19,622 research outputs found

    SamACO: variable sampling ant colony optimization algorithm for continuous optimization

    Get PDF
    An ant colony optimization (ACO) algorithm offers algorithmic techniques for optimization by simulating the foraging behavior of a group of ants to perform incremental solution constructions and to realize a pheromone laying-and-following mechanism. Although ACO is first designed for solving discrete (combinatorial) optimization problems, the ACO procedure is also applicable to continuous optimization. This paper presents a new way of extending ACO to solving continuous optimization problems by focusing on continuous variable sampling as a key to transforming ACO from discrete optimization to continuous optimization. The proposed SamACO algorithm consists of three major steps, i.e., the generation of candidate variable values for selection, the ants’ solution construction, and the pheromone update process. The distinct characteristics of SamACO are the cooperation of a novel sampling method for discretizing the continuous search space and an efficient incremental solution construction method based on the sampled values. The performance of SamACO is tested using continuous numerical functions with unimodal and multimodal features. Compared with some state-of-the-art algorithms, including traditional ant-based algorithms and representative computational intelligence algorithms for continuous optimization, the performance of SamACO is seen competitive and promising

    Is a Dominant Service-Centric Sector Good for Diversity of Provision?

    Get PDF
    An obvious assumption underpinning the immense interest in service-oriented computing is that it is an inherently Good Thing, by which we mean that robust processes and tools for developing service-based systems will bring benefits for service providers and service consumers. The arguments, in terms of consumer choice and flexibility, are certainly quite convincing. However, in this position paper, we question the nature of the underlying assumption, in a world where requirements are as many and varied as potential users and ask if safeguards are needed to ensure that diversity of provision is maintained

    Corticothalamic projections control synchronization in locally coupled bistable thalamic oscillators

    Get PDF
    Thalamic circuits are able to generate state-dependent oscillations of different frequencies and degrees of synchronization. However, only little is known how synchronous oscillations, like spindle oscillations in the thalamus, are organized in the intact brain. Experimental findings suggest that the simultaneous occurrence of spindle oscillations over widespread territories of the thalamus is due to the corticothalamic projections, as the synchrony is lost in the decorticated thalamus. Here we study the influence of corticothalamic projections on the synchrony in a thalamic network, and uncover the underlying control mechanism, leading to a control method which is applicable in wide range of stochastic driven excitable units.Comment: 4 pages with 4 figures (Color online on p.3-4) include

    Level Curvature Distribution and the Structure of Eigenfunctions in Disordered Systems

    Get PDF
    The level curvature distribution function is studied both analytically and numerically for the case of T-breaking perturbations over the orthogonal ensemble. The leading correction to the shape of the curvature distribution beyond the random matrix theory is calculated using the nonlinear supersymmetric sigma-model and compared to numerical simulations on the Anderson model. It is predicted analytically and confirmed numerically that the sign of the correction is different for T-breaking perturbations caused by a constant vector-potential equivalent to a phase twist in the boundary conditions, and those caused by a random magnetic field. In the former case it is shown using a nonperturbative approach that quasi-localized states in weakly disordered systems can cause the curvature distribution to be nonanalytic. In 2d2d systems the distribution function P(K)P(K) has a branching point at K=0 that is related to the multifractality of the wave functions and thus should be a generic feature of all critical eigenstates. A relationship between the branching power and the multifractality exponent d2d_{2} is suggested. Evidence of the branch-cut singularity is found in numerical simulations in 2d2d systems and at the Anderson transition point in 3d3d systems.Comment: 34 pages (RevTeX), 8 figures (postscript

    The Non-local Kardar-Parisi-Zhang Equation With Spatially Correlated Noise

    Get PDF
    The effects of spatially correlated noise on a phenomenological equation equivalent to a non-local version of the Kardar-Parisi-Zhang equation are studied via the dynamic renormalization group (DRG) techniques. The correlated noise coupled with the long ranged nature of interactions prove the existence of different phases in different regimes, giving rise to a range of roughness exponents defined by their corresponding critical dimensions. Finally self-consistent mode analysis is employed to compare the non-KPZ exponents obtained as a result of the long range -long range interactions with the DRG results.Comment: Plain Latex, 10 pages, 2 figures in one ps fil

