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Abstract Ribosomal proteins play important roles in stabilizing
the rRNA structure to facilitate protein synthesis in ribosome. In
the present study, we analyzed the potential extraribosomal func-
tion of the ribosomal protein L32-2 (RPL32-2), which was
expressed by a gene clone isolated from a cDNA library of
Schizosaccharomyces pombe (S. pombe). RPL32-2 fused with
the GAL4 DNA-bind domain or the GAL4 transcriptional acti-
vating domain could, respectively, activate transcriptions of re-
porter genes in yeast strain AH109. The RPL32-2 mutants
with truncation of either the N- or the C-terminal domain re-
sulted in abolishment of this regulatory effect. The DNA binding
site for RPL32-2 of S. pombe was identified by using a random
oligonucleotide selection strategy and gel motility shift assay and
Western blotting confirmed its binding specificity. Moreover, we
found RPL32-2 was also able to interact with a to-be-identified
AT sequence binding protein. These data suggest that RPL32-2
of S. pombe, besides its ribosomal function, may also act as a
potential transcriptional regulator in nucleus.
� 2006 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

The ribosome, consisting of ribosomal proteins and RNAs,

is an important molecular machine responsible for protein syn-

thesis by executing two main functions: decoding the genetic

message and the formation of peptide bonds [1]. The ribosome

proteins, which are highly conserved among diverse organisms,

mainly function as stabilizers of the rRNA structure [2]. How-

ever, some ribosomal proteins may also possess extrariboso-

mal functions, e.g, DNA repair, regulation of transcription,

cell growth and apoptosis [3–8].

Yeast ribosomes contain 78 ribosomal proteins [9]. Balance

must be maintained in synthesis of the ribosomal proteins so

that equimolar amounts of the proteins are supplied [8–12].

However, some ribosomal proteins, e.g., L32 (RPL32), are

over-expressed in some type cells, e.g., human prostate cancer

cells [10] and CD4+ cells of the young mice [12]. Therefore, it is

interesting to investigate whether these ribosomal proteins may

play a role in regulation of transcription.
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In this study, we isolated a gene clone from a cDNA library

of Schizosaccharomyces pombe (S. pombe), which encodes the

protein RPL32-2, a homologue of the RPL32 of Saccharomy-

ces cerevisiae. Our data indicate that the fusion of RPL32-2

with GAL4 DNA-bind domain or the RPL32-2 and GAL4

transcriptional activating domain can, respectively activate

transcription of reporter gene in the GAL4-base hybrid sys-

tem. Furthermore, we found this protein could interact with

an AT-binding protein, suggesting that RPL32-2 is a potential

transcriptional regulator.
2. Materials and methods

2.1. Plasmid constructions
The plasmid pGADT7-RPL32-2 was constructed by inserting an

EcoRI/XhoI RPL32-2 from cDNA library of S. pombe into the
EcoRI/XhoI site in pGADT7 for expressing the fusion protein of
GAL4 activation domain (GAD) and RPL32-2 (GAD-RPL32-2) un-
der the control of the ADH1 promoter. Transcription and translation
of HA-RPL32 fusion protein can be controlled under T7 promoter for
using in vitro rabbit reticulocyte lysate system. The plasmid pGBKT7-
RPL32-2 was constructed by cloning the same EcoRI/XhoI fragment
of RPL32-2 into the EcoRI/BamHI site of pGBKT7 for expression
of fusion protein of GAL4 DNA-binding domain (GBD) and
RPL32-2 (GBD-RPL32-2). To express GAD-RPL32-2DN (aa 1–79)
and GAD-RPL32-2DC (aa 81–127) fusion proteins, the corresponding
SacI/XhoI and EcoRI/SacI fragments were inserted into pGADT7 vec-
tor. To express GBD-RPL32-2DN (aa 1–79) and GBD-RPL32-2DC
(aa 81–127) fusion proteins, the corresponding plasmids were con-
structed by inserting the EcoRI/SacI and SacI/PstI fragments, respec-
tively, into the pGBKT7 vector. The resultant plasmids were verified
by PCR with the primer from DNA BD and AD insert screen ampli-
fication set.

