701 research outputs found

    Two-sided asymmetric subduction; implications for tectonomagmatic and metallogenic evolution of the Lut Block, Eastern Iran

    Get PDF
    West directed subduction zones show common characteristics, such as low structural elevation, deep trench, steep slab and a conjugate back-arc basin that are opposite to those of the east directed subduction zones. The tectonomagmatic and metallogenic setting of the Lut Block is still a matter of debate and several hypotheses have been put forward. Despite some authors denying the influence of the operation of Benioff planes, the majority propose that it occurred beneath the Afghan Block, while others consider that oceanic lithosphere was dragged under the Lut Block. Cu-Au porphyry deposits seem to occur in an island arc geotectonic setting during the middle Eocene while Mo-bearing deposits are coincident with the crustal thickening during Oligocene. We introduce new trace element and isotope geochemical data for granitoids and structural evidences testifying the two-sided asymmetric subduction beneath both Afghan and Lut Blocks, with different rates of consumption of oceanic lithosphere

    Shoshonitic enclaves in the high Sr/Y Nyemo pluton, southern Tibet: Implications for Oligocene magma mixing and the onset of extension of the southern Lhasa terrane

    Get PDF
    Post-collisional potassic and high Sr/Y magmatism in the Lhasa terrane provides critical constraints on the timing and mechanism of subduction of Indian lithosphere and its role in the uplift of the Tibetan Plateau. Here, we report whole-rock geochemistry, mineral geochemistry, zircon U Pb ages, and in situ zircon Hf isotope ratios for the Nyemo pluton, a representative example of such magmatism. The Nyemo pluton is composed of high Sr/Y host rocks and coeval shoshonitic mafic microgranular enclaves (MMEs). Whole-rock compositions of the host rocks and MMEs form linear trends in Harker diagrams, consistent with modification of both end-members by magma mixing. Although the main high Sr/Y phase of the pluton formed by partial melting of the lower crust of the thickened Lhasa terrane, the MMEs display abnormally enriched light rare earth elements, low whole-rock Δ_(Nd)(t) and low zircon Δ_(Hf)(t) that suggest derivation from low degree melting of hydrous and enriched mantle. Based on the occurrence of shoshonitic magma and high La/Yb and high Sr/Y with adakitic affinity host rocks around 30 Ma, the Nyemo pluton is best explained as a record of onset of extension that resulted from convective removal of the mantle lithosphere beneath Tibet in the Oligocene

    Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle

    Get PDF
    Peridotitic xenoliths in basaltic andesites from Batan island in the Luzon arc contain silica-rich (broadly dacitic) hydrous melt inclusions that were likely trapped when these rocks were within the upper mantle wedge underlying the arc. These melt inclusions have been previously interpreted to be slab-derived melts. We tested this hypothesis by analyzing the oxygen isotope compositions of these inclusions with an ion microprobe. The melt inclusions from Batan xenoliths have ÎŽ 18OVSMOW values of 6.45 ± 0.51‰. These values are consistent with the melts having been in oxygen isotope exchange equilibrium with average mantle peridotite at temperatures of ≄875°C. We suggest the ÎŽ 18O values of Batan inclusions, as well as their major and trace element compositions, can be explained if they are low-degree melts (or differentiation products of such melts) of peridotites in the mantle wedge that had previously undergone extensive melt extraction followed by metasomatism by small amounts (several percent or less) of slab-derived components. A model based on the trace element contents of Batan inclusions suggests that this metasomatic agent was an aqueous fluid extracted from subducted basalts and had many characteristics similar to slab-derived components of the sources of arc-related basalts at Batan and elsewhere. Batan inclusions bear similarities to “adakites,” a class of arc-related lava widely considered to be slab-derived melts. Our results suggest the alternative interpretation that at least some adakite-like liquids might be generated from low-degree melting of metasomatized peridotites

