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Abstract 

This work focuses on algebraic derivations of geometric view factors (i) from plane element to 

interior of truncated cone in parallel configuration; (ii) from plane element to segment of 

interior of truncated cone in perpendicular configuration, to clarify irradiance-related 

uncertainties generated in cone calorimeter tests on intumescent-type fire resistant systems. 

Since such specimens undergo moving boundaries and perimeter surface exposures in the 

course of the bench-scaled fire tests, it is inevitable to encounter (i) irradiance intensifications 

on their top boundaries and (ii) irradiance influxes on their perimeter areas, which have not 

been reflected in conventional approaches. These irradiance-related issues can be solved by 

calculating diffuse view factors. Their derivations are achieved by using the contour 

integration method and verified by existing literature and direct measurements. The 

calculations are presented by graphical representations obtained through a process of mapping. 

This theoretical approach enables one to clarify the exact quantity of irradiance at any position 

under the heater, and thus to quantitatively analyse the resultant impacts of (i) non-uniform 

irradiance dispersions and (ii) non-consistent thermal loads occurring during the tests, on the 

quantification of radiation absorption. The findings demonstrate that discrepancies between 

exact calculations and conventional approximations, induced by these effects, are appreciable 

and hence should not be neglected in such quantifications. The derived formulae can be applied 

in solving radiation issues arising with analogous geometries, and the particulars in terms of 

irradiance can also promote the subsequent assessment of thermal behaviours of any specimen 

experiencing geometrical changes during cone calorimeter tests. 

 

Keywords: Thermal radiation; Irradiance; View factor; Cone calorimeter; Contour integration method  

 

 

 

 

 

 

 

 

 

                                                
*
 Corresponding author.  

  E-mail address: s.choi@ulster.ac.uk (Sengkwan Choi) 



Nomenclature 

A  surface area Greek symbols 
, , ,b q s t  spacing parameters   absorptivity 

C  contour , , ,     angular integration 
variables 

F  view factor   spacing parameter 

2,h h  
vertical spacing parameter from 
cone baseplate to top surface of 
specimen 

  
Stefan-Boltzmann constant 
(W/m2K4) 

4h  
vertical spacing parameter from 
cone upperplate to top surface of 
specimen 

  solid angle 

H  height of conical heater   
k coverage factor  Subscripts 

, ,m n  direction cosines a arc 

n


 normal vector abs absorbed 

p  horizontal spacing parameter from 
the origin of the coordinate system 

emit emitted 

P  general point upon contours g heat flux gauge 
''q  radiant heat  flux (W/m2) heater conical heater 

r  radial dimension  ℓ line 
u standard uncertainty s specimen 
uc combined uncertainty   

U expanded uncertainty   
, ,x y z  Cartesian coordinates   

    



1. Introduction 

A bench-scaled cone calorimeter, standardised in BS 476-15 [1], has been widely used to 

test flammability of various condensed materials in the field of fire safety engineering. This 

apparatus facilitates regulating a radiant heat flux and is capable of imposing a consistent 

thermal load on given specimens during tests, which are important aspects when creating a 

stable fire test environment. The steady heating condition has extended its application, beyond 

the conventional purpose, to evaluating thermal behaviours and performances of 

intumescent-type fire retardant systems since the early 2000s [2–10]. With this extended 

application, doubts have recently arisen about whether thermal boundaries of the polymeric 

samples tested with this instrument are either adequately clarified or understood. This is 

because this type of material exhibits anisotropic volume progressions, induced by 

thermochemical decompositions, by up to several tens of times its dry film thickness when 

subjected to a heat. In cone calorimeter tests on such materials, the thermal reaction leads to, 

primarily having their top boundaries moved toward the spatially stationary conical heater, and 

secondarily having their perimeter surfaces progressively extended in the z-direction and 

newly exposed to the heating element, as described in Fig. 1. 

The quantity of incident radiant flux on given specimens is highly critical in solving 

heat-related issues of flammability, thermal behaviours and performances [11]. In this 

bench-scaled fire test, irradiance is typically estimated by physical measurements using a heat 

flux probe (e.g., Schmidt-Boelter gauge) placed along the cone axis through the central point of 

test samples in a calibration stage [12]. Up until now, a single value measured in this initial 

stage has been interpreted as a constant thermal load in the entire course of tests, even on 

intumescent-type materials. However, this conventional approach does not reflect 

 the intensification of irradiance on the top surface of specimens, developed as the 

boundaries progressively approach the heat source. The alteration of thermal loads in the 

process of testing can lead to an underestimate of the amount of heat absorption, by up to 

approximately 1.5 times less than the actual value. 

 the influx of the radiant heat arriving at the extended perimeter areas of specimens. With 

expansion factors (i.e., the difference between fully expanded coating thickness and 

pre-activated coating thickness, divided by pre-activated coating thickness) in a general 

range of 5 to 62, identified in previous studies [3,10], the surface area of fully extended 

perimeter surfaces easily exceeds that of the top surface on which heat is mainly 

absorbed, which is normally 0.01 m2 in dimension. Under the changed exposure 

conditions, the quantity of the heat absorbed by the perimeter areas can comprise a 

noticeable portion of the total heat absorption.   

