
This thesis has been submitted in fulfilment of the requirements for a

postgraduate degree (e. g. PhD, MPhil, DClinPsychol) at the University of

Edinburgh. Please note the following terms and conditions of use:

This work is protected by copyright and other intellectual property rights,

which are retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without

first obtaining permission in writing from the author.

The content must not be changed in any way or sold commercially in

any format or medium without the formal permission of the author.

When referring to this work, full bibliographic details including the

author, title, awarding institution and date of the thesis must be given.

A Multi-Level Functional IR With Rewrites
for Higher-Level Synthesis of Accelerators

Christof Schlaak
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy
Institute of Computing Systems Architecture

School of Informatics
University of Edinburgh

2023

Abstract
Specialised accelerators deliver orders of magnitude higher energy-efficiency than
general-purpose processors. Field Programmable Gate Arrays (FPGAs) have become
the substrate of choice, because the ever-changing nature of modern workloads, such
as machine learning, demands reconfigurability. However, they are notoriously hard
to program directly using Hardware Description Languages (HDLs). Traditional High-
Level Synthesis (HLS) tools improve productivity, but come with their own problems.
They often produce sub-optimal designs and programmers are still required to write
hardware-specific code, thus development cycles remain long.

This thesis proposes Shir, a higher-level synthesis approach for high-performance
accelerator design with a hardware-agnostic programming entry point, a multi-level
Intermediate Representation (IR), a compiler and rewrite rules for optimisation.

First, a novel, multi-level functional IR structure for accelerator design is described.
The IRs operate on different levels of abstraction, cleanly separating different hardware
concerns. They enable the expression of different forms of parallelism and standard
memory features, such as asynchronous off-chip memories or synchronous on-chip
buffers, as well as arbitration of such shared resources. Exposing these features at the
IR level is essential for achieving high performance.

Next, mechanical lowering procedures are introduced to automatically compile
a program specification through Shir’s functional IRs until low-level HDL code for
FPGA synthesis is emitted. Each lowering step gradually adds implementation details.

Finally, this thesis presents rewrite rules for automatic optimisations around par-
allelisation, buffering and data reshaping. Reshaping operations pose a challenge to
functional approaches in particular. They introduce overheads that compromise per-
formance or even prevent the generation of synthesisable hardware designs altogether.
This fundamental issue is solved by the application of rewrite rules.

The viability of this approach is demonstrated by running matrix multiplication
and 2D convolution on an Intel Arria 10 FPGA. A limited design space exploration is
conducted, confirming the ability of the IR to exploit various hardware features. Using
rewrite rules for optimisation, it is possible to generate high-performance designs
that are competitive with highly tuned OpenCL implementations and that outperform
hardware-agnostic OpenCL code. The performance impact of the optimisations is
further evaluated showing that they are essential to achieving high performance, and
in many cases also necessary to produce hardware that fits the resource constraints.

iii

Lay Summary
Many day-to-day computer and mobile apps, such as search engines and speech
recognition, use so-called artificial intelligence to get the job done. At the same
time, this technology is computationally intensive, which results in enormous power
consumption, especially in data centres.

For this reason, data centres employ special devices, so-called FPGAs, which acceler-
ate the same computations and perform them much more efficiently. However, FPGAs
are many times more complex and time-consuming to program than conventional
computers. Application developers need considerable expertise to write the detailed
program code for FPGAs. This makes the development costs for such applications
with artificial intelligence climb steeply.

This thesis addresses this problem by enabling developers to use a simple, abstract
programming language for programming FPGAs. Only a few lines of code are then
needed to describe the desired computation. However, the program code now lacks the
many details that are still required for the FPGA to understand the instructions and
execute them efficiently. In order to solve this, an automatic translation tool, called
compiler, is provided by this thesis. It translates the abstract program code given by
the developer step by step into the more detailed programming language intelligible
to FPGAs. The compiler automatically determines the details so that the FPGA works
as efficiently as possible.

In summary, this thesis shows how, starting from an abstract programming lan-
guage, a compiler can be used to automatically generate efficient code for FPGAs.

iv

Acknowledgements
This thesis marks the end of an intense four-year research period, which was packed
with incredible experiences that will always be remembered. It was a great pleasure to
meet and become friends with many nice people on this eventful journey. My research
efforts were supported by countless individuals to whom I would like to express my
deepest gratitude.

First and foremost, I want to thank my supervisor, Prof. Christophe Dubach, for
the immense inspiration, tireless motivation and guidance. Many thanks for taking
the time to extensively discuss ideas and share invaluable advice that will benefit me
beyond my PhD.

When I started my PhD, I was fortunate to join the Lift team, a group of ambitious
and motivated researchers: Michel Steuwer, Larisa Stoltzfus, Federico Pizzuti, Naums
Mogers, Thomas Kœhler, Andrej Ivanis, Bastian Hagedorn, Bastian Köpcke, Lu Li,
Martin Kristien, Toomas Remmelg and AdamHarries. I am grateful for the opportunity
to have been part of this strong research group. Special thanks to Andrej for helping
with the tedious setup of the FPGA server and Naums for providing the arithmetic
library used in Shir. In addition, thanks to Larisa for the challenging climbing sessions
and Thomas for the energetic table tennis matches.

I am proud that my work lays the foundation for many ongoing research directions
of the new Shir team: Tzung-Han Juang, Ayan Chakraborty, Hamza Javed, Shakiba
Bolbolian Khah, Jonathan Van der Cruysse, Zhitao Lin, Ningchen Ma, Archisman Dey
and Jacob Peng. It is a great pleasure to see their contributions to the Shir framework.
A special thank you to Tzung-Han for the 2D convolution benchmarks and Ayan for
implementing the onboard memory interface.

I would like to extend my thanks to all the people who make the School of Inform-
atics at the University of Edinburgh a place where I feel welcome and supported. In
particular, I am thankful for those I shared office 1.05 and social lunches with and
who ensured a friendly work environment: Rui Li, Chris Vasiladiotis, Jörg Thalheim,
Maurice Bailleu, Dimitra Giantsidi, Alexandr Maramzin and Jackson Woodruff.

Last but not least, I am sincerely grateful for my family and friends for supporting
me in many different ways. Thanks to Dave and Sara, who made flat 45 feel like
home very quickly. Many special thanks to my parents for their encouragement to
pursue my dreams and that I could always rely on them. Finally, I thank Uta for her
unconditional support, comprehension and motivation.

v

Declaration
I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except
as specified. Parts of the material in this dissertation have been published in the
following publications:

• Christof Schlaak, Tzung-Han Juang, and Christophe Dubach. [SJD22a]
‘Memory-Aware Functional IR for Higher-Level Synthesis of Accelerators.’ In:
ACM Transactions on Architecture and Code Optimization (TACO), 19.2, Jan 2022.

• Christof Schlaak, Tzung-Han Juang, and Christophe Dubach. [SJD22b]
‘Optimizing Data Reshaping Operations in Functional IRs for High-Level Syn-
thesis.’ In: Proceedings of the 23rd ACM SIGPLAN/SIGBED International Confer-

ence on Languages, Compilers, and Tools for Embedded Systems (LCTES), Jun 2022.

During the work on this thesis, I also co-authored the following paper:

• Tzung-Han Juang, Christof Schlaak, and Christophe Dubach. [JSD23]
‘Let Coarse-Grained Resources Be Shared: Mapping Entire Neural Networks on
FPGAs.’ In: ACM Transactions on Embedded Computing Systems (TECS), 22.5s,
Sep 2023.

(Christof Schlaak)

vi

Contents

1 Introduction 1

1.1 Challenges . 4
1.2 Contributions . 7
1.3 Structure . 9

I State of the Art 11

2 Hardware Design and Functional Languages 13

2.1 Digital Hardware Design With FPGAs 13
2.2 Functional Programming . 21
2.3 Term Rewriting Systems . 24

3 Related Work 27

3.1 Monolithic Template-Based Accelerators 27
3.2 Hardware Description Languages . 30
3.3 High-Level Synthesis . 35
3.4 Multi-Level Representations . 37
3.5 Domain-Specific Synthesis . 39
3.6 Higher-Level Synthesis . 40

II Contributions 49

4 Multi-Level Representations 51

4.1 Overview . 52
4.2 Core Abstract Language . 55
4.3 Algorithmic Level . 59
4.4 Architecture Level . 62

vii

4.5 Abstract Memory Level . 69
4.6 Hardware Memory Level . 72
4.7 Device-Specific Level . 76
4.8 Hardware Back End . 77
4.9 Summary . 80

5 Lowering Passes 83

5.1 Architecture Design Choices . 84
5.2 Lowering Memory Expressions . 87
5.3 Dataflow Graph Generation . 92
5.4 Hardware Design Generation . 94
5.5 Summary . 95

6 Optimisation Using Rewrite Rules 97

6.1 Spatial Parallelism . 99
6.2 Data Reusage . 102
6.3 Stream and Vector Conversions . 104
6.4 Efficient Data Reshaping . 107
6.5 Maximising DMA Throughput . 119
6.6 Exploiting Device-Specific Resources 121
6.7 Timing Correction . 123
6.8 Informal Proof of Convergence . 124
6.9 Summary . 125

7 Evaluation 127

7.1 Experimental Setup . 127
7.2 Communication via DMA . 129
7.3 Buffering and Parallelisation . 133
7.4 Data Reshaping . 135
7.5 Comparison With OpenCL HLS . 138
7.6 Summary . 139

III Conclusions 141

8 Conclusions 143

8.1 Summary of Contributions . 143

viii

8.2 Critical Analysis . 146
8.3 Future Work . 149

A VHDL Templates 153

A.1 Overview . 153
A.2 Examples . 155

Bibliography 163

ix

Chapter 1

Introduction

Machine learning is a hot topic. Although the ideas of Artificial Intelligence (AI) root
back to the 1950s [Tur50], machine learning has only more recently become practical
due to improvements in computational performance. It is now ubiquitous in a wide
range of application domains in our everyday lives. Computers can process speech
and understand natural languages. Two decades ago, they started using computer
vision to recognise faces [AM03]. Self-driving cars rely on AI technologies to navigate
autonomously [DMDV20]. More recently, AI performs medical diagnosis by detecting
tumours [LGN+17]. In 2022, an art competition was won by an artist who generated
his hyper-realistic graphics using AI [Roo22].

By helping with pattern recognition and processing copious amounts of data, AI
technologies already have a huge societal impact and it keeps rising. This trend is
indicated by the growing proportion of venture capital invested in AI related start-
ups over the past nine years [Tri21]. However, as deployment and complexity of AI
use-cases grow, so does the demand for high computational performance and energy
efficiency.

Unfortunately, the Dennard scaling [DGY+74] already ended in the mid-2000s
and the end of Moore’s law [Moo06a, Moo06b] is approaching. The exponential
performance gains due to shrinking physical dimensions and increasing transistor
count in Integrated Circuits (ICs) are stagnating. This has led to the ‘multi-core era’,
in which more and more cores are added to each processor for greater performance.
However, even multi-core scaling will soon be limited due to the failure of Dennard
scaling [EBA+11]. Machine learning is just one of many domains where novel ways
to improve computing systems efficiency are required. To exploit the full potential of
workloads from such domains, their parallel nature must be taken into account.

1

2 Chapter 1. Introduction

CPU
FPGA

GPU
ASIC

reconfigurable
&

still highly efficient

programmable efficient

(a) Programmability and efficiency

of different hardware platforms. FP-

GAs can be reconfigured to quickly

deploy brand new algorithms.

2008 2010 2012 2014 2016 2018 2020 2022
102

103

104

105

nu
m

be
r

of
 p

ap
er

s
pe

r
ye

ar Moore's Law growth
ML papers

(b) Exponential growth of annually published machine

learning papers
1
. This number doubles every two years,

which is similar to the trend in Moore’s law [Moo06b].

Graph inspired by [DPY18].

Figure 1.1: Despite being less efficient than ASICs, FPGAs are advantageous due to

their reconfigurability, which is important to keep up with the ongoing trend of new

machine learning technologies.

Hardware Accelerators

Graphics Processing Units (GPUs) shine with their massive parallel processing due to a
high number of cores compared to Central Processing Units (CPUs). This allows them
to achieve high performance while remaining efficient. Although originally designed
to accelerate graphics, GPUs were quickly programmed to carry out general-purpose
computing on them, known as General-Purpose Computing on Graphics Processing
Units (GPGPU).

However, the efficiency of both CPUs and GPUs is still impeded by their general-
purpose architecture and the problem of the memory wall [WM95], also called the
von Neumann bottleneck [MT09]. In the von Neumann model, memory is physically
separated from the processing unit, causing many data movements that cost a lot
of energy. Accessing off-chip memory in a 45 nm technology requires ~1000× more
power than a 32-bit floating point multiplication. Even when exploiting data locality
with caches, this problem persists, since caches still take ~100× more power [Hor14].

1Accumulated number of papers in the topics cs.LG (Machine Learning), cs.AI (Artificial Intelli-
gence), cs.NE (Neural and Evolutionary Computing) and stat.ML (Machine Learning) from arxiv.org.

arxiv.org

3

As depicted in Figure 1.1a, there are further candidates for accelerating compu-
tationally intensive algorithms. FPGAs and Application-Specific Integrated Circuits
(ASICs) are special-purpose hardware platforms, tailored and fine-tuned to a workload
from a specific domain. With their flexible dataflow architecture designs and distrib-
uted memory on the chip, they solve the von Neumann bottleneck. This allows them
to achieve high energy efficiency and even beat GPUs [NVS+17].

Google’s Tensor Processing Unit (TPU) [JBB+17] is a prominent example for an
ASIC accelerating machine learning applications. This coprocessor with a matrix
multiply unit is about 15–30× faster and 30–80× more energy-efficient in comparison
to GPUs and CPUs [JBB+17]. It is so successful that Google is already deploying the
fourth generation of the TPU [JHYA+21] in their data centres.

FPGAs and ASICs differ in one important detail: While the former are less efficient
than the latter due to their Look-Up Table (LUT) based logic implementation, they
are reconfigurable. This is an immense advantage, because the designs of FPGAs can
be updated after deployment in, for instance, a large-scale server cluster. Especially
in the field of machine learning, which is changing constantly and rapidly, as shown
in Figure 1.1b, the reconfigurability is important as it allows to quickly install the
latest algorithms. In contrast, it takes at least two years [DPY18] to get a fresh ASIC
to run a new workload. This detour is not only time-consuming due to the design,
manufacture and deployment of a new ASIC but also expensive, because of their high
non-recurring engineering costs.

With all these benefits, FPGAs have become the substrate of choice to implement
accelerators. Microsoft augmented the servers in their data centres with FPGAs to
offload computationally demanding workloads and profit from their power efficiency
and low cost [PJM+14]. The deep learning tasks in their cloud computing platform
Azure and their Bing ranking are accelerated based on Project Catapult [ORK+15] and
Project Brainwave [CFO+18, FOP+18] to serve Deep Neural Networks (DNNs) at data
centre scale.

4 Chapter 1. Introduction

1.1 Challenges

Challenge I — FPGAs Are Hard to Program for Non-Experts

The flexibility of FPGAs, however, comes with extra burden placed on the programmer.
Designing new accelerators is a manual, time consuming and error-prone process.
FPGAs offer many options for tweaking the performance but in return require hard-
ware expertise and take costly development time to be configured properly. Current
HDLs are not suitable for a rapid-development cycle and there is a lack of high-level
abstractions for efficient hardware design. Languages such as Bluespec [Nik08] and
Chisel [BVR+12] reduce the amount of boiler plate code required, but remain low-level.

Traditional HLS tools [Int20, Xil21] try to simplify hardware development but,
despite their name, they are still fairly low-level and require some hardware knowledge
to achieve high performance. Many hardware concepts are still transpiring through
the high-level abstractions offered by their languages. Furthermore, these toolchains
are typically built using traditional software compiler passes that are not a good match
for hardware optimisation. The ‘innocent-looking software code’ [GLC+20] makes
it hard to predict what the hardware will look like at the end of the compilation
process [NAT+20] and leads to slow designs [GLC+20] with a large performance
gap [SWLR13, WBC13] compared to hand written HDL code. In order to make acceler-
ators accessible for non-hardware experts and fully automate their design, high-level
programming abstractions are needed, that hide all hardware details.

Functional languages are well suited for such abstractions, because they focus on
the algorithm, not on the implementation. They specify what needs to be achieved but
leave open how to get there [Hud89]. Contrary to imperative languages, no notion
of sequencing of commands is predetermined. Moreover, since (pure) functional
languages are free of side effects and hidden states, it is ‘almost embarrassingly
easy’ [Ham94] to parallelise them for better performance.

Especially now, the functional programming paradigm shows itself to be particu-
larly useful. By offering an alternative to conventional (software-like) von Neumann
style programming, it helps to think outside the box of von Neumann hardware
architectures [Bac78].

Existing frameworks, such as DNNWeaver [SPM+16], Aetherling [DFH+20] and
Spatial [KFP+18], make programming FPGAs easier but sacrifice expressiveness and
are restricted to certain application domains. DNNWeaver uses a parameterised

1.1. Challenges 5

monolithic hardware design, which mitigates expressiveness, maintainability and
modularity. According to [BI19], a more fine-grained, flexible computing system is
desirable instead. Aetherling is limited in their use-cases and simply cannot realise
matrix multiplication, nor 2D convolution. Other approaches like Spatial raise the
abstraction but do still not reach a hardware-agnostic level, so that they only work in
the hands of hardware experts.

Challenge II — It Is a Long Journey From Algorithm to Hardware Design

Once the input algorithm is specified in a functional language, a compiler takes over to
generate a hardware implementation from it. Nevertheless, designing such a compiler
is anything but trivial.

A multi-level IR, in the spirit of MLIR [LAB+20] for instance, leads to an elegant
compiler design and implementation by decomposing compilation into a gradual
lowering process with manageable, simple steps. The input algorithm goes through
lowering passes that introducemore andmore implementation details, until a hardware
description is obtained, that is detailed enough to be installed on the FPGA.

Each level deals with one particular design aspect only. This orthogonalisation of

concerns leads to effective design exploration and efficient implementations [KNRSV00].
Furthermore, this enables easy extensions for novel optimisation techniques or hard-
ware targets. Especially in the field of accelerators, the ability to adapt quickly is
essential because their algorithms and workloads change rapidly. Developers can
precisely pick the IR they want to operate on. Similarly, static analysis tools can choose
the level of abstraction that provides all the details they need.

When it comes to describing low-level IRs, functional languages again turn out to
be the ideal candidate, because mathematical functions and hardware circuits have
much in common [She84]. A function has one or more parameters and a return value.
Similarly, a hardware module can have input ports and an output port. A function call
with an argument is comparable to a hardware module whose inputs are connected to
further hardware modules (one for each argument). Just like mathematical functions,
circuits are composable. For instance, the composition g◦ f can represent a module f ,
whose output is directly connected to the input of module g.

Recent years have witnessed a shift towards multi-level, functional approaches for
high-performance computing. Delite [SBL+14], Lift [SFLD15] and Futhark [HSE+17]
have demonstrated that high-level abstractions and high-performance can go hand
in hand. More recently, Lift-hls [KBSD19] and Aetherling [DFH+20] have proven

6 Chapter 1. Introduction

capable of producing accelerator designs. These approaches expose design decisions
in their functional IRs to exploit parallelism, by distinguishing between space and
time types.

However, their proposed IRs fall short of the mark. They lack explicit support for
memory operations and further device-specific optimisations, which severely restricts
their use on real hardware. Aetherling, for instance, has only produced results in
simulation with an overly simplified memory model.

Maximising performance requires to leverage all the available hardware features,
such as on-chip and off-chip memories. Given that such concepts are absent from the
above mentioned IRs, their associated compilers are unable to exploit these capabilities
when aiming for high-performance FPGA designs.

Challenge III — The Design Space of FPGAs is Vast

The flexible hardware of FPGAs offers a wide range of optimisation possibilities around
parallelisation, memory usage, special hardware features and others. This spans a vast
design space, where manual optimisation is tedious. Automation is needed to explore
it and make optimal choices for peak performance hardware designs.

An automatic system based on rewrite rules is a promising approach to define such
optimisations in an exchangeable, maintainable and extendable way. Functional IRs en-
able easy pattern matching and are therefore particularly well suited for rewrite-based
optimisations. That is why rewrite rules have found approval in the compiler com-
munity and are employed by Lift [SFLD15], Lift-hls [KBSD19], Aetherling [DFH+20]
and Spiral [SP19] for example. Moreover, the multi-level structure of some approaches
allows making design choices on many different levels of abstraction.

Despite the success of prior work, several challenges remain. While many ap-
proaches around rewriting optimisations do not target FPGAs at all, those who do lack
important FPGA-specific optimisations regarding memory usage and data reshaping.
The latter is required to express important workloads such as matrix multiplication or
convolution. In particular, as we will see later in this thesis, functional approaches in
general lack a systematic approach to deal with data reshaping operations efficiently.
These deficits must be optimised away to achieve high-performance FPGA designs.

1.2. Contributions 7

1.2 Contributions

In this section, it is briefly described how the previously identified challenges are
addressed in the following technical chapters. This thesis makes the following research
contributions, some of which are also published in [SJD22a, SJD22b]:

A Multi-Level IR Structure for Designing Hardware Accelerators

This thesis is centred around Shir, a framework with a functional, pattern-based,
data-parallel language in the spirit of Lift [SFLD15], and a compiler. Shir contains
common parallel patterns, such as Map and Reduce, combinedwith a rich type hierarchy.
Furthermore, a novel multi-level IR structure for accelerator design is designed and
implemented. The IRs are described in Chapter 4.

Starting with a higher-level, hardware-agnostic functional programming abstrac-
tion as the entry point, Shir allows even non-hardware experts to specify the input
algorithm, which is later turned automatically into an FPGA implementation. It also
serves as an intermediate language when targeted by other high-level tools. The next
lower level IR introduces basic architecture design decisions, which are explicitly
encoded in Shir’s strong type system. This covers different forms of parallelism in a
similar style to Lift-hls and Aetherling.

Uniquely, Shir represents hardware memory concepts in a functional style in
dedicated IRs. The novel ramarray type embodies data in memory. Furthermore, the
IR supports synchronous data transfers for on-chip block memory, asynchronous
transfers for onboard memories and asynchronous Direct Memory Access (DMA) for
host memory. Such features are explicitly exposed in the IR, for example synchronicity
is directly encoded in the function type as an effect. Access to shared memories is man-
aged by arbiters. Common memory operations are made accessible via corresponding
primitives to enable their efficient use.

Another IR at the bottom of the multi-level structure enables device-specific design
decisions. Exposing such features at the IR level is essential to fully support the
synthesis of high-performance hardware.

Mechanical Lowering Procedures From Algorithm to Hardware

Along with the multi-level IRs, a compiler has been developed that automatically
lowers an input program through the multi-level IRs until finally HDL code is emitted.

8 Chapter 1. Introduction

Common hardware synthesis then turns this code into a bitstream for FPGAs. These
lowering steps in the compiler are specified as mechanical procedures and do not
require any user input. During compilation, data types are prepared for off-chip
transfers, e.g., by packing and padding. Arbiters are automatically inserted to deal
with shared resources. This entire process is defined and explained in Chapter 5.

Rewrite Rules for Optimisation

Rewrite rules for automatic optimisation have been specified, implemented and eval-
uated. They are designed to be convergent, so that they can be applied in simple
fixed-point iterations, which ends when no further rewrite is possible. Rewriting takes
place on different abstraction levels, once again leveraging the multi-level structure in
Shir. Chapter 6 explains the rewrite rules.

One set of rewrite rules deals with parallelism by expanding the design on the FPGA
and using as many hardware resources as available. Further rules are responsible
for inserting memory buffers, parallelising data transfers between them and the
computation, and for optimising DMA communication with off-chip memories to
maximise performance.

The main causes of hardware inefficiencies associated with functional data reshap-
ing operations are identified and addressed using a set of rewrite rules. The issues
occur when repeating, transposing or sliding data and are related to needs for large
on-chip buffers or complex signal wiring, in order to perform the reshaping operations.
The impact of the rewriting is discussed and evaluated. The performance results
show that without the optimisations presented, a functional approach either produces
designs that do not synthesise due to resource constraints, or produces designs with
abysmal performance.

Evaluation on a Real FPGA

The viability of the presented Shir framework and its optimisations has been demon-
strated running stencil computations, matrix multiplication and 2D convolution on an
Intel Arria 10 FPGA. Using a real FPGA instead of simulation requires more engin-
eering efforts but puts the framework to the ultimate test, because physical timing
phenomena start to play a crucial role and may make the generated hardware unfeas-
ible. The results testify to correct and efficient hardware designs, which are competitive
with those generated by Intel’s OpenCL HLS. They are presented in Chapter 7.

1.3. Structure 9

1.3 Structure

This chapter has introduced this thesis and motivated the research contributions. The
rest of this thesis is organised as follows:

Part I — State of the Art

Chapter 2 provides the technical background about FPGAs and functional program-
ming languages to understand this work.

Chapter 3 discusses related work about similar HLS approaches and how they com-
pare to this thesis.

Part II — Contributions

Chapter 4 develops a multi-level IR structure that spans over a hardware-agnostic
and multiple hardware-specific abstractions. Each level with its primitives and
types is described separately, while their ability to express different hardware
design decisions is displayed.

Chapter 5 describes a systematic compilation through the levels of IRs, until VHSIC
Hardware Description Language (VHDL) code for the FPGA is generated. This
process is based on multiple automatic compiler passes.

Chapter 6 explores optimisations based on an automatic rewriting system. The
presented rewrite rules specify how the IR is modified to, e.g., parallelise the
computation, insert memory buffers, optimise data reshaping and exploit device-
specific features.

Chapter 7 evaluates the viability of this approach on matrix multiplication and 2D
convolution, showing the effects of the optimisations presented. In order to
obtain realistic results, all experiments are performed on a real FPGA.

Part III — Conclusions

Chapter 8 summarises the contributions of this thesis, critically analyses its limita-
tions and proposes possible future extensions.

Part I

State of the Art

11

Chapter 2

Hardware Design and
Functional Languages

This thesis deals with synthesising accelerators from a high-level functional language.
To understand the rest of it, this chapter presents the required technical background.

First, Section 2.1 provides an overview of the targeted hardware platform, namely
FPGAs. Understanding this type of integrated circuits is crucial for taking advantage
of them properly. They come with many specialised features that must be exploited to
achieve competitive performance.

Then, in Section 2.2, the paradigm of functional programming is introduced. More
specifically, an extension of lambda calculus that supports type variables and subtyping
relationships, namely ‘System F with Subtyping’, is described, because it forms the
basis for the functional IRs in this thesis.

Last, Section 2.3 presents rewriting systems with their properties to illustrate how
programs are optimised later in Chapter 6 of this thesis.

2.1 Digital Hardware Design With FPGAs

FPGAs are integrated circuits that are configured by the consumer after being manu-
factured, when the hardware is already in the field. The configuration describes the
desired function, e.g., accelerate a certain computational task. FPGAs come with the
great advantage that they are reconfigurable. This allows them to be updated, for
instance, to fix bugs or to employ new algorithms. They can keep up with quickly
changing demands.

13

14 Chapter 2. Hardware Design and Functional Languages

Table 2.1: Comparison of CPUs to FPGAs.

CPU FPGA

general-purpose specialised
‘cheap’ software code ‘expensive’ hardware description
central register file distributed memories
fixed pipeline flexible dataflow
predefined data types arbitrary precision
not power efficient very efficient

When programming an FPGA, real physical connections with wires on the chip are
modified according to the program’s needs. This is unlike CPU or GPU programming,
where the hardware is fixed and only the instructions are changed. The hardware
description code for FPGAs is at a much lower level than the software code. Further
differences between CPUs and FPGAs are listed in Table 2.1.

FPGAs offer a flexible, highly intrinsically parallel structure to efficiently implement
arbitrary workloads. However, this flexibility comes with the price that the design
space is vast and hardware developers must explore it to find suitable implementations.

FPGAs are employed in high-throughput, high-performance tasks like digital signal
processing, image and video processing, cryptography, and many other applications.
In the design of ASICs, full system verification quickly becomes too complex for
simulation. FPGAs are well suited to build a prototype for functional testing and for
getting rid of bugs early on. This prevents reengineering and producing defective
ASICs that would otherwise increase cost and Time-To-Market (TTM) [Ou05]. To
keep the TTM short, FPGAs can also be integrated directly in the final product, so
that the manufacturing of a custom ASIC is no longer necessary.

The energy efficiency of FPGAs is valuable for large-scale data centres that run
compute intense workloads, like machine learning algorithms, as it considerably cuts
the cost for electricity. Their reconfigurability furthermore allows to quickly deploy
new efficient workloads, which is why they are already widely used in large numbers
in data centres [CFO+18, FOP+18].

2.1. Digital Hardware Design With FPGAs 15

DSP in Standard Precision Mode

Transceiver Channels ■
M20K Internal Memory Blocks ■

PCIe Gen3
Hard IP ■

Core Logic
Fabric ■

I/O
PLLs ■

Fractional
PLLs ■

Hard Mem
Controllers ■

Hard Ethernet IP per Transceiver ■

Figure 2.1: Structure of an Intel Arria 10 FPGA chip. Next to the core logic fabric, there

are many specialised hard Intellectual Property (IP) blocks for efficient memories,

ethernet communication and computation to make the overall chip more efficient.

Figure adapted from [Int22c].

2.1.1 FPGA Chip Structure

The central building blocks of FPGAs are Configurable Logic Blocks (CLBs), also called
Adaptive Logic Modules (ALMs) on Intel FPGAs. They consist of LUTs, registers and
supplementary logic. Switch blocks configure the interconnect between these modules.
All these ingredients allow the device to build any digital function, as long as it does
not require more logic or memory than available on the device [FMM12].

Additionally, more specialised, hardened components are available on the chip
next to the core logic blocks, as depicted in Figure 2.1. They are characterised by their
high power efficiency, which is up to 10× higher [OVP+22] than a similar function in
programmable logic. Digital Signal Processor (DSP) blocks enable efficient arithmetic
operations on integers or floating point numbers. If the data precision is sufficiently
low (18 bits or less), one DSP block in Figure 2.1 performs two integer multiplications
at the same time. The Intel Arria 10, for instance, has 1518 of such DSP blocks and is
therefore able to compute 3036 integer multiplications per clock cycle.

Moreover, there are M20K internal block Random Access Memory (RAM) units
distributed on the chip. Each block can hold a total of 20,480 bits, hence the name, in
different sizes, e.g., 512 × 40 bits, 2048 × 10 bits or 16,384 × 1 bit [Int22b].

The hard Ethernet IP supports the Ethernet protocol stack with data speeds from
10G to 400G.

16 Chapter 2. Hardware Design and Functional Languages

FPGA boardhost

FPGA chip

block
RAM

(~10 MB)

onboard RAM

bank N
(~4 GB)

bank 1
(~4 GB)

host RAM
(~128 GB) ~12 GB/s

(per bank)
~7.8 GB/s

...
CCI-P Avalon

Figure 2.2: Memories typically available in an FPGA system. Due to their sizes, access

speeds and locations, the memories are used for different purposes in the system.

Another hard IP implements Peripheral Component Interconnect Express (PCIe)
Gen 3 to communicate with the host. Further hard memory controllers allow to access
the large off-chip memories, as will be explained in Section 2.1.2 more thoroughly.
Phase-Locked Loops (PLLs) provide a clock source for the functions on chip.

In summary, modern FPGAs offer lots of specialised functions to increase the
power efficiency of the device. When programming FPGAs, this must be taken into
account and these functions must be exploited accordingly.

2.1.2 Memories in FPGA Systems

The flexibility of the CLBs allows their registers to be used as RAM cells. This kind
of memory usually spreads out over multiple logic blocks and is therefore also called
distributed RAM. Since each CLB only has a few registers, larger distributed RAMs
occupy a lot of the FPGA’s programmable logic resources, which are then no longer
available for other operations. For this reason, FPGA systems typically come with
different kinds of dedicated memories for various purposes. Figure 2.2 depicts them
and where they are located in the system.

The FPGA chip itself contains fast RAM blocks. This is the fastest of all the
memories in the system, because data can be read or written at each clock cycle and
very wide data widths are supported when multiple of these discrete memory blocks
are combined. However, with a total amount of a few megabytes only, block RAM is
not sufficient for larger intermediate results of the computation.

That is why some systems include a few banks of off-chip memory on the FPGA
board. The Intel Arria 10, for instance, has two DDR RAM banks. Each delivers about
12GB/s through a single shared channel for both read and write access. Thus, a total
of up to 24GB/s is reached if the data is efficiently distributed among these banks.

2.1. Digital Hardware Design With FPGAs 17

For FPGAs that are connected with a host via PCIe, the host RAM may be directly
accessible using DMA. If present, this large but slow memory provides the input data
for the FPGA and is the destination when writing back the computed results. The Core
Cache Interface (CCI-P) carries 512-bit wide cache lines from the host machine’s CPU
[Int22a]. All data must be reshaped and padded accordingly before being transmitted.

Contrary to the synchronous block RAM, off-chip communication to memories
or the host machine works asynchronously. For asynchronous memory access, the
FPGA’s memory controller sends requests to read or write in a non-blocking manner
and some time later the memory responds with the desired data (or just an acknow-
ledgement in the case of write). In the meantime, further requests can be sent until the
queue is filled with pending requests (64 on the Intel Arria 10 [Int22a]). To maximise
memory throughput, this queue should be filled as much as possible.

2.1.3 Hardware Description Languages

HDLs describe digital hardware systems. They cover different levels of abstraction,
one of which is the Register-Transfer Level (RTL), which accurately models the flow
of signals through logical operations between registers in hardware. The two most
widely used languages are VHDL [IEE09] and Verilog [IEE06]. The former is strongly
typed and strictly enforces correct typing, while the latter is more permissive. Both
languages well support the FPGAs from the two major vendors Xilinx (now AMD)
and Altera (now Intel). This thesis is confined to VHDL.

VHDLwas originally created in 1983 by the US Department of Defense to document
their ASICs at the time, before it became part of the IEEE 1076 standard [IEE09]. It
turned out that these descriptions are accurate enough to allow for logic simulation
and even for the creation of physical implementations of the circuit itself.

Unlike serial code, where the lines of code are sequentially executed one at a time,
HDLs model a concurrent system. In such parallel logic languages, all of the lines
of code are executed at the same time, which entails a completely different kind of
programming compared to software.

2.1.4 Logic Synthesis

Once the hardware description is written in an HDL, it takes a few synthesis steps to
generate the final bitstream to install on the FPGA, as seen in Figure 2.3. The hardware
vendor provides the synthesis tools for that.

18 Chapter 2. Hardware Design and Functional Languages

Logic
Synthesis

HDL Technology
Mapping

Place and
Route

Timing
Analysis

Bitstream
Generation

Figure 2.3: Synthesis steps from hardware description to bitstream.

First, the logic synthesis converts the HDL into a gate-level netlist, which is a list
of logic elements and interconnections that implement the described behaviour. At
the same time, the logic operations are optimised and redundant logic is eliminated.

Next, the generic logic elements are mapped to technology specific gates, which
are present on the target FPGA device. In the place and route phase, they are placed at
a specific location on the chip and the wires to connect the elements are routed.

Before generating the actual bitstream from this resulting design, it is checked
for timing violations using timing analyser tools supplied by the FPGA vendors. The
following section explains what these errors are and how to fix them.

2.1.5 Propagation Delay

When a signal in hardware travels from one register to the next one, it does not arrive
instantly from a physical point of view. A certain amount of time passes, which is
referred to as the propagation delay.

The more complex the combinational logic for a signal between two consecutive
registers, the larger the delay. The signal path with the largest delay in the entire
circuit is the critical path. In order for the circuit to work correctly, the critical path
delay must not exceed the clock period. Otherwise signal value changes may not reach
the registers in time, which leads to unpredictable errors during runtime. In more
mathematical words, the maximum clock frequency fMAX is limited by the inverse of
the critical path delay: fMAX < 1

criticalDelay .

If the critical path in a design is too long for the clock frequency, the timing
analysis tools will identify this timing violation, which must be resolved in one of two
ways: Either the clock frequency is decreased, which impairs the throughput of the
FPGA; Or the hardware engineer reduces the critical path delay using pipelining, as
demonstrated in Figure 2.4. The latter is generally the preferred way, as it keeps the
fMAX high, which allows to achieve high performance with the FPGA.

2.1. Digital Hardware Design With FPGAs 19

clk

data too complex
comb. logic

(a) Complex combinational logic causing a large propagation delay between two registers.

clk

data reduced
logic

reduced
logic

(b) The additional third register (centre) breaks the complex logic down into two more simple

parts with shorter propagation delays.

Figure 2.4: Using pipelining to reduce a large propagation delay in a design.

2.1.6 High-Level Synthesis

Coding in HDLs is time-consuming and requires hardware expertise, since these
languages describe the design on a low, detailed level. To improve the productivity of
developers, HLS raises the abstraction of the input description. Instead of timed RTL
code, only a high-level behavioural specification is needed for this process. The input
languages are typically subsets of C or its variants, e.g., C++, OpenCL [Mun09], but
also MATLAB or other more academic programming languages.

HLS then automatically converts it into a digital hardware design that implements
the desired behaviour. In the meantime, the HLS tools exploit spatial parallelism,
pipelining and other optimisations to get the best performance out of the target
platform. Further user provided constraints restrict area usage, delay times and
hardware data types to guide this process. Pragma directives are commonly inserted
in C-like code. For instance, the keywords #pragma HLS unroll in a for loop cause
copies of the loop’s body in hardware, so that the entire loop is run concurrently.

Design flows profit from HLS, because they use common programming languages,
that are accessible for non-hardware experts and allow easy arithmetic implementa-
tions. The developers are able to quickly create a larger number of implementations
and try out different design choices to explore the optimisation space. Thus, the overall
productivity is increased.

20 Chapter 2. Hardware Design and Functional Languages

The following OpenCL code for HLS shows a hand-optimised implementation for
matrix multiplication by Intel1:

1 // Copyright (C) 2013-2018 Altera Corporation, San Jose, California, USA. All rights reserved. Permission

2 // is hereby granted, free of charge, to any person obtaining a copy of this software and associated

3 // documentation files (the "Software"), to deal in the Software without restriction, including without

4 // limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies

5 // of the Software, and to permit persons to whom the Software is furnished to do so, subject to the

6 // following conditions: The above copyright notice and this permission notice shall be included in all

7 // copies or substantial portions of the Software.

8 #include "../host/inc/matrixMult.h"

9 #ifndef SIMD_WORK_ITEMS

10 #define SIMD_WORK_ITEMS 4

11 #endif

12
13 __kernel

14 // The dimension of the block used in the core computation

15 __attribute((reqd_work_group_size(BLOCK_SIZE,BLOCK_SIZE,1)))

16 // How many output elements will be computed in a SIMD manner

17 __attribute((num_simd_work_items(SIMD_WORK_ITEMS)))

18 void matrixMult(// Input and output matrices

19 __global uchar *restrict C, __global uchar *A, __global uchar *B,

20 // Widths of matrices.

21 int A_width, int B_width)

22 {

23 // Local storage for a block of input matrices A and B

24 __local uchar A_local[BLOCK_SIZE][BLOCK_SIZE];

25 __local uchar B_local[BLOCK_SIZE][BLOCK_SIZE];

26 // Block index

27 int block_x = get_group_id(0);

28 int block_y = get_group_id(1);

29 // Local ID index (offset within a block)

30 int local_x = get_local_id(0);

31 int local_y = get_local_id(1);

32 // Compute loop bounds

33 int a_start = A_width * BLOCK_SIZE * block_y;

34 int a_end = a_start + A_width - 1;

35 int b_start = BLOCK_SIZE * block_x;

36
37 // Compute the matrix multiplication result for this output element.

38 // Each loop iteration processes one block of the matrix.

39 uchar running_sum = 0.0f;

40 for (int a = a_start, b = b_start; a <= a_end; a += BLOCK_SIZE, b += (BLOCK_SIZE * B_width))

41 {

42 // Load the matrices to local memory.

43 A_local[local_y][local_x] = A[a + A_width * local_y + local_x];

44 B_local[local_x][local_y] = B[b + B_width * local_y + local_x];

45 // Wait for the entire block to be loaded.

46 barrier(CLK_LOCAL_MEM_FENCE);

47 // Do the dot product accumulation within this block. Fully unroll the loop.

1https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-
examples/design-software/opencl/matrix-multiplication.html

2.2. Functional Programming 21

48 #pragma unroll

49 for (int k = 0; k < BLOCK_SIZE; ++k)

50 {

51 running_sum += A_local[local_y][k] * B_local[local_x][k];

52 }

53 // Wait for the block to be fully consumed before loading the next block.

