to map a system implemented in FPGA.  

 



Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine   

 

147 
 

 

Figure ‎6.3 Mapping FPGA resources into a resource matrix               

 

The resource matrix only represents the state of the columns during the operation of 

the system; it does not contain any information about the type of these columns. To 

make placing cores with heterogeneous resource types feasible, pre-computed 

horizontal offset groups are created and stored in memory. An offset group contains 

several horizontal offsets, which results in the correct placement of a relocatable core 

when added to the original horizontal location of the core’s bitstream. There are four 

parameters required to be stored in a relocatable bitstream header to be compatible 

with the proposed placement scheme. These parameters are the original bitstream 

location, the offset group ID, the width of the relocatable core and the height of the 

relocatable core. The original bitstream location parameter contains the horizontal 

offset at which the bitstream has been generated, whereas the offset group ID 

parameter contains a number indicating which offset group is compatible with the 

bitstream. The other two parameters indicate the number of columns the core 

occupies horizontally and the number of rows the core occupies vertically. Figure 6.4 

shows all the offset groups required for the placement of a bitstream consisting of 

CLB and BRAM resources in a Virtex-4 FX60 FPGA.  
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As the offset groups contain horizontal offsets from the original locations of the 

relocatable cores, many cores will share the same offset groups even if they have 

different resource layouts. From Figure 6.4, we can see that only three offset groups 

are required for the placement of bitstreams with CLB and BRAM resources in the 

largest Virtex-4 device. Figures 6.5 shows all the possible horizontal layouts of the 

relocatable bitstreams for each offset group. 

 

Figure ‎6.4 Offset groups for relocatable bitstream consisting of CLB and BRAM 

resources in a Virtex-4 FX60 FPGA                    

 

Figure ‎6.5 Core‎horizontal‎layout’s‎compatibility‎with‎offset‎groups 
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The placement algorithm does not need to know the layout of a relocatable core in 

order to find feasible locations for a core at run-time. The possible horizontal 

locations of any relocatable core are already computed and stored in the offset group 

compatible with the core. When a core is scheduled for configuration, the placer only 

needs to scan the resource matrix vertically at the pre-computed horizontal offsets for 

that core. Algorithm 6.1 is an FF vertical scan algorithm that returns vertical location 

parameters for the first location found to fit a relocatable core. For convenient 

explanation of the algorithm, a two-dimensional array representing the resource 

matrix and a structure for the location parameters are defined as follows: 

 

 

 

The placement of a relocatable core may require several vertical scans to find a 

feasible location for the core. The first vertical scan is performed at the original 

horizontal location of the core’s bitstream. For consecutive scans, the horizontal scan 

location is determined by adding the original horizontal location to the offsets 

contained in the offset group combatable with the core. Algorithm 6.2 shows the 

process of the full resource matrix scan. Once a location for a relocatable core that is 

scheduled for configuration is found, the resource matrix can be updated so that the 

matrix elements corresponding to this location are filled with logic ‘1’ (used 

resources). Algorithm 6.3 can be used to fill a given area in the resource matrix with 

the desired value. 

int matrix [matrix_height] [matrix_width];     //resource matrix: this matrix is initialised with the 

                         initial state of the FPGA 

struct location{   // location parameters 

    int Y_offset;  // vertical offset 

    int X_offset;      // horizontal offset 

    int flag;  // a flag indicating that a location has been found during the  

       vertical scan 

}; 
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Algorithm ‎6.1 Vertical scan of the resource matrix 

 

Struct location  find_Y_offset  (int X, int task_height, int task_width, int matrix_height,  

   int matrix_width){ 

    

int Y,clear_count,count,index; //local variable 

struct location temp;  //‎local‎instance‎of‎the‎structure‎‘location’  

 

Y=0;    // vertical scan location 

clear_count=0;   // an internal flag to clear resource counter  

temp.flag=0;     // clear location flag 

temp.X_offset=X;  // initialize horizontal offset  

while (Y<=matrix_height){ // start scanning the resource matrix vertically 

 for (index=0;index<task_width;index++){ //scan the task width 

  if (matrix[y][(index+X)]==1){ 

   clear_count=1;  // set flag if used resource is found 

   break; 

  } 

 } 

 if (clear_count ==1){   // clear resource counter   

  clear_count=0; 

  count=0; 

  Y=Y+1;    // set vertical scan location  

 }else    //increment  scan location and resource count 

  count= count+1; 

  Y=Y+1; 

  if (count==task_height){  // location found  

   temp.flag=1; 

   temp.Y_offset=(Y-task_height); 

   break;} 

 } return temp; }    //return location parameters 
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Algorithm ‎6.2 Resource matrix scan 

 

Algorithm ‎6.3 Update resource matrix 

 

Enhancing System Efficiency via Task Reuse 

When location parameters are found for a particular task’s core, the core needs to be 

configured on the FPGA before the task can start execution. In a basic placement 

scheme, the location occupied by a core assigned to a task that finished execution is 

updated as ‘available’ in the resource matrix so that the cores of future tasks can be 

placed in the same location. This placement scheme can lead to inefficient utilisation 

of the ICAP port when several tasks using the same relocate core are scheduled for 

execution. 

struct location find_location (int task_height, int task_width){ 

 

int index;  //local variable 

struct location temp; // local instance of the structure‎‘location’ 

 

//scan vertically at the original horizontal location of the core 

temp=find_Y_offset( original_horizontal_location, task_height, task_width); 

 

if (temp.found==0){ //if no location found, start scanning at offsets in the offset group 

 for (index=0;index<number_of_offsets;index++){ 

  temp=find_y_offset( (original_horizontal_location+offset_group[index]),  

          task_h, task_w); 

  if (temp.found==1){ 

   temp.x_offset= original_location + offset_group[index]; 

   break; } 

  } 

 }else { temp.x_offset= original_location; 

}return temp;}  

void update_matrix (int X, int Y, int height, int width, int value){ 
  
int index1,index2;  //local variables 
  
 for (index1=0;index1<height ;index1++){  //vertical index   

 for (index2=0;index2<task_w;index2++){ //horizontal index  

  matrix [Y+index1][X+index2]=value; //fill area with desired value

    } 
}} 
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It would be convenient if the placement algorithm keeps track of the already 

configured cores so that future tasks that use the same cores can be assigned directly. 

This circumvents the need for reconfiguring the cores and can result in a much more 

efficient system. To allow for task reuse, several modifications in the basic 

placement scheme are required.  

First of all, a table containing information about the already configured cores that 

have finished execution is added. This table lists the type and number of the available 

cores along with their location parameters. The FPGA resource representation in the 

resource matrix is also modified. Three states are used to represent the state of the 

FPGA resources in the matrix, ‘0’ for available resources, ‘1’ for resources occupied 

by an active core and ‘2’ for resources occupied by a free core. 

Figure 6.6 shows the proposed placement scheme, which takes into account the 

already configured and available cores.  When a task is scheduled for execution, the 

task allocation process goes through the following stages:  

1) Scan the available cores table: the core required for the scheduled task is 

compared with the cores in the table, if one or several instances of the core are 

already configured on the FPGA the task is assigned to one instance. This 

instance is then removed from the core table and its location is filled with ‘1’ in 

the resource matrix. 

2) Scan the empty resources: if no core to fit the task is found in the previous stage, 

the resource matrix is scanned. Only resources marked with ‘0’ in the resource 

matrix are considered available in this stage. If a feasible location is found for the 

core, the location is filled with ‘1’ in the resource matrix.   

3) Expand the search space: if no feasible location is found in the previous stage, the 

resource matrix is scanned again; however this time resources marked as either 

‘0’ or ‘2’ are considered available. If a feasible location is found for the core, the 

location is filled with ‘1’ in the resource matrix. If no feasible location is found at 

this stage, this means that the task cannot be configured on the FPGA until other 

active cores finish execution.  



Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine   

 

153 
 

4) Check for location overlap: if a location is found in stage 3, this stage is triggered 

to check if the found location overlaps with one or more of the free cores. In case 

of a location overlap, the cores located at the overlap region are removed from 

the core table and any resource of these cores marked with ‘2’ in the resource 

matrix are filled with ‘0’.      

 

 

Figure ‎6.6 Placement scheme with task reuse support 

                               

6.2.3 Configuration Management and Task Execution 

 

Secure configuration is an important requirement in any FPGA system, especially if 

the system is deploying cryptographic cores that are configured using externally 

stored bitstreams. As mentioned earlier, FPGAs offer bitstream encryption 

capabilities. A decryption block is usually integrated in the FPGA to decrypt the 

bitstream before configuration. This decryption block cannot be accessed by user-

logic as it is coupled with the configuration logic of the device. The proposed system 
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deploys bitstream relocation to enable the configuration of the same bitstream across 

several locations on the chip. Bitstream relocation requires online modifications of 

the bitstream content (see Chapter 4). This means that an encrypted partial bitstream 

must be decrypted using a decryption block implemented on the FPGA logic before 

performing any modifications. The full configuration of the device, which contains 

the static components in the system, is loaded into the FPGA memory after power-

up. The encrypted full bitstream can use the FPGA embedded decryption block. 

However, any configuration operation using the ICAP requires a different decryption 

block implemented in the system’s static logic.  Figure 6.7 shows the configuration 

process of encrypted relocatable partial bitstreams.  

 

Figure ‎6.7 Secure configuration of relocatable cipher cores 

 

In the proposed system, cryptographic tasks are organised in a queue according to 

their priority. Four states can describe the status of the tasks during the operation of 

the system: Waiting, Executing, Finished and Failed. The system uses the ICAP to 

perform different operations: task configuration, task data transfer, readback 

scrubbing and BIST diagnosis. Access to the configuration port must be managed 

carefully to allow efficient utilisation of the ICAP maximum bandwidth. Figure 6.8 

describes the operation of the system and how access to the ICAP is managed 

between the different operations. 
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Figure ‎6.8 Simplified operation of the system 

 

When the system is idle, different flags can trigger the system to exit the idle state 

and perform a specific operation. These operations are: 1) readback scrubbing of the 

static logic; 2) collecting the outputs of the tasks that have finished execution tasks; 

and 3) the configuration of the tasks’ cores waiting in the tasks queue. 

Readback scrubbing has the highest priority of the three operations. Readback 

scrubbing is the primary method of fault recovery in the static logic of the system. A 

watchdog timer is used to generate a scrubbing request, which triggers the scrubbing 

operation from the idle state. When the scrubbing operation is complete, the 

watchdog timer is reset and the system returns to the idle state. 
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If a scrubbing request is not set and a flag indicates that there are tasks already 

configured in the system, readback operations through the ICAP are performed to 

check the status of the configured tasks according to their order in the task queue. If 

any of the configured tasks has finished execution, the system starts the process of 

collecting the task output from its output buffer. As there are three redundant 

modules of each task, majority voting is performed to determine if one of these 

modules has failed during its execution. To accelerate the process of voting, only the 

checksum buffers of each redundant module are read through the ICAP. This 

requires a single configuration frame to be read from each module rather than 

reading the entire output buffers of the modules. If no error is determined by the 

voting process, the output is collected from one of the redundant modules and the 

status of the task is updated. On the other hand, if a voting process has showed that 

one of the three modules is faulty, the output is collected from one of the intact 

modules and a diagnosis operation is performed to determine if the cause of the fault 

is a damaged FPGA resource (see Chapter 5). If a damaged resource is found in the 

diagnosis process, this resource is marked as ‘used’ in the FPGA resource matrix so 

that it is circumvented when allocating new tasks for execution.  