These two aspects, in terms of non-consistent thermal loading, cannot be neglected in any 

investigation utilising the cone calorimetry into material samples undergoing moving 

boundaries and appreciable side exposures. 

Difficulties in theoretically solving the issues of (i) the variation in thermal load on top 

surfaces and (ii) the inclusion of the neglected irradiance on side surfaces originate from the 

unique spatial configuration between the truncated cone shaped emitter and a rectangular 

recipient. From the viewpoint of radiation transfer, this arrangement provokes that both the 

distance between each infinitesimal area of the two domains and the angles between the 



distance lengthwise line and each elemental area’s normal vector vary all over the exposed 

surfaces of the recipient. The built-in geometrical characteristics of this apparatus, therefore, 

result in non-uniform dispersions of irradiance all over the exposed surfaces. In relation to this 

nonlinear thermal loading, recent research has established that the irradiance on the top surface 

is not uniformly distributed outside the 50 mm2 central area, by physically measuring 

irradiances or numerically calculating geometric view factors [13–16]. However, theoretical 

derivations from the principles of thermal radiation have not been adequately demonstrated to 

resolve the thermal issues in relation to the moving boundaries and side exposures. 

This work aims to clarify the exact quantities of irradiances produced in bench-scale cone 

calorimeter tests so as to improve the subsequent assessment process of intumescent-type 

samples tested with the instrument. This objective is achieved by  

 algebraically deriving view factors using contour integration to find relations for factors 

(i) from plane element to interior of truncated cone in parallel configuration; (ii) from 

plane element to segment of interior of truncated cone in perpendicular configuration.  

 verifying the numerical calculations by direct measurements and pertinent existing data 

sets [13,14].  

 analysing the resultant impacts of the phenomena of (i) the non-uniform irradiance 

dispersions and (ii) the non-consistent thermal loads, induced by specimens’ moving 

boundaries and perimeter area exposures, on the quantification of heat absorption, by 

considering a general intumescent-type specimen.  

Calculated view factors are mapped on coordinate plane grids and presented by graphical 

representations. A series of direct measurements of irradiance are conducted using a 

Schmidt-Boelter gauge (Medtherm GTW-10-32-485A) in cooperation with Korea Conformity 

Laboratories (KCL). 

 
2. Methodology 

Methods of evaluating view factors have evolved to improve the accuracy, algebraic 

simplification and computational efficiency in various fields of engineering [17–28]. While 

integrating differential-element view factors over finite areas, Hamilton and Morgan [17] 

realised algebraic complexities, and initiated the use of Stokes’ theorem to simplify their 

eventual solution. Sparrow [18] was among the first to utilise this vector calculus-based 

theorem, employing it in plate systems as a basic mathematical tool. This mathematical 

approach, which is henceforth referred to as the contour integration method, was examined in a 

study [19] into its accuracy and computational efficiency in comparison to other results 

obtained by using conventional methods. His research demonstrated the superiority of the 

contour integration method in both aspects. Its accuracy was also studied in existing literature 

[20], which concluded that this method yields very accurate values with mathematically 

simpler implementation as compared to the conventional area integration method. These 

studies proved that the contour integration method is a very powerful tool in assessing view 

factors. 

View factors for the particular geometry of the cone calorimeter have recently attracted 

much attention for the improvement of test maturity and wide applications. Wilson et al. [13] 

calculated view factors for the exposed top surface of specimens, employing a formula 



expressing an arrangement between a plane element and a parallel circular disk, tabulated in a 

catalogue of factors [21]. For the identical geometry, Gemaque et al. [14] derived equations 

using area integration. For disk/rectangle and rectangle in parallel and perpendicular 

configurations, which are similar to the present configurations of the cone calorimetry, 

Abishek et al. [22] derived formulae using contour integration, demonstrating further detailed 

processes of derivation. In these previous studies, however, either little information was 

provided as to how the algebraic complexities of double (or quadruple) integrations of 

differential-element view factors were solved, or it was still non-transferable to finding the 

factor between segment of interior of truncated cone and perimeter surface in perpendicular 

configuration. For these reasons, the original Sparrow approach is the method of choice used 

for both of the geometric relations in this work. 