54 barrier(CLK_LOCAL_MEM_FENCE);

55 }

56
57 // Store result in matrix C

58 C[get_global_id(1) * get_global_size(0) + get_global_id(0)] = running_sum;

59 }

2.2 Functional Programming

Functional programming is a programming paradigm for expressing computation by
forming functions by abstraction and applying functions to arguments. Common ex-
amples of functional programming languages are Haskell [Mar10] and ML [MHMT97].
In contrast to imperative programming languages, they are declarative and state what
to achieve instead of how to get the desired outcome [Hud89].

In functional programming, the functions are more mathematical functions than
procedures. They are handled just like data: They can be passed as arguments, returned
from functions or bound to names.

Functions that operate on other functions, by either receiving them as inputs or
returning them as outputs, are referred to as higher-order functions. Common examples
are map and reduce.

The function map takes both an unary function f and a list of N values i to apply
the function to each element from the list:

map(f , [i1, i2, . . . , iN])
def
= [f (i1), f (i2), . . . , f (iN)] (2.1)

The function reduce takes a binary operator f , an initial element and a list of
N values i to bring down the input list to a single value. In case of inserting the
addition (+) for the function and using 0 as the initial element, the sum of a list is
computed:

reduce(+,0, [i1, i2, . . . , iN])
def
= 0+ i1 + i2 + · · ·+ iN (2.2)

22 Chapter 2. Hardware Design and Functional Languages

⟨expr⟩ |= ⟨var⟩ | ⟨abstraction⟩ | ⟨application⟩

⟨var⟩ |= x | y | z | . . .

⟨abstraction⟩ |= λ⟨var⟩.⟨expr⟩

⟨application⟩ |= ⟨expr⟩ ⟨expr⟩

Figure 2.5: BNF grammar for the lambda calculus. Details of the syntax may vary

from one implementation to another.

Functional programming offers some advantages when pure functions are used.
Whenever such functions are called with the same argument, the same result will
always be returned. They have not side effects and no non-local mutable state is
accessed. These attributes help to establish a safe design. More complex behaviour is
safely composed by combining smaller modular functions. In contrast, a function that
modifies a global state may cause errors, when integrating it into a larger system.

The theoretical foundation of functional programming languages is formed by
lambda calculus, which is introduced in the next section.

2.2.1 Untyped Lambda Calculus

Developed in the 1930s by Alonzo Church, the lambda calculus [Chu32, Chu33] is a
Turing complete, formal system of computation. As the grammar in Figure 2.5 indicates,
lambda calculus is a notation centred around anonymous functions (abstractions) and
their application. Despite its simplicity, it is expressive and flexible [AK21].

To disambiguate terms, expressions can be wrapped by parentheses. Apart from
that, function applications are left associative, so that x y z is equal to ((x y) z). Ab-
stractions always extend as far right as possible, if not restricted by parentheses. The
expression λx . y z does not apply z to the abstraction over x. Instead, z is applied to y

before creating the abstraction: λx . (y z)

Abstractions bind a certain variable in its body, the right part after the dot. The
left part is therefore also referred to as the binder. Variables in an expression e are
unbound or free, if they are referenced in e but not enclosed in an abstraction within e

that declares them. For instance, the variable y is free in the expression λx . y. Even
if they are bound to an abstraction, which is outside of the considered scope of the
expression, they are still (locally) free.

2.2. Functional Programming 23

2.2.2 System F With Subtyping

In [Chu40], Church assigned types to all the terms in lambda calculus. That is how
the simply-typed lambda calculus was created.

The syntax is extended with a colon notation to denote that variable x has a certain
type. The following example identity function requires an integer type IntT :

λx : IntT . x (2.3)

Whenever this function is called, the given argument must be of the same type
IntT . This restriction makes the lambda calculus computationally weaker, but allows
for static analysis, for instance to guarantee that a program could evaluate successfully.

However, if a generic function is needed that works on different types, is must
be redefined for each single one of them. System F [Gir71, Rey74, Gir86] solves this
problem by introducing polymorphism with type variables to define functions that can
be used with multiple types. Essentially, lambda calculus is brought to the type level
with type abstractions and type applications. Type-level functions are expressed with
an upper-case lambda: Λ. For instance, the type of the above identity function can
first be abstracted out with the type variable TV :

ΛTV . λx : TV . x (2.4)

Then, this generic function is instantiated with a concrete type by applying a type
as argument:

(ΛTV . λx : TV . x) IntT (2.5)

On this basis, System F-Sub (System F<:) [CMMS91] introduces a notion of subtyp-
ing. This enables flexible control over the types by building a type hierarchy and then
restricting terms to certain parts of the type hierarchy only. A single abstraction can
now be created for a selected group of different types — a subtree in the hierarchical
tree of types.

In a type system, where IntT is a subtype of ScalarT , a function’s integer return
type can be viewed as a simple scalar (covariance). For the input type of a function, it
is the other way around (contravariance) [Cas95]. For instance, if a function accepts all
kinds of scalars for inputs, it can still be applied on more complex subtypes of scalar,
e.g., an integer.

In this thesis, subtyping relationships are denoted with the superscript, e.g., TU

means that T must be a subtype of U.

24 Chapter 2. Hardware Design and Functional Languages

2.3 Term Rewriting Systems

Rewrite rules specify how and under which circumstances one term in a Term Rewrit-
ing System (TRS) is transformed into another term. This mechanism can be used to
replace a term with a better, e.g., more efficient, one. After rewriting, the optimisation
is explicitly encoded in the new term.

In this thesis, the long double arrow x ==⇒ y denotes a rule to rewrite x as y, while
x ==⇒∗ y describes a sequence of rewrites leading from x to y. Rules may also have
an optional condition, written on top of the arrow, to restrict their application. The
following rewrite rule replaces the primitive PrimitiveA by PrimitiveB if the input,
which is fed into the primitive, is sufficiently small:

input ▷ PrimitiveA // required term
if input < 42

=========⇒ // rewrite with condition (2.6)

input ▷ PrimitiveB // rewritten term

After rewriting with this example rule, everything apart from PrimitiveA remains
untouched. In case PrimitiveA occurs multiple times in the given term and the
condition is still satisfied, the rewrite rule can be applied more than once.

Convergent Systems

The optimisations that will be presented in this thesis, consist of at least one but often
an entire set of rewrite rules. In the latter case, rewriting can be non-deterministic, as it
is unclear in which order and how much the rules are applied. This is often unsuitable
for optimisations, because it does not guarantee to yield an actual improvement.

In order to make the rewriting deterministic, either a fixed order must be provided
for each input term and each rule set or, to avoid this complex step, it must be ensured
that the outcome of the rewriting remains independent from the order of the rules.
For this, the TRS must be terminating and confluent and therefore convergent [BN98,
DJ90, Klo93].

2.3.1 Termination

A rewriting system is terminating (also called strongly normalising and noetherian), if
no infinite chain of rewrites exists. All sequences eventually must terminate.

2.3. Term Rewriting Systems 25

t0

t3

t1 t2

* *

* *

For all children of a
common ancestor,

there exists a common
descendent.

Figure 2.6: Confluence in a rewrite graph, where nodes capture a term’s state and

edges represent rewrites. All the paths that diverge from a common ancestor (t0) will

eventually end at common descendent node (t3) [BN98].

In such a system, the term’s normal form, where no rewrite is applicable any more,
can always be reached after a finite amount of rewrite steps. Thus, an iterative rewrite
process always yields a term in normal form, similar to a fixed-point iteration.

2.3.2 Confluence

A rewriting system is confluent, if its terms can be rewritten in multiple ways, e.g.,
different order of rule applications, and still yield the same result. The rewrite graphs
of such systems, as visualised in Figure 2.6, contain the shape of a diamond. When
deriving the terms t1 and t2 from a given term t0 in such a system, a common term
t3 can always be found that joins t1 and t2: ∀t0, t1, t2 . (t0 ==⇒∗ t1) ∧ (t0 ==⇒∗ t2)→
∃ t3 . (t1 ==⇒∗ t3)∧ (t2 ==⇒∗ t3) [BN98]. Thus, a term in a confluent rewriting system
has at most one normal form.

Chapter 3

Related Work

This chapter presents the state of the art relevant to this thesis and discusses how
this thesis addresses the limitations of previous work. In particular, hardware design
approaches and functional representations are covered.

The first section, 3.1, lists specialised implementations for accelerators based on
coarse-grained hardware templates. Section 3.2 describes programming languages
for hardware design. In Section 3.3, higher level approaches to synthesise hardware
are presented. Then, Section 3.4 shows recent work on representations with multiple
levels of abstraction. Related domain-specific languages are discussed in Section 3.5.
Finally, Section 3.6 deals with closely related work. This last section also summarises
the key differences between these and the features contributed by this thesis.

3.1 Monolithic Template-Based Accelerators

Current accelerator research is bursting with new and increasingly efficient implement-
ations based on coarse-grained hardware templates. A large part of it targets machine
learning workloads [HXL+16, QWY+16, SCD+16, WYZ+17], and CNP [FPHL09],
DeepBurning [WXH+16], FP-DNN [GLX+17], PipeCNN [WXJ17], FINN [UFG+17,
BPF+18], MAGNet [VSW+19], to name just a few. The sheer volume of publications
demonstrates the need for FPGA-based accelerators. This section takes a closer look
on a selection of them.

DNNWeaver [SPM+16, MCV+19] is a parameterised generator for deep learning
accelerators for inference with DNNs. It handles various Convolutional Neural Net-
work (CNN) configurations with different input matrix and weight sizes, as well as low
data precision, by adjusting the parameters of the hand-optimised Verilog templates

27

28 Chapter 3. Related Work

accordingly. DNNWeaver’s hardware architecture consists of processing units that
contain many processing elements and a dedicated buffer for convolutional weights.
Each processing element implements multiply and multiply-add operations with its
Arithmetic Logic Unit (ALU).

The input model is specified with Caffe [JSD+14], a framework for deep learning
algorithms with a collection of reference models. This high-level specification is then
translated into Instruction Set Architecture (ISA) code, which is then again compiled
into an execution schedule. After that, the hardware templates are customised and
optimised using a heuristic algorithm. The optimisations range from parallelisation
(e.g., the number of processing elements in a processing unit) over data reuse in the
layers to scheduling and they take the available resources on the target FPGA into
account. DNNWeaver achieves independence from FPGA vendors, by first generating
a generic DRAM interface for the design and later adding device-specific glue between
this and the platform’s actual hardware interface.

Tabla [MPA+16] is a template-based framework to generate accelerators for the
training phase of a class of machine learning algorithms. It exploits the fact that
many learning algorithms can be expressed as solving an optimisation problem, that
minimises an objective function using stochastic gradient descent. The user only has
to specify this objective function in a high-level programming model as the input to
this framework, together with the description of the target FPGA’s available features.
Tabla then uses predefined templates designed by hardware experts to produce a set
of Verilog files for synthesis.

fpgaConvNet [VB16, VB18] is another framework that maps CNNs onto FPGAs.
The user provides a high-level description of the CNN’s layers and the target FPGA
platform. The framework first turns this specification into an Synchronous Data
Flow (SDF) graph, where each node represents a layer. By applying algebraic trans-
formations on this graph, the design space is explored to find the design with the
highest throughput. This optimisation process is based on simulated annealing and
maintains the functional equivalence. It covers coarse-grained parallelism, where
all the layer’s operations are run in parallel, and fine-grained parallelism, where the
dot product is unrolled to be computed in a single clock cycle. Finally, the optimised
graph is mapped to a set of five tuneable hardware building blocks: Sliding Window
Block, Fork Unit, Convolution and Pooling Banks, Nonlinear Bank and Memory I/O
Unit. A synthesisable Vivado HLS design is then generated from these blocks. The
fpgaConvNet framework supports time sharing across the layers. The large CNN is

3.1. Monolithic Template-Based Accelerators 29

partitioned into several parts, which are all run separately on the FPGA. In between,
the FPGA is reconfigured, while intermediate results are held in off-chip memory.

TVM [CMJ+18] takes a model from a high-level deep learning framework, such as
TensorFlow [ABC+16], MXNet [CLL+15] and PyTorch [PGM+19], in the Open Neural
Network Exchange (ONNX) format [BLZ+19] and generates optimised code for CPU,
GPU and FPGA-based back ends. A graph rewriter transforms the program on the high
level to generate variants of the implementation. Low operator-level optimisations are
proposed by a schedule explorer and then automatically selected based on a machine
learning cost model.

Regarding the FPGA back end, a Vanilla Deep Learning Accelerator prototype is
targeted. Inspired by previous accelerators like the TPU [JBB+17], its fixed architecture
is based on a tensor processor for efficient matrix multiplication and convolution.

fBLAS [DMdFLH20] implements the widespread Basic Linear Algebra Subpro-
grams (BLAS) specification for FPGA. This enables the host system to offload common
linear algebra operations, such as the dot product and matrix multiplication, to its
FPGA and accelerate them. There is no need for the developer to write any hardware-
specific code, a simple library call suffices. fBLAS consists of optimised OpenCL HLS
modules, one for each of the BLAS routines. By tuning their parameters, they can
be adapted to satisfy the performance requirements and resource constraints of the
given FPGA. However, if the given algorithms or parts of them do not fit directly to
the implemented functions, the performance degrades. Further optimisations for such
algorithms remain inaccessible, because as a library-based approach, fBLAS is unable
to think outside the ‘subroutine box’ and cannot address the performance deficits from
a higher level.

More generic workloads can be accelerated with [YTT+08] and FPMR [SWY+10].
They bring Google’s programming model MapReduce [DG04] to FPGAs. The func-
tional MapReduce model reduces the complexity of portable (independent of the back
end) and efficient parallel implementations. The user does not have to deal with data
distribution to the processors and their load balancing. Only the task itself must be
specified as a map function and a reduce function in C code. No hardware expertise is
necessary. The generated hardware design of FPMR consists of processors for map
and reduce operations, a processor scheduler and memory controllers. While many
programs can be expressed as MapReduce problems, Shir aims for an even more
flexible function approach that leaves processor-based FPGA implementations behind.

30 Chapter 3. Related Work

Similarly, Fleet [THZ20] takes a user-defined RTL specification of a serial pro-
cessor and integrates it into a massively parallel streaming design for an FPGA. It
automatically instantiates the required copies of the processor and the memory con-
trollers and connects their inputs and outputs. It focuses on token-oriented stream
processing.

Discussion

The performance of the above mentioned approaches is outstanding because they
are specifically optimised for their targeted applications. However, their monolithic
hardware design based on coarse-grained computational kernels limits expressiveness,
maintainability and modularity [BI19]. Although the large-scale HDL templates can
be configured by adjusting parameters, these approaches are overspecialised and re-
stricted to certain application types. The fixed architecture in these designs complicate
the integration of future optimisation techniques.

Research in this field is stuck in a rut [BI19]. Innovative research ideas do not stand
a chance against the dominant programming model, if compared by performance
only. Nevertheless, if the metrics expressiveness, maintainability and modularity are
considered, novel language designs point in a challenging but promising direction.

The framework in this thesis, Shir, follows the path advocated in [BI19] with
functional IRs and fine-grained multi-purpose templates, that can be composed to
implement the desired behaviour. While the use-cases evaluated are currently limited,
the flexible Shir approach is easily extendable to support further workloads in the
future.

3.2 Hardware Description Languages

This section presents different languages designed for hardware design, reaching from
established, commercially used languages to more modern, academic languages. A
special focus is placed on functional languages at the end of it.

3.2.1 Traditional Languages

Formerly ‘very high level’ hardware description languages like VHDL [IEE09] and
Verilog [IEE06] are nowadays considered low level. With these approaches, hardware
is programmed close to the gates.

3.2. Hardware Description Languages 31

SystemVerilog [IEE18] extends Verilog with some more advanced features. The
object-oriented programming paradigm enables inheritance and polymorphism. Sys-
temVerilog supports constrained random testing, as well as assertions, and introduces
a stronger type system than Verilog. Ports can be compactly grouped as interfaces
and hardware modules can be parameterised.

SystemC [IEE12] supports higher-level design stages, such as system-level model-
ling, similar to SystemVerilog. Technically it is a C++ library but it may easily appear
as a programming language. Based on C++, it inherits powerful language constructs
such as templated classes and object-orientation. The simulation kernel of SystemC
enables the design of testbenches and their simulation. To generate hardware, SystemC
is compiled to Verilog using synthesis tools, such as Cynthesizer [Mer08].

3.2.2 Non-Functional Languages

The IRs in Shir are rooted in functional languages. But before diving into related
functional approaches for hardware description in Section 3.2.3, this section provides
a brief summary of less related, other types of HDLs for the sake of completeness.

Lustre [PHP87, HCRP91] and [JYH08, HKM+08, SBWM17] introduce synchron-
ous data-flow languages that can describe hardware systems. In [Edw02, BKS03],
the synchronous programming language Esterel [BG92] is used to specify control-
dominated, concurrent systems. Efficient combinational circuits are generated by
extracting control dependence information from a control-flow graph description.

Lime [ABCR10] is a Java-compatible object-oriented programming language from
the LiquidMetal [ABB+12] project at IBM. It inherits the strong typing and many
other advantageous features from Java. Thus, design of complex hardware systems is
simplified with high-level abstractions, parameterised generic classes, polymorphic
methods and overloaded operators. Unlike Java, Lime provides control at bit-level
granularity, common in HDLs. The compiler transforms Lime code into a task-based
data-flow programming model, which realises coarse-grained pipelining and data
parallelism. This graph is then turned into Verilog code, in case FPGAs are the
targeted platform.

JHDL [BH98] is an object-oriented standard programming abstractions that repres-
ents hardware modules as Java classes. Themeaning of Java’s new keyword for memory
allocation is reinterpreted to the creation of a circuit. Whenever the programmers see
this keyword, they know that area on the FPGA is occupied.

32 Chapter 3. Related Work

Similarly,MyHDL [JS15] leverages the features of an existing programming lan-
guage, Python this time, to facilitate describing hardware.

3.2.3 Functional Languages

Bluespec [Nik08] builds on SystemVerilog and includes higher-order functions. Hard-
ware behaviour is modelled based on states and their modification. The states are
modified using guarded atomic actions. To apply such an action, certain conditions
must be satisfied, which is specified by the guard. Since they are atomic, at no time
there is a partially modified state visible. An action either updates all the relevant
states at once or, if not possible, leaves all of them untouched.

SAFL [MS00] and its extension SAFL+ [SM01] are a Statically Allocated Parallel
Functional Language. As such, they focus on static allocation for all the variables to
fixed storage locations, which is well suited for hardware implementations. This ap-
proach tackles the von Neumann bottleneck by leaving dynamically-allocated storage
behind. Functions in SAFL are always called by value and instantiated at most once.
If a function is called multiple times, it is shared among all its calls with multiplex-
ers and arbiters in hardware. For parallelisation, functions must be duplicated and
distributedly assigned to these calls on the SAFL source code level.

These restrictions lead to some advantages for hardware design. First, SAFL’s strict
evaluation simplifies parallelisation. Second, the occupied area of the circuit is directly
determinable by the length of the program. Basic hardware design decisions, such
as resource sharing and area-time trade-offs, are made straightforwardly accessible
to a high level of abstraction, reducing development time compared to traditional
HDL. Furthermore, an ordered, static schedule for function evaluation can be defined
using let declarations. However, higher-order functions are not supported in SAFL
and the available data types are limited. Once the SAFL program is specified, the
FLaSH compiler [SM00] translates it into structural Verilog via intermediate control
and dataflow graph representations.

HML [LL95] allows to design circuits with a concise notation in the programming
language standard ML [MHMT97]. Its functional basis enables more abstract descrip-
tions with parameterised values and functions. Since the parameters themselves can
be functions, they surpass generics in VHDL. Additionally, the type system is able
to detect hardware design rule violations at an early stage. The compiler hml2vhdl
generates VHDL code from the given HML description.

3.2. Hardware Description Languages 33

Verischemelog [JB00] is an HDL based on Scheme [SDF+09]. It addresses the
shortcoming of Verilog when it comes to generating hardware descriptions. Normally
textual substitution in used in Verilog to achieve parameterised hardware modules.
Verilogscheme provides a macro language for generating hardware designs, which are
then compiled to Verilog for synthesis and simulation.

µFP [She84] is an extension of Backus’ FP [Bac81]. This language combines the
behavioural description as well as the layout of a circuit in one specification. It supports
combinational circuits and, by using a special µ operator, finite state machines. Due to
the algebraic properties inherited from FP, hardware designs in µFP remain concise
and can be manipulated using algebraic laws, which preserves the original program
semantics.

Wired [ACS05] addresses the issue that traditional HDLs veil low-level layout
decisions leading to low quality hardware. Besides the overall behaviour specification,
it also captures precise details of the layout. The size and position of the wires on
potentially multiple metal layers (3D) is encoded in this (impure) functional represent-
ation. When it comes to the output formats, however, this approach falters, as only a
visual representation is produced.

ForSyDe [SJ04] presents a methodology for Formal System Design. In the be-
ginning of the design process, the abstract and formal model is specified in Haskell.
ForSyDe’s process constructors cleanly separate computation and communication. A
formal and transparent refinement process turns the specification into an implementa-
tion optimised for synthesis onto the chosen architecture. This happens in multiple
transformation steps, which introduce the hardware details. While this approach in-
corporates some beneficial concepts similar to Shir, such as the transparent lowering
procedure that we will see in Chapter 5, many other features are missing. For the
conversion into a netlist, only a limited subset of Haskell is supported, excluding e.g.,
let bindings and higher-order functions.

Traditional HDLs lack support for formal verification, so that certain circuit prop-
erties cannot be easily proved. Lava [BCSS98] is an HDL based on Haskell, that
addresses this issue with more abstract and general descriptions of hardware. This
brings functional language features, such as higher-order functions, monads, type
classes and polymorphism to the world of hardware generation. Later, more modern
functional programming techniques and custom data types are brought to this ap-
proach with Kansas Lava [GBK+09]. It also makes larger circuits possible, compared
to Lava.

34 Chapter 3. Related Work

More recently, Chisel [BVR+12] emerged as a hardware construction language.
Embedded in Scala [OAC+04], it inherits powerful capabilities, such as polymorphism
and higher-order functions in its object-oriented and functional programming style.
These advanced features simplify digital hardware development but the circuit is
still described at the low RTL. Chisel contains a high-speed cycle-accurate software
simulator in C++. High-quality Verilog code for synthesis and simulation is generated
from Chisel code using the FIRRTL [LIB16, IKL+17] hardware compiler framework.
FIRRTL optimises circuits in its own IR on the RTL, which also supports user-defined
transformations. If coding in another language is preferred, Magma [Han22] can
describe a circuit in Python. Again, FIRRTL converts this code to Verilog.

CλaSH [SKB10, BKK+10, Baa15] enables a developer to describe hardware circuits
in the functional language Haskell [Mar10]. It offers a high-level abstractions with
polymorphism and higher-order functions. In contrast to traditional HDLs, the clocks
are implicit, which simplifies hardware design. Furthermore, testbenches can be
generated and the defined program can be simulated. To translate the Haskell code
into low-level VHDL, a term rewrite system is employed. This compilation is direct
without any intermediate steps and representations. Thus, no IR exists to expose
design decisions and to provide an interface for optimisations. The design space can
therefore not be explored. For instance, pipelined and spatial parallelism are not
represented in the data types, let alone any kind of memory usage.

Discussion

All in all, these approaches exploit the paradigm of functional programming to increase
the level of abstraction. Some expose hardware details in their high-level language
to provide a convenient yet flexible way for the developer to make low-level design
decisions. Thus, the code size is reduced and the productivity is increased compared
to traditional HDLs.

However, the languages remain relatively low-level and still require programmers
to understand hardware concepts, a major obstacle for non-experts. To improve the
productivity even more, Shir raises the input abstraction to a hardware-agnostic level.
This thesis moreover features a transparent multi-level compiler structure to gradually
add implementation details, which most of the above approaches, except ForSyDe, do
not leverage.

3.3. High-Level Synthesis 35

3.3 High-Level Synthesis

HLS is the process of automatically turning an abstract behavioural specification into
an RTL description for hardware. Several C-to-FPGA synthesis frameworks have
been proposed that compile C/C++ or OpenCL [Mun09] code with annotations into
hardware. On the commercial side, these include Intel’s OpenCL SDK [Int20], Xilinx’s
Software-Defined Development Environment for Acceleration (SDAccel) [GRDT+16],
Xilinx’s Vivado HLS [Xil21], Catapult [Bol08], as well as LegUp [CCA+11, CCA+13],
which originated in academia.

There are many more academic, often open sourced approaches, for instance
CHiMPS [PBD+08], Augh [PBMR14], Dwarv [YKB+07, NSO+12, NSQ+14] and
Bambu [PF13, FCC+21]. The latter is able to target different devices from differ-
ent vendors and automatically generates testbenches for simulation. It makes use of
available OpenMP pragmas to extract coarse-grained parallelism.

These frameworks make a great step towards productivity. They raise the level of
abstraction and allow even programmers without extensive hardware knowledge to
design accelerators. Existing code for CPUs can be reused for HLS and then executed
on an FPGA with a much higher efficiency.

However, extracting parallelism from such imperative descriptions is a great burden
for HLS compilers. These software-oriented languages are not well suited to describe
hardware with coarse or fine grained parallelism and distributed memory. At the same
time, dynamic memory management, pointers and recursion in software code further
complicate the HLS process. To achieve high performance, the compiler requires
additional clues in the from of hardware-specific manual optimisations [NSP+16].
Developers have to annotate the code with pragma directives to fix certain hardware
implementation details. On top of that, these directives are often vendor-specific,
which hinders HLS code portability across different vendors.

MoremodernHLS approaches aim at addressing these issues. Roccc [VPNH10] and
Kiwi [SG08] offer more convenient ways for the developer to explicitly communicate
the parallel architecture by introducing dedicated constructs. Their generated code is
competitive with a manual implementation and independent from the targeted device.

HeteroCL [LCH+19] helps the developer by decoupling algorithm and hardware-
specific customisation. In the code, the bit-accurate data types with quantisation,
computation architectures and memory usage is kept separate from the main computa-
tion. Its Domain Specific Language (DSL) is python-based and extended from the TVM

36 Chapter 3. Related Work

framework [CMJ+18]. The compilation process uses the Merlin compiler [CHP+16]
and is fully automated for various platforms, including FPGAs. Generally HLS code
is generated but HeteroCL features two advanced back ends, SODA [CCWZ18] for
stencil patterns, and the PolySa [CW18] back end for systolic array architectures.

The portability of HLS code suffers from vendor-specific C dialects and pragmas.
AnyHLS [ÖPGM+20] addresses this problem by raising the abstraction level with
portable (higher-order) functional abstractions to describe the algorithm. The source
code of AnyHLS is free from vendor-specific pragmas and separated from its hardware
implementation. This approach extends the AnyDSL compiler framework [LBH+18]
to perform partial evaluation and to generate optimised code for Intel and Xilinx HLS.

According to [GLC+20], the performance of hardware created by HLS is impaired
by timing issues, which force the clock frequency to be lowered. Existing tools do
not provide helpful feedback to improve the timing and the HLS code itself does not
expose the required details for this. It is difficult for developers to notice the potentially
disastrous impact of ‘innocent-looking software code on the timing of the synthesised
hardware’ [GLC+20]. The authors identified broadcast structures with high-fanout
signals and long critical paths as the origin of timing issues in HLS tools and present
techniques to address them.

Dahlia [NAT+20] identifies further pitfalls in HLS approaches. Black-box heur-
istics in industrial HLS tools often lead to unpredictable results and allow too little
insight to understand and fix a potential performance problem. A small modification
of a parameter in the code can cause drastic changes to the hardware implementation.
Design decisions that are supposed to improve the performance can counterintuitively
degrade it. This makes hardware design difficult for the programmer.

In order to improve the predictability of HLS processes, Dahlia proposes a type
system that restricts the programs to the ones with a predictable compilation only.
Thus, the programmer regains control over design decisions. There is no randomness
in Dahlia’s HLS and the source code directly indicates what the generated hardware
will look like. This method limits the exploratory range in the design space, so that
only a subset of architectures that are supported by HLS can be expressed. However,
Pareto-optimal designs are still found.

A key mechanisms to achieve predictability in Dahlia is its time-sensitive affine
type system. Consumable hardware resources, such as memory ports, are modelled
in a way that they can be used at most once (affine) at a time (time-sensitive). Any
temporally conflicting access to these resources must be avoided in the program code.

3.4. Multi-Level Representations 37

Even though the authors strongly argue against using a ‘legacy software language’,
their tool still compiles to HLS C++ code. As mentioned above, it improves the
predictability of HLS but the ‘results can still vary’ depending on what the black-box
HLS tool decides [NAT+20].

Discussion

The above mentioned approaches are witness to the fact that there are general flaws in
HLS with regards to predictability [NAT+20], portability [ÖPGM+20] and separation
of concerns [LCH+19] (e.g., algorithm and optimisations). Furthermore, [JKLL20]
mentions bugs and unsupported features. In comparison to hand-written HDL code,
HLS approaches deliver lower performance [SWLR13, WBC13] and attain lower clock
frequencies due to timing issues [GLC+20]. In [SWLR13], a hardware expert achieves
61% of the performance with one third of the effort using HLS, compared to manual
coding in a HDL. A remaining performance gap of 3.8× for HLS approaches compared
to hand written code is stated in [WBC13].

Shir takes a fundamentally different path. First of all, the problems emanating from
legacy software languages are dodged by using a functional IR. As discussed before
in Chapter 1, functional programming is better suited to describe hardware systems,
due to their commonalities. In addition, Shir’s compiler targets low-level RTL code to
become independent from the monolithic, closed-source HLS tools once and for all.
To separate algorithmic specification, optimisations and hardware-specific aspects,
Shir features a multi-level IR. It raises the entry-point programming abstraction to a
hardware-agnostic level, usable for non-hardware experts. Device-specific and vendor-
specific details are introduced as late as possible, on the lower levels of the multi-level
IR. Each of the levels exposes different hardware details and enables rewrite rules to
automatically optimise the design. This optimisation process is transparent and the
developers can comprehend how a certain implementation was created. Finally, Shir
is able to deliver competitive performance despite its high-level abstraction, as the
evaluation of this thesis shows.

3.4 Multi-Level Representations

Compilers can quickly become complex and unmanageable. To simplify their design,
the compilation flow can be broken down into a series of more manageable lowering
steps through multiple IRs. A structure like this is extensible and makes individual

38 Chapter 3. Related Work

parts, e.g., optimisations, reusable among various frameworks, reducing the develop-
ment costs of compilers.

LLHD [SKGB20] is a three-level IR spanning over the entire low-level design flow
of digital circuits. This project aims at providing a foundation for novel HDLs, moving
away from the monolithic, vendor-specific, proprietary implementations of System-
Verilog and VHDL language standards. LLHD is able to capture behavioural, structural
and netlist descriptions and comes with the corresponding lowering passes between
these IRs. The work in this thesis addresses a higher level part of the accelerator
design process. Shir currently targets VHDL but future work can interface with other
LLHD-based back ends.

Recently,MLIR [LAB+20, LAB+21] has been initiated as a subproject of the LLVM
compilation framework [LA04]. It provides a unifying compiler infrastructure with
multiple IRs on different abstractions levels to simplify compiler development. To
create a new IR for this infrastructure, a custom dialect with its own set of operations
and types must be defined. An IR is lowered by applying transformations in Multi-
Level Intermediate Representation (MLIR) that turn one dialect into another one. There
already are a couple of MLIR dialects, for instance an LLVM IR to generate CPU and
GPU code, an IR for TensorFlow [ABC+16] graphs, an HLO (High Level Operations)
IR as input for the XLA (Accelerated Linear Algebra) compiler, an IR for structured
control flow, an affine dialect for polyhedral optimisations and a ‘linalg’ dialect for
operations on tensors and buffers.

Discussion

Shir’s infrastructure shares many ideas of MLIR. Similar to MLIR’s tensors, Shir
models high-level data in multidimensional arrays. Both compilers lower these into
more hardware-related types like vectors for SIMD tasks or ramarrays (memrefs
in MLIR) for buffering. The development of Shir started before MLIR has gained
traction. The MLIR infrastructure was therefore not available as basis of Shir’s IRs.
Nevertheless, the contributions in this theses could as well be ported to MLIR by
adding new dialects and lowering passes to the framework. The work [LSS21] has
proven the viability of ‘integrating a functional pattern-based IR into MLIR’. The
project is based on the functional language Rise [HLK+20], a spiritual successor of
Lift [SFLD15], with common data-parallel patterns.

In the end, building on the MLIR infrastructure remains an implementation detail,
orthogonal to the novel concepts introduced by Shir.

3.5. Domain-Specific Synthesis 39

3.5 Domain-Specific Synthesis

This section presents HLS frameworks for applications from a particular domain only.
Spiral [PMJ+05, MFHP12, SP19] is a domain-specific hardware generation frame-

work for linear signal processing transforms. It presents a high-level mathematical
formalism to represent the input algorithm. By rewriting or transforming it, the design
space is automatically explored and the algorithm is finally compiled into synthesisable
Verilog code for FPGAs and ASICs. Similar to Shir, it supports a similar notion of
stream-based data to enable pipelining and it applies rewrite rules for optimisation.

There are numerous domain-specific approaches to accelerate image processing on
FPGAs, for instance Darkroom [HBD+14], Rigel [HDD+16] and topically Halide-

HLS [PBY+17]. The latter is based on the popular image processing programming
language Halide [RKBA+13]. It presents an end-to-end system from domain-specific
Halide code to FPGAs, extending the available two target platforms CPU and GPU
with a third one. Apart from the bitstream, this approach also generates the software
program to interface with the accelerator. HeteroHalide [LCC20] shares themain idea
but offers a more up-to-date implementation with an improvement in throughput. For
the compilation, it employs HeteroCL [LCH+19], previously mentioned in Section 3.3,
as an IR to generate the hardware designs for the different back ends.

Discussion

The principal difference of these approaches in comparison to Shir is that they are
not extensible. The integration of the latest optimisations for novel algorithms is
complicated. On the other side, Shir aims for a domain-extensible IR to support high-
performance accelerators for various workloads. Its multi-level IR and the rewriting
concept facilitate the extension with new abstractions and rewrite optimisations,
as well as back ends for a wider range of hardware platforms. As the authors of
[KS21] have demonstrated, domain-extensible approaches even manage to outperform
domain-specific ones, when provided with additional optimisations in the form of
composed rewrite rules.

40 Chapter 3. Related Work

3.6 Higher-Level Synthesis

This sections details the most closely related work, which starts at a higher level of
abstraction than HDLs and traditional HLS approaches, is not limited to a specific
application domain and is independent of black-box HLS toolchains.

Glenside [SLL+21] introduces a pure functional IR with access patterns to express
data layout transformations. This addresses the identified gap in current machine
learning IRs that term rewriting only works well on pure functional high-level rep-
resentations. The authors claim that low-level, typically impure, memory usage and
optimisations, such as operator fusion, hamper rewriting techniques. In fact, low-level
IRs and rewrite rules for optimisations function well together, as shown by Shir. Also
hardware-level memory details can be extensively expressed in a pure functional IR.
Shir’s multi-level approach furthermore cleanly separates the rewrite optimisations
on different levels of abstraction.

Glenside circumvents the issues of implicit repetitions by avoiding name binding,
as in lambda abstractions, and higher-order functions altogether. This, however,
prevents the programmer from using well-known functional patterns, e.g., Map, and
puts the additional task of choosing the right access patterns on the programmer’s
shoulders. Moreover, this requires the definition of specialised operators like cartProd
(similar to SkelCL’s allpairs [SFAG14]), reduceSum and dotProd in the Glenside IR.
In contrast, the IRs in Shir support lambdas and higher order functions, which enable
the programmer to specify arbitrary programs on any dimensional data in a familiar
way with only a few common functional primitives. Operators, such as the dot product,
can be created on the fly by combining generic Map, Mul, Reduce and Add primitives.
No additional specialised operator is needed. Furthermore, Glenside does not generate
hardware designs but rewrites the program to match a predefined architecture, not
exploiting the flexibility of the FPGA. They neither discuss how expensive operations
like transposition could be achieved in hardware, nor show any performance results.

The advantages of a strongly typed functional IR for hardware design have recently
been shown by TyTra, Lift-hls and Aetherling. Similar to Shir’s vector and stream
types, they feature space- and time-aware types to express parallelism and pipelining
on a high level of abstraction. Moreover, they raise the abstraction level for the
programmer and offer a hardware-agnostic entry point. Rewrite rules optimise their
hardware implementations.

3.6. Higher-Level Synthesis 41

TyTra [NV15, NV16, NV19, VNU19] presents a compiler framework that automat-
ically turns a given application into an optimised hardware design. To explore the
space of FPGA-specific optimisations, it applies type transformations, hence the name
TyTra. These transformations produce program variants with different performance
and resource utilisation.

TyTra contains a functional coordination language, TyTra-CL, that is used to
describe the netlist of a given input program [VNU19]. It includes declarations of
functions and input vectors, while their implementation is not required. TyTra-CL is a
subset of Haskell but it uses dependent vector types. It offers common higher-order
functions, such as map and fold. This raises the abstraction level for the programmer or
other high-level language compilers that target TyTra. The work in [NV19] particularly
contributes an automated flow to compile legacy Fortran code into an optimised FPGA-
based accelerator, where the implementation is automatically pipelined and vectorised.

TyTra’s types are capable of expressing various design variants with different kinds
of parallelism. For example, the functionality of a map primitive can be interpreted in
three different ways, with a parallel, sequential or pipelined implementation. Similarly,
a reduction operation is either implemented sequentially or as a tree. The resulting
designs of TyTra’s transformations are correct by construction and provably implement
the identical functionality.

In order to estimate the area utilisation and throughput of the generated variants,
they are first compiled from TyTra-CL to the TyTra-IR, a strongly and statically typed
intermediate language. This IR is based on the LLVM IR and contains extensions
for FPGA-specific details. Computation is described using Static Single Assignments
(SSAs). A cost model now parses and analyses the compiled TyTra-IR variants to
obtain quick performance estimates before synthesis. Code generators, such as the
TyTra Back-End Compiler (TyBEC), emit Verilog code for hardware synthesis from
the best design variant.

The applications of TyTra focus on streaming programs and originate from the
scientific computing domain, such as numerical weather prediction and climate simu-
lation. In contrast to Shir, algorithms, such as matrix multiplication and convolution,
are not evaluated, leaving open how the data reshaping challenges therein are tackled.

Lift-hls [KBSD19] targets FPGAs from the data-parallel, functional language
Lift [SFLD15]. Its evaluation focuses on matrix multiplication. This application brings
many challenges, as shown and addressed in Chapter 6. To circumvent the data
repetition issue of functional IRs, Lift-hls implements a work-around for matrix mul-

42 Chapter 3. Related Work

tiplication, but does not address this issue generally. It cannot repeat data without
buffering it in on-chip memory and, thus, cannot implement a low-area matrix multi-
plication version, where the input data is directly streamed from host RAM only, for
example. In contrast, Shir provides a generic solution for data reshaping based on
automated rewrite rules. It reaches more different points in the design space of matrix
multiplication, as the evaluation in Section 7.3 will show. Furthermore, Shir is able to
transpose and slide data, as needed for tiling and convolution, which is not supported
by Lift-hls at all.

Some limited support for memory operations is provided by Lift-hls. To move data
to and from the FPGA, it relies on an ad-hoc approach and does also not discuss how
this is achieved. Based on the LetStream primitive on-chip buffering can be realised,
however, there is no way to express what kind of memory is used and how resources
like memory are shared among multiple clients. In contrast to Shir, Lift-hls does not
automatically identify data reusage in the IR and insert buffers where needed.

The authors of this related work do not discuss how to automatically vectorise the
dot product and how to scale the memory width accordingly, although this is anything
but trivial as the many rewrite steps in Sections 6.1 and 6.3 indicate. Furthermore, tiling
is achieved by the host only, whereas Shir accumulates the tiles on the FPGA itself in a
reduction of a 2D stream. The vectorisation in Lift-hls remains limited but reasonable,
considering the size of the FPGA. However, on more powerful devices, a higher level of
parallelism is possible, which in turn brings its own set of problems. A large reduction
tree, for example, causes long propagation delays, too long to be handled in a single
clock cycle, so that pipelining is required. As we will see in Section 6.7, an optimisation
in Shir addresses this issue automatically to enable a parallel dot product on huge
vectors.

All in all, despite the many commonalities, Shir is more sophisticated and flexible
then Lift-hls with regards to handling memory and optimising the implementation.
Performance issues are more generically addressed in Shir. The set of evaluated
algorithms is larger and is run on a more powerful but also more complex Intel
Arria 10 FPGA, which is found in industry use-cases.

Aetherling [DFH+20] generates hardware designs with different throughput-area
trade-offs by choosing between sequences over space (SSeq) and over time (TSeq).
This approach starts with a hardware-agnostic data-parallel input language, which
is transformed into their space-time-aware IR using rewrite rules. Within this step
the design is either fully parallelised or fully sequentialised. For partially-parallel

3.6. Higher-Level Synthesis 43

implementations, an additional set of rewrite rules is involved, which operates on
the input language. That way, hardware design decisions are encoded in the input
specification. In contrast, Shir’s algorithmic representation does not contain any
information about parallelisation. These details are only introduced at the lower level
IRs, that are made for this very purpose.

