

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Dynamic Partial Reconfiguration

Management for High Performance

and Reliability in FPGAs

by

Ali Ebrahim

A thesis submitted in partial fulfilment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

The University of Edinburgh

March, 2015

I

Declaration

I hereby declare that this thesis was composed and originated entirely by myself, that

the work contained herein is my own except where explicitly stated otherwise in the

text, and that this work has not been submitted for any other degree or professional

qualifications.

Ali Ebrahim

II

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor,

Professor Tughrul Arslan. His excellent supervision and vast knowledge, have added

considerably to my research work. I deeply appreciate his kindness, patience and

continuous guidance throughout my graduate experience.

I would like also to express my gratitude to my supervisor, Dr. Khaled Benkrid, who

introduced me to the exciting field of reconfigurable computing. I would like to

thank him for his guidance and support during the first year of my PhD study. I am

also very grateful to Dr. Ahmet Erdogan, who assisted me in all the academic

procedures and helped me familiarise myself with the facilities and the labs at the

University of Edinburgh.

I am very grateful to the University of Bahrain for providing me with the opportunity

to conduct my research work in the UK. I would like to thank all my colleagues at

the University of Bahrain for their support and encouragements.

I would like to thank all members of the System Level Integration Group (SLIG) at

the University of Edinburgh. My special thanks go to my close colleagues in the

group who worked in the R3TOS project. I am very grateful to my senior colleague

Dr. Xabier Iturbe, who originally conducted this research project and helped me with

his valuable suggestions and guidance. I also acknowledge the contributions of Dr.

Chaun Hong, Dr. Hana Hussain and Mr. Jalal Khalifat, who have been closely

involved in my research work.

Last but not least, I would like to express my deepest gratitude to all members of my

family. Special thanks go to my wonderful parents for their love and support. I must

thank and acknowledge my wife and best friend, Bayan, who has patiently supported

me during the difficult moments of my research. I also would like to thank my new-

born son, Hasan, who gave me the strength and inspiration to complete my thesis.

III

Lay Summary of Thesis

Modern Field-Programmable Gate Arrays (FPGAs) have evolved to devices

consisting of a large number of reconfigurable hardware resources. Hardware

Description Language (HDL) codes can be synthesised to binary files which can be

loaded into the FPGA to implement different hardware functions. Similar to

traditional software solutions, functions can be easily modified and upgraded using

the same hardware components, however, functions implemented on FPGAs can be

customised to perform parallel computations and hence achieve a much higher

performance compared to software solutions that execute algorithms sequentially.

Recent FPGAs support Dynamic Partial Reconfiguration (DPR) which further

enhances the flexibility of the device. DPR allows for changing the functionality of

certain blocks within the FPGA while the rest of the FPGA is operational. This

means that computational functions can be swapped in and out of the FPGA at run-

time while other functions are actively performing computations. DPR has opened

the doors to implement highly adaptive systems which can be deployed in many

applications. Researchers are continually looking for ways to enhance the reliability

and performance of systems implemented in FPGAs using DPR. Enhancing

reliability is particularly important in space and militarily electronic systems where

FPGAs are usually seen as unreliable devices due to their sensitivity to radiation and

harsh environmental conditions.

This thesis proposes a number of novel techniques that deploy DPR to enhance the

reliability and performance of reconfigurable systems. A comprehensive internal

configuration management system for partially reconfigurable FPGAs is introduced.

This system supports high-performance configuration via the Internal Configuration

Access Port (ICAP) as well as several parameterisable fault-detection and fault-

recovery capabilities.

IV

Abstract

Modern Field-Programmable Gate Arrays (FPGAs) are no longer used to implement

small “glue logic” circuitries. The high-density of reconfigurable logic resources in

today’s FPGAs enable the implementation of large systems in a single chip. FPGAs

are highly flexible devices; their functionality can be altered by simply loading a new

binary file in their configuration memory. While the flexibility of FPGAs is

comparable to General-Purpose Processors (GPPs), in the sense that different

functions can be performed using the same hardware, the performance gain that can

be achieved using FPGAs can be orders of magnitudes higher as FPGAs offer the

ability for customisation of parallel computational architectures.

Dynamic Partial Reconfiguration (DPR) allows for changing the functionality of

certain blocks on the chip while the rest of the FPGA is operational. DPR has

sparked the interest of researchers to explore new computational platforms where

computational tasks are off-loaded from a main CPU to be executed using dedicated

reconfigurable hardware accelerators configured on demand at run-time. By having a

battery of custom accelerators which can be swapped in and out of the FPGA at run-

time, a higher computational density can be achieved compared to static systems

where the accelerators are bound to fixed locations within the chip. Furthermore, the

ability of relocating these accelerators across several locations on the chip allows for

the implementation of adaptive systems which can mitigate emerging faults in the

FPGA chip when operating in harsh environments. By porting the appropriate fault

mitigation techniques in such computational platforms, the advantages of FPGAs can

be harnessed in different applications in space and military electronics where FPGAs

are usually seen as unreliable devices due to their sensitivity to radiation and extreme

environmental conditions.

In light of the above, this thesis investigates the deployment of DPR as: 1) a method

for enhancing performance by efficient exploitation of the FPGA resources, and 2) a

method for enhancing the reliability of systems intended to operate in harsh

environments. Achieving optimal performance in such systems requires an efficient

internal configuration management system to manage the reconfiguration and

V

execution of the reconfigurable modules in the FPGA. In addition, the system needs

to support “fault-resilience” features by integrating parameterisable fault detection

and recovery capabilities to meet the reliability standard of fault-tolerant

applications. This thesis addresses all the design and implementation aspects of an

Internal Configuration Manger (ICM) which supports a novel bitstream relocation

model to enable the placement of relocatable accelerators across several locations on

the FPGA chip. In addition to supporting all the configuration capabilities required to

implement a Reconfigurable Operating System (ROS), the proposed ICM also

supports the novel multiple-clone configuration technique which allows for cloning

several instances of the same hardware accelerator at the same time resulting in much

shorter configuration time compared to traditional configuration techniques. A fault-

tolerant (FT) version of the proposed ICM which supports a comprehensive fault-

recovery scheme is also introduced in this thesis. The proposed FT-ICM is designed

with a much smaller area footprint compared to Triple Modular Redundancy (TMR)

hardening techniques while keeping a comparable level of fault-resilience.

The capabilities of the proposed ICM system are demonstrated with two novel

applications. The first application demonstrates a proof-of-concept reliable FPGA

server solution used for executing encryption/decryption queries. The proposed

server deploys bitstream relocation and modular redundancy to mitigate both

permanent and transient faults in the device. It also deploys a novel Built-In Self-

Test (BIST) diagnosis scheme, specifically designed to detect emerging permanent

faults in the system at run-time. The second application is a data mining application

where DPR is used to increase the computational density of a system used to

implement the Frequent Itemset Mining (FIM) problem.

VI

Related Publications

1. A Fast and Scalable FPGA Damage Diagnostic Service for R3TOS Using BIST

Cloning Technique

Ebrahim. A, Arslan. T, Iturbe. X

The International Conference on Field Programmable Logic and Applications (FPL),

pp. 1-4, 2014

2. On Enhancing the Reliability of Internal Configuration Controllers in FPGAs

Ebrahim. A, Arslan. T, Iturbe. X

The NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 83-88, 2014

3. A Platform for Secure IP Integration in Xilinx Virtex FPGAs

Ebrahim. A, Benkrid. K, Khalifat. J, Hong. C

The International Conference on Reconfigurable Computing and FPGAs (ReConFig),

pp. 1-6, 2013

4. Multiple-Clone Configuration of Relocatable Partial Bitstreams in Xilinx Virtex

FPGAs

Ebrahim. A, Benkrid. K, Iturbe. X, Hong. C

The NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 178-183,

2013

5. A Novel High-Performance Fault-Tolerant ICAP Controller

Ebrahim. A, Benkrid. K, Iturbe. X, Hong. C

The NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 259-263,

2012

VII

Contents

Declaration... I

Acknowledgements ... II

Lay Summary of Thesis ... III

Abstract ... IV

Related Publications .. VI

Contents .. VII

List of Figures ... XI

List of Tables ... XIV

List of Algorithms ... XVI

List of Acronyms and Abbreviations .. XVII

Chapter 1 : Introduction ... 1

1.1 Thesis Objectives ... 5

1.2 Novelty and Contribution... 7

1.3 Thesis Outline .. 9

Chapter 2 : Introduction to FPGAs and Dynamic Partial Reconfiguration 12

2.1 Xilinx FPGAs and Design Flow .. 13

2.1.1 Overview of Xilinx Reconfigurable Resources .. 14

2.1.2 Basic Routing and Clocking Structure .. 17

2.1.3 Basic Design Flow .. 20

2.2 Dynamic Partial Reconfiguration ... 22

2.2.1 Xilinx DPR Flow .. 23

2.2.2 Altera DPR Flow ... 26

2.2.3 Configuration Ports ... 28

2.2.4 Bitstream Relocation ... 28

2.3 Chapter Conclusion .. 34

Chapter 3 : Dynamic Partial Reconfiguration for High Performance and Reliability.. 36

3.1 DPR Deployment in High-Performance Systems .. 37

3.1.1 FPGA-based Acceleration in HPC .. 37

3.1.2 Reconfigurable Operating Systems ... 42

3.1.3 Reducing Reconfiguration Delay .. 45

3.2 DPR for Enhanced Fault-Tolerance ... 50

VIII

3.2.1 Background on Faults in SRAM-FPGAs .. 51

3.2.2 Reliability Features in Modern FPGAs ... 53

3.2.3 DPR Techniques for Enhanced Fault-Tolerance ... 54

3.3 Chapter Conclusion .. 61

Chapter 4 : A High-Performance Internal Configuration Manager 63

4.1 General Architecture of the ICM ... 64

4.1.1 Building Blocks of the ICM .. 64

4.1.2 Interfacing with the Main CPU ... 65

4.1.3 The Configuration Operations .. 66

4.2 The ICAP Controller .. 68

4.2.1 Basic Operation of the Internal Configuration Access Port 70

4.2.2 Fast Operation Set-up.. 72

4.2.3 The Data-Transfer Phase ... 77

4.2.4 The Configuration Verification Phase .. 86

4.3 The External Memory Controller ... 86

4.4 Multiple-Clone Configuration.. 88

4.4.1 Overview ... 90

4.4.2 The Clonable Partial Bitstream ... 91

4.4.3 The Configuration Process .. 92

4.5 Performance and Resource Utilisation Evaluation .. 94

4.5.1 Resource Utilisation Evaluation .. 94

4.5.2 Standard Configuration Operations Performance Evaluation 96

4.5.3 Online Black-Box Bitstream Generation .. 100

4.5.4 The Multiple-Clone Configuration Technique .. 101

4.6 Chapter Conclusion .. 102

Chapter 5 : Reliability-Centric Internal Configuration Management 104

5.1 The Design of a Fault-Tolerant ICM ... 105

5.1.1 Triple Modular Redundancy (TMR) ... 105

5.1.2 Dual Modular Redundancy (DMR) .. 106

5.1.3 Operation Monitor... 107

5.1.4 Resource Utilisation vs. Performance ... 109

5.2 Soft-Error Handling Strategies... 110

5.2.1 Internal Readback Scrubbing .. 110

IX

5.2.2 External Configuration Memory Scrubbing .. 115

5.2.3 Configuration Memory Scrubbing Evaluation .. 118

5.3 Permanent-Fault Handling Strategies .. 120

5.3.1 General Fault Mitigation Scheme ... 120

5.3.2 Fast and Scalable BIST Diagnosis .. 123

5.3.3 BIST Diagnosis Evaluation ... 127

5.4 The Reliable Reconfigurable Real-Time Operating System 128

5.4.1 R3TOS Architecture ... 130

5.4.2 Online Routing .. 131

5.4.3 HT Management ... 133

5.5 Chapter Conclusion .. 136

Chapter 6 : An R3TOS-based Reliable and Secure Encryption Engine 138

6.1 Background on FPGA Security.. 139

6.1.1 Basic Security Features in Commercial SRAM FPGAs 139

6.1.2 Side Channel Attacks: Vulnerabilities and Countermeasures 140

6.2 Overview of the Encryption Engine ... 142

6.2.1 The Relocatable Cryptographic Core .. 144

6.2.2 Online Placement of Heterogeneous Cores... 145

6.2.3 Configuration Management and Task Execution .. 153

6.3 Proof-of-Concept Implementation ... 157

6.3.1 Implementation of a Test Relocatable Cryptographic Core 157

6.3.2 Implementing the Static Control Logic ... 162

6.4 Experimental Results ... 166

6.4.1 Task Allocation ... 167

6.4.2 Configuration and Control of the Relocatable Cores .. 168

6.4.3 Task Data Transfer .. 170

6.4.4 Fault Detection and Recovery ... 171

6.4.5 Task Execution Time Overhead .. 171

6.5 Chapter Conclusion .. 172

Chapter 7 : A DPR-based Platform for Frequent Itemset Mining Acceleration 174

7.1 Background on Frequent Itemset Mining .. 175

7.1.1 Background on FIM Algorithms ... 176

7.1.2 FPGA Implementations of FIM Algorithms ... 179

X

7.2 Overview of Proposed System ... 182

7.2.1 Acceleration Task1: Item Support Counting .. 183

7.2.2 Acceleration Task2: Item Sorting ... 185

7.2.3 Acceleration Task3: Database Pruning ... 187

7.2.4 Acceleration Task4: Sorting Database Transactions ... 188

7.2.5 Acceleration Task5: Itemset Counting .. 190

7.3 Implementation and Resource Utilisation .. 194

7.4 Experimental Results ... 199

7.4.1 Item Counting ... 200

7.4.2 Sorting the Frequent Items .. 201

7.4.3 Database Pruning .. 201

7.4.4 Sorting Database Transactions .. 202

7.4.5 Itemset Counting ... 203

7.5 Chapter Conclusion .. 205

Chapter 8 : Conclusion and Future Work ... 206

8.1 Summary and Concluding Remarks .. 207

8.2 Future Work ... 211

References ... 215

XI

List of Figures

Figure ‎2.1 Virtex4 device architecture [25] ... 14

Figure ‎2.2 Virtex-4 CLB and slice architecture [25] ... 15

Figure ‎2.3 Virtex-4 BRAM architecture [25] .. 16

Figure ‎2.4 Routing lines and interconnect pattern in Virtex-4 [26] 18

Figure ‎2.5 Global clock nets and BUFGs in central column [27] .. 19

Figure ‎2.6 Simplified regional clock distribution [27]... 19

Figure ‎2.7 Simplified Xilinx design flow .. 21

Figure ‎2.8 Partial reconfiguration in SRAM-FPGAs ... 22

Figure ‎2.9 Simplified Xilinx DPR flow ... 24

Figure ‎2.10 Reserving static routes in modular DPR ... 25

Figure ‎2.11 Limitations of Xilinx DPR flow ... 26

Figure ‎2.12 Simplified Altera DPR flow ... 27

Figure ‎2.13 Feasible RM relocation ... 30

Figure ‎2.14 Reserving static routes for RM relocation .. 31

Figure ‎2.15 LUT-based BMs ... 33

Figure ‎2.16 On-chip communication infrastructures for relocatable RMs 33

Figure ‎3.1 DPR-based systolic array acceleration ... 41

Figure ‎3.2 Enhanced software acceleration with DPR [71] ... 41

Figure ‎3.3 2-D task allocation algorithms [85] .. 45

Figure ‎3.4 RM pre-fetching ... 50

Figure ‎3.5 DPR-based fault repair in a redundancy system ... 57

Figure ‎3.6 Basic BIST circuit [125] ... 59

Figure ‎3.7 Roving fault detection .. 59

Figure ‎3.8 Circumventing damaged resources ... 60

Figure ‎4.1 Building blocks of the ICM .. 65

Figure ‎4.2 Building blocks of the ICAP controller .. 68

Figure ‎4.3 HWICAP based configuration systems [88]... 70

Figure ‎4.4 The dual-port BRAM block .. 73

Figure ‎4.5 Writing three identical consecutive frames with and without compression 76

Figure ‎4.6 Main states in the data transfer phase ... 78

Figure ‎4.7 Transfer phase for read/write operations .. 80

Figure ‎4.8 Transfer phase for basic partial reconfiguration ... 81

Figure ‎4.9 Frame addressing in Xilinx Virtex FPGAs ... 82

Figure ‎4.10 Transfer phase when relocating to the bottom half of the FPGA 84

Figure ‎4.11 Transfer phase for black-box configuration ... 85

Figure ‎4.12 The external memory controller ... 87

Figure ‎4.13 Possible applications of the multiple-clone configuration 90

Figure ‎4.14 Multiple-clone configuration .. 91

Figure ‎4.15 The clonable bit file .. 92

XII

Figure ‎4.16 Configuration using the clonable bit file .. 93

Figure ‎5.1 TMR design for the ICM .. 106

Figure ‎5.2 DMR design for the ICM.. 107

Figure ‎5.3 CRC error detection in the ICM ... 108

Figure ‎5.4 ECC logic block in a Virtex-4 FX12 FPGA ... 111

Figure ‎5.5 Bit indexing in a configuration frame ... 112

Figure ‎5.6 Configuration data mismatch between ICAP and ECC logic 114

Figure ‎5.7 The ICM scrubbing read operation ... 115

Figure ‎5.8 Online CRC for external scrubbing .. 117

Figure ‎5.9 Scrubbing time overhead .. 118

Figure ‎5.10 Combined external and readback scrubbing schemes 119

Figure ‎5.11 Permanent-fault mitigation ... 121

Figure ‎5.12 Fault diagnosis .. 122

Figure ‎5.13 Tiling the relocatable BIST circuits .. 124

Figure ‎5.14 ORA implemented with a 3-input LUT and a flip-flop [125] 125

Figure ‎5.15 CUT, ORA and TPG arrangement in BIST circuits ... 126

Figure ‎5.16 Configuration time in BIST diagnosis .. 127

Figure ‎5.17 Storage memory required for BIST configurations .. 128

Figure ‎5.18 R3TOS [17] .. 129

Figure ‎5.19 Simplified R3TOS architecture .. 130

Figure ‎5.20 ICAP-based data transfer [144] .. 132

Figure ‎5.21 Fixed clock distribution [27] .. 133

Figure ‎5.22 The relocatable module architecture ... 133

Figure ‎5.23 HT execution management ... 134

Figure ‎5.24 Relocatable module’s FSM operation .. 135

Figure ‎6.1 R3TOS cryptography server ... 143

Figure ‎6.2 Generic architecture of the relocatable block cipher .. 144

Figure ‎6.3 Mapping FPGA resources into a resource matrix ... 147

Figure ‎6.4 Offset groups for relocatable bitstream consisting of CLB and BRAM resources

in a Virtex-4 FX60 FPGA .. 148

Figure ‎6.5 Core horizontal layout’s compatibility with offset groups 148

Figure ‎6.6 Placement scheme with task reuse support ... 153

Figure ‎6.7 Secure configuration of relocatable cipher cores .. 154

Figure ‎6.8 Simplified operation of the system ... 155

Figure ‎6.9 Multiple-clone configuration of the same cipher core .. 157

Figure ‎6.10 The PRESENT cipher block diagram [174] ... 158

Figure ‎6.11 Data mapping in the cryptographic core ... 159

Figure ‎6.12 Relocatable core’s LUT semaphores .. 159

Figure ‎6.13 Checksum LUT .. 160

Figure ‎6.14 Resource layout of the relocatable cipher ... 162

Figure ‎6.15 15 Input, output and CRC LUTs mapping in the 19
th
 frame of the first CLB

column ... 162

Figure ‎6.16 Simplified diagram of system’s components .. 163

Figure ‎6.17 Floor-plan image of the control logic in the system ... 165

Figure ‎6.18 Initialisation of the FPGA’s resource matrix .. 166

Figure ‎6.19 Task configuration .. 168

XIII

Figure ‎6.20 Task removal time .. 169

Figure ‎6.21 Maximum task wait time .. 172

Figure ‎7.1 Creating the FP-tree .. 178

Figure ‎7.2 Previously proposed 2-D systolic tree for FIM [63] ... 181

Figure ‎7.3 Database format in memory ... 183

Figure ‎7.4 1-D systolic array ... 184

Figure ‎7.5 3-item 2-D systolic array .. 191

Figure ‎7.6 Itemset counting using the proposed 2-D systolic array 193

Figure ‎7.7 The Static implementation of the system.. 196

Figure ‎7.8 The DPR-based implementation of the system .. 197

Figure ‎7.9 Floorplan images of the two implementations in a Virtex-6 LX270 199

Figure ‎7.10 Database pruning time overhead .. 202

Figure ‎7.11 Itemset support calculation time overhead for top-k items 204

Figure ‎7.12 Support counts calculated in hardware .. 204

XIV

List of Tables

Table ‎2.1 Configuration ports [25] .. 28

Table ‎3.1 Characteristics of hardware and software tasks [72].. 42

Table ‎3.2 Soft-error detection/correction capabilities in different FPGAs 54

Table ‎4.1 Main configuration operations ... 67

Table ‎4.2 Xilinx configuration command structure [25] ... 71

Table ‎4.3 Writing command templates .. 74

Table ‎4.4 Reading command templates ... 75

Table ‎4.5 MFW command templates ... 77

Table ‎4.6 ICM’s resource utilisation in a Virtex-4 FPGA ... 95

Table ‎4.7 Resource utilisation for different versions of the ICM .. 95

Table ‎4.8 Resource utilisation comparison between proposed ICM and HWICAP based

systems in a Virtex-4 FPGA .. 96

Table ‎4.9 Frame read/write time overhead .. 97

Table ‎4.10 Benchmark RMs .. 97

Table ‎4.11 Configuration and relocation times of the ICM ... 98

Table ‎4.12 Throughput comparison between the proposed ICM and other relocation systems

 ... 99

Table ‎4.13 RM removal time using (SRAM controller) .. 100

Table ‎4.14 Test relocatable cores ... 101

Table ‎4.15 Configuration times of the test cores ... 102

Table ‎5.1 Resource utilisation of different versions of the FT-ICM in a Virtex-4 FPGA ... 109

Table ‎5.2 Area occupation and recovery time in a Virtex-4 FX60 FPGA 109

Table ‎5.3 Errors in critical design components .. 110

Table ‎5.4 ECC syndrome decoding ... 111

Table ‎5.5 Truth table for the ORA’s 3-input LUT ... 125

Table ‎6.1 Resource utilisation of the PRESENT cipher in a Virtex-4 FPGA 158

Table ‎6.2 Resource utilisation of the relocatable cryptographic core in a Virtex-4 FPGA . 160

Table ‎6.3 Task allocation time overhead ... 167

Table ‎6.4 Task control time overhead breakdown ... 169

Table ‎6.5 Task input data transfer time .. 170

Table ‎6.6 Task output data transfer time .. 170

Table ‎6.7 Fault detection and recovery time overhead .. 171

Table ‎6.8 Test cipher core execution time ... 171

Table ‎7.1 Example database .. 176

Table ‎7.2 Support count for itemsets in the example database .. 176

Table ‎7.3 Itemsets generated from the FP-tree .. 179

Table ‎7.4 Summary of acceleration tasks in the proposed system 182

Table ‎7.5 CLB resource utilisation of the 1-D array in a Virtex-6 LX270 FPGA 194

Table ‎7.6 Maximum operating frequencies for the 1-D array ... 195

XV

Table ‎7.7 Resource utilisation of the 2-D array in a Virtex-6 LX270 FPGA 195

Table ‎7.8 Static logic resource utilisation in a Virtex-6 LX270 .. 198

Table ‎7.9 Comparison between the two system implementations 198

Table ‎7.10 Benchmark databases [186] ... 199

Table ‎7.11 Item counting time overhead ... 200

Table ‎7.12 Item sorting time overhead .. 201

Table ‎7.13 Time overhead for sorting database transactions ... 203

XVI

List of Algorithms

Algorithm ‎4.1 Calculating relocation row address from Y offsets .. 83

Algorithm ‎5.1 Error index calculation when S [11] = 1 and S [10:0] ≠ 0............................ 112

Algorithm ‎5.2 Error index calculation when S [11] = 1 and S [10:0] = (0 or 2
n
) 113

Algorithm ‎6.1 Vertical scan of the resource matrix ... 150

Algorithm ‎6.2 Resource matrix scan .. 151

Algorithm ‎6.3 Update resource matrix .. 151

Algorithm ‎7.1 Item support counting ... 184

Algorithm ‎7.2 Item list sorting algorithm .. 186

Algorithm ‎7.3 Initialising PEs with frequent items ... 187

Algorithm ‎7.4 Assigning order numbers to items entries in the database............................ 188

Algorithm ‎7.5 Sorting items in database transactions .. 189

Algorithm ‎7.6 Initialising the 2-D systolic array ... 192

Algorithm ‎7.7 Calculating the support count of itemsets ... 192

Algorithm ‎7.8 Shifting items in the same level out of the 2-D systolic array 193

XVII

List of Acronyms and Abbreviations

ACS Adaptive Computing System

AES Advanced Encryption Standard

ASIC Application Specific Integrated Circuit

BF Best-Fit

BIST Built-In Self-Test

BM Bus-Macro

BRAM Block Random Access Memory

CLB Configurable Logic Block

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CUT Circuit-Under-Test

DB Dielectric Breakdown

DCM Digital Clock Manager

DDR Double Data Rate

DM Deadline Monotonic

DMA Direct Memory Access

DMR Dual-Modular Redundancy

DVF Device Vulnerability Factor

DPR Dynamic Partial Reconfiguration

DRC Design Rule Checking

DSP Digital Signal Processing

ECC Error Correction Code

EDA Electronic Design Automation

EDF Earliest Deadline First

FAC Frame Address Calculator

FAR Frame Address Register

FCFS First-Come-First-Serve

FDRI Frame Data Register-Input

FDRO Frame Data Register-Output

FF First-Fit

FIM Frequent Itemset Mining

FPGA Field-Programmable Gate Array

FSL Fast Simplex Link

FSM Finite State Machine

GPP General Purpose Processor

GPU Graphical Processing Unit

GRM General Routing Matrix

HCI Hot Carrier Injection

XVIII

HDL Hardware Description Language

HLS High-Level Synthesis

HPC High Performance Computing

HPRC High Performance Reconfigurable Computing

HT Hardware Task

HWICAP Hardware Internal Configuration Access Port

ICAP Internal Configuration Access Port

ICM Internal Configuration Manager

IDB Input Data Buffer

IOB Input-Output Block

IP Intellectual Property

IPR Impossible Placement Region

JPL Jet Propulsion Lab

KDD Knowledge Discovery and Data Mining

LUT Look-Up Table

MBU Multiple Bit Upset

MER Maximum Empty Rectangle

MFW Multiple Frame Write

MPMC Multi-Port Memory Controller

MSF Masked SRAM object File

MTTD Mean Time To Detect

MTTM Mean Time To Manifest

MTTR Mean Time To Repair

NCD Native Circuit Description

NGD Native Generic Database

NoC Network-on-Chip

NOP No-Operation

NPI Native Peripheral Interconnect

ODB Output Data Buffer

OpenCL Open Computing Language

ORA Output-Response-Analyser

OS Operating System

PAR Place and Route

PE Processing Element

PIM Personality Interface Module

PIP Programmable Interconnection Point

PMSF Partial-Masked SRAM object File

PWM Pulse Width Modulation

ROM Read-Only Memory

ROS Reconfigurable Operating System

R3TOS Reliable Reconfigurable Real-Time Operating System

RM Reconfigurable Module

RTL Register-Transfer Level

RP Reconfigurable Partition

RUT Region Under Test

SB Switch Box

XIX

SEM Soft Error Mitigation

SER Soft Error Rate

SET Single Event Transient

SEU Single Event Upset

SoC System-on-Chip

SOF SRAM Object File

SRAM Static Random Access Memory

TB Tristate Buffer

TPG Test-Pattern-Generator

TMR Triple-Modular Redundancy

UCF User Constraint File

VLS Vertex List Set

XST Xilinx Synthesis Technology

ZBT Zero Bus Turnaround

Chapter 1

1

Chapter 1 : Introduction

It is difficult to comprehend the evolution of the electronics industry and how

technology has changed every aspect of our lives. Embedded computing devices are

being deployed everywhere, from large machinery to small consumer products. The

diverse market and high demand have been the driving force for the massive growth

in the electronics industry, which currently ranks top in research and development

spending among all other industries [1]. After the introduction of the first

commercial silicon transistor in 1954 [2], and throughout the history of computing

hardware, the transistor count in computing hardware has remained more or less on

par with Moore’s law. The continuous advances in manufacturing process

technology have allowed for computing hardware such as processors to have better

transistor density, higher performance and greater energy efficiency.

Processors are based on the stored-programme computing model whereby

programme instructions for a given function are stored in memory. These

instructions are executed sequentially in repetitive fetch-decode-execute cycles.

Processors are associated with software; the ease and convenience of writing

software programs has boosted the productivity of processor-based computing

making it the most dominant trend in computing. In fact, the software industry today

generates over $400 billion in revenue annually due to the widespread use of

processor-powered devices [3].

Most processors are classified as General Purpose Processors (GPPs). GPPs are

designed for a wide range of applications. They are very flexible, especially when

running an Operating System (OS) to manage all the hardware resources and

peripherals. Due to the sequential nature of programme execution in GPP-based

systems, their performance is highly related to their operational clock frequency. In

 Chapter 1: Introduction

2

early processors, manufacturers relied on the advancements in process technology to

increase the operational clock frequency within the acceptable power envelope. This

trend in clock frequency scaling continued until the mid-2000s when the transistor

shrink could no longer compensate for thermal and power dissipation. To continue

scaling the performance of processors, manufacturers slowly adopted multicore

architectures that integrate multiple cores in a single processor so that multiple

instructions can be executed simultaneously. Multicore architectures have become

the norm today and can be seen in a wide range of processors from large high-

performance processors to small low-energy application processors. The

performance of multicore processors does not necessarily scale with the number of

cores in the processor. Performance is highly related to the software implementation

and its ability to parallelise the computing tasks. The performance gain of multicore

processors is governed by Amdahl’s law, which states that the performance gain is

limited by the portion of software that can be parallelised to run on multiple cores

simultaneously [4]. Currently, parallel programming is a hot topic of research with

many emerging programming models and tools [5]. However, performance gain is

not always possible with parallel programming as it depends highly on the

application. Extracting parallelism from algorithms is not always a trivial process. In

addition, parallel programming is not mature enough to be deployed on a wider scale

in an industry dominated by ‘serially-orientated’ software and hardware [6].

GPPs are intended for general use; they might not provide sufficient power for

applications requiring high performance and throughput. Such applications are

usually handled by specialised Application Specific Integrated Circuits (ASICs) such

as Digital Signal Processing (DSP) accelerators and Graphical Processing Units

(GPUs). Depending on the application, modern processors usually work alongside

one or several ASICs that are optimised for specific computation tasks. These ASICs

can be independent chips connected externally to the processor or Intellectual

Property (IP) blocks integrated with the processor in a single System-on-Chip (SoC).

While ASICs greatly enhance performance by customising the hardware to the needs

of specific applications, they compromise flexibility. Once fabricated, ASICs can

 Chapter 1: Introduction

3

only be used for certain types of task and this has limited their deployment to a

limited number of applications.

In general, software provides the best flexibility, whereas custom hardware provides

the best performance. Reconfigurable computing has become one of the major

computing trends to bridge the gap between software and custom hardware in terms

of flexibility and performance. Reconfigurable computing is based on reconfigurable

hardware such as Field-Programmable Gate Arrays (FPGAs). As the name implies,

FPGAs are built out of arrays of reconfigurable ‘logic blocks’, which can be

programmed after manufacturing. Almost any digital hardware circuit can be

implemented in FPGAs with a performance comparable to that of fully-custom

ASICs. While early FPGAs were small devices used to implement simple ‘glue

logic’, modern FPGAs have taken full advantage of the advances in the

manufacturing process to become large and highly dense devices containing many

specialised components and capable of hosting very complex systems in a single

chip. In fact, the transistor count can exceed 20 billion transistors in a modern FPGA

[7]. This huge amount of reconfigurable blocks is enough to emulate 10 ARM

Cortex-A9 CPUs in a single chip.

The FPGA design flow is also rapidly evolving to allow for better productivity and

shorter development time. Traditionally, FPGA design starts with a Register-Transfer

Level (RTL) description typically written in a Hardware Description Language

(HDL). The FPGA industry today is shifting towards a higher level of abstraction in

design. C-to-silicon design tools allow for designing FPGA systems using software

programming languages without the need for creating the RTL description manually.

The main FPGA vendors are starting to push these tools, which are gaining a lot of

popularity commercially and academically. Xilinx, the primary FPGA vendor, was

first to introduce the High-Level Synthesis (HLS) tool, which supports rapid FPGA

design using a broad range of programming languages [8]. Altera, Xilinx’s main

competitor, soon followed, introducing an FPGA compiler for the popular Open

Computing Language (OpenCL). This compiler automatically extracts and translates

OpenCL kernels into deeply pipelined hardware accelerators [9]. With the variety of

design tools available for FPGAs, the FPGA IP market is rapidly expanding. Both

 Chapter 1: Introduction

4

Xilinx and Altera are making their design tools more IP user-friendly. In addition,

big Electronic Design Automation (EDA) companies such as Mentor Graphics and

Synopsys have introduced vender-independent IP platforms, allowing access to

libraries from several third-party IP vendors ([10] and [11]).

FPGAs are all about flexibility when compared to ASICs. The advantage of FPGAs

is not just limited to the flexibility of implementing different designs and the ability

to perform offline design modifications. The Dynamic Partial Reconfiguration (DPR)

feature in high-end SRAM FPGAs allows for certain blocks within the FPGA to be

modified at run-time while the FPGA is operating. DPR can enhance the efficiency

of FPGAs by allowing different functions to share the same hardware and

consequently reduce the overall resource utilisation. DPR can also enhance

performance by time-multiplexing larger functions that share the same hardware

resources. In fact, DPR takes the flexibility of FPGAs to another level and presents

some exciting opportunities to implement new computing architectures that

effectively exploit the FPGA’s resources. The idea of a Reconfigurable Operating

System (ROS) has existed for a long time [12]. An ROS would have all the

flexibility and productivity benefits of a normal OS; however, tasks are executed

using reconfigurable hardware rather than software, allowing for much higher

performance. The lack of a generic hardware platform that allows for continuous run-

time modifications has prevented this idea from materialising into practical systems.

With today’s advancements in FPGA technology and DPR techniques, this idea is

more feasible than ever.

FPGAs allow for in-field repairs, modifications and upgrades, making them very

attractive for space and military electronics. However, space and military electronics

operate in harsh conditions, which can provoke faults in FPGAs. FPGAs are

particularly sensitive to high levels of radiation. The reconfigurability of FPGAs

compensates for this fact as continuous repairs and workarounds are possible at

virtually no cost. Moreover, DPR can be performed from within the FPGA without

the aid of any external control circuitry. This feature allows for implementing self-

healing evolvable systems that adapt not only to temporarily faults but also to

permanent faults caused by device aging.

 Chapter 1: Introduction

5

Unfortunately, the current state of DPR design flows and configuration techniques

does not unleash the full potential of this feature. Particularly, the lack of efficient

configuration management systems limits the adoption of this feature in many

applications that would naturally benefit from DPR. The main aim of this thesis is to

develop an Internal Configuration Manager (ICM) that would enable efficient

deployment of DPR for high performance and reliability. This thesis looks into a

wide range of DPR issues such as: configuration speed, configuration reliability,

DPR design floor planning, reconfigurable module allocation, fault detection and

fault recovery. Moreover, the thesis demonstrates two DPR case study applications;

the first is a reliable encryption engine based on an ROS model for FPGAs and the

second is a high-performance acceleration engine for frequent itemset mining.

1.1 Thesis Objectives

The main objective of the thesis is to propose and develop ways that would unlock

the full potential of DPR and to come up with generic reconfiguration platforms and

configuration techniques that would enable efficient use of the reconfigurable

hardware for several applications. In more detail, the objective of the thesis can be

divided into the following two areas of interest:

 High Performance

DPR can theoretically enhance performance by efficient exploitation of the

reconfigurable resources at run-time. In general, performance gain is achieved by

time-multiplexing several reconfigurable accelerators that share the same

reconfigurable resources. Three questions need to be answered to come up with the

optimal performance gain using DPR:

1) Can we reduce reconfiguration overhead through efficient management of

reconfiguration tasks?

Reconfiguration is a sequential process with a throughput limited by the rated

maximum clock frequency. In many cases, reconfiguration can be a performance

bottleneck preventing any feasible performance gain out of DPR. This thesis

 Chapter 1: Introduction

6

aims at developing new configuration techniques that allow for higher

configuration throughputs. Ultimately, a generic internal configuration controller

should be able to efficiently handle all the configuration operations in any

system.

2) Can a generic DPR-based computational platform be used for software

acceleration?

This thesis aims to explore how efficient configuration management and high-

speed reconfiguration would affect the overall performance of the system. This

thesis also aims to develop a generic platform for high-performance acceleration

through DPR. This platform should be applicable to a wide range of

computationally intensive algorithms.

3) Can DPR provide an actual gain in performance in a real-world application?

This thesis demonstrates a real-world application in which DPR is applied to gain

a performance advantage over static implementations. Customised reconfigurable

accelerators are developed for the selected applications and deployed in the

generic acceleration platform.

 Reliability

DPR can be the basis for implementing self-healing reliable systems. Using DPR for

reliability requires addressing several aspects in the system. This thesis aims to

develop a reliability-centric configuration management system that addresses the

following open problems:

1) Can DPR be used for effective transient fault detection and correction?

The thesis aims to develop a comprehensive transient faults handling scheme that

takes into account both fault detection and correction in the static and

reconfigurable parts of the system. The scheme should efficiently utilise the

configuration port of the target device for continuous repairs by means of

conventional memory scrubbing techniques as well as DPR.

 Chapter 1: Introduction

7

2) Can DPR be used for effective permanent fault detection and correction?

The fault handling scheme should consider permanent damage in the target

device’s reconfigurable fabric and be able to work around the affected resources.

This fault handling scheme should extend the life-time of the device and make it

suitable for long missions in harsh environments. The thesis aims to develop a

scalable self-test mechanism to test the reconfigurable resources at run-time by

loading specialised testing circuits.

3) Can a single system be used for both transient and permanent fault mitigation?

Designing DPR applications is not a trivial process, especially when fault-

tolerance is a main objective in the design. This thesis aims to pave the way for a

Reliable Reconfigurable Real-Time Operating System (R3TOS) that can offload

computation tasks to specialised hardware modules. This ROS should naturally

handle both transient and permanent faults and guarantee reliable execution of

the computation tasks. The thesis also aims to demonstrate the main

functionalities of R3TOS with a case study application that requires reliability

and high-performance.

1.2 Novelty and Contribution

First of all, this thesis presents the design and architecture of a novel ICM for Xilinx

FPGAs that supports a wide range of configuration operations [13]. The ICM is

highly portable and is optimised for efficiency and high throughput. In addition, the

ICM can act as a fast bitstream manipulation filter based on a novel offset-based

relocation model. Moreover, the novel multiple-clone configuration technique is

fully integrated into the ICM, allowing for high throughputs that can be multiple

times greater than the maximum theoretical throughput rated for the internal

configuration port for Xilinx FPGAs [14].

 Chapter 1: Introduction

8

A novel fault-tolerant version of the ICM is also presented in the thesis [15]. The

ICM can detect and recover from faults in its logic. This fault-tolerant ICM is the

core component in R3TOS ([16] and [17]).

In addition, this thesis presents a fault-handling scheme that addresses both transient

and permanent faults in an ROS-like system. The scheme combines several fault

mitigation techniques: memory scrubbing, modular redundancy and module

relocation. Module relocation is heavily utilized to freely move computational

modules around permanently damaged resources. Permanent fault detection and

isolation is achieved by a novel Built-In Self-Test diagnosis scheme, which deploys

the multiple-clone configuration technique to become considerably faster than the

available FPGA online-testing techniques [18].

The thesis also presents a practical placement algorithm for relocatable modules

based on an efficient online vertical scanning of the FPGA resources. The

algorithm’s main contribution is the support of heterogeneous module relocation as

well as efficient module reuse.

Lastly, two case study applications are demonstrated in this thesis. The first is a

flexible encryption engine implemented over R3TOS to provide a secure and reliable

system for executing encryption tasks. The potential capabilities of the system are

demonstrated with a test relocatable hardware cipher, which can be allocated in

several locations in the FPGA to serve different concurrent encryption tasks. The

second application is a novel DPR implementation of a frequent itemset counting

system, which deploys efficient management of acceleration tasks to speed-up the

itemset counting process. Acceleration tasks are performed using customised systolic

array accelerators which are managed internally using the proposed ICM.

The work presented in this thesis is a part of the R3TOS project carried out by the

System Level Integration Group (SLIG) at the University of Edinburgh. It is

important to acknowledge the contributions of the other member in the group in the

R3TOS project. Dr. Xabier Iturbe developed the R3TOS kernel. More specifically,

he developed the scheduling and allocation algorithms. Dr. Chuan Hong coded these

algorithms and implemented dedicated hardware scheduler and allocator. The

R3TOS scheduling and allocation algorithms are not used in this thesis. However,

 Chapter 1: Introduction

9

Dr. Xabier Iturbe, performed reverse engineering experiments to extract the

functionality of some configuration bits in the Virtex-4 FPGA. The results of these

experiments are used in Chapter 6. In addition, he developed the main mechanism for

online clock routing as well as one of the techniques for controlling the relocatable

cores. This technique is based on the LUT and BRAM semaphores and is presented

in Chapter 5. Finally, Dr. Hana Hussain has kindly provided the HDL code for the K-

means core used in the analysis of Chapter 4.

1.3 Thesis Outline

This thesis is composed of eight chapters. The remainder of this thesis is summarised

as follows:

Chapter 2: Introduction to FPGAs and Dynamic Partial Reconfiguration

This chapter introduces the basics of FPGAs in terms of: architecture, reconfigurable

resources and design flow. The industry’s DPR design flow is also introduced with

an overview of its limitations. This chapter also reviews the relevant research work

that aims to overcome the limitations of the basic DPR flow and allow for more

advanced partially reconfigurable systems.

Chapter 3: Dynamic Partial Reconfiguration for High-Performance and

Reliability

This chapter is a literature review of the main trends in DPR deployment for high

performance and reliability. The chapter addresses the different techniques for

enhancing performance using DPR as well as techniques to speed up the

reconfiguration process. This chapter also discuss the concept of an ROS and its

implementation issues on FPGAs. Reliability of FPGAs and fault mitigation

techniques are addressed in this chapter with special emphasis on DPR-based fault

mitigation for transient and permanent faults.

 Chapter 1: Introduction

10

Chapter 4: A High-Performance Internal Configuration Manager

This chapter presents the design and architecture of the first all-in-one ICM, which

independently handles the configuration protocols and bitstream manipulation for

module relocation. This chapter explains in detail the configuration process through

the Internal Configuration Access Port (ICAP) in Xilinx FPGAs and how the

configuration operations can be managed efficiently to allow for the maximum

throughput.

Chapter 5: Reliability-Centric Internal Configuration Management

This chapter demonstrates how internal configuration can be steered towards

reliability and fault-tolerance. Different fault detection and recovery methods

through the ICAP are explained in detail. In addition, different design hardening

techniques for the ICM are presented and evaluated. This chapter draws a

comprehensive fault-handling scheme and an ROS configuration management

system, which led to the development of the R3TOS.

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

This chapter presents a practical case study application of R3TOS. The case study

demonstrates how continuous encryption tasks can be executed using relocatable

cipher blocks. This chapter presents some practical solutions for module relocation,

including: on-chip communication, remote task redundancy voting, secure

configuration and task allocation. The performance of the implemented system is

evaluated against software when using a test encryption algorithm.

Chapter 7: A DPR-based Platform for Frequent Itemset Mining Acceleration

This chapter presents a DPR-based platform for accelerating the popular FP-growth

algorithm, which is widely used for frequent itemset mining. In this case study, the

FP-growth algorithm is broken into several acceleratable stages. The proposed

platform manages the execution of several acceleration tasks using relocatable

systolic array accelerators. The overall performance of the implemented system is

evaluated against static implantations of the algorithm.

 Chapter 1: Introduction

11

Chapter 8: Conclusion and Future Work

This chapter draws conclusions from the research presented in the thesis and points

towards the remaining open problems and future work.

Chapter 2

12

Chapter 2 : Introduction to FPGAs and

Dynamic Partial Reconfiguration

FPGAs are reconfigurable logic devices that can repeatedly be reconfigured

(reprogrammed) to alter or change their functionality. While early FPGAs were

basically built out of small arrays of reconfigurable blocks used to implement simple

glue-logic circuits, modern FPGAs have evolved dramatically over the past two

decades to become complex devices containing several types of reconfigurable

resource and several specialised components that can be used to implement

specialised SoCs very quickly and at a very low cost ([19] and [20]). Modern FPGA

technology is attracting the attention of engineers to explore different applications

that would benefit from the advantages offered by FPGAs over ASICs. The key

advantage of FPGAs over ASICs is flexibility. Indeed, almost any digital circuit can

be implemented using pre-fabricated FPGAs allowing for fast and low-cost

development and short time-to-market. In addition the ability to reconfigure FPGAs

means that FPGA-based systems can be upgraded on-field, which protects such

systems from obsolescence and allows for adapting to emerging standards.