2.2. Cell survival test and b-galactosidase assay
DNA of the plasmids was introduced into AH109 strain by

LiAc-mediated yeast transformation. The cells transformed with the
plasmids pGADT7-RPL32-2, pGADT7-RPL32-2DN and pGADT7-
RPL32-2DC were incubated in the synthetic dropout (SD)/-Leu med-
ium for 4 days at 30 �C and then transferred into SD/-Leu/-His/-Ade
medium for culture at 30 �C for additional 4 days. Similarly, the cells
transformed with the plasmids pGBKT7-RPL32-2, pGBKT7-RPL32-
2DN and pGBKT7-RPL32-2DC were incubated on synthetic dropout
(SD)/-Trp medium for 4 days at 30 �C, followed by culturing the cells
in SD/-Trp/-His/-Ade medium for 4 days at 30 �C.

The b-galactosidase activity was determined by colony-lift filter
assay as previously described [27]. Briefly, the fresh colonies were
grown in a plate at 30 �C for 4 days to 2–3 mm in diameter. A sterile
Whatman #5 filter was placed over the surface of the plate of colonies
and gently rubbed the filter with the side of the forceps until the filter
was evenly wetted. The filter was carefully lift off the agar plate with
ation of European Biochemical Societies.
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forceps and transferred (colonies facing up) to a pool of liquid nitro-
gen. After the filter had frozen completely (about 10 s), it was removed
and allowed to thaw at room temperature. The filter was then carefully
placed, with the colony side up, on another filter that was pre-soaked
in a clean 90-mm plate containing 3 ml of Z buffer X-gal solution. The
filters were incubated at 30 �C and checked periodically for the appear-
ance of blue colonies.

2.3. In vitro translation and nuclear extract preparation
In vitro the HA-tagged RPL32-2 was transcripted and translated by

TNT T7 coupled reticulocyte lysate system (Promega) [12]. Yeast nu-
clear extracts were prepared using the method described by Symington
[13]. The yeast strain (WT, AKU4220) was obtained from China Gen-
eral Microbiological Culture Collection Center (Beijing, China).
2.4. Oligonucleotide selection
Oligonucleotide selection was performed with a DNA fragment

(N24) that contained a 24-bp random sequence flanked on either side
by 18 bases of non-random sequence [5 0-GAATTCGGATCCTCT-
AGA (N24)CTGCAGAAGCTTCTCGAG-3 0]. The single-stranded
oligonucleotide containing the random sequence was PCR-amplified
to a double-stranded oligonucleotide with the primers as outlined.
The products of PCR were purified by phenol/chloroform extraction.
Binding reactions were performed in a final volume of 25 ll at room
temperature for 30 min. The mixture of reaction contained 5 ll
(0.5 ng/ll) of N24 double-stranded DNA fragment, 3 ll (0.5 lg/ll)
poly (dI–dC) and 10 ll (1lg/ll) of the protein of HA-RPL32-2 of S.
pombe from cell-free translation. The binding buffer contained
10 mM Tris–HCl (pH7.5), 50 mM NaCl, 1 mM DTT, 5% (vol/vol)
glycerol, 0.1% NP-40, and 0.5 lg/ll of bovine serum albumin (BSA).
The binding complexes were isolated by immunoprecipitation used
BD Matchmarker Co-IP kit (BD biosciences). Briefly, 10 ll (1 lg/ll)
of HA-Tag polyclonal antibody was added to the mixture of binding
reaction. After incubation at room temperature for 1 h, 3 ll of protein
A beads was added and incubated at room temperature for 1 h. The
beads were washed for 5 times with the Wash Buffer 1 and Wash Buffer
2 from the BD Co-IP kit, resuspended in 100 ll of H2O and boiled for
5 min. Following phenol extraction, the DNA was recovered by etha-
nol precipitation. The recovered DNA was amplified by PCR (94 �C,
1 min, 52 �C, 40 s, and 72 �C, 1 min for 30 cycles). The amplified
DNA was extracted by phenol/chloroform and recovered by ethanol
precipitation. The selection and enrichment procedure was repeated
for six rounds. After the last round of PCR amplification, the gel-puri-
fied DNA fragments were cloned into PMD-18 T vector (TA cloning)
(TaKaRa Biotechnology Co., Dalian, China). The clones containing
single insets were identified and constructs were verified by DNA
sequencing. The binding potential of selected sites at the site of N24
DNA fragments was analyzed with the method of combination of
computer-generated and visual alignment.

