207,824 research outputs found

    Biodiversity shapes tree species aggregations in tropical forests

    Get PDF
    Spatial patterns of conspecific trees are considered as the consequences of biological interactions and environmental influences. They also reflect species interactions in plant communities. However, biological attributes are often neglected while deliberating the factors shaping species distributions. As rising attentions are paid to spatial patterns of tropical forest trees, we noticed that seven Center of Tropical Forest Sites and four Forest Dynamic Plots in Asia and America have presented analogously high proportions of species with aggregated conspecific individuals coincidently. This phenomenon is distinctive and repudiates fundamental ecology hypotheses which suggested dispersed distributions of conspecific tropical trees due to intensive density and natural enemy pressures in tropical forests. We believe that similar aggregation patterns shared by these tropical forests implies the existence of structuring forces in biogeographical scale instead of habitat heterogeneity in local community scales as scientists have considered. To approach the factors contributing to this cross-continent spatial pattern of trees, we obtained and reviewed ecosystem attributes, including topography, temperature, precipitation, biodiversity, density, and biomass, of these forests. Here we show that the proportions of aggregated species are actually constants independent of any ecosystem attributes regardless the nature of these tropical forests. However, local biodiversity are the major factor determining the number of aggregated species and the aggregation of large individuals of these forests. Aggregation of large trees declines along rising biodiversity, while the numbers of aggregated species increase permanently along lifting biodiversity. We propose a possible equilibrium and saturated status of the tropical forests in accommodating aggregated species. Furthermore, the tight correlations of biodiversity and species aggregation strongly imply the importance of overlooked biological interactions in shaping the spatial patterns in the tropical forests

    Fingerprinting the impacts of global change on tropical forests

    Get PDF
    Recent observations of widespread changes in mature tropical forests such as increasing tree growth, recruitment and mortality rates and increasing above-ground biomass suggest that 'global change' agents may be causing predictable changes in tropical forests. However, consensus over both the robustness of these changes and the environmental drivers that may be causing them is yet to emerge. This paper focuses on the second part of this debate. We review (i) the evidence that the physical, chemical and biological environment that tropical trees grow in has been altered over recent decades across large areas of the tropics, and (ii) the theoretical, experimental and observational evidence regarding the most likely effects of each of these changes on tropical forests. Ten potential widespread drivers of environmental change were identified: temperature, precipitation, solar radiation, climatic extremes (including El Niño Southern Oscillation events), atmospheric CO2 concentrations, nutrient deposition, O3/acid depositions, hunting, land-use change and increasing liana numbers. We note that each of these environmental changes is expected to leave a unique 'fingerprint' in tropical forests, as drivers directly force different processes, have different distributions in space and time and may affect some forests more than others (e.g. depending on soil fertility). Thus, in the third part of the paper we present testable a priori predictions of forest responses to assist ecologists in attributing particular changes in forests to particular causes across multiple datasets. Finally, we discuss how these drivers may change in the future and the possible consequences for tropical forests

    Are we using the most appropriate methodologies to assess the sensitivity of rainforest biodiversity to habitat disturbance?

    Get PDF
    Accurately assessing how biodiversity responds in the Anthropocene is vital. To do so, a number of indicator taxa are commonly used to monitor human-impacted forests and the subsequent recovery of their biodiversity. This makes monitoring more economically feasible, yet only valuable if the responses observed truly reflect the status of biodiversity. Many challenges exist for getting this monitoring right, including choosing the most effective indicators and ultimately choosing the most appropriate methods to capture trends. We have reason to believe that the methods currently used to assess humanimpacted tropical forest might be misrepresenting trends related to the degree of impact of disturbance to biodiversity and to the value of secondary forests for biodiversity conservation. Using recent case studies that assessed butterflies, we challenge the paradigm that fruit-baited butterfly traps are the best method for assessing human-impacted tropical forests, and that their use solely along the forest floor is underestimating the impacts to biodiversity in tropical forests. We suggest that alternative or additional methods could provide a more representative picture of the overall butterfly biodiversity responses to human-impacted tropical forests and that similar assessments of other groups and methods should be carried out

    Changes in growth of tropical forests: evaluating potential biases

    Get PDF
    Over the past century almost every ecosystem on Earth has come under the influence of changes in atmospheric composition and climate caused by human activity. Tropical forests are among the most productive and extensive ecosystems, and it has been hypothesized that both the dynamics and biomass of apparently undisturbed, old-growth tropical forests have been changing in response to atmospheric changes. Long-term forest sample plots are a critical tool in detecting and monitoring such changes, and our recent analysis of pan-tropical-forest plot data has suggested that the biomass of tropical forests has been increasing, providing a modest negative feedback on the rate of accumulation of atmospheric CO2. However, it has been argued that some of these old forest plot data sets have significant problems in interpretation because of the use of nonstandardized methodologies. In this paper we examine the extent to which potential field methodological errors may bias estimates of total biomass change by detailed examination of tree-by-tree records from up to 120 Neotropical plots to test predictions from theory. Potential positive biases on measurements of biomass change include a bias in site selection, tree deformities introduced by the measurement process, poor methodologies to deal with tree deformities or buttresses, and nonrecording of negative growth increments. We show that, while it is important to improve and standardize methodologies in current and future forest-plot work, any systematic errors introduced by currently identified biases in past studies are small and calculable. We conclude that most tropical-forest plot data are of useful quality, and that the evidence does still weigh conclusively in favor of a recent increase of biomass in old-growth tropical forests

    Why save tropical rain forests? Some arguments for campaigning conservationists

    No full text
    Saving the tropical rain forest is presently high on the list of priorities of many international conservation organizations. In the United Nations Environment Programme (UNEP) it is a priority subject area. IUCN and WWF are also making big efforts in this regard. 1975 and forthcoming years will see considerable funds being devoted to this end. Tropical rain forests (and tropical cloud forests) still cover large expanses throughout the world, but they are fast dwindling for a great variety of reasons. To be successful in the campaign, it is important that conservation officials be prepared for a series of questions, and often adverse reactions, from people with different backgrounds who sincerely do not think that it is really worthwhile spending so much energy on safeguarding the tropical rain and cloud forests, and indeed would rather see large tracts disappear - the sooner the better. The following short and incomplete analysis is intended to provide some answers which hopefully should be easy to convey to an unsophisticated audience. Needless to say, the answers should not be considered as testproof everywhere, much less comprehensive of the various prevailing conditions. Undoubtedly there are many more and often better arguments which can be advanced, depending on the specifìc prevailing conditions, the audience and other factors, and there will be further evolutions condeming arguments and emphasis with changing conditions. Therefore, great caution should always be exercised in the presentation of arguments, in providing satisfactory answers, and in pointing out the significance of tropical rain forests in their various aspects
    corecore