Furthermore, recent high-end FPGAs take the flexibility of the device to another

level by allowing for run-time modifications to the system implemented on the

FPGA fabric using DPR. DPR allows for sub-blocks in the system to be modified or

changed without disturbing the operation of the other blocks. The flexibility brought

by DPR can be harnessed to improve several design aspects such as performance

[21], functional density [22] and power utilization [23].

The rich features offered by modern FPGAs have contributed to the significant

growth in the FPGA market, which has been dominated by two companies, namely,

Xilinx and Altera. According to [24], the 2013 FPGA market was worth $4.5 billion

compared to $2 billion in 2001. During this period, Xilinx has maintained a steady

Chapter 2: Introduction to FPGAs and DPR

13

lead in the market with around 45%-50% of the total market share compared to a

40%-45% market share for Altera. Together these two companies account for around

90% of the FPGA market.

Both Xilinx and Altera focus their attention on SRAM-based FPGA technology,

which is the most common type of FPGA technology and the one that currently

supports DPR. This chapter prepares readers who are not so familiar with SRAM-

based FPGA technology to better understand the work presented in this thesis. With

focus on the Xilinx Virtex FPGA family, this chapter presents an overview of the

FPGA architecture and DPR design flows as found in the literature.

2.1 Xilinx FPGAs and Design Flow

The Xilinx Virtex FPGA family is the high-end FPGA family offered by Xilinx. This

family of FPGAs has evolved since the introduction of the first Virtex FPGA in

1998. After the successful launch of the first Virtex FPGA, Xilinx has followed up

with the Virtex-2, Virtex-2 pro, Virtex-4, Virtex-5, Virtex-6 and recently the Virtex-

7. While earlier iterations of the Virtex FPGAs have followed an incremental path of

evolution in terms of fabrication process technology and number of reconfigurable

blocks in the device, the Virtex-4 FPGA marked a milestone in the Virtex family

evolution and a major architectural change to the former iterations of the family. The

renowned Virtex-4 architecture became the standard for the following iterations of

the Virtex family, which focused on increasing the device density and integrating

more specialised components while keeping the general resource layout and

configuration architecture.

The Virtex-4 architecture divides the chip into several ‘clock regions’ (see Figure

2.1). Each clock region contains tiles of reconfigurable resources. These

reconfigurable resources are organised in columns within each clock region in a

similar arrangement. A column can contain a single type of reconfigurable resource

and can be configured using a number of ‘configuration frames’. The size of the

configuration frame is fixed for all columns and is equal to 1312 bits arranged as 41

Chapter 2: Introduction to FPGAs and DPR

14

words each of 32-bit. In more recent Virtex FPGAs, the size of the configuration

frame is larger to accommodate for the extra resources in each column.

Figure ‎2.1 Virtex4 device architecture [25]

There are several standard types of reconfigurable resource, as seen in Figure 2.1.

The main reconfigurable resources are: Configurable Logic Blocks (CLBs), Block

RAM (BRAMs), Digital Signal Processing (DSP) Blocks, Input/Output Blocks

(IOBs) and the clock management resources denoted by CLK. In addition to the

reconfigurable resources, Xilinx FPGAs contains some hard-wired resources that

have fixed locations on the chip and can be integrated with circuits implemented on

the reconfigurable logic. These are referred to as primitives and include components

such as processors, configuration ports and clock buffers.

2.1.1 Overview of Xilinx Reconfigurable Resources

This section describes the most relevant types of Xilinx reconfigurable resources,

namely, the CLBs and the BRAM.

Chapter 2: Introduction to FPGAs and DPR

15

The Configurable Logic Blocks

CLBs are the main type of reconfigurable logic resource in Xilinx FPGAs. Most of

the Virtex FPGA fabric is composed of CLB columns. In Virtex-4 FPGAs, a CLB

column consists of 16 vertically aligned CLBs. A CLB consists mainly of Look-Up

Tables (LUTs), flip-flops and specialised carry-chains for direct connections with the

top and bottom CLBs in the column. The LUT is the core element in a CLB. LUTs

are memory components that can be initialised with the truth table of any function of

its input connection. Virtex-4 FPGAs contain 4-input LUTs, which means it can be

programmed to compute any logic function with up to four inputs. By connecting

several of these LUTs, more complex functions or functions with more inputs can be

implemented.

Each CLB is divided into four slices; two of these slices are of type SliceM and the

other two are of type SliceL. Each slice contains two LUTs, two flip-flops and two

carry-chains (see Figure 2.2). SliceL can only be used to implement ‘Logic’

functions. SliceM LUTs can be used to implement ‘Memory’ components such as

shift registers and distributed RAM in addition to the basic logic functions.

Figure ‎2.2 Virtex-4 CLB and slice architecture [25]

Chapter 2: Introduction to FPGAs and DPR

16

The Block Random Access Memory

BRAMs are on-chip memory components organised in dedicated columns in the

FPGA. Each column contains four BRAMs, and each can store 16Kb of data with an

additional 2Kb of parity bits. Each BRAM can be configured as a single-port or dual-

port memory and can also be configured with any memory location size from 16K x

1 to 512 x 32. Several BRAMs with the same configuration can be connected

together to realise larger memory blocks. BRAMs content can be initialised in the

HDL file, thus giving the option of implementing on-chip Read-Only Memory

(ROM).

In addition to the core BRAM resources, a BRAM column also contains dedicated

First-In First-Out logic, which enables the implementation of synchronous or

asynchronous FIFOs (see Figure 2.3). This gives designers the option of

implementing larger FIFOs without utilising any of the CLB resources.

Figure ‎2.3 Virtex-4 BRAM architecture [25]

Chapter 2: Introduction to FPGAs and DPR

17

2.1.2 Basic Routing and Clocking Structure

Virtex FPGAs have a segmented and hierarchical routing structure. Most of the

FPGA’s configuration data is related to the routing of the internal logic. The fixed

wiring in the FPGA can be divided into two categories: the logic routing lines and

the clock nets. The logic routing lines connect the internal logic’s signals, whereas

the clock nets connect a clock signal to the resources of the FPGA.

The Routing Structure

Routing lines are configured by manipulating a routing structure called the General

Routing Matrix (GRM). Resources in the FPGA are connected to the GRM via

reconfigurable Switch Boxes (SBs). Routing lines in the GRM are divided into two

types: Global lines and Local lines (see Figure 2.4a). Global lines can be one of two

types of line: Long lines or Hex lines. Long lines connect SBs either vertically from

the top to the bottom of the device or horizontally across the entire width of the

device. Hex lines connect an SB to two neighbouring SBs located three and six

positions away from this SB, either vertically or horizontally.

On the other hand, Local lines can be one of two types: Double lines or Direct lines.

Double lines connect an SB to the first and second neighbouring SBs, either

vertically or horizontally. Direct lines connect an SB to the first neighbouring SB,

either vertically, horizontally or diagonally.

Activating a connection between a routing line and an SB is performed via

programming a Programmable Interconnection Point (PIP) during the configuration

of the device. An SB has several PIPs, one for each routing line connected to the SB.

The PIP is basically a transistor switch that can be either enabled or disabled by a

particular bit in the configuration file. To establish a particular connection in the SB,

two PIPs must be enabled, one for the input and the other for the output. A

connection between two SBs is referred to as a ‘hop’. Multiple hops may be required

to connect two SBs, depending on their location. Figure 2.4b shows the number of

Chapter 2: Introduction to FPGAs and DPR

18

hops required for connecting a particular SB to a central SB without considering the

global lines.

Figure ‎2.4 Routing lines and interconnect pattern in Virtex-4 [26]

The Clock Tree

The clock routing in Virtex FPGAs is independent of the logic routing. In FPGAs,

the clock tree is a fixed structure of nets and clocking resources that distribute the

clock to the synchronous resources across the device. The clock resources are

divided into global clocking resources, which drive the clock into dedicated global

nets, and regional clocking resources, which drive the clock into dedicated regional

nets within each clock region in the device [27]. The global clocking resources are

typically located in the central columns of the device (see Figure 2.5a) where global

clock buffers denoted by BUFGs are used to drive the clock to the global nets. An

external clock source can be directly connected to a BUFG or can be connected first

to a Digital Clock Manager (DCM), which can be used to adjust the frequency of the

clock source (see Figure 2.5b).

Chapter 2: Introduction to FPGAs and DPR

19

Figure ‎2.5 Global clock nets and BUFGs in central column [27]

Global clock nets can connect the clock directly to the resources of the FPGA or can

connect the clock first to a regional clock buffer denoted by BUFR. Each clock

region in the device contains two BUFRs; each one has a dedicated regional clock

net (see Figure 2.6).

Figure ‎2.6 Simplified regional clock distribution [27]

Chapter 2: Introduction to FPGAs and DPR

20

In general, resources can be connected to any of the global or regional clock nets by

programming the PIPs required to set the desired clock connections. If a regional net

is desired to clock the resources of a particular implementation on the FPGA, the

following sequence of resource is a possible path for the clock from the external

source:

IOB  DCM  BUFG  PIPs  BUFR  PIPs  Resources

2.1.3 Basic Design Flow

In SRAM-FPGAs, the SRAM cells that hold the configuration of the device are

referred to as the ‘configuration memory’. Because SRAM is volatile, the

configurations file (a.k.a. the bitstream) is usually stored in an external non-volatile

memory module and is loaded into the FPGA’s configuration memory after power-

up of the device. Typically, FPGA designs start with HDL files written by the

designer to describe the functionality of the logic to be implemented on the FPGA.

After going through a number of design stages supported by the FPGA’s vendor

design tools, a bitstream is generated and can be loaded into the FPGA’s

configuration memory through one of the configuration ports of the device. In the

Xilinx design flow, there are three main stages required to generate the bitstream:

Design Synthesis: In this stage, the HDL files described by the designers are

converted into one or several netlists using the Xilinx Synthesis Technology (XST).

A netlist file is denoted as the NGC and basically contains a generic hardware

description of the implemented design (i.e. adders, multipliers, logic gates, etc.).

Design Implementation: This stage is composed of three design processes: the

Translate, MAP and Place and Route (PAR). The Translate process merges all the

NGC files into a single Native Generic Database (NGD). The NGD file is generated

by the NGDBuild tool and contains a lower-level description of the hardware

resources required in the target device to implement the design. The designer may

direct the NGDBuild tool with specific constraints; these constraints may be the

Chapter 2: Introduction to FPGAs and DPR

21

exact locations of some of the required logic resources in the FPGA die. All of the

design constrains are specified in the User Constraint File (UCF) before the translate

process.

The second process in the design implementation stage is the MAP process, which

physically maps all the logic defined in the NGD file to the FPGA resources such as

CLBs and IOs. The MAP process generates the Native Circuit Description (NCD)

file, which physically maps the design to the components of the FPGA.

The final process in the design implementation is the PAR, which takes the NCD file

to generate another NCD file containing the final placed and routed design.

Bitstream Generation: After the final NCD file is created in the design

implementation stage, the bitstream can be generated using the BITGEN tool, which

generates a binary file denoted as the BIT file that represents the device

configuration for the desired design. Figure 2.7 summarises the main design stages

required to generate the BIT file for a particular design.

Figure ‎2.7 Simplified Xilinx design flow

Chapter 2: Introduction to FPGAs and DPR

22

2.2 Dynamic Partial Reconfiguration

DPR is an exclusive feature to SRAM-FPGAs where parts of the configuration

memory are modified at run-time to alter the functionality of some parts of the

implemented system. While a typical implementation on the FPGA has a single full

bitstream loaded to the FPGA’s configuration memory after power-up of the device,

any implementation deploying DPR has a full bitstream as well as several partial

bitstreams that correspond to the different configurations of the dynamically

reconfigurable parts in the system (see Figure 2.8).

Since the introduction of DPR in some of the Xilinx devices of the mid-90s, the

technology and software tools that support this feature have evolved dramatically.

While this technology was limited to high-end Xilinx FPGAs a decade ago, most of

the recent FPGAs introduced by Xilinx and Altera support DPR, making the

technology widely available and a key feature of SRAM-FPGAs.

Figure ‎2.8 Partial reconfiguration in SRAM-FPGAs

Chapter 2: Introduction to FPGAs and DPR

23

2.2.1 Xilinx DPR Flow

In order to implement a partially reconfigurable design in a Xilinx FPGA, a design

can follow the Xilinx DPR flow, which is supported by the PlanAhead software tool

(see Figure 2.9) [28]. The DPR flow separates the design into two parts: the static

logic, which does not change during run-time, and several Reconfigurable Modules

(RMs), which are swapped in and out of the FPGA at run-time. Typically, the design

flow starts with a top HDL file containing a hierarchical description of the entities in

the design. The design may contain one or several reconfigurable entities that are

reconfigured with RMs at run-time. Each RM in the design is described with a

separate HDL file and is synthesised separately from the top HDL file to generate

separate NGC files, one for each RM in addition to the top NGC file. Before the

design implementation stage, the design is floor-planned using the PlanAhead tool.

In floor-planning, each reconfigurable entity in the design is placed in a distinct

reconfigurable region in the chip. The reconfigurable regions are often referred to as

Reconfigurable Partitions (RPs). Each RP in the design is assigned with the desired

RMs, if the design passes the Design Rule Checking (DRC), placement constraints

can be created for the selected PRs.

In a DPR design, the implementation stage is repeated several times. Each

implementation is referred to as a ‘run’. Each run contains a different set of RMs

assigned to the RPs in the design. The design with a particular set of RMs is

implemented in the first run to create several NCD files, one for the static logic in the

design and one for each RM in the design. The NCD file of the static logic from the

first run is then reused for the remaining runs to ensure that no routing conflicts

occur between the different implementations when generating the NCD files for the

remaining RMs in the design.

In the bitstream generation stage, the static NCD file with the RM NCD files is used

to generate full bitstreams, one for each run in the design, and partial bitstreams, one

for each RM in the design. Depending on the nature of the design, the designer may

select the type of the partial bitstream, which can be either a modular partial

Chapter 2: Introduction to FPGAs and DPR

24

bitstream or a difference-based partial bitstream. Modular partial bitstreams contain

the full configuration of the RP area, whereas difference-based partial bitstreams

contain individual configuration frames that perform minor changes in the RP area.

Difference-based partial reconfiguration is suitable for designs with very similar

RMs that differ only in terms of the content of some of its memory components (e.g.

LUT equations, BRAM initialisation, etc.).

It is also noted that, in the case of modular partial reconfiguration, each RP can be

assigned with an optional ‘black-box’, which is an empty module configured when

an RP is not used by any RM to reduce the static power dissipation.

Figure ‎2.9 Simplified Xilinx DPR flow

Limitations of Xilinx DPR Flow

Unfortunately, Xilinx DPR flow and software tools only support some of the

capabilities that can be exploited in partially reconfigurable FPGAs. The main

limitation of the Xilinx DPR flow is that designers do not have control over the static

routes in the design. There are two types of route in a DPR design: the static route

Chapter 2: Introduction to FPGAs and DPR

25

which connects the different static components together; and the RM route which

connects the local components inside each RM. Generally, the routing in Xilinx DPR

flow is bound by three rules:

1) The static routes can pass through an RP. However, these routes needs to be

reserved in each RM assigned to the RP. When an RM is configured the static

routes are overwritten without disturbing the operation of the system (see

Figure 2.10).

2) The local routes of any RM are confined within the area specified for the RP.

This results in an average packing efficiency of around 80% for the PAR

process in the Xilinx tools [29]. This means that the RP area must be at least

20% larger than that needed for the largest RM assigned to the RP.

3) Fixed interconnections are used for connecting each RP in the design to the

static logic. Early versions of the Xilinx DPR flow relayed on fixed

interconnects called Bus-Macros (BMs) placed by the designer at the

boundaries between the RPs and the static logic. The current DPR flow uses

PROXY LUTs, which are basically 1-input LUTs, each of which is capable

of routing one signal and is automatically inserted and locked in specific

locations within the RMs.

4) RPs may only contain static route; no static logic is allowed inside the RPs.

Furthermore, the PAR process does not allow overlapping RPs.

Figure ‎2.10 Reserving static routes in modular DPR

Chapter 2: Introduction to FPGAs and DPR

26

Not having control over the static routes in Xilinx DPR flow prevents some

interesting architectures from being deployed efficiently in FPGAs. One example is

the system shown in Figure 2.11 where several RPs of the same size are placed in the

FPGA. Even if the same RM is assigned to all the RPs, each RP will require a

different partial bitstream for the same RM. This increases the size of memory

required for storing the partial bitstreams, especially when many RMs are assigned to

the RPs (Figure 2.11a). Xilinx DPR flow also does not allow for the placement of

overlapping RPs, which may lead to inefficient placement when large RMs are

present in the design (Figure 2.11b).

Figure ‎2.11 Limitations of Xilinx DPR flow

2.2.2 Altera DPR Flow

Altera is one of the major FPGA manufacturers and currently supports DPR in most

of its new FPGA devices. The Altera DPR flow is fundamentally similar to the

Xilinx DPR flow. Altera DPR flow starts with a base design containing a static

region and at least one reconfigurable region. Similar to Xilinx DPR flow, a number

of reconfigurable modules (called ‘personas’) can be assigned to each reconfigurable

region. By having different revisions of the base design, each containing a different

Chapter 2: Introduction to FPGAs and DPR

27

set of personas, the Quartus software tool can generate the partial bitstreams of the

design [30]. The first step carried out by the Quartus tool to generate the partial

bitstreams in a DPR design is to compile all the revisions of the design to generate

the Masked SRAM object Files (MSF) and the SRAM Object Files (SOF) for each

revision (see Figure 2.12). In each revision of the design, an MSF file and an SOF

file are created for each persona. These two files are used by the Quartus tool to

generate a Partial-Masked SRAM object File (PMSF) for each persona before

generating the partial bitstream files.

Figure ‎2.12 Simplified Altera DPR flow

Limitations of Altera DPR Flow

Similar to Xilinx DPR flow, Altera DPR flow does not give designers control over

the static routes and does not allow for bitstream relocation. While there is no

technological limitation preventing bitstream relocation in Xilinx Virtex FPGAs as

Xilinx Virtex FPGAs have regular routing structure, this is not the case for Altera

FPGAs, which tend to have some routing variations and mismatches between what

appear to be identical resources [31]. For this reason, all of the research work and

academic DPR tools available in the literature, as well as the research work presented

in this thesis are focused on bitstream relocation on Xilinx Virtex FPGAs.

Chapter 2: Introduction to FPGAs and DPR

28

2.2.3 Configuration Ports

Generally, DPR can be performed externally using one of the external configuration

ports or internally using the ICAP. Table 2.1 shows the main configuration options

available for Xilinx FPGAs. The fastest configuration port is the SelectMAP. This

port allows for a configuration throughput of 400MB/s and it can be used for full

device configuration as well as partial reconfiguration. However, the SelectMAP

requires some additional external circuitries to control the configuration operation.

The ICAP, on the other hand, provides an internal interface to the SelectMAP, which

means that fast partial reconfiguration can be performed and controlled from within

the FPGA by implementing the appropriate reconfiguration control logic. The ICAP

provides full internal read and write access to the FPGA’s configuration memory

leading to the possibility of fully autonomous systems.

In Xilinx FPGAs there are two ICAPs; however, only one ICAP can be used at a

time. The two ICAPs can be seen as a 2-to-1 multiplexer implemented on the

SelectMAP interface. The active ICAP is referred to as the primary ICAP and the

redundant ICAP is referred to as the secondary ICAP. Switching between the two

ICAPs is possible at run-time by writing the appropriate switching commands

through the primary ICAP and then switching operation to the secondary ICAP [25].

Table ‎2.1 Configuration ports [25]

Configuration Port Type Max. Frequency (MHz) Max. Data Width

JTAG External 66 1

SelectMAP External 100 32

ICAP Internal 100 32

2.2.4 Bitstream Relocation

Bitstream relocation is the ability to configure the same partial bitstream in different

locations on the FPGA. Such partial bitstream is referred to as a relocatable partial

bitstream, or a relocatable bitstream for short. Bitstream relocation is generally used

Chapter 2: Introduction to FPGAs and DPR

29

to reduce the memory size required for storing partial bitstreams when the same RM

is instantiated in several locations in the FPGA.

There are several applications that can make use of bitstream relocation. The lack of

official support from Xilinx for such a feature led to the development of several

advanced tools and configuration techniques to circumvent the limitations of Xilinx

DPR flow. In general, successful bitstream relocation has four main requirements,

which are summarised in the following sub-sections.

Resource Compatibility

A partial bitstream configures a fixed height and width of resource columns. In order

to relocate an RM, the target location of configuration must have identical resources

to the original location of the RM. This implies that any target location of a

relocatable bitstream must have the same dimensions, resource type and column

layout.

The maximum number of feasible locations for a relocatable RM will depend on the

number of regions with the same resource layout on the FPGA (see Figure 2.13).

Modern FPGAs consist of a regular arrangement of specialised resource columns. In

most cases, the column arrangement is not fully regular, as can be seen from Figure

2.13. This may limit the number of feasible locations for an RM, especially if the

RM is large and spans different types of resource.

As the original layout of the RM influences the maximum number of feasible

locations for a relocatable RM, more than one partial bitstream can be generated for

the RM, each with a different resource arrangement, to expand the total number of

feasible locations for the RM [32].

In some cases, a partial bitstream can be modified online to fit a region with a

different resource layout. The authors in [33] demonstrate a successful technique for

relocating an RM containing a DSP column to a target location containing a similar

resource arrangement but with a BRAM column instead of the DSP column. This

was possible because the DSP column was not used by the RM and the routing

Chapter 2: Introduction to FPGAs and DPR

30

through the DSP column was made identical to the routing through the BRAM

column in the target location.

Figure ‎2.13 Feasible RM relocation

Reserving the Static Routes

When relocating an RM to a target location, the static routing must be reserved and

not corrupted by the reconfiguration process. As mentioned earlier, Xilinx DPR flow

does not give designers control over the routing process. There are two main

methods discussed in the literature to deal with the static routes while relocating RMs

in different locations on the FPGA. The first method is based on reserving the

routing in the target location by performing the necessary modifications to the

relocatable bitstream, which will keep these routes intact after configuration. An

example of this method is demonstrated in [34], where the configuration frames in

the empty target location are read and XOR-ed with the relocatable bitstream to

ensure that the routing configuration bits are reserved after configuration (see Figure

2.14a). This method only works if the relocatable RM does not use any of the routing

resources used by the static logic in the target location. A similar method is presented

in [35], where all the feasible locations of the RMs are pre-computed and special

Chapter 2: Introduction to FPGAs and DPR

31

files containing the routing configuration data are generated for each location. This

accelerates the relocation as no configuration memory readback operations are

required.

The second method for protecting the static routes is based on creating restricted

regions on the FPGA that are free of static routes. As this is not possible using the

standard Xilinx tools, workarounds have been proposed that are based on placing

some blocking circuitries in the restricted regions to prohibit the PAR process from

using routing resources in this region (e.g. [36] and [37]). These blocking circuitries

consume all the routing resources in restricted regions and consequently force the

router in the PAR process to use the routing resources outside these regions for the

static routes (see Figure 2.14b). The OpenPR tool presented in [36] works alongside

the Xilinx tools and uses the blocking technique to block all static routes from certain

regions on the FPGA. The GoAhead tool presented in [37] uses a similar method;

however, it gives the option of allowing some of the static routes in the

reconfigurable region as long as they are not used by any RM in order to reduce

congestion and latency.

Figure ‎2.14 Reserving static routes for RM relocation

Chapter 2: Introduction to FPGAs and DPR

32

Reserving RM Connections

When relocating RM to a target location in the FPGA, the connections between the

RM and the other components in the system must be reserved. Theoretically, the

routing process can be repeated after each relocation operation to re-establish the

connections between the relocated RM and the system. However, this is impractical

as knowledge of how the bitstream maps into the routing resources is required in

order to implement an online router. In addition, the large routing time overhead due

to the large number of routing resources in FPGAs will prevent efficient online

routing. In [38], Shayani et al. propose using pre-compiled routing components based

on the CLB resources, which can be tiled to form vertical and horizontal connections

between two modules in the system. This reduces the routing problem as only a few

routing components need to be used to form a connection between two modules.

However, this method is inefficient when trying to connect widely separated

components due to the large number of logic resources required for routing and the

propagation delay caused by the long connections.

Most of the bitstream relocation systems proposed in the literature rely on fixed

infrastructures of interconnects for connecting RMs rather than online routing. Bus

Macros (BMs) provide pre-routed point-to-point connections and can be used as

fixed interconnections for RMs when placed on specific locations on the boundaries

between the RPs and the static logic (see Figure 2.15). Traditionally, BMs were

based on Tristate Buffers (TBUFs), which where embedded in the early Xilinx

FPGAs. LUT-based BMs replaced TBUFs after the Virtex-4 was introduced. As the

current Xilinx DPR flow does not support BM integration, academic tools have

emerged for the generation of custom BMs [39], and automatic placement of BMs

([37] and [40]).

Fixed interconnects can be used to build several on-chip communication

architectures. The simplest architecture is the slot-based architecture wherein several

slots with fixed interconnects are connected to a crossbar (see Figure 2.16a). RMs

can be freely relocated between the slots and the crossbar can be programmed to

establish the desired point-to-point connections [41]. Network-on-Chip (NoC)

Chapter 2: Introduction to FPGAs and DPR

33

topologies can be used as an alternative to the crossbar by implementing routers

between the fixed interconnects [42] (see Figure 2.16b).

A bus-based architecture can also be used. In [43], Koch et al. present the ReCoBus

tool, which allows for connecting several slots through a fixed horizontal bus (see

Figure 2.16c). RMs can be configured on top of these slots and connected to the bus

using special connection macros.

Figure ‎2.15 LUT-based BMs

Figure ‎2.16 On-chip communication infrastructures for relocatable RMs

Chapter 2: Introduction to FPGAs and DPR

34

Bitstream Manipulation

The configuration location of a bitstream can be altered by modifying the frame

addresses in the bitstream. The frame addresses in a bitstream specify the physical

locations of the configuration frames on the FPGA fabric. If a bitstream is required to

be relocated to a target location, the frame addresses for the target location must be

identified to replace the original frame addresses. Bitstream modification can be

performed externally prior to configuration of the relocatable RMs or internally using

dedicated logic implemented in the FPGA. Early bitstream relocation systems such

as BITPOS and PARBIT relied on external processors to carry out the bitstream

modifications ([44] and [45]).

Some systems allow for bitstream relocation to be performed internally using a

processor implemented on the FPGA’s logic ([46] and [47]). In these systems, the

processor scans the bitstreams file stored externally and modifies the addresses field

before configuration through the ICAP.

For systems requiring fast internal bitstream manipulation, bitstream filters are

proposed to accelerate the relocation process. A bitstream filter is a dedicated

configuration controller that automatically filters and modifies the address fields in

the bitstream when it is streamed for configuration. REPLICA was an early bitstream

filter designed for CLB-based cores relocation through the SelectMAP interface in

Virtex-2 FPGAs [48]. The REPLICA2Pro was later introduced to support BRAM

relocation as well as configuration through the ICAP in its 8-bit configuration mode

[49]. The BiRF is another bitstream relocation filter introduced for newer FPGA

devices, and it supports configuration through the ICAP in its 32-bit configuration

mode [50].

2.3 Chapter Conclusion

This chapter introduced the Xilinx tiled-based architecture, which is the dominant

architecture in current SRAM FPGAs. A brief introduction of the most relevant

Xilinx reconfigurable resources was presented. This chapter also presented the Xilinx

Chapter 2: Introduction to FPGAs and DPR

35

DPR flow and discussed its limitations with focus on bitstream relocation, which is

not supported in the Xilinx DPR flow. A discussion of the techniques proposed in the

literature to enable bitstream relocation was also presented in this chapter.

Chapter 3

36

Chapter 3 : Dynamic Partial

Reconfiguration for High Performance and

Reliability

High Performance Computing (HPC) involves the use of parallel processing

techniques to solve large and complex computational problems. Until the early

2000s, single-core CPU systems were the mainstream choice for HPC applications

due to their low cost compared to supercomputing architectures. CPU performance

and frequency continued to scale in line with Moore’s law until the Mid-2000s, when

the trend of multi-core CPU architectures started to take over to meet high-

performance demands. Recently, new architectures involving the use of hardware

accelerators as co-processors are emerging as an alternative to CPU-only systems.

This has opened the door for acceleration devices such as FPGAs and GPU to play a

key role in the advancements of HPC. FPGAs in particular are very interesting

prospects for High Performance Reconfigurable Computing (HPRC) applications as

they offer a great level of flexibility without compromising on performance.

The flexibility of FPGAs also opens the door for implementing interesting adaptive

Fault-Tolerant (FT) systems. An FT system is a term given to a system that is

specifically designed to prevent failure in system operation when one or more faults

occur in some of the system’s components. The development of FT system is a major

interest for researchers in different disciplines, covering a wide range of applications

in space, aviation and military. Adaptive Computing Systems (ACSs) depend on

reconfigurable platforms to adapt their behaviour to changes in the external

environment. ACSs are often deployed in hostile environments under harsh

conditions, such as high levels of radiation and extreme temperatures, making system

upgrade and repair difficult and costly. The cost of repair in such environments

increases the demand of reliable and easily upgradable hardware.

Chapter 3: DPR for High-Performance and Reliability

37

3.1 DPR Deployment in High-Performance Systems

The possible gain in performance achieved in FPGAs can be enormous compared to

other computing platforms. The true power of FPGAs comes from the computational

parallelism that can be achieved using the available hardware resources to handle a

given problem. With the continuous increase in device density and decrease in power

consumption in every device generation, FPGAs are attracting the attention of

researchers as a high-performance solution for several applications. The

reprogrammability and flexibility of FPGAs makes them a favourable choice for

engineers who require constant modifications to their designs during the

development stage or in the field. In modern SRAM-based FPGAs, the system can

be reconfigured fully or partially to alter the computation functionality at runtime.

Run-time reconfiguration can enhance performance [21], and increase functional

density [22]. In general, the increase in performance brought by run-time

reconfiguration comes from achieving more execution parallelism through optimal

exploitation of the FPGA resources.

DPR further enhances the device flexibility by allowing changes to the functionality

of certain functional blocks without stopping the system. This opens the door for new

reconfigurable platforms architectures for hardware acceleration in FPGAs where

multiple customised accelerator cores can be swapped in/out of the FPGA on

demand. With the enhancements seen in recent embedded processors such as the

Xilinx MicroBlaze soft-processor [51] and the PowerPC hard-processor [52], the

FPGA can be configured as a standalone system that schedules and allocates its own

payload of tasks and handles the reconfiguration operations internally. In order to

achieve the desired gain in performance when using DPR, the internal

reconfiguration time overhead must be minimal.

3.1.1 FPGA-based Acceleration in HPC

In [53], Xilinx has classified the current trends of FPGA deployment in HPC

applications into three categories: connectivity bridging, fixed function hardware

Chapter 3: DPR for High-Performance and Reliability

38

acceleration and software acceleration. In the first category, FPGAs are used as

bridges and switches for interfacing different subsystems. The flexibility of FPGAs

allows designers to make changes to their design to accommodate for any changes in

the IO requirements. When used as fixed hardware accelerators, FPGAs are used to

accelerate a fixed function which requires high processing throughput by

implementing a hardware accelerator that processes the data in parallel. Using

FPGAs for software acceleration is based on moving portions of the processing

usually performed by CPUs to an FPGA co-processor. This type of acceleration is

particularly interesting as it allows for the creation of generic computing platforms

that can be used in different applications. While traditional FPGA acceleration

platforms are based on connecting a single FPGA or a cluster of FPGAs to a CPU

over Ethernet or PCIe, recently the industry has seen a shift towards CPU/FPGA

hybrid SoCs aimed at high-performance embedded computers. The Zynq-7000 from

Xilinx [54] and the Altera SoC FPGAs [55] are recent SoCs provided by the two

main FPGA vendors. Both use a dual core ARM Cortex-A9 processor combined with

their latest FPGA technology.

One example demonstrating the potential of FPGAs in HPC is the implementation of

reconfigurable systolic array accelerators. Systolic arrays were first proposed by

Kung in 1982 [56]. Systolic arrays are a grid-like structure of special Processing

Elements (PEs) that process data in a pipelined fashion to achieve a high level of

parallel processing, making them very suitable for computationally intensive

operations. The name ‘systolic’ is derived from the Latin term ‘systole’, which is a

medical term used to describe the regular pumping of blood by the heart. The name

‘systolic’ was coined from the medical terminology because the propagation of data

into the systolic array resembles the propagation of blood in the human circuitry

system, and the operation of PEs which process the data and injects partial results

into the data stream resembles the operation of the organs in the body. In [57],

Johnson differentiates between general purpose systolic array architectures and

customized systolic arrays, which tend to have better performance but the lack the

flexibility required to implement different algorithms using the same hardware.

Johnson also emphasises the importance of reconfigurable systolic arrays in FPGAs

Chapter 3: DPR for High-Performance and Reliability

39

that offer a high level of customisation without compromising flexibility. Successful

FPGA implementations of various systolic array accelerators have been reported in

the literature for several applications in bioinformatics ([58] and [59]), DSP ([60]

and[61]) and data mining of large databases ([62] and [63]).

There are attempts to automate the generation of the RTL-level code for the systolic

array accelerators in FPGAs using specialised software tools. In ([64] and [65]), the

authors presented the ROCCC tool, which is a C-to-VHDL compiler tool capable of

generating optimised systolic array accelerators for several applications. In [64], the

authors demonstrate their tool to accelerate the Smith-Waterman algorithm, which is

widely used for local and global sequence alignment in bioinformatics [66]. They

implemented a software-generated systolic array in the SGI RASC RC100, which

contains two Virtex-4 LX200 FPGAs and connects to an SGI server. The

performance gain achieved was over 300x compared to a 2.8 GHz Intel Xeon CPU.

A build up work to the ROCCC compiler was presented in [67], where the authors

presented a tool that generates a complete FPGA implementation for perfect nested

loops that support off-chip DRAM memory access. Another related work is the

LegUp tool, which generates a complete FPGA implementation from a C code. The

system generated by the tool consists of a Tiger MIPS soft-processor and custom

hardware accelerators that communicate with the CPU using a standard bus [68].

Opposite to hard-processors, which are hardwired prefabricated processors; soft-

processors are designed using the standard FPGA design flow to be implemented on

the FPGA logic. As the LegUp tool uses a soft-processor for running the software

part of the system, the entire system can be implemented in the FPGA fabric. This

allows for a single-chip solution of a hybrid system without the need for a

specialized SoC, which contains an integrated ASIC-processor, making the

technology applicable to a wider range of FPGA families.

In order to achieve a higher performance and a higher flexibility in a

hardware/software hybrid system, DPR can be deployed to control the type and

number of active accelerators during the operation of the system. In [69], the authors

propose a framework for systolic array acceleration in FPGAs, which contains an

embedded soft-processor and multiple reconfigurable regions defined as ‘sockets’

Chapter 3: DPR for High-Performance and Reliability

40

dedicated for placing the systolic array accelerators. The proposed system allows for

accelerating two algorithms running concurrently by deploying DPR to alter the size

of the systolic array assigned for each algorithm in a given time. Each socket

contains a BM that is connected to a switch box. The switch box can be controlled by

the processor to connect several sockets together. As each systolic array is

customised for accelerating a particular algorithm, the level of acceleration for a

running algorithm can be changed by altering the number of sockets assigned for its

systolic array (Figure 3.1a). Relocatable partial bitstreams for the systolic arrays are

proposed to reduce the storage memory requirements of the system. In the system

demonstrated in [69], the size of each partial bitstream is determined by the size of

the slot. A similar system for systolic array acceleration is proposed in [70], where

the authors aim to further reduce the memory required for storing the systolic array

partial bitstreams by having smaller relocatable partial bitstreams that can be

concatenated horizontally within each socket (Figure 3.1b). Although this approach

will reduce the storage memory requirements for the system by reducing the

granularity of relocation, it suffers from several flaws not discussed by the authors

that can lead to degradation in system performance. Reducing the size of the

relocatable partial bitstream will make routing across each socket more difficult,

especially when a large bus is required to feed the PEs in the systolic array. In

addition, smaller reconfigurable regions will have less resource-packing efficiency.

In Xilinx FPGAs, the average packing density possible for a reconfigurable region is

around 80% [29]. For relocatable partial bitstreams, the packing density can be

smaller as some resources are used for the dedicated routing and BMs. When a

number of these relocatable partial bitstreams are concatenated together to form a

large systolic array, the total number of PEs will be reduced compared to a single

partial bitstream covering the same area.

Chapter 3: DPR for High-Performance and Reliability

41

Figure ‎3.1 DPR-based systolic array acceleration

Software acceleration with DPR can achieve higher performance than static

accelerators by exploiting more parallelism [71]. Figure 3.2 shows two

implementations of a system that utilises three hardware accelerators activated one

after the other. The first implementation is a static implementation, so the available

resources are divided between the three accelerators. The second implementation is

based on DPR, so the accelerators can share the available resources, thus allowing

for larger accelerators with shorter execution time.

Figure ‎3.2 Enhanced software acceleration with DPR [71]

Chapter 3: DPR for High-Performance and Reliability

42

3.1.2 Reconfigurable Operating Systems

The idea of an ROS was first proposed by Brebner in [12], where an OS is proposed

to manage the execution of tasks using the reconfigurable hardware. An ROS is

supposed to hide the complexity in mapping these tasks into the available hardware

resources from the user and enable high-level programming of reconfigurable

applications. According to Brebner, any task executed on the reconfigurable

hardware is defined as a Hardware Task (HT). There are several characteristics that

differentiate an HT from a software task [72]. These most important characteristics

are summarised by Table 3.1. An ROS has two main advantages over a normal OS,

which allow for higher system performance. The first is that the HT’s hardware can

be tailored to the needs of the task and designed with a high level of parallelism. This

flexibility in hardware customisation can make HTs considerably faster than their

software counterparts. In addition, the number of tasks that can run concurrently in

an ROS depends on the area of the reconfigurable fabric rather than the number of

fixed CPUs allowing for better true multitasking as smaller tasks only consume small

areas of the reconfigurable fabric.

Table ‎3.1 Characteristics of hardware and software tasks [72]

Characteristic Software Task Hardware Task

Design Software programming language (e.g.,

C, C++, assembly)

HDL description or C-to-silicon

programming

Executing Device Processor FPGA

Executing Unit CPU Custom relocatable module

Execution Nature Sequential Parallel (depends on module

design)

Execution Time Depends on CPU clock speed Depends on design and module

clock speed

Maximum Task

Parallelism

Depends on number of CPUs Depends on FPGA’s area

In [73], Wigley et al. describe the main practical challenges in implementing an ROS

in FPGAs. The authors also define how task allocation and scheduling should be

approached in an ROS.

Chapter 3: DPR for High-Performance and Reliability

43

Task Allocation

Task allocation is the process of assigning available resources on the reconfigurable

hardware for task execution. In FPGAs, HTs can be seen as pre-compiled relocatable

partial bitstreams, which are reconfigured at run-time to execute a given function.

When HTs are assumed to be rectangles with fixed heights and widths and the FPGA

is assumed to be a large uniform area of logic resources, the allocation of HTs can be

seen as a 2-D packing problem where the FPGA is partitioned into smaller areas used

for the placement of the HTs. In [73], Wigley et al. suggest that a task allocation

algorithm should reduce chip fragmentation. As chip fragmentation could create

several ‘dead’ regions not suitable for the placement of any tasks, tasks should be

packed as close as possible to each other to expand the free space on the chip and

increase the number of tasks that can be allocated in a given time of operation.

There are several approaches discussed in the literature to reduce chip fragmentation

in an ROS. In [74], Bazargan proposes partitioning the FPGA area into overlapping

empty rectangles with the objective of Keeping track of All Maximum Empty

Rectangles (KAMER). Bazargan also proposes Keeping track of Non-overlapping

Empty Rectangles (KNER). In both schemes, the FPGA area is scanned to determine

all possible Maximum Empty Rectangles (MERs). When an HT is required to be

allocated, a scan through all the MERs is performed to find a suitable location. An

area-fitting algorithm, such as First-Fit (FF) and Best-Fit (BF), is used to select a

suitable location for the HT. The FF algorithm scans the empty rectangles and selects

the first rectangle capable of fitting the HT, whereas the BF algorithm selects the

empty rectangle with minimal difference in area compared to the HT. Once an area is

selected for an HT, the FPGA area is scanned again and the MERs are updated.

To simplify the MER scanning process, Walder et al. propose the use of a hash

matrix, which contains pointers to a list of MERs with the same area [75]. In order to

reduce the time for allocating consecutive tasks, they propose to update the hash

matrix while each task is allocated. Morandi et al. present a related work in [76],

where the FPGA area is transposed into a tree structure with nodes representing

Chapter 3: DPR for High-Performance and Reliability

44

occupied areas and leaves representing MERs. Using this tree structure only leaves

need to be scanned for HT allocation.

In contrast to MER-based allocation, other works base the allocation process on

keeping track of the Vertex List Set (VLS), which indicates the positions of placed

tasks [77]. The proposed algorithm allocates tasks in positions with the highest

contact length with neighbouring placed tasks or the left-side edge of the FPGA. A

similar work proposes keeping track of the occupied area rather than the empty area

in the FPGA [78]. The proposed allocation scheme scans the FPGA to find the

Impossible Placement Region (IPR). Tasks are then allocated in the nearest optimal

position to the IPR. Figure 3.3 illustrates the main 2-D allocation algorithms.

Task Scheduling

Task scheduling is the process of determining the order of execution of the

consecutive tasks where tasks are assigned with specific priorities. Usually, priorities

are assigned according to the tasks execution deadlines. The execution deadline is

defined as the maximum delay for a given task to finish its execution and generate its

results. The task priorities can be fixed, as seen in the Deadline Monotonic (DM)

scheduling where tasks with the shortest relative deadline are assigned with the

highest priorities [79]. Task priorities can also be assigned dynamically by assigning

the highest priorities to tasks with the nearest deadline as seen in the Earliest

Deadline First (EDF) scheduling [80]. Scheduling can be pre-emptive, which enables

higher priority tasks to stop the execution of the lower priority tasks and start its

execution. Non-preemptive scheduling on the other hand does not allow high priority

tasks to interrupt currently executing tasks.

In order to make task scheduling applicable to an ROS implemented on an FPGA,

the reconfiguration port delay time must be considered. In current FPGAs only a

single configuration port can be active at a time to carry out the reconfiguration

operations. With the sequential nature of dynamic reconfiguration and the fixed

bandwidth of the reconfiguration port, access to the reconfiguration port must be

shared among different operations. In [81], the proposed system schedules access to

the reconfiguration port according to the task deadline using conventional scheduling

Chapter 3: DPR for High-Performance and Reliability

45

algorithms (DM and EDF). The authors in [82] suggest that already placed tasks that

have finished their current execution should be considered for the execution of future

tasks to reduce the overall reconfiguration time. Other work also considers the

communication time required for each scheduled HT ([83] and [84]).

Figure ‎3.3 2-D task allocation algorithms [85]

3.1.3 Reducing Reconfiguration Delay

The efficiency and speed of an internal reconfiguration controller is critical in high-

performance embedded systems, especially for systems that extensively use the

ICAP for different configuration operations. An example of this is an ROS kernel

that uses the ICAP for the persistent HT allocation and de-allocation. The

configuration time overhead is a performance bottleneck in such systems, especially

with the sequential nature of configuration in current SRAM-based FPGAs, which do

not allow for multiple reconfiguration operations to run concurrently.

There are several techniques proposed in the literature to accelerate the configuration

process in order to meet the demand for high-performance systems. Generally,

accelerating internal configuration can be achieved by:

Chapter 3: DPR for High-Performance and Reliability

46

Accelerating Bitstream Fetch-Time

SRAM-FPGAs are volatile, full and partial bitstreams are initially stored in a non-

volatile memory. Typical non-volatile memory modules have high latency and low

throughput, and they are not suitable for high speed configuration. A common

practice for high-speed run-time reconfiguration is to store a copy of the required

partial bitstreams in a faster SRAM or a DRAM memory module after power-up of

the device. Typically, ICAP controllers are designed as slave cores that connect to

master CPU through a standard bus. An example of such a controller is the Xilinx

HWICAP IP core which connects to a Microblaze or a PowerPC processor. Early

versions of the ICAP controller use the PLB bus while more recent versions use the

AXI bus for connection with the master processor ([86] and [87]). In its basic

configuration, the HWICAP depends on the master CPU for controlling the

streaming of data from external memory to the controller’s internal buffers. This

configuration is inefficient for large partial bitstreams as the CPU will be constantly

busy with loading the controller’s internal buffers and not able to carry out other

tasks during the configuration process. In addition, the software overhead for

initiating the different data transfer requests through the PLB bus is large, resulting

in poor configuration throughputs. In [88], Liu et al. investigated the maximum

throughput achieved with the HWICAP core in different modes. When connecting

the HWICAP as a slave device to OPB/PLB bus, the average throughput achieved

was in the range of 0.61-19.1 MB/s, which is well below the maximum theoretical

throughput of the ICAP of 400MB/s [86].