 
3. Theory 

3.1. Theoretical relations between irradiance and view factor 

The irradiance diffusely emitted by the conical heater that arrives at each infinitesimal area 

on specimens ( ) is quantified by two magnitudes, which are the radiant power emitted by 

the heat source per unit area ( ) and the view factor between the two domains        

(Fds-heater). Drawing upon an energy balance equation, the theoretical relations between the 

three key quantities can be defined using the reciprocity relation for view factors [21,23], as 

follows:    

 
(1) 

 
(1a)     

The dash in the subscript of F implies “to”.  

To obtain the irradiance  using Eqs. (1) and (1a), four parameters which are αg, , 

Fg-heater and  Fds-heater must be known. The absorptivity of the Schmidt-Boelter gauge (αg) is 

close to unity due to the condition of its measuring surface which is coated with a matt black 

finish. The second parameter ( ) is typically obtained by direct measurements using the 

heat flux meter in calibration stages. The view factor from the gauge to the heater (Fg-heater) can 

be obtained as a consequence of successful derivations of the last parameter Fds-heater. Hence, 

this work focuses on deriving an elemental view factor from a diffuse differential area of 

specimens’ exposed surfaces to the interior of the conical heater (Fds-heater) to clarify the exact 

quantities of irradiance produced in cone calorimeter tests.  

 

3.2. View factor for the top surface of specimens 

The spatial configuration between the top surface of specimens (A1) and the inclined/curved 

area of the conical heater (A3), as detailed in Fig. 2, caused difficulties in deriving a 

differential-element view factor from dA1 to A3 (FdA1-A3). Its derivation can be simplified by 

considering a substitute for this uncommon arrangement based on the principle of energy 



conservation [21]. In other words, the solid angle positioned on dA1 and subtended when 

viewing A3 should correspond to the difference between the solid angle subtended when 

viewing A2 (the yellow coloured cone based to dA1) and that when viewing A4 (the blue 

coloured cone). Hence, the diffuse view factor FdA1-A3 was defined with the set of the surface 

areas in parallel configuration (dA1, A2 and A4), as follows:  

 (2) 

Despite this simplification, there were still algebraic complexities in evaluating FdA1-A3 due 

to the existence of double (area) integrals shown in Eq. (3); the pertinent geometric relation 

between the parallel areas is detailed in Fig. 3a. 

 

(3) 

In vector calculus, Stokes’ theorem is capable of assisting area integrals in transforming into 

contour integrals by utilising its mathematical equilibrium. This equilibrium indicates that a 

vector normal to an infinitesimal area is mathematically equivalent to the combination of the 

contour vectors surrounding this area. Based on this principle, Sparrow [18] elaborated upon 

mathematical transformations of area integrals in conventional formulae into contour integrals, 

and proposed a general equation for view factors between an elemental area and a finite area, as 

expressed in Eq. (4).  

 

(4) 

s2 is an abbreviation for 

 (4a) 

To perform the mathematical transformation process, the areal element-element system, 

shown in Fig. 3a, was substituted with an areal element-contour system between dA1 and a 

general point P2 (or P4) along the closed contour C2 (or C4), as shown in Fig. 3b. It is noted that 

the unit normal vectors  and  (or ) denote the directions which the corresponding 

surfaces face; the vector  indicates the orientation of A1, while  (or ) represents the 

direction of the closed path C2 (or C4) in the evaluation of the view factor formulae; the 

contour-path direction decides the sine conventions of outcomes when integrands of equations 

are taken along the contour C2 (or C4). 

The elemental view factor, FdA1-A3, was derived from Eq. (4). The spatial positions of dA1, P2 

and P4 were defined in the element-contour system as dA1: (x1, y1, z1) = (pcosθ, psinθ, 0), P2: 

(x2, y2, z2) = (r2cosφ, r2sinφ, h2) and P4: (x4, y4, z4) = (r4cosϕ, r4sinϕ, h4). Since dA1 was parallel 



to the x-y plane and its normal vector faced upward, its direct cosines were determined as ℓ1=0, 

m1=0 and n1=±1. These direct cosines were superimposed, which resulted in having the first 

and second terms of integrands in Eq. (4) removed. The downward-facing A2 (or A4), which 

was visible from dA1, determined the direction of the closed path C2 (or C4), being described in 

the clockwise sense when viewed from above. Consequently, a contour integration-based 

formula for FdA1-A3 was derived as follows. 

 
(5) 

The equation demonstrates a mathematically simpler execution as compared to Eq. (3) which is 

based on the conventional area integration method. 