2.5. Binding probes
The DNA fragment (WT) was prepared by PCR amplification of

plasmids containing the selected binding site with oligonucleotide pri-
mer (NA and NB, as above). The PCR product was digested by BamH
I and was radiolabeled at 3 0-terminal with [a-32P]dGTP by DNA poly-
merase I large (Klenow) fragment for the probe of RPL32-2 binding
DNA assays. For preparing the competitor DNA probes (mut 1–6),
the single-base of GTTGGT of RPL32-2 binding DNA sequence in
WT was substituted by A/C/C/A/A/C in order, respectively. The
DNA probe (ATWT) was prepared by PCR amplification of WT frag-
ment with the sense primer (NA) and the antisense primer (ATNB) con-
taining an AT sequence (5 0-CGATATAAAACTCGA GAAGCTT-3 0).
The radiolabeled probe (ATNB) was prepared in the same way as de-
scribed above. The probes were purified by electrophoresis through a
12% non-denaturing polyacrylamide gel, eluted and quantitated.
2.6. DNA binding assay
The HA-RPL32-2 fusion protein was generated by TNT T7 lysate

coupled translation system and immunoprecipitated by BD Match-
marker Co-IP Kit, as described above. The protein was eluted with
0.1 M glycine–HCl (pH 2.5) and neutralized by 1 M Tris–HCl (pH
8.0) immediately. To determine the binding of the eluted protein to
the DNA fragment, the fraction containing the eluted protein was
added to the buffer containing 10 lg WT fragment, 0.3 lg of poly-
(dI–dC), 10 mM Tris–HCl (pH 7.5), 50 mM NaCl, 1 mM DTT, 5%
(vol/vol) glycerol, 0.1% Nonidet P-40, and 0.5 lg/ll BSA. The mixture
was incubated for 30 min at room temperature to allow the formation
of complexes. For competition analysis, the unlabelled oligonucleo-
tides (mut 1–6) at a concentration of 50-fold higher than the radiola-
beled WT DNA fragment were included in the binding reaction
buffer. For detecting the interaction between the RPL32-2-DNA and
AT binding protein, 10 lg nuclear extract mixed with 10 ll in vitro
transcription and translation the HA-RPL32-2 was incubated at room
temperature for 1 h. The complex was immunoprecipitated and eluted
as described above. The same protocol was used for DNA binding and
competition reaction. A mobility shift assay was performed by loading
the complexes onto an 8% native polyacrylamide gel in order to verify
RPL32-2 with DNA or containing AT sequence DNA and its binding
protein interaction.
2.7. Western blot assay
The proteins complexes were eluted by 0.1 M glycine–HCl (pH 2.5)

and the pH was neutralized by addition of 1 M Tris–HCl (pH 8.0)
immediately. The elutes were analyzed by non-denaturing polyacryl-
amide gel electrophoresis and transferred to a nitrocellulose filter with-
out using methanol in the transfer buffer. The filter was incubated in
3% BSA in Tris–buffer saline (TBS) for 1 h at room temperature. After
wash with the TTBS (0.1% Tween-20 TBS), the filter was incubated
with rabbit polyclonal antibodies against HA-Tag (1:50 dilution in
TBS containing 0.3% BSA) at 37 �C for 1 h with shaking slowly. After
washing, it was incubated sequentially with biotinylated sheep anti-
rabbit IgG (second antibody) at room temperature for 30 min and with
aivdin–biotin–peroxidase complex at room temperature for 30 min.
After 4 washes by TTBS, the filter was developed in diammobenzidine
tetrahydrochloride buffer. The eluate WT fragments bound to RPL32
protein were shown on the filter.
3. Results

3.1. Sequence analysis of RPL32-2

We isolated ribosomal protein RPL32-2 gene (NP_594182.1)

from cDNA library of S. pombe. The gene is located on chro-

mosome I and is 97.8% identity with RPL32 on chromosome

II. The amino acid residues Ile4, Val7, Leu21, and Ser95 in

RPL32 are substituted with Val4, Ile7, Arg21, Gly95 in

RPL32-2, respectively. Though the RPL32 of S. pombe con-

tains no cysteine residues, its amino acid sequence resembles

highly with the N-terminal fragment of the protein of Ustilago

maydis 521 (gij46096876jgbjEAK82109.1j) and at the C-termi-

nal region of the protein contain TAFII55 (TAF7) protein

conserved region [Identities = 86/122 (70%), Positives = 104/

122 (85%). TAFII55 is a TBP-associated factor in transcription

factor TFIID and play a role in the regulation of gene tran-

scription by RNA polymerase II [14]. A computer blast of ami-

no acid sequences represented in all non-redundant GenBank

CDS indicated that RPL32-2 of S. pombe has low similarity

with the zinc finger (C3HC4-type RING finger) family protein

(gij15234116jrefjNP192036 .1j) [Arabidopsis thaliana] [Identi-

ties = 18/56 (32%), Positives = 29/56 (51%) in the region of

aa 55–110] and Zinc finger protein on ecdysone puffs

(gij730297jspjP41073jPEP_DROME) [Drosophila melanogas-

ter] [Identities = 33/106 (31%), Positives = 47/106 (44%) in

the region of aa 5–102].
3.2. RPL32-2 of S. pombe activates the reporter genes in a