    Petrology and geochemistry of Plio-Quaternary high-Nb basalts from Shahr-e-Babak area:Insights into post-collision magmatic processes in the Kerman Cenozoic Magmatic Arc

    Get PDF
    Post-collision Pliocene-Quaternary basaltic rocks outcrop in the Kerman Cenozoic Magmatic Arc (KCMA) to the northwest and east of Shahr-e-Babak city. These porphyritic and vesicular basaltic rocks are composed essentially of clinopyroxene, olivine, and plagioclase. These basalts display alkaline affinity and negative Ta, Zr, Rb anomaly, but slightly negative Nb anomaly, relative to elements with similar compatibility, and positive Ba, K, Sr anomaly, suggesting their magma source related to subduction-accretion with implication of subducted slab derived components to the source. In the primitive mantle and chondrite normalized diagrams, these rocks show trace elements (except depletion in Nb, Ta) and Rare Earth Element (REE) patterns similar to the Ocean Island Basalts (OIB) and share trace and major element characteristics similar to High-Nb Basalts (HNBs). Geochemical analyses for major and trace elements suggest that the Shahr-e-Babak HNBs have undergone insignificant crustal contamination and minor olivine + Fe-Ti oxide ±clinopyroxene fractional crystallization. These HNBs derived from a partial melting (~5%) of garnet-peridotite mantle wedge, which have already metasomatized by overlying sediments, fluids, and adakitic (slab-derived) melts as major metasomatic agents in post-collision setting in the KCMA. We conclude that asthenospheric upwelling arising from slab break-off followed by the roll-back of subducting Neotethys slab also triggered metasomatized peridotite mantle wedge and caused its partial melting in the subduction zone

    Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China)

    Get PDF
    The Central Asian Orogenic Belt (CAOB) is a natural laboratory for the study of accretionary tectonics and crustal growth owing to its massive generation of juvenile crust in the Paleozoic. There is a debate, however, on the mechanism of this growth. In the Baogutu area of the western Junggar region, northern Xinjiang (west China), diorite–granodiorite porphyry plutons and dikes are widely associated with Cu–Au mineralization. In this study, we present new results of zircon U–Pb geochronology, major and trace elements, and Sr–Nd–Pb–Hf isotope analyses for two diorite–granodiorite porphyry plutons and two dikes from this area. LA-ICP-MS zircon U–Pb analyses of four plutonic and dike samples yield Late Carboniferous ages of 315–310 Ma. The Baogutu diorite–granodiorite porphyries exhibit low-Fe and calc-alkaline compositions.They are also characterized by high Sr (346–841 ppm) contents, low Y (9.18–16.5 ppm) and Yb (0.95–1.60 ppm) contents, and relatively high Sr/Y (31–67) ratios, which are similar to those of typical adakites. In addition, some samples have relatively high MgO (2.35–8.32 wt.%) and Mg# (48–75), and Cr (22.7–291 ppm) and Ni (32.0–132 ppm) values, which are similar to those of high-Mg andesites. All rock samples exhibit mid-oceanic ridge basalt (MORB)-like Nd–Sr–Pb–Hf isotope features: high ΔNd(t) (+ 5.8–+8.3) and ΔHf(t) (+ 13.1–+15.7) values, and relatively low (87Sr/86Sr)i (0.7033 to 0.7054) and (206Pb/204Pb)i (17.842–18.055). The Baogutu adakitic rocks also contain reversely zoned clinopyroxene phenocrysts, which have low MgO cores and relatively high MgO rims. Geochemical modeling indicates that the Baogutu adakitic rocks could have been derived by mixing ~ 95% altered oceanic crust-derived melts with ~ 5% sediment-derived melts.Taking into account the regional geology, I- and A-type granitoids and Cu–Au mineralization, and the presence of Carboniferous ophiolite mĂ©langes in northern Xinjiang, we suggest that the Baogutu adakitic rocks were most probably generated by partial melting of a slab edge close to a subducting spreading ridge in the Late Carboniferous. Ridge subduction and the resultant slab window probably caused strong extension in the overlying lithosphere, extensive melting of subducting oceanic crust, mantle and juvenile lower crust, and interaction between slab-derived melts and the mantle. Thus, events associated with ridge subduction are likely to have played an important role in crustal growth in the CAOB in addition to previously recognized accretion of subduction and arc complexes and post-collisional crustal melting.Research Highlights â–șNew constraints on ridge subduction in the Central Asian Orogenic Belt (CAOB). â–ș315-310 Ma adakites and high-Mg diorites occur in the western Junggar region, CAOB. â–șMajor and trace element, and Sr-Nd-Pb-Hf isotope data indicate slab melting. â–șRidge subduction and the resultant slab window probably caused extensive melting. â–șRidge subduction played an important role in crustal growth in the CAOB