 

3.3. View factors for the side surfaces of specimens 

The quantity of radiant heat transmitted from the conical heater to specimens’ side surfaces 

is also determined by the two magnitudes,  and Fds-heater, as explained in Eqs. (1) and 

(1a). Unlike in the previous case for irradiance on the top surface, a portion of the total radiant 

power (in units of Watts) is involved only in the quantification of irradiance on the sides, as 

illustrated in Fig. 4. The yellow coloured segment, A5, represents a surface area of the heater 

where viewed from an infinitesimal area of the perimeter surface (dA1), which indicates the 

actual heat source radiating to one of the side surfaces. It is noted that the mutual visibility 

varies with the horizontal distance of the vertical area A1 from the origin (i.e., p), which 

represents the half length of given test samples. Due to the shape of the truncated cone, the 

variable visibilities between A5 and dA1 need to be categorised into two cases according to the 

range of p as (i) at r4 ≤ p < r2 and (ii) at p < r4, as detailed in Figs. 4a and 4b respectively, for the 

standardised bench-scaled instrument which is r2=80 mm, r4=40 mm and H=65 mm in 

dimensions [1,12]. It is also noted that, on condition that the square top surface of samples is 

equal to or greater than 160 mm2 (i.e., p ≥ r2), irradiances on their sides are no longer an 

appreciable consideration as these areas are not visible from the conical heater.  

In relation to the evaluation of the view factor from dA1 to A5, the solid angle located on dA1 

and subtended by A5 should correspond to either (i) the solid angle subtended by the projected 

area of A5 onto the x-y plane (i.e., A6) at r4 ≤ p < r2, or (ii) the difference between the solid angle 

subtended when viewing A6 and that when viewing A7 at p < r4, based on the principle of 

energy conservation. This facilitated the process of view factor derivations with the set of the 

areas in perpendicular configuration (dA1, A6 and A7), which gave the elemental view factor 

FdA1-A5 as FdA1-A6 at r4 ≤ p < r2, or as the difference between FdA1-A6 and FdA1-A7 at p < r4. 

The mathematical derivation of FdA1-A5 originated from Eq. (4). In the same manner as 

shown in the previous substitution process based on Stokes’ theorem, the areal 

element-element system between dA1 and A6 (or A7) was replaced with an element-contour 

system between dA1 and a general point P on the closed boundary of A6 (or A7), as detailed in 

Fig. 5. It is noted that the contour of A6 needs to be divided into a straight line path (Cℓ) and an 

arc path (Ca) to evaluate the integrals over the different paths. The intervals of integrations for 

the separated contours were limited from  to  and from  to  

respectively, owing to their dependence on the dimension of given specimens. The coordinates 



of dA1, Pα,2 and Pℓ,2 were defined as dA1: (x1, y1, z1) = (p, q, -t), Pα,2: (xα,2, yα,2, zα,2) = (r2cosφ, 

r2sinφ, h2) and Pℓ,2: (xℓ,2, yℓ,2, zℓ,2) = (p, yℓ,2, h2). Considering the orientation of dA1, its direct 

cosines were determined as ℓ1=±1, m1=0 and n1=0, and superimposed. This resulted in the 

second and third terms in Eq. (4) vanishing. Consequently, a contour integration-based formula 

for FdA1-A5 was defined as follows, however this is valid only at r4 ≤ p < r2. 

 

(6) 

sa,2 and sℓ,2 are abbreviations for 

 
(6a) 

When a specimen with a top surface area smaller than 80 mm2 is subjected to the apparatus 

(i.e., p < r4), an additional algebraic term is required to explain the portion of the illumination 

arriving at the upper circular segment A7, as shown in Fig. 4b. Hence, for this case, the formula 

for FdA1-A5 was defined as follows: 

 

(7) 

where Pa,4 : (r4cosϕ, r4sinϕ, h4), Pℓ,4 : (p, yℓ,4, h4). sa,4 and sℓ,4 are abbreviations for 

 
(7a) 

 

4. Experimental details 

The physical measurements conducted by KCL were intended to collect data sets of 

irradiance capable of verifying the numerical predictions obtained by using Eqs. (1) and (5-7). 

With respect to irradiance on specimens’ top surfaces, a total of seventeen positions in a radial 

pattern based around the central point of specimens were selected, as detailed in Fig. 6a. This 

radial pattern design was based on an understanding that the incident of radiant flux at any 

position on the top surface is dependent on the horizontal distance from the centre due to the 

shape of the truncated cone. As regards irradiance on samples’ side surfaces, its quantity was 

measured by rotating the measuring face of the heat flux meter through 90 degrees, as shown in 

Fig. 6b. A total of eight positions, identically distanced 25 mm and 50 mm from the centre but 

facing outward in different directions, were chosen. Figs. 7a and 7b show the photographs 

demonstrating the two types of experimental setups, respectively.  