Direct Memory Access (DMA) has also been considered to accelerate the data

transfer from external memory where a DMA controller is responsible for fetching

data from the external memory via the PLB bus. A DMA controller has been applied

to the basic HWIAP configuration in [88], where the processor is only responsible

for initiating the data transfer by instructing the DMA controller to perform a burst

transfer from memory to the internal buffers of the controller. This was shown to

increase the throughput to 82.6 MB/s, which is still far from the optimal

configuration throughput. The modest improvement was mainly because the design

did not account for the latency of each burst data transfer. Other research work has

Chapter 3: DPR for High-Performance and Reliability

47

reported throughputs approaching the maximal configuration throughput using DMA

with custom designed ICAP controllers. The controller presented in [89] uses a large

burst length and a large word length (256 bit) to eliminate the impact of latency on

the throughput. The achieved throughput approached the maximum throughput;

however, 8 BRAMs were used for an asynchronous FIFO to translate the 256-bit

word length to the 32-bit of the ICAP.

There are also other controllers that do not rely on a DMA controller for data transfer

through the PLB bus. An example is presented in [90], where a processor feeds the

ICAP with configuration data through a Fast Simplex Link (FSL). The aim of this

work was to achieve acceptable performance with a lightweight controller, which can

be easily reused in different designs. Another example considers using the Xilinx

Native Peripheral Interconnect (NPI), which is the fastest connection for the Multi-

Port Memory Controller (MPMC). The proposed controller used two ports of the

MPMC for the ICAP control, which supports configuration readback in addition to

bitstream configuration [91].

The partial bitstreams can also be stored in on-chip memory blocks to allow for the

shortest latency possible ([88] and [92]). Although using on-chip BRAM blocks

would allow for fast data transfer, only storing small partial bitstreams would be

possible, making this method impractical.

Bitstream Compression

Generally, bitstream compression is deployed to reduce the storage memory required

to store different bitstreams. Compressed partial bitstreams will require a de-

compressor implemented in the FPGA logic to restore the configuration data to its

original content. Bitstream compression can reduce the overall configuration time by

reducing the bitstream fetch-time from slow external memory devices. In [93], Koch

et al. explored different compression algorithms and showed that with bitstream

compression the maximum configuration throughput of 400MB/s can be achieved

with storage devices supporting only half the required bandwidth. In [94], Liu et al.

explored the natural redundancy in Xilinx FPGA’s bitstream to come up with a

simple decompression scheme that does not require a large decompression circuit

Chapter 3: DPR for High-Performance and Reliability

48

implemented in the FPGA logic. The presented compression scheme is based on

finding repetitions of consecutive configuration words; these words are then encoded

into a smaller segment consisting of two words, one containing a configuration value

and the other containing the number of repetitions of this value. They also considered

removing the padding words and the No-Operation (NOP) commands from

bitstreams and adding them on-line during the configuration process. The

compression ratio achieved with their encoding scheme was in the range of 1.09-3.15

and the maximum improvement in configuration time was around 17%.

Another method to enhance the configuration time through bitstream compression is

by using the Multiple Frame Write (MFW) feature in Xilinx FPGAs. The MFW

feature allows for writing multiple configuration frames containing the same content

once instead of writing them individually [25]. This compression feature is integrated

with the Xilinx FPGA’s internal configuration circuitry so the reduction in bitstream

size is directly proportional to the increase in configuration time. In addition, it does

not require padding for writing frames to the configuration memory. The Combitgen

tool presented in [95], is based on manipulating different configurations of a

particular reconfigurable module and extracting the similarities and differences in

their partial bitstreams. The tool then generates smaller configurations that consist of

the configuration frames required to achieve a context switch from the implemented

top-level module. These frames are configured using the MFW feature to further

reduce the reconfiguration time.

Overclocking the ICAP

The maximum clock frequency rated for the ICAP in current Xilinx FPGAs is

100MHz. The ICAP supports a write width of up to 32-bits, giving a maximal

theoretical reconfiguration throughput of 400MB/s. Several authors have reported

successful reconfiguration with overclocking. An example can be seen in the

METAWIRE on-chip communication system [96], where the authors have

implemented a custom ICAP controller to transfer data between different buffers in

the system to emulate the operation of an NoC. The reported maximum clock

frequency was 144 MHz in a Virtex-4 FPGA. In [97], a higher clock frequency of

Chapter 3: DPR for High-Performance and Reliability

49

200 MHz was achieved in a Virtex-5 FPGA. In [92], Hansen et al. report a much

higher ICAP clock frequency of up to 533 MHz in a Virtex-4 FPGA. Unfortunately,

no information was provided on the reliability of their controller when operating at

such high frequencies. In addition, they assume that the test partial bitstream are

stored in BRAM blocks placed as close as possible to the ICAP, which is not

practical for real applications.

The maximum clock frequency of the ICAP controller will be affected by several

factors such as the speed grade of the device, the routing and placement of the full

implemented design and other environmental variables such as temperature. It is

difficult to predict the behaviour of an over-clocked ICAP across different designs

and under different conditions. To address this problem, Hoffman et al. propose an

active feedback monitoring circuit, which generates an optimum clock based on

voltage and temperature measurements [98].

RM Prefetching

In systems deploying several RMs, it is possible to configure an RM before it is

scheduled for execution while other RMs are still executing. This way, its

configuration delay will be overlapped with the other RM execution time. Figure 3.4

shows a system deploying four RMs that are required to be executed one after the

other. Using two RPs, an RM can be pre-loaded into an RP while the preceding RM

is still executing in the RP. This can greatly reduce the effect of the reconfiguration

delay on the overall execution time of the system.

Prefetching can also be deployed in more complex systems, such as an ROS

implemented on an FPGA. However, the order of HT execution is not deterministic

in an ROS. Prediction algorithms can be deployed in an ROS to predict which HTs

would result in the best performance gain when pre-fetched [99].

Chapter 3: DPR for High-Performance and Reliability

50

Figure ‎3.4 RM pre-fetching

3.2 DPR for Enhanced Fault-Tolerance

FPGAs are inherently flexible, making them an ideal platform for ACSs and an

interesting prospect for space applications. Currently, SRAM is the most common

technology for FPGA configuration due to its ease of fabrication and

reprogrammability. However, SRAM technology is known to be sensitive to

radiation-induced faults. In addition, faults in the configuration memory of FPGAs

are not simply faults in raw data, which is stored in memory; they are transposed to

the functionality and hardware structure of the implemented system leading to a

complex impact on the system’s behavior. This derives the need for innovative

solutions to realise the full potential of FPGAs in FT systems. Much of the research

aimed at enhancing the reliability of FPGAs is based on the DPR, which allows for

reconfiguring faulty blocks in the design at run-time without stopping the operation

of the system.

Chapter 3: DPR for High-Performance and Reliability

51

3.2.1 Background on Faults in SRAM-FPGAs

In semiconductor devices, faults can be divided into three main categories:

Permanent, Intermittent and Transient [100]. Permanent faults, also known as hard

faults, manifest themselves as irreversible physical defects in the device. There are

several factors and physical effects that lead to permanent faults in semiconductor

devices. Electromigration occurs when the collision of electrons with the metal

atoms cause gradual movement of the ions in the conductor. The moving ions can

accumulate or deplete in some regions of the conductor, causing short- or open-

circuit faults. Electromigration is highly affected by the type of conducting material

used. Since the adoption of copper interconnects in the semiconductor industry, the

rate of permanent fault has dropped due to the high electromigration threshold of

copper compared to aluminium. The Hot Carrier Injection (HCI) phenomenon can

also contribute to the degradation of VLSI circuits by changing the switching

characteristics of CMOS transistors, leading to delay faults. HCI can gradually cause

a build-up of charges that gain sufficient energy to get trapped in the gate-channel

interface of the transistor leading to reduced mobility and increased threshold voltage

[101]. The Dielectric Breakdown (DB) phenomenon can cause what is normally an

insulator to conduct electricity at a high electric field. In transistors, DB can cause an

increased leakage current at the gate of the transistor which eventually leads to a

short circuit ([102] and [103]).

Intermittent faults are faults that repeatedly occur at the same location as a result of

physical instability to environmental changes such as temperature and voltage.

Intermittent faults usually cause burst errors in the affected location; it is common for

intermittent faults to appear before the occurrence of permanent faults. Errors

induced by intermittent faults can be confused with transients, also known as soft

errors. Transient faults are temporary errors that can be triggered by several factors

such as exposure to alpha particles and cosmic ray neutrons, power supply and

interconnect noise, electromagnetic interference and electrostatic discharge [100].

Radiation-induced soft errors are particularly important in spacecraft and aviation

electronics. They can appear as glitches in logic, in this case called Single Event

Chapter 3: DPR for High-Performance and Reliability

52

Transient (SET), or bit-flips in memory cells and registers. Bit flips, also called

upsets, can appear as Single Event Upsets (SEUs) or as Multiple Bit Upsets (MBUs).

MBUs occur when a single radiation event flips multiple bits in storage circuits

[104]. SRAM technology is especially sensitive to radiation-induced soft errors

because the critical charge required to cause a bit-flip is relatively small. In an early

study on soft errors in SRAM, it was shown that an SRAM chip supporting many

megabytes of storage, can exhibit a Soft Error Rate (SER) that exceeds 50,000 FIT

(failure per 10
9
 hours of system operation) [104]. This approximately translates to

one error every two years. In another study by Tezzaron Semiconductor, it was

reported that the average SER in an SRAM chip is between 1,000 to 5,000 FIT/Mbit

[105]. In addition, the hard errors caused by particles with high energy are estimated

to be 2% of the total errors. Although these error rates might be acceptable for some

applications, they cannot be acceptable in FT systems, especially with the continuous

increase in density and shrink in device geometry in SRAM, leading to higher SERs

in every generation [106].

In FPGAs, faults can appear in the configuration memory or in the other hardware

components. In modern FPGAs, the routing accounts for most of the configuration

memory. Faults in the routing bits of the configuration memory could have complex

effects in the implemented design. However, not all the logic and routing resources

are used in a particular implementation in an FPGA device. In addition, not all soft

errors in the used resources will cause functional errors. Xilinx use the Device

Vulnerability Factor (DVF) to estimate how much a particular design is susceptible

to functional errors in their devices. According to the Xilinx 2013 reliability report,

one in 20 upsets on average will cause a functional error in a typical design. In the

worst reported case, one in 10 upsets will cause a functional error [107]. In the same

report, Xilinx reported the error rates in their devices from data collected from the

Rosetta experiment [108]. According to the report, a Virtex-4 FPGA is susceptible to

263 FIT/Mb in configuration memory and 484 FIT/Mb in Block RAM memory. (1

FIT = 1 upset per 10
9

 hrs).

With continuous process technology scaling, MBUs are also becoming more of an

issue in FPGAs. MBUs are not only caused by high energy particles; some SEUs in

Chapter 3: DPR for High-Performance and Reliability

53

the routing of the FPGA will cause a bit-flip in different bits in the configuration

memory [109]. A study carried out by the Jet Propulsion Lab (JPL) showed that

MBUs are nearly three times more likely to occur in Virtex-4 FPGAs than Virtex-2

FPGAs and 27-33 times more likely to occur in a Virtex-2 FPGA than earlier Virtex

FPGAs [110].

3.2.2 Reliability Features in Modern FPGAs

FPGA manufacturers usually offer radiation-hardened versions of some of their

product families, such as the Virtex-4QV and the Virtex-5QV from Xilinx. These

products provide better SEU tolerance; however, they cost much more than the

commercial FPGAs.

In commercial FPGAs, parity bits are usually added to each configuration frame in

the configuration memory. These parity bits are used for the detection/correction of

bit-flips in the configuration memory. In the Xilinx Virtex-4 FPGA there are 12

Error Correction Code (ECC) parity bits located in the 21
st
 word of each

configuration frame. These parity bits are generated by the BitGen tool to detect bit-

flips in the configuration memory. The detection/correction process using the parity

bits embedded in the configuration memory requires extra user logic implemented on

the FPGA fabric. Xilinx provides the Soft Error Mitigation (SEM) IP core for its

Virtex-6 and 7-Series FPGA families. The SEM IP core enables automatic

detection/correction of faults in the configuration memory. It also extends the bit-flip

correction capabilities of the device by adding a Cyclic Redundancy Check (CRC)

generator, which stores reference CRC values in internal BRAMs [111].

Other FPGAs use other methods for error detection; for example the Altera Startrix-5

FPFA uses a 32-bit CRC value for each configuration frame to allow for better

detection/correction. The CRC is also used for configuration verification. When a

bitstream is configured, pre-computed frame CRC values are compared with CRC

values generated by an internal circuitry to determine if any fault has occurred during

the configuration process. CRC is also used for configuration verification in Xilinx

FPGAs; however, instead of using a CRC value for each configuration frame, a

Chapter 3: DPR for High-Performance and Reliability

54

single CRC value is used for the entire bitstream. Table 3.2 lists some of the FPGA

devices along with their embedded SEU mitigation features.

Table ‎3.2 Soft-error detection/correction capabilities in different FPGAs

Device
Frame

Parity Bits
Description

Xilinx

Virtex-4
12 Hamming

Can be used to correct single-bit errors and detect double-bit errors in a

configuration frame

Xilinx

Virtex-6
13 Hamming

Can be used to correct single-bit errors and detect double-bit errors in a

configuration frame, with SEM IP double-bit errors correction

supported

Altera

Startix-4
16 CRC

Can be used to detect single-bit, double-bit and three-bit errors in a

configuration frame. Can be used to correct all single-bit errors and

99% of double-bit errors.

Altera

Startix-5
32 CRC

Detection: single-, double-, triple-, quadruple-, quintuple-bit errors:

Correction: single-bit and double-bit errors.

3.2.3 DPR Techniques for Enhanced Fault-Tolerance

Soft Error Mitigation

Configuration memory scrubbing is one of the most common methods used for soft

error detection and correction in the FPGA’s configuration memory. There are two

types of configuration memory scrubbing technique widely discussed in the

literature: the first technique is referred to as ‘internal scrubbing’. This technique is

performed using internal components inside the FPGA chip without the aid of any

external components. Usually, internal scrubbing utilises the parity bits and the

embedded detection units in the FPGA, where the correction process is performed in

three main steps. First, a configuration memory frame is read using the internal

configuration port and stored in a dedicated memory block. After that, the embedded

parity bits in the configuration frame are used to detect possible bit-flips in the frame.

If the location of the fault is identifiable by the parity algorithm, the corrupted bit is

flipped in the memory before writing the frame back to the configuration memory.

Chapter 3: DPR for High-Performance and Reliability

55

There are three main weaknesses in the internal scrubbing scheme. The first is that

the correction capabilities are limited to those supported by the frame parity bits. The

second is that not all the resources in the FPGA are covered by the scrubbing

scheme; resources configured as dynamic memory elements are masked during

scrubbing [112]. The third and most important drawback is that the internal control

logic of any scrubber is susceptible to soft errors, which can lead to complete failure

and in more severe cases to injecting extra faults in the system. This issue in internal

scrubbers was addressed in [113] wherein the author demonstrated the use of Triple-

Modular Redundancy (TMR) to protect a Virtex-4 internal scrubber from soft errors.

The second type of configuration memory scrubbing is ‘external scrubbing’, which

does not use the parity bits embedded in the configuration frames; instead a reference

bitstream stored in external non-volatile memory is used. The reference bitstream,

also called the ‘golden bitstream’, can be used for comparison with configuration

memory readback results. In this case the scrubbing scheme is referred to as ‘read

and compare’, or it can be configured periodically to overwrite any possible faults in

the configuration memory without the need for any kind of detection; this scrubbing

scheme is commonly referred to as ‘blind scrubbing’. The main advantage of

external scrubbing over internal scrubbing is that the correction capability is not

limited in terms of the number of faults within a configuration frame. External

scrubbing can correct any number of faults as long as they do not appear in the

configuration bits of the dynamic memory elements; these configuration bits should

be masked when performing external scrubbing [112]. In [114], Berg et al. have

carried out extensive fault injection analysis to test the performance of a custom

external scrubber and a standard Xilinx Virtex-4 internal scrubber. The test results

showed that the external scrubber outperformed the internal scrubber in the number

of faults correctly detected and repaired.

The goal of configuration memory scrubbing is to avoid the accumulation of soft

errors in the system; the efficiency of scrubbing is affected by the number of scrub

cycles set by the scrubbing controller. The appropriate scrubbing rate of a particular

system will depend on the error rate expected for the system. In [115], Asadi et al.

have defined the Mean Time To Manifest (MTTM) term to describe the time a fault

Chapter 3: DPR for High-Performance and Reliability

56

stays inactive in a given system. In an ideal scrubbing scheme, the Mean Time To

Detect (MTTD) and the Mean Time To Repair (MTTR) of faults in the system are

kept small compared to the MTTM. Setting a high scrubbing rate to enhance the

MTTD can increase the power consumption of the system. One approach to address

this issue is discussed in [116], wherein the different components of a system are

classified according to their criticality; high-priority bits are determined and

scrubbed more often than other bits with low priority. Another approach focuses on

narrowing the scrubbing region and scrubbing rate by having on-demand scrubbing

requests generated by a modular redundancy system [117]. Modular redundancy is

one of the most important design concepts in FT systems. TMR is the most common

form of redundancy used in FT designs. It is based on triplicating a hardware module

to generate three outputs that pass through a voter that performs majority voting to

filter out any faulty output of the three. TMR can also be used as a reliable fault

detection method whereby comparators are used to determine which redundant

module of the three is faulty and trigger a recovery process to repair the faulty

module ([117] and [118]). The recovery process can be a scrubbing operation for the

affected area or a reconfiguration operation that resets the registers of the faulty

module to their initial values. Recovery based on reconfiguration will require the

redundant modules to be reset and re-synchronised. This could not be the case with

scrubbing as only faults that cause a state change will require a reset after recovery.

TMR is capable of detecting all kinds of faults as long as they are manifested in the

output of the affected module. The MTTR in TMR will depend on the size of the

triplicated module. Fine-grained TMR designs will have smaller MTTR compared to

coarse-grained designs; this, however, comes at the cost of a higher resource

overhead due to the additional voting circuitry required [119]. Dual-Modular

Redundancy (DMR) can reduce the resource overhead by approximately 1/3

compared to TMR by having only two redundant modules. In DMR, comparators

will trigger an error signal in case of a mismatch in the outputs of the two modules

(see Figure 3.5). DMR provides the same detection level as TMR; however, in DMR

a faulty output is not filtered out, which means that the system must be inactive until

the fault is repaired to guarantee correct operation of the system. Moreover, the

Chapter 3: DPR for High-Performance and Reliability

57

MTTR in DMR is increased compared to TMR as there is no mechanism to

determine which of the two modules is faulty. So the detect/repair process should be

performed in the area covered by the two modules.

Figure ‎3.5 DPR-based fault repair in a redundancy system

The redundancy concept is not limited to the physical domain of the FPGA; time-

domain redundancy for FPGAs was proposed in [120], where an operation is

performed twice using the same hardware with different encoding at different times.

The results of the two operations are decoded and compared to extract the faulty

output. This scheme was shown to have smaller area footprint compared to TMR and

DMR at the cost of reduced throughput.

One issue concerning TMR design in FPGAs is the possibility of some faults altering

the routing in the design and affecting more than one redundant module causing

system failure. There are two approaches discussed in the literature to tackle this

problem; the first approach focuses on the floorplan stage of the design. Each

redundant module is placed in a distinct region with all of its local routes constrained

within the region. These regions are isolated with the appropriate distance of unused

resources [121]. The other approach tackles this problem at the RTL design stage by

partitioning the design into smaller stages and inserting extra voters to reduce the

probability of routing faults affecting more than one redundant module [122].

Chapter 3: DPR for High-Performance and Reliability

58

Another drawback of classic TMR designs is the possibility of single points of failure

in the logic of the voting circuitry. As the area of voting circuitry is much smaller

than the redundant modules area, the probability of system failure will be reduced to

that of the area occupied by the voter. When external scrubbing is used in a TMR

system, these voter errors can be corrected at the first scrub cycle. It is also possible

to have a triplicated voting path for all the voting stages at the cost of higher resource

overhead [123].

Permanent Faults Mitigation

Permanent faults are irreversible physical damage in the FPGA resources. The

mitigation techniques discussed in the literature are focused on circumventing these

resources once they are detected. Similar to soft errors, TMR can detect permanent

faults as long as they affect one of the redundant modules outputs. However, TMR

can only detect the region affected by a permanent fault and cannot detect the

damaged resource within the region. The redundancy system presented in [124]

circumvents an entire region occupied by a faulty module in case of a permanent

fault and reconfigures the module in a new region to complete the redundancy. This

approach can be inefficient because the entire region occupied by the affected

module is flagged despite the fact that the damaged resource in the module accounts

for a very small portion in the region and this will limit the number of faults that can

be mitigated.

Other fault detection methods have been proposed to enhance the granularity of

detection. These methods are based on loading different Built-In Self-Test (BIST)

circuits offline or online to test the functionality of the FPGA resources. The basic

building blocks of a BIST circuit are the Test-Pattern-Generator (TPG), the Circuit-

Under-Test (CUT) and the Output-Response-Analyser (ORA). Figure 3.6

demonstrates a basic implementation of a BIST circuit. The TPG generates different

data patterns that are passed to the inputs of the CUTs. The CUTs could be as simple

as individual LUTs that are configured for a specific function. An ORA is used to

compare the outputs of two CUTs; when a faulty CUT is detected, an error signal is

generated.

Chapter 3: DPR for High-Performance and Reliability

59

Figure ‎3.6 Basic BIST circuit [125]

The proposed BIST circuits differ in the type of faults they can detect. Some BISTs

are focused on the logic blocks ([126] and [127]), while others are focused on

interconnect faults ([128] and [129]). Other BIST circuits extend the detection

capability to delay faults [130]. BIST circuits can be swapped in and out of the

FPGA at run-time using DPR. This technique has been proposed in the Roving Stars

fault detection system [131], where fixed-sized test circuits called the ‘Horizontal

Star’ and the ‘Vertical Star’ are shifted horizontally and vertically to perform a test

scan on a given area on the FPGA. These test scans can be performed while other

logic outside the scan area remains functional. By dividing the FPGA into equal-

sized regions and using some of these regions for the functional blocks in the system,

a test block can be swapped between the regions to perform a complete test covering

the entire area of the FPGA (Figure 3.7). This method suffers from two main

drawbacks: the first is that a minimum of one region has to be empty when floor-

planning the design to allow for swapping the functional blocks with the test circuits;

the second drawback is the large time overhead of the test operation.

Figure ‎3.7 Roving fault detection

Chapter 3: DPR for High-Performance and Reliability

60

The repair methodologies of permanent faults in FPGAs are based on deactivating

the damaged resource and switching its operation to a spare one. Usually the

deactivation is performed in segments rather than individual resources. One

technique discussed in the literature is the column-based shifting technique presented

in [132]. In column-based shifting, the area occupied by a particular design is divided

into different columns; the functional blocks of the design are allocated to these

columns with some columns left unused by any functional block. Different pre-

compiled configurations are then generated, and each configuration has the unused

column in a different location. One of these configurations will be the default

configuration, when a fault is detected in the default configuration; the fault is

mitigated by loading the configuration that has this resource in the unused column.

In [132], Huang et al. also discuss a similar repair technique based on non-

overlapping alternate pre-compiled configurations (see Figure 3.8a). In this technique

the functional blocks have different arrangements in each configuration but are not

constrained to the same area in each configuration. The work based on the multiple

pre-compiled configurations was later extended to reduce the storage memory

required to store all the pre-compiled configurations by utilising relocatable partial

bitstreams ([124] and [133]) (see Figure 3.8b).

Figure ‎3.8 Circumventing damaged resources

Chapter 3: DPR for High-Performance and Reliability

61

Other methods discussed in the literature take the granularity of repair process to

another level in cluster-based FPGAs. The authors in [134] present techniques to

work around faults within an FPGA cluster (a cluster is a group of CLBs). If faults

within the cluster cannot be avoided, moving to a spare cluster is possible by

incremental routing. In [131], Emmert et al. present a system based on a similar

concept. In this system faults can be circumvented by loading small configurations

called FABRICs into a clustered structure. These FABRICs can either be pre-

compiled or computed online. This technique is combined with the horizontal and

vertical roving stars, which constantly check for faults in the interconnects.

3.3 Chapter Conclusion

This chapter introduced the research work related to the use of DPR for enhanced

performance and reliability in FPGAs. This chapter showed the advantages of DPR

in hardware/software hybrid systems. Software acceleration can be achieved by off-

loading the most performance-demanding portions of the software to hardware

accelerators. With DPR, different accelerators can be swapped in/out of the FPGA

leading to a more efficient utilisation of the available reconfigurable resources. DPR

also opens the door for implementing an ROS where scheduled HTs can be allocated

to free areas of the reconfigurable fabric. With the limitations of the configuration

throughput in current FPGAs, much of the research work has focused on developing

fast and scalable configuration techniques to achieve the throughput required for

high-performance systems.

This chapter also looked into the reliability issues preventing the wide-spread use of

FPGAs in applications requiring high levels of reliability. The unmatched flexibility

of SRAM-FPGAs makes them an excellent solution for space and military

applications; however, due to sensitivity of SRAM memory cells to high levels of

radiation, FPGAs cannot be deployed in such applications without implementing an

efficient fault recovery scheme. This chapter introduced the common fault

detection/recovery techniques in FPGAs with special emphasis on the techniques

based on the DPR capability in FPGAs. With a combination of design-hardening

Chapter 3: DPR for High-Performance and Reliability

62

techniques and DPR recovery schemes, FPGAs can efficiently handle soft errors in

the configuration memory. Moreover, bitstream relocation techniques can also be

deployed to mitigate emerging physical defects in the FPGA chip, allowing for

greater availability and longer life-time.

Chapter 4

63

Chapter 4 : A High-Performance Internal

Configuration Manager

Efficient internal configuration management is central to self-reconfiguring systems

that depend on the ICAP for high-speed dynamic reconfiguration. Typically, internal

configuration requires several components implemented in the FPGA to control the

loading of partial bitstreams from external memory to the configuration memory of

the device. The complexity of the configuration control logic will depend on the

requirements of the system. Some systems deploy basic DPR in their operation and

only require a simple Finite State Machine (FSM) to control the reconfiguration

process. In other systems, such as an ROS kernel implemented on an FPGA, the

ICAP is used extensively for different types of operation: task allocation, task de-

allocation and writing/reading individual configuration frames. In such systems, the

complexity of the configuration control logic is much higher as online modifications

to the original partial bitstreams are required to allow for task relocation. There are

several design aspects that need to be considered when designing the configuration

control circuitry. The design should support various configuration operations in a

compact light-weight design. The design should also be highly portable and easily

customisable to the needs of a particular system. In addition, the configuration

controller should operate at the highest possible throughput to meet the demands of

high-performance applications. This chapter presents a novel ICM that addresses all

the aforementioned design aspects. The proposed ICM is self-dependent with all the

circuitry required to manage the configuration process wrapped in a single top-level

module that requires minimal connectivity with the main CPU in the system making

it particularly suitable for integration with an ROS kernel. With focus on the Xilinx

Virtex family architecture, new methods for enhancing the relocation efficiency and

the reconfiguration speed are presented and compared to previous published works.

Chapter 4: A High-Performance Internal Configuration Manager

64

4.1 General Architecture of the ICM

The ICM’s architecture is based on separating the low-level configuration

particularities from the main CPU in the system. The architecture is tailored for an

ROS where a main CPU assigns configuration tasks to the ICM using a software

library of configuration functions. These configuration functions can be used for

handling the execution of HTs in the available hardware resource in the FPGA as

well as handling the inter-task communication through the configuration layer.

4.1.1 Building Blocks of the ICM

The ICM consist of three main components: the ICAP controller, the external

memory controller and a small soft-processor (see Figure 4.1). The ICAP controller

is the core component of the ICM and is responsible for handling the read/write

protocols of the ICAP to perform the different configuration operations. To allow for

the highest possible throughput when fetching configuration data from the external

storage memory, the memory controller has direct access to the external memory

module. While typical ICAP controllers depend on the main CPU for initiating the

data transfers from external memory to the ICAP over the system’s bus [86], the

proposed ICM controls all the memory data transfers internally without any

assistance from the main CPU. The ICM’s soft-processor is a Picoblaze soft-

processor, which is optimised for Xilinx FPGAs and has a very small footprint [135].

The ICM’s soft-processor is responsible for decoding simple high-level configuration

instructions initiated by the main CPU that trigger the execution of certain sub-

routines. Each subroutine is intended to trigger and monitor a specific configuration

operation such as configuration memory readback, task configuration, task removal,

etc. Once the soft-processor decodes a particular instruction, it coordinates the ICM’s

components according to the requested operation and reports its status back to the

main CPU.

Chapter 4: A High-Performance Internal Configuration Manager

65

4.1.2 Interfacing with the Main CPU

The ICM is connected to the main CPU using two 32-bit FIFOs:

Instruction FIFO: This FIFO is used by the main CPU to write consecutive

configuration requests to the ICM’s soft-processor. Small packets are used to request

configuration operations. Each packet starts with a request ID number followed by

the requested operation command ID and its input parameters. The number of input

parameters depends on the type of operation requested by the main CPU. The

‘empty’ signal of the FIFO is always polled by the ICM’s soft-processor to determine

if there are configuration operations requested by the main CPU. When packets are

sent to the instruction FIFO, the soft-processor starts pulling data out of the FIFO. It

first registers the ID number of the instruction and then decodes the operation

command. Finally, the soft-processor pulls the operation operands and executes the

required sub-routines to perform the operation.

Status FIFO: This FIFO is used by the soft-processor to report the ID number of the

finished operations. This FIFO is also used to report failed operations as well as

sending back output parameters for certain operations.

Figure ‎4.1 Building blocks of the ICM

Chapter 4: A High-Performance Internal Configuration Manager

66

4.1.3 The Configuration Operations

The ICM supports different types of configuration operation. These configuration

operations can be used in a wide range of applications, including full support for HT

management in an ROS. The main configuration operations are described below:

Partial bitstream configuration: This operation is intended for reconfigurable

modules that are floor-planed according to the Xilinx reconfiguration flow where

each reconfigurable module can only be placed in a single reconfigurable region. The

partial bitstreams are simply loaded to the ICAP from external memory without any

modifications to their content.

Partial bitstream relocation: This operation is intended for relocatable modules.

The partial bitstreams are modified online according to the chosen locations. This is

central to the operation of an ROS as HTs are constantly placed in different locations

on the FPGA.

Black-box configuration: Typically, when partial bitstreams are generated for

reconfigurable modules in the system an extra partial bitstream called the ‘black-box’

is generated for every reconfigurable region. The black-box basically removes all the

logic configured in the region apart from the static routes passing in this region. For

relocatable modules, there are several locations on the FPFA where the module can

be placed. Each module can have a different shape, making storing an extra black-

box for each module impractical and costly in terms of the storage memory. This

configuration operation allows for tiling smaller black-box bitstreams horizontally.

By initiating several black-box configurations, any region can be ‘blanked’ provided

that the region does not contain any static routes. As each column type contains a

different number of minor frames, a black-box bitstream is used for each column

type.

Configuration frames read/write: There are different situations in which access to

individual frames is required. For example, fault injection tests require frames to be

read, modified and then written back to the configuration memory. Four operations

Chapter 4: A High-Performance Internal Configuration Manager

67

are required to perform a fault injection test on a frame. A frame-read operation

stores a configuration frame in an internal buffer. A word-fetch operation sends a

particular word from the stored frame to the main CPU. A word-write operation

replaces a particular word in the internal buffer with a word sent from the main CPU.

Finally, a frame-write operation writes the frame stored in the internal buffer to the

configuration memory. Table 4.1 summarises the main configuration operations

supported by the ICM along with their command IDs and parameters.

Table ‎4.1 Main configuration operations

Operation ID Parameters Action

Frame Read 0x0
-Frame address

-Number of frames

Frames are read from configuration memory and

stored in the internal buffer

Fetch Word 0x1
-Word number A word is transferred from the frame buffer to the

status FIFO

Frame Write 0x2
-Frame address

-Number of frames
Frames in the internal buffer are written to the

configuration memory

Write Word 0x3
-Word number A word is transferred from instruction FIFO to

the frame buffer

Scrub Frames

(ECC)
0x4

-Frame address

-Number of frames

Consecutive frames are read with ECC checking

enabled. Only the last frame is stored in the

buffer. Automatically corrects corrupted frames.

Partial

Reconfiguration
0x5

-Partial bitstream ID Configure a partial bitstream file

Partial

Reconfiguration

with Relocation

0x6

-Partial bitstream ID

-Location offsets

Configure partial bitstream in a new location

determined by the location offsets

Black-box

Configuration
0x5

-Number of columns Configure all ‘0s’ (blank) in a number of adjacent

columns

Clone Partial

Bitstream
0x6

-Partial bitstream ID

-Location offsets

Configure a partial bitstream in different

locations on the FPGA

Chapter 4: A High-Performance Internal Configuration Manager

68

 4.2 The ICAP Controller

The ICAP controller is the main component in the ICM. The basic building blocks of

the ICAP controller are an FSM, an on-chip memory block, a Frame Address

Calculator (FAC) and a parallel CRC-32 generator (see Figure 4.2).

Figure ‎4.2 Building blocks of the ICAP controller

The FSM is responsible for controlling the ICAP signals and the flow of data in/out

of the ICAP’s input/output ports. Configuration data is transferred between the on-

chip memory block and the ICAP ports.

The on-chip memory block is a dual-port BRAM that enables concurrent read and

write access using its two ports. The BRAM block is divided into two sections: the

first contains several configuration command templates, which are pre-initialised at

the RTL-level of the design. The second section is a buffer used for buffering data

streamed from the external memory controller as well as for temporary storage of

readback data.

Chapter 4: A High-Performance Internal Configuration Manager

69

To enable fast relocation of partial bitstreams, the algorithm required to modify the

partial bitstreams to alter the configuration location is performed in hardware by the

FAC. The output of the FAC is multiplexed with the output from the BRAM block

and other components in the system that writes to the ICAP. The FSM controls the

multiplexer to select which component should access the input port during any

configuration operation.

 At the end of each partial bitstream, there is a pre-computed CRC value used for

configuration verification. During configuration, internal logic in the FPGA

computes the CRC value for the configured partial bitstream. When the pre-

computed CRC value differs from the value generated by the internal logic, an error

flag is set to indicate an error in the configuration process. As relocation involves

modifications of the original partial bitstreams, new CRC values must be computed if

configuration verification is required. The parallel CRC generator is also connected

to the ICAP input multiplexer to alter the CRC value in the input stream when a

relocation operation is performed.

The main unique feature of the presented ICM architecture is that all the bitstream

modifications required for bitstream relocation are performed using fast hardware

component. In many systems, a host processor needs to perform these modifications

prior to configuration, which slows down the relocation process (see Chapter 2). In

addition, the integration of an internal BRAM, which stores all the configuration

command headers allows for fast access to the configuration memory. Systems based

on typical ICAP controller, such as the Xilinx Hardware ICAP (HWICAP), do not

allow for fast access to the configuration memory as they depend on a host processor

to pass the configuration commands from an external memory to the ICAP controller

prior to performing any configuration operation. In such systems, passing the

configuration commands to the ICAP controller can be performed directly through

the system’s bus (see Figure 4.3a) or through a Direct Memory Access (DMA)

engine to enable burst transfers (see Figure 4.3b).

Chapter 4: A High-Performance Internal Configuration Manager

70

Figure ‎4.3 HWICAP based configuration systems [88]

4.2.1 Basic Operation of the Internal Configuration Access Port

The ICAP primitive in Xilinx FPGAs has six connections in its interface: the ICAP

clock, the Clock-Enable (CE) signal, the Read/Write (RW) signal, the BUSY signal,

the input port and the output port. The CE, RW and BUSY signals are control signals

used to control the flow of data in/out of the ICAP. The input and output ports are

used to read/write 32-bit words from/to the ICAP. These ports can be configured

with different widths: 8-bit, 16-bit and 32-bit.

Read and write operations can be performed using the ICAP to either the

configuration memory or the configuration registers. The configuration registers are

special registers used to control the operation of the internal configuration logic of

the FPGA. Each register has a unique address and can be directly accessed and

modified using the ICAP by writing the appropriate command. Xilinx configuration

commands have a generic structure, whereby a command is divided into separate

fields: Type, opcode, register address and word count (see Table 4.2). The opcode

determines if the command is a write, read or a no-operation command by writing

‘10’, ‘01’ or ‘00’ respectively. The register address selects the required register,

whereas the word count tells the configuration logic how many words need to be

Chapter 4: A High-Performance Internal Configuration Manager

71

written/read to/from the selected register. These words immediately follow the

command. In some situations, long word sequences are required for reading and

writing. When the number of words cannot be set by the fixed size of the ‘word

count field’, two consecutive commands are required to set up the operation. The

first command is a type-1 command, which sets the address of the register and the

second command is a type-2 command, which has a larger ‘word count field’ and is

used to set the number of words for the operation.

Table ‎4.2 Xilinx configuration command structure [25]

Header Type
Commands fields bit positions

Opcode Register Address Word count

1 [28:27] [26:13] [10:0]

2 [28:27] NA [26:0]

There are three main configuration registers that control the reading/writing of

configuration frames. These configuration registers are the Frame Address Register

(FAR), the Frame Data Register-Input (FDRI) and the Frame Data Register-Output

(FDRO). The FAR contains the address of the accessed configuration frame. The

content written to the configuration frames is written to the FDRI when performing

partial reconfiguration or writing to individual frames, whereas configuration

memory readback is performed by reading the FDRO register.

The proposed ICM controller goes through three phases to perform an operation: the

set-up phase, the data transfer phase and the configuration verification phase. The

set-up phase involves preparing the command header for the required operation. This

command header contains the ICAP initialisation sequence as well as specific

commands for specific registers to control the required operation.

After setting up the required operation, the control enters the data transfer phase

where data is transferred to the ICAP. For readback operations, the ICAP must be

switched to the read mode during this phase. The switch is performed when a read

command is encountered by the controller. The ICAP mode is determined by the RW

Chapter 4: A High-Performance Internal Configuration Manager

72

signal where logic ‘0’ enables the ‘write’ mode and logic “1” enables the ‘read’

mode. The process of switching the ICAP from a read to a write mode or vice versa

can be done in three steps: 1) de-assert the CE signal; 2) toggle the RW signal; and 3)

assert the CE signal. After setting up a read operation, the readback data will be

available in the output port of the ICAP after a number of clock cycles. During this

period the BUSY signal of the ICAP remains high, indicating that the readback data

is not available yet. When performing a read operation of a configuration frame, the

required configuration data will appear in the output port of the ICAP after a dummy

frame and a dummy word. The same applies for writing configuration frames during

the data transfer phase. After writing the last configuration frame, an extra dummy

frame must be written to the ICAP, however, no dummy word is required for write

operations.

The final phase is when the configuration verification is performed and the ICAP is

desynchronised to return to the idle state. This operation is performed by sending

special configuration command trailers that are required to de-synchronise the

operation. In case of a read operation, the ICAP must be switched back to the write

mode before sending these commands.

4.2.2 Fast Operation Set-up

In the proposed ICAP controller, pre-generated command header and trailer

templates are stored in the dual-port BRAM. Each type of operation has dedicated

command templates. The command templates are stored in the top half of the

BRAM, whereas the remaining empty memory locations are used as a read/write

buffer (see Figure 4.4).

Each template contains some fields that represent the variable parameters specific for

the required operation such as the frame address and the number of configuration

frames to read/write. These fields are accessible by the ICM’s soft-processor, and

can be initialised with the required values before initiating the required operation.

The BRAM is dual port; one port is dedicated for the controller to access the

operation templates and the read/write buffer and the other port is shared between the

Chapter 4: A High-Performance Internal Configuration Manager

73

soft-processor and the external memory controller through multiplexers (see Figure

4.2). When the soft-processor receives a particular instruction from the main CPU in

the systems, it modifies the fields in the required templates before triggering the

operation. The command templates are divided into three groups: the configuration

memory write, the configuration memory read and the MFW templates.

Figure ‎4.4 The dual-port BRAM block

Configuration Memory Write Templates

There are two templates stored in the dual-port BRAM for the configuration memory

write operation. The main fields that can be modified in the header template are: the

frame address, the number of words to be written, the ID code of the device, the

Control Register (CTL) and the MASK registers values.

The FAR value specifies the address of the first frame to be written to the

configuration memory. The FAR address only needs to be set once, as it is

automatically incremented for consecutive frames in the FPGA’s configuration

circuitry. To set the number of frames to be written consecutively, the word count

field of the FDRI-write command is modified.

Chapter 4: A High-Performance Internal Configuration Manager

74

Each Xilinx FPGA model has a unique ID that needs to be set in the ID register

before a write operation. The CTL and MASK registers are used to enable/disable

writing to the LUTs configured as shift registers or distributed RAM by writing logic

‘1’/’0’ to the GLUTMASK bit in the CTL register. Writing to the CTL register is

masked by the MASK register, so two fields need to be modified to change the

GLUTMASK bit in the CTL register. Table 4.3 shows the commands templates used

for the configuration memory write operations.

Table ‎4.3 Writing command templates

Template Type Configuration Data Explanation

H
ea

d
er

 T
e
m

p
la

te

AA995566 Synchronisation word

20000000 NO-Operation command

30008001 Write 1 word to command register

00000007 Reset CRC command

20000000 NO-Operation command

20000000 NO-Operation command

30018001 Write 1 word to ID register

xxxxxxxx Device ID

3000C001 Write 1 word to MASK register

xxxxxxxx Mask value

3000A001 Write 1 word to CTL register

xxxxxxxx CTL register value

30002001 Write 1 word to the FAR register

xxxxxxxx The frame address value

30008001 Write 1 word to the command register

00000001 WRITE configuration data command

30004xxx Write (xxx) words to the FDRI register

The configuration stream must be switched to the read/write buffer

Dummy word + frames + dummy frame = (xxx)

T
ra

il
er

T
em

p
la

te

30000001 Write 1 word to CRC register

xxxxxxxx CRC-generator inserts checksum here

30008001 Write 1 word to command register

0000000D Write de-synchronisation command

20000000 No-Operation command

20000000 No-Operation command

Chapter 4: A High-Performance Internal Configuration Manager

75

Configuration Memory Read Templates

Similar to the configuration memory write operation, the read operation has two

command templates stored in the BRAM. The variable fields in the read header

template are: the CTL register field, the MASK register field, the word count of the

FDRO-read command and the FAR field. Table 4.4 shows the command templates

for the configuration memory read operation.

Table ‎4.4 Reading command templates

Template Type Configuration Data Explanation

H
ea

d
er

 T
e
m

p
la

te

AA995566 Synchronisation word

20000000 NO-Operation command

30008001 Write 1 word to command register

00000007 Reset CRC command

20000000 NO-Operation command

20000000 NO-Operation command

30008001 Write 1 word to command register

00000004 READ configuration data command

3000C001 Write 1 word to MASK register

xxxxxxxx Mask value

3000A001 Write 1 word to CTL register

xxxxxxxx CTL register value

30002001 Write 1 word to the FAR register

xxxxxxxx The frame address value

28006xxx Read (xxx) words from the FDRO register

20000000 NO-Operation command

20000000 NO-Operation command

Data from the ICAP output port must be stored in the read/write buffer

Dummy word + dummy frame + frames = (xxx)

T
ra

il
er

T
em

p
la

te

20000000 NO-Operation command

20000000 NO-Operation command

30008001 Write 1 word to command register

0000000D Write de-synchronisation command

20000000 No-Operation command

20000000 No-Operation command

Chapter 4: A High-Performance Internal Configuration Manager

76

The Multiple Frame Write (MFW) Command Templates

The MFW feature in Xilinx FPGAs allows for writing the same frame to several

addresses in a single operation rather than writing each frame individually. This

operation is commonly used for offline bitstream compression, where the BitGen

tool looks for configuration frames with similar content and uses the MFW

commands to enable the storing of their content just once instead of multiple times in

the bitstream file. The MFW requires the frame to be written first to the FDRI

register; the frame then can be copied to a new address by using a special set of

commands. This set of commands can be repeated as desired to copy the written

frame to multiple addresses in a much shorter configuration time. Figure 4.5 shows

the command sequence of the MFR operation compared to the normal write

operation.

Since the number of times the MFW command sequence is required in a single

operation will depend on the number of frames to be copied, a ‘loop’ template is

added to the command templates, which can be used in several iterations during the

configuration process. The MFW header template is the same as the configuration

write template with the number of words in the FDRI-write command fixed for a

single frame as no dummy frame is required for the MFW configuration. Table 4.5

shows the command templates for the MFW configuration.