    Transitional adakite-like to calc-alkaline magmas in a continental extensional setting at La Paz Au-Cu skarn deposits, Mesa Central, Mexico: metallogenic implications

    Get PDF
    "The granodiorite intrusions with associated Cu-Au skarn mineralization of La Paz district are located in the east part of the Mesa Central of Mexico. The skarn developed at the contact between a middle Cretaceous calc-argillaceous sedimentary sequence and the magmatic intrusions. A Ag-Pb-Zn vein system postdates the intrusive-skarn assemblage. Two well defi ned fault systems (N-S and E-W) divide the La Paz district. The N-S Dolores fault, with a normal vertical displacement estimated between 500 to 1000 m, separates the western Au-Cu skarn zone from the eastern hydrothermal Ag-Pb-Zn vein system. This fault is considered to be part of the Taxco-San Miguel de Allende fault system. The U-Pb dating of the intrusives at the La Paz district clearly indicates a single emplacement event dated at ca. 37 Ma (monocrystal zircon age). This age probably represents the last post-Laramide orogenic mineralizing event known to occur in the Sierra de Catorce district. Also, four calculated discordant ages suggest the presence of greenvilian basement underneath a a thick crust (35-45 km). The chemistry of the intrusive show a certain variability in composition, but they mostly belong to the high-K calc-alkaline magmatic series. Major and trace elements relationships for the intrusives show a chemical evolution from the adakite to the island arc fi elds, and from mineralized to barren intrusives, repectively. They also suggest the importance of crustal delamination processes, and the necessity of deep cortical drains to transfer oxidized magmas and metals to surface.""Las intrusiones granodiorĂ­ticas que dieron origen a un depĂłsito de Au-Cu tipo skarn en el distrito minero de La Paz, S.L.P., se localizan en la parte oriental de la Mesa Central. El skarn se desarrollĂł en el contacto entre una secuencia sedimentaria calco-argĂ­lica del CretĂĄcico medio y los intrusivos. Un sistema de vetas mineralizadas en Ag-Pb-Zn post-datan el Skarn. El distrito de La Paz estĂĄ dividido por dos sistemas de fallas muy bien defi nidas (N-S y E-W). La falla Dolores, de direcciĂłn N-S , muestra un desplazamiento normal vertical estimado entre 500 a 1000 m y separa la zona occidental de skarn de Au-Cu de la zona oriental que contiene al sistema hidrotermal de vetas de Ag-Pb-Zn. Esta falla se considera como parte del sistema de fallas Taxco-San Miguel de Allende. El fechamiento de los intrusivos mediante el mĂ©todo U-Pb en circones indica claramente un Ășnico evento de emplazamiento alrededor de 37 Ma. Esta fecha representa el Ășltimo de los pulsos mineralizantes, posteriores a la orogenia Laramide,reconocido en el distrito de la Sierra de Catorce. Asimismo se reportan cuatro edades discordantes que sugieren la presencia de rocas greenvilianas en la base de una corteza gruesa (35–45 km). La geoquĂ­mica de los intrusivos muestra algunas diferencias en su composiciĂłn, pero pertenecen a la serie magmĂĄtica calco-alcalina con alto contenido de K. Los estudios de elementos mayores y traza muestran una evoluciĂłn desde el campo adakĂ­tico hasta el campo de arco de islas, desde los intrusivos mineralizados a los estĂ©riles, respectivamente. Estos datos tambiĂ©n sugieren la importancia del proceso de delaminaciĂłn cortical y la necesidad de fallas profundas para transferir dicho magma y metales hacia la superficie.