The multiple positions were designed to provide for experimental uncertainties, which 

could be possibly generated by an angular or functional imperfection of the heating element. 

The two sets of measuring positions were regulated at h=15 mm, 25 mm, 35 mm and 45 mm 

underneath the conical heater. These specifications gave the particulars of irradiance 

dispersions in the z-direction. A radiant heat flux of 50 kW/m2 was initially regulated at the 

central position 25 mm underneath the heater. The constant radiant power (in units of Watts) of 

the heater gained when the monitor of the heat flux probe displays this quantity (50 kW/m2) 

was served as a reference point in all the measurements.  

 
5. Results and discussion 

View factor maps are created on coordinate plane grids, which are horizontally and 

vertically oriented, to demonstrate the nonlinear view factor dispersions over the 

three-dimensional physical space underneath the conical heater. With these data sets, 

irradiances are predicted by using Eq. (1a). Subsequently, variations in heat absorption 

according to the levels of geometric progressions of the boundaries of a general 

intumescent-type specimen are explored. Prior to conducting this process, the reliability and 

accuracy of the numerical calculations of view factors using the contour integration method are 

verified by the existing literature [13,14] and the direct measurements. 

 

5.1. Validations 

In prior studies [13,14], either the view factor FdA1-A3 or FA3-A1 was calculated for the 

geometric configuration between the conical heater (A3) and the top surface of 100 mm2 (A1). It 

is important to mention that FA3-A1 is obtained by evaluating the integral of dFA3-dA1 over A1, 

using the reciprocity relation between dFA3-dA1 and FdA1-A3, as explained in Eq. (1). Table 1 

shows the values of FdA1-A3 and FA3-A1 when the top surface is positioned at intervals of 5 mm 

vertical distance from the heater, from h=15 mm to h=35 mm. This comparative table 

demonstrates the credibility of the present calculations, up to four significant digits.  

The direct measurements further validated the assessment of view factors conducted in this 

work. The markers in Figs. 8a and 8b indicate the respective data sets of irradiances measured 

using the Schmidt-Boelter gauge under the referenced heating condition introduced in Section 

3. The different style lines superimposed on the sets of markers denote the numerical 

predictions, which demonstrate the variations in irradiances with the changes in h and p. It can 

be observed from Fig. 8a that the maximum difference between numerical predictions and 

physical measurements was 4.14 per cent at h=15 mm and p=50 mm. Although a slightly 

greater discrepancy was identified in Fig. 8b when h=15 mm and p=50 mm, overall the 

predictions were in agreement with the measurement data.  

With respect to uncertainty analyses on the heat flux measurements, three influential 

sources, which are (i) random error by measurements, (ii) resolution error by the gauge 

indication, and (iii) correction error by the gauge calibration, were taken into account. The 

standard uncertainties (u) for the respective sources related were estimated based on the 

uncertainty budget listed in Table 2, showing the components’ evaluation type, probability 

distribution form, unit, and relevant details. A set of combined standard uncertainties (uc) were, 



then, calculated using the estimated data of u, by adopting summation in quadrature for 

addition. Individual effective degree of freedom per uc was determined using 

Welch-Satterthwaite equation to achieve each coverage factor (k). Then a set of expanded 

standard uncertainties (U) was acquired by multiplying uc with k. Table 3 shows the resultant 

sets of the average irradiances, physically measured at different h and p, with U on the basis of 

k. 

 

5.2. View factor mapping on horizontally oriented coordinate plane grids 

To produce view factor maps, a local Cartesian coordinate system composed of x-, y-, and 

z-axes was introduced. With the apparatus in the standardised dimension, the view factor 

mapping was performed within a volume range of 160 mm x 160 mm x 50 mm, as illustrated in 

Fig. 9. The origin of this coordinate system (O) was located at the centre of and 50 mm 

underneath the conical heater. The shaded horizontal and vertical planes represent the 

coordinate plane grids on which irradiance was imposed and on which, thus, view factor maps 

were built. The normal vectors  and  of the planes indicate the directions that the 

corresponding surfaces face, facing upward and outward respectively. It is noted that the two 

different view factors, which are to predict irradiances on the upward- and outward-facing 

surfaces, are henceforth referred to as FdA1-A3 and FdA1-A5 respectively, as used in Eqs. (5-7). 

Fig. 10 shows the contour maps of FdA1-A3 when z=0 mm and 25 mm. With respect to the 

dispersion of FdA1-A3 over the plane with , overall it was in radial patterns with the z-axis as 

the centre. It was found that the view factor decreased as the horizontal distance of measuring 

points from the centre (i.e., ) increased. In relation to the intensification of 

irradiance, as claimed in Introduction section, it was demonstrated that the overall view factors 

obtained when z=25 mm were greater than those at z=0 mm. This indicates that the movement 

of specimens’ top boundaries, toward the heater with a constant radiant power, certainly 

intensifies the radiant heat flux imposed on the top surface. 