The third main operation performed by the system is the configuration of tasks 

waiting in the task queue. This operation starts by performing the placement 

algorithm to find three feasible locations for each task in the queue. Allocated tasks 

are then configured and their input load is transferred. The FPGA resource matrix is 

also updated to fill the locations occupied by the tasks. Because three instances of 

each task are configured, this stage results in the heaviest load on the ICAP port. It is 

important to try to reduce the configuration speed as much as possible in this stage. 

The multiple-clone configuration technique can dramatically reduce the 

configuration time if the same core is to be configured on several locations on the 

FPGA. Figure 6.9 shows the multiple-clone configuration scheme used when several 

tasks using the same core are scheduled for configuration.  
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Figure ‎6.9 Multiple-clone configuration of the same cipher core 

  

6.3 Proof-of-Concept Implementation 

  
A prototype of the proposed system was implemented on a Virtex-4 FX60 FPGA. 

The implementation consists of two parts: the first part is the design of a test 

relocatable cipher. The second part is the static control system which is a reduced 

version of the R3TOS.       

6.3.1 Implementation of a Test Relocatable Cryptographic Core 

 

To test the scalability of the proposed system, the ‘PRESENT’ block cipher was 

modified as a relocatable core. The PRESENT cipher is a relatively new light weight 

block cipher especially designed for systems requiring low power consumption and 

low resource utilisation [174]. The PRESENT cipher was developed at the 

University of Leuven (Netherlands) in calibration with Orange Labs (France), Ruhr 

University Bochum (Germany) and Technical University of Denmark. Recently, it 

has been included as a light weight cryptography standard by the International 

Organization for Standardization and the International Electro-technical 

Commission. An open-source optimised VHDL implementation of the PRESENT 

cipher is used for the cipher block in the relocatable core (available in [175]). The 
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PRESENT cipher operates on 64-bit blocks and uses an 80-bit key. The cipher 

requires 32 clock cycles to finish encrypting a single block of plain text. Figure 6.10 

shows a high-level block diagram of the PRESENT cipher. The resource utilisation 

of the cipher when implemented in a Virtex-4 FPGA is shown in Table 6.1.  

 

Figure ‎6.10 The PRESENT cipher block diagram [174] 

Table ‎6.1 Resource utilisation of the PRESENT cipher in a Virtex-4 FPGA 

Resource Type Utilisation 

Slices 158 

LUTs 236 

BRAMs 0 

          

A relocatable core based on the PRESENT cipher was designed for implementation 

in a Virtex-4 FPGA following the architecture shown in Figure 6.2. To modify the 

cipher as a relocatable core, the input/output BRAM blocks and LUTs are added and 

constrained to specific locations within the core. The size of plain text that can be 

transferred into the core will depend on the size selected for the input/output BRAM 

blocks inside the core. This means that larger text should be divided into several 

segments. These segments can be encrypted sequentially using the same core or 

concurrently using several cores initialised with the same key. On the other hand, 

plain text smaller than the BRAMs size in the core requires data padding as the core 

operates on a fixed size of block. 

In the implemented design, a single BRAM column containing four blocks is used 

for the data transfer. The size of each BRAM block is 2KB. Two of these BRAM 

blocks are used to store the key and the plain text and the other two are used to store 
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the cipher text. Figure 6.11 shows the data mapping in the cipher core’s BRAM 

blocks. 

 

Figure ‎6.11 Data mapping in the cryptographic core 

 

An LUT is used to pass the core enable signal from the R3TOS kernel to the core 

using the ICAP, and another LUT is used to store a ‘ready’ flag indicating that the 

core has finished execution (see Figure 6.12).   

 

 

Figure ‎6.12 Relocatable‎core’s‎LUT‎semaphores 

 

As the size of data handled by the core is relatively small, a parallel CRC-16 

generator is added into the core to generate the CRC checksum for the cipher text. It 
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is possible to store the output of the CRC generator in a single LUT. This requires 

dedicated control logic to write each bit individually to the LUT (see Figure 16.13).    

  

 

Figure ‎6.13 Checksum LUT 

       

The implementation of a relocatable core based on the PRESENT cipher has resulted 

in an approximate 53% increase in the slice utilisation compared to the original 

cipher. Table 6.2 shows the resource utilisation of the relocatable cipher in a Virtex-4 

FX60 FPGA. 

 

Table ‎6.2 Resource utilisation of the relocatable cryptographic core in a Virtex-4 FPGA 

Resource Type Utilisation 

Slices 242 

LUTs 417 

BRAMs 4 
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Only a single partial bitstream is generated for testing the core in the proposed 

system. The core layout is shown in Figure 6.14. It can be seen that the core occupies 

six CLB columns and a single BRAM column. The layout selected for the 

relocatable cipher is compatible with ‘offset group B’ in Figure 6.4.  

The ENABLE and READY LUTs are all placed on the bottom of the first CLB 

column in the core (see Figure 6.14). To be able to modify the content of these LUTs 

using the ICAP, knowledge of the configuration bits that correspond to the values 

stored in these LUTs is required. Reverse-engineering experiments have revealed the 

exact locations of these configuration bits in a Virtex-4 FPGA. In any Virtex-4 

FPGA, the 19
th

 and 21
st
 frames contain the content of the column’s LUTs. More 

precisely, the 19
th

 frame contains the content of SLICE-M LUTs and the 21
st
 frame 

contains the content of SLICE-L LUTs. Since only SLICE-M can be used as 

distributed RAM, the relocatable core’s LUTs are all placed on SLICE-M LUTs of 

the first CLB column. Figure 6.15 shows how these LUTs are mapped into the 

configuration bits of the 19
th

 frame of the column.  

It is also noted that the relocatable cipher connects to a regional clock buffer by 

default. Since the height of the cipher core is equal to a single clock region (one 

column), any regional clock buffer can be enabled and disabled using the ICAP to 

freeze the operation of cores placed in the clock region. Disabling the core’s clock 

prior to accessing its LUT using the ICAP is important to prevent corrupting its 

content (see Chapter 5).      
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Figure ‎6.14 Resource layout of the relocatable cipher 

 

Figure ‎6.15 15 Input, output and CRC LUTs mapping in the 19
th

 frame of the first CLB 

column 

6.3.2 Implementing the Static Control Logic  

 

The static control logic in the system performs the functionality described in Figure 

6.8. Figure 6.16 shows the main components of the control logic in the implemented 

system.  
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Figure ‎6.16 Simplified‎diagram‎of‎system’s‎components 

 

A Microblaze processor is used to run the software of the system and the smallest 

version of the FT ICM is used to manage the configuration of the relocatable cipher 

cores (see Chapter 5). The Microblaze communicates with the ICM using two FSL 

connections, which are basically two FIFOs; one is used to send configuration 

instructions and the other is used to monitor the status of the configuration 

operations.  

The ICM logic is split between two regions. The first is a reconfigurable region, 

which contains the full ICM. The full ICM performs the main configuration 

operations such as: core configuration, core data transfer and readback scrubbing.  

The second region contains a recovery control alongside the static components in the 

system. The ICAP input connections are multiplexed between the ICM and the 

recovery controller, which perform DPR of the ICM to recover any faults causing 

configuration errors. When the ICM is active, readback scrubbing cycles are 

performed at particular rates to recover faults in the static region of the system. The 

scrubbing cycle’s rate is determined by a watchdog timer, which is connected to the 

Microblaze processor via the PLB bus.  
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The Microblaze processor is also connected to a BRAM buffer, which is separate 

from the main memory. This buffer is dedicated for the transfer of the core’s input 

and output data. The core’s input data transfer is accomplished by reading the 

configuration frames of the BRAM buffer, which contains the input data via the 

ICAP, and then writing these frames to the core’s input BRAM. This operation is 

reversed for the core’s output transfer. Because the content of each BRAM block 

maps into 64 configuration frames, large ICAP read/write operations are required to 

reduce the transfer time overhead. To allow for large ICAP read and write 

operations, the data buffer size in the ICM was increased to six BRAM blocks.  

As mentioned earlier in this thesis, partial bitstreams stored in external memory 

should be encrypted. Ideally, AES should be used for partial bitstream encryption; 

however, in this proof-of-concept implementation, only a small parallel data 

descrambler is used, which has a very small area footprint and results in only one 

clock cycle delay in the configuration (available in [176]). The data descrambler is 

integrated with the ZBT-SRAM memory controller to automatically decrypt any data 

fetched from external memory according to the polynomial: X
16

 + X
5
 + X

4
 + X

3 
+ 1. 

Figure 6.17 shows a floor-plan image of the implemented control logic. The control 

logic is constrained to the top-left corner of the chip and spans four clock regions 

vertically. The RP containing the ICM is placed in the first clock region and the rest 

of the control logic is placed in the other three clock regions. All the regional clock 

buffers are instantiated and enabled with a default frequency of 100MHz.  

All the local routes of the control logic are confined within the top-left region of the 

chip. The area occupied by the control logic accounts for around 25% of the chip, 

leaving most of the chip free and available for the placement of the relocatable cipher 

cores apart from a few columns that contain the static routing to some of the system’s 

IOs.     
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Figure ‎6.17 Floor-plan image of the control logic in the system 

               

With the implementation shown in Figure 6.17, a total number of 30 feasible 

locations are possible for the relocatable test cipher. However, only 21 cores can be 

configured on the chip at one time. Figure 6.18 shows the initialisation of the 

resource matrix used in the placement algorithm. The matrix consists of 65 columns 

and eight rows. The matrix is initialised so that unavailable resources are mapped 

with logic ‘1’ in the matrix. These resources are the resources occupied by the 

control logic, resources with static routes passing through them, hardwired 

components on the chip and resources with types not used by any core in the system. 

In the test application, both the DSP columns and the clock resources columns are 

mapped with ‘1’ in the resource matrix as they are not used by any core in the 

system. In addition, the locations occupied by a PowerPC processor that is integrated 

in the Virtex-4 FPGA are also mapped with ‘1’ in the resource matrix. 
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Figure ‎6.18 Initialisation‎of‎the‎FPGA’s‎resource‎matrix 

  

The placement algorithm described earlier generates two offsets when a feasible 

location is found for a particular core: the horizontal X_offset and the vertical 

Y_offset. After applying the placement algorithm on the matrix shown in Figure 

6.18, the generated Y_offset is compatible with the ICM’s relocation offset format 

and can be used directly for relocation (see Chapter 4). This is not the case for the 

horizontal offset as it is not compatible with the FPGA’s column addressing and the 

ICM’s relocation offset format, which requires two different offsets, one for the CLB 

resources and the other for the BRAM resources. This horizontal offset can be easily 

converted to the required format depending on the selected offset in the offset group:  

Original location  CLB_offset= 0 , BRAM_offset= 0 

Offset (index)  CLB_offset= Offset (index) – index , BRAM_offset= index 

6.4 Experimental Results 
 

This part of the thesis reports the performance of the implemented system when 

executing tasks based on the test cipher core. The system clock frequency was set to 

100 MHz and the scrubbing rate was set to one cycle every 10ms. Although any 

scheduling algorithm is feasible with the proposed system, a simple First-Come-
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First-Served (FCFS) scheme was assumed so that the first incoming task is scheduled 

first for execution. The experimental analysis assumes that tasks along with their 

input load are available in the CPU’s main memory. No external IO overhead is 

considered for encryption quarries. 