Figure ‎4.5 Writing three identical consecutive frames with and without compression

Chapter 4: A High-Performance Internal Configuration Manager

77

Table ‎4.5 MFW command templates

 Template Type Configuration Data Explanation

F
A

R
 30002001 Write 1 word to FAR

xxxxxxxx FAC inserts FAR here

L
o
o
p
 T

em
p
la

te

30008001 Write 1 word to command register

00000002 Write the MFW command

30014002 Write 2 words to the MFW register

00000000 Dummy word

00000000 Dummy word

30002001 Write 1 word to FAR

xxxxxxxx FAC inserts FAR here

T
ra

il
er

 T
em

p
la

te

30014002 Write 2 words to the MFW register

00000000 Dummy word

00000000 Dummy word

30000001 Write 1 word to CRC register

xxxxxxxx CRC-generator inserts checksum here

30008001 Write 1 word to the command register

0000000D Write de-synchronisation command

20000000 NO-Operation command

20000000 NO-Operation command

4.2.3 The Data-Transfer Phase

After the soft-processor finishes modifying the command templates according to the

instruction sent by the main CPU, it triggers the ICAP control’s FSM, which is

responsible for coordinating the controller’s components to perform the required

operation. It is noted that some of the variable fields are not modified in the setup

phase such as the CRC and the FAR field in the MFW loop template. These fields

are modified during the streaming of the configuration data by the CRC-generator

and the FAC.

One port of the dual-port BRAM is dedicated for the configuration data stream. The

port contains a 32-bit input and a 32-bit output. The port is controlled by three

signals: the data address, the enable signal and the read/write signal. The FSM

Chapter 4: A High-Performance Internal Configuration Manager

78

controls these signal to generate the configuration data for the required operation.

The on-chip BRAMs are fast; they support high operational frequency and a very

low latency (one clock cycle). With the appropriate address control, any command

sequence can be generated on the output port of the BRAM.

The three main states in the data transfer phase are the Command-Write, the Data-

Write and the Data-read states. The Command-Write state is executed while passing

configuration commands to the ICAP. In this state, each configuration command is

decoded to extract some parameters and to set some flags required to control the

data-transfer phase.

Two parameters are extracted from each command: the command type and the word

count. The command type and word count are determined according to Table 4.2,

whereby the command could be registered as either a write command or a read

command. The word count contains the number of configuration words to be written

or read after the decoded command. The next state is determined according to the

command type and number of words, as shown in Figure 4.6.

When a write command to the FAR is encountered in the Write-Command state, a

FAR flag is set to indicate that the next word is a frame address. This flag is

monitored by the FAC, which performs modifications to the frame addresses for

some operations. In addition, the FAC breaks down the FAR to extract the resource

type as well as the original frame location from the FAR.

Figure ‎4.6 Main states in the data transfer phase

Chapter 4: A High-Performance Internal Configuration Manager

79

Configuration Memory Read/Write

The basic configuration memory write/read operations do not require further

modifications in the command templates other than the modifications carried out by

the soft-processor in the setup phase.

The same applies for writing the configuration data stored in the read/write buffer

unless the resource type registered by the FAC is indicating a BRAM resource type.

The content of the BRAM configuration data contains several protection bits all set

at logic ‘1’. In Virtex-4 FPGAs, these bits are placed on the 24
th

 bit of the of the 4
th

,

14
th

, 25
th

 and 35
th

 minor frames and the 8
th

 bit of the 5
th

, 15
th

, 26
th

 and 36
th

 minor

frames of a BRAM column. These bits need to be cleared to enable writing to the

BRAM column. When the FAC detects a BRAM resource type, dedicated

combinatorial logic clears these bits before passing the configuration frames to the

ICAP.

The Virtex FPGA architecture consists of several rows of resource columns. These

rows are divided between the two halves of the FPGA. The configuration frames of

columns in the bottom half of the FPGA have a reversed bit order compared to the

frames of the columns in the top half of the FPGA, with the exception of the word

containing the ECC, which is the 21
st
 word in Virtex-4 FPGAs. This means that if a

configuration frame from the top half of the FPGA is required to be copied to a

location in the bottom half of the FPGA or vice versa, the order of the frame words

must be reversed as well as the order of bits in each word.

To enable the read-relocate-write feature between the top and bottom halves of the

FPGA, a frame bit reversal is always performed when writing configuration data to

the bottom half of the FPGA by performing an address jump to the last word of the

frame in the read/write buffer and decrementing the address until the first word is

reached. The order of bits within each word is reversed by dedicated combinatorial

logic before passing the data to the ICAP. For read operations, the same is done

when storing configuration frames read from the bottom half of the FPGA. Figure

4.7 shows the different scenarios for configuration memory read and write

operations.

Chapter 4: A High-Performance Internal Configuration Manager

80

Figure ‎4.7 Transfer phase for read/write operations

Partial Reconfiguration

The basic partial reconfiguration operation supported by the ICAP controller allows

for a partial bitstream file to be to be passed to the ICAP input port after initialisation

without any modifications to its content. No templates are used for this operation as

all the commands required are inside the bitstream file. For this operation, the FSM

controls the transfer of data from the external memory controller to the ICAP through

the read/write buffer in the dual-port BRAM. In the setup phase, the soft-processor

grants access to the shared port of the BRAM to the external memory controller by

setting the ‘select’ signals of the port multiplexers. The memory controller writes the

configuration data in the buffer starting from the first address of the buffer region in

Chapter 4: A High-Performance Internal Configuration Manager

81

the BRAM. When the external memory reaches the end of the buffer, a jump to the

buffer’s first address is performed. This procedure is repeated until all the bitstream

is written. Reading the configuration data from the other port, which is controlled by

the FSM, is synchronised with the port accessed by the external memory controller

(see Figure 4.8). It is noted that the soft-processor enables the external memory

before the FSM to allow for the latency of the external memory module.

Figure ‎4.8 Transfer phase for basic partial reconfiguration

Offset-based Bitstream Relocation

Bitstream relocation requires modifying the FAR values in the bitstream to change

the location of configuration in the FPGA. All Xilinx Virtex FPGAs have similar

frame addressing architecture. A configuration frame is the smallest addressable

segment of data. There are different types of configuration frame for different types

of logic resource (IOB, CLB, DSP, clock resources and BRAM). Each frame is

configured in the location indicated by the FAR. The FAR is divided into five fields:

top/bottom, block type, row address, column address and minor address. Figure 4.9

shows a generic physical layout of a Xilinx Virtex FPGA device.

Chapter 4: A High-Performance Internal Configuration Manager

82

Figure ‎4.9 Frame addressing in Xilinx Virtex FPGAs

The FPGA is divided into two halves. The top half is addressed by ‘0’ and the

bottom half is addressed by ‘1’ in the top/bottom field of the FAR. Each half is

divided into two rows. In each half of the FPGA, the row address starts with ‘0’ near

the centre of the device and increments moving away from the centre of the device.

The row is also divided into vertical columns of different types of FPGA resource.

The type of column is specified by the block type field in the FAR (‘00’ for IOB,

CLB, CLK and DSP; ‘01’ for block RAM interconnects; ‘10’ for block RAM

content). A configuration frame configures resources spanning the entire height of a

column. This means that the smallest partial bitstream contains the configuration data

for a single column. Each column consists of a fixed number of minor frames

depending on the type of column. Xilinx FPGAs support an auto-increment feature

of the FAR value for the configuration of consecutive frames of the same resource

type. This means that an uncompressed partial bitstream of a reconfigurable module

consisting of only horizontally adjacent columns of the same type contains a single

write to the FAR. Modifying the original FAR value for relocation in such bitstreams

is simple as only a single modification is required. Unfortunately, this is not the case

for most partial bitstreams. Compressed partial bitstreams utilise the MFW command

Chapter 4: A High-Performance Internal Configuration Manager

83

sequence, which requires several FAR writes. The number of FAR writes in a

compressed partial bitstream will depend on the number of compressed frames (see

Figure 4.5). In addition, the number of FAR values in uncompressed partial

bitstreams depends on the resource types within the RM and the column arrangement

of the RM. These FAR values must be modified according to the target location of

the bitstream.

The proposed relocation method in this thesis aims at eliminating any time overhead

incurred from the FAR modifications by performing the modifications using

dedicated logic while partial bitstreams are configured. The FAC in the ICAP

controller is responsible for calculating each new FAR value required for relocation

by extracting some information from the original FAR values and manipulating them

with location offsets passed by the soft-processor. The soft-processor sends a

horizontal offset ‘X’ and a vertical offset ‘Y’ to the FAC to indicate the target

location of configuration. The X offset is divided into two fields: ‘Xclb’ and ‘XBRAM’;

this is because BRAM columns has a different column addressing index compared to

the other resources as shown in Figure 4.9

The proposed relocation model assumes that all the partial bitstream files are

generated for the location as close as possible to the top-left corner of the FPGA.

With this assumption, shifting the modules horizontally becomes a matter of adding a

horizontal offset ‘X’ to the column address extracted from the FAR.

Shifting reconfigurable modules vertically is more complex as the row address

increments away from the centre of the FPGA. A ‘Y’ offset is used according to

Algorithm 4.1 to find the required row address.

Algorithm ‎4.1 Calculating relocation row address from Y offsets

IF Yoffset < Number of rows in one of the FPGA’s halves
 Row Adressrelocation= Row Addressoriginal – Yoffset
Else
 Row Adressrelocation= Yoffset - Row Addressoriginal -1

 END IF

Chapter 4: A High-Performance Internal Configuration Manager

84

These FAR modifications are performed when the FAC is enabled by a ‘FAR flag’

that is set in the Command-Write state. The output of the FAC is passed to the ICAP

by switching access to the ICAP input port to the FAC for one clock cycle.

As mentioned earlier, the configuration frames of the columns located in the bottom

half of the FPGA have a reversed bit order compared to columns located in the top

half of the FPGA. This will limit the possible locations of the bitstream to a single

half of the FPGA. Configuration frames bit reversal is performed for any module

configured in the bottom half of the FPGA to tackle this problem (see Figure 4.10).

When configuring with frame bit reversal, writing to the read/write buffer by the

external memory controller is enabled well ahead of the other BRAM port to allow

for the required word reversal (41 clock cycles for Virtex-4).

Figure ‎4.10 Transfer phase when relocating to the bottom half of the FPGA

Black-box Configuration

Removing already configured modules that are inactive is essential to reduce the

overall power consumption of the system. Each relocatable module could have a

different size. It may be inconvenient to store a black-box configuration for each

relocatable module. Since relocatable modules are mostly configured in locations

with no static routes, their removal process is a matter of writing empty frames in the

Chapter 4: A High-Performance Internal Configuration Manager

85

entire region they occupy. Empty frames are frames with all bits equal to ‘0’. Normal

write operations can take a long time to ‘blank’ a given area, especially when each

frame is written individually. This is because each write operation will require an

extra dummy frame to be written to the FDRI register. Writing a larger number of

frames in a single operation will reduce the overall configuration time. However,

black-box bitstreams are usually compressed as they contain a large number of

empty frames that can be written once using the MFW feature.

The proposed solution for blanking any arbitrary area on the FPGA is to generate the

required compression commands online using the MFW command templates stored

in the dual-port BRAM. To easily blank an area of several resource columns, each

column is assigned with a separate MFW configuration operation where the loop

MFW command template is used several times to blank all the minor frames inside

the column. The blanking process of a particular column starts by writing an empty

frame to the FDRI register. To write the empty frame, the address of the BRAM port

that generates the configuration stream is stalled at a reserved empty memory

location for the required number of clock cycles. After writing the empty frame, the

compression commands are generated by passing the loop MFW command template

several times. In each iteration of the MFW command template, the FAR value is

updated by the FAC which increments the minor frame field. Figure 4.11 shows the

blanking operation.

Figure ‎4.11 Transfer phase for black-box configuration

Chapter 4: A High-Performance Internal Configuration Manager

86

4.2.4 The Configuration Verification Phase

During configuration, the internal configuration logic of the FPGA calculates a CRC

value for the configured data. The CRC calculation starts after a ‘reset CRC’

command is written to the command register. When generating a partial bitstream,

the BitGen software tool generates a CRC value that is written to the CRC register at

the end of the partial bitstream file. This value is compared to the value calculated by

the internal logic of the FPGA and an error flag is set in the “Status” register in case

of a mismatch.

As relocation involves modifying the original partial bitstreams of the relocatable

modules, the original CRC values becomes invalid. As all the modifications to the

bitstream are performed during the configuration process, the new CRC value must

be calculated using a parallel CRC-generator, which processes a 32-bit word every

clock cycle. Xilinx FPGAs use a standard CRC-32C checksum algorithm defined by

the following polynomial:

X
32

 + X
28

 + X
27

 + X
26

 + X
25

 + X
23

 +X
22

 + X
20

 + X
19

 + X
18

 + X
14

 + X
13

 + X
11

 + X
10

 + X
9
 + X

8
 + X

6
 +1

There are several methods for creating parallel CRC generators. Xilinx provides a

parallel CRC generator tool that generates an HDL code for the parallel 32-bit CRC-

generator [136]. The CRC-generator output is connected to the ICAP input

multiplexer. When a write to the CRC register is detected in the Write-Command

state, the output of the CRC generator is selected.

It is noted that the implementation of the CRC generator is optional for configuration

through the ICAP controller. Writing a wrong CRC value to the CRC register does

not cause any corruption in the configuration process.

4.3 The External Memory Controller

As explained earlier, the external memory controller is responsible for moving partial

bitstreams from the external memory to the read/write FIFO of the ICAP controller.

To move a particular partial bitstream, the external memory needs to know the

Chapter 4: A High-Performance Internal Configuration Manager

87

address of the segment of memory storing this partial bitstream as well as the size of

this segment. To ease the management of a large number of partial bitstreams, a

dedicated segment in memory called the pointer table is used to store the addresses

of the first memory location of each partial bitstream file stored in memory. Each

partial bitstream is assigned with an ID number, this ID number represents the order

of the partial bitstream in the pointer table. The external memory controller only

stores the start address of the pointer table and the start/end addresses of the buffer in

the ICAP controller. To configure a particular partial bitstream, the ID number of this

partial bitstream is passed to the memory controller. The external memory controller

reads the address of the first memory location of the file from the pointer table and

then reads the partial bitstreams file header, which contains the size of the file (see

Figure 4.12). The memory controller writes directly to the buffer in the ICAP

controller according to the scheme shown in Figure 4.8. The ICAP controller’s FSM

is responsible for synchronising the data transfer in and out of the buffer. To do this,

the FSM monitors the last address in the buffer accessed by the memory controller.

Figure ‎4.12 The external memory controller

Chapter 4: A High-Performance Internal Configuration Manager

88

Two versions of the external memory controller were designed to support two

popular types of memory module: Zero Bus Turnaround (ZBT) SRAM and Double

Data Rate (DDR) SDRAM.

The ZBT SRAM memory is very popular for applications requiring low latency.

There is only two clock cycles latency when reading a specific address; this is very

efficient for non-burst data transfers (e.g. jumping between segments in memory). In

addition, the ZBT SRAM interface is very simple requiring only a small controller

implemented in the FPGA.

DDR SDRAM is widely used when a larger size of memory is required in the system

or when several components in the system need direct access to the memory. Xilinx

provides an optimised memory controller for its FPGAs. The MPMC IP core from

Xilinx provides support for DDR, DDR2, DDR3 SDRAM memory modules [137].

The MPMC contains eight ports, which provide access to memory through one of the

standard Personality Interface Module (PIMs). The fastest PIM standard for the

MPMC port is the NPI, which provides low latency direct access to the memory. The

MPMC supports burst transfer lengths of up to 64 words. However, the data latency

is large compared to the ZBT SRAM. The designed NPI-MPMC controller achieved

a latency of 30 clock cycles between burst data transfers.

The partial bitstreams are copied from a non-volatile memory to the RAM memory

module by the main CPU after power-up. Multiplexers are used to switch access to

the ZBT SRAM memory module between the main CPU and the ICM, whereas a

dedicated port of the MPMC memory controller is used to connect the main CPU. It

is noted that the ICM is optimised for the SRAM controller and the rest of this

chapter assumes the SRAM controller as the default controller.

 4.4 Multiple-Clone Configuration

Due to the sequential nature of the configuration logic in FPGA, the configuration

process is limited to the maximum theoretical throughput of the configuration port.

Most of the attempts reported in the literature to reduce the configuration time

Chapter 4: A High-Performance Internal Configuration Manager

89

overhead are based on over-clocking the configuration port or optimising the

reconfigurable modules to realise smaller partial bitstreams (see Chapter 3).

Parallel reconfiguration is unfeasible in current commercial FPGAs. Parallel

reconfiguration can be defined as the ability to reconfigure several regions on the

FPGA at the same time. If we examine the MFW configuration supported in the

latest Xilinx FPGAs, we can see that it allows for some configuration parallelism but

with some limitations. The MFW allows for writing several frames at once, provided

that these frames have the same content. In other words, it clones a configuration

frame in several locations on the FPGA. Typically, the MFW is utilised offline to

reduce the number of frame repetitions in the bitstream file and achieve compression

which depends on the original design. It was shown in earlier sections of this chapter

how the MFW commands can be managed online to realise an efficient method for

black-box configuration. This section explains how the online configuration

management can be extended to allow for parallel configuration of identical

relocatable modules (i.e. clones) using a proposed multiple-clone configuration

technique. This technique allows for online generation of a single bitstream that

configures different instances of the same module in different locations on the FPGA

in much shorter configuration time compared to normal configuration.

The multiple-clone configuration feature is fully integrated with the presented ICAP

controller. Figure 4.13 highlights three applications that can benefit from such

configuration techniques.

The first application is the configuration of redundant modules in an N-Modular

Redundancy system. In such systems an ‘N’ number of redundant modules is used to

perform the same process to enhance the reliability of the system. A redundancy

system can be designed as a partially reconfigurable system where the redundant

modules can be swapped to perform different functions [117].

The second application is an embedded systolic array acceleration system, which

contains several configuration slots for the configuration of hardware systolic array

accelerators ([69] and [70]). Several slots can be connected together to form a larger

systolic array depending on the level of acceleration required.

Chapter 4: A High-Performance Internal Configuration Manager

90

This configuration technique can also be deployed in an ROS where several tasks are

executed in hardware. When successive tasks that use the same hardware are

scheduled for execution, this technique can be used to reduce the configuration time

and consequently ease the load on the configuration port.

Figure ‎4.13 Possible applications of the multiple-clone configuration

4.4.1 Overview

To clone a particular module in several locations on the FPGA, each location is

assigned with an ‘X’/’Y’ offset pair. Rather than writing the configuration frames

sequentially to the FDRI, each frame is written separately to the FDRI followed by

several iterations of the MFW commands. For non-compressed partial bitstreams, the

number of MFW command iterations for each frame is equal to the number of clones

required. In each iteration, the FAR value is recalculated for a new offset pair. After

finishing all the MFW command iterations of a frame already written to the FDRI,

the next frame is written to the FDRI and the same process is repeated until all the

clones are configured (see Figure 4.14).

Chapter 4: A High-Performance Internal Configuration Manager

91

For compressed partial bitstreams, the number of iterations of the MFW commands

can vary between frames as some frames already deploy these commands in the

original partial bitstream for compression. For each compressed frame, the number of

MFW command iterations is equal to (number of clones x number of compressions).

Figure ‎4.14 Multiple-clone configuration

4.4.2 The Clonable Partial Bitstream

Partial bitstreams generated by the Xilinx software tool do not contain the FAR value

of each frame in the bitstream. The internal logic of the FPGA automatically

increments the FAR when adjacent frames are written to the FDRI. For the multiple-

clone configuration, the FAR of each frame must be pre-computed to allow for fast

update of the FAR field in the MFW command template.

A simple C code was developed to decode the Xilinx Virtex partial bitstream and

calculate the addresses of individual frames. This code is used to create a new

bitstream file with all the information necessary for the cloning process. The

structure of the generated bit file is designed to be easily accessible by the ZBT

SRAM memory controller to perform both normal configuration as well as multiple-

clone configuration.

Chapter 4: A High-Performance Internal Configuration Manager

92

The bitstream file consists of a file header and several frame segments, one for each

frame in the bitstream (see Figure 4.15). These frame segments are grouped

according to the resource type they configure. The CLB frame segments are placed

first in the file followed by the BRAM, BRAM interconnects and DSP frame

segments. The file header basically contains the number of frame segments in the

file. Each frame segment contains its own header. This header contains a

compression field indicating the number of compressions for the frame in the

original bitstream. If no compression operation is associated with the frame, the

frame segment header is ‘0’. Any frame is always preceded by its pre-computed FAR

value. The compression addresses always follow the frame in case it was used in a

compression operation.

Figure ‎4.15 The clonable bit file

4.4.3 The Configuration Process

All the information required to perform the cloning process is contained in the

clonable bit file. To clone a module in several locations on the FPGA, the ICAP

controller’s soft-processor passes an offset pair for each location to a buffer

connected to the FAC. During configuration, the frame segments are processed

separately. The external memory controller passes each frame to the read/write

buffer in the ICAP controller and any FAR value associated with the frame to a FAR

Chapter 4: A High-Performance Internal Configuration Manager

93

FIFO connected to the FAC (see Figure 4.16). The FSM synchronises the frame

fetching from the external memory so that it does not cause any interruption in the

configuration stream. This is possible due to the very low latency of the ZBT SRAM.

A ‘Send Frame’ signal connected to the memory controller is pulsed every time a

frame transfer is required. Writing to the FDRI can start once the first word of the

frame is available in the buffer. In case the cloning configuration process is

performed in the bottom half of the FPGA, a ‘Reverse Frame’ signal is triggered to

instruct the memory controller to fetch the word in reverse order.

When writing the MFW commands, the FAC calculates the FAR values for each

clone according to the values present in the FAR FIFO and the offset buffer. Each

FAR value is utilised in several MFW command iterations until it is used with all the

offset pairs in the buffer. The FSM will continue looping through the MFW

command template until the FAR FIFO is empty. After that, cloning proceeds to the

next frame segment in the bitstream.

Figure ‎4.16 Configuration using the clonable bit file

Chapter 4: A High-Performance Internal Configuration Manager

94

4.5 Performance and Resource Utilisation Evaluation

This section of the thesis evaluates the resource utilisation of the presented ICM as

well as the performance achieved when carrying out the different configuration

operations. The presented ICAP controller was implemented in aVirtex-4 FPGA. The

system was configured as a standalone ICAP controller where the soft-processor is

responsible for initiating different test operations without the need for a main CPU.

4.5.1 Resource Utilisation Evaluation

The full ICM was designed to support many operations and to be the core hardware

component in an ROS. Not all reconfigurable systems require the capabilities of the

presented ICM. The ICM design allows for easily removing any unwanted feature at

the RTL design stage in order to reduce the resource utilisation.

Table 4.6 shows the resource utilization of the different components in the full ICM

whereas Table 4.7 shows the total resource utilisation for different versions of the

ICM with different sets of supported features.

The full ICM utilises 1,117 slices in a Virtex-4 FPGA. This accounts for around 4%

of the largest device in the Virtex-4 family (XC4VFX60) and around 20% for the

smallest device in the family (XCVFX12). The resource utilisation of the ICM

depends on the features required in a particular system. For an ROS system that

requires module relocation as well as reading/writing individual frames, trimming the

extra features of the ICM results in a resource utilisation of 721 slices. When only

basic DPR is required, no soft-processor is required as controlling the configuration

becomes a simple process requiring a small FSM utilising only 74 slices and a single

BRAM block. It is noted that the resource utilisation figures reported in Table 4.7 are

given when an SRAM module is used to store the partial bitstreams. A secondary

NPI-MPMC controller was also designed to support configuration from DDR

memories [137]. The controller resource utilisation is 107 slices; however, it

connects to the Xilinx MPMC IP, which utilizes around 1,250 slices and 2 BRAMs

Chapter 4: A High-Performance Internal Configuration Manager

95

in a Virtex-4 FPGA. Thus, the NPI-MPMC controller is only suitable for large

FPGAs and systems that already use a DDR memory module. It is also noted that the

current version of the DDR memory controller does not support the multiple-clone

configuration feature. In addition, relocation is only possible when a module is

relocated to a location within the same FPGA half as the original location of the

module. This means that two bitstreams are required for each relocatable module.

The first is generated for the top half of the FPGA whereas the second is generated

for the bottom half of the FPGA.

Table ‎4.6 ICM’s‎resource‎utilisation‎in‎a‎Virtex-4 FPGA

Component Slices BRAM

Pico-blaze 104 1

ICAP Controller 803 1

SRAM Controller 146 0

Glue Logic 64 0

Total 1117 2

Table ‎4.7 Resource utilisation for different versions of the ICM

Feature Resource

Utilisation

DPR (No

Pico-blaze)

Frame

Read/write

Relocation Blanking Cloning Online

CRC

Slices BRAM

YES NO NO NO NO NO 75 1

YES YES NO NO NO NO 417 2

YES YES YES NO NO NO 721 2

YES YES YES YES NO NO 796 2

YES YES YES YES YES NO 992 2

YES YES YES YES YES YES 1117 2

The fact that the proposed ICM can perform and control all the configuration

operations independently means that it is possible to configure the ICM as a

standalone configuration system for applications that do not require an embedded

host processor. This capability is not possible in systems based on the Xilinx

Chapter 4: A High-Performance Internal Configuration Manager

96

HWICAP as it depends on a host processor to control its operation and pass the

configuration data through the host bus. Such systems can incur additional resource

overheads caused by all the required components (e.g. bus controller, DMA). Table

4.8 compares the resource utilisation of the proposed ICM with two different

implementations of a HWICAP based system [88].

Table ‎4.8 Resource utilisation comparison between proposed ICM and HWICAP based

systems in a Virtex-4 FPGA

Configuration System
Resource Utilisation

Slice BRAM

Proposed ICM (SRAM Interface) 1117 2

HWICAP without DMA [88] 1637 0

HWICAP with DMA [88] 2138 0

4.5.2 Standard Configuration Operations Performance Evaluation

The standard configuration operations are: configuration frames read/write and basic

DPR. Although some authors suggest overclocking the ICAP to achieve higher

configuration throughput (see Chapter 3), the overclocking technique is not

considered in the performance analysis, despite the fact that the proposed ICM has

operated successfully with a frequency of up to 160 MHz (60Mhz higher than the

ICAP rated frequency). This is mainly because of the following reasons:

1) Results obtained from overclocking the ICAP may not be applicable to all

designs and all devices. Variation in devices and experimental conditions will

directly impact the maximum throughput achieved.

2) There might be some reliability issues when overclocking the ICAP. It is difficult

to predict how the ICAP will behave in the long run when overclocked. This is

especially important as dynamic reconfiguration is often used for enhanced

reliability.

Chapter 4: A High-Performance Internal Configuration Manager

97

3) There is a risk of damaging the internal configuration logic when operating the

ICAP with much higher clock frequencies compared to the maximum rated

frequency.

Due to the aforementioned reasons, the performance analysis is based on how close

the achieved configuration throughput is to the maximum theoretical throughput.

Table 4.9 shows the time measurements for the basic read/write configuration

operations. To test the configuration speed of the proposed ICM, three benchmark

RMs that span different areas on the FPGA are considered (see Table 4.10). Two

partial bitstreams are generated for each RM; the first is generated without

compression; resulting in the maximum file size whereas the second is for a black-

box of the same area as the RM. The black-box is generated with compression

enabled, resulting in the smallest file size.

Table ‎4.9 Frame read/write time overhead

Operation ICAP Freq. (MHz) Operation Time (us)

Read Frame 100 2.28

Write Frame 100 1.95

Table ‎4.10 Benchmark RMs

RM ID
RM Area (Columns) File Size (KB)

CLB BRAM DSP Normal Black-Box (Compressed)

RM1 2 0 0 8 3

RM2 4 1 0 29 7

RM3 8 1 1 47 10

Table 4.11 shows the configuration times and the relocation times for the benchmark

RMs using the default SRAM controller and the secondary NPI-MPMC controller

when operating at 100MHz and using the 32-bit configuration of the ICAP.

Chapter 4: A High-Performance Internal Configuration Manager

98

Table ‎4.11 Configuration and relocation times of the ICM

R
M

 I
D

SRAM Controller NPI-MPMC Controller (DDR2)

Configuration Time

(us)

Relocation Time

(us)

Configuration Time

(us)

Relocation Time

(us)

Normal
Black-

Box
Normal

Black-

Box

Normal Black-

Box

Normal Black-

Box

RM1 21.08 8.28 21.17 8.73 30.32 11.42 30.41 11.83

RM2 74.84 18.52 74.95 20.27 109.28 26.56 109.39 28.31

RM3 120.92 26.20 121.04 29.05 176.96 37.84 177.08 40.69

A
vg

.

T
h

ro
u

g
h

p
u

t

376.2

(MB/s)

365.2

(MB/s)

375.4

(MB/s)

336.3

(MB/s)

258.8

(MB/s)

257.3

(MB/s)

258.3

(MB/s)

243.4

(MB/s)

From Table 4.11, we can see that the maximum configuration throughput using the

SRAM controller is very close to the maximum ICAP throughput, which is 400

MB/s. Furthermore, the configuration throughput increases as the size of the partial

bitstream increases. When operating the ICM with an NPI-MPMC controller, the

configuration throughput degrades due to the latency of each burst transfer from the

DDR memory. RM relocation slightly reduces the configuration throughput. In the

case of the SRAM controller, the relocation throughput of non-compressed

bitstreams is 0.8 MB/s slower than configuration without relocation. The relocation

overhead depends on the number of FAR values present in the partial bitstream as

substituting a new FAR value requires a single clock cycle in the proposed ICM. For

compressed partial bitstreams, the number of FAR values depends on the number of

identical frames in the partial bitstream. A black-box will result in the maximum

number of FAR values in the partial bitstream of any RM. For the benchmark RMs,

the average relocation throughput of the black-box bitstreams was 336.3 MB/s. This

is 39.1 MB/s less than the average relocation throughput of the non-compressed

bitstreams. We can estimate the relocation throughput of proposed ICM by: (average

relocation of non-compressed bitstreams + average relocation throughput of

compressed black-box bitstreams)/2. This results in an average relocation throughput

of 355.9 MB/s in the case of the SRAM controller and 250.9 MB/s in the case of the

Chapter 4: A High-Performance Internal Configuration Manager

99

NPI-MPMC controller. Table 4.12 compares the relocation throughput of the

proposed ICM with the throughput of different relocation systems reported in the

literature.

Table ‎4.12 Throughput comparison between the proposed ICM and other relocation

systems

System Device
ICAP Freq.

(MHz)

Throughput

(MB/s)

Proposed ICM Speedup

SRAM NPI-MPMC

REPLICA2Pro

[49]

Virtex-

II/Pro
35 35 x10.2 x7.7

BiRF [50] Virtex-4 100 7.3 x48.9 x34.4

[47] Virtex-4 100 3.5-8.9 x101.7-x40.0 x71.7-x28.2

ARC [138] Virtex-4 100 61.9 x5.7 x4.1

OORBIT [139] Virtex-4 100 100 x3.6 x2.5

Table 4.12 shows that the proposed ICM outperforms the relocation systems reported

in the literature. The relocation system providing the closest throughput to the

proposed ICM is the OORBIT, which was implemented in a Virtex-4 FPGA. The

proposed ICM was 3.6 times faster with the SRAM controller and 2.5 times faster

with the NPI-MPMC controller. In fact, the OORBIT is not a pure online bitstream

relocation system as it uses pre-computed offline FAR and CRC values generated for

all the possible locations of the RMs to accelerate the relocation process.

The REPLICA2Pro and BiRF are early relocation filters, which perform the FAR

modifications online using dedicated hardware. The reported throughput of

REPLICA2Pro is just an estimation provided by the authors and is not based on an

actual implementation. The BiRF is also a hardware relocation filter with an average

throughput of 7.2 MB/s when operating at 100 MHz. The BiRF poor throughput is

mainly because the partial bitstreams were fetched from the DDR memory using a

processor bus rather than a DMA engine. The system in [47] uses software running

on a soft-processor to perform the partial bitstream modification required for

relocation. Using software to modify the partial bitstream before configuration

degrades the relocation throughput especially when bitstream reversal is required

Chapter 4: A High-Performance Internal Configuration Manager

100

(i.e. moving a bitstream from top half of the FPGA to the bottom half or vice versa).

ARC also uses software to perform some of the bitstream modifications. However,

bitstream reversal is performed in hardware to avoid the delay caused by rearranging

the configuration frames in software prior to configuration.

4.5.3 Online Black-Box Bitstream Generation

The ICM can generate a black-box bitstream online for a relocatable RM with any

size. The main aim of this feature is to circumvent the need for storing extra black-

box partial bitstreams, which are required for the removal of already configured RMs

in the system. The RM removal process is based on configuring compressed empty

columns covering the RM area. Table 4.13 shows the removal time of the benchmark

RMs shown in Table 4.10 using the proposed removal method, non-compressed

black-boxes and compressed black-boxes.

It can be seen from Table 4.13 that the RM removal time of the proposed online

method falls between the removal time of the non-compressed black-box file

configuration and the compressed black-box file configuration. The proposed method

does not require the storing of any files externally opposite to the other two methods.

For very small RMs the proposed method might be faster than the other two methods

as a black-box file generated using the BitGen tool contains a fixed header and a trail

sequence of NOPs, adding extra configuration overhead.

Table ‎4.13 RM removal time using (SRAM controller)

RM ID
Removal Time (us)

Non-Compressed Black-Box Compressed Black-Box Proposed Method

RM1 21.17 8.73 7.46

RM2 74.95 20.27 26.38

RM3 121.04 29.05 44.93

Chapter 4: A High-Performance Internal Configuration Manager

101

4.5.4 The Multiple-Clone Configuration Technique

This feature allows for copying the same relocatable module in different locations on

the FPGA in a single operation and using a single clonable bitstream file. To see how

the proposed multiple-clone configuration method would scale compared to the

normal configuration method, two relocatable modules are used for testing. The first

module is a small Pulse Width Modulation (PWM) module and the second module is

a large K-means clustering core with fixed 8 clusters and a dataset of 2,905 points.

The K-means clustering core is based on the implementation discussed in [140].

Table 4.14 shows the resource utilisation and area occupation of the two modules.

Table ‎4.14 Test relocatable cores

Test

Core

Resource

Utilisation

Area

(Columns)
Bitstream Size

(KB)

Clonable File Size

(KB)
Slices BRAM CLB BRAM

PWM 46 0 2 0 8 7.4

K-Means 1107 5 16 2 85 87.4

Table 4.14 shows that the size of the clonable file is comparable to the size of the

original non-compressed bitstream generated by the BitGen tool. It is slightly smaller

than the bitstream for the small PWM module and slightly larger than the bitstream

for the K-means core. Table 4.15 shows the configuration times for configuring

multiple instances of the test cores within different locations in the same half of a

Virtex-4 FPGA (XC4VFX60). The configuration locations are limited to the same

half of the FPGA because bitstream reversal in not possible with the multiple-clone

configuration as each configuration frame is written to the FDRI register before

writing the MFW commands. If locations spanning both halves of the FPGA are

required, two multiple-clone operations must be performed: one for configuring the

relocatable module on the top half locations and the other for the locations in bottom

half of the FPGA.

Chapter 4: A High-Performance Internal Configuration Manager

102

Table ‎4.15 Configuration times of the test cores

Configuration

Method

Configuration Times for Different Number of Instances (ms)

K-means PWM

4 5 6 10 15 20

Normal 0.87 1.1 1.3 0.21 0.31 0.42

Multiple-Clone 0.40 0.44 0.49 0.057 0.075 0.092

Speedup x2.2 x2.5 x2.7 x3.7 x4.1 x4.6

It can be seen from Table 4.15 that the configuration speedup using the multiple-

clone configuration technique scales with the number of instances configured. For

the K-means core, six instances are possible within one half of the Virtex-4 FX60.

The configuration time for configuring the K-means core can be 2.5 times smaller

with the multiple-clone configuration technique compared to the normal

configuration method. More than 60 instances for the smaller PWM module are

possible within one half of the FPGA. When configuring 20 instances of the PWM

module, the configuration time of the multiple-clone configuration is 3.8 times

smaller than the normal configuration method.

It is important to mention that the multiple-clone configuration is not just limited to

the Virtex-4 FPGA family. In fact, the possible gain with this technique is higher for

newer devices such as the Virtex-6 and the 7-series families as the size of a

configuration frame in these families is larger compared to the Virtex-4. For

example, the number of words in a Virtex-6 FPGA is 81 compared to the 41 words in

a Virtex-4 FPGA and still can be cloned in the seven clock cycles needed for the

MFW command sequence. This means that a reduction in configuration time is

around 87% for a cloned frame in a Virtex-6 FPGA compared to 76% in a Virtex-4

FPGA.

4.6 Chapter Conclusion

In modern FPGAs, access to the configuration memory from within the FPGA allows

for the implementation of interesting self-reconfiguring systems. The limited

configuration throughput of FPGAs can be a performance bottleneck, especially for

Chapter 4: A High-Performance Internal Configuration Manager

103

systems that extensively use the configuration port for complex operations such as

online bitstream relocation. The high configuration throughput required for such

systems drives the need for an efficient configuration management system that

independently handles these operations without degrading the configuration

throughout.

This chapter presented the design and architecture of an ICM that supports all the

basic configuration operations with minimal overhead. In addition, the ICM supports

a set of specialised features such as bitstream relocation and the multiple-clone

configuration technique. The relocation throughput of the presented ICM is superior

to the pre-existing relocation systems allowing for throughputs very close to the

maximum limit of the configuration port. Moreover, the proposed multiple-clone

configuration technique can achieve configuration throughputs multiple times higher

than the theoretical limit of the ICAP without overclocking the configuration port

when multiple instances of the same relocatable model are configured. The

comprehensive feature support and the high performance of the presented ICM make

it especially suitable for implementing complex reconfigurable applications such as

an ROS, which is extensively affected by the configuration performance.

Chapter 5

104

Chapter 5 : Reliability-Centric Internal

Configuration Management

The internal dynamic reconfiguration feature in modern FPGAs has opened the door

for new opportunities to implement low-cost self-healing systems. Many techniques

for online fault detection and repair in FPGAs have been proposed in the literature

(see Chapter 4). In order to realise a fully autonomous single-chip solution, the fault

detection and repair should be carried out from within the FPGA using the internal

configuration port. Self-healing systems require the ICM to perform different fault

detection and repair operations on-the-fly without disturbing the implemented

system. These operations should be performed at the highest speed possible,

especially when the internal configuration port is extensively used for operations

other than fault detection and repair. The performance of the system could be

degraded when access to the configuration port is dominated by fault detection and

repair. This brings the need for an efficient management of all operations requiring

access to the configuration port. In addition, the ICM should be designed to

withstand faults in its logic as configuration errors could lead to system failure. The

design of the ICM should be compact as the resource overhead of the conventional

fault-mitigation design techniques could impact the overall efficiency of the system.

The work presented in this chapter presents different fault detection and repair

schemes that can be performed by the ICM to mitigate soft faults such as internal

readback scrubbing, external scrubbing and CRC-based configuration verification.

This chapter also discusses different design strategies to ensure reliable operation of

the ICM. The R3TOS is also presented in this chapter as a solution to handle

permanent faults in the FPGA by means of bitstream relocation. The R3TOS aims to

integrate all the fault detection and repair capabilities of the ICM in an ROS that

provides a generic platform for FT applications.

Chapter 5: Reliability-Centric Internal Configuration Management

105

5.1 The Design of a Fault-Tolerant ICM

When used for FT applications, the ICM should be able to perform different fault

detection and repair operations. The design of the ICM should be able to tolerate

faults in its logic in order to perform these operations correctly and prevent system

failure. The high performance ICM discussed in Chapter 4 was redesigned with

different DPR-based self-recovery techniques to come up with the optimal design in

terms of performance and area overhead.

5.1.1 Triple Modular Redundancy (TMR)

TMR provides great fault detection capabilities. Any fault that affects the output of

the ICM is detected by output comparators. In addition, the operation of the ICM is

not affected if faults do not occur in more than one redundant module. The main

drawback of TMR is the large resource overhead due to triplicating the logic. There

are two main criteria in designing the TMR system for the ICM. The first is to reduce

the possibility of single faults affecting more than one redundant module in the

system. The second is the ability to recover from faults affecting any redundant

module.

Faults that affect more than one module are usually caused by a change in the routing

between two modules. This problem is apparent in TMR systems with the logic of

the three redundant modules placed in the same area. One solution to this is to place

the logic of each redundant module in a distinct area with all local routes constrained

to this area. These regions could be reconfigurable regions with partial bitstreams

generated for recovery by partial reconfiguration. Recovery by partial

reconfiguration covers all types of soft error in the configuration memory. In order to

reduce the overall area occupation of the TMR system, the minimal number of

reconfigurable regions should be used. A large grain TMR scheme uses three

reconfigurable regions, one for each instance of the ICM (see Figure 5.1). The three

instances should be synchronised at all times and should be able to automatically

recover from any faults in one of the three instances. When one of the tree instances

Chapter 5: Reliability-Centric Internal Configuration Management

106

fails, the remaining two instances enter a recovery state after finishing the current

configuration operation. In the recovery state the faulty module is reconfigured.

Dedicated reset logic resets the three instances to the initial state after recovery and

system operation is resumed normally.

Figure ‎5.1 TMR design for the ICM

5.1.2 Dual Modular Redundancy (DMR)

In smaller FPGAs, triplicating the ICM might cause intolerable resource utilisation.

DMR requires two redundant modules. One is the default module and the other is

used for error detection. When a mismatch between the two modules is detected, the

operation is aborted, and the two modules are reconfigured and reset to the initial

state.

While DMR reduces the resource utilisation of TMR by 1/3, it is not applicable to

the ICM in its basic form. When one of the two instances fails, there is no

mechanism to determine which instance is faulty and which instance should gain

access to the ICAP to carry out the recovery process. DMR can still be applied to the

ICM by implementing a third basic recovery controller, which is only used to

Chapter 5: Reliability-Centric Internal Configuration Management

107

reconfigure the two redundant modules when a mismatch is detected (see Figure

5.2). This is a very basic DPR operation performed by moving the partial bitstream

from external memory to the ICAP. The basic recovery controller can be more than

90% smaller than the full ICM. Given the small footprint of the recovery controller,

TMR is applied to the recovery controller, which is placed in a separate

reconfigurable region. In case of a fault in the recovery controller during the

recovery of the ICM, TMR will filter out any error. When the ICM is fully

reconfigured, access to the ICAP is switched to the ICM, which immediately

reconfigures the region containing the recovery controller to prevent accumulation of

faults.

Figure ‎5.2 DMR design for the ICM

5.1.3 Operation Monitor

The TMR and DMR implementations of the ICM prevent the passing of faulty data

to the configuration memory at the cost of tripling or doubling the resource

utilisation of the ICM. The ICM itself is equipped with CRC-32 detection

capabilities, which detect faults after performing any configuration write operation

Chapter 5: Reliability-Centric Internal Configuration Management

108

by comparing a checksum generated by the CRC-32 generator with the checksum

generated by the FPGA’s internal configuration circuitry (see Chapter 4). There are

two failure scenarios in ICM when performing any configuration operation: the first

is passing faulty data to the configuration memory and the second is failing to

complete the configuration operation. In the first scenario, the fault can be detected

by CRC checksums, whereas in the second scenario the ICM will stall and not reach

the stage of the CRC check. As each configuration operation has a deterministic

time, an operation monitor can be implemented to check if the ICM stalls at any

operation or a CRC error is detected. The operation monitor can trigger the recovery

controller to reconfigure the ICM in any of the two failure scenarios (see Figure 5.3).

This thesis proposes using the operation monitor to circumvent the need for

replicating the ICM to reduce the overall resource utilisation. However, errors in

configuration are detected after they take effect in configuration memory, which is

not the case for TMR and DMR.

Figure ‎5.3 CRC error detection in the ICM

Chapter 5: Reliability-Centric Internal Configuration Management

109

5.1.4 Resource Utilisation vs. Performance

The resource utilisation for the different FT versions of ICM in a Virtex-4 FX60

FPGA are shown in Table 5.1. Because the designs are based on DPR, the area of

occupation is also considered. Table 5.2 shows the area occupation and the

maximum recovery time of each version of the FT ICM. The maximum recovery

time is defined as the reconfiguration time of the region containing the full ICM. The

TMR design was floor-planned so that each reconfigurable region is placed in a

single clock region of the Virtex-4 FX60 FPGA (total clock regions =16). In the

DMR design, the ICM’s region occupies two clock regions, whereas the TMR-ed

recovery controller occupies half the clock region. In the proposed small design, the

ICM’s region is placed in a clock region and the TMR-ed recovery controller is

placed in a half clock region.

Table ‎5.1 Resource utilisation of different versions of the FT-ICM in a Virtex-4 FPGA

Resource Type TMR DMR Proposed (Operation Monitor)

Slice 3547 2626 1513

BRAM 6 4 2

Table ‎5.2 Area occupation and recovery time in a Virtex-4 FX60 FPGA

Design Strategy No. of RPs No. of Occupied Columns Max. Recovery Time (100MHz)

TMR 3 18.8% 0.40 ms

DMR 2 13.0% 0.77 ms

CRC Detection 2 6.8% 0.40 ms

A fault injection experiment was carried out to estimate the reliability of different

versions of the FT-ICM. The fault injection was performed using an online fault

injector (a dedicated ICAP controller). Hard-macros for the critical components used

in the designs were created. Single faults were injected in the area covered by these

components. After each fault is injected, the outputs of the tested component are

compared to a reference component before reconfiguration (Table 5.3). All errors in

the ICM were detected by TMR, DMR and CRC detection schemes. However,

Chapter 5: Reliability-Centric Internal Configuration Management

110

single points of failure are increased in DMR and CRC schemes as they contain more

static components (ICAP multiplexer, error detector).

