1,033,838 research outputs found

    Gas kinematics and star formation in the filamentary molecular cloud G47.06+0.26

    Full text link
    We performed a multi-wavelength study toward the filamentary cloud G47.06+0.26 to investigate the gas kinematics and star formation. We present the 12CO (J=1-0), 13CO (J=1-0) and C18O (J=1-0) observations of G47.06+0.26 obtained with the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed kinematics of the filament. The 12CO (J=1-0) and 13CO (J=1-0) emission of G47.06+0.26 appear to show a filamentary structure. The filament extends about 45 arcmin (58.1 pc) along the east-west direction. The mean width is about 6.8 pc, as traced by the 13CO (J=1-0) emission. G47.06+0.26 has a linear mass density of about 361.5 Msun/pc. The external pressure (due to neighboring bubbles and H II regions) may help preventing the filament from dispersing under the effects of turbulence. From the velocity-field map, we discern a velocity gradient perpendicular to G47.06+0.26. From the Bolocam Galactic Plane Survey (BGPS) catalog, we found nine BGPS sources in G47.06+0.26, that appear to these sources have sufficient mass to form massive stars. We obtained that the clump formation efficiency (CFE) is about 18% in the filament. Four infrared bubbles were found to be located in, and adjacent to, G47.06+0.26. Particularly, infrared bubble N98 shows a cometary structure. CO molecular gas adjacent to N98 also shows a very intense emission. H II regions associated with infrared bubbles can inject the energy to surrounding gas. We calculated the kinetic energy, ionization energy, and thermal energy of two H II regions in G47.06+0.26. From the GLIMPSE I catalog, we selected some Class I sources with an age of about 100000 yr, which are clustered along the filament. The feedback from the H II regions may cause the formation of a new generation of stars in filament G47.06+0.26.Comment: 10 pages, 11 figures, accepted for publication in A&

    Iterative Bounded Distance Decoding of Product Codes with Scaled Reliability

    Get PDF
    We propose a modified iterative bounded distance decoding of product codes. The proposed algorithm is based on exchanging hard messages iteratively and exploiting channel reliabilities to make hard decisions at each iteration. Performance improvements up to 0.26 dB are achieved

    The Monitor project: JW 380 -- a 0.26, 0.15 Msol pre main sequence eclipsing binary in the Orion Nebula Cluster

    Full text link
    We report the discovery of a low-mass (0.26 +/- 0.02, 0.15 +/- 0.01 Msol) pre-main-sequence eclipsing binary with a 5.3 day orbital period. JW 380 was detected as part of a high-cadence time-resolved photometric survey (the Monitor project) using the 2.5m Isaac Newton Telescope and Wide Field Camera for a survey of a single field in the Orion Nebula Cluster (ONC) region in V and i bands. The star is assigned a 99 per cent membership probability from proper motion measurements, and radial velocity observations indicate a systemic velocity within 1 sigma of that of the ONC. Modelling of the combined light and radial velocity curves of the system gave stellar radii of 1.19 +0.04 -0.18 Rsol and 0.90 +0.17 -0.03 Rsol for the primary and secondary, with a significant third light contribution which is also visible as a third peak in the cross-correlation functions used to derive radial velocities. The masses and radii appear to be consistent with stellar models for 2-3 Myr age from several authors, within the present observational errors. These observations probe an important region of mass-radius parameter space, where there are currently only a handful of known pre-main-sequence eclipsing binary systems with precise measurements available in the literature.Comment: 11 pages, 9 figures, accepted for publication in MNRA

    Rapid Orbital Decay in the 12.75-minute WD+WD Binary J0651+2844

    Get PDF
    We report the detection of orbital decay in the 12.75-min, detached binary white dwarf (WD) SDSS J065133.338+284423.37 (hereafter J0651). Our photometric observations over a 13-month baseline constrain the orbital period to 765.206543(55) s and indicate the orbit is decreasing as a rate of (-9.8 +/- 2.8) x 10^(-12) s/s (or -0.31 +/- 0.09 ms/yr). We revise the system parameters based on our new photometric and spectroscopic observations: J0651 contains two WDs with M1 = 0.26 +/- 0.04 Msun and M2 = 0.50 +/- 0.04 Msun. General relativity predicts orbital decay due to gravitational wave radiation of (-8.2 +/- 1.7) x 10^(-12) s/s (or -0.26 +/- 0.05 ms/yr). Our observed rate of orbital decay is consistent with this expectation. J0651 is currently the second-loudest gravitational wave source known in the milli-Hertz range and the loudest non-interacting binary, which makes it an excellent verification source for future missions aimed at directly detecting gravitational waves. Our work establishes the feasibility of monitoring this system's orbital period decay at optical wavelengths.Comment: For publication in ApJ Letters; 6 pages, 3 figures, 2 table

    Delocalization transition of the selective interface model: distribution of pseudo-critical temperatures

    Full text link
    According to recent progress in the finite size scaling theory of critical disordered systems, the nature of the phase transition is reflected in the distribution of pseudo-critical temperatures Tc(i,L)T_c(i,L) over the ensemble of samples (i)(i) of size LL. In this paper, we apply this analysis to the delocalization transition of an heteropolymeric chain at a selective fluid-fluid interface. The width ΔTc(L)\Delta T_c(L) and the shift [Tc()Tcav(L)][T_c(\infty)-T_c^{av}(L)] are found to decay with the same exponent L1/νRL^{-1/\nu_{R}}, where 1/νR0.261/\nu_{R} \sim 0.26. The distribution of pseudo-critical temperatures Tc(i,L)T_c(i,L) is clearly asymmetric, and is well fitted by a generalized Gumbel distribution of parameter m3m \sim 3. We also consider the free energy distribution, which can also be fitted by a generalized Gumbel distribution with a temperature dependent parameter, of order m0.7m \sim 0.7 in the critical region. Finally, the disorder averaged number of contacts with the interface scales at TcT_c like LρL^{\rho} with ρ0.261/νR\rho \sim 0.26 \sim 1/\nu_R .Comment: 9 pages,6 figure
    corecore