6.4.1 Task Allocation 

 

When an encryption task is scheduled for execution, three redundant modules of the 

cipher core are configured in three different locations on the reconfigurable area on 

the FPGA. This allocation scheme requires the placement algorithm described earlier 

to be executed three times. Any task that does not fit in a minimum of three feasible 

locations is not allocated and has to wait for other active tasks to finish execution.  

The time overhead for task allocation will depend on the status of the tasks in the 

reconfigurable area. The placement algorithm goes through three stages. The first is 

scanning the ‘core’ table that contains the status of already configured cores in the 

FPGA. Tasks with three feasible locations in this stage are allocated very quickly as 

the location offsets required for the tasks’ cores are already calculated. The second 

stage scans the available resources in the resource matrix to find a feasible location 

for the task’s core. So, three scans of the resource matrix are required for the second 

stage, one for each of the task’s redundant cores. The third stage of the placement 

algorithm scans the empty resources as well as resources occupied by tasks that have 

finished execution.  Since there is only one core type in this test application, the 

placement algorithm will never go through the third stage. Table 6.3 shows the time 

overhead breakdown for task placement in the system.  

 

Table ‎6.3 Task allocation time overhead 

Operation Min. Time (us) Max. Time (us) 

Core Allocation 1 42 

Task Allocation (3 cores) 5 125 
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6.4.2 Configuration and Control of the Relocatable Cores  

 

The configuration scheme used in this test application deploys the multiple-clone 

configuration technique as described in Figure 6.9. In Virtex-4 FPGAs, a single 

cloning operation can only cover cores allocated to the same half of the FPGA chip. 

The vertical offsets for the allocated tasks are scanned to determine the number of 

operations required to finish the configuration process. A maximum of two 

configuration operations is required, one for each half of the FPGA. Figure 6.19a 

shows the configuration time overheads of the test cipher cores when varying the 

number of allocated tasks in the placement stage, and Figure 6.19b shows the number 

of cores configured in each configuration operation.   

 

 

Figure ‎6.19 Task configuration 
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When cores need to be removed from the reconfigurable area, a black-box bitstream 

is configured on top of them. This bitstream contains only empty frames and, hence, 

only a single cloning operation is required for the removal of any number of cores in 

the FPGA. Figure 6.20 shows the removal time overhead for different numbers of 

tasks. 

 

Figure ‎6.20 Task removal time 

To control and monitor the operation of a core after configuration, several operations 

are performed using the ICAP: enable/disable the regional clock buffer, enable/reset 

the core and monitor the status of the core. For the first two operations, a field in a 

certain configuration frame needs to be modified (LUT content). To do this, an ICAP 

read operation is performed followed by an ICAP write operation. To monitor the 

status of an active core, only a read operation is required to check the value of the 

READY LUT. Table 6.4 shows a time overhead break down of the operations 

required to perform the control operations. It is noted that any of these operations are 

repeated three times for each task.       

Table ‎6.4 Task control time overhead breakdown 

Operation Time (us) 

Readback frame via ICAP 7.5 

Fetch word containing the required field to Microblaze  5.8 

Total time to check a field in a frame 13.3 

Send modified word to ICM 5.8 

Write frame containing field via ICAP  7.5 

Total time to modify a field in a frame 26.6 

 



Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine   

 

170 
 

6.4.3 Task Data Transfer  

 

To transfer the input load to an already configured core, the Microblaze first writes 

the input load to the dedicated BRAM buffer. The ICM performs a read operation of 

64 frames to store the configuration of the BRAM buffer before performing another 

write operation of 64 frames to the core’s input buffer. The ICAP write operation is 

repeated three times, one for each redundant core of the task. Table 6.5 shows a 

breakdown of the task input data transfer time overhead. 

Table ‎6.5 Task input data transfer time     

Operation Time (us) 

Transfer input load from Microblaze to BRAM buffer 92.7 

Read the configuration of the input buffer via ICAP 33.3 

Write the copied 64 frames to core’s input BRAM via ICAP 33.3 

Total input data transfer time (3 cores) 225.9 

  

When a task’s cores have finished execution, checksum voting is performed and the 

correct output is transferred to the Microblaze. First, the three frames containing the 

core’s checksums are read and transferred to the Microblaze, which performs the 

voting. One of the correct outputs is then read via the ICAP and copied to the BRAM 

buffer. Table 6.6 shows a breakdown of the task output data time overhead.  

Table ‎6.6 Task output data transfer time 

Operation Time (us) 

Read frame containing CRC-checksum  7.5 

Fetch word containing CRC-checksum 5.8 

Total voting time 40 

Read correct output via ICAP 33.3 

Transfer output from BRAM buffer to MB 92.7 

Total output transfer time 166 
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6.4.4 Fault Detection and Recovery 

 

Faults affecting the static control logic are recovered by readback scrubbing, whereas 

faults affecting the ICAP controller are recovered by DPR (see Chapter 5). When a 

scrubbing cycle is due, readback scrubbing is only performed on the region occupied 

by the control logic, which spans a total of 1,716 configuration frames. The 

scrubbing cycle is performed using three readback operations one for each row in the 

region occupied by the control logic. On the other hand, the region occupied by the 

ICM is reconfigurable with a partial bitstream of a size equal to 155 KB. The time 

overhead for detecting faults in a region occupied by a faulty core is dictated by the 

BIST diagnosis process of the CLB columns. Table 6.7 shows the fault recovery and 

detection operations time overheads.  

Table ‎6.7 Fault detection and recovery time overhead 

Operation Time (us) 

Readback scrubbing of control logic  805 

ICM reconfiguration 404 

BIST Diagnosis 1231.9 

 

6.4.5 Task Execution Time Overhead  

 

In this analysis, the execution time of a relocatable core is defined as the time 

required for the core’s output to be available in the main memory after it finishes 

execution. Table 6.8 shows the execution time of the test cipher core with and 

without the redundancy and compares it to a software implementation of the test 

cipher in a Microblaze processor where temporal redundancy is used.       

Table ‎6.8 Test cipher core execution time 

Execution scheme 
Time (ms) 

Speedup 
Proposed system Software 

With TMR 1.3 2912.7 x2240.5 

Without TMR 0.5 970.9 x1942.8 
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Table 6.8 shows the task when there is only one task in the queue and no cores are 

already configured in the reconfigurable region. In the proposed system, the number 

of tasks in the queue and the status of the reconfigurable region will affect the time 

required for a task’s output to be available in the main memory. In a FCFS 

scheduling scheme, the wait time is defined as the time a task remains in the queue 

waiting for execution. In FCFS scheduling, the last task in the queue will always 

have the longest wait time. Figure 6.21 shows the maximum task wait time in the 

proposed system for the different number of tasks in the queue, all with the same 

arrival time. 

  

 

Figure ‎6.21 Maximum task wait time 

 

6.5 Chapter Conclusion 
 

Reliability is very much related to the security of cryptographic hardware as faults 

can compromise the security of the system. Traditional FT design techniques are 

usually deployed in cryptographic systems to prevent the leaking of secret 

information as a result of faults. These techniques, however, limit the flexibility and 

prevent the efficient deployment of the FPGA’s resources. The R3TOS provides a 

flexible platform for implementing reconfigurable applications that require flexibility 

and high performance. This makes R3TOS an ideal solution for implementing 

reliable cryptographic applications.  This chapter presented the design and 
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architecture of an R3TOS-based encryption engine. This encryption engine is 

capable of executing real- time encryption tasks using relocatable cipher cores. These 

cores are efficiently allocated in the available resources of the FPGA using a new 

placement scheme that accounts for the irregularity in the FPGA fabric and allows 

for the placement of heterogynous cores. This placement scheme also allows for 

intelligently reusing the already configured cores to enhance the efficiency of the 

system. Faults in the static logic of the system are mitigated by means of readback 

scrubbing, whereas cipher tasks are executed with modular redundancy to ensure 

secure operation.  A proof-of-concept implementation of the system in a Virtex-4 

FPFA was demonstrated and tested with a test relocatable cipher core. The test 

results showed that HTs based on the test cipher outperform software tasks of the 

same cipher. 
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Chapter 7 : A DPR-based Platform for 

Frequent Itemset Mining Acceleration 
 

Knowledge Discovery and Data Mining (KDD) is a growing field focusing on 

extracting useful information from large amount of data. KDD is applied in several 

fields such as science, medicine and business. One important concept in data mining 

is Frequent Itemset Mining (FIM), which is widely deployed for extracting 

information from businesses and enterprise databases. FIM is often used in market 

basket analysis to understand the purchase behaviour of customers purchasing 

products offered by the same retailer. Usually, customer purchase information is 

stored in a transaction database which consists of several transactions; each 

transaction contains the products purchased by a single customer. Association rules 

can be derived from the databases to see how often certain products are bought 

together. These association rules can influence business decisions to increase future 

profit. Retailers can use the information extracted form mining their databases to 

come up with the best pricing, promotional offers and store layout. FIM is not 

limited to the basket analysis. FIM concepts can be used in other applications such as 

web mining and bioinformatics.    

Using FPGAs, FIM can be accelerated by performing some acceleration tasks in 

hardware. Placing static accelerators in the system will reduce the resource efficiency 

and limit the size of each accelerator. DPR can be used to allow for sharing the 

FPGA’s resources among the different acceleration tasks and consequently enhance 

the system’s performance. This chapter proposes a novel system to accelerate the 

popular FP-growth algorithm using FPGAs. The system manages the configuration 

and execution of several acceleration tasks that utilises relocatable systolic array 
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accelerators.  This chapter presents the design and architecture of the system and 

evaluates the performance gain archived by using DPR.                           

7.1 Background on Frequent Itemset Mining  
 

Suppose we have a set of items B={i1,i2,…im} 

625. Any subset of items collected from B is called an itemset. In the context of 

basket analysis, an itemset is a group of items that can be bought together. 

A transaction over B is a set t= (ID, J) where ID is the unique transaction identifier 

and JϵB. In basket analysis, J can be a list of products purchased by a single 

customer.   

A transaction database is a collection of transactions T={t1, t2, …..,tn}. Every 

transaction is an itemset, but some items may not appear in T. A transaction can be 

decomposed into smaller itemsets, for example itemset I is covered by t=(ID, J) if 

IϵJ. The number of itemsets covered by a transaction is equal to 2
n
 -1 where n is the 

number of items within the transaction. For example, if a transaction t=ABC, the 

number of itemsets covered by the transaction is 2
3
 -1 = 7; these itemsets are A, B, C, 

AB, AC, BC and ABC. 

FIM is based on fining how common itemsets appear in the database. A count 

number for each itemset in the database is calculated. The count number is called the 

‘support’. The support of a particular itemset indicates the number of transactions 

containing this itemset. The support is usually given as a percentage of the total 

number of transactions.   

A ‘support threshold’ is specified at the beginning of the mining process; the support 

threshold indicates the minimum support for an itemset to be considered for 

generating the association rules. Any itemset with a support count less than the 

specified threshold can be discarded to reduce the complexity of the mining process. 