GAL4-base hybrid system

The clone of RPL32-2 of S. pombe was used to constructed

plasmids encoding the fusion proteins of RPL32-2 and GAL4-



Fig. 2. Effects of the N- and C-terminal truncation of the RPL32-2 on
activation of the reporter genes in a GAL4-base hybrid system. (A)
The cells transformed with pGADGH-RPL32 (1) and pGADT7-
RPL32 (2) could grow on SD/-Leu/-His/-Ade medium plate, but those
with pGADGH-RPL32DN (3) and pGADT7-RPL32DC (4) could not
grow. (B) The cells transformed with pGBKT7-RPL32 (1) could grow
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binding DNA domain (pGADT7-RPL32-2) or the fusion pro-

teins of RPL32-2 and GAL4-transcription-activation domain

pGBKT7-RPL32-2. After the plasmid pGADT7-RPL32-2

was transformed into the yeast AH109 cells which could grow

in SD/-Leu/-His/-Ade medium, it activated the LacZ reporter

gene to express b-galactosidase as shown in the colony-lifter

assay (Fig. 1A1 and A2). Similar result was obtained when

pGBKT7-RPL32-2 was transformed into the yeast AH109

cells, i.e., the fusion protein of RPL32-2 and GAL4-binding

DNA domain could promote expression of the His, Ade and

LacZ reporter genes (Fig. 1B1 and B2). These date suggest that

RPL32-2 has the ability of binding DNA and transcriptional

activation in Gal4-base hybrid system.

To determine whether the RPL32-2 contains the independent

DNA binding domain and transcription-activation domain, the

protein was truncated by deletion of its N- or C-terminal region.

After amplification by PCR, the bands of various truncated

cDNA were revealed (Fig. 2A). Unlike the cells transformed

with both wide-type plasmids pGADGH-RPL32-2 and

pGADT7-RPL32-2, neither pGADT7-RPL32-2DN nor

pGADT7-RPL32-2DC-transformed AH109 cells could grow

in SD/-Leu/-His/-Ade medium (Fig. 2B). Similarly, the cells

transformed with pGBKT7-RPL32-2DN and pGBKT7-

RPL32-2DC could not grow in SD/-Trp/-His/-Ade medium

either (Fig. 2C). These results indicate that the both the N-

and C-terminal regions of RPL32-2 are important for its ability

of DNA binding and transcriptional activation in GAL4-hy-

brid system and the domains responsible for these two functions

may be associated.

3.3. The DNA binding specificity of RPL32-2

If the RPL32-2 of S. pombe is a transcriptional regulator, it

could exhibit an ability to bind DNA. The random oligonu-

cleotide selection procedure has been successfully to identify

optimal DNA binding sites for a variety of transcriptional reg-

ulatory proteins [14,22]. We used this method to investigate the
Fig. 1. Activation of the reporter genes in a GAL4-base hybrid system
by the GADT7-RPL32-2 and GBKT7-RPL32-2 fusion proteins. (A1)
The clone of cells transformed with pGADT7-RPL32 plasmid was
spotted on SD/-Ade/-His/-Leu agar plate and incubated at 30 �C for 4
days. (A2) The blue colonies in A1 were lifted onto the filter and
measured for b-galactosidase activity by colony-lift filter assay. (B1)
The clone of cells transformed with pGBKT7-RPL32 plasmid was
spotted on SD/-Ade/-His/-Trp agar plate and incubated at 30 �C for 4
days. (B2) The blue colonies in B1 was lifted onto the filter and
measured for b-galactosidase activity by colony-lift filter assay.

