3,792 research outputs found

    Splicing-dependent NMD does not require the EJC in Schizosaccharomyces pombe

    Get PDF
    Nonsense-mediated mRNA decay (NMD) is a translation-linked process that destroys mRNAs with premature translation termination codons (PTCs). In mammalian cells, NMD is also linked to pre-mRNA splicing, usually PTCs trigger strong NMD only when positioned upstream of at least one intron. The exon junction complex (EJC) is believed to mediate the link between splicing and NMD in these systems. Here, we report that in Schizosaccharomyces pombe splicing also enhances NMD, but against the EJC model prediction, an intron stimulated NMD regardless of whether it is positioned upstream or downstream of the PTC and EJC components are not required. Still the effect of splicing seems to be direct—we have found that the important NMD determinant is the proximity of an intron to the PTC, not just the occurrence of splicing. On the basis of these results, we propose a new model to explain how splicing could affect NMD

    The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules

    Get PDF
    The inflammatory response plays out over time in a reproducible and organized way after an initiating stimulus. Here we show that genes activated in cultured mouse fibroblasts in response to the cytokine tumor necrosis factor could be categorized into roughly three groups, each with different induction kinetics. Although differences in transcription were important in determining the grouping of these genes, differences in mRNA stability also exerted a strong influence on the temporal order of gene expression, in some cases overriding that of transcriptional control elements. Transcripts of mRNA expressed early had abundant AU-rich elements in their 3' untranslated regions, whereas those expressed later had fewer. Thus, mRNA stability and transcriptional control, two intrinsic characteristics of genes, control the kinetics of gene expression induced by proinflammatory cytokines

    A molecular phylogeny of Southeast Asian Cyrtandra (Gesneriaceae) supports an emerging paradigm for Malesian plant biogeography

    Get PDF
    The islands of Southeast Asia comprise one of the most geologically and biogeographically complex areas in the world and are a centre of exceptional floristic diversity, harbouring 45,000 species of flowering plants. Cyrtandra, with over 800 species of herbs and shrubs, is the largest genus in the family Gesneriaceae and is one of the most emblematic and species-rich genera of the Malesian rainforest understorey. The high number of species and tendency to narrow endemism make Cyrtandra an ideal genus for examining biogeographic patterns. We sampled 128 Cyrtandra taxa from key localities across Southeast Asia to evaluate the geo-temporal patterns and evolutionary dynamics of this clade. One nuclear and four chloroplast regions were used for phylogenetic reconstruction, molecular dating, and ancestral range estimation. Results from the dating analysis suggest that the great diversity of Cyrtandra seen in the Malesian region results from a recent radiation, with most speciation taking place in the last five million years. Borneo was recovered as the most likely ancestral range of the genus, with the current distribution of species resulting from a west to east migration across Malesia that corresponds with island emergence and mountain building. Lastly, our investigation into the biogeographic history of the genus indicates high levels of floristic exchange between the islands on the Sunda shelf and the important role of the Philippines as a stepping stone to Wallacea and New Guinea. These patterns underlie much of the plant diversity in the region and form an emerging paradigm in Southeast Asian plant biogeography

    Chromatin Preparation and Chromatin Immuno-precipitation from Drosophila Embryos

    No full text
    This protocol provides specific details on how to perform Chromatin immunoprecipitation (ChIP) from Drosophila embryos. ChIP allows the matching of proteins or histone modifications to specific genomic regions. Formaldehyde-cross-linked chromatin is isolated and antibodies against the target of interest are used to determine whether the target is associated with a specific DNA sequence. This can be performed in spatial and temporal manner and it can provide information about the genome-wide localization of a given protein or histone modification if coupled with deep sequencing technology (ChIP-Seq)

    The ribosomal protein L32-2 (RPL32-2) of S. pombe exhibits a novel extraribosomal function by acting as a potential transcriptional regulator

    Get PDF
    AbstractRibosomal proteins play important roles in stabilizing the rRNA structure to facilitate protein synthesis in ribosome. In the present study, we analyzed the potential extraribosomal function of the ribosomal protein L32-2 (RPL32-2), which was expressed by a gene clone isolated from a cDNA library of Schizosaccharomyces pombe (S. pombe). RPL32-2 fused with the GAL4 DNA-bind domain or the GAL4 transcriptional activating domain could, respectively, activate transcriptions of reporter genes in yeast strain AH109. The RPL32-2 mutants with truncation of either the N- or the C-terminal domain resulted in abolishment of this regulatory effect. The DNA binding site for RPL32-2 of S. pombe was identified by using a random oligonucleotide selection strategy and gel motility shift assay and Western blotting confirmed its binding specificity. Moreover, we found RPL32-2 was also able to interact with a to-be-identified AT sequence binding protein. These data suggest that RPL32-2 of S. pombe, besides its ribosomal function, may also act as a potential transcriptional regulator in nucleus

    Fluorescent protein tagging confirms the presence of ribosomal proteins atDrosophilapolytene chromosomes