Table 7.1 shows an example of a transaction database T ={t1, t2, t3 ,t4 ,t5 ,t6} over a 
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set of items B={A, B, C, D}. Table 7.2 shows all the possible itemsets derived from 

B along with their support count. 

 

Table ‎7.1 Example database 

Transaction ID Items 

1 A, B 

2 C 

3 A,B,C 

4 B,C 

5 A,B,D 

6 C,D 

 

Table ‎7.2 Support count for itemsets in the example database 

Itemset Support Itemset Support Itemset Support 

A 3 (50%) AC 1 (16.66%) ABC 1 (16.66%) 

B 4 (66.66%) AD 1 (16.66%) ABD 1 (16.66%) 

C 4 (66.66%) BC 2 (33.33%) ACD 0 (0%) 

D 2 (33.33%) BD 1 (16.66%) BCD 0 (0%) 

AB 3 (50%) CD 1 (16.66%) ABCD 0 (0%) 

 

Suppose that the support threshold is 50%, which means that an itemset is required to 

appear in at least half of the transactions to be considered in the association rules. 

The itemsets which satisfy this condition are: A, B, C, and AB. These itemsets are 

referred to as ‘frequent’ itemsets.      

7.1.1 Background on FIM Algorithms 

 

The concept of FIM was first introduced by Agrawal in [177] wherein an algorithm 

for finding frequent itemsets was used to derive association rules for the market 

basket model. Later Agrawal improved the algorithm and called it the Apriori 

algorithm ([178] and [179]). The Apriori aims at reducing the mining time for large 
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databases by exploiting the anti-monotonicity property of itemsets: ‘if an itemset is 

found to be infrequent, any superset of this itemset is infrequent’. This property is 

used in a mining process called ‘candidate generation’, which repeatedly generates 

larger candidate itemsets from smaller frequent itemsets. Only the support count of 

these candidates is considered when scanning the database. By repeatedly scanning 

the database and increasing the length of the candidates in each scan, the algorithm 

stops when no more candidates satisfy the minimum support count.      

The Apriori algorithm suffers from two main drawbacks. The first is that multiple 

scans of the database are required to find the frequent itemsets. The second drawback 

is the delay caused by the candidate generation process. These drawbacks could lead 

to intolerable time overhead when mining large databases. The most outstanding 

improvement over the Apriori is the FP-growth algorithm, which only requires two 

database scans and eliminates the need for candidate generation [180]. The FP-

growth is based on transposing the transaction database into a compressed tree 

structure called the FP-tree. The FP-tree is then mined in a shorter time compared to 

the original database.   

The FP-growth algorithm 

The FP-growth is based on representing the database with an FP-tree which contains 

several branches each with several nodes. Each path in the tree represents an itemset 

in the database whereby the nodes encountered in this path are the items in the 

itemset (see Figure 7.1). A node in the FP-tree can be a ‘parent’ node to several 

‘children’ nodes. Each node contains an item identifier along with a count number 

representing the support of any itemset from a path ending with this node. The FP-

tree of a database can be created by the following steps: 

1) The database is scanned to calculate the support count of each item in the 

database. A list of frequent items is created with infrequent items removed to 

reduce the size of the tree.    

2) Items within each database transaction are sorted in descending order of the 

support count, with infrequent items removed from each transaction. 
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3) A root for the tree is created and labelled with NULL. The first transaction in the 

database is represented with a branch from this root. Each item in the transaction 

is represented by a node, so that each node is placed in a different level away 

from the root.    For consecutive transaction, the first item of the transaction is 

compared with nodes in the first level. If a common node is found, the support 

count of this node is incremented and the next item is compared with the children 

nodes in the next level. If no common node is found, a new node is created and 

the remaining items of the transaction form a new branch from this node. When 

the FP-tree is created, a header table is built containing links between nodes 

containing the same item. 

 

Figure 7.1 illustrates the steps required to create the FP-tree for the database in Table 

7.1, with a 25% minimum support threshold. 

  

 

Figure ‎7.1 Creating the FP-tree 
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After creating the FP-tree, the mining problem is transformed into mining the tree 

rather than the whole database. By traversing the tree, a ‘conditional pattern base’ for 

each item can be created. The conditional pattern base represents the paths to the 

nodes containing the item. The itemsets containing the item can be found by the 

union of the item and the sub-itemsets in each path. The resulting itemsets are 

processed to add the support of similar itemsets. This procedure is repeated for all the 

items to generate all the possible itemsets. Table 7.3 shows the conditional pattern 

base and the possible itemsets for the FP-tree in Figure 7.1. 

Table ‎7.3 Itemsets generated from the FP-tree 

Item Conditional Pattern Base Itemset 

D:2 {(BA:1),(C:1)} BAD:1, BD:1, AD:1, CD:1, D:2 

A:3 {(B:2), (BC:1)} BA:3, BCA:1, CA:1, A:3 

C:4 (B:2) BC:2, C:4 

B:4 null B:4 

 

Finally, any itemset which does not satisfy the minimum support count is discarded. 

The itemsets in Table 7.3 contains six itemsets that do not satisfy the 25% support 

threshold. Discarding these itemsets results in the final frequent itemsets: D, BA, A, 

BC, C and B.  

7.1.2 FPGA Implementations of FIM Algorithms 

 

Unfortunately, there is a limited amount of research focused on the implementation 

of FIM algorithms in FPGAs.  A parallel implementation of the Apriori algorithm 

was first presented in [181], where the authors have used a 1-D systolic array. Each 

PE in the systolic array contains a support counter, a comparator along with some 

control logic and local memory. Transactions are streamed into the systolic array and 

compared with items stored in the local memory of each Processing Element (PE). 

The database is streamed into the systolic array multiple times to calculate the 

support count of each candidate.  Due to the time required for scanning the database 

multiple times, only x4 speedup was achieved compared to the software 
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implementation. In [182], the same authors extended their work and developed a 

bitmapped CAM architecture that achieved a 25 times performance gain. In [183], 

the authors presented the HAPPI architecture which consists of a systolic array, a 

trimming filter and a hashing filter. The HAPPI aims at enhancing the performance 

of the Apriori when mining large databases by reducing the size of the database 

using a transaction trimming technique and by reducing the number of candidates 

using a hashing technique.     

Although systolic array accelerators can enhance the performance of the Apriori 

compared to software implementations of the algorithm, the Apriori algorithm is 

found to lag behind other algorithms which do not require candidate generation and 

several database scans such as the FP-growth algorithm. Mapping the FP-growth 

algorithm into hardware is much more complex compared to the Apriori as it is not a 

simple iterative process that can be performed using the same hardware. Accelerating 

the algorithm is possible by performing some of its processing stages in dedicated 

hardware accelerators. In ([184], [185] and [63]), Sun et al. have proposed a 2-D 

systolic tree structure to accelerate the creation of an FP-tree of a transaction 

database. The systolic tree consists of several PEs each capable of storing one item of 

the database and representing a node of the FP-tree. A PE can be a ‘parent’ PE of 

several ‘children’ PEs. Children PEs associated with the same parent PE are referred 

to as ‘siblings’. The PEs are connected together as shown in Figure 7.2, in which a 

parent PE is only connected to the first child and each sibling PE is connected to its 

neighbouring PE. 

The operation of the proposed systolic tree starts by streaming the database to create 

the FP-tree. The items of each transaction propagate though the PEs either vertically 

or horizontally, so that similar itemsets always takes the same path through the PEs. 

This way a support count for the nodes in each path can be calculated. The next stage 

involves streaming candidate into the tree. At this stage the PEs execute different 

algorithm, so that the support count of each node at the end of each possible path for 

the candidate is shifted horizontally out of the tree where they are added using 

dedicated adders. This procedure is repeated to calculate the support count for all the 

candidates.  
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Figure ‎7.2 Previously proposed 2-D systolic tree for FIM [63] 

 

Although the proposed tree achieved orders of magnitude performance gain over the 

software implementation of the FP-growth algorithm when using high support 

threshold, the performance gain drops dramatically when the threshold support is 

decreased to the point where the software implementation no longer lags behind. 

This is mainly due to the following two factors:  

1) The PE layout in the tree requires a large number of PEs to mine a small number 

of items. The authors predefine a tree with two parameters K and W where K is 

the number of siblings PEs for each parent node and W is the depth of the tree. 

The total number of PEs in a tree =  (K
w+1

 -1)/(K-1). This means that the number 

of PEs is exponentially related to the K and W parameters. The authors reported 

that the largest tree that can fit on a Virtex-5  LX330 has K=4 and W=4. 

Although these parameters generate a very large tree, only transactions 

containing no more than four items are guaranteed to fit in the tree. To cope with 

this limitation, the authors proposed using a software database partitioning 

technique, which partitions the database into smaller sub-databases containing a 

maximum of four items. Only these sub-databases are mined in hardware rather 

than the whole database.  

 



Chapter 7: A DPR-based Platform for FIM Acceleration 

 

182 
 

2) The mining process requires candidate generation, which violates one of the most 

important properties of the FP-growth algorithm. With database partitioning, the 

candidate generation process is performed after loading each sub-database.  

  

7.2 Overview of Proposed System 
 

The proposed system aims at accelerating the FP-growth algorithm through five 

acceleration tasks that are performed in hardware using customised systolic arrays. 

Table 7.4 summarises the acceleration tasks used in the proposed system. The first 

four tasks utilises systolic array with a conventional 1-D arrangement of PEs, 

whereas the fifth task utilises a systolic tree with a 2-D arrangement of PEs.  

Table ‎7.4 Summary of acceleration tasks in the proposed system 

Hardware Acceleration 

Task 
Operation 

Item Support Counting The support count is calculated for individual items in the database  

Item Sorting The items are sorted in a list according to their support count 

Database Pruning  Infrequent items are removed from the database 

Transaction Sorting 
Items in transactions are rearranged in descending order of the support 

count 

Itemset Counting The support count is calculated for itemsets in a sub-database   

 

A vertical format is used for storing a database in memory, as shown in Figure 7.3. In 

this format, items in the transactions are listed using 32-bit memory locations. Each 

memory location is divided into two 16-bit fields. The first is used for storing the 

item ID and the second is used as a count field for storing some computational values 

during the mining process. Transactions are listed consecutively and separated by a 

memory location with a special ID denoted as the ‘separator’. The separator contains 

the value ‘0xFFFF’ in the item’s field. This format is especially designed to enable 

fast streaming of the database from an external DDR memory to the accelerators in 

the FPGA.  
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Figure ‎7.3 Database format in memory 

7.2.1 Acceleration Task1:  Item Support Counting 

 

The initial stage when mining any database is to find the support count of individual 

items in the database. By using a 1-D systolic array, the database items can be 

counted as they are streamed into the array.  The proposed 1-D systolic array consists 

of a number of PEs, each contains some control logic and registers to store the item 

ID and the support count (see Figure 7.4). PEs in the systolic array execute different 

algorithms according to the ‘mode’ signal passed to them by the neighboring PE. The 

systolic array used for this task operates under two modes: the LOAD mode and the 

SHIFT mode. The support of each item is calculated in the LOAD mode whereby 

each PE executes the algorithm shown in Algorithm 7.1.  