in SD/-Trp/-His/-Ade medium plate, but those with pGBKT7-
RPL32DN (2) or pGBKT7-RPL32DC could not (3). (C) Constructed
plasmids were verified by PCR. Lane 1: pGADT7-RPL32; lane 2:
pGADT7-RPL32DN; lane 3: pGADT7-RPL32DC; lane 4: pGBKT7-
RPL32; lane 5: pGBKT7-RPL32DN; lane 6: pGBKT7-RPL32DC: and
M, DNA ladder marker.
DNA binding specificities of the RPL32-2 protein. Binding

selection was performed with a double-stranded DNA frag-

ment that contains a 24-bp random sequence. Those DNA

fragments interacted with the RPL32-2 protein were separated

by immunoprecipitation of the bound complexes and PCR

amplification repeatedly. After the sixth round, the DNA sites

selected with HA-RPL32-2 were cloned and sequenced. After

alignment of 64 different sequences (with a combination of

computer-generated alignment and visual alignment), the site,

GTTGGT, was identified. To determine the binding specific-

ity, six unlabeled mutational site probes (mut 1–6) at 50-fold

higher concentration were added to reaction mixtures contain-

ing the WT DNA probe and the bands were visualized by gel

shift analysis and Western blotting. As shown in Fig. 3A, the

DNA fragments GCTGGT (lane 3) and GTTAGT (lane 5)

could not substitute WT fragment. Binding of the WT DNA

fragment to the fusion protein of HA-RPL32-2 resulted in sig-

nificant reduction of mobility, as shown by Western blotting

assay (Fig. 3B).



Fig. 3. Determination of the DNA binding specificity of RPL32-2.
The double-stranded WT fragments were radiolabeled and combined
with HA-RPL32-2 fusion protein to form complexes, which were
purified by immunoprecipitation and analyzed by Western blotting
assay. (A) Gel mobility shift assay indicated WT probe could interact
with the protein of HA-RPL32-2. Lane 1: radiolabeled HA-
RPL32 + WT fragment with GGTGTT sites; lanes 2–7: radiolabeled
HA-RPL32 + WT fragment with GGTGTT sites plus 50-fold excess
unlabeled DNA mutants (mut 1–6) as competitors. (B) Western
blotting assay carried out the protein of RPL32-2 can bind the DNA
fragment. Lane 1: the eluates of the HA-RPl32 without addition of the
DNA probe (control); lane 2: the eluate of the HA-RPl32-2 with
addition of the WT probe.

Fig. 4. Analysis of cooperation of RPL32-2 and an AT binding
protein. Binding reactions were preformed using rabbit reticulocyte
lysate of HA-RPL32-2 cDNA (plasmid T7ATG), nuclear extracts and
radio-labeled ATWT probe. The complexes were isolated by immu-
noprecipitation and analyzed by gel mobility shift assay. Lane 1:
mixture of ATWT probe and RPL32-2; lane 2: mixture of ATWT
probe, RPL32-2 and the nuclear extracts; lane 3: mixture of ATWT
probe, RPL32-2, the nuclear extracts and the non-radiolabeled
ATWT probe at 50-fold higher concentration.
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3.4. Cooperation of RPL32-2 and an AT binding protein

When oligonucleotide selection was performed with a DNA

fragment (N24), the 24-bp random sequence flanked on either

side by 18 bases of non-random sequence. If it contains an AT

sequence in the 3 0 non-random sequence, the HA-RPL32-2

protein binding oligonucleotide selection should lose order in

random sequence region. Therefore, we prepared the radiola-

beled probe (ATWT) containing a HA-RPL32-2 binding site

and an AT sequence. After the blending of HA-RPL32-2 pro-

tein and nuclear extracts of S. pombe was immunoprecipitated

and eluted, the eluate was mixed with the ATWT probe. As

shown in Fig. 4, an extra band with reduced mobility was re-

vealed in the lane where the mixture of nuclear extracts,

RPL32-2 and ATWT probe was added, suggesting that HA-

RPL32-2 may interact with a protein in the nuclear extracts

and bind the ATWT probe simultaneously. This binding reac-

tion could not be competed by the non-radiolabeled WT

probe. These date indicate that the HA-RPL32-2 fusion pro-

tein can bind to an AT sequence binding protein.
4. Discussion

Ribosomal proteins are major components of ribosome

responsible for stabilizing the rRNA structure in ribosome to

guarantee the efficiency of protein synthesis [2]. However, there
are several reports showing that a deficiency in some ribosomal

proteins has been linked to developmental disorders in organ-

isms as diverse as humans, fruitflies and plants [3,5,6,10]. Par-

ticularly the discovery of DNA-binding motifs and their

relationship to transcription factors have suggested that a

few ribosomal proteins may have extraribosomal functions in

transcriptional regulation [3,5,15,16,18,19].