Table ‎5.3 Errors in critical design components

Component No. of Faults Injected No. of Errors Error Type

ICM 635008 35450(6%) Correctable

ICAP Voter 57728 591(1%) Uncorrectable

ICAP Mux 28864 316(1%) Uncorrectable

5.2 Soft-Error Handling Strategies

In the context of this thesis, soft errors are defined as correctable errors that appear as

single bit-flips or multiple bit-flips in the FPGA’s configuration memory.

Configuration memory scrubbing is the process of correcting bit-flips in memory

caused mainly by radiation effects. In SRAM-FPGAs, configuration memory

scrubbing can be classified into two types: readback scrubbing and external

scrubbing (see Chapter 3). Both types can be managed internally using an ICM

implemented in the FPGA logic. Readback scrubbing is based on reading the

configuration frames using the internal configuration port and performing error

checks based on the parity bits embedded in the device’s configuration memory.

External scrubbing, on the other hand, uses a reference bitstream stored in an

external memory to correct any emerging faults in the configuration of the FPGA.

5.2.1 Internal Readback Scrubbing

In Xilinx Virtex FPGAs, ECC bits are embedded in the configuration memory. These

bits are calculated when a bitstream is generated for a particular design

implementation to enable detection when a bit-flip occurs after the device is

configured. In the Virtex-4 family, there are 12 Hamming parity bits located in the

21
st
 word of each frame. These bits can be used to detect and correct single-bit errors

within a configuration frame. Correction of any corrupted configuration frame is not

possible using the ECC when more than one bit-flip occurs in the frame. Error

Chapter 5: Reliability-Centric Internal Configuration Management

111

detection is also limited to two bit-flips within a frame. When more than two bit-flips

occur in a frame, there is no guarantee that these errors will be detected [25].

Xilinx has also included a dedicated hard-wired ECC logic block in the Virtex-4

FPGA. This ECC block is connected internally to the ICAP and activated during

configuration memory readback (see Figure 5.4). During readback, the ECC block

decodes the configuration frames to determine if a bit-flip has occurred. If a faulty

frame is encountered during a readback operation, an error signal is raised and a 12-

bit syndrome value denoted by S [11:0] is generated by the ECC block. The

syndrome bits can be used to determine the type and location of errors within a faulty

frame. Table 5.4 shows how errors are classified using the syndrome.

Table ‎5.4 ECC syndrome decoding

Syndrome
Error Type

S [11] S [10:0]

0 = 0 No error

1 ≠ 0 Single-bit error

1 =0 or 2
n
 Single error in the parity bits

0 ≠ 0 Double-bit error

Figure ‎5.4 ECC logic block in a Virtex-4 FX12 FPGA

Chapter 5: Reliability-Centric Internal Configuration Management

112

A Virtex-4 configuration frame contains 41 words, each of 32-bit, giving a total of

1,312 bits indexed in the range of [0:1311]. When a single bit-flip is detected, the

syndrome points to the flipped bit using an address space from 704 to 2,047. Figure

5.5 shows the bit indexing and the syndrome indexing for a configuration frame.

When the bit-flip is not in the parity bits of the frame, the bit index of the error can

be calculated from the value of S [10:0] according to Algorithm 5.1.

Algorithm ‎5.1 Error index calculation when S [11] = 1 and‎S‎[10:0]‎≠‎0

Figure ‎5.5 Bit indexing in a configuration frame

If the detected error is in the parity bits, then the error’s bit index will be in the range

of 640-651, which is the location of the parity bits within a frame. To locate a faulty

parity bit, Algorithm 5.2 can be used.

IF S [10:0] < 1024

 Error Index = S [10:0] – 704

ELSE

 Error Index = S [10:0] – 736

END IF

Chapter 5: Reliability-Centric Internal Configuration Management

113

Algorithm ‎5.2 Error index calculation when S [11] = 1 and S [10:0] = (0 or 2
n
)

To enable fast detection when a large amount of frames are read in a single readback

operation, the ECC logic contains an ‘error’ signal and a ‘syndrome valid’ signal.

The error signal is high when any type of error is detected and the syndrome valid

signal stays high for one clock cycle at the end of each frame. The ECC readback

scrubbing scheme cannot be used to protect the BRAM resources in the device. In

addition, LUTs configured as SRL16 or distributed RAM must be masked during the

scrubbing process; otherwise the syndrome would be corrupted by the dynamic

values in the LUTs. The readback options allow for choosing whether to include the

LUTs contents in the readback data or the initial values used for the parity bits

calculation. This can be accomplished by setting the BLUTMASK_B to ‘0’ in the

control register [25].

To scrub a configuration frame, the ICM operation can be divided into the following

steps: first the ICM initiates a ‘read’ operation for the frame to be checked. This

frame is stored in the ICM’s read/write buffer. The error signal is checked at the end

of the read operation. If an error is detected, the syndrome is registered and the

location of the error is extracted from the syndrome by the ICM’s soft processor. The

final stage is to flip the faulty bit in the read/write buffer before writing the frame

back to the same address.

During readback, the data passed to the ECC logic is one clock cycle ahead of the

data available on the output port of the ICAP (see Figure 5.6). This data

misalignment means that when the readback process is aborted at a particular frame

address, the ECC logic will contain the first word of the next frame address. In many

situations, not all of the area in the FPGA is required to be scrubbed. In this case, the

readback process is divided into different operations covering different areas of the

IF S [10:0] = 0

 Error Index = 651

ELSE

 Error Index = 640 + log2 S [10:0]

END IF

Chapter 5: Reliability-Centric Internal Configuration Management

114

configuration memory. As there is no reset function for the ECC logic, when

readback is resumed at a different frame address, the ECC logic will resume the

calculation of the syndrome from the second word of the frame, making wrong

syndrome calculations for all the consecutive frames.

Figure ‎5.6 Configuration data mismatch between ICAP and ECC logic

There are two solutions proposed for this problem. The first is to read a dummy 40

words from the configuration memory and discard the last syndrome at the end of

each scrubbing readback operation (see Figure 5.7). This is suitable when the area

covered by a single readback operation is large; however, this will significantly

increase the time required to finish scrubbing when frames are read individually. In

addition, not all the read operations performed by the ICM are intended for the

purpose of scrubbing; these read operations will still cause the activation of the ECC

block, so the first solution is not time efficient when the system demands a large

number of non-scrubbing read operations. The second solution is to ignore the

synchronisation between the ICAP and the ECC logic when performing non-

scrubbing read operations; however, a count of the number of operations is kept in a

Chapter 5: Reliability-Centric Internal Configuration Management

115

register. When the number of read operations reaches 40, the register is reset and the

process is repeated. Before the ICM switches to a scrubbing read operation, a dummy

read operation of (40-count) is performed to synchronise the ICAP and the ECC

logic.

Figure ‎5.7 The ICM scrubbing read operation

5.2.2 External Configuration Memory Scrubbing

External scrubbing does not use the embedded ECC parity bits; instead it uses a

golden bitstream stored in the external memory. External scrubbing can correct any

number of bits within a frame, provided that these bits are not the configuration bits

of BRAM resources and LUTs configured as SRL16 and distributed RAM. The

golden bitstream is a modified version of the original bitstream with all BRAM

configuration frames removed. Similar to readback scrubbing, writing to LUTs

configured as SRL16 and distributed RAM should be disabled by setting the

GLUTMASK_B bit to ‘0’ in the control register before each write operation.

There are two strategies for external scrubbing. The first is the ‘event-triggered’

scrubbing, whereby the scrubbing operation is only triggered when a fault is

detected. For example, if a redundancy system detects a fault in a redundant module,

Chapter 5: Reliability-Centric Internal Configuration Management

116

external scrubbing is triggered to correct the fault. Opposite to fault correction by

DPR, external scrubbing does not reset the internal registers of the faulty modules.

The second strategy for deploying external scrubbing is referred to as ‘blind’

scrubbing. In blind scrubbing the configuration of the FPGA is periodically

refreshed, even if no faults have affected the system.

Usually, an external scrubbing strategy will use one of the external configuration

ports of the FPGA and some external circuitry to control the scrubbing process [114].

In some systems the external golden bitstream is loaded to the configuration memory

using the internal configuration port [117]. To protect the golden bitstream from

radiation induced faults, the golden bitstream is usually stored in a radiation

hardened non-volatile memory which is especially fabricated to tolerate high levels

of radiation. In many cases, the control circuitry of the external memory module is

implemented on the FPGA logic. This control logic interfaces to the external

memory module using the IOs of the FPGA. The speed of external scrubbing can be

affected by the latency and maximum throughput of the memory module used to

store the golden bitstream. To achieve maximum scrubbing speed, the ICAP should

operate at 100MHz; this could be challenging for non-volatile memory modules. It is

a common practice to move the bitstream from a non-volatile memory to faster

SRAM or DRAM external memory modules after power-up of the device to enable

fast reconfiguration. A golden bitstream is assumed to be fault-free, when the

bitstream is stored in an SRAM or DRAM memory module; the assumption of a

fault-free bitstream does not hold as these memories are susceptible to soft errors.

Parity bits must be used to detect errors in the memory. It is not necessary for the

parity bits to provide correction capabilities as the original bitstream will be stored in

a non-volatile memory and will always be available for correction.

In Xilinx Virtex FPGAs, there is an internal CRC generator used for configuration

verification (see Chapter 3). The embedded CRC can be used to detect faults in the

reference bitstream when performing external scrubbing. However, faults will only

be detected after loading the bitstream into the FPGA’s configuration memory. This

is critical especially when burst errors occur as a result of faults in the memory

interface. To reduce the possibility of burst errors corrupting a large number of

Chapter 5: Reliability-Centric Internal Configuration Management

117

configuration frames, the scrubbing operation can be performed in a frame-based

scheme, whereby frames are configured individually using separate write operations

[112].

When writing frames individually to the configuration memory, an extra PAD frame

is written in each operation. This will significantly increase the total time required to

complete a scrubbing cycle.

This thesis proposes using the CRC-32 generator of the ICM presented in Chapter 4

to perform the CRC checks during the scrubbing process so that the scrubbing

process can be aborted when a fault is detected. This capability requires modifying

the ICM to include some external scrubbing control logic that compares CRC values

generated by a CRC generator with pre-computed CRC values at fixed intervals

during the scrubbing process. The pre-computed CRC values can be stored in an on-

chip memory block to accelerate the CRC comparison process (see Figure 5.8).

Using this proposed method, scrubbing can be stopped once a fault is detected

without increasing the total scrubbing time.

Figure ‎5.8 Online CRC for external scrubbing

The major disadvantage of this method is the memory required for storing the pre-

computed CRC values. Considering that not all of the FPGA resources are required

Chapter 5: Reliability-Centric Internal Configuration Management

118

to be covered by external scrubbing, one or only a few BRAMs might be enough to

perform scrubbing on the critical areas in the FPGA. A single Virtex-4 BRAM can

store 2 KB of data. If a CRC check is performed for each frame, a total of 23 CLB

columns can be covered using a single BRAM.

5.2.3 Configuration Memory Scrubbing Evaluation

The scrubbing time overhead will depend on the scrubbing area and the ICAP

operating frequency. Figure 5.9 shows the scrubbing time for three scrubbing

schemes: the first is readback scrubbing, whereby the entire scrubbing area is

covered by a single read operation [113]. The second scrubbing scheme is the frame-

based scrubbing scheme, whereby individual frames are written separately to the

configuration memory [112]. The third scrubbing scheme is the proposed external

scrubbing scheme, whereby the scrubbing area is covered by a single write operation.

Figure ‎5.9 Scrubbing time overhead

The choice of whether to use readback or external scrubbing in FPGAs will depend

on the application used. Internal readback scrubbing does not need any major

external circuitry and can be performed using just the embedded ECC block in the

FPGA. However, the number of correctable faults within a single frame is limited.

This is not the case for external scrubbing which requires an interface to an external

0

200

400

600

800

1000

1200

5 10 15 20 25

Sc
ru

b
b

in
g

Ti
m

e
 (

u
s)

Area (CLB Columns)

Readback
Scrubbing

Frame-Based
External Scrubbing

Proposed External
Scrubbing

Chapter 5: Reliability-Centric Internal Configuration Management

119

memory module that stores the golden bitstream. There are a number of single points

of failure depending on the scrubbing scheme used. In readback scrubbing, faults in

the interconnections between the scrubber logic and the ECC logic block can cause

the scrubbing system to fail. Similarly, external scrubbing has single points of failure

in the interconnections to the IOs connecting the external memory module to the

FPGA. A combination of both schemes can reduce the overall number of single

points of failure. Supposing that external scrubbing is the primary scrubbing scheme,

when a fault is detected by a CRC mismatch between the pre-computed values and

the value generated online, a readback scrubbing cycle can be performed to recover

any possible faults in the external memory interconnections. In the case of a Virtex-

4 FPGA, all single-bit faults can be eliminated (see Figure 5.10).

Figure ‎5.10 Combined external and readback scrubbing schemes

When using the ICAP to perform any type of configuration memory scrubbing, the

interconnections between the scrubber logic and the ICAP act as single points of

failure. Faults in these interconnections can cause system failure because the ICAP

will not be accessible for any kind of recovery process. Recovery in the case of faults

in the ICAP interface will require reconfiguration using the external configuration

port. Recovery can be accomplished by either a full reconfiguration of the whole

bitstream or by partial reconfiguration of the region affected. When performing a full

reconfiguration, the whole system will be reconfigured and reset to the initial state.

Chapter 5: Reliability-Centric Internal Configuration Management

120

Partial reconfiguration can be used to recover the ICAP without interrupting the

operation of the unaffected components. This, however, will require specific

placement to ensure that the routing to the ICAP interface is confined within a

reconfigured region. One way to do this is to place the ICM in a reconfigurable

region that covers the CLB columns adjacent to the ICAP primitive so that all the

ICAP routes are inside the reconfigurable region.

5.3 Permanent-Fault Handling Strategies

Permanent faults, or hard faults, manifest themselves as irreversible physical defects

in the device. Dealing with emerging permanent damage in the resources of the

FPGA is more complex than dealing with soft errors as conventional configuration

memory scrubbing will not have an effect on the damaged resources. In addition,

only stuck-at faults can be detected with readback scrubbing.

In general, permanent faults can be detected by loading specialised Built-In Self-Test

(BIST) circuits that perform online testing to identify a faulty resource in a particular

area of the FPGA. Permanent faults can be mitigated by rearranging the functional

modules in the FPGA so that faulty resources are circumvented and discarded

(bitstream relocation).

5.3.1 General Fault Mitigation Scheme

One of the major drawbacks of online BIST diagnosis is the time overhead for

loading the different BIST circuits. Similar to external scrubbing, BIST diagnosis can

be either ‘blind’ or ‘event-triggered’. In blind BIST diagnosis, the FPGA’s resources

are periodically scanned to detect possible faults in the FPGA. Event-triggered BIST

diagnosis, on the other hand, is only triggered once an error is detected in the system.

This thesis proposes using TMR as a mechanism for triggering the BIST diagnosis to

reduce the impact of the diagnosis time overhead on the system. In fact, by using

TMR for the functional modules in the FPGA the impact of BIST diagnosis can be

reduced in two ways:

Chapter 5: Reliability-Centric Internal Configuration Management

121

1) The BIST diagnosis is only triggered once a fault is detected by redundancy. This

means that the system does not need to be interrupted during normal operation.

2) Once a fault is detected by redundancy, BIST diagnosis only needs to be

performed on the region affected by the fault

Figure 5.11 shows the general permanent fault mitigation scheme proposed in this

thesis. Initially, a permanent fault affecting a particular module in the FPGA is

detected by redundancy. This stage is called the fault isolation stage as an active fault

is isolated within the region occupied by the faulty module. The region occupied by a

faulty module is defined as the Region Under Test (RUT). Once a fault is isolated

within an RUT, the diagnosis process can start by loading the BIST circuits in the

RUT to identify the faulty resource. Once the faulty resource is detected, the resource

is marked and the functional modules in the FPGA are rearranged by means of

bitstream relocation to avoid using the damaged resource.

Figure ‎5.11 Permanent-fault mitigation

Most faults in FPGAs are caused by soft faults. It is important to distinguish between

soft and hard faults before triggering a BIST diagnosis operation. In addition, some

permanent faults are stuck-at faults that cause configuration bits to get stuck at either

logic ‘0’ or logic ‘1’. These faults can be detected with readback scrubbing in a much

shorter time than BIST diagnosis. Figure 5.12 shows the proposed fault diagnosis

Chapter 5: Reliability-Centric Internal Configuration Management

122

scheme which takes, into account soft faults, stuck-at faults as well as other types of

permanent fault. The first stage of the fault diagnosis starts when a faulty module is

detected by redundancy. In the first stage, the module is reconfigured and the

erroneous computation is repeated by the reconfigured module. If the error is

persistent, the diagnosis enters the second stage. Otherwise, the fault is identified as a

soft fault and no further action is taken. In the second stage of the diagnosis scheme,

readback scrubbing is performed on the reconfigured module. If a bit-flip appears at

this stage, the bit is identified as faulty. If readback scrubbing does not show any

faults in the module, this means that the origin of the fault is unidentifiable by

readback scrubbing and the diagnosis should enter the BIST diagnosis stage. Faults

that cannot be identified by readback scrubbing include faults in LUTs configured as

SRL16 and distributed RAM.

Figure ‎5.12 Fault diagnosis

Chapter 5: Reliability-Centric Internal Configuration Management

123

5.3.2 Fast and Scalable BIST Diagnosis

BIST circuits can be used to test a variety of permanent fault types (see Chapter 3).

There are two main issues preventing efficient deployment of BIST circuits in

reconfigurable systems. The first is the large time overhead which is dictated by the

configuration time of the different specialised BIST circuits. A typical online BIST

diagnosis system can cause a delay in the order of a second as reported in [141]. The

second issue of BIST diagnosis is the large memory required for storing the different

BIST circuit’s configurations.

To deal with these two issues, this thesis proposes using small relocatable BIST

circuits, which can be tiled together to cover any area with any shape in the FPGA.

Using relocatable BIST circuits means that only a single partial bitstream is required

for each BIST circuit. With the fast relocation method presented in Chapter 4, the

BIST diagnosis time overhead can be significantly reduced.

BIST circuits typically have a regular internal structure. Generally, two approaches

can be used for tiling BIST circuits to cover a particular RUT. The first approach is

based on self-contained BIST circuits, each with its own TPG. The configured

circuits are independent of each other. This approach requires each circuit to be

enabled separately and also requires the test results to be read from each circuit (see

Figure 5.13a). The other approach for tiling the BIST circuits allows the test pattern

as well as the test result of each circuit to be propagated through the BIST circuits by

having fixed routing inside each BIST circuit. TPGs are only placed in the first CLB

column and the test result is read from the last column (see Figure 5.13b).

The benefit of using small relocatable BIST circuits in not limited to the reduced

storage memory size. The fact that several identical circuits are tiled together to

cover a particular area can greatly reduce the diagnosis time when using the multiple-

clone configuration technique (see Chapter 4). With the multiple-clone configuration

technique the configuration time can be several times smaller than the conventional

configuration technique. This is especially beneficial for BIST diagnosis as several

tests may be required to complete the diagnosis process.

Chapter 5: Reliability-Centric Internal Configuration Management

124

Figure ‎5.13 Tiling the relocatable BIST circuits

There are several types of BIST circuits that are specialised for testing particular

resource types in the FPGA. The tiling method can be applicable to any BIST circuit,

provided that it has a regular internal structure. LUTs in FPGAs are commonly

addressed in BIST diagnosis schemes as these resources are not covered by readback

scrubbing when used as shift registers or distributed RAM.

This thesis proposes a single column self-contained BIST circuit which tests the

operation of LUTs in a CLB column. In the BIST circuit, two LUTs are connected to

a single ORA. The ORA can be implemented using a single 3-input LUT with a flip-

flop (see Figure 5.14). The output of the ORA’s flip-flop remains at logic ‘1’ when a

mismatch between the two ORAs input occurs. This can be achieved by initialising

the ORA’s LUTs according to the truth table shown in Table 5.5. The TPG is a 4-bit

counter connected to the input of the LUTs, which tests all the possible outputs. To

account for stuck-at faults, two configurations are required for the tested LUTs where

the LUTs in each configuration are initialised with the patterns ‘101010…’ and

‘010101…’, respectively.

The proposed BIST circuit is self-contained with no Bus-Macros for routing to the

BIST circuits. This means that controlling the BIST circuits as well as fetching the

Chapter 5: Reliability-Centric Internal Configuration Management

125

test results from the circuits must be done using configuration write/read operations

through the ICAP. The ‘enable’ signals of the TGPs are connected to the output of a

dedicated LUT placed in a specific location known for every configuration. The

input pins of this LUT are tied to ground pointing to the first address, which is

initialised with logic ‘0’. To enable the TPGs, a readback operation is performed for

the frame containing the configuration bits for that LUT and the bit that drives the

output of the LUT is set to logic ‘1’. In the case of multiple BIST circuits aligned to

cover a given area, this operation is repeated for each BIST column. When the LUT

test for a single configuration is finished, the outputs of the ORA’s flip-flops are

readback to determine if there was a faulty component. Reading back the current

state of flip-flops is possible using the GCAPTURE property in Virtex FPGAs [25].

The GCAPTURE property updates the readback data with the current state of the

FPGA’s flip-flops by asserting the input signal of the GCAPTURE primitive. In

Virtex FPGAs, the current states of flip-flops within a CLB column are stored in a

single frame. In the case of a Virtex-4 FPGA, this frame is the 20
th

 minor frame.

Table ‎5.5 Truth‎table‎for‎the‎ORA’s‎3-input LUT

INPUT1 0 1 0 1 0 1 0 1

INPUT2 0 0 1 1 0 0 1 1

INPUT3 0 0 0 0 1 1 1 1

OUTPUT 0 1 1 0 1 1 1 1

Figure ‎5.14 ORA implemented with a 3-input LUT and a flip-flop [125]

Chapter 5: Reliability-Centric Internal Configuration Management

126

Because some of the LUTs are used for ORAs and TPGs in the BIST circuit, more

than one configuration is needed to test all the LUTs within the CLB column. To test

a Virtex-4 CLB column, in each configuration half of the LUTs are used as CUTs

and ORAs where the other half contains the TPG’s logic and the ‘enable’ LUTs. In

the first BIST configuration, the top 32 SLICEL and SLICEM LUTs are used for

CUTs and ORAs where all 32 SLICEM LUTs are configured as CUTs and 16 out of

the 32 SLICEL LUTs are configured as ORAs (see Figure 5.15). In the second

configuration the same arrangement of LUTs and ORAs are configured but with

different initialisation patterns to test for stuck-at faults. In the third and fourth

configurations, the CUTs are placed in SLICEL LUTs and the ORAs are placed in

SLICEM LUTs, again with different CUT initialisation patterns. After four

configurations, the 64 LUTS on the top of the CLB column are tested. Four more

configurations are required to test the operation of the bottom 64 LUTs, giving a total

of eight configurations to complete the BIST test for the 4-input LUTs in the CLB

column. Each configuration requires storing a single column partial bitstream that

contains the configuration of 22 frames.

Figure ‎5.15 CUT, ORA and TPG arrangement in BIST circuits

Chapter 5: Reliability-Centric Internal Configuration Management

127

5.3.3 BIST Diagnosis Evaluation

As mentioned earlier, BIST diagnosis time overhead is dictated by the configuration

time for the different BIST configurations. The control and result fetching times are

small: one read-modify-write operation is required to assert each ‘enable’ LUT and

one readback operation is required to fetch the test results from each CLB column.

With the offset-based FAR modification technique (see Chapter 4), the relocation

process of a BIST partial bitstream can be performed online with minimal delay. In

addition, the multiple-clone configuration feature presented in Chapter 4 can be

applied for the BIST circuits configuration where multiple clones of the same BIST

circuit are configured using a single compressed partial bitstream generated online

instead of configuring each BIST instance individually. This will result in a

significant reduction in the BIST configuration time overhead, especially when a

large number of configurations are required.

Figure 5.16 shows the configuration time in the LUT-BIST diagnosis with and

without the multiple-clone configuration technique. It can be seen from Figure 5.16

that the configuration time for a typical RUT size can be more than three times

smaller with BIST cloning.

Figure ‎5.16 Configuration time in BIST diagnosis

0

500

1000

1500

2000

2 5 8 11 14 17 20 23

C
o

n
fi

gu
ra

ti
o

n
 T

im
e

 (
u

s)

Diagnosis Area (Columns)

Normal
Configuration

BIST Cloning

Chapter 5: Reliability-Centric Internal Configuration Management

128

It can be argued that the same configuration acceleration can be achieved by offline

bitstream compression where the MFW feature is used to generate several BIST

configurations for different areas and shapes [125]. While this is true, this will still

require a different set of BIST configurations for every area shape and size leading to

a large battery of BIST circuits. Figure 5.17 shows the memory required for storing

the configurations of different BIST circuits with different sizes. It is noted that with

the BIST tiling technique the memory savings can be in the range of Mbytes in

systems where multiple areas with different shapes are diagnosed. One example of

such a system is an ROS that executes HTs with a variety of sizes and shapes. Rather

than storing a set of BIST configurations for each HT, a single set of BIST

configurations can be used to diagnose the area occupied by any HT.

Figure ‎5.17 Storage memory required for BIST configurations

5.4 The Reliable Reconfigurable Real-Time Operating

System

Designing a comprehensive FT system for a particular application can be difficult

and time consuming, especially when the system is required to mitigate both

transient and permanent faults. Dealing with permanent faults in particular is very

complex as it requires modifying the original configuration of the system. When

offline configuration upgrade is not feasible, this requires applying online self-

0

100

200

300

400

500

600

700

2 5 8 11 14 17 20B
IS

T
C

o
n

fi
gu

ra
ti

o
n

s
Si

ze
 (

K
B

)

Diagnosis Area (Columns)

BIST Tiling

Non-Compressed
BIST

Compressed BIST

Chapter 5: Reliability-Centric Internal Configuration Management

129

healing techniques, which usually deploy bitstream relocation. FT applications

should be designed within a generic platform with proven ‘fault-resilience’. Ideally,

the platform should enable designers to write their applications without dealing with

the complexity of fault detection and recovery. Indeed, writing applications over a

reliable ROS will allow designers to easily modify and upgrade their FT applications,

especially when high-level programming is supported.

The R3TOS is a computational platform specifically designed for writing

applications that require both high-performance and reliability in FPGAs ([17] and

[16]). R3TOS gives support for reliable execution of real-time HTs by deploying all

the fault detection and recovery methods presented earlier in this chapter. The

ultimate goal of R3TOS is to make the fault handling transparent to designers who

are only required to follow a set of rules for designing the hardware modules

deployed in the target application. The software layer in the target application can

assign specific tasks to these hardware modules, which are configured online by

means of DPR. Task assigned to hardware modules (referred to as ‘HTs’), are

managed by the R3TOS microkernel, which heavily utilises the ICM for

configuration of HTs as well as performing the fault detection and recovery

operations. The R3TOS microkernel also contains a scheduler to determine the order

of HT execution and a fault-aware allocator, which allocate the scheduled HTs on the

available resources of the FPGA, thereby avoiding any damaged resource ([142] and

[143]) (see Figure 5.18).

Figure ‎5.18 R3TOS [17]

Chapter 5: Reliability-Centric Internal Configuration Management

130

5.4.1 R3TOS Architecture

The R3TOS system consists of two main parts. The first part contains the static

control components, which include the main CPU running the target application’s

software, and the ICM, which controls the configuration operations in the system.

The second part of R3TOS is the reconfigurable region used for the configuration of

the relocatable hardware modules of the target application. The system is floor-

planned so that the static part is constrained within a dedicated region in the FPGA.

The local routes of the static part are constrained as much as possible to the area

within the static region. In addition, the external IOs of the system are limited to IOs

located in the static region or at the boundaries of the static region. This imposes that

the static region is placed in one of the corners of the FPGA chip. This placement

constraint leaves the remainder of the FPGA chip almost empty and free of static

routes. The reconfigurable part is selected to be within this empty region so that

relocatable hardware modules can be placed freely at run-time.

The regional clock buffers of the FPGA are all instantiated when floor-planning the

system. All the regional clock buffers are fed by the same global clock buffer, which

is connected to the external clock source through one of the systems IOs. Figure 5.19

shows a simplified diagram of the R3TOS architecture.

Figure ‎5.19 Simplified R3TOS architecture

Chapter 5: Reliability-Centric Internal Configuration Management

131

5.4.2 Online Routing

Most of the systems that support bitstream relocation depend on a fixed

infrastructure of bus-macros for communication between the static logic and the

reconfigurable modules (see Chapter 2). Using fixed bus-macros limits the total

number of feasible locations for each relocatable module, making such systems not

suitable for an ROS implementation, especially when permanent faults are taken into

account in the ROS operation. Online routing can increase the total number of

feasible locations for the relocatable modules. However, the time overhead for

physically rerouting the system is tremendous and requires a deep knowledge of the

FPGA’s routing resources.

On-chip communication in R3TOS is based on a virtual bus over the configuration

layer of the FPGA [142]. In other words, the physical routes in the FPGA are not

used for connecting the relocatable modules to each other and to the static

components in the system. Instead, ICAP read and write operations are used to

transfer data to/from each relocatable module (see Figure 5.20). Using the

configuration layer of the FPGA for on-chip communication eliminates the need for

a fixed routing structure and greatly increases the flexibility of module relocation.

The R3TOS communication scheme requires each relocatable module to have an

Input Data Buffer (IDB) and an Output Data Buffer (ODB). The data buffers can be

made out of LUT distributed RAM or made out of BRAMs. BRAMs are preferable

for larger buffers as distributed RAM can consume a lot of the FPGA’s resources.

Data can be exchanged between buffers by reading the configuration of the ‘source’

buffer and then copying this configuration to the ‘destination’ buffer. This

communication method dictates that data is transferred between buffers in separate

segments rather than a continuous stream. Due to the limited throughput of the ICAP,

the ICM must efficiently manage the data transfer tasks and operate at the maximum

speed possible in order not to degrade the communication bandwidth [144].

When designing an R3TOS relocatable module, the resources of the module are

clocked by a default regional clock buffer. The default regional clock buffer is the

Chapter 5: Reliability-Centric Internal Configuration Management

132

middle clock buffer within the height of the module. As the entire regional clock

buffers are instantiated with the same configuration in R3TOS, the fixed clock

distribution will allow modules to be relocated freely between the clock regions of

the FPGA (see Figure 5.21). R3TOS also provides a mechanism for controlling the

clock signal going through relocatable modules by modifying the configuration of

the regional clock buffers via the ICAP. Any regional clock can be enabled or

disabled as desired by enabling/disabling the PIP connecting the clock net to the

clock region. In addition, the clock frequency of each regional clock net can also be

modified online by changing the configuration of the regional buffers. In particular,

the configuration of the regional clock buffer contains a ‘clock divide’ parameter,

which divides the clock by an integer. To perform these clock modifications, some

knowledge of the configuration bits of the FPGA’s clocking resources is required.

The functionality and location of the regional clock buffers can be found by

performing simple analysis on the FPGA’s bitstream [27].

Figure ‎5.20 ICAP-based data transfer [144]

Chapter 5: Reliability-Centric Internal Configuration Management

133

Figure ‎5.21 Fixed clock distribution [27]

5.4.3 HT Management

The relocatable modules in R3TOS are fully isolated. They are specifically designed

so that no physical routes are required for data transfer and control signals (e.g.

enable, ready signals). The R3TOS uses binary semaphores to control the operation

of the relocatable modules. These semaphores are control bits used for managing the

relocatable cores using the ICAP. These control bits can be either stored in dedicated

LUTs or can be embedded inside the data buffers of the relocatable module (see

Figure 5.22). The relocatable module should also contain a small control FSM that

controls the operation of the module and the internal data flow from/to buffers.

Figure ‎5.22 The relocatable module architecture

Chapter 5: Reliability-Centric Internal Configuration Management

134

It is important that any memory element inside the relocatable module is not

accessed by the ICAP and the FSM’s internal logic at the same time as this can

corrupt its content. In the case of LUT semaphores, it is also important not to corrupt

the content of other LUTs that are placed in the same column as the semaphores

when modifying them. Protecting the content of the LUTs can be accomplished by

disabling the active clock in a clock region when any semaphore within the region is

accessed by the ICAP. Disabling a regional clock buffer will briefly freeze the

operation of the tasks operating inside the region. Figure 5.23 shows the steps

required to safely transfer data from/to the relocatable modules when using BRAMs

for data buffers.

Figure ‎5.23 HT execution management

The FSM inside a relocatable module coordinates the dataflow inside the module and

makes sure that the semaphores and the buffers are not accessed by the ICAP when

they are internally active. The operation of the FSM differs depending on the type of

semaphores chosen for the module. For semaphores embedded into the data buffers

the reset bit is placed in a known location in the IDB, whereas both the enable and

Chapter 5: Reliability-Centric Internal Configuration Management

135

ready semaphores share the same bit inside the ODB (i.e. the ICAP asserts the bit to

enable the module and the FSM de-asserts the bit when it finishes execution). It is

noted that, for modules containing semaphores inside the buffers, the IDB and the

ODB should be placed in different BRAM columns. For modules containing LUT

semaphores, the enable and reset semaphores share the same bit in the LUT (i.e.

ICAP asserts the bit to enable the module and de-asserts the bit to reset the module).

The ready semaphore, on the other hand, is placed in a dedicated LUT. Figure 5.24

shows the FSM operation when using the two types of semaphore.

Figure ‎5.24 Relocatable‎module’s‎FSM‎operation

Chapter 5: Reliability-Centric Internal Configuration Management

136

5.5 Chapter Conclusion

This chapter presented different fault detection and recovery methods that can be

applied to the ICM to realise fault-tolerant self-healing systems in FPGAs. The self-

healing capabilities allow for both transient and permanent fault detection and

mitigation.

The soft error mitigation is based on configuration memory scrubbing. Different

scrubbing techniques were evaluated and a scrubbing scheme that combines both fast

external and internal readback scrubbing was proposed to allow for better fault

coverage and to reduce the total number of single points of failure. In addition, the

ICM was designed with self-healing capabilities. The design of the proposed ICM

has a reduced resource utilisation compared to conventional TMR designs. In the

proposed ICM, TMR is only applied to a small portion of the ICM, which is capable

of recovering the rest of the circuit once an error is detected by monitoring the ICM’s

operation and the configuration CRC.

Permanent error mitigation is based on modular relocation where any faulty module

in the system is relocated to a new location on the FPGA at run-time. The R3TOS

scheme model was presented. This relocation scheme allows for fully isolated

modules to be freely relocated between clock regions and, hence, allow for better

permanent fault mitigation.

This chapter also presented a novel online BIST diagnosis technique aimed at

detecting emerging permanent defects in the FPGA. The proposed diagnostic

technique exploits the multiple-clone configuration technique to ‘clone’ (i.e.

replicate) a single basic BIST circuit along arbitrarily sized and shaped areas on the

FPGA without incurring large time overheads. Hence, the proposed technique allows

for the creation of run-time on-demand tailored BIST circuits to satisfy any diagnosis

requirements that may arise. Moreover, the proposed solution allows for saving

memory in the system as it only requires storing the configurations of a single basic

BIST circuit.

Chapter 5: Reliability-Centric Internal Configuration Management

137

Finally, this chapter presented the R3TOS computing platform, which integrates all

the presented FT features in a single ROS. A novel HT management system that

manages the execution and data transfer of tasks is also presented. This system

utilises the ICM to enable flexible relocation of fully isolated tasks, making the

system capable of efficiently handling permeant faults in the reconfigurable

resources.

Chapter 6

138

Chapter 6 : An R3TOS-based Reliable and

Secure Encryption Engine

FPGAs have become a popular target for implementing cryptographic block ciphers.

An optimised design of a block cipher in an FPGA can combine the flexibility and

low cost of software solutions with high throughputs that are comparable to custom

ASIC designs. There is a huge amount of research focused on the implementation of

a wide range of popular cryptographic functions in FPGAs. In [145], Elbirt et al.

present several implementations of the Advanced Encryption Standard (AES) and

show how the AES can be optimised for performance in FPGAs to be at least an

order of magnitude faster than most software implementations. In [146], Good et al.

discus how the AES can be optimised to reduce the resource utilisation and power

consumption in small FPGAs for low power mobile applications. FPGAs has also

been a target for the implementation of high-performance stream ciphers [147]. In

addition the FPGA market is witnessing a rising number of companies providing

third party cryptography IPs for FPGAs (e.g. [148] and [149]).

The run-time reconfiguration capabilities of FPGAs have opened the door for some

interesting cryptographic applications. There are several ways in which DPR can be

harnessed in cryptographic applications (adapted from [150]):

1) Algorithm switch: there are many standard cryptographic functions that can be

implemented in FPGA. By having a battery of bitstreams, each for a specific

cryptographic function, the range of standards supported by the same device can

be extended.

2) Algorithm upgrade: in FPGA systems, the device configuration can be updated

even remotely. This allows for a longer life-time as the system can be upgraded

to emerging security requirements. From a cryptographic point of view, this leads

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

139

to a more secure system as emergency measures can be taken to change the

implemented algorithm if it has been broken.

3) Resource efficiency: many cryptographic applications are based on hybrid

protocols that require more than one cryptographic algorithm. For example,

secure data transmission requires one algorithm to establish a secure data

transmission session and a second algorithm for data encryption. Since the

algorithms are not used simultaneously, DPR can be used to allow the use of the

same hardware resources for the two algorithms and, hence, achieve a better

resource efficiency.

6.1 Background on FPGA Security

The protection of IP cores is one of the main concerns of FPGA manufactures and

companies providing third-party support for FPGAs. There are several motives for

attackers to clone IPs implemented on FPGAs. For example, an attacker could make

financial gains through unlicensed deployment of IPs. If an attacker has the

knowledge required to reverse-engineer the FPGA bitstream, trade secrets can be

revealed posing more serious damage to the IP owner. On the other hand, an attacker

might be interested in revealing secret information in the data handled by the FPGA

during its operation. As FPGAs have become a popular platform for implementing

cryptographic functions for various applications, more research is gearing toward the

issue of data security in FPGAs.

6.1.1 Basic Security Features in Commercial SRAM FPGAs

In SRAM FPGAs, a bitstream is required to be stored in a non-volatile memory for

the configuration of the FPGA. This makes any IPs vulnerable if the proper security

measures are not taken to protect the bitstream. FPGA vendors provide different

solutions to prevent IP cloning. The most common method of IP protection against

cloning is to encrypt the IP bitstream and store it in a secure non-volatile memory. A

key stored inside the FPGA is used by an internal decryption circuit to decrypt the

bitstream before the configuration process. The key can be stored in a dedicated non-

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

140

volatile memory or a dedicated volatile memory backed by an external battery ([151]

and [152]).

Cipher text attacks can be used to alter the functionality of a protected bitstream by

tampering the bitstream. There are several solutions available to address this issue.

One solution is the use of parity bits such as CRC-32 to check the integrity of the

bitstream during configuration [153]. Other solutions are based on hand-shaking

protocols and token exchange between the FPGA and the authorised configuring

device [154].

As mentioned earlier, DPR is an attractive feature for many cryptographic

applications; however, it can be a security hole as an attacker can use this capability

to insert hardware Trojans. Modern FPGAs allow for disabling readback and DPR

from any external configuration port. In fact, in Xilinx FPGAs, external access to the

FPGA’s configuration memory is automatically disabled when an encrypted

bitstream is loaded into the device. In recent Virtex FPGAs, readback and DPR are

only possible using the ICAP when bitstream encryption is used. This is because a

configuration controller implemented in the FPGA and configured using an

encrypted partial bitstream is considered as a trusted channel for DPR.

6.1.2 Side Channel Attacks: Vulnerabilities and Countermeasures

Power analysis attacks were first introduced by Kocher in 1998 as a distinct class of

side channel attacks [155]. They are based on analysing the power consumption

measurements of tamper resistant devices to find secret keys embedded in these

devices. Initially, small devices such as smart cards and simple processors were the

target of such attacks. In recent years, the advances in power analysis techniques

have extended the range of valuable devices. Several research studies were focused

on the threat of power analysis attacks as a method for retrieving keys embedded in

FPGAs ([156] and [157]). Practical successful attacks to break the bitstream

encryption of some FPGA families were also reported ([158] and [159]).

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

141

The threat of power analysis attacks on FPGAs has led to the development of several

countermeasures. One example is the system proposed in [160], where an internal

circuitry is used to monitor the power supply voltage to detect possible insertion of

power measurement circuits onto the device’s power rail. The Xilinx commercial

Security Monitor IP can also be used in a similar manner to detect suspicious

variations in temperature and voltage after configuration [161]. Other power analysis

attack countermeasures are based on internal manipulation of the power

consumption. For example, the system in [162] contains an on-chip ‘power

consumer’ circuitry, which is used to keep the power consumption of the system

constant to reduce the possibility of leaking information through power consumption.

Deliberate power consumption can also be used to insert noise in power

measurements to increase the difficulty of power analysis attacks [163].

Fault injection attacks are another type of attack that could potentially pose a risk to

FPGA security. Fault injection attacks are based on analysing leaked secret

information of cryptographic functions caused by malfunction in their hardware

when certain faults are injected into the system. This kind of attack was first

introduced in [164] wherein the authors demonstrated how to break a public key

algorithm such as the RSA by exploiting faults in the system. More advanced

differential fault analysis attacks that could potentially be applied against all known

symmetric cryptographic functions were later introduced in [165]. There are several

ways for attackers to inject faults in electronic circuits such as the use of infrared

laser and electromagnetic radiation ([166] and [167]). The authors in [168] have

classified the hardware countermeasures against fault injection attacks into two

categories: passive countermeasures and active countermeasures.

Passive countermeasures aim at increasing the difficulty of inserting faults into the

protected device. For example, applying a metal shield that covers a protected chip

makes fault injection through electromagnetic radiation and laser beams more

difficult as the shield needs to be removed in order for the attack to succeed.

Active countermeasures are based on taking certain actions when fault attacks are

detected. Integrating light detectors, voltage detectors and frequency detectors are

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

142

common techniques to detect changes in light gradient, voltage and clock frequency.

Active shields can also be used against fault attacks. Active shields are metal mesh

layers that cover the entire chip and have data continuously passing through them

[168]. Attacks can be detected when a discontinuation of the data passing through the

shield occurs due to tampering with the device. Despite the aforementioned

countermeasures being effective in detecting fault attacks, they require the

integration of special components into the FPGA chip. The most common active

countermeasures against fault attacks are based on classic fault detection and

mitigation techniques such as modular redundancy and parity checking [169]. In fact,

Xilinx has already started advertising its FT solutions as countermeasures to fault

attacks [170].

6.2 Overview of the Encryption Engine

The security of electronic devices is related highly to their reliability. Not only faults

deliberately injected into electronic devices can pose a security threat, but also

naturally occurring random faults can potentially lead to the leaking of secret

information. This issue is particularly important in space applications in which

electronic devices are operating under high levels of radiation. In space application,

the ability of deploying cryptographic functions in reliable reconfigurable hardware

is very attractive and beneficial. While previously proposed systems have already

demonstrated how DPR can be used for implementing a wide range of cryptographic

standards within the limited FPGA resources (e.g. [171] and [172]), this section of

the thesis demonstrates how critical encryption tasks can be implemented using the

R3TOS with special emphasis on the reliability of task execution. Using R3TOS, the

FPGA chip can be used as a server of a wide range of cryptographic tasks that can be

executed reliably and securely. The multi-tasking capabilities of R3TOS can be used

to serve cryptographic functions of multiple users or multiple applications running at

the same time. Figure 6.1 shows the proposed adaptation of R3TOS as a

cryptography server.

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

143

In Chapter 5 the reliability capabilities of R3TOS were explained in detail. In the

context of the proposed server solution, these capabilities are deployed to meet

several reliability criteria:

1) Transient faults could affect the system in several ways. While faults in some

tasks can cause errors in the functionality of the system, other faults can

potentially lead to the leaking of secret information. Tasks of a cryptographic

nature are defined as critical tasks. These tasks are always performed in the

reconfigurable region using multiple redundant hardware cores.

2) The system always keeps track of the permanently damaged resources in the

reconfiguration area. When allocating tasks, these resources are circumvented.

This capability is particularly important in long space missions to allow the

system to adapt to emerging permanent faults.

3) An FT version of the ICM is used to reduce the probability of faults occurring

during the configuration of the cryptographic cores. The rest of the R3TOS

components are protected by means of configuration memory scrubbing.

Figure ‎6.1 R3TOS cryptography server

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

144

6.2.1 The Relocatable Cryptographic Core

The cryptographic cores used in the proposed system follow the R3TOS relocation

architecture. Each core is designed to be self-contained with all routes constrained

within the area occupied by the core. Communication and data transfer are

accomplished via read/write operations through the configuration layer of the FPGA.