Aetherling builds on statically-scheduled hardware modules and does not support
variable-latency operators and therefore any kind of asynchronous or blocking com-
munication. However, these are necessary when targeting a real FPGA, because the
timing of the DMA interface to exchange data between host memory and accelerator
is non-deterministic.

Similar to Shir, this approach inserts registers into signal paths with long propaga-
tion delays to maintain high clock rates. Nevertheless, the authors do not discuss how
exactly this is achieved.

Aetherling has presented results on a larger set of applications compared to Shir.
However, they have only demonstrated results in simulation using a simple memory
model and have not discussed how memory would be handled on a real hardware
platform. In contrast, this thesis evaluates matrix multiplication and 2D convolution,
which bring some major challenges, for example, the repetition and transposition of
streams. Moreover, all the designs produced are run on a real FPGA.

Delite [SBL+14] is a compiler framework that aims at simplifying the development
of Scala-embedded DSLs. Existing DSLs include OptiML for machine learning, OptiQL
for data querying, OptiGraph for graph analysis and OptiMesh for mesh computation.
Delite provides reusable common components such as functional parallel patterns,
optimisations and code generators, as well as constructs to define custom IRs. The
output of the compilation is C++, OpenCL or related program code, which inherits
HLS-related issues, as mentioned above in Section 3.3.

Nevertheless, [GLN+14] extends Delite by an automated methodology ranging
from high-level programs in DSL to FPGA bitstreams. Given an input program based
on parallel computation patterns, a hardware design with multiple kernels is generated.
These are integrated into a fixed system architecture template, which dynamically
schedules them and dynamically manages the system’s memories. The template hides
the memory implementation, which prevents memory-specific optimisations. This is
unlike Shir, which exposes them in its IR and is able to optimise them by applying
high-level rewrite rules.

The scheduling of the generated kernels is controlled by a soft-core processor,

44 Chapter 3. Related Work

which occupies additional logic on the FPGA. This contrasts with Shir, which relies on
a static schedule, so that no such controller is required. The architecture template used
in [GLN+14] furthermore contains a globally shared on-chip buffer for all the kernels,
which creates a von Neumann-style bottleneck. Apart from that, an architecture with
one central, large on-chip memory undermines the advantages of the block RAM’s
distributed nature. This may lead to routing problems for larger designs.

Further extensions of Delite are presented in [KDP+16, PKB+16]. Their FPGA back
end emits optimised MaxJ [Tec11] code, a low-level Java-based hardware generation
language for FPGAs. The work [PKB+16] in particular introduces a compiler with
transformation rules to automatically pipeline and parallelise operations or to insert
on-chip buffers for locality. The extension in [KDP+16] allows to lower the high-level
parallel constructs from Delite into Delite Hardware Definition Language (DHDL), an
embedded domain-specific language in Scala. DHDL exposes details about parallelism,
locality and memory in an internal dataflow graph IR. This graph is analysed to provide
quick area and throughput estimates. Each node in the dataflow graph represents
a certain functionality, which is associated to a parameterisable architectural tem-
plate. These templates implement basic operations, memory access and controllers
for pipelining and parallelisation. The approach is evaluated on multiple algorithms
including the dot product and matrix multiplication.

Nevertheless, the work [KDP+16] differs from Shir in the following aspects. Delite
has more coarse-grained hardware templates. However, finer building blocks can
be more flexibly composed to realise different implementations of the algorithm.
For example, to load and store tiles in Delite, the primitives TileLd and TileSt are
used, while Shir achieves this behaviour based on the combination of more standard
primitives Map, Read and Write. Small templates for more fundamental operations
enable more generic rewrite optimisations. In case there was a rewrite rule to optimise
all Map implementations, it would also affect the tiling in Shir. However, in Delite, the
TileLd primitive in Delite would require an additional, specialised rewrite rule.

Spatial [KFP+18] ties in with Delite in that it provides a higher level of abstraction
for performance-oriented hardware accelerator design. However, it is more tailored
to improve the productivity of hardware developers instead of automating the entire
hardware design flow all the way from the algorithm. The language of Spatial is
concise and contains hardware-specific abstractions, including interfacing with the
host machine and memory management through a library of on-chip and off-chip
memory templates.

3.6. Higher-Level Synthesis 45

The compiler of Spatial generates optimised Chisel [BVR+12] code, ready to be
synthesised for various FPGA architectures of different vendors but also the Plasti-
cine [PZK+17] Coarse-Grained Reconfigurable Array (CGRA). During this compilation,
the implementation is automatically pipelined and memory access is parallelised by
using multiple banks for example. The design space is automatically explored by the
machine learning framework HyperMapper [BNZ+16].

In comparison to approaches based on Delite and Spatial, Shir is more transparent,
exposing various hardware details on different levels of abstraction in a multi-level
IR. The functional foundation of these IRs facilitates employing rewrite rules for
optimisation. The type system of Shir exposes fundamental design decisions by
distinguishing between stream, vector and ramarray types, which Delite and Spatial
do not offer. Furthermore, Shir presents a mechanical lowering procedure, while
Delite does not discuss how arbitrary hardware-agnostic algorithms are mapped to its
coarse-grained hardware templates.

Summary

As shown in Figure 1.1b in the introduction, the workloads for accelerators are rapidly
evolving. The number of publications in this research area is growing exponentially.
It is not surprising that several contributions evince similarities with Shir. Some
of the related work, such as Aetherling [DFH+20], was even developed at the same
time. They share the same goal to improve the productivity of accelerator design with
higher-level (often functional) approaches.

Besides many similarities, there are also differences to Shir. Previous related work
comes short of providing at least one of the following features:

Number of IR Levels A variety of IRs enabling rewrite rules (or similar mechanisms)
to optimise the design on different levels of abstraction.

Hardware-Agnostic IR A hardware-agnostic entry point for the user or front end,
making the framework accessible for non-hardware experts or tools.

Stream- & Vector-Like Types A representation of streams and vectors (or a similar
division of types) to express pipelining and parallelism on the type level.

Memory-Aware IR A representation capable of expressing access to the diverse
memories found on common FPGA platforms.

46 Chapter 3. Related Work

Table 3.1: Features of Shir, the framework developed in this thesis, and closely related

work.

Features Optimisations Applications

Framework Nu
mb
er
of
IR
Lev

els

HW
-A
gn
ost
ic I
R

Stm
& V

ec
Ty
pes

Me
mo
ry-
Aw
are

IR

Str
eam

Re
pet
itio
n

Tra
nsp

ose
& S

lid
e2D

Stm
-Ve
c C
on
ver
sio
ns

FP
GA

Ev
alu
ati
on

Ma
trix

Mu
lt.

1D
Co
nv
.

2D
Co
nv
.

Shir 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Glenside 1 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

TyTra 1 ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Lift-hls 2 ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

Aetherling 2 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Delite 1 ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

Spatial 1 ✗ ✗ ✓ — manual — ✓ ✓ ✓ ✓

Optimisations Automatic rewrite rules to parallelise the design, insert buffers and
address the data reshaping issues present in functional IRs.

FPGA Evaluation An evaluation using a real FPGA device taking physical effects,
such as signal propagation delay, into account proving that the approach in
viable. This includes the implementation of ways to communicate with the host
machine, e.g., via DMA.

Applications A set of evaluated algorithms that involves data reshaping and requires
the above mentioned optimisations for decent performance.

Table 3.1 provides a feature table that shows the limitations of state-of-the-art
related approaches for higher-level synthesis.

As can be seen, Glenside [SLL+21] has a single IR for the hardware-agnostic
description of the algorithm. To generate an implementation for matrix multiplication,
which is not run on an FPGA, it introduces a dedicated primitive to circumvent the
challenge of creating the cartesian product of streams, but does not solve it generically.
Instead of naively computing convolutions, it maps them to matrix multiplications
only.

3.6. Higher-Level Synthesis 47

TyTra [NV15] has a sophisticated type system to express pipelining and parallelism.
The compiler targets a real FPGA. However, the workloads from Shir are not supported.

Lift-hls [KBSD19] introduces a two-level structure with one hardware-agnostic IR
for the algorithm and another one closer to the hardware. It manages to implement
matrix multiplication on an FPGA with a non-generic work-around for the data
repetition. The challenges around transposition or sliding windows are left untouched,
which is why convolution cannot be realised.

Similarly, Aetherling [DFH+20] comes with space and time data types and an
analogous division into two abstraction levels. It has not support for repetition of
streams, transposition and is therefore unable to encode matrix multiplication or
2D convolution. Its use-cases are centred around much simpler one-dimensional
convolution, which are, however, only run in simulation.

Delite [KDP+16] provides none of the data reshaping optimisations but has some
limited representation of memory in its IR. It compiles matrix multiplication for FPGA
but does not evaluate convolutions.

Spatial [KFP+18] is able to express data reshaping operations, but since there are
no hardware-agnostic primitives, it is up to the user to perform all the optimisations
manually. Identically, memory operations are made available in the IR but they
require hardware expertise to handle them efficiently. Spatial already includes key
performance decisions at its highest abstraction level, where Shir only focuses on the
algorithm itself.

Part II

Contributions

49

Chapter 4

Multi-Level Representations

The main goal of this thesis is to produce optimised FPGA code from an input spe-
cification in a high-level functional language. First of all, this requires the definition
of such a language but also an automated compilation process with optimisations to
generate the desired hardware design.

As motivated in Chapter 1, a multi-level IR approach simplifies the compiler
design by applying the principle of separation of concerns. Each IR has a certain
function in the compiler flow. Depending on its abstraction level, different features
are exposed. The input algorithm is specified on a very high-level hardware-agnostic
abstraction, where no hardware design decisions have yet been made. Only the
lower level abstractions gradually introduce hardware concepts, such as pipeline or
spatial parallelism, buffering strategies and how to exploit special hardwired functions
on the target platform. Once new features are exposed in an IR, they can be used
and optimised for the given use-case. The functional design of the IRs enables easy
transformations, for lowering and optimisation purposes, using simple rewrites. The
output after the compilation is VHDL code suitable for FPGA synthesis. This kind of
low-level representation provides the flexibility needed and enables the compiler to
specify all the details in the hardware design.

In a more extensive accelerator design process, the input specification of the
compilation can be provided by a high-level framework or a tool that maps existing
legacy code to parallel patterns, as in [GRS+18]. The algorithmic specification then
acts as an intermediate language and is therefore also considered to be an IR.

In this thesis, the overall framework with its IRs and the compiler are referred to
as Shir. The compiler flow through Shir’s multi-level IRs is depicted in Figure 4.1.
Each of these IRs is individually presented in this chapter.

51

52 Chapter 4. Multi-Level Representations

Functional IRs

Architecture Level

Hardware Back End

Algorithmic
Level

Optimisations

Abstract
Memory

Level

Optimisations

Hardware
Memory

Level

Optimisations

Device-
Specific

Level

Optimisations

Dataflow
Level

VHDL
Level

Figure 4.1: IRs in the Shir compiler from algorithmic code to VHDL code. The complex

compilation is split into many simple and more manageable steps (solid edges),

that will be shown in Chapter 5. The first IRs employ the functional programming

paradigm, where rewrite-based optimisations (dashed self-loop edges) are easily

supported. Chapter 6 will explain these optimisations.

First, Section 4.1 gives an overview of how a simple example program is represen-
ted on Shir’s various levels of abstraction. Then, the Shir core language is introduced
in Section 4.2, which all of the IRs in the Shir compiler are based on. After that, the
individual IRs are presented in Sections 4.3 to 4.7, going from high-level abstractions
to lower level ones. Section 4.8 deals with dataflow graphs, a more hardware-like rep-
resentation, and another IR for actual VHDL code generation. Section 4.9 summarises
the design choices and benefits of Shir’s multi-level IR structure.

4.1 Overview

Before diving into the IRs, a brief example illustrates how a simple program ‘sum of
an array’ is represented at the first three abstraction levels.

At the Algorithmic Level, programs are represented in a hardware-agnostic way
using common built-ins such as Map, Reduce or Zip. They can be generated from
external tools or manually written by a programmer. Here, the sum of an array is as
in expression (4.1), where Input<IntT(32),N> simply represents an input array of N

32-bit integers which will be allocated in memory.
When the input algorithm is provided to the compiler, it is first lowered to the

Architecture Level, where architecture design decisions are made. These affect the
performance, for instance, if the level of parallelisation is increased. More specifically,
the Abstract Memory Level exposes memory operations. The ‘sum of an array’ example
on this level is shown in expression (4.2).

4.1. Overview 53

Input<IntT(32),N> (4.1)

▷ Reduce(Add,ConstInt<0>)

(a) Algorithmic Level.

Let mem = MemAlloc<HostRamT, IntT(32),N> in (4.2)

Counter<0,1,N>

▷ MapStm(Read(mem))

▷ ReduceStm(Add,ConstInt<0>)

(b) Abstract Memory Level.

Let rdCtrl = λr . r ▷ ReadHostMemCtrl in (4.3)

Counter<0,1,N/16>

▷ ReadAsync(rdCtrl,ConstInt<0>)

▷ MapStm(SplitVec<32>▷ VecToStm)

▷ JoinStm

▷ ReduceStm(Add,ConstInt<0>)

(c) Hardware Memory Level.

Figure 4.2: Representations at three different levels for the program ‘sum of an array’.

54 Chapter 4. Multi-Level Representations

As a first step in expression (4.2), host RAM for the program’s input is allocated. A
counter generates a stream of addresses from 0 to N-1. Then, a sequential implementa-
tion of map, namely MapStm, is used to call the Readmemory function for each address.
This function reads the memory mem at the given indices. The MapStm outputs a stream
of data that is reduced to produce the sum. For the sake of simplicity, the details about
the program’s output are omitted in this example, but a similar process takes place
where explicit write operations are performed. While no specific hardware details are
yet exposed in the IR, memory operations are now explicit. This abstraction makes it
easy to introduce memory usage into the design and enables simple memory-related
optimisations, as Section 6.2 will show.

The Hardware Memory Level is a lower IR level and exposes all the hardware
features directly, as shown in expression (4.3), allowing an easy translation to VHDL
code. During lowering, a ReadHostMemCtrl function is inserted in place of the abstract
MemAlloc concept. This read controller is directly connected to the DMA engine on
the FPGA. The ReadAsync expression takes the read controller and the base address
ConstInt<0> of the input data allocation in memory to process the incoming stream
of offsets produced by the counter. The static value for the base address is determined
by the compiler in a separate step.

Compared to the previous level, the Hardware Memory Level has two major
differences: First, ReadAsync asynchronously requests data from the hardware DMA
controller. As explained in background Section 2.1.2, this controller responds at a later
time with the desired data. Since the controller accepts multiple pending requests,
an asynchronous read takes a stream of offsets as an input, which are requested
concurrently.

Second, as is the case with many accelerator devices, the granularity of a transfer
between host and device has a fixed size. This can, for example, be a 512-bit wide
vector, a cache line of the host’s CPU. To read N 32-bit values, for example, only N/512

32

cache lines are needed. The ReadAsync primitive returns them in a stream. As seen in
expression (4.3), this data is reshaped with a SplitVec into pieces of 32 bits. Finally, a
JoinStm is used to merge the two outer dimensions of the stream and produce a single
stream of 32-bit integers that are fed into the reduction.

This example has shown how different levels of abstraction for the same program
expose different hardware details. While higher levels are more concise and easier to
(re)write, they only offer limited control about the resulting hardware implementation.
Once a certain higher IR is optimised, it is lowered to the next representation, to make

4.2. Core Abstract Language 55

more hardware details accessible, which are then again optimised. That way, the
compilation and optimisation processes are kept as simple as possible, because they
operate only on the features that are necessarily exposed in a specific IR. For instance,
due to this multi-level IR design, the programmer does not have to deal with low-level
concepts like cache lines, when defining the algorithm or when a simple buffering
strategy is employed.

4.2 Core Abstract Language

The implementation of the Shir framework is embedded in Scala [OAC+04]. This
specific programming language is not required but it provides modern features like
pattern matching that help implementing compiler passes and rewriting mechanisms,
which are needed in Chapters 5 and 6.

The core of the Shir language and the high-level algorithmic primitives are in-
spired by Lift [SFLD15], a functional, data-parallel language based on typed lambda
calculus. The major difference is the support of subtyping, in the style of System Fwith
subtyping, System F<: [CMMS91], as shown in Section 2.2.2. This allows to constraint
the use of data types and their composition. As will be explained later in Sections 4.4.2,
4.4.3 and 4.5, certain nestings of types must be forbidden. Such restrictions are easy
to implement via subtyping. Furthermore, this mechanism enables building up new
constructions within the language, while the unified type system confirms that the
implementation’s types are correct.

Core Types

All types in Shir are implemented as classes in Scala. Their constructors are referred to
as type constructors. The object orientedmanner of the type implementations facilitates
extensions to new types, without requiring any modification of the core type system.
When dealing with subtyping relationship, the type constructors’ arguments are all
covariant except for function types, where it is contravariant in its input type (see
Section 2.2.2).

Figure 4.3 shows the Shir core type hierarchy. The root of the hierarchy is AnyT .
Classes implementing this trait represent any type. To denote a more specific type,
a subclass of this trait must be implemented instead. These subclasses are separated
into value types and meta types, which are explained below.

56 Chapter 4. Multi-Level Representations

AnyT

ValueT MetaT

DataT FunT TypeFunT NatT

Figure 4.3: Type hierarchy of the core language.

Data and function types both are value types. Hence, they are taken as input to, or
returned by, functions. Common data types, like integer, represent the main values
for the computation, i.e., data at runtime. These specific types are not part of the core
language and only introduced in the IRs in Sections 4.3 and 4.4.

The function type constructor is FunT(inTValueT ,outTValueT) where inT is the
function input type and outT its output type. The superscript denotes a subtyping
relationship, i.e., inT must be a subtype of ValueT . From now on in this thesis, the
function type is represented as: inT → outT .

To represent meta-information embedded inside other types, the meta type is
used. In the core language, the only concrete meta type is NatT , the type representing
natural numbers. As we will see in the following sections, this type is used to specify
the length of arrays (or other collections). Unlike value types, meta types have static
values that are known during compile time.

Generic (or templated) functions are implemented using type-level functions. The
type-function type constructor takes a type variable TV , subtype of T , and a return
type U where the type variable can appear: TypeFunT (TVT , U). The corresponding
short form notation is TVT 7→ U.

Going beyond defining functions with specific types, type-functions allow to
generalise these to work with a variety of types. Instead of defining a concrete
function that, for instance, takes an integer and returns an integer, integer→ integer,
a more generic function can now be expressed: TVDataT 7→ TV → TV . In plain English
this means: Given a type variable TV , which is a subtype of DataT , a function is
obtained that takes something of type TV and returns something of the same type.

4.2. Core Abstract Language 57

⟨expr⟩ |= (⟨expr⟩) | ⟨Param⟩ | ⟨Lambda⟩ | ⟨FunCall⟩ | ⟨Let⟩ |

⟨Primitive⟩ | ⟨TypeLambda⟩ | ⟨TypeFunCall⟩

⟨Param⟩ |= identifier

⟨Lambda⟩ |= λ⟨Param⟩.⟨expr⟩

⟨FunCall⟩ |= ⟨expr⟩(⟨expr⟩)

⟨Let⟩ |= Let ⟨Param⟩ = ⟨expr⟩ in ⟨expr⟩

⟨Primitive⟩ |= identifier

⟨TypeVariable⟩ |= identifier

⟨TypeLambda⟩ |= Λ⟨TypeVariable⟩.⟨expr⟩

⟨Type⟩ |= IntT | . . .

⟨TypeFunCall⟩ |= ⟨expr⟩<⟨Type⟩>

Figure 4.4: Grammar for Shir core expressions.

Core Expressions

Figure 4.4 shows the grammar for the core expressions of the Shir language. These
expressions Param, Lambda, FunCall and Let are traditionally found in any imple-
mentation of lambda calculus. Lambda is an anonymous function that has a Param as
argument and an Expr as body where Param can appear. FunCall is simply a function
call to a lambda. Let binds an expression to a Param that is shared among all of the
Param’s appearances in the body.

For example, the lambda abstraction λx . x implements the identity — what goes in,
comes out. The x is the parameter’s identifier. Once a function is defined, whether it is
anonymous or not, it can be called. With arg as the argument of such a function call,
(λx . x)(arg) is created. In case a lambda is called, beta reduction is applied directly
(in the construction of the expression), which replaces all occurrences of the lambda’s
parameter in the body with the argument expression of the function call. After this
reduction, the function call and the lambda are removed from the expression without
changing the semantics. For the above example this process simply returns arg.

To create generic expressions, the TypeLambda is used. Instead of specific types,
type variables are placed in the body of the TypeLambda. This allows the types to be
instantiated later using a TypeFunCall with a specific type. When a TypeLambda and

58 Chapter 4. Multi-Level Representations

a TypeFunCall collide in an expression, the type lambda’s type variable is substituted
by the call’s argument type, similar to the above mentioned reduction.

To exemplify this, the identity abstraction is brought forth again, this time with
annotated types (after the colon): λx : IntT(32) . x : IntT(32). This expression is restric-
ted to 32-bit integer types but a type lambda makes it generic: ΛTV . λx : TV . x : TV.
Now, a type-function call instantiates this generic function with any desired type, e.g.,
an 8-bit integer: (ΛTV . λx : TV . x : TV)<IntT(8)>. The obtained function in turn can
then be called with an integer value i: (ΛTV . λx : TV . x : TV)<IntT(8)>(i).

As defined in the grammar, only a single input parameter is defined per function.
Nevertheless, functions with multiple parameters can be imitated by either taking a
tuple as the input or returning another function, that requires the second argument,
after the first argument was provided (currying). In order to keep function specifica-
tions concise, a smart constructor automatically generates the currying. This way, the
developer has the comfort of creating and calling functions with multiple parameters,
e.g., f (arg1,arg2, . . .), while behind the scenes a nesting of single parameter functions
do the job. Likewise, this simplification is applied to type-functions with multiple type
variables and their calls.

The Primitive IR node represents built-in function calls or built-in constants.
They are treated similarly to generic lambda abstractions but are represented only
by an identifier, e.g., Id for the identity function and Add for addition. Just like in the
identity example above, primitives are first instantiated with a specific type and are
then called with the input argument: Id<IntT(8)>(i).

Since the argument of the type-function call usually corresponds to the type of the
argument, e.g., Id<type of i>(i), the trivial type-function call can be omitted for tidier
expressions: Id(i).

Furthermore, to avoid (reverse) composition and nested functions that are hard to
read, the reverse function application as in OCaml [MM22] (also pipe-forward operator)
is defined for the ▷ symbol. For example, the following expression first applies f1,
then f2 and finally f3 to the input i: i ▷ f1 ▷ f2 ▷ f3. If read using the English standard
of left to right, this notation indicates the flow of the input data through the functions,
which is particularly suitable for the description of hardware circuits.

In Shir, each expression has a (return) type. When building expressions, their
types do not have to be explicitly provided, a type variable (TypeVarT) can be used
instead of a concrete type. Again, the superscript notation indicates whether a type
variable must be a subtype of another type.

4.3. Algorithmic Level 59

Core Types

AnyT

ValueT MetaT

DataT FunT TypeFunT

ArrayT TupleT ScalarT

NatT

IntT FloatT

Figure 4.5: Algorithmic types as an extension to the core types (dashed box).

The type checker for Shir uses unification and a constraint solver, where subtyping
relationships are expressed as constraints. During type checking, type variables will
eventually be replaced by a concrete type, if the program is correctly typed. If the
type system rules are violated, an error is thrown.

For example, given the expression (λx : TV1 . x : TV2)(i : IntT(32)), the type checker
determines that IntT must be a subtype of TV1 due to the contravariant relation of
argument type of the call and input type of the function. In addition, TV1 and TV2

must be equal because they refer to the same parameter.

4.3 Algorithmic Level

This section presents the high-level algorithmic extensions to the core language. It
provides a hardware-agnostic entry point to the Shir compiler and can be handwritten
or targeted from other compilers and frameworks.

The focus of this Algorithmic Level lies on the what, rather than the how things are
implemented. This frees up the programmer from having to worry about the underly-
ing hardware specifics to achieve performance. Instead, the compiler is responsible
for providing performance, given a high-level input program.

Types

The high-level algorithmic types are shown in Figure 4.5, outside of the dashed box.
The array type stores both the element type T and the array length N, as seen in its type
constructor ArrayT(TDataT ,NNatT). From now on, the shortcut syntax [T]N is used

60 Chapter 4. Multi-Level Representations

to represent array types. For tuple types, TupleT , the short form is
〈
type1, type2, . . .

〉
.

Float types in compliance with the IEEE standard 754 [IEE08] are supported in Shir.
In contrast to related languages, such as Lift [SFLD15] and Rise [HLK+20], the

integer type stores the number of bits used to represent the integer value. The allowed
bit-widths are not limited to powers of two, the Shir compiler supports arbitrary
precision. The integer type constructor reflects this flexibility: IntT(numBitsNatT).
This enables efficient area usage especially on FPGAs, because they are re-configurable
and not constrained by a specific operator bit-width.

Primitives

The algorithmic IR primitives, listed in Figure 4.6, are common high-level functional
primitives. They act as a shortcut to a specific combination of Shir’s core expressions
(e.g., function, type-function, function call, . . .), which determines the primitive’s
(return) type. For addition, subtraction, multiplication, division and identity, the
primitives Add, Sub, Mul, Div and Id are used. The ConstInt primitive takes a static
NatT that specifies its constant output value. Tuple builds a tuple from two separate
input expressions of types T0 and T1. Select takes a static natural number N to extract
the element at this index from a given tuple.

The Map primitive requires a function, T→ U, to process the incoming array [T]N .
Similarly, Reduce takes a function, this time with two separate inputs U → (T →U),
an initial value U and then an array [T]N to produce a single value U. To keep the
expressions for higher-order functions tidy, a short form is introduced. Instead of
Map(λx . f (x)), the lambda can be omitted: Map(f).

The Slide primitive implements a sliding window of size SW , which is moved in
steps of SS over the input array [T]N . At each step the window is emitted, so that
a nested array of arrays [[T]SW](N−SW)/SS+1 is created. This is similar to the stencil
operation in prior works of Lift [HSS+18, SHS+19].

Zip transforms two collections of elements [T]N and [U]N into a single one with
pairs. For this, the ingoing arrays must have the same length. To split an array into
chunks of size M, the Split primitive is used. The length of the original array must be
a multiple of M, otherwise the type checker will issue an error message. The opposite
operation is Join, which flattens a given array, effectively merging two dimensions
into a single one.

The Input primitive represents the input data coming from memory. It supports
multidimensional data, specified by D1 . . .DN .

4.3. Algorithmic Level 61

Add : TScalarT 7→
〈
T,T

〉
→ T (4.4)

Sub : TScalarT 7→
〈
T,T

〉
→ T (4.5)

Mul : TScalarT 7→
〈
T,T

〉
→ T (4.6)

Div : TScalarT 7→
〈
T,T

〉
→ T (4.7)

Id : TDataT 7→ T → T (4.8)

ConstInt : NNatT 7→ T IntT 7→ T (4.9)

Tuple : T0
DataT 7→ T1

DataT 7→ T0→ T1→
〈
T0,T1

〉
(4.10)

Select : NNatT 7→ T0
DataT 7→ T1

DataT 7→
〈
T0,T1

〉
→ TN (4.11)

Map : TDataT 7→ UDataT 7→ NNatT 7→ (T →U)→ [T]N → [U]N (4.12)

Reduce : TDataT 7→ UDataT 7→ NNatT 7→ (4.13)

(U → (T →U))→U → [T]N →U

Slide : SW
NatT 7→ SS

NatT 7→ TDataT 7→ NNatT 7→ (4.14)

[T]N → [[T]SW](N−SW)/SS+1

Zip : TDataT 7→ UDataT 7→ NNatT 7→
〈
[T]N , [U]N

〉
→ [

〈
T,U

〉
]N (4.15)

Split : MNatT 7→ TDataT 7→ NNatT 7→ [T]N → [[T]M]N/M (4.16)

Join : TDataT 7→MNatT 7→ NNatT 7→ [[T]M]N → [T]M·N (4.17)

Input : TDataT 7→ D1
NatT 7→ . . . 7→ DN

NatT 7→ [. . . [T]D1 . . .]DN (4.18)

Figure 4.6: Algorithmic primitives and their types. These definitions are read from

left to right: First, the type variables (T and U) are specified for generic primitives. N,

M, S and D represent natural numbers, while D1 to DN denote dimensions. They are

concatenated with the 7→ symbol and have a superscripted super type, e.g., TScalarT

means that T is a subtype of ScalarT . After that, the input value types are listed,

separated by a→ symbol. The rightmost value type is the return type of the primitive.

62 Chapter 4. Multi-Level Representations

MapVec

MapStm
1

2

3

4

4 3 2 1

StreamT VectorT

time

sp
ac
e

f

f

f

f

f

Figure 4.7: Streamed data (left) is passed element by element, over time, through

function f of MapStm. MapVec creates multiple instances of f to process a vector (right)

in parallel at the cost of more area on the FPGA.

4.4 Architecture Level

Producing high-performance hardware from high-level algorithmic primitives is chal-
lenging. The compiler must make many choices regarding parallelisation and buffering
strategies. To address this challenge, it is typical to use further IR levels to encode
implementation choices.

The Architecture Level introduces a notion of timing with its new collection types,
explained in the following sections. For instance, choices about whether computa-
tion is run in parallel (over space) or sequential (over time) are encoded directly in
the IR. Figure 4.7 shows these two cases using the example of Map primitives. For
example, TyTra [NV15, NV16, NV19], Lift-hls [KBSD19] and Aetherling [DFH+20]
are approaches that similarly distinguish between two major collection types. On
top of that Shir provides a more sophisticated type hierarchy to restrict nesting of
types and introduces a third novel collection type for memory, as will be described in
Section 4.5.

The Architecture Level remains functional, facilitating the application of transform-
ations that crucially affect the resulting hardware design and performance without
needing to operate on a low HDL-like level. Figure 4.8 shows the core language types,
this time extended with all the architecture types.

4.4. Architecture Level 63

Core Types

AnyT

ValueT MetaT

DataT FunT TypeFunT

RamArrayT NonRamArrayT ArchFunT

NatT

MemLocT

CommT

HostRamT OnboardRamT BlockRamT

SyncT AsyncT

StreamT TupleT BasicDataT

VectorT BasicTupleT ScalarT

IntT FloatT LogicT

Figure 4.8: Type hierarchy at the Architecture Level.

4.4.1 Scalars and Tuples

On the Architecture Level, each type has a bit width allowing to statically analyse
the memory usage and other characteristics of a design. Scalar types are similar to
the Algorithmic Level, with the addition of LogicT , which represents a single bit.
Subtypes of BasicDataT ensure that data is always available in a single clock cycle.
This contrasts with streams and ramarrays, which require multiple cycles to read their
entire content, as we will see in the following sections.

The tuple type manifests itself in two variants with different restrictions for its
element types. The TupleT type is flexible and allows to contain streams, tuples
and basic data. The BasicTupleT is more restrictive and only accepts immediately
accessible elements of type BasicDataT . Whenever the Tuple primitive is created, the
return type is determined by its elements and is either TupleT or BasicTupleT .

Primitives that operate on scalars (Add, Sub, Mul, Id, ConstInt), as well as Select
are similar to the ones in Figure 4.6. Additionally, a bitwise shift operator is introduced:

Shift : RLogicT 7→ NNatT 7→ T IntT 7→ T → T (4.19)

It shifts to the right, if the logic value R is set to 1, otherwise to the left. The static
number N determines by how many positions the bits are moved. The Architecture
Level, however, has no division primitive (Div), since it is not necessarily supported
by the targeted hardware platform. Section 5.1 will explain how this problem can be
circumvented in some cases by using Shift instead.

64 Chapter 4. Multi-Level Representations

4.4.2 Stream

Type

The stream type models flow of data in general and pipelining. A new element is
produced at each clock cycle unless the stream is stalled. Once data has been consumed,
it cannot be recalled. The type constructor StreamT(TNonRamArrayT ,NNatT) represents
a sequence of N elements of type T , where T can be any data type but a ramarray.
This is because ramarrays represent data in memory, which must be read first in order
to operate on it. From now on, the short-form notation ST

M[T]N is used for stream types.

Primitives

The high-level algorithmic primitives are refined for streams. For example, MapStm,
ReduceStm, SlideStm, ZipStm, SplitStm and JoinStm all operate on streams, as the
suffix Stm indicates. These new primitives are listed in Figure 4.9, where more details
about their type signature is provided. In the following, some implementation details
of stream-based primitives are revealed.

MapStm, for instance, instantiates the given function and feeds the individual
elements of the stream into it, one at a time. Depending on the function, this generates
a pipeline in hardware. ReduceStm generates an accumulator, which accumulates
all incoming elements of the stream using a given function (e.g., Add). This flexible
primitive will also be used later to write a stream of data to memory. SlideStm is
implemented in hardware by feeding the input stream into a shift register and sending
out all the register’s contents as a vector, whenever a new input value arrives. This
process is illustrated in Figure 4.10.

DropStm removes the firstF and the last L elements from a given stream. ConcatStm
takes two streams and combines them into one long stream of N+M elements. Both
input streams must have the same element type.

StmToVec converts a stream of N basic data elements into a vector. In the hardware
implementation, a shift register is filled element by element from the stream. Once it
is full, all its contents are emitted in parallel as a vector. This behaviour is similar to
the SlideStm implementation in Figure 4.10 with a fixed window size of N and a step
size of N, except that the returned vector is not wrapped in a stream.

Repeat takes basic data or a stream and repeats it N times. This primitive plays a
vital role later for the optimisation in Section 6.4.1.

4.4. Architecture Level 65

MapStm : TNonRamArrayT 7→ UNonRamArrayT 7→ NNatT 7→ (4.20)

(T →U)→ ST
M[T]N → ST
M[U]N

ReduceStm : TNonRamArrayT 7→ UDataT 7→ NNatT 7→ (4.21)

(U → (T →U))→ ST
M[T]N →U →U

SlideStm : SW
NatT 7→ SS

NatT 7→ TBasicDataT 7→ NNatT 7→ (4.22)

ST
M[T]N → ST
M[VE
C[T]SW](N−SW)/SS+1

ZipStm : TNonRamArrayT 7→ UNonRamArrayT 7→ NNatT 7→ (4.23)〈

ST
M[T]N , ST
M[U]N

〉
→ ST

M[
〈
T,U

〉
]N

SplitStm : MNatT 7→ TNonRamArrayT 7→ NNatT 7→ ST
M[T]N → ST
M[ST
M[T]M]N/M (4.24)

JoinStm : TNonRamArrayT 7→MNatT 7→ NNatT 7→ ST
M[ST
M[T]M]N → ST
M[T]M·N (4.25)

DropStm : TNonRamArrayT 7→ NNatT 7→ FNatT 7→ LNatT 7→ (4.26)

ST
M[T]N → ST
M[T]N−F−L

ConcatStm : TNonRamArrayT 7→ NNatT 7→MNatT 7→ (4.27)〈

ST
M[T]M, ST
M[T]N

〉
→ ST

M[T]M+N

StmToVec : TBasicDataT 7→ NNatT 7→ ST
M[T]N → VE
C[T]N (4.28)

Repeat : NNatT 7→ TNonRamArrayT 7→ T → ST
M[T]N (4.29)

Counter : C0
NatT 7→ CS

NatT 7→ D1
NatT 7→ . . . 7→ DN

NatT 7→ T IntT 7→ (4.30)

ST
M[. . . ST
M[T]D1 . . .]DN

Figure 4.9: Architecture Level primitives operating on streams.

66 Chapter 4. Multi-Level Representations

SlideStm<2,1>

2 1
4

3

3

2
34

2

1r1

r2

sh
ift

 r
eg

.

1.2.3.

Figure 4.10: Stream-based slide with window size SW of 2 and step size SS of 1. The

incoming stream is fed into the internal shift register, first into r2, then r1. Once filled,

its contents are sent out as a vector. Then, SS more elements are consumed from the

input and shifted into the registers, before producing the next output vector. The blue

dotted lines show which input data creates which output vector for the three steps.

Counter emits a stream of incrementing integers, starting at C0 with step size CS.
This primitive is useful for generating memory addresses as seen in the preceding
example of Section 4.1. To keep the FPGA resource usage low, the compiler allocates
just enough bits for the counter’s integer data type to express the specified value range.
As seen in the type definition in expression (4.30), multiple dimensions D1 to DN can
be defined for the Counter. The output type then becomes a stream of streams (or
more deeply nested), creating an N-dimensional structure of incrementing integers.
This feature helps when certain sequences of values must be repeated, as needed later
in Section 6.4.1.

4.4.3 Vector

Type

The vector type is similar to the tuple type, with the key difference that the vector’s ele-
ments must all be of the same type. A vector is ideal for spatial parallelism, a common
strategy to improve performance. The type constructor VectorT(TBasicDataT ,NNatT)

creates a vector type with support for parallel access to all its N elements of type T

in a single clock cycle. This property limits the elements of vectors to those that are
instantaneously accessible (basic data). From now on, the short-form notation VE

C[T]N
is used to represent vector types.

4.4. Architecture Level 67

MapVec : TBasicDataT 7→ UBasicDataT 7→ NNatT 7→ (4.31)

(T →U)→ VE
C[T]N → VE
C[U]N

SlideVec : SW
NatT 7→ SS

NatT 7→ TBasicDataT 7→ NNatT 7→ (4.32)

VE
C[T]N → VE
C[VE
C[T]SW](N−SW)/SS+1

ZipVec : TBasicDataT 7→ UBasicDataT 7→ NNatT 7→ (4.33)〈

VE
C[T]N , VE
C[U]N

〉
→ VE

C[
〈
T,U

〉
]N

SplitVec : MNatT 7→ TBasicDataT 7→ NNatT 7→ VE
C[T]N → VE
C[VE
C[T]M]N/M (4.34)

JoinVec : TBasicDataT 7→MNatT 7→ NNatT 7→ VE
C[VE
C[T]M]N → VE
C[T]M·N (4.35)

DropVec : TBasicDataT 7→ NNatT 7→ FNatT 7→ LNatT 7→ (4.36)

VE
C[T]N → VE
C[T]N−F−L

ConcatVec : TBasicDataT 7→ NNatT 7→MNatT 7→ (4.37)〈

VE
C[T]M, VE
C[T]N

〉
→ VE

C[T]M+N

VecToStm : TBasicDataT 7→ NNatT 7→ VE
C[T]N → ST
M[T]N (4.38)

VecToTuple : TBasicDataT 7→ NNatT 7→ VE
C[T]N →

〈
T, . . . ,T

〉
(4.39)

TupleToVec : TBasicDataT 7→ NNatT 7→
〈
T, . . . ,T

〉
→ VE

C[T]N (4.40)

Figure 4.11: Architecture Level primitives operating on vectors.

68 Chapter 4. Multi-Level Representations

Primitives

The common high-level algorithmic primitives also have a counterpart for vectors,
which end on the suffix Vec: e.g., MapVec, SlideVec, ZipVec, SplitVec and JoinVec,
as listed in Figure 4.11.

MapVec exploits spatial parallelism by instantiating the given function once for
each vector element. SlideVec simply generates wires in hardware to rearrange the
data to create a vector of vectors. This logic operation involves no states.

DropVec removes the first F and last L elements of a vector, while ConcatVec

concatenates two vectors. Additionally, the VecToStm primitive converts a vector into
a stream of data, by emitting the vector’s elements one after the other. VecToTuple
converts a vector into a tuple to feed the data into tuple-based operations like Add.
The TupleToVec primitive turns a tuple, where all the elements have the same type,
into a vector.

There is no explicit primitive for ReduceVec. Instead, the same functionality is
achieved with a smart constructor of the same name, which automatically generates
an efficient reduction tree from a combination of MapVec and VecToTuple. The tree
performs N-1 operations in log2N steps. Given an input with a vector type of eight
elements and an Add function, this constructor will return the following expression:

input ▷ SplitVec<2>▷ MapVec(VecToTuple▷ Add) (4.41)

▷ SplitVec<2>▷ MapVec(VecToTuple▷ Add)

▷ VecToTuple▷ Add // reducing the remaining two elements

The reduction operator in a reduction tree must be associative in order to compute
the correct result. The current implementation of Shir leaves it up to the user to ensure
that this is adhered to. Future extensions can help the compiler prevent generating
erroneous hardware designs, by adding information about the associativity of functions
to the IR.

4.5. Abstract Memory Level 69

MemAlloc : MLMemLocT 7→ TBasicDataT 7→ NNatT 7→ (4.42)

RA
M[T]ML

N

Read : MLMemLocT 7→ TBasicDataT 7→ NNatT 7→ AIntT 7→ (4.43)

RA
M[T]ML

N → A→ T

Write : MLMemLocT 7→ TBasicDataT 7→ NNatT 7→ AIntT 7→ (4.44)

RA
M[T]ML

N →
〈
T,A

〉
→ RA

M[T]ML
N

Figure 4.12: Primitives to express memory usage on the Abstract Memory Level. Types

named A denote integer-based types for addresses, where the bit-width depends on

the address space of the memory.