 

5.3. View factor mapping on vertically oriented coordinate plane grid 

Figs. 11a and 11b illustrate the FdA1-A5 variations as functions of the y- and z-coordinates of 

the measuring point when the y-z planes with  are horizontally 25 mm and 50 mm from the 

centre as described in the diagrams on the right. Overall, appreciable variations in FdA1-A5 were 

observed in both the y- and z-directions. Its variations in the y-direction can be more clearly 

understood from Figs. 12a and 12b; as the variations have a line of symmetry through z-axis, 

the outcomes for positive y-coordinates were expressed only. The solid lines with different 

marks indicate the reduction ratios (i.e., FdA1-A5 at variable y, divided by FdA1-A5 at y=0 mm) in 

percentage at corresponding z-coordinates, as described in the diagrams accompanying Figs. 

12a and 12b. In a specific case of square specimens’ top surfaces with a typical size of 100 mm 

x 100 mm (i.e., x=y=50 mm), FdA1-A5 could be reduced by up to 55.7 per cent of its maximum at 

the edge (when y=50 mm), as detailed in Fig. 12b. These results demonstrate that the irradiance 

dispersions over specimens’ side surfaces are highly nonlinear, which cannot be neglected in 

quantifying the heat absorbed by the side surfaces exposed to the conical heater. 

To observe the FdA1-A5 variations in the z-coordinate, the data sets obtained from the view 

factor maps were normalised such that the values at z=0 mm were equal to unity, as shown in 



Figs. 13a and 13b. It was found from Fig. 13b that FdA1-A5 at y=40 mm and z=45 mm was 

approximately twelve times more than that at z=0 mm, which indicates that twelve times more 

irradiance is imposed on this position. It is noted that the exceptions observed when y=80 mm 

were due to the unusual geometrical conditions of the incident angles and distances created by 

the configuration between the segmental inclined/curved surface of the heat source (A5 in Fig. 

4) and the position at the edge of the vertical plane. 

 

5.4. Analysis of the resultant effects of non-uniform and non-consistent irradiances 

With the established view factor maps, the effect of the non-uniform irradiance dispersions 

over samples’ top surfaces was quantitatively analysed by comparing two sub-models, each of 

which either includes or excludes the nonlinearity. It was assumed that the top surface was   

100 mm x 100 mm in dimension, and its absorptivity was unity. Specimens’ perimeter surfaces 

were not considered in this sub-analysis. Radiant energy absorbed by the horizontal plane was 

theoretically quantified by using Eq. (1a) under the referenced heating condition          

( =50 kW/m2 at the centre when h=25 mm). Fig. 14 shows the variations in the quantities 

of radiation absorption as a function of the z-coordinate of the top surface, obtained by the two 

sub-models. It can be observed that the conventional method overestimated the heat absorption 

in the range between z=0 mm and z=30 mm while underestimated it in the range beyond       

z=30 mm, as compared to the exact values. At z=25 mm, which is one of the most standard 

vertical distances of specimens from the cone baseplate in cone calorimeter tests, it resulted in 

a 0.016 kW overestimate. The dotted line with circular marks indicates discrepancy factor (i.e., 

the absolute difference between conventional value and exact value, divided by exact value) in 

percentage, which highlights the effect of the irradiance non-uniformity in cone calorimeter 

tests. 

The effect of the non-consistent thermal loads, caused by specimens’ moving boundaries 

and side exposures, on the overall heat absorption  was also analysed, by considering a general 

intumescent-type sample with a top surface of 100 mm x 100 mm under the top and side 

exposure conditions. It was assumed that this specimen was initially placed 50 mm underneath 

the conical heater with the referenced radiant power introduced in Section 3, and was 

systematically expanded up to the thickness of 45 mm, as illustrated in Fig. 15a. Under the 

circumstances, the amounts of radiant heat absorbed by the top and side surfaces of the 

recipient were respectively calculated to identify each contribution, using Eq. (1a) and the view 

factor maps. In the calculations, the absorptivity of the exposed surfaces was assumed as unity. 

Fig. 15b highlights this issue and shows its resultant data, in terms of the variations in the 

radiant heat absorbed by the top and side surfaces (in units of kW) and their respective 

contributions as a function of the specimens’ thickness progression (i.e., z). The sectors filled 

with grey solid and pattern (faint) colours in the bar charts indicate these quantities, while the 

solid and dotted lines refer to the total amounts obtained by the present and conventional 

methods, respectively. It is worth noting that, in the conventional approach, the total quantity 

has been approximated by direct measurements performed prior to the activation of 

intumescent-type materials, without taking into consideration the irradiance on the side 

surfaces.  



