277,429 research outputs found

    The local immune response of mice after Helicobacter suis infection: strain differences and distinction with Helicobacter pylori

    Get PDF
    Helicobacter (H.) suis colonizes the stomach of pigs and is the most prevalent gastric non-H. pylori Helicobacter species in humans. Limited information is available on host immune responses after infection with this agent and it is unknown if variation in virulence exists between different H. suis strains. Therefore, BALB/c and C57BL/6 mice were used to compare colonization ability and gene expression of various inflammatory cytokines, as determined by real-time PCR, after experimental infection with 9 different H. suis strains. All strains were able to persist in the stomach of mice, but the number of colonizing bacteria at 59 days post inoculation was higher in stomachs of C57BL/6 mice compared to BALB/c mice. All H. suis strains caused an upregulation of interleukin (IL)-17, which was more pronounced in BALB/c mice. This upregulation was inversely correlated with the number of colonizing bacteria. Most strains also caused an upregulation of regulatory IL-10, positively correlating with colonization in BALB/c mice. Only in C57BL/6 mice, upregulation of IL-1 beta was observed. Increased levels of IFN-gamma mRNA were never detected, whereas most H. suis strains caused an upregulation of the Th2 signature cytokine IL-4, mainly in BALB/c mice. In conclusion, the genetic background of the murine strain has a clear impact on the colonization ability of different H. suis strains and the immune response they evoke. A predominant Th17 response was observed, accompanied by a mild Th2 response, which is different from the Th17/Th1 response evoked by H. pylori infection

    Upregulation of PI3K/AKT/mTOR, FABP5 and PPARβ/δ in human psoriasis and imiquimodinduced murine psoriasiform dermatitis model

    Get PDF
    Artículo científicoPsoriasis is a common, and currently incurable chronic immune-mediated skin disease, with incompletely understood etiology partially due to the unavailability of animal models that can emulate major features of the disease

    JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma.

    Get PDF
    A prominent mechanism of acquired resistance to BRAF inhibitors in BRAF (V600) -mutant melanoma is associated with the upregulation of receptor tyrosine kinases. Evidences suggested that this resistance mechanism is part of a more complex cellular adaptation process. Using an integrative strategy, we found this mechanism to invoke extensive transcriptomic, (phospho-) proteomic and phenotypic alterations that accompany a cellular transition to a de-differentiated, mesenchymal and invasive state. Even short-term BRAF-inhibitor exposure leads to an early adaptive, differentiation state change-characterized by a slow-cycling, persistent state. The early persistent state is distinct from the late proliferative, resistant state. However, both differentiation states share common signaling alterations including JUN upregulation. Motivated by the similarities, we found that co-targeting of BRAF and JUN is synergistic in killing fully resistant cells; and when used up-front, co-targeting substantially impairs the formation of the persistent subpopulation. We confirmed that JUN upregulation is a common response to BRAF inhibitor treatment in clinically treated patient tumors. Our findings demonstrate that events shared between early- and late-adaptation states provide candidate up-front co-treatment targets

    Perceived Maternal Invalidation and Drinking Behavior: The Role of Action Control

    Get PDF
    Alcohol use disorder is one of the most prevalent disorders worldwide. As such, researchers have examined factors contributing to alcohol use. Perception of emotional experiences in childhood as invalidating by parents is one factor that has been found to predict later alcohol use, though less is known about maternal invalidation specifically. Parental invalidation has also been found to predict difficulty regulating affective states (i.e., negative and positive affect), which is also a determinant of alcohol use. Further, researchers have studied temptation to drink and restraint from drinking as related to alcohol use to better understand drinking behavior. Though there appears to be a link, these variables have not been studied together. Thus, the current study aimed to fill this gap by examining the relationship between perceived maternal invalidation, the upregulation of positive affect and downregulation of negative affect, and temptation to drink as well as restraint from drinking. Participants were recruited via Amazon Mechanical Turk from a larger sample of US adults (n = 1128) who completed self-report measures on emotional tendencies. Participants who reported drinking alcohol in the last year were invited back to participate in the current study (n = 427, Mage = 34.08 and 54.3% female). Bivariate correlations were conducted to determine the association between perception of maternal invalidation, upregulation of positive affect (AOD) and downregulation of negative affect (AOF), temptation, and restraint regarding drinking behavior. A parallel mediator regression analysis was used to determine if greater upregulation of positive affect and greater downregulation of negative affect mediated the relationship between greater perception of maternal invalidation and greater difficulty resisting temptation to drink and restraining from drinking by evaluating direct and indirect effects using 95% bias-corrected bootstrapped confidence intervals of 5000 samples. Results indicated moderate positive correlations for upregulation of positive affect and downregulation of negative affect scores. Negative correlations were found between both upregulation of positive affect scores and downregulation of negative affect scores and restraint, temptation, and perception of maternal validation scores. Further, AOD partially mediated the relationship between perception of maternal invalidation and difficulty resisting the temptation to drink. Perception of greater maternal invalidation was also found to predict greater difficulty restraining from drinking. Clinical implications as well as study limitations are discussed