4.5 Abstract Memory Level

Memory plays a key role in achieving high-performance hardware designs. Thus,
a compiler for accelerators must be able to express diverse ways of buffering and
memory usage in general.

This section introduces the Abstract Memory Level for interfacing with memory.
With this new level of abstraction, the IR becomes memory-aware, enabling optimisa-
tions around memory, as will be demonstrated later in Section 6.2.

Types

The type constructor RamArrayT(TBasicDataT ,NNatT ,MLMemLocT) represents a ramar-
ray of N elements of type T , which can only be accessed one at a time, however,
random-order access is possible. From now on, the short-form notation RA

M[T]ML
N is

used for ramarray types.
As seen in the type definition, this collection type cannot contain any other ele-

ments than basic data types, i.e., scalars, basic tuples or vectors, because the elements
must always be read or written as a whole within a single clock cycle. Data structures
like streams for example would not fulfil this requirement as they take multiple cycles
to be transmitted. Shir features a flat memory model and its type system forbids
nesting RamArrayT . Multi-dimensional data is stored in memory by joining (i.e.,
flattening) the data before writing to memory and then splitting it after reading.

70 Chapter 4. Multi-Level Representations

ReduceStm

WriteCounter
<0,1,N>

MapStm

Read

Counter
<0,1,N>

s1s2...sn s1s2...sn

MemAlloc
<...,...,N>

Zip
Stm

Figure 4.13: Block diagram on the Abstract Memory Level for buffering a stream s of

N elements in RAM. Blue boxes are primitives and memory related ones are dashed.

Let expressions are not shown for simplicity.

The ramarray’sMemLocT indicates which of thememories in the FPGA system, see
Figure 2.2, is chosen to hold the data. The available options are host RAM (HostRamT),
off-chip onboard DDR RAM (OnboardRamT) or on-chip block RAM (BlockRamT).
Since the onboard RAM is partitioned into banks, an identifier is provided with the
type constructor, e.g., OnboardRamT(0) for the first bank. An FPGA chip can realise
many different block RAMs in various shapes (width and depth). The block RAM type
therefore contains an identifier to distinguish between multiple block RAM instances.
The host RAM type, on the other side, is a singleton, because there is only one such
memory in an FPGA system.

Primitives

The primitives on this Abstract Memory Level, shown in Figure 4.12, enable allocation
of memory, reading from and writing to it on a high level of abstraction, similar to
other programming languages.

MemAlloc allocates memory space for N elements of type T and returns a ramarray.
A MemLocT is required, to identify the memory used. In the following example, 1024
8-bit integers are allocated in host memory:

MemAlloc<HostRamT, IntT(8),1024> (4.45)

Given a ramarray, the Read primitive returns an element at the specified address
of type A. The bit-width of the address depends on the ramarray’s length and is equal
to ⌈log2 N⌉.

The Write primitive enables the reverse operation: writing a new element at a
given position in a ramarray. Similar to the concept of monads in functional pro-
gramming [Wad95], this primitive returns the updated ramarray. However, the later
generated hardware implementation updates the data in-place.

4.5. Abstract Memory Level 71

Thus, an interesting code pattern is enabled: By wrapping Write into ReduceStm,
an entire stream can be buffered in a ramarray. In practice, this is beneficial when
the ramarray resides on-chip and the stream is read multiple times. The following
expression implements this important use-case, where the ingoing stream input is
stored in a ramarray and then read again:

Let allocatedBuffer = MemAlloc<memLocType,dataType,N> in (4.46)

Let updatedBuffer =〈
input,Counter<0,1,N>

〉
▷ ZipStm

▷ ReduceStm(λmem . λdata . data ▷ Write(mem),allocatedBuffer) in

Counter<0,1,N>▷ MapStm(λaddr . addr ▷ Read(updatedBuffer))

Figure 4.13 illustrates the corresponding block diagram. The compiler does not
expect the user to write such code. Instead, it will be inserted automatically as part of
the optimisations presented in Section 6.2.

In case multiple onboard memory banks are available to the system, data can
be stored in interleaved memory. The data is distributed alternately on the banks,
improving the throughput when accessing consecutive addresses. An onboard RAM
buffer with interleaving is expresses as follows in Shir:

Let s = input ▷ SplitStm<2>▷ MapStm(StmToVec▷ VecToTuple) in (4.47)

Let obram0 = MemAlloc<OnboardRamT(0), . . . ,N/2> in

Let obram1 = MemAlloc<OnboardRamT(1), . . . ,N/2> in

Let buffered0 =
〈
s ▷ MapStm(Select<0>),Counter<0,1,N/2>

〉
▷ ZipStm▷ ReduceStm(λmem . λdata . data ▷ Write(mem),obram0) in

Let buffered1 =
〈
s ▷ MapStm(Select<1>),Counter<0,1,N/2>

〉
▷ ZipStm▷ ReduceStm(λmem . λdata . data ▷ Write(mem),obram1) in〈

Counter<0,1,N/2>▷ MapStm(λaddr . addr ▷ Read(buffered0)),

Counter<0,1,N/2>▷ MapStm(λaddr . addr ▷ Read(buffered1))
〉

▷ ZipStm▷ MapStm(TupleToVec▷ VecToStm)▷ JoinStm

The input stream of N elements is first reshaped into a stream s of tuples. Then,
memory regions on two onboard RAM banks are allocated. The first half of the tuple
stream s is extracted using MapStm(Select<0>) and then written to the first memory
bank. Likewise, the other bank is filled with the second half of the tuple. After that,
both buffers are read and the resulting streams are reshaped into the original format.

72 Chapter 4. Multi-Level Representations

Table 4.1: Mapping of low-level memory features to existing functional concepts.

Feature Functional Equivalent

memory function
memory access function call
shared memory shared function

4.6 Hardware Memory Level

The Abstract Memory Level from the previous section allows to easily interface with
memory. However, this IR cannot be realised in hardware due to abstract concepts
like ramarray types. The Abstract Memory Level must therefore be lowered to a more
feasible implementation, which is expressed on the Hardware Memory Level.

There are similarities between memory access and functional concepts are shown
in Table 4.1. For example, a reading access can be viewed as calling a memory function
with an input address, to obtain the data at this address as the return value. Reusing ex-
isting functional concepts for interaction with memory simplifies the implementation
of memory features in the compiler.

Types

At the Hardware Memory Level, memory is represented as functions and the ramarray
types disappear. Depending on the type of memory involved, on-chip versus off-chip,
these functions are either synchronous (data is returned immediately) or asynchronous
(requested data is returned later and not necessarily in order). To capture this in the
type system, the IR is expanded with a new function type. Its type constructor is
ArchFunT(inTValueT ,outTValueT ,cCommT). The short-form notations inT s−→ outT for
synchronous communication (where c is SyncT) and inT a−→ outT for asynchronous
communication (c is AsyncT) will be used from now on.

4.6. Hardware Memory Level 73

BlockRam : TBasicDataT 7→ AIntT 7→WELogicT 7→
〈
T,A,WE

〉 s−→ T (4.48)

ReadSyncMemCtrl : TBasicDataT 7→ AIntT 7→WELogicT 7→ (4.49)

(
〈
T,A,WE

〉 s−→ T) s−→ A s−→ T

WriteSyncMemCtrl : TBasicDataT 7→ AIntT 7→WELogicT 7→ (4.50)

(
〈
T,A,WE

〉 s−→ T) s−→
〈
T,A

〉 s−→ T

ReadSync : TBasicDataT 7→ AIntT 7→ (4.51)

(A s−→ T) s−→ A s−→ A s−→ T

WriteSync : TBasicDataT 7→ AIntT 7→ (4.52)

(
〈
T,A

〉 s−→ T) s−→ A s−→
〈
T,A

〉 s−→ T

OnboardRam : BNatT 7→ TBasicDataT 7→ AIntT 7→ RIntT 7→WELogicT 7→ (4.53)〈
T,A,R,WE

〉 a−→
〈
T,R

〉
ReadOnboardMemCtrl : TBasicDataT 7→ AIntT 7→ RIntT 7→WELogicT 7→ (4.54)

(
〈
T,A,R,WE

〉 a−→
〈
T,R

〉
)

s−→
〈
A,R

〉 a−→
〈
T,R

〉
WriteOnboardMemCtrl : TBasicDataT 7→ AIntT 7→ RIntT 7→WELogicT 7→ (4.55)

(
〈
T,A,R,WE

〉 a−→
〈
T,R

〉
)

s−→
〈
A,T,R

〉 a−→ R

ReadHostMemCtrl : TBasicDataT 7→ AIntT 7→ RIntT 7→
〈
A,R

〉 a−→
〈
T,R

〉
(4.56)

WriteHostMemCtrl : TBasicDataT 7→ AIntT 7→ RIntT 7→
〈
A,T,R

〉 a−→ R (4.57)

ReadAsync : TBasicDataT 7→ NNatT 7→ AIntT 7→ RIntT 7→ (4.58)

(
〈
A,R

〉 a−→
〈
T,R

〉
)

s−→ A s−→ ST
M[A]N

s−→ ST
M[T]N

WriteAsync : TBasicDataT 7→ NNatT 7→ AIntT 7→ RIntT 7→ (4.59)

(
〈
A,T,R

〉 a−→ R) s−→ A s−→ ST
M[

〈
T,A

〉
]N

s−→ A

Figure 4.14: Memory-related primitives on the Hardware Memory Level. Types named

A denote integer-based types for addresses, and B memory bank ids. Types R repres-

ent integer-based types for request ids, which map the responses in asynchronous

communication to the previously sent requests.

74 Chapter 4. Multi-Level Representations

WriteSync
MemCtrl

ReadSync
MemCtrl

Block
Ram

ReduceStm

Write
Sync

Counter
<0,1,N>

MapStm

Read
Sync

Counter
<0,1,N>

s1s2...sn s1s2...sn

ConstInt
<0>

Zip
Stm

Figure 4.15: Block diagram on the Hardware Memory Level for buffering a stream s

in block RAM. The block RAM function is shared among the two controllers. Due to

the synchronous fashion of block RAM access, the controllers are connected to the

ReadSync and WriteSync primitives. In this memory representation, the MemAlloc

(from the Abstract Memory Level) is replaced by a ConstInt, that provides the base

address of the allocated memory region. Blue boxes are primitives and memory

related ones are dashed. Let expressions are not shown for simplicity.

Primitives for Synchronous Block RAM

At this level, there is no abstract MemAlloc primitive but a more specialised BlockRam

primitive, shown in Figure 4.14, to model synchronous on-chip RAM as functions.
When called, this primitive returns a function that accepts a piece of data, an address
and a write enable flag which chooses between read and write access. This functional
design is in line with its resulting hardware implementation.

Additionally, memory controllers are introduced, which extract only a certain
capability of the memory interface. The ReadSyncMemCtrl primitive takes a BlockRam
and provides an interface which only allows to read data. The write enable flag
is not accessible any longer from the outside and is fixed to false internally. The
WriteSyncMemCtrl extracts a write interface, setting the write enable to true internally.
The provided interface from WriteSyncMemCtrl takes a value and an address and
returns the same value after writing.

ReadSync uses the ReadSyncMemCtrl to read a value at a certain address from the
block RAM memory, which is behind the memory controller. This primitive calculates
the actual requested address by adding the given base address and given offset, both
subtypes of integer. The WriteSync primitive works in a similar way, but instead takes
a tuple of data and offset as input.

4.6. Hardware Memory Level 75

The block diagram for buffering a stream on this lower level of memory represent-
ation is shown in Figure 4.15. The Shir code is as follows:

Let mem = λdata . λaddr . λwe . data ▷ addr ▷ we ▷ BlockRam in (4.60)

Let readCtrl = λaddr . addr ▷ ReadSyncMemCtrl(mem) in

Let writeCtrl = λdataAddr . dataAddr ▷ WriteSyncMemCtrl(mem) in

Let updatedBaseAddr =〈
input,Counter<0,1,N>

〉
▷ ZipStm▷ ReduceStm(

λba . λdata . data ▷ WriteSync(writeCtrl,ba),ConstInt<0>) in

Counter<0,1,N>

▷ MapStm(λaddr . addr ▷ ReadSync(readCtrl,updatedBaseAddr))

Primitives for Asynchronous Host RAM

On the Hardware Memory Level, onboard RAM banks are represented as functions
through the OnboardRam primitive. Its constructor takes a natural number (B in the
definition) to identify which memory bank is used. Similar to block RAM, a pair of
memory controllers, ReadOnboardMemCtrl and WriteOnboardMemCtrl, extracts the
read or write capabilities of this function by setting the write enable flag correspond-
ingly.

From the FPGA point of view, the notion of host RAM is always present in the
system and there is no need to allocate it. Therefore, there is no counterpart to the
BlockRam or OnboardRam primitive on the Hardware Memory Level. However, the
ReadHostMemCtrl and WriteOnboardMemCtrl primitives provide memory controllers
for accessing host memory. During hardware generation, these controllers are con-
nected to the DMA interface of the FPGA which talks to the host RAM via the PCIe
bus. This method of communication is explained in Section 2.1.2 in more detail.

Each asynchronous memory access must specify a unique request id (R in the
definition) to link a response to the requested read or write operation. The asyn-
chronous read controllers, ReadOnboardMemCtrl and ReadHostMemCtrl, provide an
asynchronous function, which takes a tuple of address and request id and returns a
tuple of data and request id. Likewise, the write controllers, WriteOnboardMemCtrl
and WriteHostMemCtrl, provide an asynchronous function, that takes a tuple of ad-
dress, data and request id and just returns the same request id, when the data has been
written to the address in memory.

76 Chapter 4. Multi-Level Representations

The hardwired interfaces to memory depend on the FPGA DMA specifications.
The Intel Arria 10, used in this thesis, transfers cache lines of 512 bits between the
FPGA chip and host RAM or a bank of onboard RAM. Smaller pieces of data must
be packed and possibly padded with zeros to fill an entire line. For 7-bit values each
cache line contains 73 elements (⌊512

7 ⌋) with 1 padding bit (512 mod 7). As will be
introduced in Section 5.1, an automatic conversion generator in Shir is able to create
a combination of splits, joins and other reshaping primitives to convert cache lines
into any desired type of data with arbitrary precision and back.

The primitives for reading and writing are refined to enable concurrent memory
requests. They take the corresponding memory controller and a base address as
input. In addition, ReadAsync consumes a stream of addresses, while WriteAsync

consumes a stream of tuples of address and data. Without waiting for the responses of
previous requests (non-blocking), these asynchronous primitives send new requests
to memory one by one, as soon as a new value from the input stream arrives. Thus,
throughput between the host and the FPGA is maximised using multiple in-flight
requests. The input stream’s length of ReadAsync and WriteAsync determines the
maximum number of possible parallel requests. Once the requested data is loaded, the
host sends a response with the payload attached. WriteAsync returns the base address,
when all the write operations to this memory region are completed and confirmed by
the memory controller.

While this IR design looks complicated on the surface, it directly maps to hardware
concepts and provides great flexibility in terms of expressible hardware designs.

4.7 Device-Specific Level

The flexible, programmable logic is a key component that all FPGAs have in common.
However, many devices also offer specialised functions in hardened gates, as described
in Section 2.1.1. These excel at a specific purpose and are up to 10× more power
efficient [OVP+22] than soft implementations on programmable logic. The Intel Arria
10, for instance, contains dedicated, hardwired transceivers for efficient DMA via PCIe
and off-chip RAM access. Furthermore, more than 1500 DSPs perform efficient integer
and floating point multiplications. These dedicated hardware functions optimise area,
speed and power consumption of essential computation and data movement, while
the FPGA’s programmable logic remains available for application-specific functions.

4.8. Hardware Back End 77

In order to exploit such device-specific features, the Shir compiler flow provides
an additional abstraction at the lower level end of its functional IRs. To represent
specialised functions on this Device-Specific Level, new primitives are introduced, like
Mul2Add for example:

Mul2Add : T IntT 7→
〈〈

T,T
〉
,
〈
T,T

〉〉
→ T (4.61)

It leverages a configuration of Intel’s DSPs, where two lower precision multiplica-
tions are performed simultaneously and the two results are summed up in a single
DSP block. Two tuples of integers are consumed to produce a single output value.
This increases the number of possible parallel multiplications in a single clock cycle
by using the DSPs more efficiently.

The Device-Specific Level serves as a general entry point for all optimisations
that only apply to the targeted FPGA. It is easily extensible with new device-specific
primitives, for instance to exploit other specialised hard IPs and better support systolic
arrays.

4.8 Hardware Back End

Even from the lowest functional level in Shir, a few lowering steps are still necessary
to finally generate HDL code. This process does not involve any more rewrite optim-
isations, because all the design decisions have already been made on the previous,
higher levels of abstraction. Now, the functional world is left behind to reach more
hardware-like representations. To simplify the lowering, it is divided into a dataflow
and a VHDL IR, both described in this section.

4.8.1 Dataflow Level

On the Dataflow Level, a Shir program is represented as a directed graph with
producer-consumer patterns, similar to many traditional models of computation,
such as SDF [LM87]. It consists of nodes, to represent operations on data, and directed
edges to model the flow of data between nodes. The nodes can contain subgraphs
to create a node hierarchy. This helps to organise the overall structure of the design
by grouping certain parts of the program into a node, similar to what a human hard-
ware designer would program in an HDL. Moreover, neatly generated hardware code
facilitates debugging. Their visual appearance of dataflow graphs is similar to the
previously encountered block diagrams in Figures 4.13 and 4.15 for example.

78 Chapter 4. Multi-Level Representations

Producer
with outgoing
handshake port

Consumer
with ingoing

handshake port

data

last

valid

ready

Figure 4.16: Outgoing and ingoing handshake ports for bidirectional synchronisation.

Each port is composed of four signals: data, last, valid and ready. They are directed

towards the consumer, except for the ready signal, which is send by the consumer to

notify the producer that the current data has been received.

Special behaviour nodes are defined for the related built-in primitives of the Archi-
tecture Level. These nodes have a fixed behaviour that specifies how the ingoing data
is processed to produce the output.

To model communication between nodes, edges connect an outgoing port of one
node to an ingoing port of another one. Each port has an Architecture Level type
assigned, to provide information about what kind of data is transmitted. Only ports
with opposing directions and with the same type can be connected via edges. Ports
can be composed to form more complex ports.

Most commonly used in Shir’s dataflow graphs is the composed handshake port,
which implements a simple handshake protocol, similar to [KBSD19]. As visualised in
Figure 4.16, a handshake port consists of multiple signals: The payload data, a signal
for the last flags and common handshaking signals to determine whether the data
produced is valid and whether the consumer is ready to receive data. The last signal
indicates when a stream’s last element, which in turn can also be a stream, is being
transmitted. In case of multi-dimensional streams, this signal consists of multiple
bits, one for each dimension. If only basic data, such as vectors, tuples or scalars, is
exchanged, this signal is not in use.

According to the handshake protocol, data flows between components only when
the valid and ready signals are both active. That way, the communication between

4.8. Hardware Back End 79

nodes is locally synchronised, resulting in a dynamic scheduling. There is no central-
ised scheduler, the control over interactions between nodes is distributed. A dynamic
schedule supports asynchronous features such as host RAM access. While this re-
quires some additional control logic, no negative impact was observed on the overall
throughput or latency, because the control signals are only 1 bit wide and the control
logic remains very simple. However, in the future, classical dataflow analysis can be
used to create static schedules, as demonstrated in [CJC+20]. This is not necessary in
Shir, because the scheduling does not pose a performance problem and satisfactory
results are achieved with fully dynamic designs, as the evaluation will show.

In general, the dataflow follows a data push approach, where producers feed their
outputs to their consumers, instead of consumers querying for their input data. As
soon as a node has valid inputs, it processes the data to generate a result.

Besides the handshake port, there are other composed ports: request ports and
response ports deal with asynchronous communications. A peculiarity of this is that
the response protocol does not include a ready signal. This design decision is based
on the concept of how asynchronous memories work in hardware. Therefore, a node
must only make a request, when it is ready to receive the response, i.e., when it can
directly process or buffer the incoming payload. Otherwise the response might get
lost. The hardware templates, as will be introduced shortly, of nodes with such ports
are carefully designed to ensure this behaviour, e.g., by adding an internal buffer.

In order to connect the generated design to the FPGA’s hardwired off-chip memory
interfaces, special onboard RAM and host RAM ports are defined. When these ports
are exposed on the top level of the dataflow graph, the later HDL code generation
stage can easily connect them to the actual hardware ports.

4.8.2 VHDL Level

For the purpose of generating the code for hardware synthesis, the VHDL Level is
introduced. This representation is very close to actual VHDL code due to its notion
of modules with generics, ports and inner (sub-) modules, as well as signals and
connections.

Each module in this IR includes the name of a template file to specify its beha-
viour. Shir contains more than 30 fine granular, composable VHDL templates, see
Appendix A, to realise the user’s desired behaviour for the FPGA. There are complex
templates like ReadAsync and WriteAsync with several hundred lines of code, but also

80 Chapter 4. Multi-Level Representations

more simple ones, for example identity and integer addition.
The architecture section of these template files can contain any VHDL code. This

provides all the flexibility and control needed to specify any desired behaviour of the
FPGA, including device-specific features. Note that the Shir framework is not bound
to VHDL code. An extension to support Verilog code, for instance, is easily possible.

The templates share a uniform port structure to guarantee their interoperability
and allow them to be easily plugged together to achieve the desired behaviour. Each
template has an ingoing clock and reset signal. Moreover, all the signals of the ports
are defined, which are similar to the Dataflow Level. For instance, the four ports data,
last, valid, ready are again used to implement the handshaking protocol. The valid
and ready signals are std_logic bits, while the last signal is a std_logic_vector

for the possibly multiple dimensions of a stream. The last port can also have a
negative bit range (in VHDL: -1 downto 0) to create no wire at all, in case basic data
is transmitted.

The behaviour of the templates is coded in such a way that the critical paths,
see Section 2.1.5, are neither too short, wasting cycles and adding some latency to
the overall design, nor too long, throttling the clock frequency or even breaking the
design. Sequential combinational operations are combined and processed in one cycle
to reduce cycle count. More complex operations may contain internal state machines
and have registered inputs and outputs, e.g., Mul and Mul2Add. This adds some latency
to the overall design but is necessary for the implementation on an FPGA.

The VHDL templates are independent of Shir and can be integrated into other
frameworks. They can even be simulated standalone without any modifications, which
is helpful for testing and debugging them.

4.9 Summary

The core Shir language is standard, similar to typed lambda calculus, augmented
with support for generics and subtyping. These features allow easy extensions of
this language. Based on this core, multiple IRs with specialised types and primitives
are introduced. The Algorithmic Level defines a functional language with common
parallel patterns, such as Map and Reduce, to specify the input program.

For hardware synthesis, this high-level abstraction is then lowered to the Architec-
ture Level. On this level, three major collection types, depicted in Figure 4.17, express
hardware design decisions, that crucially affect the performance. The primitives from

4.9. Summary 81

1

2

3

4

4 3 2 1

1

2

3

4

StreamT VectorT RamArrayT

time
sp
ac
e

write
addr

read
addr

Figure 4.17: Space-time schematic representation of collection types.

the Algorithmic Level are refined accordingly. In the context of hardware generation,
a MapStm produces a sequential process in time, consuming and producing a stream
of data with potential for pipeline parallelism. In contrast, MapVec processes data in
space, resulting in spatial parallelism with the function f duplicated in hardware for
every element of the vector.

Furthermore, on the Abstract Memory Level, a new ramarray type represents data
in memory. In combination with Read and Write primitives, this allows to specify
arbitrary memory usage, for example input data from host RAM and on-chip buffers
for faster repeated data access. That way all the available kinds of memory on the
FPGA, as depicted in Figure 2.2, can be exploited.

Since this abstraction is too high to map it directly to hardware modules, the lower
Hardware Memory Level is introduced. Here, memory is represented as functions and
thus, in a more compatible way for hardware synthesis. According to the different
types of memory available on an FPGA, a notion of synchronous and asynchronous
access is added in this IR. The Device-Specific Level allows to make the best possible
use of specialised hardened functions on the specifically targeted FPGA.

Finally, to emit HDL code, the lowest functional IR is turned into a dataflow
graph and then a VHDL IR. These representations add hardware level features, like
handshaking to synchronise the communication between the components in the design.
VHDL offers all the flexibility needed to achieve high-performance hardware.

All in all, the multi-level IR design of the Shir compiler allows to easily apply
transformations of the program on the level that best suits the optimisation at hand.
By separating different aspects of hardware design into individual IRs, the compiler
structure remains clean and easily extensible.

The following chapter deals with the lowering process, i.e., how a higher IR is
automatically turned into a lower IR.

Chapter 5

Lowering Passes

The previous chapter has shown the multi-level IRs of Shir, where each abstraction
exposes different details to work with. While hardware-specific IRs are great at
expressing hardware choices, a mechanism is still required to go from one level to the
next lower level until a form suitable for the generation of an efficient accelerator is
reached. This chapter presents the compiler passes in Shir that automatically deal
with these lowering steps. They are visualised as solid edges in Figure 4.1 from the
previous chapter.

Once again, the multi-level IR approach helps to separate the concerns. Each
lowering pass focuses only on one particular task in the compilation, while the op-
timisations are left aside for the rewrite rules in the next chapter. By taking one step
at a time, the individual passes remain more manageable compared to a monolithic
compilation that tries to do too much at once.

All these passes share a common approach to reach the next lower level: The given
IR tree of one level is traversed and each expression is transformed in a deterministic
way. This entire process is transparent from the programmer and does not require
any user input.

The rest of this chapter is organised as follows. Section 5.1 describes the first
lowering step, which takes the hardware-agnostic, algorithmic specification and in-
troduces architecture design choices. After that, the memory expressions are refined
in Section 5.2. In Section 5.3, a dataflow graph is generated from the lowest level
functional IR. Section 5.4 turns this representation into VHDL code and describes how
the host machine interacts with FPGA to start the computation. Finally, Section 5.5
concludes this chapter.

83

84 Chapter 5. Lowering Passes

5.1 Architecture Design Choices

The initial IR in Shir is an algorithmic specification provided by the user or high-level
tool. It is hardware-agnostic and no implementation details are defined yet.

The first step in the compiler is to lower this expression into a piece of Architecture
IR. On this level, basic optimisations, such as parallelisation and memory usage, can
be expressed, as Chapter 6 will show later. In order to perform this lowering step,
the Shir compiler traverses the IR and automatically replaces each occurrence of an
algorithmic expression by an equivalent expression from the Architecture Level. This
procedure does not require any manual input from the user and is solely captured in
the lowering instructions LA, see Figure 5.1.

The recursive lowering starts in expression (5.1), where the provided root of the
algorithmic specification is wrapped in an expression that allocates memory in host
RAM and writes the N elements returned by expression root back to it. Depending on
the type of root, this might require multiple nested maps, which is represented by the
MapStm* keyword. Data that is to be written back to the host must be based on the
cache line size. Shir can generate the data type conversion from the given type of
root to a cache line based type automatically, as will be explained later in this section.

In most cases there is a simple one to one translation, as in expressions (5.2) to (5.4)
and (5.7) for example. Division gets a little more complicated, since not all FPGAs
come with a hardwired implementation of this operator. Instead, the lowering step
in expression (5.5) replaces it with a right Shift operator, if the divisor is a power of
two. For this, the divisor must be statically known. If the compiler finds a ConstInt
primitive at the second position in the input tuple, it is able to extract the divisor N at
compile time and transform it into a number of bits for the Shift operator. In all other
cases, where the divisor is unknown or not a power of two, an exception is thrown in
expression (5.6) and the compilation is aborted, because the target platform does not
support the specified design. For future work, to support other FPGAs with division
units, the corresponding primitive can be implemented on the Architecture Level.

Generally, the primitives are always lowered to their stream-based counterpart, e.g.,
Map becomes MapStm in this lowering process. Thus, the very initially generated lower-
level design will always be a fully stream-based, minimal area implementation with no
parallel computation. However, once the Architecture Level is reached, optimisations
can take effect as described in Section 6.1. They rewrite the IR and trade in the FPGA’s
area for performance.

5.1. Architecture Design Choices 85

Init[[root]] = Let mem = MemAlloc<HostRamT, . . . ,N> in (5.1)

LA[[root]]▷ MapStm*(λdata . data ▷ Write(mem))

LA[[Add]] = Add (5.2)

LA[[Sub]] = Sub (5.3)

LA[[Mul]] = Mul (5.4)

LA[[
〈
e,ConstInt<N>

〉
▷ Div]] = LA[[e]]▷ Shift<1, log2 N> (5.5)

// assert N is a power of two

LA[[Div]] =∅ // otherwise throw exception (5.6)

LA[[Id]] = Id (5.7)

LA[[ConstInt<N>]] = ConstInt<N> (5.8)

LA[[
〈
e1,e2

〉
]] =

〈
LA[[e1]],LA[[e2]]

〉
(5.9)

LA[[Select<N>]] = Select<N> (5.10)

LA[[Map(f)]] = MapStm(LA[[f]]) (5.11)

LA[[Reduce(f ,e)]] = ReduceStm(LA[[f]],LA[[e]]) (5.12)

LA[[Slide<SW ,SS>]] = SlideStm<SW ,SS>▷ MapStm(VecToStm) (5.13)

LA[[Zip]] = ZipStm (5.14)

LA[[Split<N>]] = SplitStm<N> (5.15)

LA[[Join]] = JoinStm (5.16)

LA[[Input<T,D1 . . .DN>]] = Let mem = (5.17)

MemAlloc<HostRamT, . . . ,D∗1 · . . . ·D∗N> in

Counter<0,1,D∗1 . . .D
∗
N>

▷ MapStm*(λaddr . addr ▷ Read(mem))

Figure 5.1: Lowering LA of Algorithmic Level to Architecture Level primitives with a

flat memory representation (explained in Section 4.5). Expressions are represented

by root, e, e1, e2 and f . T is a Value type, while N, D1 and DN are Nat types. Type

parameters are omitted in most cases, because they are equal on both sides of the

equation.

86 Chapter 5. Lowering Passes

When it comes to the SlideStm primitive, it is lowered differently because of
its hardware implementation. As seen in Figure 4.10, the generated output is a
stream of vectors. These inner vectors must be converted into streams, by using
MapStm(VecToStm) in expression (5.13), to fit the other parts (and their types) of the
stream-based, lowered design.

The Input primitive in expression (5.17) is lowered to an expression, that reads
the input data from host RAM. If this data has multiple dimensions, nested MapStm are
required, as indicated by MapStm*. Depending on the specified input type, a conversion
from a cache line based type to this desired data type may become necessary. Again,
Shir generates the conversions automatically for these cases, as will be explained in
the following paragraphs. For clarity, this conversion step is omitted in Figure 5.1.

The number of cache lines required for the input data, does not necessarily have
to match the number of input elements, due to the conversion. That is why the
counter in expression (5.17) counts up to D∗1 . . .D

∗
N , which are derived from the original

dimensions D1 . . . DN but not always equal. Due to the flat memory representation,
the memory allocation considers the product of these dimensions D∗1 · . . . ·D∗N , when
calculating how many elements are read.

Cache Line Conversion

As we have seen, it is often necessary to transform data into another format. Generally,
this happens when a hardwired interface (e.g., to memory) is involved in the FPGA
application. These hardware constraints dictate a specific format (e.g., 512 bits), which
does most likely not match the desired data types (e.g., 32 bits). For these use-cases,
an automatic conversion generator reshapes the given data into the desired format by
creating a combination of the primitives Split, Join, Drop, Concat and conversions
between vectors and streams, namely StmToVec and VecToStm.

Figure 5.2 provides an example of how a single cache line of 512 bits is converted
into a stream of 3-bit values, where the primitives DropVec, SplitVec, VecToStm
reshape the data. Likewise, a conversion in the opposite direction is generated using
the primitives StmToVec, JoinVec and ConcatVec. The latter is used to pad the vector
with two more zero elements to achieve a total length of 512 bits again.

In real world applications, the amount of input data usually exceeds a single cache
line of 64 bytes, so that a stream of cache lines is transferred to or from the host. The
conversion generator takes this into account and wraps the primitives into MapStm to
process cache line by cache line.

5.2. Lowering Memory Expressions 87

DropVec<0,
CL mod N>

1

2

3

4

5

6

⋮

510

512

511

1

2

3

4

5

6

⋮

510

SplitVec
<N>

509 509

508508

1

2

3

4

5

6

⋮

510

509

508

VecToStm

1

2

3

4

5

6

⋯

510

509

508

Figure 5.2: Converting the cache line of CL bits (here 512) on the left into a stream

of ⌊CL
N ⌋ N-bit integers on the right. In this example,

S
T
M[IntT(3)]170 is the desired type.

First, the 2 padding bits (512 mod 3) are removed. The red dashed lines indicate what

has changed in the first two conversion steps.

On the software side, host RAM data must be laid out accordingly. Based on the
given IR, the Shir compiler generates memory images, where the input data is already
put into the right format for the FPGA design. These images are stored as binary files
on the hard drive to be loaded into the RAM before executing the application.

5.2 Lowering Memory Expressions

Prior to the lowering from Abstract Memory Level to Hardware Memory Level, all
ramarrays in the given expression are mapped into memory regions, defined by a base
address and a length. In case there is more than one allocation in the same memory
(e.g., multiple inputs from host RAM), the required memory regions are laid out one
after another, by mapping an incremented base address to each of these allocations.

Data is always aligned to the cache lines, i.e., a defined memory region invariably
starts at the beginning of a cache line. This is a common compiler design decision for
performance reasons (not only for FPGA but also CPU targets for instance). Multi-
dimensional streams are stored in host RAM so that the start of the innermost stream
is aligned to the cache line. This simplifies navigation in memory, like jumping
back to the beginning of a stream to reread data, which is for example needed when

88 Chapter 5. Lowering Passes

1 2 3 4 5 6

10

1

7 8

9 11 12 1413 15 16

CL 1

CL 2

CL 3

CL 4

CL 5

2 3 4 5

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

512 bits64 bits

52 bits 44 bits

Figure 5.3: Mapping (blue lines) of multiple MemAlloc expressions from the IR (left) to

regions in host RAM (right). Each memory allocation is aligned to the 512-bit wide

cache lines. Dashed red lines indicate unused memory due to lesser amounts of data

(mem2) or data with non-power-of-two precision (mem3).

multiplying matrices, as we will see in the following chapters.

Figure 5.3 shows a piece of IR with three memory allocations in host RAM. The
first one maps 16 64-bit elements to two cache lines. The second one, mem2, takes
only 160 bits in total, so that the remaining 352 bits of the cache line are unused. In
the third allocation, mem3, the elements have a precision of 52 bits to fit 18 elements
in two cache lines instead of only 16 64-bit elements. This leaves a rest of 44 bits
(512 mod 52) in each cache line. The automatic conversion generator, introduced in
the previous section, takes this padding into account when packing data into memory
or unpacking data from memory.

Aftermemory allocation, off-chipmemories are initialised as described in Figure 5.4.
First, one read and one write memory controller for the host RAM are added as in
expression (5.18). These controllers are instantiated in any case, because host memory
is always present in the context of a hardware accelerator. Then, in expression (5.19),
a pair of memory controllers is added recursively for each onboard RAM bank that is
used in the given expression.

In order to keep track of memory controllers and use these shared functions again
at a later step in the lowering process, read controllers are put into the map container
rdCtrls and write controllers are put into wrCtrls. The helper function put(m, id,mc)

stores the memory controller mc in map m, while get(m, id) returns the previously
stored memory controller with id id. Furthermore, to keep the rules short, memId(e)
represents the id of a MemLocT of the ramarray type of the expression e. The shortcut
memloc(e) returns the MemLocT of the ramarray type of the expression e.

5.2. Lowering Memory Expressions 89

Init[[root]] (5.18)

= Let rdCtrl = λr . r ▷ ReadHostMemCtrl in

Let wrCtrl = λw . w ▷ WriteHostMemCtrl in

put(rdCtrls,HostRamId,rdCtrl);

put(wrCtrls,HostRamId,wrCtrl);

InitOnboardRam[[root]]

InitOnboardRam[[e]] if mem occurs in e (5.19)

with memloc(mem) = OnboardRamT(bankId)

and memId(mem) ̸∈ rdCtrls

= Let obram = λp . p ▷ OnboardRam(bankId) in

Let rdCtrl = λr . r ▷ ReadOnboardMemCtrl(obram) in

Let wrCtrl = λw . w ▷ WriteOnboardMemCtrl(obram) in

put(rdCtrls,memId(mem),rdCtrl);

put(wrCtrls,memId(mem),wrCtrl);

InitOnboardRam[[e]]

InitOnboardRam[[e]] // else (all used banks are initialised) (5.20)

= LM[[e]]

Figure 5.4: Initialising off-chip memory as a preparation for the memory lowering

pass LM in Figure 5.5. put, get, memId and memloc are helper functions to keep

this description short and readable. Additional if-conditions restrict the application

of certain rules. The remaining lower case terms are expressions, where mem is a

MemAlloc expression.

90 Chapter 5. Lowering Passes

LM[[Let p = mem in body]] if memId(mem) ̸∈ rdCtrls (5.21)

= Let bram = λp . p ▷ BlockRam in

Let rdCtrl = λr . r ▷ ReadSyncMemCtrl(bram) in

Let wrCtrl = λw . w ▷ WriteSyncMemCtrl(bram) in

put(rdCtrls,memId(mem),rdCtrl);

put(wrCtrls,memId(mem),wrCtrl);

Let LM[[p]] = LM[[mem]] in LM[[body]]

LM[[MemAlloc<. . .>]] = ConstInt<baseaddr> (5.22)

LM[[MapStm(λaddr . addr ▷ Read(mem))]] if memloc(mem) ̸= BlockRamT (5.23)

= ReadAsync(get(rdCtrls,memId(mem)),LM[[mem]])

LM[[ReduceStm(λm . λd . d ▷ Write(m),mem)]] if memloc(mem) ̸= BlockRamT

= WriteAsync(get(wrCtrls,memId(mem)),LM[[mem]]) (5.24)

LM[[Read(mem)]] if memloc(mem) ̸= BlockRamT (5.25)

= Repeat<1>▷ ReadAsync(get(rdCtrls,memId(mem)),LM[[mem]])▷ JoinStm

LM[[Write(mem)]] if memloc(mem) ̸= BlockRamT (5.26)

= Repeat<1>▷ WriteAsync(get(wrCtrls,memId(mem)),LM[[mem]])▷ JoinStm

LM[[Read(mem)]] if memloc(mem) = BlockRamT (5.27)

= ReadSync(get(rdCtrls,memId(mem)),LM[[mem]])

LM[[Write(mem)]] if memloc(mem) = BlockRamT (5.28)

= WriteSync(get(wrCtrls,memId(mem)),LM[[mem]])

LM[[other]] = other , with LM applied on children of other (5.29)

Figure 5.5: Lowering LM of Abstract Memory Level to Hardware Memory Level

primitives. put, get, memId and memloc are helper functions and mem is a MemAlloc

expression.

5.2. Lowering Memory Expressions 91

After all the required functions for off-chip memories are added to the expression,
the actual lowering pass starts. The Shir compiler traverses the given expression in a
recursive way and the lowering instructions LM in Figure 5.5 are followed. If none
of the first lowering instructions are applicable, the very last one, expression (5.29),
ensures that the recursive descent of LM is continued. Some of these contain additional
if-conditions, that must hold to allow the substitution. Again, no manual user input is
required for this procedure.

Whenever Let is encountered with a MemAlloc for a memory location, that has not
been visited before during traversal, the rule expression (5.21) is applied. This creates
a block RAM and the corresponding read and write memory controllers, which are put
in the rdCtrls and wrCtrls maps. The block RAM function is shared among the two
controllers. In expression (5.22), the MemAlloc itself is replaced by a ConstInt that
returns the allocated base address. This address is defined in the mapping of memory
regions, as described in the very beginning of this section.

The following rules lower the abstract Read and Write primitives to the more
specific ReadAsync and WriteAsync for asynchronous memory and ReadSync and
WriteSync for synchronous memory. In expressions (5.23) and (5.24), the substitution
results in expressions for reading and writing with concurrent memory requests. This
requires the former Read and Write expressions to be nested in a MapStm, resp. a
ReduceStm. If this is not the case, an inefficient implementation of only one read or
write request at a time is generated, as in expressions (5.25) and (5.26). For this case,
the primitive Repeat is used to generate an address stream with a length (N) of 1 from
the given single input address.

After these steps, the lowering to the Hardware Memory Level is completed,
without requiring any user input. The simple and abstract expression of memory
has been mechanically translated into a refined representation based on functions.
Former local occurrences of off-chip memory allocations in the IR have been replaced
by function calls to globally defined memory controllers. This simplifies connecting
the generated off-chip memory ports to the real hardware interface on the FPGA at
a later stage. In the next lowering step a dataflow graph is generated to approach a
more hardware-like representation, before finally emitting VHDL code.