In the LOAD mode the database is streamed into the systolic array. Initially, all the 

PEs are marked as ‘empty’. Each PE contains a small ALU that performs one of 

three operations every clock cycle, depending on the current state of the PE and the 

item passed to that PE: 

1) When an item reaches an empty PE, the PE is marked as ‘non-empty’. The 

item ID is stored and the support count is set to 1. The item stopped at this PE 

and does not propagate to the next PE.   
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2) When the item reaches a non-empty PE and the item is the same as the item 

stored in the item ID register, the support count is incremented and the item 

does not propagate to the next PE.   

3) When the item reaches a non-empty PE and the item is not the same as the 

item stored in the item ID register, the next PE is enabled and the item is 

passed to it. 

 

 

Figure ‎7.4 1-D systolic array 

 

Algorithm ‎7.1 Item support counting 

If the number of PEs in the systolic array is equal or larger than the number of items 

in the database, the database is only required to be streamed once to finish the item 

counting. When streaming the database is finished, each non-empty PE will contain 

an item ID and a support count.  

(1) if PE is empty then 

store item in PE; 

support count =1; 

stop item propagation; 

empty_flag=1; 

(2) else if item= item stored in PE then 

support count= support count+1; 

stop item propagation; 

(3) else  

forward item to next PE; 
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Switching the systolic array to the SHIFT mode allows for shifting the item ID and 

the support count of each non-empty PE out of the array. In the SHIFT mode the 

array behaves like a shift register, in which each PE forwards the item ID and the 

support count stored in its registers to the next PE and stores the incoming item ID 

and support count. In addition, the empty_flag in each PE is also shifted out of the 

array through the data_valid connection. This assists the array controller in collecting 

the items from the last PE.        

It is not reasonable to assume that the number of PEs within the array is always 

larger than the number of items in the database, especially when processing a 

database before removing the infrequent items. When streaming a database which 

contains more items than the number of PEs in the systolic array, all the PEs will be 

filled with items and overflow will occur at the last PE in the array. To deal with this 

issue, the array operates as follows:   

1) Any item passed by the last PE in the array to the controller during the LOAD 

mode is stored in memory. At the end of the first database scan a sub-database is 

created in memory which contains the items collected from the last PE in the 

array. This sub-database contains N number of items where N=total number of 

items-number of PEs in the array.   

2) The first set of items is shifted out of the array, the array is reset and the sub-

database is streamed into the systolic array rather than the full database to 

calculate the support of the second set of items.  

3) The process of streaming the sub-database and shifting the items out of the tree is 

repeated. Every iteration a smaller sub-database is created until no overflow 

occurs at the last PE of the array. 

7.2.2 Acceleration Task2: Item Sorting 

 

After completing Task1, the support counts of all the items in the database are 

calculated. The systolic array of Task2 can be used to sort the items in a single list in 

a descending order of the support count. Task2 deploys a similar systolic array 
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architecture to that used in Task1; however, PEs execute different algorithm in the 

LOAD mode.  

In Task2, the items along with their support counts are streamed into the systolic 

array. PEs perform Algorithm7.2 in the LOAD mode to sort the order of the 

streamed items.  

 

Algorithm ‎7.2 Item list sorting algorithm 

 

From Algorithm 7.2 it can be seen that items with the highest support counts will be 

shifted in the LOAD phase from one PE to the next. If the total number of items in 

the items group is larger than the number of PEs in the array, items with high support 

count will overflow at the last PE. In a similar way to Task1, these items can be 

collected and stored in memory to be processed in consecutive iterations.   

In the SHIFT mode, the sorted items are shifted out of the array along with their 

support counts. As the items are shifted out of the array, the array controller 

examines the support count of each item. Any item with support count less than the 

minimum threshold is discarded and not stored in memory.  

 

 

(1) if PE is empty then 

store incoming item in PE; 

store incoming support count in PE; 

empty_flag=1; 

(2) else if incoming support count > support stored in PE then 

forward incoming item to next PE; 

forward incoming item support to next PE; 

(3) else 

forward item in PE to next PE; 

forward support in PE to next PE; 

store incoming item in PE; 

store incoming support in PE; 
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7.2.3 Acceleration Task3: Database Pruning  

 

After completing Task2, a list of sorted frequent items is created. Task3 removes the 

infrequent items from the database to create a pruned database. In Task3 two 

operations are performed. The first is the removal of infrequent items from the 

database and the second is assigning an order number to each item entry in the 

database. The second operation is necessary for the following task which sorts the 

items in each transaction according to their support count. The systolic array in 

Task3 operates in two modes: the INITIALISE and the LOAD modes. In the 

INITIALISE mode, the items in the frequent item list are streamed into the array, 

each with an order number indicating the order of this item in the list (see Algorithm 

7.3). The order number is set to ‘1’ for the item with the lowest support count and 

increments so that the item with the highest support count has the highest order 

number.    

 

Algorithm ‎7.3 Initialising PEs with frequent items 

 

In the LOAD mode, the database is streamed into the array with the count field set to 

‘0’ for all the items. Each non-empty PE in the array compares the incoming item 

with the item stored in item register. If they are the same the PE forward the order 

number stored in the support register to the next PE (see Algorithm 7.4). This can be 

seen as a process of inserting an order number into the count filed of each item in the 

database.  

Similar to the previous stages, several database scans might be required to assign all 

the database item entries with order numbers. The pruning process of infrequent 

(1) if PE is empty then 

store incoming item in PE; 

store incoming order number in PE; 

empty_flag=1; 

(2) else 

forward incoming item to next PE; 

forward incoming order number to next PE; 
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items is performed by the array controller in the last scan by discarding any item with 

no assigned order number. 

 

Algorithm ‎7.4 Assigning order numbers to items entries in the database 

        

7.2.4 Acceleration Task4: Sorting Database Transactions 

 

After completing Task3, each memory location of the database stored in memory 

will contain an item ID, as well as an order number. Task4 rearranges the items in 

each transaction according to the order number as the database is streamed into the 

systolic array. The systolic array used for this task operates in two modes: the LOAD 

and the SHIFT modes. Different to the arrays used in the previous tasks, both the 

LOAD and SHIFT algorithms are executed while the database is streamed into the 

systolic array. In the LOAD mode, each empty PE stores the first incoming item 

along with its order number. Any empty PE will always forward a SHIFT mode 

signal to the next PE in the array. Non-empty PEs compares the order number of the 

incoming item with the count stored in their registers and forward the item with the 

highest order number to the next PE (see Algorithm 7.5). The mode signal passed to 

the first PE by the array controller is set to the LOAD if the item passed to the array 

is not the ‘separator’. When the separator is passed to the array the mode signal is 

switched to the SHIFT mode and the data_valid signal is set to logic ‘0’ for one 

clock cycle. Any PE containing the ‘separator’ will be marked as ‘empty’ during the 

SHIFT mode. This way the PE containing the separator will always push out the 

sorted items from the previous transaction.     

(1) if PE is empty then 

forward incoming item to next PE; 

forward incoming order number to next PE; 

(2) else if incoming item = item stored in PE 

forward incoming item to next PE; 

forward order number stored in PE to next PE; 

(3) else  

forward incoming item to next PE; 

forward incoming order number to next PE; 
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Algorithm ‎7.5 Sorting items in database transactions 

 

When the size of a single transaction is larger than the size of the array, overflow will 

occur at the last PE. The systolic array for this task does not allow for overflow. This 

means that the maximum size of any transaction in the database should not exceed 

the number of PEs in the array. Since pruning the database transactions takes place in 

the previous task in the mining process, the effect of this limitation is reduced, 

especially when large support thresholds are selected for the mining process.          

LOAD Mode: 

(1) if PE is empty then 

 store incoming item in item register; 

 store incoming order number in support register; 

 forward item stored in PE to next PE; 

 forward order number stored in PE to next PE; 

 empty_flag=1; 

 mode_out= SHIFT; 

 data_valid_out=0; 

(2) else if incoming item < item stored in PE 

 store incoming item in item register; 

 store incoming order number in support register; 

 forward item stored in PE to next PE; 

 forward order number stored in PE to next PE; 

 mode_out= mode_in; 

 data_valid_out=data_valid_in; 

(3) else  

 forward incoming item to next PE; 

 forward incoming order number to next PE; 

 mode_out=mode_in; 

 data_valid_out=data_valid_in 

SHIFT Mode: 

 store incoming item in item register; 

 store incoming order number in support register; 

 forward item stored in PE to next PE; 

 forward order number stored in PE to next PE; 

 empty_flag= data_valid_in; 

 mode_out= SHIFT; 

 data_valid_out=empty_flag; 
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7.2.5 Acceleration Task5: Itemset Counting 

 

In the FP-growth algorithm, a compressed tree of the database is created to simplify 

the itemset counting process. As mentioned earlier, a 2-D systolic array has been 

previously proposed to create the database tree in hardware (see Figure 7.2). This 

array process unsorted transactions, so different tree structures can be created for the 

same database, depending on the order of items in each transaction. This leads to 

inefficient mapping between the items in the database and array PEs and limits the 

number of items that can be mined using the array.   

In this thesis, a 2-D systolic array is also proposed for creating the database tree. 

However, the array pre-processes the database after the completion of the first four 

acceleration tasks. Pre-processing the database allows for creating much larger trees 

with less number of PEs compared to the previously proposed array architecture.     

In the proposed tree architecture, each PE is connected to two other PEs. Depending 

on the location of each PE within the tree, the PE can have a number of sibling PEs 

(connected horizontally) and children PEs (connected vertically). To simplify the 

connections between parent and children PEs, a parent PE is only connected to the 

first child, which is connected to the next sibling and so on. Figure 7.5 shows a 

systolic tree which supports three frequent items. The tree can be divided into several 

levels when moving away from the top/left PE. PEs in the same level are used for the 

same item. Items are assigned to the tree levels according to their order number so 

that the item with the highest order number is assigned to ‘level 0’ and the item with 

the lowest order number is assigned to the last level in the tree.       

Each PE in the same level of the tree contains the same number of children. The 

number of children PEs is decremented when moving to higher levels of the tree, so 

that PEs in the last level are left with no children.  With this array structure, the 

number of PEs required for the support calculation of itemsets generated from ‘n’ 

frequent items is equal to (2
n
 -1). This is a much smaller number of PEs compared to 

the previously proposed array, which has a fixed number of children for each parent 

PE and require a number of PEs equal to ((n
n+1

 -1)/(n-1)).    
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Figure ‎7.5 3-item 2-D systolic array 

 

Similar to the 1-D systolic array used for the previous tasks, each PE in the 2-D array 

contains an item ID register and a support register. The proposed PE arrangement 

requires initialising PEs in the same level with the same item before streaming the 

database. The 2D systolic tree operates in three modes: the INITIALISE, LOAD and 

SHIFT modes.  

In the INITIALISE mode, PEs are initialised with items from the sorted frequent 

item list by performing the algorithm described in Algorithm 7.6. Each PE stores the 

first incoming item in the item register. Any consecutive item will be forwarded to 

the first child and first sibling PEs. This way, each parent PE will have a sibling and 

a child PE containing the same item.  



Chapter 7: A DPR-based Platform for FIM Acceleration 

 

192 
 

 

Algorithm ‎7.6 Initialising the 2-D systolic array 

               

After streaming the frequent items into the systolic array, the mode signal is switched 

to the LOAD mode and the database transactions are streamed into the array. In the 

LOAD mode, each PE executes Algorithm 7.7 to calculate the support count of the 

itemsets generated from the initialised items. When performing Algorithm 7.7, items 

in each transaction will propagate into the tree in one or several paths. The support 

count of PEs in the same path will be incremented when this path is crossed by a new 

transaction. When streaming the database, a signal called the ‘new_trans’ is set for 

one clock cycle before each transaction. The new_trans signal is used to clear the 

previously created path in the tree.  

