80,983 research outputs found

    Questioning the rise of gelatinous zooplankton in the World's oceans

    Get PDF
    During the past several decades, high numbers of gelatinous zooplankton species have been reported in many estuarine and coastal ecosystems. Coupled with media-driven public perception, a paradigm has evolved in which the global ocean ecosystems are thought to be heading toward being dominated by “nuisance” jellyfish. We question this current paradigm by presenting a broad overview of gelatinous zooplankton in a historicalcontext to develop the hypothesis that population changes reflect the human-mediated alteration of global ocean ecosystems. To this end, we synthesize information related to the evolutionary context of contemporary gelatinous zooplankton blooms, the human frame of reference forchanges in gelatinous zooplankton populations, and whether sufficient data are available to have established the paradigm. We conclude that the current paradigm in which it is believed that there has been a global increase in gelatinous zooplankton is unsubstantiated, and we develop a strategy for addressing the critical questions about long-term, human-related changes in the sea as they relate to gelatinous zooplankton blooms

    The consumption of zooplankton by early life stages of fish in the North Sea

    Get PDF
    Previous work has shown that during the 1970s, fish and carnivorous macrozooplankton together consumed ~22 gC m-2 year-1 of mesozooplankton, principally copepods. Consumption declined to ~17 gC m-2 year-1 during the 1990s, mainly because of a reduction in fish production. The zooplankton production required to meet this demand seems to be approximately accounted for by estimates of new primary production, but there are additional sinks for zooplankton production attributable to predation by, for example, gelatinous species. Additionally, the consumption of zooplankton by early life stages of fish is difficult to assess and could be larger than implied by the earlier analysis. Here, the role of fish early life stages in zooplankton consumption is reassessed, and found to be approximately double that previously estimated. Some 28% of the zooplankton consumption by fish is now estimated to be attributable to early life stages, resulting in an estimate of zooplankton consumption by the fish community as a whole 14% higher. Taken overall, the consumption of zooplankton production by fish and other planktivorous predators is now estimated to be 19-25 gC m-2 year-1

    Migration of Net Phytoplankton and Zooplankton in Mendum’s Pond, New Hampshire

    Get PDF
    The study examines the vertical distribution and migratory behavior of net phytoplankton and zooplankton of Mendum’s Pond in Barrington, N.H. The cyanobacteria, Microcystis and Aphanocapsa were the dominant net phytoplankton in this lake. Dominant zooplankton included Daphnia ambigua, Daphnia catawba, Bosmina longirostris, and both calanoid and cyclopoid copepods. Vertical distribution of net phytoplankton suggested migratory behavior, but no consistent pattern was observed. The zooplankton migrated nocturnally, however, calanoid copepods seemed to simultaneously migrate nocturnally and reversely at sunset, suggesting the presence of separate species or different age classes. Diel vertical migration (DVM) of zooplankton was not correlated with the distributions of net phytoplankton in the water column. However, grazing on smaller phytoplankton by zooplankton may have indirectly affected the abundance of the larger size class, net phytoplankton. SONAR analyses suggested that DVM of the phantom midge, Chaoborus, may have influenced the distribution of zooplankton. The findings suggest that a cascading effect of Chaoborus-zooplankton-phytoplankton may pressure vertical distributions of an entire ecosystem of planktonic organisms. Results from the study also raise concern in regard to abundant cyanobacteria and the future trophic status of Mendum’s Pond

    Plankton periodicity and some physicochemical parameters of the intake channel of Lake Chad

    Get PDF
    This study examines zooplankton periodicity and some physicochemical parameters of the intake channel of Lake Chad (Nigeria). Nine different zooplankton species were identified at the sampling station 1, while seven different zooplankton species were identified at the sampling station 2 (the intake channel of Lake Chad). Each identified zooplankton species was grouped according to its major group of copepods, Cladocera or Rotifera. The copepods dominated the zooplankton community with the highest numbers of occurrence as Cyclopedia species throughout the course of the study at both station l and 2. There was a clear evidence of the influence of organic manure nutrients on total zooplankton population at station 1 when compared to that of station 2. The water quality variables measured in the course of this study show that the surface water temperature in station 1 ranges from 27.5 degree C to 30.5 degree C. The pH ranges from 6.8 to 8.5, while D.O. contents ranges from 2.9mg/L to 6.1mg/L and alkalinity recorded was 172.00 to 208.00. At the station 2 the water quality parameters obtained show that surface water temperature ranges from 27.3 degree C to 30.2 degree C, pH ranges between 6.9 to 8.5, while the D.O contents ranges from 3.0 mg/L to 6.2 mg/L.Alkalinity ranges from 172mg/L to 212 mg/

    Zooplankton from Can Giuoc River in Southern Vietnam

    Get PDF
    In this study, the variables of zooplankton and water quality were investigated in the Can Giuoc River, Southern Vietnam. Zooplankton was monitored in April and September 2015 at 5 sampling sites in the river. Some basic water quality parameters were also tested, including pH, total suspended solid (TSS), dissolved oxygen (DO), biological oxygen demand (BOD5), inorganic nitrogen (NH4+), dissolved phosphorus (PO43-), and coliform. The zooplankton biodiversity indices were applied for the water quality assessment. The results showed that pH ranged from 6.7 to 7.6 during the monitoring. The TSSs were between 34–117 mg/L. The DO and BOD5 were from 0.6 to 3.8 mg/L and from 6.3 to 13.2 mg/L, respectively. The NH4+ and PO43- concentrations ranged from 0.44 to 3.23 and from 0.08 to 1.85 mg/L, respectively. The coliform number was between 9.3x103–9.3x104 MPN/100 mL. The zooplankton analyses showed that there were 31 species of coelenterates, rotatoria, oligochaetes, cladocerans, copepods, ostracods, mysidacea, and 8 larval types. Thereof, the species of copepods were dominant in the species number. The zooplankton density ranged from 9 500 to 23 600 individuals/m3 with the main dominant species of Moina dubia (Cladocera), Thermocyclops hyalinus, Acartia clausi, Oithona similis (Copepoda), and nauplius copepods. The biodiversity index values during the monitoring were from 1.47 to 1.79 characteristic of mesotrophic conditions of the aquatic environment. Besides, the species richness positively correlated with pH, TSS, DO, BOD5, NH4+, PO43-, and coliform, while the zooplankton densities got a positive correlation with DO, BOD5, NH4+, PO43-, and coliform. The results confirmed the advantage of using zooplankton and its indices for water quality assessment