It was found that the difference in quantities between the conventional approximation and 

the present prediction became wider as the thickness progression developed. When the 

specimen was expanded beyond 30 mm, the exact amount of heat absorption became more than 

twice as much as that approximated using the conventional method. With respect to respective 

contributions, the quantity of heat absorbed through the top surface gradually increased from 

0.36 kW to 0.55 kW as the top surface spatially approached the conical heater. Concurrently 

with this rise, the amount of heat absorbed by the side surfaces also increased but more 

significantly. Its contribution even exceeded beyond the top surface’s at z=45 mm, which is in 

close relation to the considerable increase in the corresponding side surface area up to          

0.018 m2, as compared to the constant top surface area of 0.01 m2. However, at z=25 mm, when 

the surface area of the sides is equivalent to that of the top surface, its contribution accounted 

for 28.4 per cent of the total heat absorption, which proves that the top surface is still the 

primary area by which the majority of radiant heat is absorbed. 

 

6. Conclusions 

In fire tests, irradiance is a highly critical data to achieve a more complete understanding of 

heat-related characteristics of given materials. Since the cone calorimeter is capable of creating 

controlled heating environments, its application has been expanded to examining thermal 

behaviours and performances of intumescent-type fire retardant systems. In this expanded 

application, however, there still exist doubts over thermal boundaries of such specimens, due to 

their moving boundaries and appreciable side exposures in the course of tests. The 

conventional approach has not reflected the resultant non-consistent thermal loading during 

tests, which indicates (i) the intensification of irradiance on moving top boundaries and (ii) the 

influx of radiant heat on extended perimeter areas, owing to a lack of information on clear 

algebraic derivations of view factor for the spatial configuration of the bench-scaled cone 

calorimetry. Even through several studies on irradiance in the tests attempted to predict this 

magnitude using the view factor equations tabulated in the catalogue, and established the 

non-uniform irradiance dispersion on samples’ top surfaces, these efforts proved unable to 

resolve the issue of the view factor derivation for the geometric relation between the truncate 

cone and the perimeter surface. Hence, this work set out to clarify the exact quantities of 

irradiances generated in the bench-scale cone calorimetry by calculating view factors using the 

contour integration method.  

Two geometric relations (i) between plane element and interior of truncated cone in parallel 

configuration; (ii) between plane element and segment of interior of truncated cone in 

perpendicular configuration were investigated. The use of contour integration demonstrated 

clear mathematical implementations in solving double (area) integrations. The accuracy of the 

calculated view factors was validated through comparisons with the results, obtained from both 

existing literature and direct measurements, which showed good agreements up to four 

significant digits. It can be concluded that this method was highly compatible with the 

distinctive configuration between the conical heater and the side surfaces, as well as the top 

surface. Even though the view factors for the top surface could be calculated by using the 

existing catalogue of factors, the calculation of the factors for the side surfaces would not have 

been achieved if using these tabulated equations.  



The view factor maps created on both the horizontally and vertically oriented coordinate 

plane grids were designed to present graphical representations of irradiances on any position 

underneath the conical heater, based on a local Cartesian coordinate system. Consequently, the 

patterns and tendencies of view factor variations observed in these maps improved the 

understanding of nonlinear irradiance dispersions generated in cone calorimeter tests. 

Particularly, the application of these maps is highly recommended for any case which requires 

more detailed data of heat absorption to test specimens experiencing geometrical changes in 

the course of the cone calorimeter tests. 

The influences of the phenomena of (i) the non-uniform irradiance dispersions and (ii) the 

non-consistent thermal loads were quantitatively recognised. It was found that the discrepancy 

between the exact calculation and the conventional approximation, each of which either 

includes or excludes the first phenomenon, was recorded up to 12.8 per cent of the exact value. 

A more significant deviation from the exact calculation was resulted when the second 

phenomenon was neglected as done by conventional approaches. It was demonstrated that this 

disagreement was induced by primarily the increase in the heat absorption through the 

perimeter areas, developed as they were extended, and by secondarily the rise in the heat 

absorption through the top surface, developed as it physically approached the heater. These 

aspects, therefore, should not be ignored in the quantification of heat absorption.  