 

Algorithm ‎7.7 Calculating the support count of  itemsets 

    

(1) if PE is empty then 

store incoming item in PE; 

stop item propagation 

empty_Flag=1; 

(2) else  

forward incoming item to sibling PE; 

forward incoming item to child PE; 

 

(1) if new_trans=1 then 

path_flag=0;  

forward new_trans signal to sibling PE; 

forward new_trans signal to child PE; 

(2) else if path_flag=1 then 

forward incoming item to the child PE; 

forward incoming item to sibling PE; 

(3) else if incoming item= item stored in PE  then 

increment support register; 

forward incoming item to sibling PE; 

path_flag=1; 

(4) else  

forward item_in to sibiling PE; 
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From Algorithm 7.7, it can be seen that each PE will always forward any incoming 

item to its sibling PE. This will create several independent trees within the systolic 

array. Figure 7.6 shows the trees created in the array when streaming an example 

database into a 3-item 2-D array. 

 

Figure ‎7.6 Itemset counting using the proposed 2-D systolic array 

 

Shifting the calculated support counts out of the 2-D array differs from the 1-D array. 

PEs within the same level are connected together to form a ‘shift path’. To shift 

items out of a particular level in the array, the array controller sets the item input 

signal with the ID of the item in the desired level. After that the mode signal is set to 

the SHIFT mode.  In the SHIFT mode, the PEs perform Algorithm 7.8 to shift the 

support counts out of the desired level using the dedicated shift paths. 

 

 

Algorithm ‎7.8 Shifting items in the same level out of the 2-D systolic array 

(1) if incoming item = item stored in PE  then 
forward stored support count to next PE in same level; 
store incoming support count in support register; 

stop item propagation; 
(2) else  

forward incoming item to sibling PE; 
forward incoming item to child PE; 
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Because there are different paths for shifting the support counts, a small ‘shift 

controller’ is attached to the array.  The shift controller multiplexes the support paths 

to the input signal of the array controller according to the item ID set by the array 

controller (see Figure 7.5). In most mining problems, the size of the 2-D array will 

not be sufficient to mine all the items in a single database scan. There are two 

methods for using the 2-D systolic array in accelerating the mining process. In the 

first method a software database partitioning algorithm is used to create several sub-

databases each not containing a number of items larger than the size of the tree  [63].  

Only these sub-databases are streamed into the systolic array rather than the whole 

database. The second method is based on database sampling, whereby the support 

counts of many item samples are generated in hardware. Each sample can be used to 

derive the association rules of a group of particular items of interest.                  

7.3 Implementation and Resource Utilisation 
 

Tasks 1,2, 3 and 4 of the mining process are all performed using 1-D systolic arrays. 

It is possible to use a dedicated systolic array for each task or perform all the tasks 

using a single array with larger PEs capable of performing the algorithms required 

for the four tasks. Table 7.5 shows the resource utilisation of the 1-D systolic array 

when optimised for one of the four mining tasks and when optimised for all the four 

processing stages in a Xilinx Virtex-6 LX240 FPGA. The systolic arrays only 

consumes CLB resources, so the resource utilisation is given as a percentage of the 

total CLB slices in the FPGA which is 37,680.  

Table ‎7.5 CLB resource utilisation of the 1-D array in a Virtex-6 LX270 FPGA 

Task 
No. of PEs 

200 450 700 950 

Task 1 12 (%) 25 (%) 38 (%) 51 (%) 

Task 2 12 (%) 24 (%) 37 (%) 49 (%) 

Task 3 8 (%) 17 (%) 26 (%) 35 (%) 

Task 4 13 (%) 27 (%) 42 (%) 56 (%) 

All Tasks 29 (%) 59 (%) 93 (%) 124 (%) 
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The Maximum operating frequency varies for each implementation of the 1-D 

systolic array. Table 7.6 shows the maximum operating frequency for the different 1-

D arrays with 950 PEs.  

Table ‎7.6 Maximum operating frequencies for the 1-D array 

Array Type Task 1 Task 2 Task  3 Task  4 All Tasks 

Max. Frequency (MHz) 408 403 421 419 288 

 

Task 5 of the mining process uses the 2-D systolic array. While the number of items 

that can be mined with the 1-D systolic array in a single database visit is equal to the 

number of PEs in the array, the 2-D array requires a ‘PE level’ for each item. This 

means that the size of the array almost doubles to accommodate an extra item. Table 

7.7 shows the resource utilisation of the 2-D array when built to support mining a 

different number of items in a single database visit.  

Table ‎7.7 Resource utilisation of the 2-D array in a Virtex-6 LX270 FPGA 

Size (No. of items) 5 6 7 8 9 

Size (No. of PEs) 31 63 127 255 511 

Resource Utilisation (%) 1 2 4 10 22 

Max. Frequency (MHz) 360 356 327 290 290 

 

To test the scalability of the proposed mining system, two designs were implemented 

in a Virtex-6 LX240 FPGA. In the first design, all the components of the system are 

static including the systolic array accelerators. A single 1-D systolic array is used for 

Tasks 1,2,3 and 4 of the mining process to achieve minimal area occupation. Both 

the 1-D array and the 2-D array share the area designated for the accelerators (see 

Figure 7.7). A Microblaze processor is used to control the mining tasks. Any test 

database in initially stored in an external CompactFlash memory. After power up of 

the system, the database is transferred to a DDR memory through the PLB bus which 

connects to a single port of an MPMC DDR memory controller. Through a Central 

DMA IP, the Microblaze processor can access the database stored in the DDR 

memory. On the other hand, streaming the database to/from the systolic array 
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accelerators is performed using a dedicated NPI memory controller. The NPI 

controller utilises two ports of the MPMC controller; one is used for reading and the 

other is used for writing. A single array controller is used to control the operation of 

the two systolic arrays according to the task and mode initiated by the Microblaze 

processor.           

 

Figure ‎7.7 The Static implementation of the system 

 

The second implemented design is partially reconfigurable. In the second design, the 

area designated for the accelerators is divided into different reconfigurable slots. The 

height of each slot is equal to height of a clock region. BMs are placed at the edges 

between the slots and the static region following the GoAhead design flow (see 

Figure 7.8) [37]. The output connections of each slot are connected to the input 

connections of the next slot. All the slot’s output connections are also connected to 

multiplexers. To configure a 1-D systolic array, one or more slots can be configured 

with fixed-sized 1-D arrays, depending on the required overall size of the array. The 

array controller always streams the database data through the input connections of 

the first slot. On the other hand, the accelerators output data is passed to the array 

controller through the multiplexers. The Microblaze selects one of the multiplexers 

output depending on the size selected for the acceleration task. It is noted that 

concatenating different slots to parametrize the size of the accelerator is only 

applicable to the 1-D systolic arrays. The 2-D systolic array has a fixed size and is 
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configured on top of all the reconfigurable slots. The smallest version of the ICM 

presented in Chapter 4 is used to configure the accelerators using partial bitstreams 

stored in the DDR memory. The ICM is connected to a dedicated NPI port of the 

MPMC controller. The used version of the ICM does not support the multiple-clone 

configuration technique, which greatly reduces the configuration time for the 1-D 

systolic arrays. Since the locations of the slots are fixed, cloning several instances of 

the 1-D systolic arrays is still possible by generating several compressed partial 

bitstreams offline. In the implemented design, six reconfigurable slots are used for 

the configuration of the accelerators. This means that cloning the fixed-sized 1-D 

array over any number of slots require generating six compressed partial bitstreams.                        

 

Figure ‎7.8 The DPR-based implementation of the system 

  

In the two implementations of the system, the area designated for the accelerators is 

limited to around 40% of the FPGA. This area has to be shared between the 1-D 

systolic array and the 2-D systolic array in the static implementations. Reducing the 

size of the 1-D systolic array can impact the system as the number of PEs in Task4 

should be larger than the maximum number of items in any database transaction. 

This means that the size of 1-D array should not be smaller than a specified. In this 

analysis, the number of PEs in the static 1-D systolic array is selected to be 200, 
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which consumes around 29% of the FPGA resources. This leaves around 10% of the 

designated area for the 2-D array (eight PE levels).     

Using DPR, the systolic arrays can share the same FPGA resources within the 

designated area, and therefore, a larger number of PEs can fit in the designated area 

in each task. The designated area for the systolic array was divided vertically into six 

equally-sized slots. Each slot can fit up to 70 PEs of the largest 1-D systolic array 

(Task4). A fixed number of 70 PEs was selected for all the task accelerators, giving a 

total of 420 PEs when using all the reconfigurable slots. On the other hand, a 2-D 

array containing nine PE levels was able to fit in the designated area of the partially 

reconfigurable implementation. Figure 7.9 shows two floorplan images of the two 

prototype implementations. Table 7.8 reports the resource utilisation of the static 

logic in the two implementations, whereas Table 7.9 summarises the main 

characteristics of the two implementations of the system. 

 

Table ‎7.8 Static logic resource utilisation in a Virtex-6 LX270 

Implementation Static DPR-based 

Slice Utilisation (%) 49 10 

BRAM Utilisation (%) 7 7 

 

Table ‎7.9 Comparison between the two system implementations 

Characteristics Static DPR-based 

1-D systolic array size (PEs) 200 420 (70 per slot) 

2-D systolic array size (PEs) 255 (8 items) 511 (9 items) 

Type of array Static Partially reconfigurable 

Reconfiguration method NA Slot-based  

1-D array reconfiguration time (ms) NA 
Minimum (1 slot) = 1.5 

Maximum (6 slots) = 3.8 

2-D array reconfiguration time (ms) NA 9.2 
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Figure ‎7.9 Floorplan images of the two implementations in a Virtex-6 LX270 

7.4 Experimental Results     
 

In order to analyze the performance of the proposed frequent itemset mining system, 

several real databases were considered as benchmarks for the two implementations. 

Table 7.10 lists the benchmark databases, which were collected from [186]. Most of 

the system’s components were run at 100MHz, apart from the MPMC memory 

controller which takes a 200MHz reference clock. The time overheads for the 

different tasks of the mining process are reported in this section of the thesis. The 

time overhead of each task is only considered after databases are transferred to the 

DDR memory. The time for moving the databases from the CompactFlash memory 

to the DDR memory is not considered in the analysis     

Table ‎7.10 Benchmark databases [186] 

Database 
No. of 

Items 

No. of 

Trans. 

Max. Trans. 

Size 

Min. Trans. 

Size 

Total 

Items 

Size in 

Memory 

(MB) 

chess 75 3196 37 37 118252 0.5 

Pumsb_star 2088 49046 63 49 2475947 9.6 

pumsb 2113 49046 74 74 3629404 14 

kosarak 41270 990002 2498 1 8019015 34.4 
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7.4.1 Item Counting  

 

In the first acceleration task, the database is streamed into the 1-D systolic array from 

the external DDR memory module to calculate the support count of the individual 

items. The number of times the database is streamed into the systolic array depends 

on the number of items in the database and the size of the array. In the static 

implementation, the systolic array is configured with the static components after 

power-up of the device, whereas for the other implementation the reconfiguration 

time of the systolic array account for some of the time overhead of this stage. Table 

7.11 shows the time overhead for the item support counting task. 