92 Chapter 5. Lowering Passes

5.3 Dataflow Graph Generation

In this section, the low-level functional IR is transformed into a dataflow graph. This
representation resembles the actual hardware design on the FPGA, as wires, ports
and modules are exposed. There is an almost one-to-one mapping between functions
from the IR and nodes in the graph. Again, for the lowering, a recursive bottom-up
approach is employed: The leaves of the IR tree are turned into nodes first. Then,
their parent expression is processed. A graph for this parent expression is created,
involving the child nodes, which are wired together. This process continues until the
root node of the expression is reached and the entire nested graph of the program is
generated. This output is similar to the block diagrams we encountered previously in
Figures 4.7, 4.13 and 4.15.

At this stage, the functional input IR must guarantee the following properties:
First, no high-level expression from the Algorithmic or Abstract Memory Level must
be present in the expression. Second, parameter definitions must only occur directly
in a lambda abstraction. Third, the body of a lambda or Let must use the defined
parameter at least once. Otherwise a disconnection might appear in the generated
hardware implementation. The compiler checks that these properties hold to catch
for any possible implementation bug.

Arbitration of Shared Resources

If only one parameter access occurs in the body of a Let, its argument is directly
connected to the body using plain wires in hardware. Whenever the parameter is
used multiple times, a resource, e.g., memory, is shared among all the places where
the parameter is accessed, the clients.

Shared resources can be accessed by only one client at a time. During generation
of the dataflow graph, such sharing is detected and arbiter nodes are inserted. A round
robin scheduling strategy is used to fairly distribute access among the clients. There
are three types of arbiters in Shir, as shown in Figure 5.6.

The first one distributes shared data to its clients and makes sure they all receive it,
even if they are not ready at the same time. For this, it maintains a list of clients that
have received the current incoming piece of data, which is only consumed if all the
clients are in this list. Especially in the case where the clients have different timing
characteristics, they must be arbitrated.

5.3. Dataflow Graph Generation 93

Shared
Data

Client N

Distributor

Client 1 …

(a) Shared data.

Block
Ram

Write
Sync

MemCtrl

Sync
Arbiter

Read
Sync

MemCtrl

(b) Shared sync function.

Read
HostMem

Ctrl

Read
Async

Async
Arbiter

Read
Async …

(c) Shared async function.

Figure 5.6: Insertion of different arbiters (dashed orange boxes) depending on the

type of the shared resource.

The following example expression shows such a scenario, where f and g have
internal pipelines of different length. A simple wire connection would not be sufficient
and a distributor logic between the shared resource and the clients is required:

Let shared = Counter<0,1,N> in (5.30)〈
shared ▷ f ,shared ▷ g

〉
▷ Mul

A similar pattern has occurred before in expression (4.47), where a stream is
reshaped and shared among two write operations to different memory banks.

The second arbiter is used when synchronous functions, such as block ram and its
synchronous read and write controllers, are shared. Each call to the function must
return before the next call, from possibly another client, is accepted. Only the currently
selected client is connected to the resource’s data and handshake signals. This arbiter
is required in expression (4.60) from the previous chapter, for example.

The last of the three arbiter types deals with shared asynchronous functions, such
as onboard memory or host RAM controllers. For best performance, this arbiter
must not grant access exclusively to one client only. It must be able to flexibly take
requests from all its clients to maximise the request queue of the shared function.
The implementation of the arbiter therefore contains a queue to keep track of which
client has sent which request. Once the response arrives from the shared function, the
information in this queue is used to forward the response to the right client.

94 Chapter 5. Lowering Passes

An asynchronous arbiter is needed, for example, to connect a shared read host
memory controller to the reading clients. This happens when the high-level pro-
gram on the Algorithmic Level contains more than one Input expression, or multiple
ReadAsync expressions occur on the Hardware Memory Level after lowering, as in the
following expression:

Let rdCtrl = λr . r ▷ ReadHostMemCtrl in (5.31)

Counter<0,1,N>▷ ReadAsync(rdCtrl, . . .)

▷ MapStm(. . .Counter<0,1,N>▷ ReadAsync(rdCtrl, . . .)▷ . . .)

All in all, these arbiters are necessary modules to implement resource sharing in
hardware, as specified by corresponding high-level Let expressions. They are essential
to enable the memory usage as modelled in the Shir IR.

5.4 Hardware Design Generation

Based on the information from the dataflow graph, the generation of actual VHDL code
is straightforward. The required VHDL code templates are loaded from a database. See
Appendix A.1 for a complete overview table and Appendix A.2 for some examples. All
the graph’s edges are translated into VHDL statements and written into a ‘wrapper’
file at the top level of the design hierarchy.

Interfacing to Host

The generated top-level wrapper VHDL file contains the entire hardware design, while
only the ports of the read and write controllers for host RAM and the onboard memory
banks are exposed. These ports are connected to the FPGA’s DMA engine and the
hardware interface of the DDR memory, as visualised in Figure 5.7.

On the software side of the host machine, a small C program loads the initial
memory image into a huge1 pinned memory page in the host RAM. This program
communicates with the FPGA using the Open Programmable Acceleration Engine
(OPAE) [LLC17]. The OPAE C Application Programming Interface (API) makes the
accelerator’s resources accessible and provides associated operations. The base address
of the initial memory region is sent through this interface to the FPGA via Memory-
Mapped I/O (MMIO). Now, all the requested addresses from the FPGA, are offset by

1On Linux, memory pages up to 1GB are made available by enabling so-called huge pages.

5.5. Summary 95

FPGA
top level wrapper

host

…

R
A
M

PCIe Bus DMA
Ctrl

Read
HostMem

Ctrl

Write
HostMem

Ctrl

read
interface

write
interface

static part SHIR generated part

software
Onboard
Ram(N)

RAM
BANK

N

Figure 5.7: Generated hardware modules (blue boxes) in a top-level wrapper module

and their interfaces to the FPGA’s DMA controller and onboard RAM banks (only

one shown here for brevity).

this base address value. The software sends a ‘go’ signal to make the FPGA start the
memory transfers and the computation. Once the FPGA has finished, a certain MMIO
register is written, which is polled by the software program through OPAE functions.

5.5 Summary

Thanks to the multi-level structure of the compiler, the complex task to generate
low-level hardware code without user guidance, is divided into multiple simple and
manageable lowering passes. This chapter has introduced them and explained how
they work based on a concise list of lowering instructions, which are mechanically
followed when traversing the input IR. However, this process introduces perform-
ance inefficiencies, which require optimisation. The following chapter will explain
what these inefficiencies are and how they are addressed using an automated rewrite
process.

Chapter 6

Optimisation Using Rewrite Rules

Hardware accelerators are used to run workloads more efficiently compared to solu-
tions implemented in software. FPGAs offer an ideal platform for this due to their
reconfigurability and flexibility (Section 2.1), which allows them to adapt to constant
workload changes.

However, with great design options comes great responsibility to make the right
design choices. The available FPGA resources must be exploited in the best way
possible to maximise the performance. The design space for hardware accelerators is
huge and it is challenging to find the best implementation.

With so many design choices, manual optimisation is too exhaustive and time-
consuming. Hence, an automated process is needed to modify the IR and eventually
yield the optimised hardware design without any user input.

Rewriting systems, as introduced in Section 2.3, are a good match for such optimisa-
tion processes, especially for functional IRs as in Shir. The optimisations are encoded
as rewrite rules, capable of drastically changing the hardware, even on a structural
level. Moreover, rewrite rules keep the optimisations simple and easily extensible
for new algorithms and new target hardware platforms. The rewriting approach
is sound, because applying the rewrite rules does not change the original program
semantics but only the manner of implementation. This guarantees correctness by
construction. Since each rewrite is type-preserving, any combination of rewrites will
preserve program semantics and result in an expression that is synthesisable.

The lowering process of the previous chapter has only targeted a single point in
the design space, while no optimisations were applied. In this chapter, the designs are
modified more severely to improve their performance.

97

98 Chapter 6. Optimisation Using Rewrite Rules

Abstract Memory Level

Hardware
Memory Level

Device-Specific Level

Spatial
Parallelism

Data
Reusage

Stream and
Vector

Conversions

Efficient
Data

Reshaping

Maximising
DMA

Throughput

Exploiting
Dev-Specific

Resources

Timing
Correction

Figure 6.1: Optimisation steps in the Shir compiler, represented as boxes. The order is

indicated by solid arrows. Each optimisation consists of one or more rewrite rules

and has a dedicated section in this chapter. The dashed arrows are lowering steps, as

explained in the previous chapter.

Each section presents one specific step in the optimisation flow of Shir. Since there
are dependencies between these steps, they must be executed in order, as depicted in
Figure 6.1. In each step, a set of rules is applied in a fixed-point iteration (explained in
Section 2.3) — as much as possible, until no further rewrite is possible.

First, Section 6.1 introduces rewrite rules to parallelise the design. More of the
FPGA’s compute resources are used for better performance results. In Section 6.2,
fast buffers are automatically inserted into the IR whenever data is reused. These
two optimisation steps introduce bottlenecks, due to conversions between stream and
vector data types, that are addressed in Section 6.3 to improve the performance. This
dependency is the reason, why the first three rewrite steps must be ordered as in
Figure 6.1.

Section 6.4 first identifies the problems created by data reshaping in the context of
hardware synthesis and then shows how to make these problems literally disappear
by applying rewrite rules. In Section 6.5, the communication to off-chip memories,
which is crucial for the performance of accelerators, is optimised. Section 6.6 exploits
specialised hardened functions on the FPGA that are specific to certain models only.
Then, Section 6.7 deals with timing issues due to long signal paths on the FPGA
and how to fix them. This step must come last in the optimisation flow, because it
requires that the design has already settled and no major structural changes are made.
Section 6.8 explains why the rewriting process is always guaranteed to terminate
and has a deterministic outcome. Finally, Section 6.9 summarises the optimisations
presented in this chapter.

6.1. Spatial Parallelism 99

6.1 Spatial Parallelism

The compute power of FPGAs lies in their highly parallel structure. Generally, the
more resources on the chip are exploited, the better the performance.

When the Architecture Level is reached, as previously explained in Chapter 5, the
initial expression defines a stream-based design with minimal area usage, using as few
FPGA resources as possible. In this case, the dot product is expressed as follows:〈

inputA, inputB
〉
▷ ZipStm▷ MapStm(Mul) (6.1)

▷ ReduceStm(λa . λb .
〈
a,b

〉
▷ Add,ConstInt<0>)

Problem Statement

As the block diagram in Figure 6.2a indicates, not many adders and multipliers are
employed. The hardware implementation processes element by element. For design
space exploration the compiler must be able to trade in available resources on the
FPGA for increased throughput with a more parallelised computation.

Optimisation

The compiler achieves this automatically by substituting stream-based primitives with
their vector-based counterparts, as in this rewrite rule for mapping operators:

MapStm(f)
if f contains computation

================⇒ (6.2)

StmToVec▷ MapVec(f)▷ VecToStm

This rule replaces a MapStm with a function f by a MapVec, where many instances
of f are created to process all the elements in parallel at the same time, as explained in
Section 4.4.3. Tomaintain correctness of types in the IR after rewriting, the input stream
must be converted accordingly, using StmToVec primitives. Similarly, a VecToStm turns
the resulting vector back into a stream. Note, that the rule is only triggered if some
computation operations, e.g., addition, subtraction or multiplication, are found within
function f . These operations must not be nested in another MapStm. Thus, in case
there is a nesting of MapStms, the rule’s application is restricted to only the innermost
mapping operator. If the function contains only data type conversions, the mapping
operator remains untouched, because no parallelisation is needed.

100 Chapter 6. Optimisation Using Rewrite Rules

ReduceStm

r1accum.Add

a1a2...an

b1b2...bn

Zip
Stm

a1a2...an

b1b2...bn

MapStm

Mul

ci = ai * bi

c1c2...cn

(a) Fully stream-based dot product. The reduction contains an accumulator (box labelled

‘accum.’) and produces a valid result only after at least n cycles.

reduction tree by ReduceVec

r1Add

a1

a2

...

an

b1

b2

...

bn

Zip
Vec

a1

a2

...

an

b1

b2

...

bn

MapVec

Mul

c1

c2

...

cn

Mul

Mul

Mul

Add

Add

ci = ai * bi

(b) Parallel implementation. Multiple parallel multipliers and adders are instantiated. This

design can produce a valid output every cycle at best.

MapStm
reduction tree

Add

a1
a2

...
an

b1
b2

...
bn

Zip
Stm

ak

ak+1

bk

bk+1

MapVec

Mul

ck

ck+1

Mul
Zip
Vec

ci = ai * bi

ReduceStm

r1accum.Addp1...pn

...
an-1

...
bn-1

a2...an

b1...bn-1

b2bn ...

a1...an-1

(c) Partially parallel implementation. The inner vector-based dot product is wrapped in an

outer sequential operation on streams.

Figure 6.2: Block diagrams for dot product implementations with different levels of

parallelism. Blue boxes are primitives.

6.1. Spatial Parallelism 101

Reductions are parallelised using this rule:

ReduceStm(f ,e)
if f contains computation

================⇒ (6.3)

StmToVec▷ ReduceVec(f ,e) // reduction tree smart constructor

After applying these two rules (6.2) and (6.3) on the initial dot product in expres-
sion (6.1), the following expression is obtained:〈

inputA, inputB
〉
▷ ZipStm (6.4)

▷ StmToVec▷ MapVec(Mul)▷ VecToStm

▷ StmToVec▷ ReduceVec(λa . λb .
〈
a,b

〉
▷ Add,ConstInt<0>)

This implementation uses more adders and multipliers in parallel, somewhat
similar to Figure 6.2b. However, the produced design is suboptimal due to the three
inserted conversions between streams and vectors which take multiple clock cycles.
Section 6.3 will discuss in more detail how further rewrite rules can optimise all these
bottlenecks away. Nevertheless, at this point it is already obvious that the VecToStm
followed by a StmToVec are two unnecessary steps, which cancel each other out and
can therefore simply be removed.

The level of parallelism is further adjustable: Mixed stream and vector designs are
possible by first reshaping the input stream and then only partially parallelising the
computation. In order to process N values in parallel, the input is split into chunks of
N elements in advance. The overall computation of the dot product then happens in a
pipelining (stream) of parallel computations on vectors, as visualised in Figure 6.2c:〈

inputA ▷ Split<N>▷ MapStm(StmToVec), // reshape inputs and (6.5)

inputB ▷ Split<N>▷ MapStm(StmToVec)
〉

// create tuple

▷ ZipStm▷ MapStm(ZipVec

▷ MapVec(Mul) // inner parallel multiplication

▷ ReduceVec(λa . λb .
〈
a,b

〉
▷ Add,ConstInt<0>)) // inner reduction tree

▷ ReduceStm(λa . λb .
〈
a,b

〉
▷ Add,ConstInt<0>) // outer stream reduction

In conclusion, parallelisation is essential for high-performance computation. Dif-
ferent levels of parallelism are easily achieved in the Shir compiler due to powerful
stream and vector types in combination with a set of simple rewrite optimisations.

102 Chapter 6. Optimisation Using Rewrite Rules

6.2 Data Reusage

Similar to caches in CPUs and GPUs, memories on FPGAs come in different sizes and
access speeds. In some scenarios, where certain pieces of data are frequently used, it
makes sense to buffer them in smaller but faster memories. On FPGAs, on-chip RAM
is used for such buffers. Whenever data is reread multiple times, they avoid repeatedly
requesting that data from slower memories like host RAM.

Problem Statement

The lowering process in Chapter 5 only generates a simple implementation that always
reads all input data from host memory. For high-performance designs, the compiler
must automatically identify expressions that imply repeated reads and insert buffers
into them.

A reuse access pattern generally occurs in expressions with a lambda that uses an
unbound parameter (explained in Section 2.2.1) in its body, similar to the following
example, where f is any binary operation on two streams:

λstreamA . matrixB ▷ MapStm(λstreamB . f (streamA,streamB)) (6.6)

Optimisation

In order to create more efficient implementations, Shir detects these specific com-
binations of expressions automatically and inserts buffers by applying the following
rewrite rule:

λstreamA . matrixB ▷ MapStm(λstreamB . f (streamA,streamB))
if streamA and streamB are streams and not yet buffered

=================================⇒ (6.7)

λstreamA . matrixB ▷ MapStm(λstreamB .

f (

Let bram = MemAlloc<BlockRamT, . . . ,N> in

Let buffered =
〈
streamA,Counter<0,1,N>

〉
▷ ZipStm

▷ ReduceStm(λmem . λdata . data ▷ Write(mem),bram) in

Counter<0,1,N>▷ MapStm(λaddr . addr ▷ Read(buffered))

,streamB)

6.2. Data Reusage 103

function MultiDimStreamOperation(s)
if type(s) = ST

M[ST
M[. . .]M]N then // s is at least two-dimensional

flatStm← JoinStm(s)

result←MultiDimStreamOperation(flatStm)

return result ▷ SplitStm<length(s)> // length of the outermost dimension

else

return OneDimStreamOperation(s)

Figure 6.3: A recursive function to make one-dimensional stream operations available

for multidimensional streams.

The condition in this rule prevents infinite rewriting loops. Moreover, it is only
triggered when streamA and streamB are streams, in which case their repetition is
non-trivial and a buffer is actually beneficial.

In order to buffer multidimensional streams, the recursive function in Figure 6.3 is
employed. The input stream is first flattened using as many JoinStm primitives needed
to create a one-dimensional stream. This stream is then buffered as in Rule (6.7). After
reading, SplitStm restores its original, multidimensional shape.

In matrix multiplication of two N×N matrices A and B, both matrices are read
N times (2N2 rows to read in total). Here, the buffer rewriting rule improves the
performance. If the rows of A are buffered, the number of rows to read from host RAM
decreases to N2+N. The same happens, when the entire matrix B is buffered. However,
if both the rows of matrix A and the entire matrix B are buffered, the overall number
of rows to read from host RAM is drastically reduced to 2N.

Apart from that, the rewrite rules for buffer insertion are able to scale the input
and output width of the memory. That way, more data can be read or written in
parallel. This optimisation is crucial to enable highly parallel computation, which
requires a faster supply with input data. If the computation was more parallel than
the provided input data, the compute elements would not perform efficiently, due to
waiting times. The sweet spot for matrix multiplication, for example, is reached, when
both the output vector of the memory and the input vector to the computation (e.g.,
dot product) have the same width.

All in all, the memory-aware IR in Shir allows to conveniently perform memory
related optimisations. The above presented rewrite rule inserts buffers for repeated
data and thus increases the overall performance of the design.

104 Chapter 6. Optimisation Using Rewrite Rules

6.3 Stream and Vector Conversions

In the previous two sections, the initial design is first parallelised, in Section 6.1, and
then fast intermediate buffers are inserted, in Section 6.2. This process is visualised in
Figures 6.4a to 6.4c.

Problem Statement

However, as Figure 6.4c shows, these rewrite steps introduce conversions between
streams and vectors, which pose a problem for the communication between memory
and computation. In the case of StmToVec, only one ingoing element is consumed at a
time, and in the case of VecToStm, it only produces element by element. The overall
performance is still impaired due to this bottleneck. Furthermore, this communication
may pass through some ‘other operations’, consisting of further computations or even
data type conversions, because the memory’s hardware interface may differ from the
required input data type of the computation.

Optimisation

In order to speed up the communication between memory and computation, a design
as shown in Figure 6.4c must be transformed into a design as in Figure 6.4d. The
parallel wires near memory and computation must spread out over the entire FPGA,
effectively replacing slow stream-based transmissions with faster, vector-based ones.

The compiler automatically achieves this optimisation by moving the VecToStm
primitive away from its data source, through the ‘other operations’, towards a potential
StmToVec primitive. Once these two conversions meet in the IR, the communication
bottleneck is fixed, by removing both conversions with the following rewrite rule:

input ▷ VecToStm▷ StmToVec

==⇒ input (6.8)

The VecToStm primitive is moved through the IR by applying a set of 15 rewrite
rules, some of which are explained below by means of an example.

If, for instance, a VecToStm in combination with another function f is found in a
MapStm, it is isolated with the following map-fission rule:

MapStm(f ▷ VecToStm)

==⇒ MapStm(f)▷ MapStm(VecToStm) (6.9)

6.3. Stream and Vector Conversions 105

computation

Mul

M
em

or
y

O
th

er
 O

pe
ra

tio
ns

(a) Fully stream-based design with only one

multiplier. Thememory output widthmatches

the input width of the computational part.

computation

Mul

Mul

Mul

Mul

M
em

or
y

O
th

er
 O

pe
ra

tio
ns

St
m
To
Ve

c

(b) StmToVec is inserted to connect the new

4× parallelised computation to the remaining

part of the design. The memory port width is

now the bottleneck.

computation

Mul

Mul

Mul

Mul

M
em

or
y

O
th

er
 O

pe
ra

tio
ns

Ve
cT
oS

tm

St
m
To
Ve

c

(c) Memory width scaled by 4. VecToStm is

inserted to connect it to the rest of the design.

To remove this conversion, it is moved (red

arrow) until it reaches a StmToVec.

computation

Mul

Mul

Mul

Mul

M
em

or
y

O
th

er
 O

pe
ra

tio
ns

(d) Final design after rewriting: The high

memory bit-width is exploited by the paral-

lelised computation. The performance is no

longer impaired by the conversions.

Figure 6.4: Rewriting process from initial design (a) through intermediate steps (b)

and (c) to fully parallelised design (d). All wires (black lines) have the same bit-width.

106 Chapter 6. Optimisation Using Rewrite Rules

The rewriting system continues to move the combination of MapStm and VecToStm

further away from the data source and towards a potential StmToVec. A map-fusion
rule combines two MapStm into a single one, enabling further rewrites to then move
the VecToStm through function f :

MapStm(VecToStm)▷ MapStm(f)

==⇒ MapStm(VecToStm▷ f) (6.10)

If a VecToStm meets a JoinStm primitive during its relocation in the IR, it is stuck
and cannot skip this JoinStm. It is impossible to replace a VecToStm▷ JoinStm com-
bination with another expression, where the VecToStm occurs on the right-hand side,
while leaving the overall semantics untouched. Therefore, the JoinStm also needs to
be pushed through the IR, to make room for a more parallelised design. One of the
rewrite rules responsible for this works as follows, where any is a placeholder for any
expression:

JoinStm▷ any

==⇒ MapStm(any)▷ JoinStm (6.11)

In summary, memory and computation related spatial parallelisation optimisations
easily cause a demand for additional conversions to be inserted into the IR to preserve a
feasible design. These conversions, namely VecToStm and StmToVec, are a performance
bottleneck for the hardware design. The rules presented exemplify how VecToStm

is moved in the IR to eventually find a matching StmToVec and then annihilate both
conversions. Once the fixed-point iteration terminates, as explained in Section 2.3, the
communication wires between a wide memory and a parallelised computation are
also parallelised, as in Figure 6.4d. This process is carried out in a similar way for the
conversions at the computation’s output data, which is written back to host memory.

The strength of this multi-step approach for parallelisation lies within the separ-
ation of concerns: Each individual step is kept simple, even if this means they are
sub-optimal at first. One part inserts naive spatial parallelism, the other part deals
with removing inefficient conversions. However, in combination, they achieve the
desired, parallelised design.

6.4. Efficient Data Reshaping 107

6.4 Efficient Data Reshaping

Despite all the advantages of a high-level functional approach to hardware design,
there are some cases where these concepts are too far away from the hardware world.
In particular data reshaping operations such as transposition or sliding of data, as
used in 2D convolution for instance, might require substantial amounts of hardware if
implemented naively.

Nested Maps also cause problems when accessing different input data as in the case
of matrix multiplication. In such cases, the input data must be repeated multiple times.
A trivial task in pure software, since memory can be read multiple times. However,
in the hardware world, data arrives in the form of streams from memories or data
generators. Repeating such a data stream is a non-trivial business, since its state needs
to be reset and some control mechanism needs to determine how many times the
stream needs to be repeated. This might not be supported by the streaming protocol,
or at best ‘only’ introduces long latency if the computation is deeply pipelined.

These issues are not specific to just the compiler presented in this thesis, but
to all functional-based IRs used for high-level synthesis. Direct compilation from
such a representation to hardware sometimes results in slow performance or even
non-synthesisable hardware designs, as we will see in the evaluation in Section 7.4.

In this section, rewrite rules are used to generate high-performance designs in the
presence of reshaping data. They make data reshaping operations more efficient on the
underlying hardware, while preserving the program semantics. Instead of reshaping
the data, as implied by the programmed algorithm, it is more efficient to reorganise
the read addresses of that data in memory instead.

The following Section 6.4.1 describes how efficient hardware designs are achieved
when processing repeated data. Then, Sections 6.4.2 and 6.4.3 optimise transposition
and sliding operations to improve the performance of workloads that involve tiling
and convolution.

6.4.1 Repetition of Data

Generally, the application’s input data for the accelerator is read from memory and
then streamed through the compute logic of the device. However, some applications
require the input data to be repeated.

108 Chapter 6. Optimisation Using Rewrite Rules

One simple example for this is the creation of all possible pairs, the cartesian

product, of the rows of two matrices, as in this functional code:

matrixA ▷ MapStm(λrowA . (6.12)

matrixB ▷ MapStm(λrowB .
〈
rowA,rowB

〉
▷ ZipStm))

Here, the outer MapStm operates on input matrix A, while the inner MapStm operates
on input matrix B. Each input matrix comes in the form of a steam of data, generated
from reading memory (not shown in the example).

Problem Statement

For functional programs executed in software, this example works without any issue.
But if hardware is generated in a naive way, by creating a hardware module for each
primitive in the program, as depicted in Figure 6.5a, the result will be incorrect.

A naive hardware implementation for MapStm would just extract the rows from
the input matrix. Then, the ZipStm returns the pairs of the n-th row of matrix A and
the n-th row of matrix B. However, due to the simultaneous use of parameters from
two different, nested MapStm expressions, the original program specifies a different
behaviour: The rows of matrix A must be repeatedly read from memory. The compiler
must introduce some extra logic in the generated hardware design to achieve the
correct repetition of data.

In general, this is required, whenever a lambda is using an unbound parameter

in its body, as explained in Section 2.2.1. In the above example, the inner lambda is
accessing the unbound parameter rowA, which must therefore be repeated.

A more familiar example for such a memory access pattern is matrix multiplication,
with the only difference being the calculation of the dot products from these pairs of
rows. This is under the assumption that the second matrix has been transposed in
memory already. For two N×N matrices A and B, where A×B =C, each row of matrix
A and the entire matrix B are read N times. Thus, the input data must be repeated to
provide the correct data for the computation.

This data repetition problem is solved by breaking it down into two simple, auto-
matic steps. First, the compiler detects unbound parameter accesses and inserts explicit
Repeat primitives at each access. While this might not be the most optimal location, as
we will see shortly, this produces functionally correct hardware. Second, rewrite rules
move these new primitives in the IR to more optimal places to improve performance,
while preserving the functional semantics of the given application.

6.4. Efficient Data Reshaping 109

input matrix B MapStm

MapStm

Read

input matrix A MapStm

MapStm

computation

MapStm

MapStm

Zip
Stm

row B

Counter
<0,1,N,N>

Counter
<0,1,N,N>

row A

Read

(a) The result of the naively generated hardware design is wrong, because the rows of matrix

A are not repeated correctly.

computation

MapStm

MapStm

Zip
Stm

row B

Repeat
<N> Zip

Stm

N × row A
row A

row A

input matrix B MapStm

MapStm

Read

input matrix A MapStm

MapStm

Counter
<0,1,N,N>

Counter
<0,1,N,N>

Read

(b) A Repeat block is inserted for the required repetition of one of the input rows. This repeat

will back-propagate a signal to the producer to request that the stream must be repeated.

input A MapStm computation

MapStmRepeat
<N>

Counter
<0,1,N,N> MapStm

Zip
Stm

row B

Zip
Stm

row A
N × row A

N × each
row A

input matrix B MapStm

MapStm

Read
Counter
<0,1,N,N>

MapStm

MapStm

Read

(c) The Repeat has moved into the address generation, to remove the need to back-propagate

repeat signals and to improve the performance. The Read block for input A transforms a 3D

stream of addresses into a 3D stream of data, containing N times each row.

Figure 6.5: Hardware block diagrams to create all pairs of rows for two input matrices.

Counters emit 2D streams of addresses, that, after reading, result in 2D streams of

values. Newly inserted modules are orange and have a dashed border. A dotted signal

entering a MapStm means that this signal is not an input to this MapStm block.

110 Chapter 6. Optimisation Using Rewrite Rules

Insertion of Explicit Repeat

To enable the compiler to explicitly encode repetitions in the high-level IR, the Repeat
primitive, introduced in Figure 4.9, is employed. It takes a natural number N and
repeats the given input to create a stream of N times this input. This primitive can
operate on basic data but also streams.

Coming back to the above example, the parameter rowA is fed into such a Repeat.
Furthermore, the unbound parameter from the inner lambda is removed entirely using
a rewrite rule. This produces an expression where the free parameter is hoisted out of
the map by explicitly zipping it with the input. The repeated row of A and the matrix
B are zipped together and fed into the map expression:

matrixA ▷ MapStm(λrowA . (6.13)〈
rowA ▷ Repeat<N>,matrixB

〉
▷ ZipStm▷ MapStm(ZipStm))

Thus, each row of matrix A is repeated N times before proceeding to the next row.
The generated hardware design will contain a new module, as shown in the block
diagram in Figure 6.5b, and produce the correct result.

Nevertheless, this design is far from perfect as the repetition of the rows is dynamic
and therefore determined during runtime of the hardware. When reading the input
data from memory, a counter is generating the addresses to be read. This counter is
unable to predict when and which addresses must be repeated. Whenever it emits
the last memory address of a row, the counter has to wait until it receives a potential
repeat signal to decide whether to repeat the current row or to advance to the next
one. Figure 6.6a visualises a pipeline with such a repeat signal. This pipeline between
counter and repeat logic must stall to allow this communication. As the corresponding
timing in Figure 6.6c shows, this stall causes a delay which depends on the number of
registers in the dataflow.

Optimisation

To avoid the delay of the repeat signal, the compiler applies rewrite rules to move
the Repeat inserted in the previous step. The Repeat primitives in the IR are moved
step by step towards the IR’s leaves, which are address counters for reading the
program’s input data. Effectively, the repetition of data is transformed into a more
efficient repetition of addresses, as depicted in Figure 6.5c. The counter and repeat logic
communicate within the same pipeline stage, as Figure 6.6b shows.

6.4. Efficient Data Reshaping 111

address generation memory access computation

MapStm²(Read)Counter<0,1,N,N> MapStm(Repeat<N>)

21 3

repeatreset 1st dim.

addr data
valid valid

data

valid
...

row

pipeline stages

(a) Repetition of data: The address generation part must stall to allow the repeat logic to

communicate with the counter over multiple pipeline stages. Grey boxes are registers.

MapStm(Repeat<N>)

pipeline stages

address generation memory access computation

MapStm³(Read)Counter<0,1,N,N>

21

reset 1st dim.

addr data
valid valid

addr

valid
...

repeat
row

(b) Repetition of addresses: The repeat logic is next to the counter. They communicate directly,

no pipeline stall required.

addr

valid

 data

 valid

data

valid

a5 a6 a7

d5 d6 d7

d5 d6 d7

a0 a1

cycles

C
ou

nt
er

 2
D

M
ap

2 (R
ea

d)
M

ap
(R

ep
ea

t)

 reset
1st dim.

 repeat
row

d4d3d2

d3 d4

a2 a3

d0 d1

d0

(c) The counter must wait three cycles (orange) for a

potential repeat signal before sending the next address

row. Here, a repeat row signal is sent, causing the

address to jump back to a0.

addr

valid

 data

 valid

addr

valid

 reset

a5 a6 a7

d5 d6 d7

a0 a1

C
ou

nt
er

 2
D

M
ap

3 (R
ea

d)
M

ap
(R

ep
ea

t)

d0

a2

a5 a6 a7 a0 a1 a2

cycles

d4d3

1st dim.

 repeat
row

(d) The repeat signal is sent instantly

when the row’s last address arrives.

No cycles are wasted due to pipeline

stalls.

Figure 6.6: Block diagrams and waveforms before (a), (c), and after repeat optimisation

(b), (d). Here, the 2D counters emit an 8×8 matrix of addresses and memory access

takes one cycle. The repeat logic, MapStm(Repeat), sends a signal (red arrow) to the

address counter to reset its inner dimension. Superscript denotes nesting of MapStm.

112 Chapter 6. Optimisation Using Rewrite Rules

Thus, the generated hardware is able to generate valid memory addresses each
cycle, as indicated in Figure 6.6d. This may at first sound like an increase in the
number of memory accesses, but the data locality optimisation from Section 6.2 will
have placed a fast buffer for the repeated data to compensate that.

This optimisation is implemented as a set of rewrite rules, which are applied as a
fixed-point iteration over the IR. To illustrate this process, the previous example with
the explicit repetition is brought up again, but this time the part for reading input
matrix A is expanded:

Counter<0,1,N,N>▷ MapStm(MapStm(Read(mem))) // read matrix A (6.14)

▷ MapStm(λrowA .
〈
rowA ▷ Repeat<N>,matrixB

〉
▷ ZipStm▷ MapStm(ZipStm))

The first rewrite rule needed in this scenario splits the MapStm (map-fission) to
isolate the Repeat primitive:

MapStm(Repeat<N>▷ f)

==⇒ MapStm(Repeat<N>)▷ MapStm(f) (6.15)

This rewriting step returns the following expression with one MapStm for the
repetition and another one for the creation of the tuple:

Counter<0,1,N,N>▷ MapStm(MapStm(Read(mem))) (6.16)

▷ MapStm(Repeat<N>)▷ MapStm(λrowA .〈
rowA,matrixB

〉
▷ ZipStm▷ MapStm(ZipStm))

Next, the outer MapStm for reading matrix A and the one for repeating the rows
are fused, by applying this rewrite rule:

MapStm(f)▷ MapStm(Repeat<N>)

==⇒ MapStm(f ▷ Repeat<N>) (6.17)

The following expression is generated, which already gives an idea that the repeti-
tion moves towards the counter:

Counter<0,1,N,N>▷ MapStm(MapStm(Read(mem))▷ Repeat<N>) (6.18)

▷ MapStm(λrowA .
〈
rowA,matrixB

〉
▷ ZipStm▷ MapStm(ZipStm))

6.4. Efficient Data Reshaping 113

Now, to cause a repetition of memory addresses, the repetition must be moved
across the MapStm(Read(mem)). This is achieved with a more generic rewrite rule that
allows the Repeat to jump over any expression. It also introduces another nesting of
MapStm to compensate for the extra dimension created by the repetition:

any ▷ Repeat<N>

==⇒ Repeat<N>▷ MapStm(any) (6.19)

The automatic rewriting process finally returns the following optimised expression:

Counter<0,1,N,N>▷ MapStm(Repeat<N>▷ MapStm(MapStm(Read(mem)))) (6.20)

▷ MapStm(λrowA .
〈
rowA,matrixB

〉
▷ ZipStm▷ MapStm(ZipStm))

This example has shown how rewriting gradually moves a Repeat primitive in the
IR until it eventually reaches a counter. The compiler is able to generate efficient hard-
ware for such a combination of counters and repeat modules. The address generation
no longer simply increments its value, but jumps back to the beginning of the current
row, whenever a repetition is desired. The corresponding VHDL template is shown
in Appendix A.2.4 and is able to produce a valid address value each clock cycle. This
way, the repetition problem is solved statically, during compile-time, and run-time
pipeline stalls, as depicted in Figure 6.6c, disappear. This leads to improved overall
performance, as will be evaluated in Section 7.4. While only three rewrite rules were
applied here, the Shir compiler provides more than 20 rules to generically optimise
repetition for other scenarios as well.

6.4.2 Transposition

This section introduces and optimises transposition, which is used to implement tiling.
If the input data for matrix multiplication or convolutional layers is too large for the
FPGA’s on-chip buffers, tiling is applied. The large input matrix is partitioned into
several small tiles, which are then processed one by one.

Using the Split primitive, horizontal slices are easily extracted from matrices. Full
tiling, however, also requires these slices to be split into vertical chunks. For this, the
Split primitive is applied on the transposed matrix. With this simple trick, tiling with
M by N tiles is expressed as:

Map(Split<N>)▷ Transpose▷ Map(Split<M>)▷ Transpose (6.21)

114 Chapter 6. Optimisation Using Rewrite Rules

To implement transposition, which is a special case of permutation, the PermuteVec
primitive is first introduced:

PermuteVec<(N→ N)> : VE
C[T]N → VE
C[T]N (6.22)

It operates on a vector of N elements by applying a statically known permutation
function (N→ N) to manipulate the order of elements based on their indices.

Now, with this new primitive, transposition of 2D vectors is expressed by first
flattening the M by N input matrix using JoinVec, then permuting it with a more
complex function and finally splitting it again:

TransposeVec := JoinVec (6.23)

▷ PermuteVec<λ i . i/N +(i mod N) ·M>

▷ SplitVec<M>

Stream-based transposition builds on this but requires the 2D input data to be
converted to vectors first:

TransposeStm := MapStm(StmToVec)▷ StmToVec (6.24)

▷ TransposeVec▷ VecToStm▷ MapStm(VecToStm)

Problem Statement

As demonstrated, the required functionality for transposition is expressible based
on PermuteVec. The generated hardware for this primitive results in several wire
assignments, as depicted in Figure 6.7a. For large data structures, the wiring becomes
too complex and requires more area than feasible for the FPGA.

Optimisation

In order to address this issue, a fixed-point iteration over the IR applies rewrite rules1

to express the transposition more efficiently. Similar to the repeat optimisation in
Section 6.4.1, the transposition of data is first rewritten as a transposition of memory
read addresses.

1Rewrite rules for transposition optimisation designed and implemented by Tzung-Han Juang,
co-author of [SJD22a, SJD22b].

6.4. Efficient Data Reshaping 115

PermuteVec<…>
0

1

…

N-1

…

M*N-1

0

N

M*N-N

…

…

M*N-1

(a) Naive transposition of 2D vectors based on the PermuteVec primitive and the permutation

function λ i . i/N +(i mod N) ·M.

MapStm

01...N-1
0N...M*N

-N...M*N
-10N...N*M

-N

MapStm

Add

Counter
<0,N,M>

Counter
<0,1,N>

(b) Optimised hardware to generate a transposed stream of 2D addresses. The complex wire

mesh, as in Figure 6.7a, is no longer required.

Figure 6.7: Block diagrams for transposition of 2D data.

116 Chapter 6. Optimisation Using Rewrite Rules

All the application’s input data eventually comes from some kind of memory.
Therefore, each program contains a Counter and Read primitive somewhere in the
IR to read this data. In the context of transposition, the initial program given to the
compiler may contain the following expression:

Counter<0,1,M,N>▷ MapStm(MapStm(Read(mem)))▷ TransposeStm (6.25)

Note, that to simplify this example the placeholder TransposeStm is used, which
actually consists of several primitives, as shown in expression (6.24). Given the above
expression, which transposes the data, the following generic rewrite rule moves the
TransposeStm further towards the Read’s input — the counter that generates the
addresses:

MapStm(any)▷ TransposeStm

==⇒ TransposeStm▷ MapStm(any) (6.26)

As a result of this rewriting, the complex data reshaping operations are placed
next to the address counter:

Counter<0,1,M,N>▷ TransposeStm▷ MapStm(MapStm(Read(mem))) (6.27)

Nevertheless, this expression still generates a complex wiring on the FPGA. The
following rewrite rule replaces the transposition of addresses by a more efficient
expression, based on two simple counters:

Counter<C0,CS,M,N>▷ TransposeStm

==⇒ Counter<C0,CS,N>▷ MapStm(λp1 . (6.28)

Counter<0,N,M>▷ MapStm(λp2 .
〈
p1,p2

〉
▷ Add))

The corresponding hardware design is shown in Figure 6.7b and has no more
complex wiring left. After rewriting, this final, optimised expression is returned:

Counter<0,1,N>▷ MapStm(λp1 . Counter<0,N,M>▷ MapStm(λp2 . (6.29)〈
p1,p2

〉
▷ Add))▷ MapStm(MapStm(Read(mem)))

6.4.3 Slide

Following the ideas of [HSS+18, SHS+19] around stencil computations, the Slide

primitive is able to implement convolution. This primitive, first introduced in Figure 4.6,
is generic over the window size SW and the step size SS: Slide<SW ,SS>.