    Get PDF
    \ud \ud Most ribosomal proteins (RPs) are stoichiometrically incorporated into ribosomal subunits and play essential roles in ribosome biogenesis and function. However, a number of RPs appear to have non-ribosomal functions, which involve direct association with pre-mRNA and transcription factors at transcription sites. The consensus is that the RPs found at these sites are off ribosomal subunits, but observation that different RPs are usually found together suggests that ribosomal or ribosomal-like subunits might be present. Notably, it has previously been reported that antibodies against 20 different RPs stain the same Pol II transcription sites in Drosophila polytene chromosomes. Some concerns, however, were raised about the specificity of the antibodies. To investigate further whether RPs are present at transcription sites in Drosophila, we have generated several transgenic flies expressing RPs (RpS2, RpS5a, RpS9, RpS11, RpS13, RpS18, RpL8, RpL11, RpL32, and RpL36) tagged with either green or red fluorescent protein. Imaging of salivary gland cells showed that these proteins are, as expected, abundant in the cytoplasm as well as in the nucleolus. However, these RPs are also apparent in the nucleus in the region occupied by the chromosomes. Indeed, polytene chromosome immunostaining of a representative subset of tagged RPs confirms the association with transcribed loci. Furthermore, characterization of a strain expressing RpL41 functionally tagged at its native genomic locus with YFP, also showed apparent nuclear accumulation and chromosomal association, suggesting that such a nuclear localization pattern might be a shared feature of RPs and is biologically important. We anticipate that the transgenes described here should provide a useful research tool to visualize ribosomal subunits in Drosophila tissues and to study the non-ribosomal functions of RPs.\u

    Expression of inflammation-related genes is associated with adipose tissue location in horses

    Get PDF
    Background : In humans, adipose tissue (AT) originating from different depots shows varying gene expression profiles. In horses, the risk of certain metabolic disorders may also be influenced by the impact of specific AT depots. Macrophage infiltration in human and rat AT is considered to be a source of inflammatory changes. In horses, this relationship has not been extensively studied yet. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), a useful method to evaluate differences in mRNA expression across different tissues, can be used to evaluate differences between equine AT depots. For a correct interpretation of the RT-qPCR results, expression data have to be normalized by the use of validated reference genes. The main objectives of this study were to compare mRNA expression of inflammation-related genes, as well as adipocyte morphology and number between different equine AT depots; and in addition, to investigate the presence of antigen presenting cells in equine AT and any potential relationship with adipokine mRNA expression. Results : In this study, the mRNA expression of inflammation-related genes (leptin, chemokine ligand 5, interleukin 1β, interleukin 6, interleukin 10, adiponectin, matrix metalloproteinase 2, and superoxide dismutase 2) and candidate reference gene stability was investigated in 8 different AT depots collected from the nuchal, abdominal (mesenteric, retroperitoneal, and peri-renal) and subcutaneous (tail head and loin) AT region. By using GeNorm analysis, HPRT1, RPL32, and GAPDH were found to be the most stable genes in equine AT. The mRNA expression of leptin, chemokine ligand 5, interleukin 10, interleukin 1β, adiponectin, and matrix metalloproteinase 2 significantly differed across AT depots (P 0.05). Adipocyte area and number of antigen presenting cells per adipocyte significantly differed between AT depots (P < 0.05). Conclusions : Adipose tissue location was associated with differences in mRNA expression of inflammation-related genes. This depot-specific difference in mRNA expression suggests that the overall inflammatory status of horses could be partially determined by the relative proportion of the different AT depots

    Differential stoichiometry among core ribosomal proteins

    Get PDF
    Understanding the regulation and structure of ribosomes is essential to understanding protein synthesis and its deregulation in disease. While ribosomes are believed to have a fixed stoichiometry among their core ribosomal proteins (RPs), some experiments suggest a more variable composition. Testing such variability requires direct and precise quantification of RPs. We used mass-spectrometry to directly quantify RPs across monosomes and polysomes of mouse embryonic stem cells (ESC) and budding yeast. Our data show that the stoichiometry among core RPs in wild-type yeast cells and ESC depends both on the growth conditions and on the number of ribosomes bound per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-gene is inversely proportional to the enrichment of the corresponding RP in polysomes. Together, our findings support the existence of ribosomes with distinct protein composition and physiological function.Comment: 31 pages, 8 figure

    Syncrip/hnRNP Q is required for activity-induced Msp300/Nesprin-1 expression and new synapse formation.

    Get PDF
    Memory and learning involve activity-driven expression of proteins and cytoskeletal reorganization at new synapses, requiring posttranscriptional regulation of localized mRNA a long distance from corresponding nuclei. A key factor expressed early in synapse formation is Msp300/Nesprin-1, which organizes actin filaments around the new synapse. How Msp300 expression is regulated during synaptic plasticity is poorly understood. Here, we show that activity-dependent accumulation of Msp300 in the postsynaptic compartment of the Drosophila larval neuromuscular junction is regulated by the conserved RNA binding protein Syncrip/hnRNP Q. Syncrip (Syp) binds to msp300 transcripts and is essential for plasticity. Single-molecule imaging shows that msp300 is associated with Syp in vivo and forms ribosome-rich granules that contain the translation factor eIF4E. Elevated neural activity alters the dynamics of Syp and the number of msp300:Syp:eIF4E RNP granules at the synapse, suggesting that these particles facilitate translation. These results introduce Syp as an important early acting activity-dependent regulator of a plasticity gene that is strongly associated with human ataxias
    corecore