In the present study, we isolated a gene clone encoding the

RPL32-2 of S. pombe. Like other ribosomal proteins, the

RPL32-2 of S. pombe also shows a high degree of sequence

conservation across diverse species at the protein level by

BLAST searches (http://www.ncbi.nlm.nih.gov/BLAST/). To

the best of our knowledge, we first demonstrated that the

RPL32-2 of S. pombe possessed the intrinsic DNA-binding

and transcriptional activation properties since the fusion pro-

tein of RPL32-2 of S. pombe and GAL4 DNA-binding domain

can activate transcription of the reporter genes in GAL4-

hybrid system.

The structural feature of RPL32-2 protein and its DNA

make their interaction and binding possible. Up to now, there

have been no reports indicating that RPL32 can interact with

DNA. But some groups have shown that RPL32 of S. cerevi-

siae appears to interact with three distinct RNA molecules to

influence different elements of RNA processing and function

in three sites in the cell: (1) the processing of pre-rRNA in

the nucleolus; (2) the splicing of the RPL32 transcript in the

nucleolus; and (3) the translation of the spliced RPL32 mRNA

in the cytoplasm [20,21].

Pollock et al. have designed a short random sequence oligo-

nucleotide as a source of binding sites for amplification of the

immunoprecipitated DNA by PCR [14]. Using this method,

Rerngsamran et al. have discovered the binding sites for some

transcription factor and the proteins present in crude nuclear

extracts and in vitro translation reactions [22]. We used this

method to select the RPL32-2 binding sites of and found that

the authentic binding DNA site of RPL32-2 is GGTGTT.

Brent and Ptashne [23] have created a chimeric gene contain-

ing the coding regions for the transcription-activating domain

of GAL4 and the DNA-binding domain of LexA and demon-

strated the DNA-binding and transcription-activating do-

mains of LexA are independent modules, i.e., the hybrid

http://www.ncbi.nlm.nih.gov/BLAST/
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protein containing the DNA-binding domain from one protein

and the transcription-activating domain from another protein

can still function as an activator [24]. This domain swap tech-

nique has been widely used to determine whether a domain

possesses DNA binding or trans-activation capability [25].

Using the similar approach, we designed two chimeric genes

encoding the GAL4AD-RPL32-2 and GAL4BD-RPL32-2 fu-

sion proteins, respectively. Both fusion proteins exhibit the

functions of DNA-binding and transcription-activating activi-

ties in GAL4-based two-hybrid system [26], suggesting that

both RPL32-2 and GAL4 in the fusion proteins make their

own contributions. These data indicate that RPL32-2, like

GAL4, may also function as a potential particular transcrip-

tional regulator.

Unlike typical activator, the DNA-binding and activation

domains in RPL32-2 of S. pombe are not independent modules

because truncation of either the N- or the C-terminal portion

of the RPL32-2 resulted in complete loss of its DNA-binding

and transcription-activating activity. The RPL32-2 of S.

pombe may act in a similar way as a zinc finger protein since

the zinc fingers function as independent modules.

It is unknown how transcription of four reporter genes in the

fusion protein of RPL32-2 and GAL4 DNA-binding domain is

activated in the GAL4-based two-hybrid system. Our data sug-

gest that the transcriptional activating domain of RPL32-2 is

different from that of general transcription factor. The

RPL32-2 is a small protein consisting of only 127 amino acid

residues and its DNA-binding or transcription-activating func-

tions may not be mediated by two separated domains. Despite

a domain swap could be used to show that the domain alone

possesses DNA-binding or trans-activation capabilities [23],

the studies have underscored the fact that activation and

DNA-binding domain are quite complex [17]. In some cases,

the two domains keep their own function by mutual depen-

dence and control. [28,29]. Therefore, we inferred that activa-

tion and DNA-binding domain of the RPL32-2 of S. pombe is

overlap or is controlled each other.

Our result also shown that the cooperative binding of

RPL32-2 and the AT sequence binding protein relies on a direct

protein–protein interaction. Thus, RPL32-2 may have a func-

tion in gene transcription regulation under given conditions.

In summary, the RPL32-2 of S. pombe exhibits the same

function to activate reporter genes as the transcription activa-

tor GAL4 in GAL4-base hybrid system; but unlike GAL4, the

RPL32-2 protein is not an independently DNA-binding do-

main or transcription-activating domain. Our results suggest

that the RPL32-2 of S. pombe may act as a transcription acti-

vation associated protein beside its ribosomal function.
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