6.4. Efficient Data Reshaping 117

parallel 3×3 convolution

s11

s12

...

s31

s1n

s21

s22

...

s2n

s32

...

s3n

r1

r2

...

rn-2

MapVec
s11

s12

s31 s21

s22s32

s32s32s33

s11

s12

s31 s21

s22s32

s32s32s33

s12

s13

s32 s22

s23s33

s34s34s34

...

s11

s12

s31 s21

s22s32

s32s32s33

s1n-2

s1n-1

s3n-2 s2n-2

s2n-1s3n-1

s3ns3ns3n

SlideVec
<SW,SS>

Dot
Prod

Dot
Prod

Dot
Prods11

s12

s31 s21

s22s32

s32s32s33

w11

w12

w31 w21

w22w32

w32w32w33

input

...

weight

Figure 6.8: 3×3 convolution with slide parallelisation.

For 2D convolution, the following combination of primitives expresses a 2D sliding
window operation, where S′W is the height and S′′W the width of the window:

Slide<S′W ,S′S>▷ Map(Transpose▷ Slide<S′′W ,S′′S>▷ Map(Transpose)) (6.30)

On the hardware-specific IR level, the slide primitive is refined to operate on
streams (see Figure 4.9) and vectors (see Figure 4.11). With these primitives an ef-
ficient parallel convolution is expressed, as depicted in Figure 6.8. However, the
implementation on FPGAs is anything but trivial.

Problem Statement

The hardware implementation of SlideStm is based on a shift register, as depicted in
Figure 4.10. This register emits its entire contents, the window vector, whenever a new
input is received. The parallel variant SlideVec creates a wiring mesh in hardware,
similar to Figure 6.7a, but even more complex, because each input signal is connected
to SW /SS outputs in average. For large window sizes, either an enormous shift register
or complex wiring is inferred, which may not fit onto the target FPGA. An optimisation
is required to implement the elaborate slide operation on real hardware.

118 Chapter 6. Optimisation Using Rewrite Rules

Optimisation

The main idea is similar to the optimisations for repetition and transposition, in
Sections 6.4.1 and 6.4.2. Instead of reshaping data, the addresses of that data in
memory are reorganised, which is more efficient. This is achieved by another rewrite-
based fixed-point iteration2 over the IR. To describe this process on an example, the
following initial expression with the sliding window operator on the Algorithmic
Level is considered:

Input<IntT(32),D1>▷ Slide<SW ,SS> (6.31)

After lowering to the Architecture Level, abiding by the rules in Figure 5.1, this
expression is obtained:

Counter<C0,CS,D1>▷ MapStm(Read(mem)) (6.32)

▷ SlideStm<SW ,SS>▷ MapStm(VecToStm)

The optimisation starts with moving the SlideStm and VecToStm primitives across
the MapStm with the read operation. The generic rewrite rule for this does not only
work for Read but also any other function inside MapStm:

MapStm(any)▷ SlideStm<SW ,SS>▷ MapStm(VecToStm)

==⇒ SlideStm<SW ,SS>▷ MapStm(VecToStm)▷ MapStm(MapStm(any)) (6.33)

This rewriting returns an expression, where SlideStm operates on addresses in-
stead of data:

Counter<C0,CS,D1>▷ SlideStm<SW ,SS> (6.34)

▷ MapStm(VecToStm)▷ MapStm(MapStm(Read(mem)))

Nevertheless, the generated circuit for this is still too complex in hardware. That
is why another rewrite rule replaces the slide over addresses by a more efficient
combination of counters that produces the same values:

Counter<C0,CS,D1>▷ SlideStm<SW ,SS>▷ MapStm(VecToStm)

==⇒ Counter<C0,SS,(D1−SW +CS)/SS +1>▷ MapStm(λp1 . (6.35)

Counter<0,CS,SW>▷ MapStm(λp2 .
〈
p1,p2

〉
▷ Add))

2Rewrite rules for sliding window optimisation designed and implemented by Tzung-Han Juang,
co-author of [SJD22a, SJD22b].

6.5. Maximising DMA Throughput 119

After these rewrite optimisations, the slide expression is removed entirely, and the
following expression is obtained:

Counter<C0,SS,(D1−SW +CS)/SS +1>▷ MapStm(λp1 . (6.36)

Counter<0,CS,SW>▷ MapStm(λp2 .
〈
p1,p2

〉
▷ Add))

▷ MapStm(MapStm(Read(mem)))

The generated hardware for the counters looks similar to the optimised trans-
position in Figure 6.7b, only the counters’ configurations are different. The large
shift registers or wire meshes are in effect replaced by counters, reducing area while
preserving the original functionality.

6.4.4 Summary

As seen in this section, data reshaping operations must be optimised to generate
efficient hardware. The key idea is to move these operations across other primitives in
the IR. This process brings the reshaping operations close to a counter, where they
become more efficient or are optimised away.

6.5 Maximising DMA Throughput

Accelerators require both fast computation and fast communication to deliver high
performance. Slow memory access can limit the performance of carefully parallelised
hardware designs, as a chain is only as strong as its weakest link. This section presents
two rewrite optimisations that increase throughput when directly accessing host
memory.

6.5.1 Concurrent Requests

The throughput of host RAM access via DMA depends heavily on the number of
concurrently pending read and write requests. The more requests in the queue, the
higher the throughput. As mentioned in Section 4.6, the length of ReadAsync’s input
stream determines the maximum number of possible parallel requests. The Shir
compiler reshapes the input stream with splits and joins and thus maximises the
number of concurrent requests. This leads to a throughput close to the theoretical
maximum, as the evaluation in Section 7.2 will show.

120 Chapter 6. Optimisation Using Rewrite Rules

Alternate

input
demux
logic

output
mux
logic

function
1

function
2

A

A

B

B

Figure 6.9: The Alternate primitive with two provided functions. The input demux

logic decides which function receives the input data, while the output mux logic

alternately forwards the output data of one and then the other function. The signal

flow of the two modes (red dashed lines for mode A, orange for mode B) is constantly

switched back and forth in such a way that one function consumes the input, while

the other one produces the output.

6.5.2 Input Double Buffering

A common strategy to improve throughput is double buffering, where filling and
consuming operations alternate between two buffers. At any time, one of the buffers
is busy receiving new data, while the other one is sending out the available data.

To exploit pipeline parallelism and simultaneously fetch new input data while
running the computation, the Alternate primitive is proposed:

Alternate : TNonRamArrayT 7→ UNonRamArrayT 7→ (6.37)

(T s−→U)
s−→ (T s−→U)

s−→ T s−→U

This primitive alternately feeds its input to one of its functions, while emitting the
output of the other function, as visualised in Figure 6.9.

The rewrite optimisation for double buffering finds a single ReadAsync primitive
in the IR and replaces it with this double-buffered implementation:

λoffset . offset ▷ ReadAsync(rdCtrl,baseAddr)

==⇒ λoffset . offset ▷ Alternate((6.38)

λp1 . p1 ▷ ReadAsync(rdCtrl,baseAddr),

λp2 . p2 ▷ ReadAsync(rdCtrl,baseAddr))

6.6. Exploiting Device-Specific Resources 121

DSP Block 2

DSP Block 1

r1

hard
Mul

hard
Mul

hard
Mul

hard
Mul

logic
Add

i0

i1

i2

i3

hard
Add

hard
Add

(a) Initial design allocating two DSP blocks.

The second multiplier and the adder of each

block are not usable for other computations.

The outputs of both blocks are added up in

the FPGA’s logic.

DSP Block 2

DSP Block 1

r1

hard
Mul

hard
Mul

hard
Mul

hard
Mul

logic
Add

i0

i1

i2

i3

hard
Add

hard
Add

(b) The optimised design performs both mul-

tiplications in a single DSP block. This makes

the second DSP block entirely available for

other computations. The internal hardwired

adder is used now, which frees up some logic.

Figure 6.10: Device-specific optimisation reducing the DSP block usage on the Intel

Arria 10 FPGA. In both block diagrams, two pairs of integers are first multiplied and

the results are then summed up. Dashed grey blocks are wasted resources (red cross

mark) in (a), or freed and usable resources (green check mark) in (b).

Note, that in order to share the rdCtrl and baseAddr among two ReadAsync prim-
itives, they must be parameters from a parent Let expression:

Let rdCtrl = . . . in (6.39)

Let baseAddr = . . . in

. . .ReadAsync(rdCtrl,baseAddr) . . .

. . .ReadAsync(rdCtrl,baseAddr) . . .

Apart from double buffering, the Alternate primitive has the potential to speed
up other time-consuming tasks, by distributing these tasks to multiple functions that
run concurrently in hardware.

6.6 Exploiting Device-Specific Resources

FPGAs often have specialised hardened functions that excel at efficiency and outper-
form similar logic-based implementations. In Section 4.7, the Mul2Add primitive is

122 Chapter 6. Optimisation Using Rewrite Rules

introduced to perform two multiplications and one addition in a single DSP block on
the Intel Arria 10.

However, Intel’s synthesis tool Quartus is only able to automatically exploit this
feature under certain circumstances — although this optimisation may seem obvious to
the user when looking at the IR. To enforce this efficient DSP block configuration, the
compiler detects suitable multiply-add operations and makes the use of the Mul2Add
primitive explicit. This optimisation is once again encoded as a rewrite rule:

input ▷ MapVec(Mul)▷ SplitVec<2>▷ MapVec(VecToTuple▷ Add)

if bit width of elements in input ≤ 18
======================⇒ (6.40)

input ▷ SplitVec<2>▷ MapVec(VecToTuple▷ Mul2Add)

Due to hardware limitations, it is only possible to split up the DSP block into two
separate multiplications when the input data width is less than or equal to 18 bits. For
higher precision data, the entire DSP block is occupied. The condition of the rewrite
rule captures this and restricts the application to cases where the input data width is
sufficiently low.

Figure 6.10 sums up the advantages of this rewrite optimisation. Initially, the
generated hardware allocates two separate DSP blocks for two multiplications and the
addition is performed in programmable logic. The second multiplier and the hardened
adder in each block remain unused. Due to the internal wirings of a DSP block, these
wasted capabilities cannot be employed for other purposes, e.g., another multiplication.

After the rewriting optimisation, the IR explicitly states that two multiplications
and one addition are performed in a single DSP block. This information is included
in the generated hardware description so that the Quartus synthesis tool is able to
allocate the hardware functions accordingly. Thus, an entire DSP block and a small
amount of logic is freed up to be used for other operations.

In summary, the presented rewrite optimisation for the Mul2Add primitive demon-
strates how device-specific features are easily exploited in the IR. As seen in the above
example, the rewrite rule remains simple and short, yet its impact is great, as twice as
many of the FPGA’s DSPs are made available.

These kinds of low-level optimisations assist the later synthesis process by taking
hardware design decisions off the synthesis tool’s hands. The desired implementation
choices are made explicit and inefficient designs are prevented from the very beginning.

6.7. Timing Correction 123

r1

Add

Add

Add

Reg

Reg

Reg

Add

Add

Add

Reg

Reg

Reg

Add Reg

v0

v1

v2

v3

v4

v5

v6

v7

pipeline stages1 2 3

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Figure 6.11: In order to prevent long combinational paths in hardware, a rewrite rule

detects reductions trees and inserts Registered primitives (‘Reg’ blocks) into the

design to generate a pipeline with multiple short sections (three in this example).

6.7 Timing Correction

When a Shir program is lowered, it gradually becomes more detailed and complex. A
sequence of high-level primitives can easily generate long combinational paths with a
large propagation delay in the synthesised FPGA design. Reduction trees, created by
ReduceVec, are predestined to be affected by this issue. These large propagation delays
either force a slowdown of the FPGA’s clock frequency, which is bad for performance,
or worse, they result in faulty hardware operation. As explained in Section 2.1.5,
pipelining can prevent this from happening. For this, the Registered primitive is
introduced to the IR:

Registered : TBasicDataT 7→ T → T (6.41)

The type definition is similar to the identity function. However, during hardware
generation, this primitive inserts a register that divides long signal paths into several
shorter sections, allowing the synthesiser to meet the desired target clock frequency
without violating timing constraints.

Shir contains a heuristic-based rewrite rule that automatically detects reduction
trees and inserts Registered expressions into the IR to form a pipeline after synthesis:

SplitVec<S>▷ MapVec(Add)

==⇒ SplitVec<S>▷ MapVec(Add▷ Registered) (6.42)

124 Chapter 6. Optimisation Using Rewrite Rules

Figure 6.11 shows how the dataflow in a reduction tree is broken down into smaller
parts after this rewrite optimisation. The heuristic is currently limited to detecting
and optimising certain constructs only. Other combinations of primitives could still
cause large propagation delays, unnoticed by this particular rewrite rule. In this case,
additional rewrite rules are required, which are nevertheless easy to implement due to
the practical Registered primitive.

Pipelining is an important technique in hardware design and, with the help of the
Registered primitive, it is lifted to a high-level IR. This enables future extensions of
Shir’s rewrite rules to insert registers, without the need to code in low-level HDL.

6.8 Informal Proof of Convergence

In order to keep the rewriting process simple and to prevent generating non-optimal
programs, the rewrite system in Shir is designed to be convergent, see Section 2.3.
This allows to take a set of rewrite rules and apply them to an expression as much as
possible in arbitrary order, while the rewriting process is guaranteed to terminate and
to yield the optimised design. The presented optimisations in this chapter consist of
either a single rewrite rule, in which case the proof of convergence is trivial, or a set
of rules which must guarantee termination and confluence.

The general idea in these rewriting optimisations is to move certain expressions
either towards their data source (counters) or away from them. In the tree represent-
ation of an expression, this corresponds to downward or upward movements. Most
of the rules presented aim in the direction of the counters, with the exception of
the rules for VecToStm primitives in Section 6.3. It is obvious that such a process
will always terminate, because the IR is a finite tree and therefore free from loops.
For convergence, it is sufficient to show that each fixed-point iteration is free from
conflicting rewrite rules which can both be applied to a given piece of IR. This is
achieved by carefully designing the rewrite rules so that there is only one way to move
an expression downwards (or upwards) in the IR tree.

For a more formal proof, a monotone measure function ϕ : expr 7→ N is defined
to map an expression to a natural number. Each individual rewrite rule t0 ==⇒ t1
must now guarantee to (monotonically) decrease this value, so that ϕ(t0)> ϕ(t1). If
this is given, an infinite rewrite sequence is impossible because this would induce an
infinitely decreasing natural number.

6.9. Summary 125

More precisely, for the presented optimisations, the measure function ϕ represents
the distance of the currently considered expression to its closest leaf node in the IR
tree, in case the expression is to be pushed towards its data source. Each rewrite
operation decreases the distance and when the leaf of the IR is reached, the process
ends, since no rewrite is able to further decrease the value of ϕ. This proof works
equally for moving an expression up in the IR.

6.9 Summary

This chapter has demonstrated how common techniques to improve performance,
like parallelisation and buffering, are automatically applied in the Shir framework.
A convergent rewrite system performs these optimisations in a fixed-point itera-
tion, which terminates when the rules have been applied as much as possible. The
stream and vector types facilitate exploring different levels of parallelisation, while the
memory-aware IR with its ramarray type leverages memory-related improvements in
the design.

The rewritings can cause data reshaping issues, which have a negative impact on
the performance. However, it has been shown that they can be optimised away by
applying further rewrite rules. Other data reshaping challenges are also addressed
to achieve high-performance implementations for use-cases that involve repetition,
permutation and sliding windows, such as matrix multiplication and convolution.

Regarding device-specific optimisations, the rewrite rule for the Mul2Add primitive
exemplifies how specialised low-level functions on an FPGA are exploited in a high-
level representation. Bymaking certain design decisions explicit in the IR, the synthesis
process is guided towards implementations that perform better.

All the presented rules do not claim to be exhaustive. They cover important im-
provements for the considered main use-cases in this thesis, i.e., matrix multiplication
and convolution. However, the framework is designed to be extensible and this chapter
has shown how little coding is required to define a rewrite rule with yet great impact
on the design.

Chapter 7

Evaluation

This chapter evaluates the proposed novel techniques of the Shir framework. In
particular, the previously introduced optimisations are applied and their impact on
the generated hardware is discussed. The rest of this chapter is organised as follows.

First, Section 7.1 describes the test procedure and the environment in which the
benchmarks are executed. Section 7.2 deals with rewrite rules to optimise DMA
throughput of host memory and onboard memory1, and measures it for a selection of
memory-boundworkloads. Then, Section 7.3 shows how rewrite rules for buffering and
parallelisation improve the performance of matrix multiplication, a typical workload
for accelerators. All the data reshaping optimisations from Section 6.4 are evaluated
in Section 7.4. To demonstrate their effect, more complex benchmarks based on tiled
matrixmultiplication and tiled 2D convolution2 are run. In Section 7.5, the performance
of Shir and OpenCL HLS generated hardware designs are compared with each other.
Finally, Section 7.6 concludes this chapter.

7.1 Experimental Setup

The experiments are run on an Intel Arria 10 GX FPGA at 200MHz with 1518 DSP
blocks. This FPGA is widely deployed in the cloud and found in industry use-cases
due to its large number of resources. In the experimental setup, it is connected via
PCIe Gen 3 x8 to a host machine with two 18 core Intel Xeon Gold 6154 CPUs at 3 GHz
and 512GB DDR4 RAM at 2666MHz. The bitstream for the FPGA is synthesised with
Quartus Prime Version 19.2 from the VHDL files generated by the Shir compiler.

1Implementation of the VHDL template for onboard memory contributed by Ayan Chakraborty.
2Benchmarks for 2D convolution written and results collected by Tzung-Han Juang, co-author of

[SJD22a, SJD22b].

127

128 Chapter 7. Evaluation

The timing requirements for the produced designs are met, unless stated otherwise.
For example, some experiments are expected to be ‘not synthesisable’ due to disabled
optimisations in the compiler, as we will see. All the FPGA applications operate on
randomly generated input data sets, while the results are verified against a reference
CPU implementation.

The evaluation is centred around a few well-known classes of applications on
a real FPGA system, rather than taking the easier route of simulating a variety of
benchmarks. A simulator exhibits a deterministic behaviour hiding many possible
timing issues with the generated hardware. For example, physical timing delays
caused by long signal paths on the FPGA do not occur in simulation. In contrast, real
systems receive data from off-chip RAM via DMA. Due to traffic on the bus, this data
comes in random order and at random time, leading to ever new circumstances for
the accelerator. Furthermore, the hardware implementation must comply with certain
design guidelines to be feasible for an FPGA at all, while a simulator can assume an
arbitrary platform.

The Shir compiler generates the VHDL code for each benchmark in under five
minutes, which is insignificant compared to the synthesis time which can take multiple
hours. As a preparation for the experiments, the software side loads the input data,
e.g., matrices, from binary files on hard drive into host RAM and arranges it to fit
the cache line width. A cycle counter on the FPGA measures the end-to-end runtime,
which includes the initial input data transfer to the FPGA, as well as the transfer of
the results back to host RAM.

Design Space Exploration

The optimisation process in Shir is based on simple heuristics. All the presented optim-
isations are enabled by default. The design is parallelised as much as possible, buffers
are inserted whenever sufficient on-chip memory is available and data reshaping
operations are optimised if present.

In order to show the performance impact of certain optimisations, various points
in the design space are targeted, by manually disabling different rewrite rules in the
compiler. In ‘normal’ compiler operation, where all rules are enabled, this manual
interaction with the rules is not required. The high-level hardware-agnostic expression
is the only input provided by the user. Shir is able to generate even more different
designs for the benchmarks. However, they are omitted, because they are not in the
Pareto frontier with desirable area vs. throughput trade-offs.

7.2. Communication via DMA 129

7.2 Communication via DMA

The experiments in this section evaluate the throughput when transferring data via
DMA. First, a memcopy-like Shir program is run to determine the best transfer speeds
possible between host and FPGA. Then, two basic stencil computations that rely on
highmemory throughput are executed. Finally, the maximum access speeds of onboard
memory are measured.

Host Memcopy

The memcopy program copies data from host RAM to the FPGA and back. It is
expressed on the Algorithmic Level with an Id expression and the input specification,
which determines the amount of data to copy:

Input<IntT(512),8388608>▷ Id (7.1)

The 8,388,608 cache lines of 512 bits result in a total of 512MB of input data. The
Shir compiler automatically lowers the algorithmic expression into the Hardware
Memory Level. To show how the maximum number of concurrently pending memory
read requests via DMA affects memory throughput, the rewrite rules in the compiler
flow are manually modified to explore weaker design points with fewer concurrent
read requests. The experiments cover the range of 1 to 64 concurrent requests, because
the Intel Arria 10 FPGA has a hardware limit of 64. Furthermore, the impact of double
buffering the input in block RAM as introduced in Section 6.5.2 is also considered.

The results of this benchmark are presented in Figure 7.1. As expected, the best
performance is achieved when the maximum number of concurrent requests is 64 and
on-chip double buffering is enabled. The area usage for this optimal configuration is
shown in Table 7.1 as experiment number 1. Furthermore, two interesting details can
be observed with the memcopy benchmarks.

First, the effectiveness of double buffering: Using N concurrent requests with
double buffering performs significantly better than using 2N concurrent requests
without double buffering, although these two designs have the same overall limit of
pending concurrent requests.

Second, a tendency towards memory bandwidth saturation: The throughput for
memcopy with double buffering increases by ~1.7× from 16 concurrent requests to 32
concurrent requests. For the next doubling of concurrent requests, the throughput is
only increases by ~1.3×. With a throughput of 6.5 GB/s, the best memcopy experiment

130 Chapter 7. Evaluation

1 2 4 8 16 32 64
concurrent read requests

0

2

4

6

8
th

ro
ug

hp
ut

 (G
B

/s
)

theoretical maximum
no double buffering
double buffering

Figure 7.1: Throughput in GB/s for different concurrent read requests in Memcopy

with 512MB of data written to and read from the FPGA. The dashed line shows the

PCIe interface’s theoretical maximum of 7.875GB/s.

is close to the PCIe interface’s theoretical maximum of 7.875GB/s at the physical layer.
The remaining performance gap is due to PCIe protocol overheads and the mixed read
and write access in the memcopy experiment. Other DMA benchmarks [NAZ+18]
show similar speeds of up to 6.25GB/s for DMA with mixed read and write access.

All the following experiments in this chapter use 64 concurrent requests to maxim-
ise memory throughput and on-chip double buffering to exploit pipeline parallelism
for data fetching and computation.

Stencil Computation

The capability of Shir to generate applications that utilise high-speed DMA is further
evaluated on two simple stencil computations (experiments 2 and 3). Both of them
operate on input matrices of 1024×128 8-bit integers. Since these operations are
memory bound, the efficiency is determined by comparing their throughput to the
best performing memcopy experiment from above. The first stencil computation (exp.
no. 2) is a 2D convolution with a 3×3 kernel and constant weights. On the Algorithmic
Level in Shir, basic 2D convolution is expressed as follows:

Input<IntT(8),128,1024>▷ Slide<3,1>▷ Map(λrowGroup . (7.2)

rowGroup ▷ Transpose▷ Slide<3,1>▷ Map(λwindow .〈
window ▷ Transpose,weights

〉
▷ Zip▷ Map(Zip)▷ Join

▷ Map(Mul)▷ Reduce(λa . λb .
〈
a,b

〉
▷ Add,ConstInt<0>))) // dot product

7.2. Communication via DMA 131

Table 7.1: Performance and logic (ALM), RAM and DSP usage for memcopy and stencil

computations on input matrices of 1024×128 8-bit integers.

Performance Resource Usage

exp. operation throughput through- ALM on-chip DSP
no. put (%)* RAM

1 Memcopy 6.5 GB/s 100% 8% 2% 0%
2 2D Convolution 6.4 GB/s 99% 18% 3% 38%
3 2D Jacobi 6.4 GB/s 99% 8% 4% 0%

* The ratio of the experiment’s read and write speeds compared to that of memcopy.

The Shir compiler automatically buffers some rows of the input data, so that
each row has only to be read once in the entire runtime. The computation in this
example is simple enough to fully parallelise it for each output element. Hence, the
transposition and slide optimisations presented in Sections 6.4.2 and 6.4.3 are not yet
required and separately evaluated later in Section 7.4. Table 7.1 shows the results.
With a throughput of 6.4 GB/s the design generated by Shir is as fast as memcopy,
saturating the memory bandwidth. Larger input sizes exhibit the same performance.

Experiment 3 performs a single iteration of 2D jacobi with a four-point stencil. The
algorithmic Shir code looks similar to above but the core computation on each window
is modified to compute the average value of the four adjacent points. A combination
of Join, Drop and Split extracts the four relevant values from the 3×3 window:

Input<IntT(8),128,1024>▷ Slide<3,1>▷ Map(λrowGroup . (7.3)

rowGroup ▷ Transpose▷ Slide<3,1>▷ Map(λwindow .〈
window ▷ Join▷ Drop<1,0>▷ Split<2>▷ Map(Drop<0,1>)▷ Join

▷ Reduce(λa . λb .
〈
a,b

〉
▷ Add,ConstInt<0>),

ConstInt<4>
〉
▷ Div))

Again, Shir inserts input row buffers to maximise the performance. The generated
hardware does not employ any DSPs, because the algorithm only divides by 4. As
described in Section 5.1, this is automatically rewritten as a bit shift operation by
the compiler. Nevertheless, the design generated by Shir is very efficient, because it
reaches a throughput similar to that of memcopy, as shown in Table 7.1.

132 Chapter 7. Evaluation

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 819216384
number of 1024 bit transfers

0

5

10

15

20

25
th

ro
ug

hp
ut

 (G
B

/s
)

dual ideal
dual write
dual read
single ideal
single write
single read

Figure 7.2: Throughput in GB/s for accessing onboard RAM in single or dual bank

setups. The experiments differ in the amount of data that is read or written. Once the

memory access pipeline is saturated, near ideal performance (solid lines) is achieved.

Onboard Memcopy

The memcopy program is modified to read data from and then write it back to onboard
RAM. Since each memory bank has only a single shared channel for reading and
writing, these types of access aremeasured separately. Both single bank and interleaved
dual bank memory configurations are evaluated. Various quantities of data from 128 B
to 2MB are transmitted. All other parameters, such as the maximum number of
concurrent requests, are kept uniform across all tests. The results of this experiment
are summarised in Figure 7.2. As expected, the dual bank mode reaches approximately
double the speed of a single bank. Moreover, the throughput of dual bank onboard
RAM is ~3× faster than host RAM.

Nevertheless, onboard memory has some disadvantages, especially in comparison
to on-chip RAM. First, maximum speed is only reached after a substantial amount
of data (~32 KB) is transferred. Second, despite the speedup over host RAM, onboard
RAM is still significantly slower than block RAM. As we will see in Section 7.4, the
on-chip memories in the tiled matrix multiplication experiments deliver 4096 8-bit
elements per clock cycle. At 200MHz, this corresponds to a throughput of ~760GB/s
and is therefore ~30× faster than the best onboard memory transfer speed.

This is why the onboard RAM is not further used in the following experiments.

7.3. Buffering and Parallelisation 133

However, future work can benefit from it with workloads that involve large amounts
of intermediate data, such as DNNs. In these use-cases, using onboard RAM instead
of host RAM as an intermediate buffer can bring a speed advantage. For example,
onboard memory can hold the result of a DNN layer, while the FPGA is reconfigured
for the next layer.

7.3 Buffering and Parallelisation

This section demonstrates the effectiveness of buffering techniques and increasingly
parallel computations. Both of these optimisations are achieved automatically in the
Shir compilation by applying the rewrite rules introduced in Sections 6.1 and 6.2. The
basis of this evaluation is matrix multiplication, a demanding workload, which leaves
many design choices for interesting optimisations.

Matrix Multiplication

For the matrix multiplication benchmarks, the input matrices consist of 1024×1024
8-bit integers. It is assumed here that the matrix B is already transposed on the host to
simplify the expression. The matrix multiplication experiments are listed in Table 7.2
and are based on the following Algorithmic Level expression, which is the only user
input required by the Shir compiler:

Input<IntT(8),1024,1024>▷ Map(λrowA . // matrix A (7.4)

Input<IntT(8),1024,1024>▷ Map(λcolB . // matrix B〈
rowA,colB

〉
▷ Zip

▷ Map(Mul)▷ Reduce(λa . λb .
〈
a,b

〉
▷ Add,ConstInt<0>))) // dot product

The experiments 4-7 in Table 7.2 show how different buffering strategies, based
on the rewrite rules from Section 6.2, affect the performance and on-chip RAM usage.
In order to avoid artificial slowdown in the computational part, one cache line is
processed in parallel, so that no time-consuming vector to stream conversion occurs.
That is why the computation is parallelised by 64, which corresponds to the number
of 8-bit elements in a single cache line.

In experiment 4, no buffering is employed. If data is repeated in the computation, it
has to be read from host RAM again. This leads to 2N2 matrix rows being transferred
via DMA. Each row consists of 1024 elements and therefore 1024/64 = 16 cache lines.
The total number of cache lines read in this experiment is 2·10242·16 = 33,554,432.

134 Chapter 7. Evaluation

Table 7.2: Experiments for matrix multiplication of two 1024×1024 matrices with 8-bit

integers. Different buffering strategies and levels of parallel computation affect the

performance: Host RAM read requests via DMA, Giga Operations Per Second (GOPS)

(10
9
multiply-add per second), Operations Per Cycle (OPC) (parallel multiply-add per

cycle) and DSP usage efficiency.

Configuration Performance Resource Usage

exp. buffers par. DMA GOPS OPC DSP* ALM on-chip DSP
no. ArowB comp. reads efficiency RAM

4 64 33,554K 1.4 7 11.2% 9% 3% 2%
5 ✓ 64 16,793K 1.6 7 12.3% 9% 3% 2%
6 ✓ 64 16,793K 1.7 8 13.0% 9% 20% 2%
7 ✓ ✓ 64 32K 12.7 63 98.9% 10% 20% 2%
8 ✓ ✓ 128 32K 25.1 125 98.2% 11% 20% 4%
9 ✓ ✓ 256 32K 49.4 247 96.5% 15% 20% 8%
10 ✓ ✓ 512 32K 95.7 478 93.5% 22% 20% 17%
11 ✓ ✓ 1024 32K 173.7 868 84.8% 36% 20% 34%

* DSP efficiency is the proportion of the overall runtime in which the DSPs are active, i.e., OPC per
allocated DSPs. With fewer idle cycles, the DSPs work more efficiently. At 100% efficiency they
produce a new value each cycle and never have to wait for input data.

Experiment 5 applies the rewrite rule explained in Section 6.2. The row of matrix
A is buffered, which reduces the number of cache lines read by ~50% to 16,793,600
for N2+N rows. There is no significant performance improvement in terms of GOPS,
because the matrix B still has to be read from slow host RAM.

For experiment 6, the entire matrixB is buffered with a similar result to the previous
experiment. However, the on-chip RAM usage increased to 20%, because the buffer
for the matrix requires 1024 times more memory than a row buffer.

In experiment 7, the buffer for the rows of matrix A and the buffer for matrix B

can finally leverage the performance (~9× better than experiment 1). The number of
rows to read is decreased to 2N, which corresponds to 32,768 cache lines.

In these experiments, no tiling is necessary because the entire input data fits in the
FPGA’s on-chip memory. Later in Section 7.4, we will look into use-cases that involve
tiling.

7.4. Data Reshaping 135

64× 128× 256× 512× 1024×
parallel multiply add operations

0

200

400

600

800

O
PC

0%

20%

40%

60%

80%

100%

D
SP

 e
ff

ic
ie

nc
y

DSP efficiency

Figure 7.3: Operations Per Cycle (OPC) in matrix multiplication as a function of num-

ber of parallel compute elements. The efficiency of the DSPs (orange line) increases

with fewer idle cycles of the DSPs.

All the following matrix multiplication benchmarks buffer both the rows of matrix
A and the entire matrix B. They apply the rewrite rules from Section 6.1 to evaluate
the impact of parallelising the computation.

The experiments 7-11 in Table 7.2 cover the range from 64× to 1024× parallel
multiply-add operations. The connection of the on-chip input buffers to the com-
putational part are rewritten to allow more parallel data access, as mentioned in
Section 6.3.

Figure 7.3 shows that performance scales with the degree of parallelism. The DSPs
are used efficiently, because they perform valid multiply-add operations for 85% to
99% of the overall runtime, which includes the data transfer between host RAM and
FPGA. In experiment 7, the DSPs receive new input data almost every cycle.

7.4 Data Reshaping

This section presents more sophisticated workloads to demonstrate the effect of
the data reshaping optimisations from Section 6.4. Both matrix multiplication and
2D convolution now apply tiling. This allows larger matrices to be handled. In
addition, the 2D convolution has multiple input and output channels, as found in
typical convolutional neural networks. Although the rewrite rules are evaluated
only on these two applications, they are applicable to any application expressed as a
combination of dense array operations with reshaping.

136 Chapter 7. Evaluation

Table 7.3: Generated tiled matrix multiplication designs with different rewrite optim-

isations enabled. The input matrix consists of 4096×4096 8-bit integers. The tile size
is 512×2048. The generated hardware uses 2048 of 3036 available multipliers.

Rewrites Performance Resource Usage

exp. Trans- Repeat Stm-Vec GOPS OPC DSP ALM on-chip DSP
no. pose Conv. efficiency RAM

12 not synthesisable!
13 ✓ 0.3 1 <1% 38% 53% 67%
14 ✓ ✓ 81.9 409 20% 32% 53% 67%
15 ✓ ✓ ✓ 290.9 1455 71% 31% 53% 67%

Tiled Matrix Multiplication

In tiled matrix multiplication, the input tiles are processed separately and accumulated
directly on the FPGA to form a tile of the resulting matrix. The optimisation with the
Mul2Add primitive from Section 6.6 allows to perform 2048 parallel multiplications
with only 1024 DSP blocks.

Table 7.3 lists the corresponding experiments, with different rewrite rules enabled.
The optimisations are applied automatically, if not explicitly disabled. Experiment 12
shows, that with all the rewrite rules disabled, the generated design cannot be synthes-
ised for the FPGA. The stream-based or vector-based transpositions still remaining in
the IR either produce too large on-chip buffers, or too complex wiring. The Transpose
rewrite rule must be enabled to generate feasible designs, as the following experiments
13–15 show. The performance of the next experiment (no. 13) suffers from the repeat
problem, as described in Section 6.4.1. The efficiency of the DSPs is low. Less than
1% of the overall runtime is actually used to perform useful operations on a DSP. The
remaining time is spent waiting for input data to arrive due to pipeline stalls, as seen
in Figure 6.6c, due to the need to back propagate the repeat signals. In experiment 14,
all the rewrite rules to optimise repetitions are enabled. This leads to a few hundred
times increase in performance, with a DSP efficiency of 20%.

When all optimisations are enabled, the DSP efficiency of experiment 15 increases
by 3.5× compared to experiment 14, so that the DSPs are used in 71% of the overall
runtime. Future work will look at increasing efficiency further, by using double-
buffering to overlap tile loading with computation.

7.4. Data Reshaping 137

Table 7.4: Generated tiled 2D convolution designs with different rewrite rules. The

input image has 1024×1024 8-bit integers. The tile size is 128×128. The kernel weights
are 3×3 with 3 input and 64 output channels.

Rewrites Performance Resource Usage

exp. Slide Trans- Repeat Stm-Vec through- DSP ALM on-chip DSP
no. pose Conv. put (%) efficiency RAM

16 not synthesisable!
17 ✓ not synthesisable!
18 ✓ ✓ 3% 3% 17% 6% 28%
19 ✓ ✓ ✓ 3% 3% 17% 6% 28%
20 ✓ ✓ ✓ ✓ 76% 80% 14% 6% 28%

Tiled 2D Convolution

In this section, the data reshaping rewrite rules are evaluated on tiled 2D convolution.
The results are shown in Table 7.4. The performance is assessed based on the memory
throughput, since this benchmark is memory bound. It is specified as a percentage in
comparison to the maximum throughput achieved by memcopy (6.5 GB/s).

The first two convolution experiments (16 and 17) show that both the Slide and
Transpose optimisation must be enabled to generate synthesisable designs. Again,
without these rules the design would require too much on-chip memory or cause too
complex wire routing than feasible for the FPGA.

Once the rules are applied, as in experiments 18–20, the generated hardware
design is able to run on the FPGA. With more rewrite rule optimisations enabled, the
throughput increases from 3% up to 76% of its maximum possible value.

The introduction of the repeat rewrite rules do not have a noticeable effect on the
performance of a parallelised convolution, because only vectors are repeated here,
which does not induce much overhead. However, enabling the conversion optimisation
does increase performance by 25×.

138 Chapter 7. Evaluation

2D Convolution 2D Jacobi Matrix Multiplication
0.00

0.25

0.50

0.75

1.00

1.25

1.50
Sp

ee
du

p
ov

er
 o

pt
. O

pe
nC

L

0.01 0.05 0.02

1.39
1.23

1.00

naive OpenCL
optimised OpenCL
SHIR

Figure 7.4: Performance comparison of Shir’s generated hardware designs to HLS

implementations based on naive and optimised OpenCL code.

7.5 Comparison With OpenCL HLS

In this section, the performance of the generated hardware implementations from
Shir and Intel’s OpenCL HLS are compared with each other. All these benchmarks
run on the same Intel Arria 10 FPGA. The results are shown in Figure 7.4.

Two versions are implemented for Intel’s HLS tool: A naive parallel OpenCL code,
written in a hardware-agnostic way and an optimised OpenCL code with hardware-
specific directives (pragmas) as well as explicit local memory usage. Neither Shir’s
Algorithmic Level code nor the naive OpenCL code contain any explicit unrolling,
buffers, or other hardware-related optimisations. Still, Shir’s designs outperform the
naive OpenCL versions by up to ~100×, as shown in Figure 7.4. This is because Shir
automatically introduces hardware optimisations by applying rewrite rules.

Stencil Computation

The optimised OpenCL code for 2D convolution and 2D jacobi implements the tech-
niques mentioned in [HCGL15, JZ16], such as unrolling and local buffering. To further
improve the parallelism and the pipeline efficiency, optimal pragmas and optimisation
flags are chosen. In addition, the memory access is improved by tuning the cache
settings in the compiler. Some communication overhead is observed in OpenCL HLS
for small input sizes of about 128 KB. To ensure fairness in the comparison, it is
increased to 2GB, which leads to better OpenCL HLS results.

7.6. Summary 139

After exploring all the above-mentioned optimisations, the best OpenCL HLS
designs achieve 4.6 GB/s for 2D convolution and 5.2 GB/s for 2D jacobi. The Shir code
is truly hardware-agnostic and much more compact in comparison to the ~20 Lines of
Code (LOC) of the optimised OpenCL code. Moreover, the performance of the Shir
generated hardware outperforms the optimised OpenCL version by up to ~1.4×.

Matrix Multiplication

The optimised OpenCL matrix multiplication implementation comes from Intel and
is the same as shown in Section 2.1.6. This time, the generated hardware performs
as good as the Shir version. However, with ~30 significant LOC this OpenCL code is
more verbose compared to the truly hardware-agnostic Shir input expression.

7.6 Summary

This chapter has demonstrated the viability of Shir for high-performance accelerator
generation. The presented experiments are prime examples indicating the potential of
a multi-level functional approach with rewrite rules.

The generated hardware designs exhibit high access speeds for off-chip and on-
chip memories. They explore different levels of parallelisation and buffering strategies.
The performance of workloads that involve sliding windows and tiling is improved by
applying the data reshaping rewrite rules.

The performance of relevant use-cases has been evaluated on the basis of their
throughput or number of operations per second. The memory-bound tiled 2D con-
volution achieves 76% of the maximum possible throughput thanks to Shir’s rewrite
optimisation. The compute-bound tiled matrix multiplication also manages to achieve
high performance after applying rewrite rules. Its best configuration uses 51% of the
on-chip memory and 67% of the available DSPs, which perform valid computations
in 71% of the runtime. With the efficient utilisation of so many compute resources,
the Shir approach shows its ability to make good use of what the targeted FPGA has
to offer. The scope for improvement over this is small considering that the memory
transfer of the input and output data is included in the measurement and that FPGA
resource utilisation over ~80% becomes increasingly difficult due to routing congestion.

The competitiveness of Shir is furthermore shown in a direct comparison with
OpenCL HLS. Shir achieves equal or better performance although its input specifica-
tion is free from hardware-specific details and higher-level than OpenCL code.

Part III

Conclusions

141

Chapter 8

Conclusions

This chapter summarises the contributions of this thesis, then discusses its limitations
and finally gives an outlook for future work based on the obtained results.

8.1 Summary of Contributions

This thesis has presented the Shir framework with its multi-level functional IR and
rewrite rule-based optimisations for higher-level synthesis of accelerators. The goal
of Shir is to offer the best of two worlds: high-level hardware-agnostic abstractions
for developers and high-performance hardware accelerator implementations. In order
to achieve this, the following contributions have been made.

A Multi-Level IR Structure for Designing Hardware Accelerators

Based on System F<:, the IRs designed for Shir are similar to types lambda calculus
with generics and subtyping. Subtyping allows to easily extend the type hierarchy
of Shir. As seen in this thesis, the IRs span over multiple levels of abstraction. Each
IR fulfils a specific purpose in the compiler flow and exposes different features. The
various concerns in hardware design are separated to maintain a clean organisation
of the compiler. For example, algorithm and optimisations are handled separately in
different places in the compiler. The IR levels are detailed in the following.