    Zooplankton patchiness

    Get PDF
    This review considers three general aspects of research on zooplankton patchiness: the detection of patchiness, the description of patchiness and the causes of patchiness

    Population Differentiation In Daphnia Alters Community Assembly In Experimental Ponds

    Get PDF
    Most studies of community assembly ignore how genetic differentiation within species affects their colonization and extinction. However, genetic differentiation in ecologically relevant traits may be substantial enough to alter the colonization and extinction processes that drive community assembly. We measured significant molecular genetic and quantitative trait differentiation among three Daphnia pulex X pulicaria populations in southwestern Michigan ponds and investigated whether this differentiation could alter the assembly of pond zooplankton communities in experimental mesocosms. In this study, we monitored the invasion success of different D. pulex x pulicaria populations after their introduction into an established zooplankton community. We also monitored the invasion success of a diverse array of zooplankton species into different D. pulex x pulicaria populations. Zooplankton community composition depended on the D. pulex X pulicaria source population. Daphnia pulex X pulicaria from one population failed to invade zooplankton communities, while those from other populations successfully invaded similar communities. If population differentiation in other species plays a role in community assembly similar to that demonstrated in our study, assembly may be more sensitive to evolutionary processes than has been previously generally considered.Integrative Biolog

    Zooplankton-fish interactions in the littoral zone of Nyanza Gulf, Lake Victoria

    Get PDF
    Samples of zooplankton and fish were collected from six sampling points in Nyanza Gulf, Lake Victoria in Kenya from June to December 1998, using 76 mu m memo-filament mesh size strainer and an 80 mu m mesh size plankton net. Identification and enumeration were done in the laboratory. Occurrence, numerical and points methods were used in stomach anlaysis of fish. Copepoda, Rotifera and Cladocera were the major zooplankton groups identified, zooplankton such as Moina, Daphnia and Caridina nilotica were important prey items for Lates niloticus, Oreochromis niloticus and Rastrineobola argente

    Omnivory by planktivores stabilizes plankton dynamics, but may either promote or reduce algal biomass

    Get PDF
    Classical models of phytoplankton–zooplankton interaction show that with nutrient enrichment such systems may abruptly shift from limit cycles to stable phytoplankton domination due to zooplankton predation by planktivorous fish. Such models assume that planktivorous fish eat only zooplankton, but there are various species of filter-feeding fish that may also feed on phytoplankton. Here, we extend these classical models to systematically explore the effects of omnivory by planktivorous fish. Our analysis indicates that if fish forage on phytoplankton in addition to zooplankton, the alternative attractors predicted by the classical models disappear for all realistic parameter settings, even if omnivorous fish have a strong preference for zooplankton. Our model also shows that the level of fish biomass above which zooplankton collapse should be higher when fish are omnivorous than when fish are zooplanktivorous. We also used the model to explore the potential effects of the now increasingly common practice of stocking lakes with filter-feeding fish to control cyanobacteria. Because omnivorous filter-feeding fish forage on phytoplankton as well as on the main grazers of phytoplankton, the net effect of such fish on the phytoplankton biomass is not obvious. Our model suggests that there may be a unimodal relationship between the biomass of omnivorous filter-feeding fish and the biomass of phytoplankton. This implies that to manage for reductions in phytoplankton biomass, heavy stocking or strong reduction of such fish is bes

    An assessment of water quality in integrated poultry-cum-fish reservoir, NIFFR New-Bussa in reference to maximizing the water resources potentials of Nigeria for sustainable aquaculture under the sub-theme "Fish production and the environment"

    Get PDF
    In this reservoir, the parameters being assessed are very important in the aspect of fish culture. These parameters are: physical parameters which includes temperature (O), Transparency (M).Chemical parameters include: Dissolve oxygen (mg/l) pH concentration and the Biological Parameters which include phytoplankton and zooplankton. The phytoplankton and zooplankton identification and estimation were carried out in the NIFFR Limnology Laboratory, (Green House), New Bussa. Each identified zooplankton and phytoplankton species was placed according to its major group e.g. zooplankton was grouped into three families, Roifera, Cladocera and Copepods. During this study period it was observed that copepods have the highest total number of zooplankton both beside the poultry and monk (station 'A'&'B'). Water temperature of station 'A' (beside the poultry house) ranges from 27 C-29, 5 c also same station 'B' (near the monk). Dissolve oxygen station 'A' range from 6.30mg/l-7.40mg/l while that of station 'B' ranges from 6.20mg/7.50mg/l, turbidity reading of station A'ranges from 0.19m-0.3m while station 'B' ranges from 0.22m-0.37m. The last parameter, which is pH concentration, in both stations 8.2 was observed this is an indication that the pH was constant. According to some literature review all the water parameter figures obtained were good for fish cultur
    corecore