Figure 6.2 shows the generic architecture of the relocatable cryptographic core.

Figure ‎6.2 Generic architecture of the relocatable block cipher

A relocatable cryptographic core contains a block cipher, an FSM, a CRC-generator

and some memory components along with their control logic. The memory

components are used for communication with the R3TOS kernel via the ICAP. Input

BRAM blocks are used for transferring the key and plain text to the core, and output

BRAM blocks are used to transfer the cipher text when the task has completed. The

FSM triggers the operation of the core when an enable signal is written to a dedicated

LUT by the ICAP. When the cipher block finishes its operation, the CRC generator

generates a checksum for the cipher text and stores it in a dedicated LUT buffer.

Finally, the FSM writes a ‘ready’ flag in another LUT to indicate that the output of

the core is ready for collection.

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

145

6.2.2 Online Placement of Heterogeneous Cores

There is a large amount of research related to allocating tasks to the available

resources in reconfigurable hardware (see Chapter 3). Task allocation is usually

approached as a 2-D packing problem where the task’s cores are continuously placed

in a large area of identical computing resources. It is very difficult to practically

apply such placement algorithms to FPGAs as they do not consist of uniform areas of

identical resources.

In R3TOS, a ‘sandbox’ of CLB resources is designated for the placement of the

task’s cores. The sandbox is defined as the largest area in the FPGA consisting of a

uniform arrangement of CLB columns. By limiting the relocatable hardware cores in

the systems to those using CLB resources only, the 2-D packing algorithms can be

practically applied to FPGAs [143].

Cryptographic cores require a relatively large amount of data to be transferred into

the core. Although input/output buffers can be constructed using LUTs, BRAM

buffers must be used for storing the plain text and the cipher text due to their large

sizes. This makes the 2-D packing algorithms not practical for this application.

Generally, two methods can be used to enable online placement of heterogonous

cores. In the two methods a matrix stored in memory can be used to map to the

FPGA resources. This matrix represents the state of the FPGA resources. For

example, used resources can be mapped with logic ’1’, while available resources can

be mapped with logic ‘0’.

The first method is based on pre-computing all the possible locations of each

relocatable core. Location parameters are stored in memory for each relocatable core.

When a task is scheduled for configuration, the placer scans the resource matrix and

checks which of the possible locations is available before deciding the optimal

location of the task. This approach is fast, especially when used with a First-Fit (FF)

algorithm as the placer only scans specific locations within the FPGA resource

matrix. This approach, however, is not suitable for systems deploying a large number

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

146

of relocatable cores due to the memory overhead required to store the location

parameters for the cores.

The second approach is based on storing parameters for the layout and dimensions of

each relocatable core. When a task is scheduled for configuration, the placer creates a

‘window’ containing the exact resource layout as the required core and starts moving

this window across the resource matrix until a location that fits this window is found

[173]. The memory overhead for this approach is very small as only a few

parameters for each bitstream are required; however, the resource matrix scanning

time overhead is much larger compared to the first approach.

In this thesis, a hybrid algorithm for the resource matrix search is proposed whereby

only pre-computed horizontal location offsets are stored in memory. Similar to the

aforementioned two placement methods, a resource matrix representing the state of

the FPGA resources is stored in memory. Since the smallest partial bitstream has the

size of a single column, the matrix is created so that each column in the FPGA is

represented with an element in the matrix. A single bit is used for each matrix

element where logic ‘0’ is used to represent an ‘available’ column and logic ‘1’ is

used to represent a ‘used’ column. The initial matrix used after power-up of the

device will only contain logic ‘1’ elements for the columns occupied by the static

components in the system. To protect the content of this matrix from faults, the

matrix can be stored in a special ECC-BRAM, which utilises parity bits for fault

correction and can be automatically generated using the Xilinx tools. Figure 6.3

shows an example resource matrix used to map a system implemented in FPGA.

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

147

Figure ‎6.3 Mapping FPGA resources into a resource matrix

The resource matrix only represents the state of the columns during the operation of

the system; it does not contain any information about the type of these columns. To

make placing cores with heterogeneous resource types feasible, pre-computed

horizontal offset groups are created and stored in memory. An offset group contains

several horizontal offsets, which results in the correct placement of a relocatable core

when added to the original horizontal location of the core’s bitstream. There are four

parameters required to be stored in a relocatable bitstream header to be compatible

with the proposed placement scheme. These parameters are the original bitstream

location, the offset group ID, the width of the relocatable core and the height of the

relocatable core. The original bitstream location parameter contains the horizontal

offset at which the bitstream has been generated, whereas the offset group ID

parameter contains a number indicating which offset group is compatible with the

bitstream. The other two parameters indicate the number of columns the core

occupies horizontally and the number of rows the core occupies vertically. Figure 6.4

shows all the offset groups required for the placement of a bitstream consisting of

CLB and BRAM resources in a Virtex-4 FX60 FPGA.

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

148

As the offset groups contain horizontal offsets from the original locations of the

relocatable cores, many cores will share the same offset groups even if they have

different resource layouts. From Figure 6.4, we can see that only three offset groups

are required for the placement of bitstreams with CLB and BRAM resources in the

largest Virtex-4 device. Figures 6.5 shows all the possible horizontal layouts of the

relocatable bitstreams for each offset group.

Figure ‎6.4 Offset groups for relocatable bitstream consisting of CLB and BRAM

resources in a Virtex-4 FX60 FPGA

Figure ‎6.5 Core‎horizontal‎layout’s‎compatibility‎with‎offset‎groups

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

149

The placement algorithm does not need to know the layout of a relocatable core in

order to find feasible locations for a core at run-time. The possible horizontal

locations of any relocatable core are already computed and stored in the offset group

compatible with the core. When a core is scheduled for configuration, the placer only

needs to scan the resource matrix vertically at the pre-computed horizontal offsets for

that core. Algorithm 6.1 is an FF vertical scan algorithm that returns vertical location

parameters for the first location found to fit a relocatable core. For convenient

explanation of the algorithm, a two-dimensional array representing the resource

matrix and a structure for the location parameters are defined as follows:

The placement of a relocatable core may require several vertical scans to find a

feasible location for the core. The first vertical scan is performed at the original

horizontal location of the core’s bitstream. For consecutive scans, the horizontal scan

location is determined by adding the original horizontal location to the offsets

contained in the offset group combatable with the core. Algorithm 6.2 shows the

process of the full resource matrix scan. Once a location for a relocatable core that is

scheduled for configuration is found, the resource matrix can be updated so that the

matrix elements corresponding to this location are filled with logic ‘1’ (used

resources). Algorithm 6.3 can be used to fill a given area in the resource matrix with

the desired value.

int matrix [matrix_height] [matrix_width]; //resource matrix: this matrix is initialised with the

 initial state of the FPGA

struct location{ // location parameters

 int Y_offset; // vertical offset

 int X_offset; // horizontal offset

 int flag; // a flag indicating that a location has been found during the

 vertical scan

};

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

150

Algorithm ‎6.1 Vertical scan of the resource matrix

Struct location find_Y_offset (int X, int task_height, int task_width, int matrix_height,

 int matrix_width){

int Y,clear_count,count,index; //local variable

struct location temp; //‎local‎instance‎of‎the‎structure‎‘location’

Y=0; // vertical scan location

clear_count=0; // an internal flag to clear resource counter

temp.flag=0; // clear location flag

temp.X_offset=X; // initialize horizontal offset

while (Y<=matrix_height){ // start scanning the resource matrix vertically

 for (index=0;index<task_width;index++){ //scan the task width

 if (matrix[y][(index+X)]==1){

 clear_count=1; // set flag if used resource is found

 break;

 }

 }

 if (clear_count ==1){ // clear resource counter

 clear_count=0;

 count=0;

 Y=Y+1; // set vertical scan location

 }else //increment scan location and resource count

 count= count+1;

 Y=Y+1;

 if (count==task_height){ // location found

 temp.flag=1;

 temp.Y_offset=(Y-task_height);

 break;}

 } return temp; } //return location parameters

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

151

Algorithm ‎6.2 Resource matrix scan

Algorithm ‎6.3 Update resource matrix

Enhancing System Efficiency via Task Reuse

When location parameters are found for a particular task’s core, the core needs to be

configured on the FPGA before the task can start execution. In a basic placement

scheme, the location occupied by a core assigned to a task that finished execution is

updated as ‘available’ in the resource matrix so that the cores of future tasks can be

placed in the same location. This placement scheme can lead to inefficient utilisation

of the ICAP port when several tasks using the same relocate core are scheduled for

execution.

struct location find_location (int task_height, int task_width){

int index; //local variable

struct location temp; // local instance of the structure‎‘location’

//scan vertically at the original horizontal location of the core

temp=find_Y_offset(original_horizontal_location, task_height, task_width);

if (temp.found==0){ //if no location found, start scanning at offsets in the offset group

 for (index=0;index<number_of_offsets;index++){

 temp=find_y_offset((original_horizontal_location+offset_group[index]),

 task_h, task_w);

 if (temp.found==1){

 temp.x_offset= original_location + offset_group[index];

 break; }

 }

 }else { temp.x_offset= original_location;

}return temp;}

void update_matrix (int X, int Y, int height, int width, int value){

int index1,index2; //local variables

 for (index1=0;index1<height ;index1++){ //vertical index

 for (index2=0;index2<task_w;index2++){ //horizontal index

 matrix [Y+index1][X+index2]=value; //fill area with desired value

 }
}}

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

152

It would be convenient if the placement algorithm keeps track of the already

configured cores so that future tasks that use the same cores can be assigned directly.

This circumvents the need for reconfiguring the cores and can result in a much more

efficient system. To allow for task reuse, several modifications in the basic

placement scheme are required.

First of all, a table containing information about the already configured cores that

have finished execution is added. This table lists the type and number of the available

cores along with their location parameters. The FPGA resource representation in the

resource matrix is also modified. Three states are used to represent the state of the

FPGA resources in the matrix, ‘0’ for available resources, ‘1’ for resources occupied

by an active core and ‘2’ for resources occupied by a free core.

Figure 6.6 shows the proposed placement scheme, which takes into account the

already configured and available cores. When a task is scheduled for execution, the

task allocation process goes through the following stages:

1) Scan the available cores table: the core required for the scheduled task is

compared with the cores in the table, if one or several instances of the core are

already configured on the FPGA the task is assigned to one instance. This

instance is then removed from the core table and its location is filled with ‘1’ in

the resource matrix.

2) Scan the empty resources: if no core to fit the task is found in the previous stage,

the resource matrix is scanned. Only resources marked with ‘0’ in the resource

matrix are considered available in this stage. If a feasible location is found for the

core, the location is filled with ‘1’ in the resource matrix.

3) Expand the search space: if no feasible location is found in the previous stage, the

resource matrix is scanned again; however this time resources marked as either

‘0’ or ‘2’ are considered available. If a feasible location is found for the core, the

location is filled with ‘1’ in the resource matrix. If no feasible location is found at

this stage, this means that the task cannot be configured on the FPGA until other

active cores finish execution.

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

153

4) Check for location overlap: if a location is found in stage 3, this stage is triggered

to check if the found location overlaps with one or more of the free cores. In case

of a location overlap, the cores located at the overlap region are removed from

the core table and any resource of these cores marked with ‘2’ in the resource

matrix are filled with ‘0’.

Figure ‎6.6 Placement scheme with task reuse support

6.2.3 Configuration Management and Task Execution

Secure configuration is an important requirement in any FPGA system, especially if

the system is deploying cryptographic cores that are configured using externally

stored bitstreams. As mentioned earlier, FPGAs offer bitstream encryption

capabilities. A decryption block is usually integrated in the FPGA to decrypt the

bitstream before configuration. This decryption block cannot be accessed by user-

logic as it is coupled with the configuration logic of the device. The proposed system

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

154

deploys bitstream relocation to enable the configuration of the same bitstream across

several locations on the chip. Bitstream relocation requires online modifications of

the bitstream content (see Chapter 4). This means that an encrypted partial bitstream

must be decrypted using a decryption block implemented on the FPGA logic before

performing any modifications. The full configuration of the device, which contains

the static components in the system, is loaded into the FPGA memory after power-

up. The encrypted full bitstream can use the FPGA embedded decryption block.

However, any configuration operation using the ICAP requires a different decryption

block implemented in the system’s static logic. Figure 6.7 shows the configuration

process of encrypted relocatable partial bitstreams.

Figure ‎6.7 Secure configuration of relocatable cipher cores

In the proposed system, cryptographic tasks are organised in a queue according to

their priority. Four states can describe the status of the tasks during the operation of

the system: Waiting, Executing, Finished and Failed. The system uses the ICAP to

perform different operations: task configuration, task data transfer, readback

scrubbing and BIST diagnosis. Access to the configuration port must be managed

carefully to allow efficient utilisation of the ICAP maximum bandwidth. Figure 6.8

describes the operation of the system and how access to the ICAP is managed

between the different operations.

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

155

Figure ‎6.8 Simplified operation of the system

When the system is idle, different flags can trigger the system to exit the idle state

and perform a specific operation. These operations are: 1) readback scrubbing of the

static logic; 2) collecting the outputs of the tasks that have finished execution tasks;

and 3) the configuration of the tasks’ cores waiting in the tasks queue.

Readback scrubbing has the highest priority of the three operations. Readback

scrubbing is the primary method of fault recovery in the static logic of the system. A

watchdog timer is used to generate a scrubbing request, which triggers the scrubbing

operation from the idle state. When the scrubbing operation is complete, the

watchdog timer is reset and the system returns to the idle state.

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

156

If a scrubbing request is not set and a flag indicates that there are tasks already

configured in the system, readback operations through the ICAP are performed to

check the status of the configured tasks according to their order in the task queue. If

any of the configured tasks has finished execution, the system starts the process of

collecting the task output from its output buffer. As there are three redundant

modules of each task, majority voting is performed to determine if one of these

modules has failed during its execution. To accelerate the process of voting, only the

checksum buffers of each redundant module are read through the ICAP. This

requires a single configuration frame to be read from each module rather than

reading the entire output buffers of the modules. If no error is determined by the

voting process, the output is collected from one of the redundant modules and the

status of the task is updated. On the other hand, if a voting process has showed that

one of the three modules is faulty, the output is collected from one of the intact

modules and a diagnosis operation is performed to determine if the cause of the fault

is a damaged FPGA resource (see Chapter 5). If a damaged resource is found in the

diagnosis process, this resource is marked as ‘used’ in the FPGA resource matrix so

that it is circumvented when allocating new tasks for execution.

The third main operation performed by the system is the configuration of tasks

waiting in the task queue. This operation starts by performing the placement

algorithm to find three feasible locations for each task in the queue. Allocated tasks

are then configured and their input load is transferred. The FPGA resource matrix is

also updated to fill the locations occupied by the tasks. Because three instances of

each task are configured, this stage results in the heaviest load on the ICAP port. It is

important to try to reduce the configuration speed as much as possible in this stage.

The multiple-clone configuration technique can dramatically reduce the

configuration time if the same core is to be configured on several locations on the

FPGA. Figure 6.9 shows the multiple-clone configuration scheme used when several

tasks using the same core are scheduled for configuration.

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

157

Figure ‎6.9 Multiple-clone configuration of the same cipher core

6.3 Proof-of-Concept Implementation

A prototype of the proposed system was implemented on a Virtex-4 FX60 FPGA.

The implementation consists of two parts: the first part is the design of a test

relocatable cipher. The second part is the static control system which is a reduced

version of the R3TOS.

6.3.1 Implementation of a Test Relocatable Cryptographic Core

To test the scalability of the proposed system, the ‘PRESENT’ block cipher was

modified as a relocatable core. The PRESENT cipher is a relatively new light weight

block cipher especially designed for systems requiring low power consumption and

low resource utilisation [174]. The PRESENT cipher was developed at the

University of Leuven (Netherlands) in calibration with Orange Labs (France), Ruhr

University Bochum (Germany) and Technical University of Denmark. Recently, it

has been included as a light weight cryptography standard by the International

Organization for Standardization and the International Electro-technical

Commission. An open-source optimised VHDL implementation of the PRESENT

cipher is used for the cipher block in the relocatable core (available in [175]). The

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

158

PRESENT cipher operates on 64-bit blocks and uses an 80-bit key. The cipher

requires 32 clock cycles to finish encrypting a single block of plain text. Figure 6.10

shows a high-level block diagram of the PRESENT cipher. The resource utilisation

of the cipher when implemented in a Virtex-4 FPGA is shown in Table 6.1.

Figure ‎6.10 The PRESENT cipher block diagram [174]

Table ‎6.1 Resource utilisation of the PRESENT cipher in a Virtex-4 FPGA

Resource Type Utilisation

Slices 158

LUTs 236

BRAMs 0

A relocatable core based on the PRESENT cipher was designed for implementation

in a Virtex-4 FPGA following the architecture shown in Figure 6.2. To modify the

cipher as a relocatable core, the input/output BRAM blocks and LUTs are added and

constrained to specific locations within the core. The size of plain text that can be

transferred into the core will depend on the size selected for the input/output BRAM

blocks inside the core. This means that larger text should be divided into several

segments. These segments can be encrypted sequentially using the same core or

concurrently using several cores initialised with the same key. On the other hand,

plain text smaller than the BRAMs size in the core requires data padding as the core

operates on a fixed size of block.

In the implemented design, a single BRAM column containing four blocks is used

for the data transfer. The size of each BRAM block is 2KB. Two of these BRAM

blocks are used to store the key and the plain text and the other two are used to store

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

159

the cipher text. Figure 6.11 shows the data mapping in the cipher core’s BRAM

blocks.

Figure ‎6.11 Data mapping in the cryptographic core

An LUT is used to pass the core enable signal from the R3TOS kernel to the core

using the ICAP, and another LUT is used to store a ‘ready’ flag indicating that the

core has finished execution (see Figure 6.12).

Figure ‎6.12 Relocatable‎core’s‎LUT‎semaphores

As the size of data handled by the core is relatively small, a parallel CRC-16

generator is added into the core to generate the CRC checksum for the cipher text. It

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

160

is possible to store the output of the CRC generator in a single LUT. This requires

dedicated control logic to write each bit individually to the LUT (see Figure 16.13).

Figure ‎6.13 Checksum LUT

The implementation of a relocatable core based on the PRESENT cipher has resulted

in an approximate 53% increase in the slice utilisation compared to the original

cipher. Table 6.2 shows the resource utilisation of the relocatable cipher in a Virtex-4

FX60 FPGA.

Table ‎6.2 Resource utilisation of the relocatable cryptographic core in a Virtex-4 FPGA

Resource Type Utilisation

Slices 242

LUTs 417

BRAMs 4

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

161

Only a single partial bitstream is generated for testing the core in the proposed

system. The core layout is shown in Figure 6.14. It can be seen that the core occupies

six CLB columns and a single BRAM column. The layout selected for the

relocatable cipher is compatible with ‘offset group B’ in Figure 6.4.

The ENABLE and READY LUTs are all placed on the bottom of the first CLB

column in the core (see Figure 6.14). To be able to modify the content of these LUTs

using the ICAP, knowledge of the configuration bits that correspond to the values

stored in these LUTs is required. Reverse-engineering experiments have revealed the

exact locations of these configuration bits in a Virtex-4 FPGA. In any Virtex-4

FPGA, the 19
th

 and 21
st
 frames contain the content of the column’s LUTs. More

precisely, the 19
th

 frame contains the content of SLICE-M LUTs and the 21
st
 frame

contains the content of SLICE-L LUTs. Since only SLICE-M can be used as

distributed RAM, the relocatable core’s LUTs are all placed on SLICE-M LUTs of

the first CLB column. Figure 6.15 shows how these LUTs are mapped into the

configuration bits of the 19
th

 frame of the column.

It is also noted that the relocatable cipher connects to a regional clock buffer by

default. Since the height of the cipher core is equal to a single clock region (one

column), any regional clock buffer can be enabled and disabled using the ICAP to

freeze the operation of cores placed in the clock region. Disabling the core’s clock

prior to accessing its LUT using the ICAP is important to prevent corrupting its

content (see Chapter 5).

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

162

Figure ‎6.14 Resource layout of the relocatable cipher

Figure ‎6.15 15 Input, output and CRC LUTs mapping in the 19
th

 frame of the first CLB

column

6.3.2 Implementing the Static Control Logic

The static control logic in the system performs the functionality described in Figure

6.8. Figure 6.16 shows the main components of the control logic in the implemented

system.

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

163

Figure ‎6.16 Simplified‎diagram‎of‎system’s‎components

A Microblaze processor is used to run the software of the system and the smallest

version of the FT ICM is used to manage the configuration of the relocatable cipher

cores (see Chapter 5). The Microblaze communicates with the ICM using two FSL

connections, which are basically two FIFOs; one is used to send configuration

instructions and the other is used to monitor the status of the configuration

operations.

The ICM logic is split between two regions. The first is a reconfigurable region,

which contains the full ICM. The full ICM performs the main configuration

operations such as: core configuration, core data transfer and readback scrubbing.

The second region contains a recovery control alongside the static components in the

system. The ICAP input connections are multiplexed between the ICM and the

recovery controller, which perform DPR of the ICM to recover any faults causing

configuration errors. When the ICM is active, readback scrubbing cycles are

performed at particular rates to recover faults in the static region of the system. The

scrubbing cycle’s rate is determined by a watchdog timer, which is connected to the

Microblaze processor via the PLB bus.

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

164

The Microblaze processor is also connected to a BRAM buffer, which is separate

from the main memory. This buffer is dedicated for the transfer of the core’s input

and output data. The core’s input data transfer is accomplished by reading the

configuration frames of the BRAM buffer, which contains the input data via the

ICAP, and then writing these frames to the core’s input BRAM. This operation is

reversed for the core’s output transfer. Because the content of each BRAM block

maps into 64 configuration frames, large ICAP read/write operations are required to

reduce the transfer time overhead. To allow for large ICAP read and write

operations, the data buffer size in the ICM was increased to six BRAM blocks.

As mentioned earlier in this thesis, partial bitstreams stored in external memory

should be encrypted. Ideally, AES should be used for partial bitstream encryption;

however, in this proof-of-concept implementation, only a small parallel data

descrambler is used, which has a very small area footprint and results in only one

clock cycle delay in the configuration (available in [176]). The data descrambler is

integrated with the ZBT-SRAM memory controller to automatically decrypt any data

fetched from external memory according to the polynomial: X
16

 + X
5
 + X

4
 + X

3
+ 1.

Figure 6.17 shows a floor-plan image of the implemented control logic. The control

logic is constrained to the top-left corner of the chip and spans four clock regions

vertically. The RP containing the ICM is placed in the first clock region and the rest

of the control logic is placed in the other three clock regions. All the regional clock

buffers are instantiated and enabled with a default frequency of 100MHz.

All the local routes of the control logic are confined within the top-left region of the

chip. The area occupied by the control logic accounts for around 25% of the chip,

leaving most of the chip free and available for the placement of the relocatable cipher

cores apart from a few columns that contain the static routing to some of the system’s

IOs.

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

165

Figure ‎6.17 Floor-plan image of the control logic in the system

With the implementation shown in Figure 6.17, a total number of 30 feasible

locations are possible for the relocatable test cipher. However, only 21 cores can be

configured on the chip at one time. Figure 6.18 shows the initialisation of the

resource matrix used in the placement algorithm. The matrix consists of 65 columns

and eight rows. The matrix is initialised so that unavailable resources are mapped

with logic ‘1’ in the matrix. These resources are the resources occupied by the

control logic, resources with static routes passing through them, hardwired

components on the chip and resources with types not used by any core in the system.

In the test application, both the DSP columns and the clock resources columns are

mapped with ‘1’ in the resource matrix as they are not used by any core in the

system. In addition, the locations occupied by a PowerPC processor that is integrated

in the Virtex-4 FPGA are also mapped with ‘1’ in the resource matrix.

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

166

Figure ‎6.18 Initialisation‎of‎the‎FPGA’s‎resource‎matrix

The placement algorithm described earlier generates two offsets when a feasible

location is found for a particular core: the horizontal X_offset and the vertical

Y_offset. After applying the placement algorithm on the matrix shown in Figure

6.18, the generated Y_offset is compatible with the ICM’s relocation offset format

and can be used directly for relocation (see Chapter 4). This is not the case for the

horizontal offset as it is not compatible with the FPGA’s column addressing and the

ICM’s relocation offset format, which requires two different offsets, one for the CLB

resources and the other for the BRAM resources. This horizontal offset can be easily

converted to the required format depending on the selected offset in the offset group:

Original location  CLB_offset= 0 , BRAM_offset= 0

Offset (index)  CLB_offset= Offset (index) – index , BRAM_offset= index

6.4 Experimental Results

This part of the thesis reports the performance of the implemented system when

executing tasks based on the test cipher core. The system clock frequency was set to

100 MHz and the scrubbing rate was set to one cycle every 10ms. Although any

scheduling algorithm is feasible with the proposed system, a simple First-Come-

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

167

First-Served (FCFS) scheme was assumed so that the first incoming task is scheduled

first for execution. The experimental analysis assumes that tasks along with their

input load are available in the CPU’s main memory. No external IO overhead is

considered for encryption quarries.

6.4.1 Task Allocation

When an encryption task is scheduled for execution, three redundant modules of the

cipher core are configured in three different locations on the reconfigurable area on

the FPGA. This allocation scheme requires the placement algorithm described earlier

to be executed three times. Any task that does not fit in a minimum of three feasible

locations is not allocated and has to wait for other active tasks to finish execution.

The time overhead for task allocation will depend on the status of the tasks in the

reconfigurable area. The placement algorithm goes through three stages. The first is

scanning the ‘core’ table that contains the status of already configured cores in the

FPGA. Tasks with three feasible locations in this stage are allocated very quickly as

the location offsets required for the tasks’ cores are already calculated. The second

stage scans the available resources in the resource matrix to find a feasible location

for the task’s core. So, three scans of the resource matrix are required for the second

stage, one for each of the task’s redundant cores. The third stage of the placement

algorithm scans the empty resources as well as resources occupied by tasks that have

finished execution. Since there is only one core type in this test application, the

placement algorithm will never go through the third stage. Table 6.3 shows the time

overhead breakdown for task placement in the system.

Table ‎6.3 Task allocation time overhead

Operation Min. Time (us) Max. Time (us)

Core Allocation 1 42

Task Allocation (3 cores) 5 125

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

168

6.4.2 Configuration and Control of the Relocatable Cores

The configuration scheme used in this test application deploys the multiple-clone

configuration technique as described in Figure 6.9. In Virtex-4 FPGAs, a single

cloning operation can only cover cores allocated to the same half of the FPGA chip.

The vertical offsets for the allocated tasks are scanned to determine the number of

operations required to finish the configuration process. A maximum of two

configuration operations is required, one for each half of the FPGA. Figure 6.19a

shows the configuration time overheads of the test cipher cores when varying the

number of allocated tasks in the placement stage, and Figure 6.19b shows the number

of cores configured in each configuration operation.

Figure ‎6.19 Task configuration

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

169

When cores need to be removed from the reconfigurable area, a black-box bitstream

is configured on top of them. This bitstream contains only empty frames and, hence,

only a single cloning operation is required for the removal of any number of cores in

the FPGA. Figure 6.20 shows the removal time overhead for different numbers of

tasks.

Figure ‎6.20 Task removal time

To control and monitor the operation of a core after configuration, several operations

are performed using the ICAP: enable/disable the regional clock buffer, enable/reset

the core and monitor the status of the core. For the first two operations, a field in a

certain configuration frame needs to be modified (LUT content). To do this, an ICAP

read operation is performed followed by an ICAP write operation. To monitor the

status of an active core, only a read operation is required to check the value of the

READY LUT. Table 6.4 shows a time overhead break down of the operations

required to perform the control operations. It is noted that any of these operations are

repeated three times for each task.

Table ‎6.4 Task control time overhead breakdown

Operation Time (us)

Readback frame via ICAP 7.5

Fetch word containing the required field to Microblaze 5.8

Total time to check a field in a frame 13.3

Send modified word to ICM 5.8

Write frame containing field via ICAP 7.5

Total time to modify a field in a frame 26.6

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

170

6.4.3 Task Data Transfer

To transfer the input load to an already configured core, the Microblaze first writes

the input load to the dedicated BRAM buffer. The ICM performs a read operation of

64 frames to store the configuration of the BRAM buffer before performing another

write operation of 64 frames to the core’s input buffer. The ICAP write operation is

repeated three times, one for each redundant core of the task. Table 6.5 shows a

breakdown of the task input data transfer time overhead.

Table ‎6.5 Task input data transfer time

Operation Time (us)

Transfer input load from Microblaze to BRAM buffer 92.7

Read the configuration of the input buffer via ICAP 33.3

Write the copied 64 frames to core’s input BRAM via ICAP 33.3

Total input data transfer time (3 cores) 225.9

When a task’s cores have finished execution, checksum voting is performed and the

correct output is transferred to the Microblaze. First, the three frames containing the

core’s checksums are read and transferred to the Microblaze, which performs the

voting. One of the correct outputs is then read via the ICAP and copied to the BRAM

buffer. Table 6.6 shows a breakdown of the task output data time overhead.

Table ‎6.6 Task output data transfer time

Operation Time (us)

Read frame containing CRC-checksum 7.5

Fetch word containing CRC-checksum 5.8

Total voting time 40

Read correct output via ICAP 33.3

Transfer output from BRAM buffer to MB 92.7

Total output transfer time 166

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

171

6.4.4 Fault Detection and Recovery

Faults affecting the static control logic are recovered by readback scrubbing, whereas

faults affecting the ICAP controller are recovered by DPR (see Chapter 5). When a

scrubbing cycle is due, readback scrubbing is only performed on the region occupied

by the control logic, which spans a total of 1,716 configuration frames. The

scrubbing cycle is performed using three readback operations one for each row in the

region occupied by the control logic. On the other hand, the region occupied by the

ICM is reconfigurable with a partial bitstream of a size equal to 155 KB. The time

overhead for detecting faults in a region occupied by a faulty core is dictated by the

BIST diagnosis process of the CLB columns. Table 6.7 shows the fault recovery and

detection operations time overheads.

Table ‎6.7 Fault detection and recovery time overhead

Operation Time (us)

Readback scrubbing of control logic 805

ICM reconfiguration 404

BIST Diagnosis 1231.9

6.4.5 Task Execution Time Overhead

In this analysis, the execution time of a relocatable core is defined as the time

required for the core’s output to be available in the main memory after it finishes

execution. Table 6.8 shows the execution time of the test cipher core with and

without the redundancy and compares it to a software implementation of the test

cipher in a Microblaze processor where temporal redundancy is used.

Table ‎6.8 Test cipher core execution time

Execution scheme
Time (ms)

Speedup
Proposed system Software

With TMR 1.3 2912.7 x2240.5

Without TMR 0.5 970.9 x1942.8

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

172

Table 6.8 shows the task when there is only one task in the queue and no cores are

already configured in the reconfigurable region. In the proposed system, the number

of tasks in the queue and the status of the reconfigurable region will affect the time

required for a task’s output to be available in the main memory. In a FCFS

scheduling scheme, the wait time is defined as the time a task remains in the queue

waiting for execution. In FCFS scheduling, the last task in the queue will always

have the longest wait time. Figure 6.21 shows the maximum task wait time in the

proposed system for the different number of tasks in the queue, all with the same

arrival time.

Figure ‎6.21 Maximum task wait time

6.5 Chapter Conclusion

Reliability is very much related to the security of cryptographic hardware as faults

can compromise the security of the system. Traditional FT design techniques are

usually deployed in cryptographic systems to prevent the leaking of secret

information as a result of faults. These techniques, however, limit the flexibility and

prevent the efficient deployment of the FPGA’s resources. The R3TOS provides a

flexible platform for implementing reconfigurable applications that require flexibility

and high performance. This makes R3TOS an ideal solution for implementing

reliable cryptographic applications. This chapter presented the design and

Chapter 6: An R3TOS-based Reliable and Secure Encryption Engine

173

architecture of an R3TOS-based encryption engine. This encryption engine is

capable of executing real- time encryption tasks using relocatable cipher cores. These

cores are efficiently allocated in the available resources of the FPGA using a new

placement scheme that accounts for the irregularity in the FPGA fabric and allows

for the placement of heterogynous cores. This placement scheme also allows for

intelligently reusing the already configured cores to enhance the efficiency of the

system. Faults in the static logic of the system are mitigated by means of readback

scrubbing, whereas cipher tasks are executed with modular redundancy to ensure

secure operation. A proof-of-concept implementation of the system in a Virtex-4

FPFA was demonstrated and tested with a test relocatable cipher core. The test

results showed that HTs based on the test cipher outperform software tasks of the

same cipher.

Chapter 7

174

Chapter 7 : A DPR-based Platform for

Frequent Itemset Mining Acceleration

Knowledge Discovery and Data Mining (KDD) is a growing field focusing on

extracting useful information from large amount of data. KDD is applied in several

fields such as science, medicine and business. One important concept in data mining

is Frequent Itemset Mining (FIM), which is widely deployed for extracting

information from businesses and enterprise databases. FIM is often used in market

basket analysis to understand the purchase behaviour of customers purchasing

products offered by the same retailer. Usually, customer purchase information is

stored in a transaction database which consists of several transactions; each

transaction contains the products purchased by a single customer. Association rules

can be derived from the databases to see how often certain products are bought

together. These association rules can influence business decisions to increase future

profit. Retailers can use the information extracted form mining their databases to

come up with the best pricing, promotional offers and store layout. FIM is not

limited to the basket analysis. FIM concepts can be used in other applications such as

web mining and bioinformatics.

Using FPGAs, FIM can be accelerated by performing some acceleration tasks in

hardware. Placing static accelerators in the system will reduce the resource efficiency

and limit the size of each accelerator. DPR can be used to allow for sharing the

FPGA’s resources among the different acceleration tasks and consequently enhance

the system’s performance. This chapter proposes a novel system to accelerate the

popular FP-growth algorithm using FPGAs. The system manages the configuration

and execution of several acceleration tasks that utilises relocatable systolic array

Chapter 7: A DPR-based Platform for FIM Acceleration

175

accelerators. This chapter presents the design and architecture of the system and

evaluates the performance gain archived by using DPR.

7.1 Background on Frequent Itemset Mining

Suppose we have a set of items B={i1,i2,…im}

625. Any subset of items collected from B is called an itemset. In the context of

basket analysis, an itemset is a group of items that can be bought together.

A transaction over B is a set t= (ID, J) where ID is the unique transaction identifier

and JϵB. In basket analysis, J can be a list of products purchased by a single

customer.

A transaction database is a collection of transactions T={t1, t2, …..,tn}. Every

transaction is an itemset, but some items may not appear in T. A transaction can be

decomposed into smaller itemsets, for example itemset I is covered by t=(ID, J) if

IϵJ. The number of itemsets covered by a transaction is equal to 2
n
 -1 where n is the

number of items within the transaction. For example, if a transaction t=ABC, the

number of itemsets covered by the transaction is 2
3
 -1 = 7; these itemsets are A, B, C,

AB, AC, BC and ABC.

FIM is based on fining how common itemsets appear in the database. A count

number for each itemset in the database is calculated. The count number is called the

‘support’. The support of a particular itemset indicates the number of transactions

containing this itemset. The support is usually given as a percentage of the total

number of transactions.

A ‘support threshold’ is specified at the beginning of the mining process; the support

threshold indicates the minimum support for an itemset to be considered for

generating the association rules. Any itemset with a support count less than the

specified threshold can be discarded to reduce the complexity of the mining process.

Table 7.1 shows an example of a transaction database T ={t1, t2, t3 ,t4 ,t5 ,t6} over a

Chapter 7: A DPR-based Platform for FIM Acceleration

176

set of items B={A, B, C, D}. Table 7.2 shows all the possible itemsets derived from

B along with their support count.

Table ‎7.1 Example database

Transaction ID Items

1 A, B

2 C

3 A,B,C

4 B,C

5 A,B,D

6 C,D

Table ‎7.2 Support count for itemsets in the example database

Itemset Support Itemset Support Itemset Support

A 3 (50%) AC 1 (16.66%) ABC 1 (16.66%)

B 4 (66.66%) AD 1 (16.66%) ABD 1 (16.66%)

C 4 (66.66%) BC 2 (33.33%) ACD 0 (0%)

D 2 (33.33%) BD 1 (16.66%) BCD 0 (0%)

AB 3 (50%) CD 1 (16.66%) ABCD 0 (0%)

Suppose that the support threshold is 50%, which means that an itemset is required to

appear in at least half of the transactions to be considered in the association rules.

The itemsets which satisfy this condition are: A, B, C, and AB. These itemsets are

referred to as ‘frequent’ itemsets.

7.1.1 Background on FIM Algorithms

The concept of FIM was first introduced by Agrawal in [177] wherein an algorithm

for finding frequent itemsets was used to derive association rules for the market

basket model. Later Agrawal improved the algorithm and called it the Apriori

algorithm ([178] and [179]). The Apriori aims at reducing the mining time for large

Chapter 7: A DPR-based Platform for FIM Acceleration

177

databases by exploiting the anti-monotonicity property of itemsets: ‘if an itemset is

found to be infrequent, any superset of this itemset is infrequent’. This property is

used in a mining process called ‘candidate generation’, which repeatedly generates

larger candidate itemsets from smaller frequent itemsets. Only the support count of

these candidates is considered when scanning the database. By repeatedly scanning

the database and increasing the length of the candidates in each scan, the algorithm

stops when no more candidates satisfy the minimum support count.

The Apriori algorithm suffers from two main drawbacks. The first is that multiple

scans of the database are required to find the frequent itemsets. The second drawback

is the delay caused by the candidate generation process. These drawbacks could lead

to intolerable time overhead when mining large databases. The most outstanding

improvement over the Apriori is the FP-growth algorithm, which only requires two

database scans and eliminates the need for candidate generation [180]. The FP-

growth is based on transposing the transaction database into a compressed tree

structure called the FP-tree. The FP-tree is then mined in a shorter time compared to

the original database.

The FP-growth algorithm

The FP-growth is based on representing the database with an FP-tree which contains

several branches each with several nodes. Each path in the tree represents an itemset

in the database whereby the nodes encountered in this path are the items in the

itemset (see Figure 7.1). A node in the FP-tree can be a ‘parent’ node to several

‘children’ nodes. Each node contains an item identifier along with a count number

representing the support of any itemset from a path ending with this node. The FP-

tree of a database can be created by the following steps:

1) The database is scanned to calculate the support count of each item in the

database. A list of frequent items is created with infrequent items removed to

reduce the size of the tree.

2) Items within each database transaction are sorted in descending order of the

support count, with infrequent items removed from each transaction.

Chapter 7: A DPR-based Platform for FIM Acceleration

178

3) A root for the tree is created and labelled with NULL. The first transaction in the

database is represented with a branch from this root. Each item in the transaction

is represented by a node, so that each node is placed in a different level away

from the root. For consecutive transaction, the first item of the transaction is

compared with nodes in the first level. If a common node is found, the support

count of this node is incremented and the next item is compared with the children

nodes in the next level. If no common node is found, a new node is created and

the remaining items of the transaction form a new branch from this node. When

the FP-tree is created, a header table is built containing links between nodes

containing the same item.

Figure 7.1 illustrates the steps required to create the FP-tree for the database in Table

7.1, with a 25% minimum support threshold.

Figure ‎7.1 Creating the FP-tree

Chapter 7: A DPR-based Platform for FIM Acceleration

179

After creating the FP-tree, the mining problem is transformed into mining the tree

rather than the whole database. By traversing the tree, a ‘conditional pattern base’ for

each item can be created. The conditional pattern base represents the paths to the

nodes containing the item. The itemsets containing the item can be found by the

union of the item and the sub-itemsets in each path. The resulting itemsets are

processed to add the support of similar itemsets. This procedure is repeated for all the

items to generate all the possible itemsets. Table 7.3 shows the conditional pattern

base and the possible itemsets for the FP-tree in Figure 7.1.

Table ‎7.3 Itemsets generated from the FP-tree

Item Conditional Pattern Base Itemset

D:2 {(BA:1),(C:1)} BAD:1, BD:1, AD:1, CD:1, D:2

A:3 {(B:2), (BC:1)} BA:3, BCA:1, CA:1, A:3

C:4 (B:2) BC:2, C:4

B:4 null B:4

Finally, any itemset which does not satisfy the minimum support count is discarded.

The itemsets in Table 7.3 contains six itemsets that do not satisfy the 25% support

threshold. Discarding these itemsets results in the final frequent itemsets: D, BA, A,

BC, C and B.

7.1.2 FPGA Implementations of FIM Algorithms

Unfortunately, there is a limited amount of research focused on the implementation

of FIM algorithms in FPGAs. A parallel implementation of the Apriori algorithm

was first presented in [181], where the authors have used a 1-D systolic array. Each

PE in the systolic array contains a support counter, a comparator along with some

control logic and local memory. Transactions are streamed into the systolic array and

compared with items stored in the local memory of each Processing Element (PE).

The database is streamed into the systolic array multiple times to calculate the

support count of each candidate. Due to the time required for scanning the database

multiple times, only x4 speedup was achieved compared to the software

Chapter 7: A DPR-based Platform for FIM Acceleration

180

implementation. In [182], the same authors extended their work and developed a

bitmapped CAM architecture that achieved a 25 times performance gain. In [183],

the authors presented the HAPPI architecture which consists of a systolic array, a

trimming filter and a hashing filter. The HAPPI aims at enhancing the performance

of the Apriori when mining large databases by reducing the size of the database

using a transaction trimming technique and by reducing the number of candidates

using a hashing technique.

Although systolic array accelerators can enhance the performance of the Apriori

compared to software implementations of the algorithm, the Apriori algorithm is

found to lag behind other algorithms which do not require candidate generation and

several database scans such as the FP-growth algorithm. Mapping the FP-growth

algorithm into hardware is much more complex compared to the Apriori as it is not a

simple iterative process that can be performed using the same hardware. Accelerating

the algorithm is possible by performing some of its processing stages in dedicated

hardware accelerators. In ([184], [185] and [63]), Sun et al. have proposed a 2-D

systolic tree structure to accelerate the creation of an FP-tree of a transaction

database. The systolic tree consists of several PEs each capable of storing one item of

the database and representing a node of the FP-tree. A PE can be a ‘parent’ PE of

several ‘children’ PEs. Children PEs associated with the same parent PE are referred

to as ‘siblings’. The PEs are connected together as shown in Figure 7.2, in which a

parent PE is only connected to the first child and each sibling PE is connected to its

neighbouring PE.

The operation of the proposed systolic tree starts by streaming the database to create

the FP-tree. The items of each transaction propagate though the PEs either vertically

or horizontally, so that similar itemsets always takes the same path through the PEs.

This way a support count for the nodes in each path can be calculated. The next stage

involves streaming candidate into the tree. At this stage the PEs execute different

algorithm, so that the support count of each node at the end of each possible path for

the candidate is shifted horizontally out of the tree where they are added using

dedicated adders. This procedure is repeated to calculate the support count for all the

candidates.

Chapter 7: A DPR-based Platform for FIM Acceleration

181

Figure ‎7.2 Previously proposed 2-D systolic tree for FIM [63]

Although the proposed tree achieved orders of magnitude performance gain over the

software implementation of the FP-growth algorithm when using high support

threshold, the performance gain drops dramatically when the threshold support is

decreased to the point where the software implementation no longer lags behind.

This is mainly due to the following two factors:

1) The PE layout in the tree requires a large number of PEs to mine a small number

of items. The authors predefine a tree with two parameters K and W where K is

the number of siblings PEs for each parent node and W is the depth of the tree.

The total number of PEs in a tree = (K
w+1

 -1)/(K-1). This means that the number

of PEs is exponentially related to the K and W parameters. The authors reported

that the largest tree that can fit on a Virtex-5 LX330 has K=4 and W=4.

Although these parameters generate a very large tree, only transactions

containing no more than four items are guaranteed to fit in the tree. To cope with

this limitation, the authors proposed using a software database partitioning

technique, which partitions the database into smaller sub-databases containing a

maximum of four items. Only these sub-databases are mined in hardware rather

than the whole database.

Chapter 7: A DPR-based Platform for FIM Acceleration

182

2) The mining process requires candidate generation, which violates one of the most

important properties of the FP-growth algorithm. With database partitioning, the

candidate generation process is performed after loading each sub-database.

7.2 Overview of Proposed System

The proposed system aims at accelerating the FP-growth algorithm through five

acceleration tasks that are performed in hardware using customised systolic arrays.

Table 7.4 summarises the acceleration tasks used in the proposed system. The first

four tasks utilises systolic array with a conventional 1-D arrangement of PEs,

whereas the fifth task utilises a systolic tree with a 2-D arrangement of PEs.

Table ‎7.4 Summary of acceleration tasks in the proposed system

Hardware Acceleration

Task
Operation

Item Support Counting The support count is calculated for individual items in the database

Item Sorting The items are sorted in a list according to their support count

Database Pruning Infrequent items are removed from the database

Transaction Sorting
Items in transactions are rearranged in descending order of the support

count

Itemset Counting The support count is calculated for itemsets in a sub-database

A vertical format is used for storing a database in memory, as shown in Figure 7.3. In

this format, items in the transactions are listed using 32-bit memory locations. Each

memory location is divided into two 16-bit fields. The first is used for storing the

item ID and the second is used as a count field for storing some computational values

during the mining process. Transactions are listed consecutively and separated by a

memory location with a special ID denoted as the ‘separator’. The separator contains

the value ‘0xFFFF’ in the item’s field. This format is especially designed to enable

fast streaming of the database from an external DDR memory to the accelerators in

the FPGA.