Table ‎7.11 Item counting time overhead 

Database 
Time Overhead (ms) 

Static DPR-based 

chess 2.4 5.9 

pumsb_star 68.0 58.2 

pumsb 91.8 81.0 

kosarak 2579.1 1213.6 

    

From Table 7.11, it can be seen that the static implementation performed better in the 

first benchmark compared to the DPR-based implementation. This is because the 

benchmark database is small and only requires a single database scan to calculate the 

support counts of all the items. This means that the reconfiguration time of the two 

slots required for first task accounts for the delay in the DPR-based implementation. 

The DPR-based implementation; however, performed better in the other three 

databases because the static implementation requires more database scans to finish 

the task compared to the DPR-based implementation.   
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7.4.2 Sorting the Frequent Items  

 

In this task a list of frequent items is created and sorted in descending order of the 

support count. In this stage, only the items collected from the previous task are 

streamed into the systolic array. Table 7.12 shows the time overheads for this stage.  

Table ‎7.12 Item sorting time overhead 

Database 
Time Overhead (ms) 

Static DPR-based 

chess <0.1 1.9 

pumsb_star 0.3 4.1 

pumsb 0.3 4.1 

kosarak 83.8 41.4 

 

It can be seen from Table 7.12 that in the first three databases the time overhead is 

dictated by the reconfiguration times in the DPR-based implementation resulting in 

larger time overheads compared to the static implementation. This larger overhead is 

because the number of items in these databases is relatively small. In the last 

database where the number of items is large, the DPR-based implementation 

performed better than the static design. 

7.4.3 Database Pruning  

 

In this task, each item entry in the database is assigned with an order number. This 

task requires the database to be streamed into the systolic array multiple times. The 

number of times the database is streamed into the systolic array depends on the 

number of items in the database, the size of the systolic array and the support 

threshold set for the mining problem. Figure 7.10 shows the time overheads of this 

task for the two implementations when varying the support threshold.  

From Figure 7.10, it can be seen that the higher the support threshold, the smaller the 

time overhead of this task. The time overhead depends on the number of items in the 
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frequent item list. Increasing the support threshold decreases the number of frequent 

items and consequently decreases the number of database scans in this task. When 

the number of frequent items is smaller than the number of PEs in the array, 

decreasing the support count does not affect the time overhead of this task.  

  

 

Figure ‎7.10 Database pruning time overhead 

 

7.4.4 Sorting Database Transactions   

 

This task requires the pruned database created in the previous task to be streamed 

once into the systolic array to rearrange the frequent items in each transaction. Array 

overflow is not considered in this task. This poses a minor limitation as the 

maximum number of items within any transaction must not exceed the array size. 

Experimental analysis of the benchmark databases showed that the first three 

databases in Table 7.10 do not contain any transaction bigger than 200 which is the 

size of the smallest array in the static design. For the last database, setting the support 

threshold in the previous tasks to 1% will guarantee that no transaction contains more 

than 200 items. Table 7.13 shows the database  sorting time when setting the lowest 
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possible support count for the static implementation. It is noted that the maximum 

number of slots is configured in the DPR-based design stage which results in a small 

lag in the execution time of this task. 

Table ‎7.13 Time overhead for sorting database transactions 

Database 
Minimum 

Support 

Time overhead (ms) 

Static DPR-based 

chess 1 2.4 6.2 

pumsb_star 1 48.9 52.7 

pumsb 1 71.3 75.1 

kosarak 9900 74.7 78.5 

 

7.4.5 Itemset Counting 

 

This task is performed using the 2-D systolic array. This array can be used to 

accelerate the itemset counting process by generating some of the frequent itemsets 

in hardware.   A single task calculates the support counts of the itemsets generated 

from the items initialised in the array. This task can be used to sample the database 

by generating the itemsets from particular items of interest. In the DPR-based 

implementation, the size of the array is one level larger compared to the array in the 

static implementation. Figure 7.11 shows the time overhead for generating the 

itemset support counts from “k” items in the benchmark databases, whereby k is the 

number of levels in the systolic array. The DPR-based design takes slightly more 

time to complete this task. This is mainly because of the reconfiguration delay. The 

DPR-based design however, calculates the support counts of double the amount of 

itemsets in every sample of the database. This means that the overall acceleration can 

be much higher with the DPR-based design. If we consider the FPGA-based mining 

system proposed in [63] which also utilises a 2-D systolic array for itemset counting, 

we can see that the number of support counts generated in every sample is much 

smaller compared to the system proposed in this thesis. In addition, the time 

overhead of database sampling in the system proposed in [63] is much larger due to 

applying ‘candidate generation’ for each sample. To demonstrate the benefit of the 
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larger tree in the DPR-based implementation, Figure 7.12 shows a simulation of the 

number of support counts calculated in hardware with respect to the database 

sampling time for the ‘chess’ database, when setting the support threshold to 10%.  

 

 

Figure ‎7.11 Itemset support calculation time overhead for top-k items 

 

 

Figure ‎7.12  Support counts calculated in hardware 
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 7.5 Chapter Conclusion 
 

DPR can greatly extend the flexibility for designing software acceleration platforms 

in FPGAs. Usually, the available resources in FPGAs can be used to implement fixed 

hardware to accelerate certain portions of the software. With DPR, different 

accelerators can be swapped in/out of the FPGA to extend the number of tasks 

performed in hardware and consequently enhance the overall performance of the 

system. This however requires efficient management of the acceleration tasks for a 

given application.  

This chapter presented an FPGA-based reconfigurable platform which aims to 

accelerate the FP-growth algorithm for FIM applications. The proposed platform 

divides the FP-growth algorithm into five acceleration tasks each is performed using 

a specialised systolic array accelerator. Four of the accelerators are based on a 

traditional 1-D systolic array architecture whereas one accelerator is based on a 2-D 

architecture. Two implementations of the proposed platform where demonstrated and 

evaluated. The first implementation deploys all the accelerators in a static design, 

wherein all the accelerators share the available FPGA resources. The second 

implementation was designed with a DPR design flow so that accelerators can be 

swapped at run time allowing for placing larger systolic arrays for each acceleration 

task. Using a slot-based architecture, the size of the 1-D systolic array accelerators 

can be parametrized by selecting the required number of reconfigurable slots hosting 

the accelerators. The regularity of 1-D systolic array accelerators allowed for the 

reconfiguration delay to be significantly reduced using the multiple clone 

configuration technique by cloning the required number of slots (see Chapter 4).     

Experimental analysis with real database benchmarks showed that the DPR-based 

implementation can achieve better overall acceleration in most benchmarks despite 

the reconfiguration overhead. The static implementation performs better than the 

DPR-based implementation when the database is very small and does not require 

larger systolic arrays, which is not the case for most real databases.             
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Chapter 8 : Conclusion and Future Work 
 

This thesis presented several innovative solutions for the internal management of 

DPR in SRAM FPGAs. These solutions addressed two major challenges in the field 

of reconfigurable computing, namely, performance and reliability. Since its 

introduction in the FPGA industry, DPR has been seen as an exciting opportunity to 

implement new solutions to enhance the reliability and performance of many 

applications. However, the deployment of DPR in today’s real-world applications is 

nowhere near its full potential, despite the continuously expanding portfolio of 

devices supporting this feature. This is mainly due to the practical difficulties in 

designing DPR applications and the lack of generic design platforms that naturally 

support high performance and reliability.  

While traditional DPR design flows deploy DPR as a method for basic context-

switch operations of some modules over a defined physical space on the FPGA chip, 

this thesis aimed to better exploit the FPGA’s resources by efficiently managing the 

configuration and execution of fully relocatable modules that perform specific 

computational tasks. This thesis addressed all the design issues and challenges in 

implementing a practical ROS system. Indeed, the work presented in this thesis has 

paved the way for the development of the Reliable Reconfigurable Real-Time 

Operating System (R3TOS), which aims to be a solid platform for fault-tolerant 

applications in reconfigurable hardware.  

The reminder of this chapter summarises the research work covered in the thesis, 

draws conclusions and evaluates the impact of the achievements of the thesis. 

Finally, a discussion highlighting the key areas that require improvement is 

presented, along with planned future work related to this thesis. 
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8.1 Summary and Concluding Remarks  
 

The main contributions in this thesis are presented in Chapters 4, 5, 6 and 7. Chapter 

4 presented the design and architecture of an Internal Configuration Manager (ICM) 

that supports a wide range of configuration operations. The Xilinx Virtex FPGA 

family was the selected target for implementing the proposed ICM, which provides 

several advantages over the currently available ICAP controllers. First of all, the 

proposed ICM is very flexible, supporting a wide range of configuration operations 

that can be tailored to the needs of a particular application. For example, the ICM can 

operate as a stand-alone configuration memory scrubber or as a controller for basic 

DPR operations. The ICM also supports more advanced operations that are 

particularly important for implementing a practical ROS kernel. Bitstream relocation 

can be performed at speeds approaching the theoretical limit of the ICAP, making the 

proposed ICM multiple times faster than the current relocation filters. In addition, the 

relocation and configuration processes are entirely handled by the ICM, allowing the 

system to run more efficiently and to have better multi-tasking capabilities.  

Chapter 4 also introduced two new features for managing ROS tasks. The first 

feature allows for generating a black-box bitstream online to quickly remove the 

configuration of a particular area on the FPGA. This feature is referred to as ‘task 

blanking’ as it can be used in an ROS to efficiently manage the removal of already 

configured modules that are not being used by any task. Removing unused modules 

can reduce the static power dissipation of the system; however, it should be 

performed very efficiently as extra delays incurred from the task removal process can 

degrade the performance of the system. Task blanking is very beneficial when 

implementing an ROS, as no black-box bitstream configuration is required for each 

relocatable module in the system and this can reduce the size of the storage memory 

required for the system. The second advantage of task blanking is the support of 

black-box bitstream compression, which greatly reduces the task removal speed and 

consequently enhances the performance of the system. The second novelty feature of 

the proposed ICM is the multiple-clone configuration technique which, allows for the 

configuration of multiple instances of a relocatable module at the same time. The 
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configuration time of this technique can be several times smaller than the 

conventional configuration method. This feature can be particularly useful in an ROS 

continuously scheduling real-time tasks for execution on the same relocatable 

module. 

Chapter 5 discussed how flexible FT systems can be achieved with reliable 

configuration management. The chapter first presented a discussion of several 

possible design techniques to make the proposed ICM resilient to emerging faults. 