First, Shir’s higher-level approach starts on the Algorithmic Level. It serves as
a hardware-agnostic entry point for the developer or high-level framework, where
no hardware expertise is required. The intermediate language on this level consists
of common primitives, such as Map, Reduce and Add. Although they are few, they are
very flexible to combine and can be nested to express the desired algorithm.

143

144 Chapter 8. Conclusions

This functional approach avoids any detour via traditional software-like repres-
entations, which are not well suited for hardware design.

The Architecture Level is the next lower abstraction, which exposes architectural
features explicitly. The core types are extended by hardware specific types. Basic data
types have an attached bit width. Furthermore, streams and vectors allow to express
sequential pipelining and spatial parallelism on the type level. The primitives are
refined accordingly for streams, e.g., MapStm, and vectors, e.g., MapVec.

Uniquely and in contrast to other approaches, see Section 3.6, Shir exposesmemory
operations explicitly in the IR. This allows to express and optimise memory-related
hardware details conveniently on high levels of abstraction. There are two IR levels
in Shir that deal with memory. First, the Abstract Memory Level, where memory is
handled in a simple manner and similarly to conventional programming languages. It
is allocated, read and written, respectively with the corresponding primitive: MemAlloc,
Read and Write. A novel ramarray type represents data in the three major memor-
ies present in FPGA systems: Host, onboard and block RAM. Second, the Hardware
Memory Level, where memory is expressed as functions, reusing existing mechan-
isms in the framework, such as shared functions with Let and function calls. These
functions are either synchronous for on-chip memories or asynchronous for off-chip
memories, which is encoded in the function type as an effect. Asynchronous commu-
nication via DMA features concurrent read or write requests to maximise throughput.
This is implemented in the ReadAsync and WriteAsync primitives.

The lowest functional IR level deals with device-specific functions, specific to cer-
tain FPGAs. For example, the DSP blocks of the Intel Arria 10 contains two multipliers
and an adder, which is represented by the Mul2Add primitive and can hence be made
explicit in the IR to exploit the full potential of these efficient hardwired functions.

Mechanical Lowering Procedures From Algorithm to Hardware

The next contribution consists of mechanical lowering procedures, necessary to auto-
matically translate a piece of IR without user input through multiple levels of ab-
straction. These procedures are implemented in Shir’s compiler. As demonstrated,
they replace expressions with their more refined counterparts to approach a hardware
design step by step. No performance optimisations are carried out yet. This concern is
handled separately by rewrite rules. The multi-level IR structure simplifies the long
lowering process by breaking it down into a few smaller passes.

Data that is transferred between FPGA and off-chip memories is automatically

8.1. Summary of Contributions 145

converted, i.e., packed and padded, into a format based on cache line granularity.
Once the lowest functional representation is reached, the expression is turned into a
hierarchical dataflow graph. Nodes represent the primitives and consume and produce
data. The transmission of this data is synchronised via a handshaking protocol. In case
of shared resources, such as memory, arbiters are automatically inserted to distribute
the permission to access it among the clients. Finally, the graph is translated into a
hardware design based on VHDL files. For each node in the graph, the corresponding
VHDL template is instantiated. An essential feature of these templates is their flexible
composability. Although they are fine-grain and their individual function is rather
simple, their composition allows to also achieve complex behaviour. The generated
HDL code establishes the connections to the off-chip memory interfaces of the FPGA.

Rewrite Rules for Optimisation

Separated from Shir’s IRs and compiler, this thesis contributes low-level hardware
optimisations encoded in the form of rewrite rules sets. Each set is applied as much as
possible in an automatic fixed-point iteration, making the given expression converge to
the improved variant, while maintaining the original program semantics. The rewrites
are applied on the IR level that best suits the particular optimisation. For instance, the
fine-tuning for hardware-specific memory access is performed on a low-level IR. The
optimisation process is taken over by Shir, so that no user input is required.

A rewrite rule for spatial parallelisation has been presented. It replaces stream-
based operators by their vector-based counterparts to leverage available compute
resources on the FPGA for higher performance. When data reusage occurs in the IR,
for example due to unbound parameters, a rewrite rule can detect this and insert a
fast buffer for that data. These optimisations introduce conversions between streams
and vectors, which present performance bottlenecks. In turn, these are also fixed by
further rewrites.

A functional approach for HLS is challenging in the presence of data reshaping
operations, such as repetition, transposition and slide. If not handled carefully, such
operations can lead to incorrect designs, non-synthesisable designs or mediocre per-
formance, as we have seen. This thesis has shown how all these reshaping challenges
are solved through the introduction of an explicit Repeat primitive and through the
application of rewrite rules. These rules optimise the design by moving the concerned
primitives in the IR closer to the counters, where they are more efficient or even
annihilated altogether.

146 Chapter 8. Conclusions

Communication with off-chip memories is rewritten to maximise DMA throughput
by increasing the number of concurrent requests and leveraging double buffering.
Another device-specific rewrite rule maps two multiplications into a single DSP block,
if possible due to low precision data. This accommodates the synthesis tool, which is
sometimes unable to detect this optimisation opportunity. Large propagation delays,
caused by reduction trees for example, are prevented by a rewrite rule that inserts
registers into the signal path.

Evaluation on a Real FPGA

The Shir approach has been evaluated on real hardware, using an Intel Arria 10 FPGA.
This contrasts with some related work, which simulates their hardware designs only,
as discussed in Section 3.6. The Shir framework with its multi-level functional IR has
proven viable for generating efficient accelerator implementations.

First of all, memcopy experiments show that the framework delivers high-speed
off-chip memory communication. Further central use-cases are stencil computations,
matrix multiplication and 2D convolution. Although being easy to understand, matrix
multiplication exhibits interesting design choices that exercise many optimisation
features presented in this thesis. Designs with different buffering strategies and levels
of parallelisation have been explored.

Moreover, the effect of the rewrite rules on the identified data reshaping challenges
has been analysed in a series of experiments based on tiled matrix multiplication and
tiled 2D convolution workloads. They show that the performance increases drastically
when applying the presented optimisations. In addition, we have seen that without
these optimisations, the designs require too many resources to be synthesised for the
FPGA. As demonstrated, the generated hardware designs are able to effectively exploit
the available hardware features (e.g., 67% of the DSPs) of the FPGA and are competitive
with OpenCL HLS implementations, although Shir starts at a much higher-level
programming abstraction.

8.2 Critical Analysis

The previous section has summarised this thesis and its contributions towards auto-
matically generating optimised hardware accelerators from a multi-level functional IR.
Nevertheless, there are also limitations to this approach, as discussed in this section.

8.2. Critical Analysis 147

Limited Set of Use-Cases

First of all, the experiments conducted in this thesis are limited in number. The main
experiments for matrix multiplication and convolution present relevant use-cases for
accelerators and provide interesting optimisation opportunities but they do not cover
every type of today’s workloads and the challenges they entail.

The evaluation of Shir could have gone in one of two directions: Supporting
a wide range of use-cases, however, at the expense of performance, because more
rewrite rules for further types of optimisations are required. Or, picking a few ones
and addressing their individual optimisation challenges, showing that competitive
performance is achievable with Shir.

The author of this thesis opted for the latter direction, because delivering high
performance for a specific task is the actual primary purpose of an accelerator. Nev-
ertheless, the evaluated use-cases demonstrate the generality of the Shir approach.
Other workloads could be supported as well but require some engineering efforts,
since Shir is in a research prototype state and debugging hardware designs is tedious.

Limitations Within the IRs

The IRs in Shir have a few limiting factors affecting their flexibility. For example,
they lack general recursion, narrowing down the set of supported input programs.
However, this does not pose a practical limitation, since recursive algorithms can be
converted to iterative ones.

In addition, certain combinations of types are prohibited by the type checker,
because they would cause difficulties in the compilation. In the course of Shir’s
development, it was found that there are essentially two different interpretations of
tuples. First, basic tuples, similar to records in VHDL, which simply concatenate the
individual bits of their elements. The elements of such a BasicTupleT must be basic
data, see Figure 4.8, and therefore instantaneously readable. In hardware, the ingoing
elements are synchronised and a tuple element with only one outgoing handshake
port is produced. This way, modules handle basic tuples just like scalars.

Second, a high-level tuple, as found in common functional programming languages
and more flexible, which allows combining arbitrary elements. Tuples of streams are
supported in Shir, however, creating a tuple of two functions, e.g.,

〈
λx . x,λy . y

〉
, is

not. While the functional representation of this construct is possible, it has major
consequences on the hardware side. The module that calls one of these functions only

148 Chapter 8. Conclusions

must be directly wired to it, without affecting the other function. Shir’s implementa-
tion of tuples is not sufficient for this because some control signals are getting lost in
the tuple’s synchronisation, after which only one handshake port remains.

This issue could be addressed by a sophisticated compiler pass that rewrites the
problematic tuples in the IR and essentially removes them, or a pass that generates
the correct wiring on a the dataflow level. Neither of these exist in the current version
of Shir, and this is why dual port block RAM with fully independent ports cannot be
expressed in the most suitable representation, as a tuple of functions.

Apart from that, there is another restriction when nesting types, as mentioned in
Section 4.4. Shir’s notion of vectors is that they are instantaneously accessible and
therefore they must contain basic data only. While it is technically possible to allow
streams within vectors on the type level, the implications on the hardware level are
vague. It is unclear, how the individual streams in a vector would be synchronised, if
at all, and when exactly a vector of streams would be produced or consumed. To avoid
this problem, Shir’s type system is designed to prevent vectors of streams right from
the start. However, this design decision requires a workaround to express a sliding
window operator over a two-dimensional stream, which temporarily has a vector of
streams in its type before the operation is optimised away.

Guarantees for Propagation Delays

The feasibility of a generated design depends on whether the timing constraints of
the FPGA are met. Especially in hardware generation it is child’s play to generate
hardware with complex combinational logic resulting in too long propagation delays.

Section 6.7 introduced a simple rewrite optimisation to shorten the delays in
reduction trees. Nevertheless, there are still ways to cause timing issues with other
primitives, which are not caught by this rewrite rule. Therefore, the current version of
Shir does not guarantee that the generated HDL code works for any clock frequency.

A radical solution for this issue could insert registers around each primitive to
reduce the propagation delay to a minimum. However, this comes at the expense of
performance and area utilisation. It remains desirable to use registers only where they
are really necessary.

8.3. Future Work 149

8.3 Future Work

Based on this thesis and the developed Shir framework, many new directions open
up for further research work, which is detailed in this section.

Expanding the Scope of Use-Cases

The two main use-cases in this thesis, matrix multiplication and convolution, are
certainly important but future work can take a look at other workloads as well. As
stated in [JBB+17], CNNs are a minority as far as neural networks in data centres are
concerned. LSTMs [HS97] in particular are Recurrent Neural Networks (RNNs) which
are used about six times as often.

The author of [Ola15] describes how RNNs can be expressed in a functional style
based on an ‘accumulating map’, also known as the ‘prefix sum’ or ‘scan’. In order to
support RNN-based workloads in Shir, such a primitive must be added, including its
hardware implementation.

More Diverse Hardware Targets

This thesis evaluates Shir on an FPGA from Intel, however, in the future devices
from Xilinx can also be targeted. The development efforts required for this is mainly
engineering work, as some of the hardware templates have to be adjusted to the new
interfaces of the FPGA.

Apart from single-FPGA solutions, infrastructures with multiple FPGAs as in
Project Brainwave [CFO+18, FOP+18] offer exciting starting points for further work.
FPGA boards often come with a dedicated high-speed network interface allowing
the FPGA chip to connect directly to a massive data centre network, without going
through the host machine. Larger machine learning workloads, e.g., DNNs, could then
be partitioned across FPGAs residing in multiple servers. From the software point of
view, this pool of FPGAs appears as callable, shared hardware microservice [CFO+18].

Supporting multiple FPGAs in Shir brings interesting challenges. A new abstract
representation is needed to reflect the devices, allowing to explore the optimisation
space of mappings between tasks and FPGAs. Rewrite rules could modify this IR to
improve the partitioning of the workload. Especially in a heterogeneous environment
with different FPGA models, there is a lot of room for variation.

150 Chapter 8. Conclusions

Following this extension of the IR, Shir could also introduce a representation
of the host machine, similar to the one in Lift-hls [KBSD19]. That way, parts of the
calculation that require more flexibility could be run on the CPU.

Guiding Design Space Exploration

As the number of Shir’s use-cases and hardware targets grows, so does the design
space, yielding many different ways to apply the optimisation rewrite rules. Simple,
hard-coded heuristics, as currently implemented in Shir, would no longer be the tool
of choice to find optimal designs, while logic synthesis remains too time-consuming
for a design space exploration.

A performance model could provide an early estimate whether the implementa-
tion of a given expression would perform well on hardware. This model prioritises
throughput, latency or even energy-efficiency, depending on the workload and the
requirements. Its outcome would guide the application of rewrite rules towards a
high-performance design. Due to the high semantic content of functional parallel
patterns, the model would remain lightweight and run fast. The primitives could be
linked almost one-to-one with the resulting performance. The multi-level IR structure
allows (multiple) performance models to operate on different levels of abstraction.

Furthermore, the search space could be pruned by detecting and removing invalid
implementations at an early stage. The authors of [MLRD22] present a method for this
based on extracting constraints from an IR and then solving a constraint satisfaction
problem to identify valid rewrites. In the future, these ideas can be integrated into
Shir to reduce the effort of design space exploration and to obtain high-performance
implementations more quickly.

Interfacing With Other Frameworks

Shir’s representations are meant to be intermediate forms in a larger design process.
Even its highest level of abstraction, the algorithmic level, can be targeted from
other front ends. Future work could map the ONNX format [BLZ+19] to algorithmic
parallel patterns, thus connecting Shir to high-level deep learning frameworks, such
as TensorFlow [ABC+16], MXNet [CLL+15] and PyTorch [PGM+19].

Recently, PyTorch 2.0 has introduced the new PrimTorch component to facilitate
adding a custom backend. This component lowers complex PyTorch programs to a
reduced set of elementary primitives. Shir could implement this operator set in a

8.3. Future Work 151

high-level IR, enabling PyTorch as a frontend.
To interact even more with other frameworks, Shir could be integrated into the

unifiedMLIR infrastructure. The multiple IR levels of Shirwould then be implemented
as dialects, somewhat similar to [LSS21], and the lowering passes would become trans-
formations in MLIR. Since the above mentioned high-level deep learning frameworks
already have their specific dialect in MLIR, they could serve Shir as front ends. On
the other side, the novel concepts of this thesis would become reusable and contribute
to an expandable infrastructure.

Exploiting Reduced Precision

Recent research has already demonstrated that neural networks with low-precision
data are highly efficient with only a slight loss in accuracy [BPF+18]. The memory
footprint of the network’s weights is lower, reducing the slow, energy-intensive
communication to off-chip memories. Additionally, the implementation of arithmetic
operations becomes easier.

XNOR-Net [RORF16] is rigorous by reducing the precision of the network’s data
to one bit. In such a Binary Neural Network (BNN), the weights are either +1 or -1, oc-
cupying significantly fewer resources on the FPGA than networks with high-precision
data. Convolutions are approximated by XNOR and bitcounting operations. With an
accuracy drop of ImageNet from 57% to 44%, the implementation of [RORF16] is 58×
faster and has 32× memory savings.

The IRs in Shir expose the precision of data and support arbitrary bit-widths. How-
ever, exploiting extremely low precision in neural networks, assessing the accuracy
loss and performance gains remains future work.

Appendix A

VHDL Templates

The main contributions in this thesis focus on Shir’s high-level IRs, its compiler and
its rewrite rules for optimisation. However, an important part of the framework are
the VHDL templates that implement the high-level expressions for FPGAs. All the
available VHDL templates in Shir are listed in Appendix A.1. After that, some example
template files are shown in more detail.

A.1 Overview

The following table presents the names of all the VHDL template files developed for
Shir and their associated Architecture Level primitives.

File Name Corresponding Primitive

add.vhd Add

alternate.vhd Alternate

arbiter_async_function.vhd (arbiter for shared async functions)
arbiter_distributor.vhd (distributor for shared data)
arbiter_sync_function.vhd (arbiter for shared sync functions)
block_ram.vhd BlockRam

concat_stm.vhd ConcatStm

concat_vec.vhd ConcatVec

const_bit_vector.vhd ConstInt

counter.vhd Counter

drop_stm.vhd DropStm

drop_vec.vhd DropVec

153

154 Appendix A. VHDL Templates

File Name Corresponding Primitive

id.vhd Id

join_stm.vhd JoinStm

join_vec.vhd JoinVec

map_stm.vhd MapStm

map_vec.vhd MapVec

mul2add.vhd Mul2Add

mul.vhd Mul

onboard_ram.vhd OnboardRam

permute_vec.vhd PermuteVec

read_async.vhd ReadAsync

read_host_memory_controller.vhd ReadHostMemCtrl

read_onboard_memory_controller.vhd ReadOnboardMemCtrl

read_sync.vhd ReadSync

read_sync_memory_controller.vhd ReadSyncMemCtrl

reduce_stm.vhd ReduceStm

registered.vhd Registered

repeat.vhd Repeat

slide_stm.vhd SlideStm

slide_vec.vhd SlideVec

stm_to_vec.vhd StmToVec

sub.vhd Sub

tuple.vhd Tuple, known as
〈
e1,e2

〉
vec_to_stm.vhd VecToStm

vec_to_tuple.vhd VecToTuple

write_async.vhd WriteAsync

write_host_memory_controller.vhd WriteHostMemCtrl

write_onboard_memory_controller.vhd WriteOnboardMemCtrl

write_sync.vhd WriteSync

write_sync_memory_controller.vhd WriteSyncMemCtrl

zip_stm.vhd ZipStm

zip_vec.vhd ZipVec

A.2. Examples 155

A.2 Examples

This section now showcases a selection of Shir’s VHDL templates.

A.2.1 Add

The template for the Add primitive only uses combinational logic to add the two integer
values of the incoming tuple. The control signals of the input port are simply forwarded
to the output. The last signals are unused because only a scalar is transmitted, not a
stream. Nevertheless, they are kept in the handshake ports for interoperability.

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4
5 entity add is

6 port(

7 clk: in std_logic;

8 reset: in std_logic;

9 port_in_data: in data_tuple_type; -- type is replaced by code generator

10 port_in_last: in std_logic_vector(-1 downto 0);

11 port_in_valid: in std_logic;

12 port_in_ready: out std_logic;

13 port_out_data: out data_type; -- type is replaced by code generator

14 port_out_last: out std_logic_vector(-1 downto 0);

15 port_out_valid: out std_logic;

16 port_out_ready: in std_logic

17);

18 end add;

19
20 architecture behavioral of add is

21 begin

22 port_out_data <= std_logic_vector(unsigned(port_in_data.t0) + unsigned(port_in_data.t1));

23 port_out_last <= port_in_last;

24 port_out_valid <= port_in_valid;

25 port_in_ready <= port_out_ready;

26 end behavioral;

A.2.2 Mul2Add

The VHDL implementation for the Mul2Add primitive must be aligned to the actual
hardwired DSP circuit on the FPGA. If the hardware description does not match this
circuit, the synthesis tool cannot infer the DSP and the operation must be implemen-
ted in basic logic blocks instead. This is why the template for Mul2Add contains a
pipeline with four stages, separated by intermediate registers. These registers keep

156 Appendix A. VHDL Templates

the propagation delay through the complex DSP circuit short and allow high clock
frequencies for the FPGA. They make up the greater part of the signal definitions and
assignments in the template.

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4
5 entity mul2add is

6 port(

7 clk: in std_logic;

8 reset: in std_logic;

9 port_in_data: in data_tuple_tuple_type; -- type replaced by code generator

10 port_in_last: in std_logic_vector(-1 downto 0);

11 port_in_valid: in std_logic;

12 port_in_ready: out std_logic;

13 port_out_data: out data_output_type; -- type replaced by code generator

14 port_out_last: out std_logic_vector(-1 downto 0);

15 port_out_valid: out std_logic;

16 port_out_ready: in std_logic

17);

18 end mul2add;

19
20 architecture behavioral of mul2add is

21 signal mul_in1_1_reg1: std_logic_vector(port_in_data.t0.t0’high + 1 downto port_in_data.t0.t0’low) := (

others => ’0’);

22 signal mul_in1_2_reg1: std_logic_vector(port_in_data.t0.t1’range) := (others => ’0’);

23 signal mul_in2_1_reg1: std_logic_vector(port_in_data.t1.t0’high + 1 downto port_in_data.t1.t0’low) := (

others => ’0’);

24 signal mul_in2_2_reg1: std_logic_vector(port_in_data.t1.t1’range) := (others => ’0’);

25 signal mul_in_valid1: std_logic := ’0’;

26
27 signal mul_in1_1_reg2: std_logic_vector(mul_in1_1_reg1’range) := (others => ’0’);

28 signal mul_in1_2_reg2: std_logic_vector(mul_in1_2_reg1’range) := (others => ’0’);

29 signal mul_in2_1_reg2: std_logic_vector(mul_in2_1_reg1’range) := (others => ’0’);

30 signal mul_in2_2_reg2: std_logic_vector(mul_in2_2_reg1’range) := (others => ’0’);

31 signal mul_in_valid2: std_logic := ’0’;

32
33 signal mul_out1_reg: std_logic_vector(mul_in1_1_reg2’high + mul_in1_2_reg2’high + 1 downto 0) := (others

=> ’0’);

34 signal mul_out2_reg: std_logic_vector(mul_in2_1_reg2’high + mul_in2_2_reg2’high + 1 downto 0) := (others

=> ’0’);

35 signal mul_out_valid: std_logic := ’0’;

36
37 signal acc_out_reg: std_logic_vector(port_out_data’range) := (others => ’0’);

38 signal acc_out_valid: std_logic := ’0’;

39
40 signal stall_regs: std_logic := ’0’;

41 signal in_ready: std_logic := ’0’;

42 begin

43
44 in_ready <= not stall_regs;

A.2. Examples 157

45 port_in_ready <= in_ready;

46 port_out_data <= acc_out_reg;

47 port_out_last <= (others => ’0’);

48 port_out_valid <= acc_out_valid;

49 stall_regs <= ’1’ when acc_out_valid = ’1’ and port_out_ready = ’0’ else ’0’;

50
51 mul_logic: process(clk, reset)

52 begin

53 if reset = ’1’ then -- reset must be async here in order to exploit DSP output registers!

54 mul_in1_1_reg1 <= (others => ’0’); mul_in1_2_reg1 <= (others => ’0’);

55 mul_in2_1_reg1 <= (others => ’0’); mul_in2_2_reg1 <= (others => ’0’);

56 mul_in1_1_reg2 <= (others => ’0’); mul_in1_2_reg2 <= (others => ’0’);

57 mul_in2_1_reg2 <= (others => ’0’); mul_in2_2_reg2 <= (others => ’0’);

58 mul_out1_reg <= (others => ’0’); mul_out2_reg <= (others => ’0’);

59 acc_out_reg <= (others => ’0’);

60 else

61 if rising_edge(clk) then

62 if stall_regs = ’1’ then

63 mul_in1_1_reg1 <= mul_in1_1_reg1; mul_in1_2_reg1 <= mul_in1_2_reg1;

64 mul_in2_1_reg1 <= mul_in2_1_reg1; mul_in2_2_reg1 <= mul_in2_2_reg1;

65 mul_in1_1_reg2 <= mul_in1_1_reg2; mul_in1_2_reg2 <= mul_in1_2_reg2;

66 mul_in2_1_reg2 <= mul_in2_1_reg2; mul_in2_2_reg2 <= mul_in2_2_reg2;

67 mul_out1_reg <= mul_out1_reg; mul_out2_reg <= mul_out2_reg;

68 acc_out_reg <= acc_out_reg;

69 else

70 mul_in1_1_reg1 <= (’0’ & port_in_data.t0.t0);

71 mul_in1_2_reg1 <= port_in_data.t0.t1;

72 mul_in2_1_reg1 <= (’0’ & port_in_data.t1.t0);

73 mul_in2_2_reg1 <= port_in_data.t1.t1;

74 mul_in1_1_reg2 <= mul_in1_1_reg1; mul_in1_2_reg2 <= mul_in1_2_reg1;

75 mul_in2_1_reg2 <= mul_in2_1_reg1; mul_in2_2_reg2 <= mul_in2_2_reg1;

76 -- two parallel multiplications

77 mul_out1_reg <= std_logic_vector(unsigned(mul_in1_1_reg2) * unsigned(mul_in1_2_reg2));

78 mul_out2_reg <= std_logic_vector(unsigned(mul_in2_1_reg2) * unsigned(mul_in2_2_reg2));

79 -- adding the two products

80 acc_out_reg <= std_logic_vector(unsigned(mul_out1_reg) + unsigned(mul_out2_reg));

81 end if;

82 end if;

83 end if;

84 end process;

85
86 pipeline_logic: process(clk) -- propagate the valid signal through the pipeline stages

87 begin

88 if rising_edge(clk) then

89 if reset = ’1’ then

90 mul_in_valid1 <= ’0’; mul_in_valid2 <= ’0’; mul_out_valid <= ’0’; acc_out_valid <= ’0’;

91 else

92 if stall_regs = ’1’ then

93 mul_in_valid1 <= mul_in_valid1; mul_in_valid2 <= mul_in_valid2;

94 mul_out_valid <= mul_out_valid; acc_out_valid <= acc_out_valid;

95 else

96 mul_in_valid1 <= ’0’;

97 if port_in_valid = ’1’ and in_ready = ’1’ then

158 Appendix A. VHDL Templates

98 mul_in_valid1 <= ’1’;

99 end if;

100 mul_in_valid2 <= mul_in_valid1;

101 mul_out_valid <= mul_in_valid2;

102 acc_out_valid <= mul_out_valid;

103 end if;

104 end if;

105 end if;

106 end process;

107
108 end behavioral;

A.2.3 SlideStm

The SlideStm primitive is used in convolution workloads. As depicted in Figure 4.10
it produces a stream of vectors, where each vector is a window of the slide operation.
This is due to its hardware implementation based on a shift register, visible in the
VHDL code below.

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4
5 entity slide_stm is

6 generic(-- generics are set by code generator

7 window_width: natural := 4;

8 step_size: natural := 2

9);

10 port(

11 clk: in std_logic;

12 reset: in std_logic;

13 port_in_data: in data_type; -- type replaced by code generator

14 port_in_last: in std_logic_vector(0 downto 0);

15 port_in_valid: in std_logic;

16 port_in_ready: out std_logic;

17 port_out_data: out data_window_vector_type; -- type replaced by code generator

18 port_out_last: out std_logic_vector(0 downto 0);

19 port_out_valid: out std_logic;

20 port_out_ready: in std_logic

21);

22 end slide_stm;

23
24 architecture behavioral of slide_stm is

25 type shift_reg_type is array(window_width - 2 downto 0) of data_type; -- type replaced by code generator

26 signal elements: natural range 0 to window_width - 1 := 0;

27 signal reg: shift_reg_type;

28 signal out_valid: std_logic := ’0’;

29 signal in_ready: std_logic := ’0’;

30
31 begin

A.2. Examples 159

32
33 combine_output_data_signal: process(port_in_data, reg)

34 begin

35 for i in reg’low to reg’high loop

36 port_out_data(i) <= reg(i); -- connect shift register to output

37 end loop;

38 port_out_data(port_out_data’high) <= port_in_data; -- forward current ingoing element

39 end process;

40
41 port_out_last <= port_in_last;

42 out_valid <= ’1’ when port_in_valid = ’1’ and elements = window_width - 1 else ’0’;

43 port_out_valid <= out_valid;

44 in_ready <= ’1’ when elements < window_width - 1 else port_out_ready; -- always ready to receive data,

when shift register is not yet filled

45 port_in_ready <= in_ready;

46
47 shift_reg_logic: process(clk)

48 begin

49 if rising_edge(clk) then

50 if reset = ’1’ then

51 else

52 if port_in_valid = ’1’ and in_ready = ’1’ then

53 for i in reg’low to reg’high - 1 loop

54 reg(i) <= reg(i + 1); -- shift

55 end loop;

56 reg(reg’high) <= port_in_data; -- feed in next input

57 end if;

58 end if;

59 end if;

60 end process;

61
62 element_counter_logic: process(clk)

63 variable elements_v: natural range 0 to window_width := 0;

64 begin

65 if rising_edge(clk) then

66 if reset = ’1’ then

67 elements <= 0;

68 else

69 elements_v := elements;

70 if port_in_valid = ’1’ and in_ready = ’1’ then

71 elements_v := elements_v + 1;

72 end if;

73 if out_valid = ’1’ and port_out_ready = ’1’ then

74 if port_in_last = "1" then

75 elements_v := 0;

76 else

77 elements_v := elements_v - step_size;

78 end if;

79 end if;

80 elements <= elements_v;

81 end if;

82 end if;

83 end process;

160 Appendix A. VHDL Templates

84
85 end behavioral;

A.2.4 Counter

The Counter primitive is used in particular to generate addresses for memory access.
It is able to generate values in the form of a multi-dimensional stream, as defined by
dimensions in the VHDL template. The configuration of the generics in the template
below, for example, specifies a ST

M[ST
M[ST
M[T]3]5]2 stream type for the counter. Further-

more, the bit vector repetitions defines whether the corresponding dimension is
a repetition only. This changes the output counter values, while the dimensions
remain the same. Without repetitions, and all bits of repetitions set to zero, the
counter_value in the VHDL code below counts up to 3∗5∗2∗ increment+ start.
In case the outermost dimension is marked as a repetition, the value is reset, so that
the module counts twice from start up to 3∗5∗increment+start. The flexibility
of the template allows to efficiently implement all the counters needed for the data
reshaping optimisations from Section 6.4.

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4
5 entity counter is

6 generic(-- generics are set by code generator

7 start: natural := 0;

8 increment: natural := 2;

9 dimensions: natural_vector_type := (2, 5, 3); -- read from right to left (innermost dimension to

outermost)

10 repetitions: std_logic_vector := "001" -- read from left to right (innermost to outermost repeat)

11);

12 port(

13 clk: in std_logic;

14 reset: in std_logic;

15 port_out_data: out data_type; -- type replaced by code generator

16 port_out_last: out std_logic_vector(1 downto 0);

17 port_out_valid: out std_logic;

18 port_out_ready: in std_logic

19);

20 end counter;

21
22 architecture behavioral of counter is

23 -- function to precompute constants (during compilation)

24 function precomp_increments return natural_vector_type is

25 variable increment_per_dimension: natural_vector_type := (others => increment);

26 begin

27 if repetitions(0) = ’1’ then

A.2. Examples 161

28 increment_per_dimension(0) := increment;

29 else

30 increment_per_dimension(0) := dimensions(0) * increment;

31 end if;

32 -- multiplication accumulate

33 for i in dimensions’low + 1 to dimensions’high loop

34 if repetitions(i) = ’1’ then

35 increment_per_dimension(i) := increment_per_dimension(i - 1);

36 else

37 increment_per_dimension(i) := increment_per_dimension(i - 1) * dimensions(i);

38 end if;

39 end loop;

40 return increment_per_dimension;

41 end function;

42
43 signal counter_value: natural := 0;

44 signal counter_dimensions: natural_vector_type := (others => 0);

45 constant increment_per_dimension: natural_vector_type := precomp_increments;

46 signal out_last: std_logic_vector(port_out_last’range) := (others => ’0’);

47 signal out_valid: std_logic := ’1’;

48
49 begin

50
51 port_out_data <= std_logic_vector(to_unsigned(counter_value + start, port_out_data’length));

52 port_out_last <= out_last;

53 port_out_valid <= out_valid;

54
55 last_signals: process(counter_dimensions)

56 begin

57 out_last <= (others => ’0’);

58 for i in dimensions’low to dimensions’high loop

59 if counter_dimensions(i) = dimensions(i) - 1 then

60 out_last(i) <= ’1’;

61 end if;

62 end loop;

63 end process;

64
65 counter_dimensions_logic: process(clk)

66 begin

67 if rising_edge(clk) then

68 if reset = ’1’ then

69 counter_dimensions <= (others => 0);

70 else

71 if out_valid = ’1’ then

72 for i in dimensions’low to dimensions’high loop

73 if port_out_ready = ’1’ then

74 if counter_dimensions(i) < dimensions(i) - 1 then

75 counter_dimensions(i) <= counter_dimensions(i) + 1;

76 else

77 counter_dimensions(i) <= 0;

78 end if;

79 end if;

80 end loop;

162 Appendix A. VHDL Templates

81 end if;

82 end if;

83 end if;

84 end process;

85
86 counter_value_logic: process(clk)

87 begin

88 if rising_edge(clk) then

89 if reset = ’1’ then

90 counter_value <= 0;

91 out_valid <= ’1’;

92 else

93 if out_valid = ’1’ and port_out_ready = ’1’ then

94 if repetitions(repetitions’low) = ’0’ or out_last(out_last’low) = ’1’ then

95 if counter_value <= increment_per_dimension(dimensions’high) - increment - 1 then

96 counter_value <= counter_value + increment; -- increase value

97 else -- finished counting

98 counter_value <= 0;

99 if port_out_ready = ’1’ then

100 out_valid <= ’0’;

101 end if;

102 end if;

103 end if;

104
105 -- repeat if correspondig bit in repetitions is set

106 for i in dimensions’low to dimensions’high - 1 loop

107 if out_last(i) = ’1’ and port_out_ready = ’1’ and repetitions(i + 1) = ’1’ and out_last(i + 1)

= ’0’ then

108 counter_value <= counter_value + increment - increment_per_dimension(i);

109 exit;

110 end if;

111 end loop;

112 end if;

113 end if;

114 end if;

115 end process;

116
117 end behavioral;

Bibliography

[ABB+12] Joshua Auerbach, David F Bacon, Ioana Burcea, Perry Cheng, Stephen J
Fink, Rodric Rabbah, and Sunil Shukla. A compiler and runtime for
heterogeneous computing. In Proceedings of the 49th Annual Design
Automation Conference, DAC ’12, page 271–276, New York, NY, USA,
2012. Association for Computing Machinery.

[ABC+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Mi-
chael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
PeteWarden, MartinWicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow:
A system for large-scale machine learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’16, page 265–283, USA, 2016. USENIX Association.

[ABCR10] Joshua Auerbach, David F Bacon, Perry Cheng, and Rodric Rabbah.
Lime: A java-compatible and synthesizable language for heterogen-
eous architectures. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’10, page 89–108, New York, NY, USA, 2010. Association for
Computing Machinery.

[ACS05] Emil Axelsson, Koen Claessen, and Mary Sheeran. Wired: Wire-aware
circuit design. In Dominique Borrione and Wolfgang Paul, editors,
Correct Hardware Design and Verification Methods, pages 5–19, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[AK21] Jesse Alama and Johannes Korbmacher. The Lambda Calculus. In
Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Meta-
physics Research Lab, Stanford University, Summer 2021 edition, 2021.

[AM03] MJ Aitkenhead and Allan James Stuart McDonald. A neural network
face recognition system. Engineering Applications of Artificial Intelli-
gence, 16(3):167–176, 2003.

[Baa15] Christiaan PR Baaij. Digital circuit in CλaSH: functional specifications
and type-directed synthesis. PhD thesis, University of Twente, Nether-
lands, January 2015. eemcs-eprint-23939.

163

164 Bibliography

[Bac78] John Backus. Can programming be liberated from the von neumann
style? a functional style and its algebra of programs. Commun. ACM,
21(8):613–641, August 1978.

[Bac81] John Backus. The algebra of functional programs: Function level reason-
ing, linear equations, and extended definitions. In J. Díaz and I. Ramos,
editors, Formalization of Programming Concepts, pages 1–43, Berlin,
Heidelberg, 1981. Springer Berlin Heidelberg.

[BCSS98] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava:
Hardware design in haskell. In Proceedings of the Third ACM SIGPLAN
International Conference on Functional Programming, ICFP ’98, page
174–184, New York, NY, USA, 1998. Association for Computing Ma-
chinery.

[BG92] Gérard Berry and Georges Gonthier. The esterel synchronous program-
ming language: design, semantics, implementation. Science of Computer
Programming, 19(2):87–152, 1992.

[BH98] Peter Bellows and Brad Hutchings. Jhdl-an hdl for reconfigurable sys-
tems. In Proceedings. IEEE Symposium on FPGAs for Custom Computing
Machines (Cat. No.98TB100251), pages 175–184, April 1998.

[BI19] Paul Barham and Michael Isard. Machine learning systems are stuck in
a rut. In Proceedings of the Workshop on Hot Topics in Operating Systems,
HotOS ’19, page 177–183, New York, NY, USA, 2019. Association for
Computing Machinery.

[BKK+10] Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arjan Boeijink, and
Marco Gerards. Clash: Structural descriptions of synchronous hardware
using haskell. In 2010 13th Euromicro Conference on Digital System
Design: Architectures, Methods and Tools, pages 714–721, Sep. 2010.

[BKS03] Gérard Berry, Michael Kishinevsky, and Satnam Singh. System level
design and verification using a synchronous language. In ICCAD-
2003. International Conference on Computer Aided Design (IEEE Cat.
No.03CH37486), pages 433–439, 2003.

[BLZ+19] Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network
exchange. https://github.com/onnx/onnx, 2019. [Online; accessed
17-Dec-2022].

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

[BNZ+16] Bruno Bodin, Luigi Nardi, M Zeeshan Zia, Harry Wagstaff, Govind
Sreekar Shenoy, Murali Emani, John Mawer, Christos Kotselidis, Andy
Nisbet, Mikel Lujan, Björn Franke, Paul HJ Kelly, and Michael O’Boyle.
Integrating algorithmic parameters into benchmarking and design space

https://github.com/onnx/onnx

Bibliography 165

exploration in 3d scene understanding. In Proceedings of the 2016 In-
ternational Conference on Parallel Architectures and Compilation, PACT
’16, page 57–69, New York, NY, USA, 2016. Association for Computing
Machinery.

[Bol08] Thomas Bollaert. Catapult synthesis: a practical introduction to in-
teractive c synthesis. In High-Level Synthesis, pages 29–52. Springer,
2008.

[BPF+18] Michaela Blott, Thomas B Preußer, Nicholas J Fraser, Giulio Gambar-
della, Kenneth O’brien, Yaman Umuroglu, Miriam Leeser, and Kees
Vissers. Finn-r: An end-to-end deep-learning framework for fast ex-
ploration of quantized neural networks. ACM Trans. Reconfigurable
Technol. Syst., 11(3), dec 2018.

[BVR+12] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Wa-
terman, Rimas Avižienis, John Wawrzynek, and Krste Asanović. Chisel:
constructing hardware in a scala embedded language. In Proceedings of
the 49th Annual Design Automation Conference, DAC, 2012.

[Cas95] Giuseppe Castagna. Covariance and contravariance: Conflict without a
cause. ACM Trans. Program. Lang. Syst., 17(3):431–447, may 1995.

[CCA+11] AndrewCanis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kam-
moona, Jason H Anderson, Stephen Brown, and Tomasz Czajkowski.
Legup: High-level synthesis for fpga-based processor/accelerator sys-
tems. In Proceedings of the 19th ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, FPGA, pages 33–36, New York, NY,
USA, 2011. ACM.

[CCA+13] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed
Kammoona, Tomasz Czajkowski, Stephen D Brown, and Jason H An-
derson. Legup: An open-source high-level synthesis tool for fpga-based
processor/accelerator systems. ACM Trans. Embed. Comput. Syst., 13(2),
September 2013.

[CCWZ18] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. Soda: Stencil with
optimized dataflow architecture. In 2018 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), pages 1–8, 2018.

[CFO+18] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Adrian Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Al-
kalay, Michael Haselman, Maleen Abeydeera, Logan Adams, Hari An-
gepat, Christian Boehn, Derek Chiou, Oren Firestein, Alessandro Forin,
Kang Su Gatlin, Mahdi Ghandi, Stephen Heil, Kyle Holohan, Ahmad
El Husseini, Tamas Juhasz, Kara Kagi, Ratna Kovvuri, Sitaram Lanka,
Friedel van Megen, Dima Mukhortov, Prerak Patel, Brandon Perez,
Amanda Rapsang, Steven Reinhardt, Bita Rouhani, Adam Sapek, Raja
Seera, Sangeetha Shekar, Balaji Sridharan, Gabriel Weisz, Lisa Woods,

166 Bibliography

Phillip Yi Xiao, Dan Zhang, Ritchie Zhao, and Doug Burger. Serving
dnns in real time at datacenter scale with project brainwave. IEEE Micro,
38(2):8–20, 3 2018.

[CHP+16] Jason Cong, Muhuan Huang, Peichen Pan, Di Wu, and Peng Zhang.
Software infrastructure for enabling fpga-based accelerations in data
centers: Invited paper. In Proceedings of the 2016 International Sym-
posium on Low Power Electronics and Design, ISLPED ’16, page 154–155,
New York, NY, USA, 2016. Association for Computing Machinery.

[Chu32] Alonzo Church. A set of postulates for the foundation of logic. Annals
of Mathematics, 33(2):346–366, 1932.