Chapter 7: A DPR-based Platform for FIM Acceleration

183

Figure ‎7.3 Database format in memory

7.2.1 Acceleration Task1: Item Support Counting

The initial stage when mining any database is to find the support count of individual

items in the database. By using a 1-D systolic array, the database items can be

counted as they are streamed into the array. The proposed 1-D systolic array consists

of a number of PEs, each contains some control logic and registers to store the item

ID and the support count (see Figure 7.4). PEs in the systolic array execute different

algorithms according to the ‘mode’ signal passed to them by the neighboring PE. The

systolic array used for this task operates under two modes: the LOAD mode and the

SHIFT mode. The support of each item is calculated in the LOAD mode whereby

each PE executes the algorithm shown in Algorithm 7.1.

In the LOAD mode the database is streamed into the systolic array. Initially, all the

PEs are marked as ‘empty’. Each PE contains a small ALU that performs one of

three operations every clock cycle, depending on the current state of the PE and the

item passed to that PE:

1) When an item reaches an empty PE, the PE is marked as ‘non-empty’. The

item ID is stored and the support count is set to 1. The item stopped at this PE

and does not propagate to the next PE.

Chapter 7: A DPR-based Platform for FIM Acceleration

184

2) When the item reaches a non-empty PE and the item is the same as the item

stored in the item ID register, the support count is incremented and the item

does not propagate to the next PE.

3) When the item reaches a non-empty PE and the item is not the same as the

item stored in the item ID register, the next PE is enabled and the item is

passed to it.

Figure ‎7.4 1-D systolic array

Algorithm ‎7.1 Item support counting

If the number of PEs in the systolic array is equal or larger than the number of items

in the database, the database is only required to be streamed once to finish the item

counting. When streaming the database is finished, each non-empty PE will contain

an item ID and a support count.

(1) if PE is empty then

store item in PE;

support count =1;

stop item propagation;

empty_flag=1;

(2) else if item= item stored in PE then

support count= support count+1;

stop item propagation;

(3) else

forward item to next PE;

Chapter 7: A DPR-based Platform for FIM Acceleration

185

Switching the systolic array to the SHIFT mode allows for shifting the item ID and

the support count of each non-empty PE out of the array. In the SHIFT mode the

array behaves like a shift register, in which each PE forwards the item ID and the

support count stored in its registers to the next PE and stores the incoming item ID

and support count. In addition, the empty_flag in each PE is also shifted out of the

array through the data_valid connection. This assists the array controller in collecting

the items from the last PE.

It is not reasonable to assume that the number of PEs within the array is always

larger than the number of items in the database, especially when processing a

database before removing the infrequent items. When streaming a database which

contains more items than the number of PEs in the systolic array, all the PEs will be

filled with items and overflow will occur at the last PE in the array. To deal with this

issue, the array operates as follows:

1) Any item passed by the last PE in the array to the controller during the LOAD

mode is stored in memory. At the end of the first database scan a sub-database is

created in memory which contains the items collected from the last PE in the

array. This sub-database contains N number of items where N=total number of

items-number of PEs in the array.

2) The first set of items is shifted out of the array, the array is reset and the sub-

database is streamed into the systolic array rather than the full database to

calculate the support of the second set of items.

3) The process of streaming the sub-database and shifting the items out of the tree is

repeated. Every iteration a smaller sub-database is created until no overflow

occurs at the last PE of the array.

7.2.2 Acceleration Task2: Item Sorting

After completing Task1, the support counts of all the items in the database are

calculated. The systolic array of Task2 can be used to sort the items in a single list in

a descending order of the support count. Task2 deploys a similar systolic array

Chapter 7: A DPR-based Platform for FIM Acceleration

186

architecture to that used in Task1; however, PEs execute different algorithm in the

LOAD mode.

In Task2, the items along with their support counts are streamed into the systolic

array. PEs perform Algorithm7.2 in the LOAD mode to sort the order of the

streamed items.

Algorithm ‎7.2 Item list sorting algorithm

From Algorithm 7.2 it can be seen that items with the highest support counts will be

shifted in the LOAD phase from one PE to the next. If the total number of items in

the items group is larger than the number of PEs in the array, items with high support

count will overflow at the last PE. In a similar way to Task1, these items can be

collected and stored in memory to be processed in consecutive iterations.

In the SHIFT mode, the sorted items are shifted out of the array along with their

support counts. As the items are shifted out of the array, the array controller

examines the support count of each item. Any item with support count less than the

minimum threshold is discarded and not stored in memory.

(1) if PE is empty then

store incoming item in PE;

store incoming support count in PE;

empty_flag=1;

(2) else if incoming support count > support stored in PE then

forward incoming item to next PE;

forward incoming item support to next PE;

(3) else

forward item in PE to next PE;

forward support in PE to next PE;

store incoming item in PE;

store incoming support in PE;

Chapter 7: A DPR-based Platform for FIM Acceleration

187

7.2.3 Acceleration Task3: Database Pruning

After completing Task2, a list of sorted frequent items is created. Task3 removes the

infrequent items from the database to create a pruned database. In Task3 two

operations are performed. The first is the removal of infrequent items from the

database and the second is assigning an order number to each item entry in the

database. The second operation is necessary for the following task which sorts the

items in each transaction according to their support count. The systolic array in

Task3 operates in two modes: the INITIALISE and the LOAD modes. In the

INITIALISE mode, the items in the frequent item list are streamed into the array,

each with an order number indicating the order of this item in the list (see Algorithm

7.3). The order number is set to ‘1’ for the item with the lowest support count and

increments so that the item with the highest support count has the highest order

number.

Algorithm ‎7.3 Initialising PEs with frequent items

In the LOAD mode, the database is streamed into the array with the count field set to

‘0’ for all the items. Each non-empty PE in the array compares the incoming item

with the item stored in item register. If they are the same the PE forward the order

number stored in the support register to the next PE (see Algorithm 7.4). This can be

seen as a process of inserting an order number into the count filed of each item in the

database.

Similar to the previous stages, several database scans might be required to assign all

the database item entries with order numbers. The pruning process of infrequent

(1) if PE is empty then

store incoming item in PE;

store incoming order number in PE;

empty_flag=1;

(2) else

forward incoming item to next PE;

forward incoming order number to next PE;

Chapter 7: A DPR-based Platform for FIM Acceleration

188

items is performed by the array controller in the last scan by discarding any item with

no assigned order number.

Algorithm ‎7.4 Assigning order numbers to items entries in the database

7.2.4 Acceleration Task4: Sorting Database Transactions

After completing Task3, each memory location of the database stored in memory

will contain an item ID, as well as an order number. Task4 rearranges the items in

each transaction according to the order number as the database is streamed into the

systolic array. The systolic array used for this task operates in two modes: the LOAD

and the SHIFT modes. Different to the arrays used in the previous tasks, both the

LOAD and SHIFT algorithms are executed while the database is streamed into the

systolic array. In the LOAD mode, each empty PE stores the first incoming item

along with its order number. Any empty PE will always forward a SHIFT mode

signal to the next PE in the array. Non-empty PEs compares the order number of the

incoming item with the count stored in their registers and forward the item with the

highest order number to the next PE (see Algorithm 7.5). The mode signal passed to

the first PE by the array controller is set to the LOAD if the item passed to the array

is not the ‘separator’. When the separator is passed to the array the mode signal is

switched to the SHIFT mode and the data_valid signal is set to logic ‘0’ for one

clock cycle. Any PE containing the ‘separator’ will be marked as ‘empty’ during the

SHIFT mode. This way the PE containing the separator will always push out the

sorted items from the previous transaction.

(1) if PE is empty then

forward incoming item to next PE;

forward incoming order number to next PE;

(2) else if incoming item = item stored in PE

forward incoming item to next PE;

forward order number stored in PE to next PE;

(3) else

forward incoming item to next PE;

forward incoming order number to next PE;

Chapter 7: A DPR-based Platform for FIM Acceleration

189

Algorithm ‎7.5 Sorting items in database transactions

When the size of a single transaction is larger than the size of the array, overflow will

occur at the last PE. The systolic array for this task does not allow for overflow. This

means that the maximum size of any transaction in the database should not exceed

the number of PEs in the array. Since pruning the database transactions takes place in

the previous task in the mining process, the effect of this limitation is reduced,

especially when large support thresholds are selected for the mining process.

LOAD Mode:

(1) if PE is empty then

 store incoming item in item register;

 store incoming order number in support register;

 forward item stored in PE to next PE;

 forward order number stored in PE to next PE;

 empty_flag=1;

 mode_out= SHIFT;

 data_valid_out=0;

(2) else if incoming item < item stored in PE

 store incoming item in item register;

 store incoming order number in support register;

 forward item stored in PE to next PE;

 forward order number stored in PE to next PE;

 mode_out= mode_in;

 data_valid_out=data_valid_in;

(3) else

 forward incoming item to next PE;

 forward incoming order number to next PE;

 mode_out=mode_in;

 data_valid_out=data_valid_in

SHIFT Mode:

 store incoming item in item register;

 store incoming order number in support register;

 forward item stored in PE to next PE;

 forward order number stored in PE to next PE;

 empty_flag= data_valid_in;

 mode_out= SHIFT;

 data_valid_out=empty_flag;

Chapter 7: A DPR-based Platform for FIM Acceleration

190

7.2.5 Acceleration Task5: Itemset Counting

In the FP-growth algorithm, a compressed tree of the database is created to simplify

the itemset counting process. As mentioned earlier, a 2-D systolic array has been

previously proposed to create the database tree in hardware (see Figure 7.2). This

array process unsorted transactions, so different tree structures can be created for the

same database, depending on the order of items in each transaction. This leads to

inefficient mapping between the items in the database and array PEs and limits the

number of items that can be mined using the array.

In this thesis, a 2-D systolic array is also proposed for creating the database tree.

However, the array pre-processes the database after the completion of the first four

acceleration tasks. Pre-processing the database allows for creating much larger trees

with less number of PEs compared to the previously proposed array architecture.

In the proposed tree architecture, each PE is connected to two other PEs. Depending

on the location of each PE within the tree, the PE can have a number of sibling PEs

(connected horizontally) and children PEs (connected vertically). To simplify the

connections between parent and children PEs, a parent PE is only connected to the

first child, which is connected to the next sibling and so on. Figure 7.5 shows a

systolic tree which supports three frequent items. The tree can be divided into several

levels when moving away from the top/left PE. PEs in the same level are used for the

same item. Items are assigned to the tree levels according to their order number so

that the item with the highest order number is assigned to ‘level 0’ and the item with

the lowest order number is assigned to the last level in the tree.

Each PE in the same level of the tree contains the same number of children. The

number of children PEs is decremented when moving to higher levels of the tree, so

that PEs in the last level are left with no children. With this array structure, the

number of PEs required for the support calculation of itemsets generated from ‘n’

frequent items is equal to (2
n
 -1). This is a much smaller number of PEs compared to

the previously proposed array, which has a fixed number of children for each parent

PE and require a number of PEs equal to ((n
n+1

 -1)/(n-1)).

Chapter 7: A DPR-based Platform for FIM Acceleration

191

Figure ‎7.5 3-item 2-D systolic array

Similar to the 1-D systolic array used for the previous tasks, each PE in the 2-D array

contains an item ID register and a support register. The proposed PE arrangement

requires initialising PEs in the same level with the same item before streaming the

database. The 2D systolic tree operates in three modes: the INITIALISE, LOAD and

SHIFT modes.

In the INITIALISE mode, PEs are initialised with items from the sorted frequent

item list by performing the algorithm described in Algorithm 7.6. Each PE stores the

first incoming item in the item register. Any consecutive item will be forwarded to

the first child and first sibling PEs. This way, each parent PE will have a sibling and

a child PE containing the same item.

Chapter 7: A DPR-based Platform for FIM Acceleration

192

Algorithm ‎7.6 Initialising the 2-D systolic array

After streaming the frequent items into the systolic array, the mode signal is switched

to the LOAD mode and the database transactions are streamed into the array. In the

LOAD mode, each PE executes Algorithm 7.7 to calculate the support count of the

itemsets generated from the initialised items. When performing Algorithm 7.7, items

in each transaction will propagate into the tree in one or several paths. The support

count of PEs in the same path will be incremented when this path is crossed by a new

transaction. When streaming the database, a signal called the ‘new_trans’ is set for

one clock cycle before each transaction. The new_trans signal is used to clear the

previously created path in the tree.

Algorithm ‎7.7 Calculating the support count of itemsets

(1) if PE is empty then

store incoming item in PE;

stop item propagation

empty_Flag=1;

(2) else

forward incoming item to sibling PE;

forward incoming item to child PE;

(1) if new_trans=1 then

path_flag=0;

forward new_trans signal to sibling PE;

forward new_trans signal to child PE;

(2) else if path_flag=1 then

forward incoming item to the child PE;

forward incoming item to sibling PE;

(3) else if incoming item= item stored in PE then

increment support register;

forward incoming item to sibling PE;

path_flag=1;

(4) else

forward item_in to sibiling PE;

Chapter 7: A DPR-based Platform for FIM Acceleration

193

From Algorithm 7.7, it can be seen that each PE will always forward any incoming

item to its sibling PE. This will create several independent trees within the systolic

array. Figure 7.6 shows the trees created in the array when streaming an example

database into a 3-item 2-D array.

Figure ‎7.6 Itemset counting using the proposed 2-D systolic array

Shifting the calculated support counts out of the 2-D array differs from the 1-D array.

PEs within the same level are connected together to form a ‘shift path’. To shift

items out of a particular level in the array, the array controller sets the item input

signal with the ID of the item in the desired level. After that the mode signal is set to

the SHIFT mode. In the SHIFT mode, the PEs perform Algorithm 7.8 to shift the

support counts out of the desired level using the dedicated shift paths.

Algorithm ‎7.8 Shifting items in the same level out of the 2-D systolic array

(1) if incoming item = item stored in PE then
forward stored support count to next PE in same level;
store incoming support count in support register;

stop item propagation;
(2) else

forward incoming item to sibling PE;
forward incoming item to child PE;

Chapter 7: A DPR-based Platform for FIM Acceleration

194

Because there are different paths for shifting the support counts, a small ‘shift

controller’ is attached to the array. The shift controller multiplexes the support paths

to the input signal of the array controller according to the item ID set by the array

controller (see Figure 7.5). In most mining problems, the size of the 2-D array will

not be sufficient to mine all the items in a single database scan. There are two

methods for using the 2-D systolic array in accelerating the mining process. In the

first method a software database partitioning algorithm is used to create several sub-

databases each not containing a number of items larger than the size of the tree [63].

Only these sub-databases are streamed into the systolic array rather than the whole

database. The second method is based on database sampling, whereby the support

counts of many item samples are generated in hardware. Each sample can be used to

derive the association rules of a group of particular items of interest.

7.3 Implementation and Resource Utilisation

Tasks 1,2, 3 and 4 of the mining process are all performed using 1-D systolic arrays.

It is possible to use a dedicated systolic array for each task or perform all the tasks

using a single array with larger PEs capable of performing the algorithms required

for the four tasks. Table 7.5 shows the resource utilisation of the 1-D systolic array

when optimised for one of the four mining tasks and when optimised for all the four

processing stages in a Xilinx Virtex-6 LX240 FPGA. The systolic arrays only

consumes CLB resources, so the resource utilisation is given as a percentage of the

total CLB slices in the FPGA which is 37,680.

Table ‎7.5 CLB resource utilisation of the 1-D array in a Virtex-6 LX270 FPGA

Task
No. of PEs

200 450 700 950

Task 1 12 (%) 25 (%) 38 (%) 51 (%)

Task 2 12 (%) 24 (%) 37 (%) 49 (%)

Task 3 8 (%) 17 (%) 26 (%) 35 (%)

Task 4 13 (%) 27 (%) 42 (%) 56 (%)

All Tasks 29 (%) 59 (%) 93 (%) 124 (%)

Chapter 7: A DPR-based Platform for FIM Acceleration

195

The Maximum operating frequency varies for each implementation of the 1-D

systolic array. Table 7.6 shows the maximum operating frequency for the different 1-

D arrays with 950 PEs.

Table ‎7.6 Maximum operating frequencies for the 1-D array

Array Type Task 1 Task 2 Task 3 Task 4 All Tasks

Max. Frequency (MHz) 408 403 421 419 288

Task 5 of the mining process uses the 2-D systolic array. While the number of items

that can be mined with the 1-D systolic array in a single database visit is equal to the

number of PEs in the array, the 2-D array requires a ‘PE level’ for each item. This

means that the size of the array almost doubles to accommodate an extra item. Table

7.7 shows the resource utilisation of the 2-D array when built to support mining a

different number of items in a single database visit.

Table ‎7.7 Resource utilisation of the 2-D array in a Virtex-6 LX270 FPGA

Size (No. of items) 5 6 7 8 9

Size (No. of PEs) 31 63 127 255 511

Resource Utilisation (%) 1 2 4 10 22

Max. Frequency (MHz) 360 356 327 290 290

To test the scalability of the proposed mining system, two designs were implemented

in a Virtex-6 LX240 FPGA. In the first design, all the components of the system are

static including the systolic array accelerators. A single 1-D systolic array is used for

Tasks 1,2,3 and 4 of the mining process to achieve minimal area occupation. Both

the 1-D array and the 2-D array share the area designated for the accelerators (see

Figure 7.7). A Microblaze processor is used to control the mining tasks. Any test

database in initially stored in an external CompactFlash memory. After power up of

the system, the database is transferred to a DDR memory through the PLB bus which

connects to a single port of an MPMC DDR memory controller. Through a Central

DMA IP, the Microblaze processor can access the database stored in the DDR

memory. On the other hand, streaming the database to/from the systolic array

Chapter 7: A DPR-based Platform for FIM Acceleration

196

accelerators is performed using a dedicated NPI memory controller. The NPI

controller utilises two ports of the MPMC controller; one is used for reading and the

other is used for writing. A single array controller is used to control the operation of

the two systolic arrays according to the task and mode initiated by the Microblaze

processor.

Figure ‎7.7 The Static implementation of the system

The second implemented design is partially reconfigurable. In the second design, the

area designated for the accelerators is divided into different reconfigurable slots. The

height of each slot is equal to height of a clock region. BMs are placed at the edges

between the slots and the static region following the GoAhead design flow (see

Figure 7.8) [37]. The output connections of each slot are connected to the input

connections of the next slot. All the slot’s output connections are also connected to

multiplexers. To configure a 1-D systolic array, one or more slots can be configured

with fixed-sized 1-D arrays, depending on the required overall size of the array. The

array controller always streams the database data through the input connections of

the first slot. On the other hand, the accelerators output data is passed to the array

controller through the multiplexers. The Microblaze selects one of the multiplexers

output depending on the size selected for the acceleration task. It is noted that

concatenating different slots to parametrize the size of the accelerator is only

applicable to the 1-D systolic arrays. The 2-D systolic array has a fixed size and is

Chapter 7: A DPR-based Platform for FIM Acceleration

197

configured on top of all the reconfigurable slots. The smallest version of the ICM

presented in Chapter 4 is used to configure the accelerators using partial bitstreams

stored in the DDR memory. The ICM is connected to a dedicated NPI port of the

MPMC controller. The used version of the ICM does not support the multiple-clone

configuration technique, which greatly reduces the configuration time for the 1-D

systolic arrays. Since the locations of the slots are fixed, cloning several instances of

the 1-D systolic arrays is still possible by generating several compressed partial

bitstreams offline. In the implemented design, six reconfigurable slots are used for

the configuration of the accelerators. This means that cloning the fixed-sized 1-D

array over any number of slots require generating six compressed partial bitstreams.

Figure ‎7.8 The DPR-based implementation of the system

In the two implementations of the system, the area designated for the accelerators is

limited to around 40% of the FPGA. This area has to be shared between the 1-D

systolic array and the 2-D systolic array in the static implementations. Reducing the

size of the 1-D systolic array can impact the system as the number of PEs in Task4

should be larger than the maximum number of items in any database transaction.

This means that the size of 1-D array should not be smaller than a specified. In this

analysis, the number of PEs in the static 1-D systolic array is selected to be 200,

Chapter 7: A DPR-based Platform for FIM Acceleration

198

which consumes around 29% of the FPGA resources. This leaves around 10% of the

designated area for the 2-D array (eight PE levels).

Using DPR, the systolic arrays can share the same FPGA resources within the

designated area, and therefore, a larger number of PEs can fit in the designated area

in each task. The designated area for the systolic array was divided vertically into six

equally-sized slots. Each slot can fit up to 70 PEs of the largest 1-D systolic array

(Task4). A fixed number of 70 PEs was selected for all the task accelerators, giving a

total of 420 PEs when using all the reconfigurable slots. On the other hand, a 2-D

array containing nine PE levels was able to fit in the designated area of the partially

reconfigurable implementation. Figure 7.9 shows two floorplan images of the two

prototype implementations. Table 7.8 reports the resource utilisation of the static

logic in the two implementations, whereas Table 7.9 summarises the main

characteristics of the two implementations of the system.

Table ‎7.8 Static logic resource utilisation in a Virtex-6 LX270

Implementation Static DPR-based

Slice Utilisation (%) 49 10

BRAM Utilisation (%) 7 7

Table ‎7.9 Comparison between the two system implementations

Characteristics Static DPR-based

1-D systolic array size (PEs) 200 420 (70 per slot)

2-D systolic array size (PEs) 255 (8 items) 511 (9 items)

Type of array Static Partially reconfigurable

Reconfiguration method NA Slot-based

1-D array reconfiguration time (ms) NA
Minimum (1 slot) = 1.5

Maximum (6 slots) = 3.8

2-D array reconfiguration time (ms) NA 9.2

Chapter 7: A DPR-based Platform for FIM Acceleration

199

Figure ‎7.9 Floorplan images of the two implementations in a Virtex-6 LX270

7.4 Experimental Results

In order to analyze the performance of the proposed frequent itemset mining system,

several real databases were considered as benchmarks for the two implementations.

Table 7.10 lists the benchmark databases, which were collected from [186]. Most of

the system’s components were run at 100MHz, apart from the MPMC memory

controller which takes a 200MHz reference clock. The time overheads for the

different tasks of the mining process are reported in this section of the thesis. The

time overhead of each task is only considered after databases are transferred to the

DDR memory. The time for moving the databases from the CompactFlash memory

to the DDR memory is not considered in the analysis

Table ‎7.10 Benchmark databases [186]

Database
No. of

Items

No. of

Trans.

Max. Trans.

Size

Min. Trans.

Size

Total

Items

Size in

Memory

(MB)

chess 75 3196 37 37 118252 0.5

Pumsb_star 2088 49046 63 49 2475947 9.6

pumsb 2113 49046 74 74 3629404 14

kosarak 41270 990002 2498 1 8019015 34.4

Chapter 7: A DPR-based Platform for FIM Acceleration

200

7.4.1 Item Counting

In the first acceleration task, the database is streamed into the 1-D systolic array from

the external DDR memory module to calculate the support count of the individual

items. The number of times the database is streamed into the systolic array depends

on the number of items in the database and the size of the array. In the static

implementation, the systolic array is configured with the static components after

power-up of the device, whereas for the other implementation the reconfiguration

time of the systolic array account for some of the time overhead of this stage. Table

7.11 shows the time overhead for the item support counting task.

Table ‎7.11 Item counting time overhead

Database
Time Overhead (ms)

Static DPR-based

chess 2.4 5.9

pumsb_star 68.0 58.2

pumsb 91.8 81.0

kosarak 2579.1 1213.6

From Table 7.11, it can be seen that the static implementation performed better in the

first benchmark compared to the DPR-based implementation. This is because the

benchmark database is small and only requires a single database scan to calculate the

support counts of all the items. This means that the reconfiguration time of the two

slots required for first task accounts for the delay in the DPR-based implementation.

The DPR-based implementation; however, performed better in the other three

databases because the static implementation requires more database scans to finish

the task compared to the DPR-based implementation.

Chapter 7: A DPR-based Platform for FIM Acceleration

201

7.4.2 Sorting the Frequent Items

In this task a list of frequent items is created and sorted in descending order of the

support count. In this stage, only the items collected from the previous task are

streamed into the systolic array. Table 7.12 shows the time overheads for this stage.

Table ‎7.12 Item sorting time overhead

Database
Time Overhead (ms)

Static DPR-based

chess <0.1 1.9

pumsb_star 0.3 4.1

pumsb 0.3 4.1

kosarak 83.8 41.4

It can be seen from Table 7.12 that in the first three databases the time overhead is

dictated by the reconfiguration times in the DPR-based implementation resulting in

larger time overheads compared to the static implementation. This larger overhead is

because the number of items in these databases is relatively small. In the last

database where the number of items is large, the DPR-based implementation

performed better than the static design.

7.4.3 Database Pruning

In this task, each item entry in the database is assigned with an order number. This

task requires the database to be streamed into the systolic array multiple times. The

number of times the database is streamed into the systolic array depends on the

number of items in the database, the size of the systolic array and the support

threshold set for the mining problem. Figure 7.10 shows the time overheads of this

task for the two implementations when varying the support threshold.

From Figure 7.10, it can be seen that the higher the support threshold, the smaller the

time overhead of this task. The time overhead depends on the number of items in the

Chapter 7: A DPR-based Platform for FIM Acceleration

202

frequent item list. Increasing the support threshold decreases the number of frequent

items and consequently decreases the number of database scans in this task. When

the number of frequent items is smaller than the number of PEs in the array,

decreasing the support count does not affect the time overhead of this task.

Figure ‎7.10 Database pruning time overhead

7.4.4 Sorting Database Transactions

This task requires the pruned database created in the previous task to be streamed

once into the systolic array to rearrange the frequent items in each transaction. Array

overflow is not considered in this task. This poses a minor limitation as the

maximum number of items within any transaction must not exceed the array size.

Experimental analysis of the benchmark databases showed that the first three

databases in Table 7.10 do not contain any transaction bigger than 200 which is the

size of the smallest array in the static design. For the last database, setting the support

threshold in the previous tasks to 1% will guarantee that no transaction contains more

than 200 items. Table 7.13 shows the database sorting time when setting the lowest

Chapter 7: A DPR-based Platform for FIM Acceleration

203

possible support count for the static implementation. It is noted that the maximum

number of slots is configured in the DPR-based design stage which results in a small

lag in the execution time of this task.

Table ‎7.13 Time overhead for sorting database transactions

Database
Minimum

Support

Time overhead (ms)

Static DPR-based

chess 1 2.4 6.2

pumsb_star 1 48.9 52.7

pumsb 1 71.3 75.1

kosarak 9900 74.7 78.5

7.4.5 Itemset Counting

This task is performed using the 2-D systolic array. This array can be used to

accelerate the itemset counting process by generating some of the frequent itemsets

in hardware. A single task calculates the support counts of the itemsets generated

from the items initialised in the array. This task can be used to sample the database

by generating the itemsets from particular items of interest. In the DPR-based

implementation, the size of the array is one level larger compared to the array in the

static implementation. Figure 7.11 shows the time overhead for generating the

itemset support counts from “k” items in the benchmark databases, whereby k is the

number of levels in the systolic array. The DPR-based design takes slightly more

time to complete this task. This is mainly because of the reconfiguration delay. The

DPR-based design however, calculates the support counts of double the amount of

itemsets in every sample of the database. This means that the overall acceleration can

be much higher with the DPR-based design. If we consider the FPGA-based mining

system proposed in [63] which also utilises a 2-D systolic array for itemset counting,

we can see that the number of support counts generated in every sample is much

smaller compared to the system proposed in this thesis. In addition, the time

overhead of database sampling in the system proposed in [63] is much larger due to

applying ‘candidate generation’ for each sample. To demonstrate the benefit of the

Chapter 7: A DPR-based Platform for FIM Acceleration

204

larger tree in the DPR-based implementation, Figure 7.12 shows a simulation of the

number of support counts calculated in hardware with respect to the database

sampling time for the ‘chess’ database, when setting the support threshold to 10%.

Figure ‎7.11 Itemset support calculation time overhead for top-k items

Figure ‎7.12 Support counts calculated in hardware

Chapter 7: A DPR-based Platform for FIM Acceleration

205

 7.5 Chapter Conclusion

DPR can greatly extend the flexibility for designing software acceleration platforms

in FPGAs. Usually, the available resources in FPGAs can be used to implement fixed

hardware to accelerate certain portions of the software. With DPR, different

accelerators can be swapped in/out of the FPGA to extend the number of tasks

performed in hardware and consequently enhance the overall performance of the

system. This however requires efficient management of the acceleration tasks for a

given application.

This chapter presented an FPGA-based reconfigurable platform which aims to

accelerate the FP-growth algorithm for FIM applications. The proposed platform

divides the FP-growth algorithm into five acceleration tasks each is performed using

a specialised systolic array accelerator. Four of the accelerators are based on a

traditional 1-D systolic array architecture whereas one accelerator is based on a 2-D

architecture. Two implementations of the proposed platform where demonstrated and

evaluated. The first implementation deploys all the accelerators in a static design,

wherein all the accelerators share the available FPGA resources. The second

implementation was designed with a DPR design flow so that accelerators can be

swapped at run time allowing for placing larger systolic arrays for each acceleration

task. Using a slot-based architecture, the size of the 1-D systolic array accelerators

can be parametrized by selecting the required number of reconfigurable slots hosting

the accelerators. The regularity of 1-D systolic array accelerators allowed for the

reconfiguration delay to be significantly reduced using the multiple clone

configuration technique by cloning the required number of slots (see Chapter 4).

Experimental analysis with real database benchmarks showed that the DPR-based

implementation can achieve better overall acceleration in most benchmarks despite

the reconfiguration overhead. The static implementation performs better than the

DPR-based implementation when the database is very small and does not require

larger systolic arrays, which is not the case for most real databases.

Chapter 8

206

Chapter 8 : Conclusion and Future Work

This thesis presented several innovative solutions for the internal management of

DPR in SRAM FPGAs. These solutions addressed two major challenges in the field

of reconfigurable computing, namely, performance and reliability. Since its

introduction in the FPGA industry, DPR has been seen as an exciting opportunity to

implement new solutions to enhance the reliability and performance of many

applications. However, the deployment of DPR in today’s real-world applications is

nowhere near its full potential, despite the continuously expanding portfolio of

devices supporting this feature. This is mainly due to the practical difficulties in

designing DPR applications and the lack of generic design platforms that naturally

support high performance and reliability.

While traditional DPR design flows deploy DPR as a method for basic context-

switch operations of some modules over a defined physical space on the FPGA chip,

this thesis aimed to better exploit the FPGA’s resources by efficiently managing the

configuration and execution of fully relocatable modules that perform specific

computational tasks. This thesis addressed all the design issues and challenges in

implementing a practical ROS system. Indeed, the work presented in this thesis has

paved the way for the development of the Reliable Reconfigurable Real-Time

Operating System (R3TOS), which aims to be a solid platform for fault-tolerant

applications in reconfigurable hardware.

The reminder of this chapter summarises the research work covered in the thesis,

draws conclusions and evaluates the impact of the achievements of the thesis.

Finally, a discussion highlighting the key areas that require improvement is

presented, along with planned future work related to this thesis.

Chapter 8: Conclusion and Future Work

207

8.1 Summary and Concluding Remarks

The main contributions in this thesis are presented in Chapters 4, 5, 6 and 7. Chapter

4 presented the design and architecture of an Internal Configuration Manager (ICM)

that supports a wide range of configuration operations. The Xilinx Virtex FPGA

family was the selected target for implementing the proposed ICM, which provides

several advantages over the currently available ICAP controllers. First of all, the

proposed ICM is very flexible, supporting a wide range of configuration operations

that can be tailored to the needs of a particular application. For example, the ICM can

operate as a stand-alone configuration memory scrubber or as a controller for basic

DPR operations. The ICM also supports more advanced operations that are

particularly important for implementing a practical ROS kernel. Bitstream relocation

can be performed at speeds approaching the theoretical limit of the ICAP, making the

proposed ICM multiple times faster than the current relocation filters. In addition, the

relocation and configuration processes are entirely handled by the ICM, allowing the

system to run more efficiently and to have better multi-tasking capabilities.

Chapter 4 also introduced two new features for managing ROS tasks. The first

feature allows for generating a black-box bitstream online to quickly remove the

configuration of a particular area on the FPGA. This feature is referred to as ‘task

blanking’ as it can be used in an ROS to efficiently manage the removal of already

configured modules that are not being used by any task. Removing unused modules

can reduce the static power dissipation of the system; however, it should be

performed very efficiently as extra delays incurred from the task removal process can

degrade the performance of the system. Task blanking is very beneficial when

implementing an ROS, as no black-box bitstream configuration is required for each

relocatable module in the system and this can reduce the size of the storage memory

required for the system. The second advantage of task blanking is the support of

black-box bitstream compression, which greatly reduces the task removal speed and

consequently enhances the performance of the system. The second novelty feature of

the proposed ICM is the multiple-clone configuration technique which, allows for the

configuration of multiple instances of a relocatable module at the same time. The

Chapter 8: Conclusion and Future Work

208

configuration time of this technique can be several times smaller than the

conventional configuration method. This feature can be particularly useful in an ROS

continuously scheduling real-time tasks for execution on the same relocatable

module.

Chapter 5 discussed how flexible FT systems can be achieved with reliable

configuration management. The chapter first presented a discussion of several

possible design techniques to make the proposed ICM resilient to emerging faults.

These techniques allow for internal faults within the ICM logic to be corrected by

partial reconfiguration. The experimental analysis showed that, although modular

redundancy is very effective in detecting faults in the ICM, the resource utilisation of

designs based on modular redundancy can be intolerable in systems using the full

capabilities of the ICM. A novel self-recovery system is proposed to reduce the

resource utilisation of modular redundancy. The system consists of two RPs, one

containing the full ICM and the other containing a small recovery controller designed

with TMR. The full ICM is connected to the ICAP by default; however, when a fault

is detected in the operation of the ICM, access to the ICAP is switched to the smaller

recovery controller, which reconfigures the full ICM. Appling TMR to a small part

of the system resulted in much smaller area occupation compared to full TMR and

DMR of the ICM, without reducing the self-healing capabilities. Smaller area

occupation for the static components is always desirable in ROS implementations as

this means more free area for the execution of tasks and, in turn, leads to better

performance and multi-tasking. Chapter 5 also demonstrated how the ICM can be

used for fault mitigation in the rest of the FPGA’s reconfigurable resources. Dealing

with soft faults was first discussed and several configuration memory scrubbing

techniques were tested and evaluated. The proposed ICM mainly gives support to

readback scrubbing as well as external scrubbing to correct bit-flips in the FPGA’s

configuration memory. Using the proposed ICM, the two scrubbing methods can be

used in the same system. This can increase the reliability and reduce the probability

of system failure as the number of single points of failure is reduced to the points

located at the interconnections between the ICM and the ICAP. The ability to utilise

the full capabilities of the ICM in a reliable manor enabled the implementation of a

Chapter 8: Conclusion and Future Work

209

comprehensive fault-handling system that mitigates emerging permanent faults as

well as soft faults. Chapter 5 introduced the R3TOS platform, which allows for the

execution of tasks using fully isolated relocatable modules. The relocatable module

architecture in R3TOS provides some important reliability features not present in any

relocation system. First of all, the fact that the modules are fully isolated means that

it is highly unlikely that a single fault will propagate from one module to the other.

This is a problem often seen when a fault alters the routing configuration in the

FPGAs, causing damage to several modules that share common routes and signals.

Moreover, in ordinary relocation systems, relocation is only permitted to locations

containing fixed bus-macros to allow for communicating with the relocatable module

after configuration. This is not the case in R3TOS, as its ICAP-based communication

scheme allows for the transfer of data from/to the relocatable modules without the

need for fixed physical routes and this increases the number of feasible locations for

each relocatable module. The flexible relocation in R3TOS makes the addition of

redundant modules for the critical tasks less costly on the performance of the system.

In fact, using three redundant modules for each relocatable core does not just

guarantee correct task execution, it also simplifies permanent fault detection and

greatly reduces the time of permanent fault diagnosis. When a fault is detected by

task redundancy, only the region occupied by the faulty module is tested once.

Considering that permanent fault diagnosis has a large time overhead, performing

on-demand tests on specific regions on the FPGA is much more efficient compared

to the conventional online testing schemes, which are based on periodic tests over the

entire FPGA. This thesis proposes using relocatable BIST circuits that can be tiled

together to test the resources in an area with any size and shape. Using relocatable

BIST circuits means that only a few configurations are required to be stored in

external memory. In addition, the multiple-clone configuration technique can

significantly reduce the diagnosis time overhead which is the major disadvantage of

online BIST diagnosis.

A case study application that greatly benefits from the proposed reliability-centric

configuration management scheme was presented in Chapter 6. Chapter 6 presented

the design and architecture of a flexible encryption engine over the R3TOS design

Chapter 8: Conclusion and Future Work

210

platform. The engine is designed so that encryption tasks are performed using the

proposed redundancy system to ensure correct functionality. The reliability of the

proposed system will guarantee that no secret information is leaked as a result of

faults in the cipher cores. In fact, the system utilises all the fault detection and

correction features proposed in the thesis in a single fault-handling scheme. The

system also introduces a new placement method for relocatable modules consisting

of multiple-resource types. The proposed placement method does not require a full

scan of the FPGA’s resource to identify feasible locations for the modules. The

placement method reduces the FPGA’s horizontal scan time by storing fixed offset

groups pointing to the regions with identical resource layout. A relocatable module is

assigned to one of these offset groups, which means that the horizontal locations are

always pre-determined. Good partitioning of the FPGA’s horizontal layout showed

that only a few bytes of memory are required for all the offset groups in the largest

Virtex-4 FPGA device. In addition, an intelligent module-reuse scheme is introduced

to manage the configuration of relocatable modules in the system. The scheme keeps

track of the already configured modules in the FPGA to enable them to be reused for

future tasks. This scheme significantly enhances the performance of the system,

especially when specific modules are heavily utilised during the operation of the

system.

Chapter 7 presents another case study application that is focused on achieving high-

performance software acceleration of database mining algorithms using relocatable

systolic-array accelerators. The chapter introduced the design and architecture of a

DPR-based platform to accelerate the FP-growth algorithm that is widely used in

Frequent Itemset Mining (FIM). The system performs five acceleration tasks in

hardware and each is executed using a specialised systolic array accelerator. While

previous work utilised a single systolic array to accelerate a small portion of the

algorithm, the proposed system deploys DPR to enable more acceleration by time-

sharing the FPGA’s resources among the different accelerators. The resource

efficiency gained from DPR not only allows for accelerating more parts of the

algorithm in hardware, but also allows for designing innovative high-performance

accelerators that would not normally fit within the limited FPGA resources. Four of

Chapter 8: Conclusion and Future Work

211

these systolic array accelerators are designed with a standard 1-D arrangement of

PEs, whereas one of the arrays is designed with a novel 2-D arrangement of PEs. The

2-D systolic array accelerates the itemset counting stage, which is the most

computationally intensive task in the FP-growth algorithm. Compared to a previously

reported static systolic array architecture, the proposed architecture can achieve more

than double the acceleration for itemset counting. The high-speed configuration

possible with the proposed ICM greatly reduces the effect of reconfiguration delay in

the system performance. Moreover, the flexibility of module relocation allows for

parametrising the size of the accelerators to fit the computational demands of the

acceleration tasks.

8.2 Future Work

There are several aspects of the presented work that would benefit from further

investigation and improvement. First of all, the presented ICM was mainly

demonstrated using the Virtex-4 FPGA family. Although the configuration

architecture and features are almost identical in the new generations of Xilinx

FPGAs, the ICM cannot be directly applicable to the newer FPGAs (e.g. Xilinx 7-

series FPGAs). To be more precise, some configuration operations related to

bitstream relocation require the reverse engineering of portions of the target FPGA’s

bitstream. For example, online routing requires knowledge of the configuration bits

responsible for enabling/disabling the regional clock buffers and varying the

frequency of regional clock signals. In addition, ICAP-based communication requires

knowledge of the LUTs configuration bits as well as the BRAM content mapping

into the bitstream. Moving the technology to a newer generation of FPGAs requires

repeating all the reverse engineering experiments.

All the presented prototype designs utilised a soft-processor implemented in the

FPGA’s logic to control the system. A soft-processor utilises a large area and this can

impact the performance of the system. In the first case study, the R3TOS system

deployed a Microblaze soft-processor to control the execution of encryption tasks in

the FPGAs (see Chapter 6). Despite the fact that the system’s main focus is the faults

Chapter 8: Conclusion and Future Work

212

that will affect the operation of the encryption cores, faults in the static control logic

could cause the system to fail. The large resource utilisation of the soft-processor

prevents the application of TMR in the static logic as this will greatly reduce the area

dedicated for the execution of tasks and consequently degrade the performance of the

system. In addition, the performance of soft-processors is significantly inferior to

ASIC processors and this can be a performance bottleneck when the processor is

required to perform intensive computations, as seen in the second case study in this

thesis (see Chapter 7). In this case study, the modest performance of the Microblaze

processor made the system unable to perform ‘database partitioning’ which is a

highly performance-demanding operation. This means that connecting an external,

more powerful processor to the FPGA is a more suitable choice for such

applications.

Bitstream security is another issue facing relocation systems in general. Relocation

requires modifying the original bitstream. When using encrypted bitstreams, a

decryption function must be implemented in the FPGA’s logic to retrieve the

configuration data from the encrypted bitstream and enable the configuration

manager to perform the necessary modifications for relocation. This can affect the

performance of the system in two ways: first, the decryption function may delay the

configuration process if not implemented in a pipelined architecture; second, the area

utilisation of the cipher can reduce the area dedicated for the relocatable modules.

This problem can be seen in Chapter 6 where only simple scrambling algorithm is

used for bitstream encryption. This kind of encryption is definitely insufficient,

especially with the increasing number of side-channel attacks targeting FPGA

devices.

Finally, it is clear that current commercial FPGAs are not designed to implement

systems that heavily utilize the configuration port such as the R3TOS. The maximum

configuration throughput is 400 MB/s and the newer generation of FPGAs is not

showing any improvement in configuration speed. This imposes some limitations on

the type of application that can be implemented using R3TOS. The ICAP-based

communication is the main aspect of R3TOS that would suffer from the limited

ICAP speed. Many applications require high-speed streaming of data to the

Chapter 8: Conclusion and Future Work

213

relocatable cores. Implementing such applications may be difficult, especially when

using modular redundancy as data needs to be transferred more than once using the

ICAP. Of course, the multiple-clone configuration technique can be deployed to

reduce the delay of data transfer; however, for wider deployment of this technology,

the FPGA manufacturers should address the limited configuration throughput in

future devices.

To address the aforementioned concerns, several directions can be taken for the

future work following this thesis. The planned future work is summarised as follows:

 Support for state-of-the-art devices: A new breed of reconfigurable devices

consisting of an ASIC processor and an FPGA fabric in a single SoC is taking off

and catching the attention of researchers in the reconfigurable computing

community. An example of these devices is the Xilinx Zynq-700 SoCs which

consist of a dual-core ARM processor and a 7-series FPGA fabric [54]. Migrating

the presented systems and designs to such platforms will address two limitations

of the presented work. First, the performance of the ARM processor is much

superior to the performance of the Microblaze soft-processor and this enables the

implementation of more complex systems and allows for better control over the

target application. Second, removing the soft-processor frees a large area from

the FPGA’s fabric, allowing for the integration of more specialised RMs and

consequently enhancing the performance of the system. In fact, a joint

collaboration between the University of Edinburgh and JPL has recently started

to migrate the design of the presented ICM to the Zynq-7000 devices. The main

aim of the joint project is to create a generic reliable computational platform for

common space applications.

 Solid device security: As stated earlier in this chapter, relocating encrypted

bitstreams is a major challenge requiring the implementation of a small footprint,

high-speed decryption block inside the FPGA. The bitstream encryption must be

strong enough and immune to common attacks targeting FPGAs to justify using

the presented ICM in commercial application. There are several pipelined

implementations of the AES algorithm especially optimised for FPGAs.

Chapter 8: Conclusion and Future Work

214

Removing the soft-processor from the FPGA might allow for placing a large

decryption block such as the AES. Other decryption blocks with much smaller

area footprints are worth investigating such as the bitstream encryption system

presented in [187], which is patented by Altera.

 High-speed IOs: In many applications, large datasets are required to be

transferred to/from the FPGA. For example, the data mining acceleration system

presented in Chapter 7 requires the transfer of large portions of the database to

the FPGA’s main memory. To allow for such data transfers, integration of the

PCIe standard is planned for the proposed system.

 Reliability testing: Performing fault injection tests using the configuration port

of the FPGA may not be enough to justify the reliability of the system. One

millstone of the joint project between the University of Edinburgh and JPL is to

perform real radiation tests to better understand the effects of faults on the ICM

and the reliability of the system.