    Pre-Variscan granitoids with adakitic signature at west Getic basement of the South Carpathians (Romania): constraints on genesis and timing based on whole-rock and zircon geochemistry

    Get PDF
    Research on two strata-like intrusions from Slatina-TimiƟ (STG) and Buchin (BG) at West Getic Domain of the South Carpathians (Semenic Mountains) identified granitoids with adakitic signature in a continental collision environment. Whole-rock geochemical composition with high Na2O, Al2O3 and Sr, depleted Y (<18ppm) and HREE (Yb< 1.8ppm) contents, high Sr/Y (>40), (La/Yb)N (>10) ratios and no Eu anomalies overlaps the High-Silica Adakites (HSA) main characteristics, though there are differences related to lower Mg#, heavy metal contents and slightly increased 87Sr/86Sr ratios. Comparison with HSA, Tonalite-Trondhjemite-Granodiorite (TTG) rocks and melts from experiments on basaltic sources suggests partial melting at pressures exceeding 1.25GPa and temperatures of 800-900ÂșC (confirmed by calculated Ti-in zircon temperatures) as the main genetic process, leaving residues of garnet amphibolite, garnet granulite or eclogite type. The adakitic signature along with geochemical variations observed in the STG-BG rocks indicate oceanic source melts affected by increasing mantle influence and decreasing crustal input that may restrict the tectonic setting to slab melting during a subduction at low angle conditions. An alternative model relates the STG-BG magma genesis to garnet-amphibolite and eclogite partial melting due to decompression and heating at crustal depth of 60-50km during syn-subduction exhumation of eclogitized slab fragments and mantle cumulates. The granitoids were entrained into a buoyant mĂ©lange during collision and placed randomly between two continental units. U-Pb zircon ages obtained by LA-ICP-MS and interpreted as Ordovician igneous crystallization time and Variscan recrystallization imprint are confirmed by trace-element characteristics of the dated zircon zones, connecting the STG-BG magmatism to a pre-Variscan subduction-collision event. The rich zircon inheritance reveals Neoproterozoic juvenile source and older crustal components represented by Neoarchean to Paleoproterozoic zircons.

    Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling

    Get PDF
    In the Northern Andes of Ecuador, a broad Quaternary volcanic arc with significant across-arc geochemical changes sits upon continental crust consisting of accreted oceanic and continental terranes. Quaternary volcanic centers occur, from west to east, along the Western Cordillera (frontal arc), in the Inter-Andean Depression and along the Eastern Cordillera (main arc), and in the Sub-Andean Zone (back-arc). The adakite-like signatures of the frontal and main arc volcanoes have been interpreted either as the result of slab melting plus subsequent slab melt-mantle interactions or of lower crustal melting, fractional crystallization, and assimilation processes. In this paper, we present petrographic, geochemical, and isotopic (Sr, Nd, Pb) data on dominantly andesitic to dacitic volcanic rocks as well as crustal xenolith and cumulate samples from five volcanic centers (Pululagua, Pichincha, Ilalo, Chacana, Sumaco) forming a NW-SE transect at about 0° latitude and encompassing the frontal (Pululagua, Pichincha), main (Ilalo, Chacana), and back-arc (Sumaco) chains. All rocks display typical subduction-related geochemical signatures, such as Nb and Ta negative anomalies and LILE enrichment. They show a relative depletion of fluid-mobile elements and a general increase in incompatible elements from the front to the back-arc suggesting derivation from progressively lower degrees of partial melting of the mantle wedge induced by decreasing amounts of fluids released from the slab. We observe widespread petrographic evidence of interaction of primary melts with mafic xenoliths as well as with clinopyroxene- and/or amphibole-bearing cumulates and of magma mixing at all frontal and main arc volcanic centers. Within each volcanic center, rocks display correlations between evolution indices and radiogenic isotopes, although absolute variations of radiogenic isotopes are small and their values are overall rather primitive (e.g., ΔNd=+1.5 to +6, 87Sr/86Sr=0.7040-0.70435). Rare earth element patterns are characterized by variably fractionated light to heavy REE (La/YbN=5.7-34) and by the absence of Eu negative anomalies suggesting evolution of these rocks with limited plagioclase fractionation. We interpret the petrographic, geochemical, and isotopic data as indicating open-system evolution at all volcanic centers characterized by fractional crystallization and magma mixing processes at different lower- to mid-crustal levels as well as by assimilation of mafic lower crust and/or its partial melts. Thus, we propose that the adakite-like signatures of Ecuadorian rocks (e.g., high Sr/Y and La/Yb values) are primarily the result of lower- to mid-crustal processing of mantle-derived melts, rather than of slab melts and slab melt-mantle interactions. The isotopic signatures of the least evolved adakite-like rocks of the active and recent volcanoes are the same as those of Tertiary ”normal” calc-alkaline magmatic rocks of Ecuador suggesting that the source of the magma did not change through time. What changed was the depth of magmatic evolution, probably as a consequence of increased compression induced by the stronger coupling between the subducting and overriding plates associated with subduction of the aseismic Carnegie Ridg

    Petrogenesis of Early Cretaceous intermediate-felsic dikes in the Jiaodong Peninsula, south-eastern North China Craton: Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes

    Get PDF
    Early Cretaceous dike swarms are widely developed in the Jiaodong Peninsula, NE China. In this study, we newly investigated the spatial-temporal distribution, petrography, geochronology and whole-rock geochemistry of the intermediate-felsic dikes from the Jiaobei terrane and the Sulu orogenic belt in the Jiadong Peninsula. The zircon U-Pb dating has constrained the timing of the emplacement of intermediate-felsic dikes to 128–108 Ma. The quartz diorite dikes in Jiaobei show adakitic geochemical features, including high SiO2 (66.3–67.5 wt%) contents and high Sr/Y (76–149) and La/Yb (41–91) ratios. The combination of a series of isotopic data, including initial 87Sr/86Sr ratios (0.7098–0.7104) and negative ΔNd(t) (−20.1 to −14.7) and zircon ΔHf(t) values (−19.9 to −9.5), indicates that these quartz diorite dikes were likely derived from partial melting of thickened ancient lower crust with involvement of underplated mafic magmas. Additionally, the diorite dikes in Jiaobei and those in Sulu show similar chemical compositions, as both yield the high-Mg andesite (or andesitic rocks) (HMAs) characteristics with a high Mg# value (60–72), high MgO, Cr, and Ni contents, and low Na2O (average = 3.25 wt%) contents. They also exhibit crustal geochemical signatures, such as depletion in Nb, Ta, and Ti, but enrichment in Th and U; high initial 87Sr/86Sr ratios (0.7063–0.7094), and low ΔNd(t) (−16.7 to −9.6) and ΔHf(t) values (−29.4 to −9.8). The entire geochemical evidences imply that they derived from the partial melting of mantle wedge peridotite metasomatized by hydrous fluids from the subduction of the oceanic slab with marine sediments. In combination with the Early Cretaceous intrusions and mafic dikes at Jiaodong, the intermediate-felsic dikes represent a magmatic response to lithospheric thinning resulted from the prolonged thermo-mechanical-chemical erosion processes caused by slab rollback of the Paleo-Pacific plate
    • 

    corecore