This integrated analysis of heat absorption, incorporating the assessment of both view factor 

and irradiance, can promote the understanding of the heat-related characteristics of various 

materials tested with the bench-scaled cone calorimetry. 
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TABLES 

Table 1  
Comparisons of view factors obtained by previous literature [13,14] and this work. 

h 
a

 
FdA1-A3 

b

 FA3-A1 

Ref. [13] Present Ref. [14] Present 
15 0.7660 0.7660 0.2731 0.2730 
20 0.7599 0.7599 0.2628 0.2627 
25 0.7461 0.7461 0.2509 0.2508 
30 0.7261 0.7261 0.2383 0.2382 
35 0.7014 0.7014 0.2254 0.2253 

a 
vertical distance of the specimens’ top surface from the cone baseplate

 
b 

dA1 is positioned at the centre of samples
 

 

Table 2  
An uncertainty budget in relation to physical measurements shown in Figs. 8a and 8b. 

Source of uncertainty Type 
Probability 
distribution 

Units Remarks 

Measurement 
repeatability 

A Normal 

kW/m2 

The number of repeated 
measurements = 12 

Resolution B Rectangular Resolution power = 0.01 kW/m2 

Reference standard 
calibration 

B Normal 
U=2.5 % at k=2 

with a confidence of 95% 

 

Table 3  
Uncertainty analysis on physical measurements shown in Figs. 8a and 8b. 

h 
a

 

Average irradiance with expanded uncertainty (U), kW/m2 

upward-facing surface c outward-facing surface d 

p b =0 p=25 p=50 p=25 p=50 

15 
53.00 ± 1.41, 

k 
e
 =1.98 

55.30 ± 1.47, 
k=1.98 

57.90 ± 1.45, 
k=1.96 

23.80 ± 0.63, 
k=1.98 

14.50 ± 0.46, 
k=2.06 

25 
51.60 ± 1.27, 

k=1.96 
52.70 ± 1.30, 

k=1.96 
49.90 ± 1.28, 

k=1.97 
19.40 ± 0.53, 

k=1.99 
9.80 ± 0.32, 

k=2.09 

35 
49.50 ± 1.22, 

k=1.96 
49.00 ± 1.21, 

k=1.96 
45.10 ± 1.12, 

k=1.96 
13.60 ± 0.73, 

k=2.45 
5.00 ± 0.32, 

k=2.57 

45 
45.80 ± 1.23, 

k=1.98 
44.70 ± 1.18, 

k=1.98 
38.70 ± 1.02, 

k=1.98 
10.80 ± 0.67, 

k=2.57 
3.40 ± 0.27, 

k=2.78 
a 

vertical distance of the heat flux probe from the cone baseplate 
b 

horizontal distance of the heat flux probe from the cone axis 
c 

for the measurements shown in Fig. 8a 
d 

for the measurements shown in Fig. 8b 
e 

coverage factor, providing a level of confidence of approximately 95 % 



FIGURES 

 

(a) Initial stage (b) Intumescent stage 

Fig. 1. Schematics of geometrical changes of intumescent systems occurring during cone 

calorimeter tests. 

 

 

 

Fig. 2. A schematic of diffuse illumination transport from a differential area of the 

specimens’ top surface to the conical heater. 

 

 

 

 



  

(a) Element-element system (b) Element-contour system 

Fig. 3. Schematics of geometric systems for (a) the double integration method and (b) the 

contour integration method. 

 

  

(a) r4 ≤ p < r2 (b) p < r4 

Fig. 4. Schematics of diffuse illumination transport from a differential area of the 

specimens’ side surface to the conical heater. 

 



 

Fig. 5. A schematic of the element-contour system for configurations between the conical 

heater and the side surfaces of specimens. 

 

  

(a) upward-facing surface (b) outward-facing surface 

Fig. 6. Schematics of direct measurement plans using a Schmidt-Boelter gauge. 

 

 

 

 



  

(a) upward-facing surface (b) outward-facing surface 

Fig. 7. Photographic views of experimental setups. 

 

 

  

(a) upward-facing surface (b) outward-facing surface 

Fig. 8. Comparisons between irradiance data sets theoretically predicted and physically 
measured. 

 



 

Fig. 9. A schematic of the defined local coordinate system underneath the conical heater. 

 

 

 

  

(a) z=0 mm (b) z=25 mm 

Fig. 10. Contour maps of FdA1-A3. 

 

 

 

 

 

 



 

(a) x=25 mm 

 

(b) x=50 mm 

Fig. 11. Contour maps of FdA1-A5. 

 

 

(a) x=25 mm (b) x=50 mm 

Fig. 12. View factor variations in the y-direction. 

 



  

(a) x=25 mm (b) x=50 mm 

Fig. 13. View factor variations in the z-coordinate. 

 

 

Fig. 14. Comparisons between the quantities of heat absorbed by specimens’ top surfaces, 
and discrepancy factor. 

 



  

(a) Intumescence (b) Heat absorption 

Fig. 15. Variations in the radiant heat absorbed by a typical intumescent-type sample, 
developed as it undergoes volumetric progressions in cone calorimeter tests. 

 

 

 

 

 