    Influential Mathematicians: Birth, Education and Affiliation

    Get PDF
    Research output and impact is currently the focus of serious debate worldwide. Quantitative analyses based on a wide spectrum of indices indicate a clear advantage of US institutions as compared to institutions in Europe and the rest of the world. However the measures used to quantify research performance are mostly static: Even though research output is the result of a process that extends in time as well as in space, indices often only take into account the current affiliation when assigning influential research to institutions. In this paper, we focus on the field of mathematics and investigate whether the image that emerges from static indices persists when bringing in more dynamic information, through the study of the "trajectories" of highly cited mathematicians: birthplace, country of first degree, country of PhD and current affiliation. While the dominance of the US remains apparent, some interesting patterns -that perhaps explain this dominance- emerge

    Experimental comparison of dynamic tracking performanceof iGPS and laser tracker

    Get PDF
    External metrology systems are increasingly being integrated with traditional industrial articulated robots, especially in the aerospace industries, to improve their absolute accuracy for precision operations such as drilling, machining and jigless assembly. While currently most of the metrology assisted robotics control systems are limited in their position update rate, such that the robot has to be stopped in order to receive a metrology coordinate update, some recent efforts are addressed toward controlling robots using real-time metrology data. The indoor GPS is one of the metrology systems that may be used to provide real-time 6DOF data to a robot controller. Even if there is a noteworthy literature dealing with the evaluation of iGPS performance, there is, however, a lack of literature on how well the iGPS performs under dynamic conditions. This paper presents an experimental evaluation of the dynamic measurement performance of the iGPS, tracking the trajectories of an industrial robot. The same experiment is also repeated using a laser tracker. Besides the experiment results presented, this paper also proposes a novel method for dynamic repeatability comparisons of tracking instrument

    Analysis of tissue transglutaminase function in the migration of swiss 3T3 fibroblasts - the active-state conformation of the enzyme does not affect cell motility but is important for its secretion

    Get PDF
    Increasing evidence suggests that tissue transglutaminase (tTGase; type II) is externalized from cells, where it may play a key role in cell attachment and spreading and in the stabilization of the extracellular matrix (ECM) through protein cross-linking. However, the relationship between these different functions and the enzyme’s mechanism of secretion is not fully understood. We have investigated the role of tTGase in cell migration using two stably transfected fibroblast cell lines in which expression of tTGase in its active and inactive (C277S mutant) states is inducible through the tetracycline-regulated system. Cells overexpressing both forms of tTGase showed increased cell attachment and decreased cell migration on fibronectin. Both forms of the enzyme could be detected on the cell surface, but only the clone overexpressing catalytically active tTGase deposited the enzyme into the ECM and cell growth medium. Cells overexpressing the inactive form of tTGase did not deposit the enzyme into the ECM or secrete it into the cell culture medium. Similar results were obtained when cells were transfected with tTGase mutated at Tyr274 (Y274A), the proposed site for the cis- ,trans peptide bond, suggesting that tTGase activity and/or its tertiary conformation dependent on this bond may be essential for its externalization mechanism. These results indicate that tTGase regulates cell motility as a novel cell-surface adhesion protein rather than as a matrix-cross-linking enzyme. They also provide further important insights into the mechanism of externalization of the enzyme into the extracellular matrix

    Statistical Mechanics of Broadcast Channels Using Low Density Parity Check Codes

    Get PDF
    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple timesharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based timesharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the timesharing limit.Comment: 14 pages, 4 figure

    Psychophysical evidence for two routes to suppression before binocular summation of signals in human vision

    Get PDF
    Visual mechanisms in primary visual cortex are suppressed by the superposition of gratings perpendicular to their preferred orientations. A clear picture of this process is needed to (i) inform functional architecture of image-processing models, (ii) identify the pathways available to support binocular rivalry, and (iii) generally advance our understanding of early vision. Here we use monoptic sine-wave gratings and cross-orientation masking (XOM) to reveal two cross-oriented suppressive pathways in humans, both of which occur before full binocular summation of signals. One is a within-eye (ipsiocular) pathway that is spatially broadband, immune to contrast adaptation and has a suppressive weight that tends to decrease with stimulus duration. The other pathway operates between the eyes (interocular), is spatially tuned, desensitizes with contrast adaptation and has a suppressive weight that increases with stimulus duration. When cross-oriented masks are presented to both eyes, masking is enhanced or diminished for conditions in which either ipsiocular or interocular pathways dominate masking, respectively. We propose that ipsiocular suppression precedes the influence of interocular suppression and tentatively associate the two effects with the lateral geniculate nucleus (or retina) and the visual cortex respectively. The interocular route is a good candidate for the initial pathway involved in binocular rivalry and predicts that interocular cross-orientation suppression should be found in cortical cells with predominantly ipsiocular drive
    corecore