    Inhibiting ERK Activation with CI-1040 Leads to Compensatory Upregulation of Alternate MAPKs and Plasminogen Activator Inhibitor-1 following Subtotal Nephrectomy with No Impact on Kidney Fibrosis

    Get PDF
    Extracellular-signal regulated kinase (ERK) activation by MEK plays a key role in many of the cellular processes that underlie progressive kidney fibrosis including cell proliferation, apoptosis and transforming growth factor β1-mediated epithelial to mesenchymal transition. We therefore assessed the therapeutic impact of ERK1/2 inhibition using a MEK inhibitor in the rat 5/6 subtotal nephrectomy (SNx) model of kidney fibrosis. There was a twentyfold upregulation in phospho-ERK1/2 expression in the kidney after SNx in Male Wistar rats. Rats undergoing SNx became hypertensive, proteinuric and developed progressive kidney failure with reduced creatinine clearance. Treatment with the MEK inhibitor, CI-1040 abolished phospho- ERK1/2 expression in kidney tissue and prevented phospho-ERK1/2 expression in peripheral lymphocytes during the entire course of therapy. CI-1040 had no impact on creatinine clearance, proteinuria, glomerular and tubular fibrosis, and α-smooth muscle actin expression. However, inhibition of ERK1/2 activation led to significant compensatory upregulation of the MAP kinases, p38 and JNK in kidney tissue. CI-1040 also increased the expression of plasminogen activator inhibitor-1 (PAI-1), a key inhibitor of plasmin-dependent matrix metalloproteinases. Thus inhibition of ERK1/2 activation has no therapeutic effect on kidney fibrosis in SNx possibly due to increased compensatory activation of the p38 and JNK signalling pathways with subsequent upregulation of PAI-1

    Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood

    Get PDF
    Background: Peptidylarginine deiminase 2 (PAD2) and peptidylarginine deiminase 4 (PAD4) are two members of PAD family which are over-expressed in the multiple sclerosis (MS) brain. Through its enzymatic activity PAD2 converts myelin basic protein (MBP) arginines into citrullines - an event that may favour autoimmunity - while peptidylarginine deiminase 4 (PAD4) is involved in chromatin remodelling. Objectives: Our aim was to verify whether an altered epigenetic control of PAD2, as already shown in the MS brain, can be observed in peripheral blood mononuclear cells (PBMCs) of patients with MS since some of these cells also synthesize MBP. Methods: The expression of most suitable reference genes and of PAD2 and PAD4 was assessed by qPCR. Analysis of DNA methylation was performed by bisulfite method. Results: The comparison of PAD2 expression level in PBMCs from patients with MS vs. healthy donors showed that, as well as in the white matter of MS patients, the enzyme is significantly upregulated in affected subjects. Methylation pattern analysis of a CpG island located in the PAD2 promoter showed that over-expression is associated with promoter demethylation. Conclusion: Defective regulation of PAD2 in the periphery, without the immunological shelter of the blood-brain barrier, may contribute to the development of the autoimmune responses in MS

    METTL3 regulates WTAP protein homeostasis

    Get PDF
    The Wilms tumor 1 (WT1)-associated protein (WTAP) is upregulated in many tumors, including, acute myeloid leukemia (AML), where it plays an oncogenic role by interacting with different proteins involved in RNA processing and cell proliferation. In addition, WTAP is also a regulator of the nuclear complex required for the deposition of N6-methyladenosine (m6A) into mRNAs, containing the METTL3 methyltransferase. However, it is not clear if WTAP may have m6A-independent regulatory functions that might contribute to its oncogenic role. Here, we show that both knockdown and overexpression of METTL3 protein results in WTAP protein upregulation, indicating that METTL3 levels are critical for WTAP protein homeostasis. However, we show that WTAP upregulation is not sufficient to promote cell proliferation in the absence of a functional METTL3. Therein, these data indicate that the reported oncogenic function of WTAP is strictly connected to a functional m6A methylation complex