These techniques allow for internal faults within the ICM logic to be corrected by 

partial reconfiguration. The experimental analysis showed that, although modular 

redundancy is very effective in detecting faults in the ICM, the resource utilisation of 

designs based on modular redundancy can be intolerable in systems using the full 

capabilities of the ICM. A novel self-recovery system is proposed to reduce the 

resource utilisation of modular redundancy. The system consists of two RPs, one 

containing the full ICM and the other containing a small recovery controller designed 

with TMR. The full ICM is connected to the ICAP by default; however, when a fault 

is detected in the operation of the ICM, access to the ICAP is switched to the smaller 

recovery controller, which reconfigures the full ICM. Appling TMR to a small part 

of the system resulted in much smaller area occupation compared to full TMR and 

DMR of the ICM, without reducing the self-healing capabilities. Smaller area 

occupation for the static components is always desirable in ROS implementations as 

this means more free area for the execution of tasks and, in turn, leads to better 

performance and multi-tasking. Chapter 5 also demonstrated how the ICM can be 

used for fault mitigation in the rest of the FPGA’s reconfigurable resources. Dealing 

with soft faults was first discussed and several configuration memory scrubbing 

techniques were tested and evaluated. The proposed ICM mainly gives support to 

readback scrubbing as well as external scrubbing to correct bit-flips in the FPGA’s 

configuration memory. Using the proposed ICM, the two scrubbing methods can be 

used in the same system. This can increase the reliability and reduce the probability 

of system failure as the number of single points of failure is reduced to the points 

located at the interconnections between the ICM and the ICAP. The ability to utilise 

the full capabilities of the ICM in a reliable manor enabled the implementation of a 
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comprehensive fault-handling system that mitigates emerging permanent faults as 

well as soft faults. Chapter 5 introduced the R3TOS platform, which allows for the 

execution of tasks using fully isolated relocatable modules. The relocatable module 

architecture in R3TOS provides some important reliability features not present in any 

relocation system. First of all, the fact that the modules are fully isolated means that 

it is highly unlikely that a single fault will propagate from one module to the other. 

This is a problem often seen when a fault alters the routing configuration in the 

FPGAs, causing damage to several modules that share common routes and signals. 

Moreover, in ordinary relocation systems, relocation is only permitted to locations 

containing fixed bus-macros to allow for communicating with the relocatable module 

after configuration. This is not the case in R3TOS, as its ICAP-based communication 

scheme allows for the transfer of data from/to the relocatable modules without the 

need for fixed physical routes and this increases the number of feasible locations for 

each relocatable module. The flexible relocation in R3TOS makes the addition of 

redundant modules for the critical tasks less costly on the performance of the system. 

In fact, using three redundant modules for each relocatable core does not just 

guarantee correct task execution, it also simplifies permanent fault detection and 

greatly reduces the time of permanent fault diagnosis. When a fault is detected by 

task redundancy, only the region occupied by the faulty module is tested once. 

Considering that permanent fault diagnosis has a large time overhead, performing 

on-demand tests on specific regions on the FPGA is much more efficient compared 

to the conventional online testing schemes, which are based on periodic tests over the 

entire FPGA. This thesis proposes using relocatable BIST circuits that can be tiled 

together to test the resources in an area with any size and shape. Using relocatable 

BIST circuits means that only a few configurations are required to be stored in 

external memory. In addition, the multiple-clone configuration technique can 

significantly reduce the diagnosis time overhead which is the major disadvantage of 

online BIST diagnosis.  

A case study application that greatly benefits from the proposed reliability-centric 

configuration management scheme was presented in Chapter 6. Chapter 6 presented 

the design and architecture of a flexible encryption engine over the R3TOS design 
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platform. The engine is designed so that encryption tasks are performed using the 

proposed redundancy system to ensure correct functionality. The reliability of the 

proposed system will guarantee that no secret information is leaked as a result of 

faults in the cipher cores. In fact, the system utilises all the fault detection and 

correction features proposed in the thesis in a single fault-handling scheme. The 

system also introduces a new placement method for relocatable modules consisting 

of multiple-resource types. The proposed placement method does not require a full 

scan of the FPGA’s resource to identify feasible locations for the modules. The 

placement method reduces the FPGA’s horizontal scan time by storing fixed offset 

groups pointing to the regions with identical resource layout. A relocatable module is 

assigned to one of these offset groups, which means that the horizontal locations are 

always pre-determined. Good partitioning of the FPGA’s horizontal layout showed 

that only a few bytes of memory are required for all the offset groups in the largest 

Virtex-4 FPGA device. In addition, an intelligent module-reuse scheme is introduced 

to manage the configuration of relocatable modules in the system. The scheme keeps 

track of the already configured modules in the FPGA to enable them to be reused for 

future tasks. This scheme significantly enhances the performance of the system, 

especially when specific modules are heavily utilised during the operation of the 

system.  

Chapter 7 presents another case study application that is focused on achieving high-

performance software acceleration of database mining algorithms using relocatable 

systolic-array accelerators. The chapter introduced the design and architecture of a 

DPR-based platform to accelerate the FP-growth algorithm that is widely used in 

Frequent Itemset Mining (FIM). The system performs five acceleration tasks in 

hardware and each is executed using a specialised systolic array accelerator. While 

previous work utilised a single systolic array to accelerate a small portion of the 

algorithm, the proposed system deploys DPR to enable more acceleration by time-

sharing the FPGA’s resources among the different accelerators. The resource 

efficiency gained from DPR not only allows for accelerating more parts of the 

algorithm in hardware, but also allows for designing innovative high-performance 

accelerators that would not normally fit within the limited FPGA resources. Four of 
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these systolic array accelerators are designed with a standard 1-D arrangement of 

PEs, whereas one of the arrays is designed with a novel 2-D arrangement of PEs. The 

2-D systolic array accelerates the itemset counting stage, which is the most 

computationally intensive task in the FP-growth algorithm. Compared to a previously 

reported static systolic array architecture, the proposed architecture can achieve more 

than double the acceleration for itemset counting. The high-speed configuration 

possible with the proposed ICM greatly reduces the effect of reconfiguration delay in 

the system performance. Moreover, the flexibility of module relocation allows for 

parametrising the size of the accelerators to fit the computational demands of the 

acceleration tasks. 

8.2 Future Work 
 

There are several aspects of the presented work that would benefit from further 

investigation and improvement. First of all, the presented ICM was mainly 

demonstrated using the Virtex-4 FPGA family. Although the configuration 

architecture and features are almost identical in the new generations of Xilinx 

FPGAs, the ICM cannot be directly applicable to the newer FPGAs (e.g. Xilinx 7-

series FPGAs). To be more precise, some configuration operations related to 

bitstream relocation require the reverse engineering of portions of the target FPGA’s 

bitstream. For example, online routing requires knowledge of the configuration bits 

responsible for enabling/disabling the regional clock buffers and varying the 

frequency of regional clock signals. In addition, ICAP-based communication requires 

knowledge of the LUTs configuration bits as well as the BRAM content mapping 

into the bitstream. Moving the technology to a newer generation of FPGAs requires 

repeating all the reverse engineering experiments.  

All the presented prototype designs utilised a soft-processor implemented in the 

FPGA’s logic to control the system. A soft-processor utilises a large area and this can 

impact the performance of the system. In the first case study, the R3TOS system 

deployed a Microblaze soft-processor to control the execution of encryption tasks in 

the FPGAs (see Chapter 6). Despite the fact that the system’s main focus is the faults 
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that will affect the operation of the encryption cores, faults in the static control logic 

could cause the system to fail. The large resource utilisation of the soft-processor 

prevents the application of TMR in the static logic as this will greatly reduce the area 

dedicated for the execution of tasks and consequently degrade the performance of the 

system. In addition, the performance of soft-processors is significantly inferior to 

ASIC processors and this can be a performance bottleneck when the processor is 

required to perform intensive computations, as seen in the second case study in this 

thesis (see Chapter 7). In this case study, the modest performance of the Microblaze 

processor made the system unable to perform ‘database partitioning’ which is a 

highly performance-demanding operation. This means that connecting an external, 

more powerful processor to the FPGA is a more suitable choice for such 

applications. 

Bitstream security is another issue facing relocation systems in general. Relocation 

requires modifying the original bitstream. When using encrypted bitstreams, a 

decryption function must be implemented in the FPGA’s logic to retrieve the 

configuration data from the encrypted bitstream and enable the configuration 

manager to perform the necessary modifications for relocation. This can affect the 

performance of the system in two ways: first, the decryption function may delay the 

configuration process if not implemented in a pipelined architecture; second, the area 

utilisation of the cipher can reduce the area dedicated for the relocatable modules. 

This problem can be seen in Chapter 6 where only simple scrambling algorithm is 

used for bitstream encryption. This kind of encryption is definitely insufficient, 

especially with the increasing number of side-channel attacks targeting FPGA 

devices. 

Finally, it is clear that current commercial FPGAs are not designed to implement 

systems that heavily utilize the configuration port such as the R3TOS. The maximum 

configuration throughput is 400 MB/s and the newer generation of FPGAs is not 

showing any improvement in configuration speed. This imposes some limitations on 

the type of application that can be implemented using R3TOS. The ICAP-based 

communication is the main aspect of R3TOS that would suffer from the limited 

ICAP speed. Many applications require high-speed streaming of data to the 
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relocatable cores. Implementing such applications may be difficult, especially when 

using modular redundancy as data needs to be transferred more than once using the 

ICAP. Of course, the multiple-clone configuration technique can be deployed to 

reduce the delay of data transfer; however, for wider deployment of this technology, 

the FPGA manufacturers should address the limited configuration throughput in 

future devices.  

To address the aforementioned concerns, several directions can be taken for the 

future work following this thesis. The planned future work is summarised as follows:  

 Support for state-of-the-art devices: A new breed of reconfigurable devices 

consisting of an ASIC processor and an FPGA fabric in a single SoC is taking off 

and catching the attention of researchers in the reconfigurable computing 

community. An example of these devices is the Xilinx Zynq-700 SoCs which 

consist of a dual-core ARM processor and a 7-series FPGA fabric [54]. Migrating 

the presented systems and designs to such platforms will address two limitations 

of the presented work. First, the performance of the ARM processor is much 

superior to the performance of the Microblaze soft-processor and this enables the 

implementation of more complex systems and allows for better control over the 

target application. Second, removing the soft-processor frees a large area from 

the FPGA’s fabric, allowing for the integration of more specialised RMs and 

consequently enhancing the performance of the system. In fact, a joint 

collaboration between the University of Edinburgh and JPL has recently started 

to migrate the design of the presented ICM to the Zynq-7000 devices. The main 

aim of the joint project is to create a generic reliable computational platform for 

common space applications.  

 Solid device security: As stated earlier in this chapter, relocating encrypted 

bitstreams is a major challenge requiring the implementation of a small footprint, 

high-speed decryption block inside the FPGA. The bitstream encryption must be 

strong enough and immune to common attacks targeting FPGAs to justify using 

the presented ICM in commercial application. There are several pipelined 

implementations of the AES algorithm especially optimised for FPGAs. 
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Removing the soft-processor from the FPGA might allow for placing a large 

decryption block such as the AES. Other decryption blocks with much smaller 

area footprints are worth investigating such as the bitstream encryption system 

presented in [187], which is patented by Altera.  

 High-speed IOs: In many applications, large datasets are required to be 

transferred to/from the FPGA. For example, the data mining acceleration system 

presented in Chapter 7 requires the transfer of large portions of the database to 

the FPGA’s main memory. To allow for such data transfers, integration of the 

PCIe standard is planned for the proposed system.  

 Reliability testing: Performing fault injection tests using the configuration port 

of the FPGA may not be enough to justify the reliability of the system. One 

millstone of the joint project between the University of Edinburgh and JPL is to 

perform real radiation tests to better understand the effects of faults on the ICM 

and the reliability of the system.  

 High-level programming: This thesis demonstrated how the R3TOS can be a 

generic platform for implementing FT applications. The next natural step is to 

develop a high-level programming tool that allows designers to code their 

applications entirely in software.  
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