 High-level programming: This thesis demonstrated how the R3TOS can be a

generic platform for implementing FT applications. The next natural step is to

develop a high-level programming tool that allows designers to code their

applications entirely in software.

215

References

[1] IBM, "The Evolution of the Electronics Industry," IBM Document: ELE03005USEN,

2012.

[2] J. Chelikowsky, "Introduction: Silicon in All Its Forms," in Silicon: Evolution and

Future of a Technology, Springer Berlin Heidelberg, pp. 1-22, 2004.

[3] Gartner. (2014). Market Share: All Software Markets, Worldwide, 2013 [Online].

Available: http://www.gartner.com/newsroom/id/2696317

[4] G. M. Amdahl, "Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities," Proceedings of the April 18-20, 1967, Spring Joint

Computer Conference, pp. 483-485, 1967.

[5] J. Diaz, C. Munoz-Caro, and A. Nino, "A Survey of Parallel Programming Models

and Tools in the Multi and Many-Core Era," IEEE Transactions on Parallel and

Distributed Systems, vol. 23, no.8, pp. 1369-1386, 2012.

[6] U. Vishkin, "Is Multicore Hardware for General-Purpose Parallel Processing

Broken?," Communications of the ACM, vol. 57, no.4, pp. 35-39, 2014.

[7] Xilinx, "Xilinx Ships Industry's First 20-nm All Programable Devices," XCELL

Journal, Issue 86, First Quarter 2014.

[8] Xilinx, "Introduction to FPGA Design with Vivado High-Level Synthesis," Xilinx

Document: UG998, 2013.

[9] Altera, "Implementing FPGA Design with the OpenCL Standard," Altera White

Paper: WP-01173-3.0, 2013.

[10] M. Graphics, "Keep Your FPGA Options Open with Vendor-Independent IP,"

Mentor Graphics White Paper: TECH8570-w, 2009.

[11] Synopsys, "Synplify Premier: Fast, Reliable FPGA Implementation and Debug,"

Synopsys Datasheet, 2012.

[12] G. Brebner, "A Virtual Hardware Operating System for the Xilinx XC6200," The

International Workshop on Field-Programmable Logic, Smart Applications, New

Paradigms and Compilers, pp. 327–336, 1996.

[13] A. Ebrahim, K. Benkrid, X. Iturbe, and C. Hong, "A Novel High-Performance Fault-

Tolerant ICAP Controller," The NASA/ESA Conference on Adaptive Hardware and

Systems (AHS), pp. 259-263, 2012.

[14] A. Ebrahim, K. Benkrid, X. Iturbe, and C. Hong, "Multiple-Clone Configuration of

Relocatable Partial Bitstreams in Xilinx Virtex FPGAs," The NASA/ESA Conference

on Adaptive Hardware and Systems (AHS), pp. 178-183, 2013.

[15] A. Ebrahim, T. Arslan, and X. Iturbe, "On Enhancing the Reliability of Internal

Configuration Controllers in FPGAs," The NASA/ESA Conference on Adaptive

Hardware and Systems (AHS), pp. 83-88, 2014.

[16] X. Iturbe, A. Ebrahim, K. Benkrid, C. Hong, T. Arslan, J. Perez, et al., "R3TOS-

Based Autonomous Fault-Tolerant Systems " IEEE Micro, vol. 34, no.6, pp. 20-30,

2014.

[17] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, I. Martinez, et al.,

"R3TOS: A Novel Reliable Reconfigurable Real-Time Operating System for Highly

Adaptive, Efficient, and Dependable Computing on FPGAs " IEEE Transactions on

Computers, vol. 62, no.8, pp. 1542-1556, 2013.

http://www.gartner.com/newsroom/id/2696317

References

216

[18] A. Ebrahim, T. Arslan, and X. Iturbe, "A Fast and Scalable FPGA Damage

Diagnostic Service for R3TOS Using BIST Cloning Technique " The International

Conference on Field Programmable Logic and Applications (FPL), pp. 1-4, 2014.

[19] P. H. W. Leong, "Recent Trends in FPGA Architectures and Applications," The

IEEE International Symposium on Electronic Design, Test and Applications

(DELTA), pp. 137-141, 2008.

[20] J. Rose, R. Tessier, and I. Kuon, "FPGA Architecture: Survey and Challenges,"

Foundations and Trends in Electronic Design Automation, vol. 2, no.2, pp. 135-253,

2007.

[21] H. Styles and W. Luk, "Compilation and Management of Phase-Optimized

Reconfigurable Systems," The International Conference on Field Programmable

Logic and Applications (FPL), pp. 311-316, 2005.

[22] M. J. Wirthlin and B. L. Hutchings, "Improving Functional Density Using Run-Time

Circuit Reconfiguration " IEEE Transactions on Very Large Scale Integration

(VLSI), vol. 6, no.2, pp. 247-256, 1998.

[23] S. Liu, R. N. Pittman, and A. Forin, "Energy Reduction with Run-Time Partial

Reconfiguration," Technical Report of Microsoft Research: MSR-TR-2009-2017,

2009.

[24] EE Times. (2014). FPGAs as ASIC Alternatives: Past & Future [Online]. Available:

http://www.eetimes.com/author.asp?doc_id=1322021

[25] Xilinx, "Virtex-4 FPGA Configuration User Guide," Xilinx Document: UG071,

2009.

[26] P. B. Minev and V. S. Kukenska, "The Virtex-5 Routing and Logic Architecture,"

Annual Journal of Electronics, pp. 107-110, 2009.

[27] X. Iturbe, K. Benkrid, R. Torrego, A. Ebrahim, and T. Arslan, "Online Clock

Routing in Xilinx FPGAs for High-Performance and Reliability," The NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), pp. 85-91, 2012.

[28] Xilinx, "PlanAhead UsercGuide," Xilinx Document: UG632, 2012.

[29] Xilinx, "Partial Reconfiguration User Guide," Xilinx Document: UG702, 2013.

[30] M. Bourgeault. (2011). Altera Partial Reconfiguration Flow. Available:

http://www.eecg.utoronto.ca/~jayar/FPGAseminar/FPGA_Bourgeault_June23_2011

.pdf

[31] D. Koch, "Partial Reconfiguration in Space and Time," in Partial Reconfiguration

on FPGAs: Architectures, Tools and Applications, Springer Science & Business

Media, pp. 29-37, 2012.

[32] A. Wold, A. Agne, and J. Torresen, "Relocatable Hardware Threads in Run-Time

Reconfigurable Systems," Reconfigurable Computing: Architectures, Tools, and

Applications (ARC), pp. 62-72, 2014.

[33] T. Becker, W. Luk, and P. Y. K. Cheung, "Enhancing Relocatability of Partial

Bitstreams for Run-Time Reconfiguration," The IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pp. 35-44, 2007.

[34] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght, "Modular Dynamic

Reconfiguration in Virtex FPGAs," IEEE Proceedings - Computers and Digital

Techniques, vol. 153, no.3, p. 157, 2006.

[35] M. L. Silva and J. C. Ferreira, "Generation of Partial FPGA Configurations at Run-

Time," The International Conference on Field Programmable Logic and

Applications (FPL), pp. 367-372, 2008.

[36] A. A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood, "OpenPR: An Open-

Source Partial-Reconfiguration Toolkit for Xilinx FPGAs," Parallel and Distributed

Processing Workshops and Phd Forum (IPDPSW), pp. 228-235, 2011.

http://www.eetimes.com/author.asp?doc_id=1322021
http://www.eecg.utoronto.ca/~jayar/FPGAseminar/FPGA_Bourgeault_June23_2011.pdf
http://www.eecg.utoronto.ca/~jayar/FPGAseminar/FPGA_Bourgeault_June23_2011.pdf

References

217

[37] C. Beckhoff, D. Koch, and J. Torresen, "Go Ahead: A Partial Reconfiguration

Framework," The IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), pp. 37-44, 2012.

[38] H. Shayani, P. Bentley, and A. M. Tyrrell, "A Cellular Structure for Online Routing

of Digital Spiking Neuron Axons and Dendrites on FPGAs," Evolvable Systems:

From Biology to Hardware, pp. 273-284, 2008.

[39] C. Claus, B. Zhang, M. Hübner, C. Schmutzler, and J. Becker, "An XDL-Based

Busmacro Generator for Customizable Communication Interfaces for Dynamically

and Partially Reconfigurable Systems," Workshop on Reconfigurable Computing

Education, 2007.

[40] S. Korf, D. Cozzi, M. Koester, J. Hagemeyer, M. Porrmann, U. Rückert, et al.,

"Automatic HDL-Based Generation of Homogeneous Hard Macros for FPGAs," The

IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM),

pp. 125-132, 2011.

[41] C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A. Linarth, and J. Teich, "The

Erlangen Slot Machine: Increasing Flexibility in FPGA-Based Reconfigurable

Platforms," The IEEE International Conference on Field-Programmable Technology

(FPT), pp. 37-42, 2005.

[42] L. Devaux, S. Ben Sassi, S. Pillement, D. Chillet, and D. Demigny, "Flexible

Interconnection Network for Dynamically and Partially Reconfigurable

Architectures," International Journal of Reconfigurable Computing, vol. 2010, no.

390545, pp. 1-15, 2010.

[43] D. Koch, C. Beckhoff, and J. Teich, "ReCoBus-Builder — A Novel Tool and

Technique to Build Statically and Dynamically Reconfigurable Systems for

FPGAS," The International Conference on Field Programmable Logic and

Applications (FPL), pp. 119-124, 2008.

[44] Y. E. Krasteva, A. B. Jimeno, E. de la Torre, and T. Riesgo, "Straight Method for

Reallocation of Complex Cores by Dynamic Reconfiguration in Virtex II FPGAs,"

The IEEE International Workshop on Rapid System Prototyping, pp. 77-83, 2005.

[45] E. Horta and J. W. Lockwood, "PARBIT: A Tool to Transform Bitfiles to

Implement Partial Reconfiguration of Field Programmable Gate Arrays (FPGAs),"

Technical Report: WUCS-01-13, 2001.

[46] Y. E. Krasteva, E. de la Torre, T. Riesgo, and D. Joly, "Virtex II FPGA Bitstream

Manipulation: Application to Reconfiguration Control Systems," The International

Conference on Field Programmable Logic and Applications (FPL), pp. 1-4, 2006.

[47] J. Carver, R. N. Pittman, and A. Forin, "Relocation and Automatic Floor-Planning of

FPGA Partial Configuration Bitstreams," Technical Report of Microsoft Research:

MSR-TR-2008–111, 2008.

[48] H. Kalte, G. Lee, M. Porrmann, and U. Ruckert, "REPLICA: A Bitstream

Manipulation Filter for Module Relocation in Partial Reconfigurable Systems," The

IEEE International Symposium on Parallel and Distributed Processing, p. 151b,

2005.

[49] H. Kalte and M. Porrmann, "REPLICA2Pro: Task Relocation by Bitstream

Manipulation in Virtex-II/Pro FPGAs," The 3rd Conference on Computing

Frontiers, pp. 403-412, 2006.

[50] S. Corbetta, M. Morandi, M. Novati, M. D. Santambrogio, D. Sciuto, and P.

Spoletini, "Internal and External Bitstream Relocation for Partial Dynamic

Reconfiguration," IEEE Transactions on Very Large Scale Integration (VLSI), vol.

17, no.11, pp. 1650-1654, 2009.

[51] Xilinx, "MicroBlaze Processor Reference Guide," Xilinx Document: UG081, 2012.

References

218

[52] Xilinx, "PowerPC 405 Processor Block Reference Guide," Xilinx Document:

UG018, 2010.

[53] Xilinx, "High Performance Computing Using FPGAs," Xilinx White Paper: WP375,

2010.

[54] Xilinx, "Zynq-7000 All Programmable SoC," Xilinx Document: UG585, 2014.

[55] Altera. (2014). Altera's User-Customizable SoC [Online]. Available:

http://www.altera.com/devices/processor/soc-fpga/overview/proc-soc-fpga.html

[56] H.T.Kung, "Why Systolic Architectures?," Computer, vol. 15, no.1, pp. 37-46, 1982.

[57] K. T. Johnson, A. R. Hurson, and B. Shirazi, "General-Purpose Systolic Arrays "

Computer, vol. 26, no. 11, pp. 20-31, 1993.

[58] X. Guo, H. Wang, and V. Devabhaktuni, "A Systolic Array-Based FPGA Parallel

Architecture for the BLAST Algorithm," ISRN Bioinformatics, vol. 2012, pp. 1-11,

2012.

[59] K. Benkrid, Y. Liu, and A. Benkrid, "High Performance Biosequence Database

Scanning using FPGAs " The IEEE International Conference on Acoustics, Speech

and Signal Processing, pp. 361-364, 2007.

[60] P. K. Meher, S. Chandrasekaran, and A. Amira, "FPGA Realization of FIR Filters by

Efficient and Flexible Systolization Using Distributed Arithmetic," IEEE

Transactions on Signals Processing, vol. 56, no. 7, pp. 3009-3017, 2008.

[61] X. Wang and M. Leeser, "A Truly Two-Dimensional Systolic Array FPGA

Implementation of QR Decomposition," ACM Transactions on Embedded

Computing Systems, vol. 9, no. 1, pp. 1-17, 2009.

[62] Z. K. Baker and V. K. Prasanna, "Efficient Hardware Data Mining with the Apriori

Algorithm on FPGAs," The IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), pp. 3-12, 2005.

[63] S. Sun and J. Zambreno, "Design and Analysis of a Reconfigurable Platform for

Frequent Pattern Mining," IEEE Transactions on Parallel and Distributed Systems,

vol. 22, no. 9, pp. 1497-1505, 2011.

[64] B. Buyukkurt and W. A. Najjar, "Compiler Generated Systolic Arrays for Wavefront

Algorithm Acceleration on FPGAS," The International Conference on Field

Programmable Logic and Applications (FPL), pp. 655 - 658, 2008.

[65] J. Villarreal, A. Park, W. Najjar, and R. Halstead, "Designing Modular Hardware

Accelerators in C with ROCCC 2.0," The IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), pp. 127-134, 2010.

[66] T. Smith and M. Waterman, "Identification of Common Molecular Subsequences,"

Journal of Molecular Biology, vol. 147, no. 1, pp. 195-197, 1981.

[67] G. Weisz and J. C. Hoe, "C-to-CoRAM: Compiling Perfect Loop Nests to the

Portable CoRAM Abstraction," The ACM/SIGDA International Symposium on Field

Programmable Gate Arrays (FPGA), pp. 221-230, 2013.

[68] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson, et al.,

"LegUp: High-Level Synthesis for FPGA-Based Processor/Accelerator Systems,"

The ACM/SIGDA International Symposium on Field Programmable Gate Arrays

(FPGA), pp. 33-36, 2011.

[69] A. Dasu and R. C. Barnes, "Dynamically Reconfigurable Systolic Array

Accelorators," U.S. Patent 20110264888 A1, 2011.

[70] A. Otero, Y. E. Krasteva, E. d. l. Torre, and T. Riesgo, "Generic Systolic Array for

Run-Time Scalable Cores," Reconfigurable Computing: Architectures, Tools, and

Applications (ARC), pp. 4-16, 2010.

[71] D. Koch and J. Tørresen, "Advances and Trends in Dynamic Partial Run-Time

Reconfiguration," Dagstuhl Seminar Proceedings 10281-Dynamically

Reconfigurable Architectures, pp. 1-9, 2010.

http://www.altera.com/devices/processor/soc-fpga/overview/proc-soc-fpga.html

References

219

[72] H. Walder, "Operating System Design for Partially Reconfigurable Logic Devices,"

PhD Thesis : Swiss Federal Institute of Technology Zurich, 2005.

[73] G. Wigley and D. Kearney, "Research Issues in Operating Systems for

Reconfigurable Computing," The International Conference on Engineering of

Reconfigurable Systems and Algorithms, 2002.

[74] K. Bazargan, R. Kastner, and M. Sarrafzadeh, "Fast Template Placement for

Reconfigurable Computing Systems," IEEE Transactions on Design and Test of

Computers, vol. 17, no.1, pp. 68-83, 2000.

[75] H. Walder, C. Steiger, and M. Platzner, "Fast Online Task Placement on FPGAs:

Free Space Partitioning and 2D-Hashing," The International Parallel and

Distributed Processing Symposium, 2003.

[76] M. Morandi, M. Novati, M. D. Santambrogio, and D. Sciuto, "Core Allocation and

Relocation Management for a Self Dynamically Reconfigurable Architecture," The

IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 286-291, 2008.

[77] J. Tabero, J. Septién, H. Mecha, and D. Mozos, "A Low Fragmentation Heuristic for

Task Placement in 2D RTR HW Management," The International Conference on

Field Programmable Logic and Applications (FPL), pp. 241-250, 2004.

[78] Ahmadinia, B. A., C, M. Bednara, and J. Teich, "A New Approach for On-Line

Placement on Reconfigurable Devices," The IEEE International Symposium on

Parallel and Distributed Processing, p. 134, 2004.

[79] J. Y. T. Leung and J. Whitehead, "On the Complexity of Fixed-Priority Scheduling

of Periodic, Real-Time Tasks," Performance Evaluation, vol. 2, no. 4, pp. 237-250,

1982.

[80] C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment," Journal of ACM, vol. 20, no. 1, pp. 46-61, 1973.

[81] F. Dittmann and S. Frank, "Hard Real-Time Reconfiguration Port Scheduling," The

Conference and Exhibition of Design, Automation & Test in Europe, pp. 1-6, 2007.

[82] Yi Lu, T. Marconi, K. Bertels, and G. Gaydadjiev, "Online Task Scheduling for the

FPGA-Based Partially Reconfigurable Systems," Reconfigurable Computing:

Architectures, Tools, and Applications (ARC), pp. 216-230, 2009.

[83] Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev, "A Communication Aware

Online Task Scheduling Algorithm for FPGA-Based Partially Reconfigurable

Systems," The IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), pp. 65-68, 2010.

[84] D. Göhringer, M. Hübner, E. Nguepi Zeutebouo, and J. Becker, "Operating System

for Runtime Reconfigurable Multiprocessor Systems," International Journal of

Reconfigurable Computing, vol. 2011, no. 121353, pp. 1-16, 2011.

[85] C. Hong, K. Benkrid, X. Iturbe, A. T. Erdogan, and T. Arslan, "An FPGA Task

Allocator with Preliminary First-Fit 2D Packing Algorithms," The NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), pp. 264-270, 2011.

[86] Xilinx, "LogiCORE IP XPS HWICAP," Xilinx Document: DS586, 2010.

[87] Xilinx, "LogiCORE IP AXI HWICAP," Xilinx Document: PG134, 2013.

[88] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, "Run-time Partial Reconfiguration Speed

Investigation and Architectural Design Space Exploration," The International

Conference on Field Programmable Logic and Applications (FPL), pp. 498-502,

2009.

[89] K. Vipin and S. A. Fahmy, "A High Speed Open Source Controller for FPGA Partial

Reconfiguration," The IEEE International Conference on Field-Programmable

Technology (FPT), pp. 61-66, 2012.

References

220

[90] M. Hubner, D. Gohringer, J. Noguera, and J. Becker, "Fast Dynamic and Partial

Reconfiguration Data Path with Low Hardware Overhead on Xilinx FPGAs," The

IEEE International Symposium on Parallel & Distributed Processing, pp. 1-8, 2010.

[91] M. Platzner and N. Wehn, "Auto Vision," in Dynamically Reconfigurable Systems:

Architectures, Design Methods and Applications, Springer Science & Business

Media, pp. 388-389, 2010.

[92] S. G. Hansen, D. Koch, and J. Torresen, "High Speed Partial Run-Time

Reconfiguration Using Enhanced ICAP Hard Macro," The IEEE International

Symposium on Parallel and Distributed Processing Workshops and Phd Forum

(IPDPSW), pp. 174-80, 2011.

[93] D. Koch, C. Beckhoff, and J. Teich, "Bitstream Decompression for High Speed

FPGA Configuration from Slow Memories," The IEEE International Conference on

Field-Programmable Technology (FPT), pp. 161-168, 2007.

[94] S. Liu, R. N. Pittman, and A. Forin, "Minimizing Partial Reconfiguration Overhead

with Fully Streaming DMA Engines and Intelligent ICAP Controller " Microsoft

Technical Report: MSR-TR-2009-150, 2009.

[95] C. Claus, F. H. Müller, and W. Stechele, "Combitgen: A New Approach for Creating

Partial Bitstreams in Virtex-II Prodevices," Workshop on Reconfigurable Computing

Proceedings (ARCS 06), pp. 122-131, 2006.

[96] M. Shelburne, C. Patterson, P. Athanas, M. Jones, B. Martin, and R. Fong,

"Metawire: Using FPGA Configuration Circuitry to Emulate a Network-on-Chip,"

The International Conference on Field Programmable Logic and Applications

(FPL), pp. 257-262, 2008.

[97] F. Duhem, F. Muller, and P. Lorenzini, "FaRM: Fast Reconfiguration Manager for

Reducing Reconfiguration Time Overhead on FPGA," Reconfigurable Computing:

Architectures, Tools, and Applications (ARC), pp. 253-260, 2011.

[98] J. C. Hoffman and M. S. Pattichis, "A High-Speed Dynamic Partial Reconfiguration

Controller Using Direct Memory Access Through a Multiport Memory Controller

and Overclocking with Active Feedback," International Journal of Reconfigurable

Computing, vol. 2011, no. 439072, pp. 1-10, 2011.

[99] Z. Li and S. Hauck, "Configuration Prefetching Techniques for Partial

Reconfigurable Coprocessor with Relocation and Defragmentation," The

ACM/SIGDA International Symposium on Field Programmable Gate Arrays

(FPGA), pp. 187-195, 2002.

[100] C. Constantinescu, "Trends and Challenges in VLSI Circuit Reliability," IEEE

Micro, vol. 23, no. 4, pp. 14-19, 2003.

[101] C. Guérin, V. Huard, and A. Bravaix, "The Energy-Driven Hot-Carrier Degradation

Modes of nMOSFETs," IEEE Transactions on Device and Materials Reliability,

vol. 7, no. 2, pp. 225-235, 2007.

[102] D. Esseni, J. D. Bude, and L. Selmi, "On Interface and Oxide Degradation in VLSI

MOSFETs—Part I: Deuterium Effect in CHE Stress Regime," IEEE Transactions

on Electorn Devices, vol. 49, no. 2, pp. 247-253, 2002.

[103] D. Esseni, J. D. Bude, and L. Selmi, "On Interface and Oxide Degradation in VLSI

MOSFETs—Part II: Fowler–Nordheim Stress Regime," IEEE Transactions on

Electorn Devices, vol. 49, no. 2, pp. 254-263, 2002.

[104] R. Baumann, "The Impact of Technology Scaling on Soft Error Rate Performance

and Limits to the Efficacy of Error Correction," International Electron Devices

Meeting, pp. 329-332, 2002.

[105] T. Semiconductors. (2004). Soft Errors in Electronic Memory – A White Paper

[Online]. Available: http://www.tezzaron.com/2004/01/

http://www.tezzaron.com/2004/01/

References

221

[106] A. H. Johnston, "Scaling and Technology Issues for Soft Error Rates," The Annual

Research Conference on Reliability, 2000.

[107] Xilinx, "Device Reliability Report, Fourth Quarter 2013," Xilinx Documnet: UG116,

2014.

[108] A. Lesea, S. Drimer, J. J. Fabula, C. Carmichael, and P. Alfke, "The Rosetta

Experiment: Atmospheric Soft Error Rate Testing in Differing Technology FPGAs,"

IEEE Transactions on Device and Materials Reliability, vol. 317, no. 3, pp. 317-

328, 2005.

[109] H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, and K. Lundgreen,

"Domain Crossing Errors: Limitations on Single Device Triple-Modular

Redundancy Circuits in Xilinx FPGAs," IEEE Transactions on Nuclear Science, vol.

54, no.6, pp. 2037-2043, 2007.

[110] P. Adell and G. Allen, "Assessing and Mitigating Radiation Effects in Xilinx

FPGAs," JPL Publication, 2008.

[111] Xilinx, "LogiCORE IP Soft Error Mitigation Controller V4.0," Xilinx Documnet:

PG036, 2013.

[112] Xilinx, "Correcting Single-Event Upsets in Virtex-4 FPGA Configuration Memory,"

Xilinx Application Note: XAPP1088, 2009.

[113] J. Heiner, N. Collins, and M. Wirthlin, "Fault Tolerant ICAP Controller for High-

Reliable Internal Scrubbing," The IEEE Aerospace Conference, pp. 1-10, 2008.

[114] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, and K. A. Label,

"Effectiveness of Internal Versus External SEU Scrubbing Mitigation Strategies in a

Xilinx FPGA: Design, Test, and Analysis," IEEE Transactions on Nuclear Science,

vol. 55, no. 4, pp. 2259–2266, 2008.

[115] G. Asadi and M. B. Tahoori, "Soft Error Rate Estimation and Mitigation for SRAM-

Based FPGAs," The ACM/SIGDA International Symposium on Field Programmable

Gate Arrays (FPGA), pp. 149-160, 2005.

[116] Xilinx, "Soft Error Mitigation Using Prioritized Essential Bits," Xilinx Application

Note: XAPP538, 2012.

[117] X. Iturbe, M. Azkarate, I. Mart´ınez, J. Perez, and A. Astarloa, "A NovelL

SEU,MBU And SHE Handling Strategy for XIilinx Virtex-4 FPGAS," The

International Conference on Field Programmable Logic and Applications (FPL), pp.

569–573, 2009.

[118] J. R. Azambuja, F. Sousa, L. Rosa, and F. L. Kastensmidt, "Evaluating Large Grain

TMR and Selective Partial Reconfiguration for Soft Error Mitigation in SRAM-

based FPGAs," The IEEE International On-Line Testing Symposium, pp. 101-106,

2009.

[119] C. Bolchini, A. Miele, and M. D. Santambrogio, "TMR and Partial Dynamic

Reconfiguration to mitigate SEU faults in FPGAs," The IEEE International

Symposium on Defect and Fault-Tolerance in VLSI Systems, pp. 87-95, 2007.

[120] F. Lima and R. Reis, "Designing Fault Tolerant Systems into SRAM-Based

FPGAs," Design Automation Conference, pp. 650 - 655, 2003.

[121] Xilinx, "The Xilinx Isolation Design Flow for Fault-Tolerant Systems," Xilinx

Application Note: WP412, 2013.

[122] F. L. Kastensmidt, L. Sterpone, L. Carro, and M. S. Reorda, "On the Optimal Design

of Triple Modular Redundancy Logic for SRAM-based FPGAs," Design,

Automation and Test in Europe, pp. 1290-1295, 2005.

[123] Xilinx, "Triple Module Redundancy Design Techniques for Virtex FPGAs," Xilinx

Application Note: XAPP197, 2001.

[124] D. P. Montminy, "Relocable Field Programmable Gate Array Bitstreams for Fault

Tolerance," US Patent: US 7-906-984 B1, 2011.

References

222

[125] S.Dhingra, D.Milton, and S.Stroud, "BIST for Logic and Memory Resources in

Virtex-4 FPGAs," The IEEE North Atlantic Test Workshop, pp. 19-27, 2006.

[126] C. Stroud, S. Konala, P. Chen, and M. Abramovici, "Built-in Self-Test of Logic

Blocks in FPGAs (Finally, a Free Lunch: BIST Without Overhead!) " The VLSI Test

Symposium, pp. 387-392 1996.

[127] S.-K. Lu and C.-Y. Chen, "Fault Detection and Fault Diagnosis Techniques for

Lookup table FPGAs," The Asain Test Symposium, pp. 236 - 241 2002.

[128] J. Liu and S. Simmons, "BIST-Diagnosis of Interconnect Fault Locations in

FPGA's," The IEEE Canadian Conference on Electrical and Computer Engineering,

pp. 207 - 210 2003.

[129] C. Stroud, S. Wijesuriya, C. Hamilton, and M. Abramovici, "Built-in Self-Test of

FPGA Interconnect," International Test Conference, pp. 404-411 1998.

[130] M.Abramovici, "BIST-Based Delay-Fault Testing in FPGAs," On-line Testing

Workshop, pp. 131-134, 2002.

[131] J. M. Emmert, C. E. Stroud, and M. Abramovici, "Online Fault Tolerance for FPGA

Logic Blocks," IEEE Transactions on Very Large Scale Integration (VLSI), vol. 15,

no. 2, pp. 216-226, 2007.

[132] W.-J. Huang and E. J. McCluskey, "Column-Based Precompiled Configuration

Techniques for FPGA Fault Tolerance," The IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pp. 137-146 2001.

[133] D. P. Montminy, R. O. Baldwin, P. D. Williams, and B. E. Mullins, "Using

Relocatable Bitstreams for Fault Tolerance," The NASA/ESA Conference on

Adaptive Hardware and Systems (AHS), pp. 701-708, 2007.

[134] V. Lakamraju and R. Tessier, "Tolerating Operational Faults in Cluster-based

FPGAs," The ACM/SIGDA International Symposium on Field Programmable Gate

Arrays (FPGA), pp. 187-194, 2000.

[135] Xilinx, "PicoBlaze 8-bit Embedded Microcontroller User Guide," Xilinx Document:

UG129, 2011.

[136] Xilinx, "IEEE 802.3 Cyclic Redundancy Check," Xilinx Application Note:

XAPP209, 2001.

[137] Xilinx, "LogiCORE IP Multi-Port Memory Controller (MPMC)," Xilinx Document:

DS643, 2011.

[138] A. Sudarsanam, R. Kallam, and A. Dasu, "PRR-PRR Dynamic Relocation," IEEE

Computer Architecture Letters, vol. 8, no. 2, pp. 44-47, 2009.

[139] M. Touiza, G. Ochoa-Ruiz, E.-B. Bourennane, and A. Guessoum, "A Novel

Methodology for Accelerating Bitstream Relocation in Partially Reconfigurable

Systems," Microprocessors and Microsystems, vol. 37, no. 3, pp. 358-372, 2013.

[140] H. M. Hussain, K. Benkrid, A. Ebrahim, A. T. Erdogan, and H. Seker, "Novel

Dynamic Partial Reconfiguration Implementation of K-Means Clustering on FPGAs:

Comparative Results with GPPs and GPUs," International Journal of

Reconfigurable Computing, vol. 2012, no. 135926, pp. 1-15, 2012.

[141] E. Stott, P. Sedcole, and P. Y. K. Cheung, "Fault Tolerant Methods for Reliability in

FPGAs," The International Conference on Field Programmable Logic and

Applications (FPL), pp. 415-420, 2008.

[142] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, T. Arslan, and Imanol Martinez,

"Runtime Scheduling, Allocation, and Execution of Real-Time Hardware Tasks onto

Xilinx FPGAs Subject to Fault Occurrence," International Journal of

Reconfigurable Computing, vol. 2013, no. 905057, pp. 1-32, 2013.

[143] C. Hong, K. Benkrid, X. Iturbe, A. Ebrahim, and T. Arslan, "Efficient On-Chip Task

Scheduler and Allocator for Reconfigurable Operating Systems," IEEE Embedded

Systems Letters, vol. 3, no. 3, pp. 85-88, 2011.

References

223

[144] X. Iturbe, K. Benkrid, A. Ebrahim, C. Hong, T. Arslan, and I. Martinez, "Snake: An

Efficient Strategy for the Reuse of Circuitry and Partial Computation Results in

High-Performance Reconfigurable Computing," The International Conference on

Reconfigurable Computing and FPGAs (ReConFig), pp. 182-189, 2011.

[145] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, "An FPGA-Based Performance

Evaluation of The AES Block Cipher Candidate Algorithm Finalists," IEEE

Transactions on Very Large Scale Integration (VLSI), vol. 9, no. 4, pp. 545-557,

2001.

[146] T. Good and M. Benaissa, "AES on FPGA From The Fastest to The Smallest," The

International Conference on Cryptographic Hardware and Embedded Systems, pp.

427-440, 2005.

[147] D. Hwang, M. Chaney, S. Karanam, N. Ton, and K. Gaj, "Comparison of FPGA-

Targeted Hardware Implementations of eSTREAM Stream Cipher Candidates " The

State of the Art of Stream Ciphers Workshop, pp. 151-162, 2008.

[148] HelionTechnology, "AES IP Cores for FPGA," Helion Technology Document 2014.

[149] CAST, "AES-P: Programmable AES Encryption - Decryption, Core," CAST

Document, 2010.

[150] T. Wollinger, J. Guajardo, and C. Paar, "Security on FPGAs: State-of-the-Art

Implementations and Attacks," ACM Transactions on Embedded Computing

Systems, vol. 3, no. 3, pp. 534-574, 2004.

[151] Xilinx, "Solving Today's Design Security Concerns," Xilinx White Paper: WP365,

2012.

[152] Altera, "An FPGA Design Security Solution Using a Secure Memory Device,"

Altera White Paper: WP-01033-1.0, 2007.

[153] Xilinx, "PRC/EPRC: Data Integrity and Security Controller for Partial

Reconfiguration," Xilinx Application Note: XAPP887, 2012.

[154] Altera, "Anti-Tamper Capabilities in FPGA Designs," Altera White Paper: WP-

01066-1.0, 2008.

[155] P. Kocher, J. Jaffe, and B. Jun, "Differential Power Analysis," International

Advances in Cryptology Conference, pp. 388-397, 1999.

[156] F. X. Standaert, S. B. Örs, J. J. Quisquater, and B. Preneel, "Power Analysis Attacks

Against FPGA Implementations of the DES," The International Conference on Field

Programmable Logic and Application (FPL), pp. 84-94, 2004.

[157] O. X. Standaert, E. Peeters, G. Rouvroy, and J. J. Quisquater, "An Overview of

Power Analysis Attacks Against Field Programmable Gate Arrays," Proceedings of

The IEEE, vol. 94, no. 2, pp. 383-394, 2006.

[158] A. Moradi, M. Kasper, and C. Paar, "Black-Box Side-Channel Attacks Highlight the

Importance of Countermeasures: An Analysis of the Xilinx Virtex-4 and Virtex-5

Bitstream Encryption Mechanism," The Conference on Topics in Cryptology, pp. 1-

18, 2012.

[159] A. Moradi, A. Barenghi, T. Kasper, and C. Paar, "On the Vulnerability of FPGA

Bitstream Encryption Against Power Analysis Attacks: Axtracting Keys from Xilinx

Virtex-II FPGAs," The ACM conference on Computer and communications security,

pp. 111-124, 2011.

[160] A. L. Masle and W. Luk, "Detecting Power Attacks on Reconfigurable Hardware,"

The International Conference on Field Programmable Logic and Application (FPL),

pp. 14-19, 2012.

[161] Xilinx, "Security Monitor IP: Anti-Tamper Soft IP Core for Protection of FPGA

Designs and Data Assets," Xilinx Document: PN 1140, 2012.

References

224

[162] A. Le Masle, G. C. T. Chow, and W. Luk, "Constant Power Reconfigurable

Computing," The International Conference on Field Programmable Logic and

Application (FPL), pp. 1-8, 2011.

[163] Cryptography Research, "Protecting FPGAs from Power Analysis," Cryptography

Research Whitepaper, 2010.

[164] D. Boneh, R. DeMillo, and R. Lipton, "On the Importance of Checking

Cryptographic Protocols for Faults," Advances in Cryptology: EUROCRYPT,

Springer-Verlag, pp. 37-51, 1997.

[165] E. Biham and A. Shamir, "Differential Fault Analysis of Secret Key Cryptosystems,"

Advances in Cryptology: CRYPTO, Springer-Verlag, pp. 513–525, 1997.

[166] G. Canivet, P. Maistri, R. Leveugle, J. Clédière, F. Valette, and M. Renaudin,

"Glitch and Laser Fault Attacks onto a Secure AES Implementation on a SRAM-

Based FPGA," Journal of Cryptology, vol. 24, no.2, pp. 247-268, 2011.

[167] J. J. Quisquater and D. Samyde, "Measures and Counter-Measures for Smart Cards,"

The International Conference on Research in Smart Cards: Smart Card

Programming and Security, pp. 200-210, 2001.

[168] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, "The Sorcerer's

Apprentice Guide to Fault Attacks," Proceedings of the IEEE, vol. 94, no.2, pp. 370-

382 2006.

[169] D. Karaklajic, J. M. Schmidt, and I. Verbauwhede, "Hardware Designer's Guide to

Fault Attacks," IEEE Transactions on Very Large Scale Integration (VLSI), vol. 21,

no. 12, pp. 2295-2306, 2013.

[170] Xilinx, "Developing Tamper Resistant Designs with Xilinx Virtex-6 and 7 Series

FPGAs," Xilinx Application Note: XAPP1084, 2013.

[171] V. K. Prasanna and A. Dandalis, "FPGA-Based Cryptography for Internet Security,"

Online Symposium for Electronics Engineers, 2000.

[172] L. Bossuet, M. Grand, L. Gaspar, V. Fischer, and G. Gogniat, "Architectures of

Flexible Symmetric Key Crypto Engines—A Survey: From Hardware Coprocessor

to Multi-Crypto-Processor System on Chip," ACM Computer Surveys, vol. 45, n. 4,

p. 32, 2013.

[173] Q.-H. Khuat, D. Chillet, and M. Hubner, "Considering Reconfiguration Overhead in

Scheduling of Dependent Tasks on 2D Reconfigurable FPGA," The NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), pp. 1-8, 2014.

[174] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.

Robshaw, et al., "PRESENT: An Ultra-Lightweight Block Cipher," Cryptographic

Hardware and Embedded Systems, pp. 450-466, 2007.

[175] G. Krzysztof. Present - a lightweight block cipher [Online]. Available:

http://opencores.org/project,present

[176] E. Stavinov. (2009). Parallel Scrambler Generator [Online]. Available:

http://outputlogic.com/?p=179&cpage=1

[177] R. Agrawal, T. Imielinski, and A. N. Swami, "Mining Association Rules Between

Sets of Items in Large Databases," ACM International Conference on Management

of Data, pp. 207-216, 1993.

[178] R. Agrawal and R. Srikant, "Fast Algorithms for Mining Association Rules,"

International Conference on Very Large Data Bases, pp. 487-499, 1994.

[179] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, "Fast

Discovery of Association Rules," Advances in Knowledge Discovery and Data

Mining, pp. 307-328, 1996.

[180] J. Han, J. Pei, Y. Yin, and R. Mao, "Mining Frequent Patterns without Candidate

Generation," Data Mining and Knowledge Discovery, vol. 8, no. 1, pp. 53-87, 2004.

http://opencores.org/project,present
http://outputlogic.com/?p=179&cpage=1

References

225

[181] Z. Baker and V. Prasanna, "Efficient Hardware Data Mining with the Apriori

Algorithm on FPGAs," The IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), pp. 3-12, 2005.

[182] Z. Baker and V. Prasanna, "An Architecture for Efficient Hardware Data Mining

Using Reconfigurable Computing Systems," The IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pp. 67-75, 2006.

[183] W. H. Wen, J. W. Huang, and M. S. Chen, "Hardware-Enhanced Association Rule

Mining with Hashing and Pipelining," IEEE Transactions in Knowledge and Data

Engineering, vol. 20, no. 6, pp. 784-795, 2008.

[184] S.Sun and J. Zambreno, "Mining Association Rules with Systolic Trees," The

International Conference on Field Programmable Logic and Applications (FPL), pp.

143-148, 2008.

[185] S.Sun and J. Zambreno, "A Reconfigurable Platform for Frequent Pattern Mining,"

The International Conference on Reconfigurable Computing and FPGAs

(ReConFig), pp. 55-60, 2008.

[186] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng, "KDD-Cup 2000

Organizers’ Report: Peeling the Onion," SIGKDD Explorations, vol. 2, no. 2, pp. 86-

98.

[187] D. Reese and T. H.White, "FPGA Configuration Data Scrambling Using Input

Multiplexers," US Patent: US 8-650-409 B1, 2014.

	cover sheet
	2773_Ali_Ebrahim_PhD_Thesis
	Declaration
	Acknowledgements
	Lay Summary of Thesis
	Abstract
	Related Publications
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms and Abbreviations
	Chapter 1 : Introduction
	1.1 Thesis Objectives
	1.2 Novelty and Contribution
	1.3 Thesis Outline

	Chapter 2 : Introduction to FPGAs and Dynamic Partial Reconfiguration
	2.1 Xilinx FPGAs and Design Flow
	2.1.1 Overview of Xilinx Reconfigurable Resources
	2.1.2 Basic Routing and Clocking Structure
	2.1.3 Basic Design Flow

	2.2 Dynamic Partial Reconfiguration
	2.2.1 Xilinx DPR Flow
	2.2.2 Altera DPR Flow
	2.2.3 Configuration Ports
	2.2.4 Bitstream Relocation

	2.3 Chapter Conclusion

	Chapter 3 : Dynamic Partial Reconfiguration for High Performance and Reliability
	3.1 DPR Deployment in High-Performance Systems
	3.1.1 FPGA-based Acceleration in HPC
	3.1.2 Reconfigurable Operating Systems
	3.1.3 Reducing Reconfiguration Delay

	3.2 DPR for Enhanced Fault-Tolerance
	3.2.1 Background on Faults in SRAM-FPGAs
	3.2.2 Reliability Features in Modern FPGAs
	3.2.3 DPR Techniques for Enhanced Fault-Tolerance

	3.3 Chapter Conclusion

	Chapter 4 : A High-Performance Internal Configuration Manager
	4.1 General Architecture of the ICM
	4.1.1 Building Blocks of the ICM
	4.1.2 Interfacing with the Main CPU
	4.1.3 The Configuration Operations

	4.2 The ICAP Controller
	4.2.1 Basic Operation of the Internal Configuration Access Port
	4.2.2 Fast Operation Set-up
	4.2.3 The Data-Transfer Phase
	4.2.4 The Configuration Verification Phase

	4.3 The External Memory Controller
	4.4 Multiple-Clone Configuration
	4.4.1 Overview
	4.4.2 The Clonable Partial Bitstream
	4.4.3 The Configuration Process

	4.5 Performance and Resource Utilisation Evaluation
	4.5.1 Resource Utilisation Evaluation
	4.5.2 Standard Configuration Operations Performance Evaluation
	4.5.3 Online Black-Box Bitstream Generation
	4.5.4 The Multiple-Clone Configuration Technique

	4.6 Chapter Conclusion

	Chapter 5 : Reliability-Centric Internal Configuration Management
	5.1 The Design of a Fault-Tolerant ICM
	5.1.1 Triple Modular Redundancy (TMR)
	5.1.2 Dual Modular Redundancy (DMR)
	5.1.3 Operation Monitor
	5.1.4 Resource Utilisation vs. Performance

	5.2 Soft-Error Handling Strategies
	5.2.1 Internal Readback Scrubbing
	5.2.2 External Configuration Memory Scrubbing
	5.2.3 Configuration Memory Scrubbing Evaluation

	5.3 Permanent-Fault Handling Strategies
	5.3.1 General Fault Mitigation Scheme
	5.3.2 Fast and Scalable BIST Diagnosis
	5.3.3 BIST Diagnosis Evaluation

	5.4 The Reliable Reconfigurable Real-Time Operating System
	5.4.1 R3TOS Architecture
	5.4.2 Online Routing
	5.4.3 HT Management

	5.5 Chapter Conclusion

	Chapter 6 : An R3TOS-based Reliable and Secure Encryption Engine
	6.1 Background on FPGA Security
	6.1.1 Basic Security Features in Commercial SRAM FPGAs
	6.1.2 Side Channel Attacks: Vulnerabilities and Countermeasures

	6.2 Overview of the Encryption Engine
	6.2.1 The Relocatable Cryptographic Core
	6.2.2 Online Placement of Heterogeneous Cores
	6.2.3 Configuration Management and Task Execution

	6.3 Proof-of-Concept Implementation
	6.3.1 Implementation of a Test Relocatable Cryptographic Core
	6.3.2 Implementing the Static Control Logic

	6.4 Experimental Results
	6.4.1 Task Allocation
	6.4.2 Configuration and Control of the Relocatable Cores
	6.4.3 Task Data Transfer
	6.4.4 Fault Detection and Recovery
	6.4.5 Task Execution Time Overhead

	6.5 Chapter Conclusion

	Chapter 7 : A DPR-based Platform for Frequent Itemset Mining Acceleration
	7.1 Background on Frequent Itemset Mining
	7.1.1 Background on FIM Algorithms
	7.1.2 FPGA Implementations of FIM Algorithms

	7.2 Overview of Proposed System
	7.2.1 Acceleration Task1: Item Support Counting
	7.2.2 Acceleration Task2: Item Sorting
	7.2.3 Acceleration Task3: Database Pruning
	7.2.4 Acceleration Task4: Sorting Database Transactions
	7.2.5 Acceleration Task5: Itemset Counting

	7.3 Implementation and Resource Utilisation
	7.4 Experimental Results
	7.4.1 Item Counting
	7.4.2 Sorting the Frequent Items
	7.4.3 Database Pruning
	7.4.4 Sorting Database Transactions
	7.4.5 Itemset Counting

	7.5 Chapter Conclusion

	Chapter 8 : Conclusion and Future Work
	8.1 Summary and Concluding Remarks
	8.2 Future Work

	References