    Preconditioning of mesenchymal stromal cells with low-intensity ultrasound: influence on chondrogenesis and directed SOX9 signaling pathways

    Get PDF
    Background: Continuous low-intensity ultrasound (cLIUS) facilitates the chondrogenic differentiation of human mesenchymal stromal cells (MSCs) in the absence of exogenously added transforming growth factor-beta (TGFβ) by upregulating the expression of transcription factor SOX9, a master regulator of chondrogenesis. The present study evaluated the molecular events associated with the signaling pathways impacting SOX9 gene and protein expression under cLIUS. Methods: Human bone marrow-derived MSCs were exposed to cLIUS stimulation at 14 kPa (5 MHz, 2.5 Vpp) for 5 min. The gene and protein expression of SOX9 was evaluated. The specificity of SOX9 upregulation under cLIUS was determined by treating the MSCs with small molecule inhibitors of select signaling molecules, followed by cLIUS treatment. Signaling events regulating SOX9 expression under cLIUS were analyzed by gene expression, immunofluorescence staining, and western blotting. Results: cLIUS upregulated the gene expression of SOX9 and enhanced the nuclear localization of SOX9 protein when compared to non-cLIUS-stimulated control. cLIUS was noted to enhance the phosphorylation of the signaling molecule ERK1/2. Inhibition of MEK/ERK1/2 by PD98059 resulted in the effective abrogation of cLIUS-induced SOX9 expression, indicating that cLIUS-induced SOX9 upregulation was dependent on the phosphorylation of ERK1/2. Inhibition of integrin and TRPV4, the upstream cell-surface effectors of ERK1/2, did not inhibit the phosphorylation of ERK1/2 and therefore did not abrogate cLIUS-induced SOX9 expression, thereby suggesting the involvement of other mechanoreceptors. Consequently, the effect of cLIUS on the actin cytoskeleton, a mechanosensitive receptor regulating SOX9, was evaluated. Diffused and disrupted actin fibers observed in MSCs under cLIUS closely resembled actin disruption by treatment with cytoskeletal drug Y27632, which is known to increase the gene expression of SOX9. The upregulation of SOX9 under cLIUS was, therefore, related to cLIUS-induced actin reorganization. SOX9 upregulation induced by actin reorganization was also found to be dependent on the phosphorylation of ERK1/2. Conclusions: Collectively, preconditioning of MSCs by cLIUS resulted in the nuclear localization of SOX9, phosphorylation of ERK1/2 and disruption of actin filaments, and the expression of SOX9 was dependent on the phosphorylation of ERK1/2 under cLIUS

    Direct activation of NADPH oxidase 2 by 2-deoxyribose-1-phosphate triggers nuclear factor kappa B-dependent angiogenesis.

    Get PDF
    AbstractAims: Deoxyribose-1-phosphate (dRP) is a proangiogenic paracrine stimulus released by cancer cells, platelets, and macrophages and acting on endothelial cells. The objective of this study was to clarify how dRP stimulates angiogenic responses in human endothelial cells.Results: Live cell imaging, electron paramagnetic resonance, pull-down of dRP-interacting proteins, followed by immunoblotting, gene silencing of different NADPH oxidases (NOXs), and their regulatory cosubunits by small interfering RNA (siRNA) transfection, and experiments with inhibitors of the sugar transporter glucose transporter 1 (GLUT1) were utilized to demonstrate that dRP acts intracellularly by directly activating the endothelial NOX2 complex, but not NOX4. Increased reactive oxygen species generation in response to NOX2 activity leads to redox-dependent activation of the transcription factor nuclear factor kappa B (NF-κB), which, in turn, induces vascular endothelial growth factor receptor 2 (VEGFR2) upregulation. Using endothelial tube formation assays, gene silencing by siRNA, and antibody-based receptor inhibition, we demonstrate that the activation of NF-κB and VEGFR2 is necessary for the angiogenic responses elicited by dRP. The upregulation of VEGFR2 and NOX2-dependent stimulation of angiogenesis by dRP were confirmed in excisional wound and Matrigel plug vascularization assays in vivo using NOX2−/− mice.Innovation: For the first time, we demonstrate that dRP acts intracellularly and stimulates superoxide anion generation by direct binding and activation of the NOX2 enzymatic complex.Conclusions: This study describes a novel molecular mechanism underlying the proangiogenic activity of dRP, which involves the sequential activation of NOX2 and NF-κB and upregulation of VEGFR2. Antioxid. Redox Signal. 28, 110–130
    corecore