7,312 research outputs found

    Radiation view factor program

    Get PDF
    Computer program, RAVFAC, calculates diffuse radiation view factors, using contour integrals. Technique is combined with finite difference /double summation/ technique to compose total program package

    View factor computer program (VIEW)

    Get PDF
    Existing view factor program, RAVFAC, was modified to accept NASTRAN and/or RAVFAC surface descriptions. Output formatting was altered to produce view factor matrices which could be directly input to NASTRAN

    Monte Carlo direct view factor and generalized radiative heat transfer programs

    Get PDF
    Computer programs find the direct view factor from one surface segment to another using the Monte carlo technique, and the radioactive-transfer coefficients between surface segments. An advantage of the programs is the great generality of problems treatable and rapidity of solution from problem conception to receipt of results

    User's manual for RAVFAC - A radiation view factor digital computer program

    Get PDF
    Contour integrals and finite difference in Radiation View Digital Computer Progra

    A statistical model for estimating mean maximum urban heat island

    Get PDF
    Investigations concentrated on the urban heat island (UHI) in its strongest development during the diurnal cycle. Task includes development of statistical models in the heating and non-heating seasons using urban surface parameters (built-up and water surface ratios, sky view factor, building height) and their areal extensions. Model equations were determined by means of stepwise multiple linear regression analysis. As the results show, there is a clear connection between the spatial distribution of the UHI and the examined parameters, so these parameters play an important role in the evolution of the UHI intensity field. Among them the sky view factor and the building height are the most determining factors, which are in line with the urban surface energy balance

    Sky View Factor footprints for urban climate modeling

    Get PDF
    Urban morphology is an important multidimensional variable to consider in climate modeling and observations, because it significantly drives the local and micro-scale climatic variability in cities. Urban form can be described through urban canopy parameters (UCPs) that resolve the spatial heterogeneity of cities by specifying the 3-dimensional geometry, arrangement, and materials of urban features. The sky view factor (SVF) is a dimension-reduced UCP capturing 3-dimensional form through horizon limitation fractions. SVF has become a popular metric to parameterize urban morphology, but current approaches are difficult to scale up to global coverage. This study introduces a Big-Data approach to calculate SVFs for urban areas from Google Street View (GSV). 90-degree field-of-view GSV photos are retrieved and converted into hemispherical views through equiangular projection. The fisheyes are segmented into sky and non-sky pixels using image processing, and the SVF is calculated using an annulus method. Results are compared to SVFs retrieved from GSV images segmented using deep learning. SVF footprints are presented for urban areas around the world tallying 15,938,172 GSV locations. Two use cases are introduced: (1) an evaluation of a Google Earth Engine classified Local Climate Zone map for Singapore; (2) hourly sun duration maps for New York and San Francisco

    A statistical approach for estimating mean maximum urban temperature excess.

    Get PDF
    Munkánkban a városi hősziget (UHI) maximális napi kifejlődését vizsgáltuk Szegeden, a beépítettségi paraméterek függvényében. A hőmérsékleti adatok valamint a beépítettségi arány, a vízfelszín-arány, az égbolt láthatósági index és az épületmagasság, valamint ezek területi kiterjesztései közötti kapcsolatot statisztikus modellezéssel határoztuk meg. A kapott modell-egyenleteket mindkét félévre (fűtési és nem-fűtési) többváltozós lineáris regresszió segítségével állapítottuk meg. Az eredményekből világosan látszik, hogy szignifikáns kapcsolat mutatható ki a maximális UHI területi eloszlása és a beépítettségi paraméterek között, ami azt jelenti, hogy e tényezők fontos szerepet jatszanak a városi hőmérsékleti többlet területi eloszlásának kialakításában. A városi paraméterek közül az égbolt láthatósági index és az épületmagasság a leginkább meghatározó tényező, ami összhangban van a városi felszín energia-egyenlegével. | Investigations concentrated on the urban heat island (UHI) in its strongest development during the diurnal cycle in Szeged, Hungary. Task includes development of statistical models in the heating and non-heating seasons using urban surface parameters (built-up and water surface ratios, sky view factor, building height) and their areal extensions. Model equations were determined by means of stepwise multiple linear regression analysis. As the results show, there is a clear connection between the spatial distribution of the UHI and the examined parameters, so these parameters play an important role in the evolution of the UHI intensity field. Among them the sky view factor and the building height are the most determining factors, which are in line with the urban surface energy balance

    Numerical Modeling Of Hohlraum Radiation Conditions: Spatial And Spectral Variations Due To Sample Position, Beam Pointing, And Hohlraum Geometry

    Get PDF
    View-factor simulations are presented of the spatially varying radiation conditions inside double-ended gold Hohlraums and single-ended gold Hohlraums (\u27\u27 halfraums \u27\u27) used in inertial confinement fusion and high-energy density physics experiments [J. Lindl, Phys. Plasmas 11, 339 (2004); M. D. Rosen, Phys. Plasmas 3, 1803 (1996)]. It is shown that in many circumstances, the common assumption that the Hohlraum \u27\u27 drive \u27\u27 can be characterized by a single temperature is too simplistic. Specifically, the radiation conditions seen by an experimental package can differ significantly from the wall reemission measured through diagnostic holes or laser entrance holes (LEHs) by absolutely calibrated detectors. Furthermore, even in situations where the radiation temperature is roughly the same for diagnostics and experimental packages, or for packages at different locations, the spectral energy distributions can vary significantly, due to the differing fractions of reemitting wall, laser hot spots, and LEHs seen from different locations. We find that the spatial variation of temperature and especially the differences between what diagnostics looking in the LEH measure versus the radiation temperature on wall-mounted experimental packages are generally greater for double-ended Hohlraums than for halfraums. View-factor simulations can also be used to explore experimental variables (halfraum length and geometry, sample position, and beam pointing) that can be adjusted in order to, for example, maximize the radiation flux onto a sample, or other package. In this vein, simulations of Hohlraums and halfraums with LEH shields are also presented. (c) 2005 American Institute of Physics
    corecore