[Chu33] Alonzo Church. A set of postulates for the foundation of logic. Annals
of Mathematics, 34(4):839–864, 1933.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal
of Symbolic Logic, 5(2):56–68, 1940.

[CJC+20] Jianyi Cheng, Lana Josipovic, George A Constantinides, Paolo Ienne,
and John Wickerson. Combining dynamic & static scheduling in high-
level synthesis. In Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’20, page 288–298,
New York, NY, USA, 2020. Association for Computing Machinery.

[CLL+15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet:
A flexible and efficient machine learning library for heterogeneous
distributed systems. CoRR, abs/1512.01274, 2015.

[CMJ+18] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. Tvm: An automated end-
to-end optimizing compiler for deep learning. In Proceedings of the 13th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’18, page 579–594, USA, 2018. USENIX Association.

[CMMS91] Luca Cardelli, Simone Martini, John C Mitchell, and Andre Scedrov. An
extension of system f with subtyping. In Takayasu Ito and Albert R
Meyer, editors, Theoretical Aspects of Computer Software, 1991.

[CW18] Jason Cong and Jie Wang. Polysa: Polyhedral-based systolic array auto-
compilation. In Proceedings of the International Conference on Computer-
Aided Design, ICCAD ’18, New York, NY, USA, 2018. Association for
Computing Machinery.

[DFH+20] David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly,
Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and
Pat Hanrahan. Type-directed scheduling of streaming accelerators.

Bibliography 167

In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI, 2020.

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. In OSDI’04: Sixth Symposium on Operating
System Design and Implementation, pages 137–150, San Francisco, CA,
2004.

[DGY+74] Robert H Dennard, Fritz H Gaensslen, Hwa-Nien Yu, V Leo Rideout,
Ernest Bassous, and Andre R LeBlanc. Design of ion-implanted mosfet’s
with very small physical dimensions. IEEE Journal of Solid-State Circuits,
9(5):256–268, 1974.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Chapter 6 - rewrite
systems. In Jan van Leeuwen, editor, Formal Models and Semantics,
Handbook of Theoretical Computer Science, pages 243–320. Elsevier,
Amsterdam, 1990.

[DMdFLH20] Tiziano De Matteis, Johannes de Fine Licht, and Torsten Hoefler. Fblas:
Streaming linear algebra on fpga. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’20. IEEE Press, 2020.

[DMDV20] S Devi, P Malarvezhi, R Dayana, and K Vadivukkarasi. A comprehensive
survey on autonomous driving cars: A perspective view. Wireless
Personal Communications, 114(3):2121–2133, Oct 2020.

[DPY18] Jeff Dean, David Patterson, and Cliff Young. A new golden age in
computer architecture: Empowering the machine-learning revolution.
IEEE Micro, 38(2):21–29, 2018.

[EBA+11] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sank-
aralingam, and Doug Burger. Dark silicon and the end of multicore
scaling. In 2011 38th Annual International Symposium on Computer
Architecture (ISCA), pages 365–376, 2011.

[Edw02] Stephen A Edwards. High-level synthesis from the synchronous lan-
guage esterel. In IWLS, pages 401–406, 2002.

[FCC+21] Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fez-
zardi, Michele Fiorito, Marco Lattuada, Marco Minutoli, Christian Pilato,
and Antonino Tumeo. Bambu: an open-source research framework for
the high-level synthesis of complex applications. In 2021 58th ACM/IEEE
Design Automation Conference (DAC), pages 1327–1330. IEEE, 2021.

[FMM12] Umer Farooq, Zied Marrakchi, and Habib Mehrez. Fpga architectures:
An overview. Tree-based heterogeneous FPGA architectures, pages 7–48,
2012.

168 Bibliography

[FOP+18] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massen-
gill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan
Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam Sapek, Gab-
riel Weisz, Lisa Woods, Sitaram Lanka, Steven K Reinhardt, Adrian M
Caulfield, Eric S Chung, and Doug Burger. A configurable cloud-scale
dnn processor for real-time ai. 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), 6 2018.

[FPHL09] Clement Farabet, Cyril Poulet, Jefferson Y Han, and Yann LeCun. Cnp:
An fpga-based processor for convolutional networks. In 2009 Interna-
tional Conference on Field Programmable Logic and Applications, pages
32–37, 2009.

[GBK+09] Andy Gill, Tristan Bull, Garrin Kimmell, Erik S Perrins, Ed Komp, and
Brett Werling. Introducing kansas lava. In International Symposium on
Implementation and Application of Functional Languages, 2009.

[Gir71] Jean-Yves Girard. Une extension de Ľinterpretation de gödel a Ľanalyse,
et son application a Ľelimination des coupures dans Ľanalyse et la
theorie des types. In J.E. Fenstad, editor, Proceedings of the Second
Scandinavian Logic Symposium, volume 63 of Studies in Logic and the
Foundations of Mathematics, pages 63–92. Elsevier, 1971.

[Gir86] Jean-Yves Girard. The system f of variable types, fifteen years later.
Theoretical Computer Science, 45:159–192, 1986.

[GLC+20] Licheng Guo, Jason Lau, Yuze Chi, Jie Wang, Cody Hao Yu, Zhe Chen,
Zhiru Zhang, and Jason Cong. Analysis and optimization of the implicit
broadcasts in fpga hls to improve maximum frequency. In 2020 57th
ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2020.

[GLN+14] Nithin George, HyoukJoong Lee, David Novo, Tiark Rompf, Kevin J
Brown, Arvind K Sujeeth, Martin Odersky, Kunle Olukotun, and Paolo
Ienne. Hardware system synthesis from domain-specific languages.
In 2014 24th International Conference on Field Programmable Logic and
Applications (FPL), pages 1–8, 2014.

[GLX+17] Yijin Guan, Hao Liang, Ningyi Xu, Wenqiang Wang, Shaoshuai Shi,
Xi Chen, Guangyu Sun, Wei Zhang, and Jason Cong. Fp-dnn: An auto-
mated framework for mapping deep neural networks onto fpgas with
rtl-hls hybrid templates. In 2017 IEEE 25th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
pages 152–159, 2017.

[GRDT+16] Giulia Guidi, Enrico Reggiani, Lorenzo Di Tucci, Gianluca Durelli, Mi-
chaela Blott, andMarco D Santambrogio. On how to improve fpga-based
systems design productivity via sdaccel. In 2016 IEEE international par-
allel and distributed processing symposium workshops (IPDPSW), pages
247–252. IEEE, 2016.

Bibliography 169

[GRS+18] Philip Ginsbach, Toomas Remmelg, Michel Steuwer, Bruno Bodin, Chris-
tophe Dubach, and Michael F. P. O’Boyle. Automatic matching of legacy
code to heterogeneous apis: An idiomatic approach. In Proceedings
of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’18, page
139–153, New York, NY, USA, 2018. Association for Computing Ma-
chinery.

[Ham94] Kevin Hammond. Parallel functional programming: An introduction.
In Proc. PASCO, volume 94, pages 181–193. World Scientific, 1994.

[Han22] Pat Hanrahan. magma. https://github.com/phanrahan/magma, 2022.
[Online; accessed 17-Dec-2022].

[HBD+14] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-
Kelley, Noy Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and
Pat Hanrahan. Darkroom: Compiling high-level image processing code
into hardware pipelines. ACM Trans. Graph., 33(4), jul 2014.

[HCGL15] Kenneth Hill, Stefan Craciun, Alan George, and Herman Lam. Com-
parative analysis of opencl vs. hdl with image-processing kernels on
stratix-v fpga. In 2015 IEEE 26th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), pages 189–193,
2015.

[HCRP91] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud.
The synchronous data flow programming language lustre. Proceedings
of the IEEE, 79(9):1305–1320, 1991.

[HDD+16] James Hegarty, Ross Daly, Zachary DeVito, Jonathan Ragan-Kelley,
Mark Horowitz, and Pat Hanrahan. Rigel: Flexible multi-rate image
processing hardware. ACM Trans. Graph., 35(4), jul 2016.

[HKM+08] Amir Hormati, Manjunath Kudlur, Scott Mahlke, David Bacon, and
Rodric Rabbah. Optimus: Efficient realization of streaming applications
on fpgas. In International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, CASES, pages 41–50, 2008.

[HLK+20] Bastian Hagedorn, Johannes Lenfers, Thomas Kœhler, Xueying Qin,
Sergei Gorlatch, and Michel Steuwer. Achieving high-performance the
functional way: A functional pearl on expressing high-performance
optimizations as rewrite strategies. Proc. ACM Program. Lang., 4(ICFP),
aug 2020.

[Hor14] Mark Horowitz. 1.1 computing’s energy problem (and what we can
do about it). In 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), pages 10–14, 2014.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9:1735–80, 12 1997.

https://github.com/phanrahan/magma

170 Bibliography

[HSE+17] Troels Henriksen, Niels GW Serup, Martin Elsman, Fritz Henglein, and
Cosmin E Oancea. Futhark: Purely functional gpu-programming with
nested parallelism and in-place array updates. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI, 2017.

[HSS+18] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,
and Christophe Dubach. High performance stencil code generation
with lift. In Proceedings of the 2018 International Symposium on Code
Generation and Optimization, CGO 2018, page 100–112, New York, NY,
USA, 2018. Association for Computing Machinery.

[Hud89] Paul Hudak. Conception, evolution, and application of functional pro-
gramming languages. ACM Comput. Surv., 21(3):359–411, sep 1989.

[HXL+16] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli
Wang. A high performance fpga-based accelerator for large-scale con-
volutional neural networks. In 2016 26th International Conference on
Field Programmable Logic and Applications (FPL), pages 1–9, Aug 2016.

[IEE06] IEEE. Ieee standard for verilog hardware description language. IEEE
Std 1364-2005 (Revision of IEEE Std 1364-2001), pages 1–590, April 2006.

[IEE08] IEEE. Ieee standard for floating-point arithmetic. IEEE Std 754-2008,
pages 1–70, 2008.

[IEE09] IEEE. Ieee standard vhdl language reference manual. IEEE Std 1076-2008
(Revision of IEEE Std 1076-2002), pages c1–626, Jan 2009.

[IEE12] IEEE. Ieee standard for standard systemc language reference manual.
IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), pages 1–638, 2012.

[IEE18] IEEE. Ieee standard for systemverilog–unified hardware design, spe-
cification, and verification language. IEEE Std 1800-2017 (Revision of
IEEE Std 1800-2012), pages 1–1315, Feb 2018.

[IKL+17] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Al-
bert Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson,
and Jonathan Bachrach. Reusability is firrtl ground: Hardware construc-
tion languages, compiler frameworks, and transformations. In 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 209–216, 2017.

[Int20] Intel Corporation. Intel sdk for opencl applications developer
guide. https://www.intel.com/content/www/us/en/develop/

documentation/openclsdk-devguide/, 2020. [Online; accessed
17-Dec-2022].

[Int22a] Intel Corporation. Intel acceleration stack for intel xeon
cpu with fpgas core cache interface (cci-p) reference manual.

https://www.intel.com/content/www/us/en/develop/documentation/openclsdk-devguide/
https://www.intel.com/content/www/us/en/develop/documentation/openclsdk-devguide/

Bibliography 171

https://www.intel.com/content/www/us/en/docs/programmable/

683193/current/acceleration-stack-for-cpu-with-fpgas.html,
2022. [Online; accessed 17-Dec-2022].

[Int22b] Intel Corporation. Intel arria 10 device overview. https:

//www.intel.com/content/www/us/en/docs/programmable/683332/

current/device-overview.html, 2022. [Online; accessed 17-Dec-
2022].

[Int22c] Intel Corporation. Intel fpgas – intel arria 10 fpga. https:

//www.intel.com/content/www/us/en/products/details/fpga/

arria/10/article.html, 2022. [Online; accessed 17-Dec-2022].

[JB00] James Jennings and Eric Beuscher. Verischemelog: Verilog embedded
in scheme. In Proceedings of the 2nd Conference on Domain-Specific Lan-
guages, DSL ’99, page 123–134, New York, NY, USA, 2000. Association
for Computing Machinery.

[JBB+17] Norman P Jouppi, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford
Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Cliff Young, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C Richard Ho, Doug Hogberg, John
Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Nishant Patil, Aaron Jaffey,
Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew,
Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law,
David Patterson, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony,
Kieran Miller, Rahul Nagarajan, Gaurav Agrawal, Ravi Narayanaswami,
Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Pen-
ukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Raminder
Bajwa, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snel-
ham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Sarah Bates, Horia Toma, Erick Tuttle, Vijay Vas-
udevan, Richard Walter, Walter Wang, Eric Wilcox, Doe Hyun Yoon,
Suresh Bhatia, and Nan Boden. In-datacenter performance analysis of
a tensor processing unit. Proceedings of the 44th Annual International
Symposium on Computer Architecture - ISCA ’17, 2017.

[JHYA+21] Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho,
Thomas B Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma,
Xiaoyu Ma, Thomas Norrie, Nishant Patil, Sushma Prasad, Cliff Young,
Zongwei Zhou, and David Patterson. Ten lessons from three generations
shaped google’s tpuv4i : Industrial product. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA), pages
1–14, 2021.

[JKLL20] Gangwon Jo, Heehoon Kim, Jeesoo Lee, and Jaejin Lee. Soff: An opencl
high-level synthesis framework for fpgas. In 2020 ACM/IEEE 47th Annual

https://www.intel.com/content/www/us/en/docs/programmable/683193/current/acceleration-stack-for-cpu-with-fpgas.html
https://www.intel.com/content/www/us/en/docs/programmable/683193/current/acceleration-stack-for-cpu-with-fpgas.html
https://www.intel.com/content/www/us/en/docs/programmable/683332/current/device-overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683332/current/device-overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683332/current/device-overview.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10/article.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10/article.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10/article.html

172 Bibliography

International Symposium on Computer Architecture (ISCA), pages 295–
308, 2020.

[JS15] Keerthan Jaic and Melissa C Smith. Enhancing hardware design flows
with myhdl. In Proceedings of the 2015 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, FPGA ’15, page 28–31, New
York, NY, USA, 2015. Association for Computing Machinery.

[JSD+14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. In Proceed-
ings of the 22nd ACM International Conference on Multimedia, MM ’14,
page 675–678, New York, NY, USA, 2014. Association for Computing
Machinery.

[JSD23] Tzung-Han Juang, Christof Schlaak, and Christophe Dubach. Let coarse-
grained resources be shared: Mapping entire neural networks on fpgas.
ACM Trans. Embed. Comput. Syst., 22(5s), sep 2023.

[JYH08] Hyunuk Jung, Hoeseok Yang, and Soonhoi Ha. Optimized rtl code
generation from coarse-grain dataflow specification for fast hw/sw
cosynthesis. Journal of Signal Processing Systems, 52(1):13–34, 2008.

[JZ16] Qi Jia and Huiyang Zhou. Tuning stencil codes in opencl for fpgas.
In 2016 IEEE 34th International Conference on Computer Design (ICCD),
pages 249–256, 2016.

[KBSD19] Martin Kristien, Bruno Bodin, Michel Steuwer, and Christophe Dubach.
High-level synthesis of functional patterns with lift. In Proceedings of
the 6th ACM SIGPLAN International Workshop on Libraries, Languages
and Compilers for Array Programming, ARRAY, 2019.

[KDP+16] David Koeplinger, Christina Delimitrou, Raghu Prabhakar, Christos
Kozyrakis, Yaqi Zhang, and Kunle Olukotun. Automatic generation of
efficient accelerators for reconfigurable hardware. In Proceedings of the
43rd International Symposium on Computer Architecture, ISCA ’16, page
115–127. IEEE Press, 2016.

[KFP+18] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,
Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,
Christos Kozyrakis, and Kunle Olukotun. Spatial: A language and
compiler for application accelerators. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implement-
ation, PLDI, 2018.

[Klo93] Jan Willem Klop. Term rewriting systems. Universal Algebra and
Applications in Theoretical Computer Science, 1993.

Bibliography 173

[KNRSV00] Kurt Keutzer, A Richard Newton, Jan M Rabaey, and Alberto
Sangiovanni-Vincentelli. System-level design: orthogonalization of
concerns and platform-based design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 19(12):1523–1543, 2000.

[KS21] Thomas Kœhler and Michel Steuwer. Towards a domain-extensible
compiler: Optimizing an image processing pipeline on mobile cpus.
In Proceedings of the 2021 IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’21, page 27–38. IEEE Press, 2021.

[LA04] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In International Symposium
on Code Generation and Optimization, 2004. CGO 2004., pages 75–86,
2004.

[LAB+20] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas
Vasilache, and Oleksandr Zinenko. Mlir: A compiler infrastructure
for the end of moore’s law, 2020.

[LAB+21] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas
Vasilache, and Oleksandr Zinenko. Mlir: Scaling compiler infrastructure
for domain specific computation. In Proceedings of the 2021 IEEE/ACM
International Symposium on Code Generation and Optimization, CGO
’21, page 2–14. IEEE Press, 2021.

[LBH+18] Roland Leißa, Klaas Boesche, Sebastian Hack, Arsène Pérard-Gayot,
Richard Membarth, Philipp Slusallek, André Müller, and Bertil Schmidt.
Anydsl: A partial evaluation framework for programming high-
performance libraries. Proc. ACM Program. Lang., 2(OOPSLA), oct
2018.

[LCC20] Jiajie Li, Yuze Chi, and Jason Cong. Heterohalide: From image pro-
cessing dsl to efficient fpga acceleration. In Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, FPGA ’20, page 51–57, New York, NY, USA, 2020. Association for
Computing Machinery.

[LCH+19] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou,
Jason Cong, and Zhiru Zhang. Heterocl: A multi-paradigm program-
ming infrastructure for software-defined reconfigurable computing. In
Proceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’19, page 242–251, New York, NY,
USA, 2019. Association for Computing Machinery.

[LGN+17] Yun Liu, Krishna Gadepalli, Mohammad Norouzi, George E Dahl, Timo
Kohlberger, Aleksey Boyko, Subhashini Venugopalan, Aleksei Timofeev,
Philip Q Nelson, Gregory S Corrado, Jason D Hipp, Lily Peng, and

174 Bibliography

Martin C Stumpe. Detecting cancer metastases on gigapixel pathology
images. CoRR, abs/1703.02442, 2017. Also presented at the 2017 MICCAI
tutorial, Deep Learning for Medical Imaging: https://sites.google.
com/view/miccai2017-deeplearning.

[LIB16] Patrick S Li, Adam M Izraelevitz, and Jonathan Bachrach. Specification
for the firrtl language. Technical Report UCB/EECS-2016-9, EECS
Department, University of California, Berkeley, Feb 2016.

[LL95] Yanbing Li and Miriam Leeser. Hml: an innovative hardware de-
scription language and its translation to vhdl. In Proceedings of ASP-
DAC’95/CHDL’95/VLSI’95 with EDA Technofair, pages 691–696, 1995.

[LLC17] Enno Luebbers, Song Liu, and Michael Chu. Simplify software integra-
tion for fpga accelerators with opae. Technical report, Intel Corporation,
2017.

[LM87] Edward A Lee and David G Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235–1245, 1987.

[LSS21] Martin Lücke, Michel Steuwer, and Aaron Smith. Integrating a func-
tional pattern-based ir intomlir. In Proceedings of the 30th ACM SIGPLAN
International Conference on Compiler Construction, CC 2021, page 12–22,
New York, NY, USA, 2021. Association for Computing Machinery.

[Mar10] Simon Marlow. Haskell 2010 language report. Technical report, Haskell
community, 2010.

[MCV+19] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Yan,
Lianmin Zheng, Josh Fromm, Ziheng Jiang, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. A hardware–software blueprint for flexible
deep learning specialization. IEEE Micro, 39(5):8–16, 2019.

[Mer08] MichaelMeredith. High-Level SystemC Synthesis with Forte’s Cynthesizer,
pages 75–97. Springer Netherlands, Dordrecht, 2008.

[MFHP12] Peter Milder, Franz Franchetti, James C Hoe, and Markus Püschel. Com-
puter generation of hardware for linear digital signal processing trans-
forms. ACM Trans. Des. Autom. Electron. Syst., 17(2), April 2012.

[MHMT97] Robin Milner, Robert Harper, David MacQueen, and Mads Tofte. The
Definition of Standard ML. The MIT Press, 05 1997.

[MLRD22] Naums Mogers, Lu Li, Valentin Radu, and Christophe Dubach. Mapping
parallelism in a functional ir through constraint satisfaction: A case
study on convolution for mobile gpus. In Proceedings of the 31st ACM
SIGPLAN International Conference on Compiler Construction, CC 2022,
page 218–230, New York, NY, USA, 2022. Association for Computing
Machinery.

https://sites.google.com/view/miccai2017-deeplearning
https://sites.google.com/view/miccai2017-deeplearning

Bibliography 175

[MM22] Anil Madhavapeddy and Yaron Minsky. Real World OCaml: Functional
Programming for the Masses. Cambridge University Press, 2 edition,
2022.

[Moo06a] Gordon E Moore. Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114
ff. IEEE Solid-State Circuits Society Newsletter, 11(3):33–35, 2006.

[Moo06b] Gordon E Moore. Progress in digital integrated electronics [technical
literaiture, copyright 1975 ieee. reprinted, with permission. technical
digest. international electron devices meeting, ieee, 1975, pp. 11-13.].
IEEE Solid-State Circuits Society Newsletter, 11(3):36–37, 2006.

[MPA+16] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir
Yazdanbakhsh, Joon Kyung Kim, and Hadi Esmaeilzadeh. Tabla: A
unified template-based framework for accelerating statistical machine
learning. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 14–26, March 2016.

[MS00] Alan Mycroft and Richard Sharp. A statically allocated parallel func-
tional language. In Ugo Montanari, José D. P. Rolim, and Emo Welzl,
editors, Automata, Languages and Programming, pages 37–48, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg.

[MT09] RenéMüller and Jens Teubner. Fpga: what’s in it for a database? Proceed-
ings of the 2009 ACM SIGMOD International Conference on Management
of data, 2009.

[Mun09] Aaftab Munshi. The opencl specification. In 2009 IEEE Hot Chips 21
Symposium (HCS), pages 1–314, 2009.

[NAT+20] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore
Bauer, Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang.
Predictable accelerator design with time-sensitive affine types. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2020, page 393–407, New York, NY,
USA, 2020. Association for Computing Machinery.

[NAZ+18] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and Andrew W Moore. Understanding pcie per-
formance for end host networking. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, SIGCOMM
’18, page 327–341, New York, NY, USA, 2018. Association for Computing
Machinery.

[Nik08] Rishiyur S Nikhil. Bluespec: A General-Purpose Approach to High-Level
Synthesis Based on Parallel Atomic Transactions, pages 129–146. Springer
Netherlands, Dordrecht, 2008.

176 Bibliography

[NSO+12] Razvan Nane, Vlad-Mihai Sima, Bryan Olivier, Roel Meeuws, Yana
Yankova, and Koen Bertels. Dwarv 2.0: A cosy-based c-to-vhdl hardware
compiler. In 22nd International Conference on Field Programmable Logic
and Applications (FPL), pages 619–622, 2012.

[NSP+16] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair
Fort, Andrew Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fab-
rizio Ferrandi, Jason Anderson, and Koen Bertels. A survey and evalu-
ation of fpga high-level synthesis tools. Trans. Comp.-Aided Des. Integ.
Cir. Sys., 35(10):1591–1604, October 2016.

[NSQ+14] Razvan Nane, Vlad Mihai Sima, Cuong Pham Quoc, Fernando Gon-
calves, and Koen Bertels. High-level synthesis in the delft workbench
hardware/software co-design tool-chain. In 2014 12th IEEE International
Conference on Embedded and Ubiquitous Computing, pages 138–145.
IEEE, 2014.

[NV15] Syed Waqar Nabi and Wim Vanderbauwhede. Using type transforma-
tions to generate program variants for fpga design space exploration. In
2015 International Conference on ReConFigurable Computing and FPGAs
(ReConFig), pages 1–6, 2015.

[NV16] Syed Waqar Nabi and Wim Vanderbauwhede. A fast and accurate
cost model for fpga design space exploration in hpc applications. In
2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 114–123, 2016.

[NV19] Syed Waqar Nabi and Wim Vanderbauwhede. Automatic pipelining
and vectorization of scientific code for fpgas. International Journal of
Reconfigurable Computing, 2019:7348013, Nov 2019.

[NVS+17] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr,
Randy Huang, Jason Ong Gee Hock, Yeong Tat Liew, Krishnan Srivat-
san, Duncan Moss, Suchit Subhaschandra, and Guy Boudoukh. Can
fpgas beat gpus in accelerating next-generation deep neural networks?
In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’17, page 5–14, New York, NY, USA,
2017. Association for Computing Machinery.

[OAC+04] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Se-
bastian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz,
Erik Stenman, and Matthias Zenger. An overview of the scala pro-
gramming language. Technical report, École Polytechnique Fédérale de
Lausanne (EPFL), 2004.

[Ola15] Chris Olah. Neural networks, types, and functional programming. http:
//colah.github.io/posts/2015-09-NN-Types-FP, 9 2015. [Online;
accessed 17-Dec-2022].

http://colah.github.io/posts/2015-09-NN-Types-FP
http://colah.github.io/posts/2015-09-NN-Types-FP

Bibliography 177

[ÖPGM+20] M Akif Özkan, Arsène Pérard-Gayot, Richard Membarth, Philipp Slus-
allek, Roland Leißa, Sebastian Hack, Jürgen Teich, and Frank Han-
nig. Anyhls: High-level synthesis with partial evaluation. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
39(11):3202–3214, 2020.

[ORK+15] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers,
Karin Strauss, and Eric S Chung. Accelerating deep convolutional
neural networks using specialized hardware. Technical report, Mi-
crosoft Research, February 2015.

[Ou05] King Ou. Using asic prototyping to reduce risks. SNUG, San Jose, 2005.

[OVP+22] Matthew Ouellette, Mouli C Venkata, Brian Philofsky, Harpinder Math-
aru, Faisal Dada, Ashwin Thiagarajan, Nick Ni, Ryan Koehn, and Fre-
deric Rivoallon. System-level benefits of the versal platform. Xilinx
WP539 (v1.2), feb 2022.

[PBD+08] Andrew Putnam, Dave Bennett, Eric Dellinger, Jeff Mason, Prasanna
Sundararajan, and Susan Eggers. Chimps: A c-level compilation flow
for hybrid cpu-fpga architectures. In 2008 International Conference on
Field Programmable Logic and Applications, pages 173–178, 2008.

[PBMR14] Adrien Prost-Boucle, Olivier Muller, and Frédéric Rousseau. Fast and
standalone design space exploration for high-level synthesis under
resource constraints. Journal of Systems Architecture, 60(1):79–93, 2014.

[PBY+17] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson,
Jonathan Ragan-Kelley, and Mark Horowitz. Programming hetero-
geneous systems from an image processing dsl. ACM Trans. Archit.
Code Optim., 14(3), aug 2017.

[PF13] Christian Pilato and Fabrizio Ferrandi. Bambu: A modular framework
for the high level synthesis of memory-intensive applications. In 2013
23rd International Conference on Field programmable Logic and Applica-
tions, pages 1–4, 2013.

[PGM+19] AdamPaszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems, Red
Hook, NY, USA, 2019. Curran Associates Inc.

[PHP87] Daniel Pilaud, N Halbwachs, and JA Plaice. Lustre: A declarative
language for programming synchronous systems. In Proceedings of the
14th Annual ACM Symposium on Principles of Programming Languages
(14th POPL 1987). ACM, New York, NY, volume 178, page 188, 1987.

178 Bibliography

[PJM+14] Andrew Putnam, Gopal Jan, Gray Michael, Haselman Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James
Larus, Eric Peterson, Simon Pope, Adrian M Caulfield, Aaron Smith,
Jason Thong, Phillip Yi, Xiao Doug Burger, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy
Fowers, and Gopi Prashanth. A reconfigurable fabric for accelerating
large-scale datacenter services. ACM SIGARCH Computer Architecture
News, 42(3):13–24, 10 2014.

[PKB+16] Raghu Prabhakar, David Koeplinger, Kevin J Brown, HyoukJoong Lee,
Christopher De Sa, Christos Kozyrakis, and Kunle Olukotun. Generat-
ing configurable hardware from parallel patterns. In Proceedings of the
Twenty-First International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS, pages 651–665,
2016.

[PMJ+05] Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua,
Manuela M Veloso, Bryan W Singer, Jianxin Xiong, Franz Franchetti,
Aca Gacic, Yevgen Voronenko, K Chen, RW Johnson, and N Rizzolo.
Spiral: Code generation for dsp transforms. Proceedings of the IEEE,
93(2):232–275, 2005.

[PZK+17] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian
Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle
Olukotun. Plasticine: A reconfigurable architecture for parallel pa-
terns. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, ISCA ’17, page 389–402, New York, NY, USA,
2017. Association for Computing Machinery.

[QWY+16] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin
Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, Yu Wang, and
Huazhong Yang. Going deeper with embedded fpga platform for con-
volutional neural network. In Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA
’16, page 26–35, New York, NY, USA, 2016. Association for Computing
Machinery.

[Rey74] John C Reynolds. Towards a theory of type structure. In B Robinet,
editor, Programming Symposium, pages 408–425, Berlin, Heidelberg,
1974. Springer Berlin Heidelberg.

[RKBA+13] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. Halide: A language and
compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’13, page 519–530, New York, NY, USA, 2013. Association for Computing
Machinery.

Bibliography 179

[Roo22] Kevin Roose. An ai-generated picture won an art prize. artists aren’t
happy. The New York Times, 2:2022, 2022.

[RORF16] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Far-
hadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling, editors, Computer Vision – ECCV 2016, pages 525–542, Cham,
2016. Springer International Publishing.

[SBL+14] Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee, Tiark Rompf, Has-
san Chafi, Martin Odersky, and Kunle Olukotun. Delite: A compiler
architecture for performance-oriented embedded domain-specific lan-
guages. ACM Trans. Embed. Comput. Syst., 13(4s):134:1–134:25, April
2014.

[SBWM17] Robert Stewart, Deepayan Bhowmik, Andrew Wallace, and Greg Mi-
chaelson. Profile guided dataflow transformation for fpgas and cpus.
Journal of Signal Processing Systems, 87(1):3–20, Apr 2017.

[SCD+16] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei
Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-optimized
opencl-based fpga accelerator for large-scale convolutional neural net-
works. In Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA ’16, page 16–25, New York,
NY, USA, 2016. Association for Computing Machinery.

[SDF+09] Michael Sperber, R Kent Dybvig, Matthew Flatt, Anton Van Straaten,
Robby Findler, and Jacob Matthews. Revised6 report on the algorithmic
language scheme. Journal of Functional Programming, 19(S1):1–301,
2009.

[SFAG14] Michel Steuwer, Malte Friese, Sebastian Albers, and Sergei Gorlatch. In-
troducing and implementing the allpairs skeleton for programming
multi-gpu systems. International Journal of Parallel Programming,
42(4):601–618, Aug 2014.

[SFLD15] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach.
Generating performance portable code using rewrite rules: From high-
level functional expressions to high-performance opencl code. In Pro-
ceedings of the 20th ACMSIGPLAN International Conference on Functional
Programming, ICFP, 2015.

[SG08] Satnam Singh and David J Greaves. Kiwi: Synthesis of fpga circuits
from parallel programs. In 2008 16th International Symposium on Field-
Programmable Custom Computing Machines, pages 3–12. IEEE, 2008.

[She84] Mary Sheeran. Mufp, a language for vlsi design. In Proceedings of the
1984 ACM Symposium on LISP and Functional Programming, LFP ’84,
page 104–112, New York, NY, USA, 1984. Association for Computing
Machinery.

180 Bibliography

[SHS+19] Larisa Stoltzfus, Bastian Hagedorn, Michel Steuwer, Sergei Gorlatch,
and Christophe Dubach. Tiling optimizations for stencil computations
using rewrite rules in lift. ACM Trans. Archit. Code Optim., 16(4), dec
2019.

[SJ04] Ingo Sander and Axel Jantsch. System modeling and transformational
design refinement in forsyde [formal system design]. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 23(1):17–
32, 2004.

[SJD22a] Christof Schlaak, Tzung-Han Juang, and Christophe Dubach. Memory-
aware functional ir for higher-level synthesis of accelerators. ACM
Trans. Archit. Code Optim., 19(2), jan 2022.

[SJD22b] Christof Schlaak, Tzung-Han Juang, and Christophe Dubach. Optimiz-
ing data reshaping operations in functional irs for high-level synthesis.
In Proceedings of the 23rd ACM SIGPLAN/SIGBED International Confer-
ence on Languages, Compilers, and Tools for Embedded Systems, LCTES
2022, pages 61–72. ACM, 2022.

[SKB10] Gerard JM Smit, Jan Kuper, and Christiaan PR Baaij. A mathematical
approach towards hardware design. In Peter M. Athanas, Jürgen Becker,
Jürgen Teich, and Ingrid Verbauwhede, editors, Dynamically Recon-
figurable Architectures, volume 10281 of Dagstuhl Seminar Proceedings
(DagSemProc), pages 1–11, Dagstuhl, Germany, 2010. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

[SKGB20] Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. Llhd:
A multi-level intermediate representation for hardware description lan-
guages. In Proceedings of the 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2020, page 258–271,
New York, NY, USA, 2020. Association for Computing Machinery.

[SLL+21] Gus Henry Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson,
Joseph McMahan, Michael Taylor, Luis Ceze, and Zachary Tatlock. Pure
tensor program rewriting via access patterns (representation pearl).
In Proceedings of the 5th ACM SIGPLAN International Symposium on
Machine Programming, MAPS 2021, page 21–31, New York, NY, USA,
2021. Association for Computing Machinery.

[SM00] Richard Sharp and Alan Mycroft. The flash compiler: Efficient circuits
from functional specifications. Technical report, AT&T Laboratories
Cambridge, 04 2000.

[SM01] Richard Sharp and Alan Mycroft. A higher-level language for hardware
synthesis. In Tiziana Margaria and Tom Melham, editors, Correct Hard-
ware Design and Verification Methods, pages 228–243, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg.

Bibliography 181

[SP19] François Serre and Markus Püschel. Dsl-based hardware generation
with scala: Example fast fourier transforms and sorting networks. ACM
Trans. Reconfigurable Technol. Syst., 13(1), dec 2019.

[SPM+16] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,
Joon Kyung Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilza-
deh. From high-level deep neural models to fpgas. 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 10
2016.

[SWLR13] Sam Skalicky, ChristopherWood, Marcin Łukowiak, and Matthew Ryan.
High level synthesis: Where are we? a case study on matrix multiplica-
tion. In 2013 International Conference on Reconfigurable Computing and
FPGAs (ReConFig), pages 1–7, 2013.

[SWY+10] Yi Shan, Bo Wang, Jing Yan, Yu Wang, Ningyi Xu, and Huazhong Yang.
Fpmr: Mapreduce framework on fpga. In Proceedings of the 18th An-
nual ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’10, page 93–102, New York, NY, USA, 2010. Association
for Computing Machinery.

[Tec11] Maxeler Technologies. Maxcompiler white paper. Technical report,
maxeler.com, feb 2011.

[THZ20] James Thomas, Pat Hanrahan, and Matei Zaharia. Fleet: A framework
for massively parallel streaming on fpgas. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 639–651, 2020.

[Tri21] Roland Tricot. Venture capital investments in artificial intelligence.
OECD Digital Economy Papers, 319, 2021.

[Tur50] Alan M Turing. Computing machinery and intelligence. Mind, LIX:433–
460, 1950.

[UFG+17] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott,
Philip Leong, Magnus Jahre, and Kees Vissers. Finn: A framework for
fast, scalable binarized neural network inference. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA ’17, pages 65–74. ACM, 2017.

[VB16] Stylianos I Venieris and Christos-Savvas Bouganis. fpgaconvnet: A
framework for mapping convolutional neural networks on fpgas. 2016
IEEE 24th Annual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), 5 2016.

[VB18] Stylianos I Venieris and Christos-Savvas Bouganis. fpgaConvNet: Map-
ping Regular and Irregular Convolutional Neural Networks on FPGAs.
IEEE Transactions on Neural Networks and Learning Systems, pages 1–17,
2018.

182 Bibliography

[VNU19] Wim Vanderbauwhede, Syed Waqar Nabi, and Cristian Urlea. Type-
driven automated program transformations and cost modelling for op-
timising streaming programs on fpgas. International Journal of Parallel
Programming, 47(1):114–136, Feb 2019.

[VPNH10] Jason Villarreal, Adrian Park, Walid Najjar, and Robert Halstead. Design-
ing modular hardware accelerators in c with roccc 2.0. In 2010 18th
IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines, pages 127–134, 2010.

[VSW+19] Rangharajan Venkatesan, Yakun Sophia Shao, Miaorong Wang, Jason
Clemons, Steve Dai, Matthew Fojtik, Ben Keller, Alicia Klinefelter, Nath-
aniel Pinckney, Priyanka Raina, Yanqing Zhang, Brian Zimmer, Wil-
liam J Dally, Joel Emer, Stephen W Keckler, and Brucek Khailany. Mag-
net: A modular accelerator generator for neural networks. In 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 1–8, 2019.

[Wad95] Philip Wadler. Monads for functional programming. In International
School on Advanced Functional Programming, pages 24–52. Springer,
1995.

[WBC13] Felix Winterstein, Samuel Bayliss, and George A Constantinides. High-
level synthesis of dynamic data structures: A case study using vivado
hls. In 2013 International conference on field-programmable technology
(FPT), pages 362–365. IEEE, 2013.

[WM95] Wm AWulf and Sally A McKee. Hitting the memory wall: Implications
of the obvious. SIGARCH Comput. Archit. News, 23(1):20–24, mar 1995.

[WXH+16] Ying Wang, Jie Xu, Yinhe Han, Huawei Li, and Xiaowei Li. Deepburn-
ing: Automatic generation of fpga-based learning accelerators for the
neural network family. In Proceedings of the 53rd Annual Design Auto-
mation Conference, DAC ’16, New York, NY, USA, 2016. Association for
Computing Machinery.

[WXJ17] Dong Wang, Ke Xu, and Diankun Jiang. Pipecnn: An opencl-based
open-source fpga accelerator for convolution neural networks. In 2017
International Conference on Field Programmable Technology (ICFPT),
pages 279–282, 2017.

[WYZ+17] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang,
Han Hu, Yun Liang, and Jason Cong. Automated systolic array ar-
chitecture synthesis for high throughput cnn inference on fpgas. In
Proceedings of the 54th Annual Design Automation Conference 2017, DAC
’17, New York, NY, USA, 2017. Association for Computing Machinery.

[Xil21] Xilinx. Vivado design suite user guide — high-level synthesis. https:
//www.xilinx.com/content/dam/xilinx/support/documents/sw_

https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf

Bibliography 183

manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf,
2021. [Online; accessed 17-Dec-2022].

[YKB+07] Yana Yankova, Georgi Kuzmanov, Koen Bertels, Georgi Gaydadjiev,
Yi Lu, and Stamatis Vassiliadis. Dwarv: Delftworkbench automated
reconfigurable vhdl generator. In Najjar, W. Van Genderen, A Bertels,
K., editor, 2007 International conference on field programmable logic and
applications, pages 697–701. IEEE Society, 2007.

[YTT+08] Jackson HC Yeung, CC Tsang, Kuen Hung Tsoi, Bill SH Kwan, Chris CC
Cheung, Anthony PC Chan, and Philip HW Leong. Map-reduce as
a programming model for custom computing machines. In 2008 16th
International Symposium on Field-Programmable Custom Computing
Machines, pages 149–159, 2008.

https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf

	Introduction
	Challenges
	Contributions
	Structure

	I State of the Art
	Hardware Design and Functional Languages
	Digital Hardware Design With FPGAs
	Functional Programming
	Term Rewriting Systems

	Related Work
	Monolithic Template-Based Accelerators
	Hardware Description Languages
	High-Level Synthesis
	Multi-Level Representations
	Domain-Specific Synthesis
	Higher-Level Synthesis

	II Contributions
	Multi-Level Representations
	Overview
	Core Abstract Language
	Algorithmic Level
	Architecture Level
	Abstract Memory Level
	Hardware Memory Level
	Device-Specific Level
	Hardware Back End
	Summary

	Lowering Passes
	Architecture Design Choices
	Lowering Memory Expressions
	Dataflow Graph Generation
	Hardware Design Generation
	Summary

	Optimisation Using Rewrite Rules
	Spatial Parallelism
	Data Reusage
	Stream and Vector Conversions
	Efficient Data Reshaping
	Maximising DMA Throughput
	Exploiting Device-Specific Resources
	Timing Correction
	Informal Proof of Convergence
	Summary

	Evaluation
	Experimental Setup
	Communication via DMA
	Buffering and Parallelisation
	Data Reshaping
	Comparison With OpenCL HLS
	Summary

	III Conclusions
	Conclusions
	Summary of Contributions
	Critical Analysis
	Future Work

	VHDL Templates
	Overview
	Examples

	Bibliography

